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Abstract. A simple, explicit boolean function on 2n input bits is pre-
sented that is computable by errorfree quantum read-once branching pro-
grams of size O(n®), while each classical randomized read-once branching
program and each quantum OBDD for this function with bounded two-
sided error requires size 2°(").
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1 Introduction

This paper deals with the comparison of the space complexity of sequential
randomized and quantum algorithms in the nonuniform setting, modeled by
restricted quantum branching programs. Since the general model of branching
programs is still only very poorly understood when it comes to proving lower
bounds, it is natural to consider reasonably restricted variants of the model first.

Lower bounds and separation results generally come in two main flavors:
results for multi-output-bit functions and for single-output-bit functions or de-
cision problems. Of the former type are recent time-space tradeoffs for quan-
tum circuits computing some practically important functions, including sort-
ing [11,1,13] and boolean matrix-vector and matrix-matrix multiplication [13,12].

Here we are concerned with separation results for decision problems, for
which proving lower bounds is usually much harder than for multi-output-bit
problems in the same model. Such separation results have been proved for the
uniform model of quantum finite automata (QFAs, see, e.g., [14,17,4]). On the
nonuniform side, general quantum branching programs and quantum OBDDs
(ordered binary decision diagrams) have been considered (see the next section
for an introduction of these models). Extending independently obtained results
by Spalek [25], it has been shown in [23] that the logarithm of the size of gen-
eral quantum branching programs captures the space complexity of nonuniform
quantum Turing machines. Ablayev, Moore, and Pollett [3] have proved that NC!
is included in the class of functions that can be exactly computed by quan-
tum oblivious width-2 branching programs of polynomial size, in contrast to
the classical case where width 5 is necessary unless NC' = ACC. Furthermore,
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exponential gaps have been established between the width of quantum OBDDs
and classical deterministic OBDDs (Ablayev, Gainutdinova, and Karpinski [2])
and classical randomized OBDDs, resp. (Nakanishi, Hamaguchi, and Kashiwa-
bara [18]). Finally, it has been shown in [23] that the classes of functions with
polynomial size quantum OBDDs and deterministic OBDDs are incomparable
and an example of a partially defined function for which quantum OBDDs are
exponentially smaller than classical randomized ones has been presented.

Previous results about quantum variants of branching programs for decision
problems have been limited to models that are oblivious, i.e., are required to
read their input bits in a fixed order. Here we consider the non-oblivious model of
quantum read-once branching programs, which are quantum branching programs
that during each computation may access each input bit at most once. The
logarithm of the size of quantum read-once branching programs is a lower bound
on the space-complexity of (uniform or nonuniform) quantum read-once Turing
machines. This follows by an easy adaptation of the proof in [23] for general
quantum branching programs. On the other hand, the upper bound presented
here in terms of quantum read-once branching programs can easily be modified
to work also for (uniform or nonuniform) quantum read-once Turing machines.

As the main result of this paper, we present a simple function for which
quantum read-once branching programs are exponentially smaller than classical
randomized ones. This result is even for a total function (compare this to the fact
that analogous results for quantum OBDDs [23] and quantum one-way commu-
nication complexity [5] known so far are only for partially defined functions). We
use the weighted sum function due to Savicky and Zak [24] as a building block.
For a positive integer n and © = (x1,...,z,) € {0,1}", let p(n) be the smallest
prime larger than n and let s,,(z) = (3.1 ; i~ x;) mod p(n). Define the weighted
sum function by WS, (z) = (o) if sp(x) € {1,...,n} and 0 otherwise. For a
further input vector y = (y1,...,yn) € {0,1}" define the mized weighted sum
function by MWS,,(z,y) = x; @ y; if i = sp(x) = sp(y) € {1,...,n} and 0
otherwise.

Theorem 1: FEach randomized read-once branching program and each quantum
OBDD computing MWS,, with two-sided error bounded by an arbitrary constant
smaller than 1/2 requires size 29(m) while MWS,, can be computed by an error-
free quantum read-once branching program of size O(n3).

The above result shows that being able to choose different variable orders for
different inputs may help a lot for quantum read-once algorithms, even compared
to classical randomized read-once algorithms that are allowed the same option.

The rest of the paper is organized as follows: In the next section, we define
the variants of quantum branching programs considered here. In the section
following that, we present the proof of the main result.

2 Preliminaries

We assume a general background on quantum computing (as provided, e.g.,
by the textbook of Nielsen and Chuang [19]) and on classical branching pro-



Classical vs. Quantum Read-Once BPs 3

grams (BPs) (see, e.g., the textbook of Wegener [28]). We start with the defini-
tion of general quantum branching programs.

Definition 1: A quantum branching program (QBP) over the variable set X =
{z1,...,2n} is a directed multigraph G = (V, E) with a start node s € V and a
set ' CV of sinks. Each node v € V. — F is labeled by a variable x; € X and
we define var(v) = i. Each node v € F carries a label from {0,1}, denoted by
label(v). Fach edge (v,w) € E is labeled by a boolean constant b € {0,1} and a
(transition) amplitude §(v, w,b) € C. We assume that there is at most one edge
carrying the same boolean label between a pair of nodes and set §(v,w,b) =0 for
all (v,w) € E and b € {0,1}.

The graph G is required to satisfy the following two constraints. First, it has
to be well-formed, meaning that for each pair of nodes u,v € V. — F and all
assignments a = (ay,...,a,) to the variables in X,

* ]-7 qu =v;
Z J (u7 w, avar(u))é(va w, avar(v)) = {

v 0, otherwise.

Second, G has to be unidirectional, which means that for each w € V', all nodes
v € V such that §(v,w,b) # 0 for some b € {0,1} are labeled by the same
variable.

A computational state of the QBP is a pure quantum state over the Hilbert
space H = CIV| spanned by an ON-basis (|v))vey. The computation for an input
a = (ay,...,ay,) starts with the computational state |s), called initial state. Let
the QBP be in the computational state [1) =Y .\ . |v) € H at the beginning
of a computation step. Then the QBP first carries out a projective measure-
ment of the output label at the nodes in |¢). This yields the result r € {0,1}
with probability ZveF, Jabel(v)=r |, |2. If one of these events occurs, the respec-
tive output is produced and the computation stops. The computation carries on
for the non-sink nodes with nonzero amplitude in [1). Let [') =3 o\ _pa,|v)
be the state obtained by projecting |v) to the subspace spanned by the non-
sink nodes and renormalizing. Then the next computational state is defined as
|'¢)N> = ZveV—F o, Zwev (v, w, avar(v))‘w>'

The probability that G outputs r € {0,1} on input a € {0,1}" is defined as the
sum of the probabilities of obtaining the output v after any finite number of steps.
Let G(a) be the random variable describing the output of G on input a, called the
output random variable of G for a. We say that the function f: {0,1}" — {0,1}
defined on X is computed by G

e with two-sided error at most ¢, 0 < ¢ < 1/2, if for each a € {0,1}",
Pr{G(a) # f(a)} < €; and it is computed
e exactly (or G is an error-free QBP for f), if for each a € {0,1}",
Pr{G(a) # f(a)} = 0.
Furthermore, by bounded two-sided error we mean two-sided error with some
unspecified constant bound €. (Other modes of acceptance may be defined as usual
for other quantum models of computation.)
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The size of a QBP G is the number of its nodes and is denoted by |G|. Its
width is the mazimum number of nodes with the same distance from the start
node.

The definition of QBPs is similar to that of the uniform models of quantum
finite automata (QFAs) and quantum Turing machines (QTMs), whose relation-
ships to the respective classical models have already been studied to a consid-
erable extent (see, e.g., [14,17,4,6,26,27]). A strong motivation why QBPs are a
natural model is provided by the fact that the logarithm of their size and the
space complexity for nonuniform QTMs are polynomially related [25,23]. For the
scenario of sublinear space bounds, it has turned out to be useful to work with
unidirectional QTMs, i.e., QTMs whose directions of head movements depend
only on the entered state of the finite control. This is the standard model in the
papers of Watrous [26,27] and also that used for the simulation between QBPs
and QTMs in [25,23]. The unidirectionality constraint for QBPs (called parental
condition in [25]) turns up as a natural counterpart of that for QTMs required
to make the simulations work. In order to prevent QBPs from being unreason-
ably powerful, it is further realistic to restrict the set of allowed amplitudes, see
also [23]. This is no issue here, since the upper bound for quantum read-once
branching programs in the paper only uses amplitudes from {0, 1, +1/2}.

For the construction of QBPs it is sometimes convenient to use unlabeled
nodes with an arbitrary number of outgoing edges carrying only amplitude labels.
An unlabeled node v can be regarded as an abbreviation for a node according
to the standard definition labeled by a dummy variable on which the considered
function does not depend. Each edge leading from the unlabeled node v to a
successor w with amplitude « is then regarded as a pair of edges from the node
labeled by the dummy variable to w that carry the boolean labels 0 and 1, resp.,
and that both have amplitude «.

A special case of QBPs are reversible classical BPs, where each node is reach-
able from at most one node v by a 0-edge and from at most one node w by a
l-edge and v and w are labeled by the same variable. It has been proved by
Spalek [25] that each sequence of (possibly non-reversible) classical BPs with at
least linear size can be simulated by a sequence of reversible ones with at most
polynomial larger size. Since randomized (general) BPs can be derandomized
while maintaining polynomial size analogously to probabilistic circuits (see [21]
for details), the same is true in the randomized case.

We consider the following variants of quantum BPs defined analogously to
their classical counterparts.

Definition 2:

e A quantum read-once BP is a QBP where each variable may appear at most
once on each path.

e A quantum OBDD (quantum ordered binary decision diagram) is a quantum
read-once BP with an order 7w of the variables such that for each path in the
graph the order in which the variables appear is consistent with 7.
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3 Proof of the Main Theorem

For the whole section, let p = p(n) be the smallest prime larger than n for a
fixed positive integer n. We first deal with the easier upper bound. Our goal is
to show that MWS,, can be computed by polynomially small error-free quantum
read-once BPs.

Proof of Theorem 1 — Upper Bound: The essence of the proof is to apply the
Deutsch-Jozsa algorithm, evaluating the sums s, (z) and s,(y) in parallel and
computing the output x; @ y; if i = s,(x) = s,(y). We first describe the al-
gorithm by a quantum circuit. We use a four-part quantum register consist-
ing of two qubits for the Deutsch-Jozsa algorithm and two further parts whose
basis states are indexed by {0,...,p — 1}. The oracle gate for the Deutsch-
Jozsa algorithm unitarily extends the mapping S specified for a,b € {0,1} by
|a)[b)|0)]0) — |a)|b & (1 — a)y; ® ax;)|i)|j), where i = s,(x) and j = s,,(y). This
gate is applied to the initial state (1/2)(|0) + |1))(]0) — |1))|0)|0), giving the final
state (1/2)((—1)¥]0) + (=1)*]1))(|0) — |1))]3)|5). If a measurement of the last
two parts of the quantum register yields that i # j, the output of the circuit is 0
with probability 1. Otherwise, i = j and measuring the first two qubits in the
Hadamard basis yields the output z; ® y; = MWS,,(z,y) for the first qubit with
probability 1.

Next we describe the implementation of the obtained quantum circuit as a
quantum read-once BP. For an easier exposition, we first use unlabeled nodes.
We start with the construction of a subgraph Gg realizing the mapping S. The
nodes of Gg are laid out on a grid with 2n + 1 rows and 4p? columns, the
latter labeled by (a,b,i,j) with a,b € {0,1} and 4,5 € {0,...,p — 1}. Each
row represents an intermediate state of the four-part quantum register used for
the above algorithm. The graph Gg consists of two disjoint classical reversible
OBDDs Gy and G4 on the subsets of nodes in the columns with a = 0 and
a =1, resp. We first describe how G works. The computation starts at a node
in row 1 and column (0,b,0,0) with b € {0,1}. The variable vector z is read
(the order of the variables within the vector does not matter) and the node in
row n + 1 and column (0, b, s,(z),0) is reached. Then the variable vector y is
read (again, the order of the individual variables is arbitrary) and the sink in
row 2n 4 1 and column (0,b @ ys,, (), 5n(2), 5n(y)) is reached. It is easy to see
how the described computation can be implemented by a reversible OBDD with
nodes on the prescribed grid. The OBDD G; works in the same way, but with
exchanged roles of = and y and exchanged roles of the last two column indices.
Altogether, we obtain a classical reversible read-once BP for Gg with at most
(2n + 1) - 4p® nodes, which is of order O(n3) due to the prime number theorem.

We add a new, unlabeled source that for (a,b) € {0,1}? is connected to the
node in row 1 and column (a, b, 0, 0) of G5 by an edge with amplitude (—1)°(1/2).
The sinks of Gg in row 2n + 1 and in columns (a, b, i, ) with ¢ # j are replaced
with 0-sinks. All other sinks of Gg are replaced with unlabeled nodes connected
to a new level of sinks with boolean output labels. The outgoing edges of these
unlabeled nodes are labeled by amplitudes such that, together with the sinks,
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a measurement in the Hadamard basis is realized. The whole graph still has
size O(n?).

Finally, we remove the unlabeled nodes. For this, we first ensure that all
nodes on the first level of Gg are labeled by the same variable and the same for
all nodes on the last level of Gg with variable labels. We rearrange (e.g.) the
variable order of the OBDD G; and update the OBDD accordingly. W.l. 0. g., let
x1 be the first variable read in Gy and let y,, be the last. We move the variable x
to the front of the variable order of G; and ¥, to the end. It is not hard to see that
we can modify GG; in such a way that it complies to the new variable order while
increasing its size by at most a constant factor and maintaining reversibility.
After this transformation, we merge the unlabeled nodes with their successors
(in the case of the source) or with their predecessors (in the case of the nodes
on the level directly above the sinks). It is obvious how the edges should be
relabeled such that the resulting graph still computes the same final state as a
quantum read-once BP. We observe that after the reordering process also the
unidirectionality requirement for quantum BPs is satisfied. Altogether, we have
obtained the desired quantum read-once BP for MWS,, of size O(n3). a

Next we prove the lower bound on the size of randomized read-once BPs
for MWS,, with bounded error. We reuse main ideas from the proof an analo-
gous lower bound for WS,, in [22]. However, the result for MWS,, is no obvious
consequence of that for WS,,. We have to carefully argue why, different from the
quantum case, having two input vectors present that play the same roles does
not help in the randomized case.

The proof employs a variant of the rectangle bound method from communi-
cation complexity theory (see, e.g., the textbook of Kushilevitz and Nisan [16])
suitable for read-once BPs, which we fist describe. For this, we introduce some
notation. We consider boolean functions defined on the union of the disjoint
sets of variables X = {z1,...,z,} and Y = {y1,...,yn}. For a set of variables
Z C XUY, let 22 denote the set of all assignments to Z, i.e., mappings from Z
to {0,1} that we usually identify with vectors in {0,1}/4!. A (combinatorial)
rectangle with respect to a partition IT = (II1,Ilz) of X UY is a set of assign-
ments R = A x B with A C 2/t and B C 22, For £ € {1,...,n — 1} call R an
{-rectangle if IT; contains exactly ¢ variables from X and at most £ — 1 variables
from Y or the same with exchanged roles of X and Y. Call R a one-way rectangle
if B = 22, Given a function g on X UY, R is said to be g-uniform if for all
a,a’ € Aand b € B, g(a,b) = g(d',b).

For the following, let a function f on X UY and a distribution D on the
inputs of f be given. Let 0 < & < 1/2. We describe how to prove lower bounds
for deterministic read-once BPs whose output is allowed to differ from f on at
most an e-fraction of the inputs with respect to D. By a well-known averaging
argument due to Yao [29], this also gives lower bounds of the same size for
randomized read-once BPs computing f with the same error probability.

The essence of the proof technique is to show that, on the one hand, any small
deterministic read-once BP that correctly computes f on a large fraction of the
inputs with respect to D would give a rectangle with large D-measure on which f
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is well approximated, while on the other hand, using the specific properties of f,
the D-measure of any such rectangle necessarily has to be small. We now make
this more precise. Let R = Ax B be arectangle and let 0 < & < 1/2. A function g
on X UY is said to uniformly approzimate f on R with error e with respect to D,
if for all @ € A, g differs from f for at most an e-fraction of the inputs in {a} x B
with respect to D. The following main lemma of the proof technique is a variant
of a similar statement from [22], where the uniform distribution and functions
on a single set of variables have been considered.

Lemma 1: Let X = {x1,...,xn} andY = {y1,...,yn}. Let f be a boolean func-
tion on XUY and let D be a distribution on the inputs of f. Let ¢ € {1,...,n—1}
and 0 < e <&’ < 1/2. Then for every deterministic read-once BP G computing
a function g that differs from f on at most an e-fraction of the inputs with
respect to D there is a one-way f-rectangle R that is g-uniform, on which g

uniformly approximates f with error at most €' with respect to D, and which
satisfies D(R) > (1 — /") /(2n|G|).

Proof: By an easy adaptation of the well-known proof technique of Borodin,
Razborov, and Smolensky [7] (see also [28], Section 7.6), we get a partition of the
input space into at most k < 2n|G| one-way f-rectangles Ry = A1 X Byq,..., R =
Aj X By, that are all g-uniform. We claim that there is an ¢ € {1,...,k} and a
subset A, C A; such that for R = A} x B;, D(R) > (1 —¢/¢’)/k and g uniformly
approximates f on R with error &' with respect to D. This obviously suffices to
prove the claim.

Let A* = Ay U---UAy. For each x € A*, let (II1(x), II2(x)) be the partition
of the input variables used by the rectangle to which = belongs, and let S, =
{x} x 2112 Let A = {x € A* | D(S,) > 0}. For each 2 € A let e(x) be the
D-fraction of inputs from S, for which g differs from f. Due to the definitions,
the sets S, x € A, are disjoint and their union has D-measure 1. Hence, by the
law of total probability, > . 4 e(z) D(S;) <e. Let A" ={z € A|e(z) <&’} and
let S be the union of all S, for x € A’. By Markov’s inequality, D(S) > 1—¢/¢’.
By averaging, there is a set A” C A’ such that for the union S’ of all S, with
x € A”, we have D(S’) > D(S)/k and all inputs from A” belong to the same
rectangle. Let (I1q, II5) be the partition of input variables of this rectangle. It is
now obvious that the set R = A” x 22 with A” C 2/ and D(R) > (1—¢/¢’)/k
is a one-way f-rectangle with the desired properties. a

Next we cite technical lemmas also used in [22] that build the common core of
the lower bounds both for the mixed weighted sum function MWS,, and the usual
weighted sum function WS,,. The first lemma, due to Erdds and Heilbronn [8]
(reproved independently in [22]), allows us to argue that partial weighted sums
of enough random bits are essentially uniformly distributed over the whole range
of possible values.

Lemma 2 ([8]): Let g = q(n) be a sequence of primes and letn < ¢g—1 andn =
Q(q2/3+5) for any constant 6 > 0. Let a1, ... ,a,,b € Z;; = Z, — {0} where the
numbers ay, ..., a, are pairwise different. Then for (x1,...,z,) € {0,1}™ chosen

uniformly at random, |Pr{a1x1 + -+ apx, =bmod q} — 1/q| —9—92(d”)
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Furthermore, we need the following classical fact about the distribution of
primes, which follows from a more precise bound due to Hoheisel [9] (see, e. g,
the monograph of Ribenboim [20], pp. 252-254, for more details and improved
bounds):

Lemma 3 ([9]): p(n) =n+ o(n).

In the final technical lemma, we consider the index function IND,,: {0,1}™ x
{1,...,n} — {0,1} from communication complexity theory defined for u €
{0,1}" and v € {1,...,n} by IND,,(u,v) = u,. We state an upper bound on the
size of one-way rectangles on which IND,, is well approximated that is implicit
in a couple of papers, the earliest one being probably that of Kremer, Nisan, and
Ron [15]. For the sake of completeness, we include the easy proof. Here and in
the following, U denotes the uniform distribution on the domain implied by its
respective argument.

Lemma 4 ([15]): Let € be a constant with 0 < e < 1/2. Let R=Ax{1,...,n}
with A C {0,1}"™ be a one-way rectangle for which a function g exists such that R

18 g-uniform and g uniformly approximates IND,, on R with error € with respect
to U. Then U(R) = 2= %),

Proof: Since R is g-uniform, there is a vector r € {0,1}" such that, for each
a € A, (g9(a,1),...,g9(a,n)) = r. Since g uniformly approximates IND,, on R
with error at most € with respect to the uniform distribution, » has Hamming
distance at most |en | to each vector in A. It follows that |A| is upper bounded by
the size of Hamming balls of radius |en |, which is known to be at most 27 ()"
where H(x) = —(zlogz + (1 — z)log(1 — z)) for x € [0, 1] is the binary entropy
function. Thus, U(R) = |R|/(n-2") = |A]/2" < 27(U-HER = 9=0(), 0

Now we describe the details that are particular to the function MWS,,. For
the rest of the section, let X = {z1,...,z,} and Y = {y1,...,y,} be the sets of
variables on which MWS,, is defined. Recall that p = p(n) is the smallest prime
larger than n. We concentrate on the set of difficult inputs D = {(x,y) | sp(z) =
sn(y)} by working with the distribution D with D(z,y) = 1/|D] if (z,y) € D
and D(z,y) = 0 otherwise.

As a preparation of the proof of the lower bound for randomized read-once
BPs computing MWS,,, we derive some basic facts about the considered one-
way rectangles. We use the following notation. For a set S C X (or S CY) of
variables and a partial assignment a that fixes at least all variables in S, let
os(a) = (X ,c5i(v) - a(v)) mod p, where i(v) € {1,...,n} denotes the index of
the variable v in X (or Y, resp.), and a(v) is the value that it obtains by the
assignment a.

Lemma 5: Let { =n — @(p2/3+5) for some constant § with 0 < 6 < 1/3. Let
IT = (I11, II3) be a partition of X UY with |[IILNX| =€ and |[IILNY| < £—1. Let
R = Ax 2™z with A C 21 and suppose there are iy, i, € {0,...,p—1} such that
foralla € A, o,nx(a) = iy and omg,ny(a) = iy. For each k € {0,...,p— 1}
define By, as the set of all assignments b € 212 with o7,~x (b) = (k — i,) mod p
and o,ny (b) = (k — i) mod p. Then we have the following.
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(i) For each k € {0,...,p— 1} and (a,b) € A X By, ox(a,b) = oy(a,b) = k.
Furthermore, U(By) = (1/p?) - (1 £ 0(1)) and D(A x By) = (1/p) - U(R) -
(1+0(1)).

(it) D(R) =U(R) - (1 £ 0(1)).

Proof: Part (i): The first part of the statement is obvious. It remains to prove
the claims about U(By) and D(A x Byg). Let b denote an assignment from By
chosen uniformly at random. Then, using that disjoint parts of b are independent
of each other and applying Lemma 2, we get

U(Bk) = PT{O'H2mx(b) =k—i, A 0H2my(b) =k—- Zy}

Pr{omox(b) = k —is} - Pr{omoy (b) = k —i,} — % (1 £ o(1)).

Furthermore, also by Lemma 2, U(D) = (1/p) - (1 & o(1)). Again by the inde-
pendence of disjoint parts of uniformly random assignments and by observing
that A x By, C D and U(A) = U(R), we obtain

U((Ax Bi)N D) U(A)-U(By) 1

D(Ax By) = D, = Uy = U (o),

Part (ii): This follows from the first part, since R N D is the disjoint union
of the sets A x By over all k=0,...,p— 1. a

Finally, we are ready to prove the desired lower bound on the size of ran-
domized read-once BPs for MWS,,.

Proof of Theorem 1 — Lower bound for randomized read-once BPs:  Following
the outline above, we prove the lower bound for deterministic read-once
BPs that correctly compute MWS,, on a large fraction of the inputs. Let
0 < eg < 1/2 be any constant and let G be a deterministic read-once BP
computing a function g that differs from MWS,, on at most an eg-fraction of
the inputs with respect to D. Choose ¢ = n — 6 (p**+%) for a some constant &
with 0 < § < 1/3. Let € be a constant with e¢ < € < 1/2. Let R be a one-way
{-rectangle that is g-uniform and on which MWS,, is uniformly approximated
by g with error at most . We prove that D(R) = 2-(") By Lemma 1, this
yields the desired lower bound |G| = 2("),

Let IT = (IIy, II3) be the partition of the input variables used by R, where
w.lo.g [IhNX|=¢and [II;NY|<{—1.Let R = Ag x 22 with Ap C 2/,
Using averaging, we fix an assignment a € 217" and an i, € {0,...,p—1} such
that for the set A of all assignments a’ € Ag that are consistent with a and satisfy
omnx(a’) =iy, we have D(A x 212) > D(R)/(p - 2H1"Y1). Let iy, = oz, ny (a).
Let R = {z € Ax 2" | D(z)>0}. Since g approximates MWS,, uniformly
on R with error at most ¢ with respect to D, we know that g differs from MWS,,
for at most an e-fraction of the inputs in R’ with respect to D.

Let IIhNX ={zj,,...,z;,}. We observe that, due to Lemma 3, p < n+o(n)
and thus £ > n — o(n) and ¢/p > 1 — o(1). Let By,..., Bp—1 C 22 be the sets
of assignments according to Lemma 5 for R" and i,,14,. Let B = B, U---UBj,.
Then we have the following.
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Claim 1: The function g differs from MWS,, on at most a fraction of e-(1+0(1))
of the inputs in A x B with respect to the uniform distribution.

Proof of Claim 1: Due to part (i) of Lemma 5, D(A x B) > ({/p) - U(R') -
(1 —-0(1)) > U(R') - (1 —o(1)). On the other hand, by part (ii) of Lemma 5,
D(R') <U(R')-(14+0(1)). Thus, the inputs in A x B cover at least a (1—o0(1))-
fraction of the rectangle R’ with respect to D. It follows that ¢ differs from MWS,,
on at most a fraction of € - (1 + o(1)) of the inputs in A x B with respect to D.
Since A x B C D, the same is true for the uniform distribution. O

Next we further reduce the obtained set A x B by picking appropriate rep-
resentatives of each of the subsets Bj,,...,B;, of B.

Claim 2: There are by € Bj,,...,b; € Bj, such that g differs from MWS,, on
at most a fraction of € - (1 + o(1)) of the inputs in R" = A x {b1,...,bs} with
respect to the uniform distribution.

Proof of Claim 2: We choose a collection of disjoint subsets {b1,...,bs} of B
with by € Bj,,...,b; € Bj;, whose union B’ is as large as possible. Since U(By) >
(1/p?)-(1—o0(1)) for each k = 0,...,p—1 by part (i) of Lemma 5, we can ensure
that U(B') > (¢/p?)- (1 —o(1)) > (1/p)- (1 —o(1)). On the other hand, also
by Lemma 5, U(B) < (1/p) - (1 + o(1)). Hence, the set A x B’ covers at least
a (1 — o(1))-fraction of the inputs in A x B. It follows that the relative error
of g on A x B’ with respect to the uniform distribution is bounded by some &’
with ¢’ < e-(140(1)). By averaging, there is thus at least one subset {b1,...,bs}
in B’ such that A x {by,...,be} has relative error ¢’ with respect to the uniform
distribution. O

Let R” = A x {by,...,bs} be a rectangle according to the above claim.
Now we apply the result for the index function from Lemma 4. For simplicity,
we assume that j; =1,...,j, =¥ such that the set of all restrictions of the
assignments in A to the variables in I7; N X can be identified in the obvious way
with a subset A;np C {0, 1} of the same size. Recall that for each assignment
in A, the variables in IT; N'Y are fixed according to the assignment a chosen
above. We regard Rinp = Ainp X {1, ..., ¢} as a one-way rectangle for the index
function IND,. Define the function h on inputs u € {0,1}* and v € {1,...,¢} by

h(u,v) = g((u,a),b,) ®aly,), ify, €Il; and
’ 9((u,a),by) ® by(yy), if y, € Il

where we regard u as an assignment to I3 N X in the argument of g. Since
by, € B, and for each a' € A, ox(d,b,) = oy (d',b,) = v,

U({Ev) D a(yv), if Yo € Hl; and

MWS,,((u,a),b,) = .
((t), o) {u(xv)@bv(yv>7 if y, € Iy;

and h(u,v) = u, = INDy(u,v) if g((u,a),b,) = MWS, ((u,a),b,).
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The rectangle Rinp is h-uniform since R is g-uniform and the values a(y,)
and b, (yy), resp., added to the output of g depend only on the second part v of
the input. Since g differs from MWS,, on at most a fraction of ¢’ = ¢ (1+ 0o(1))
of the inputs of R” with respect to the uniform distribution, h differs from IND,
on at most an &’-fraction of Ryyp with respect to the uniform distribution. By
Lemma 4, it follows that U(Rinp) = 2-2(0) | Furthermore,

UR) = ‘A|/2\U1\ — 2_|H1ﬂy‘~|A1ND\/2Z — 2_‘H1QY"U(RIND)

and, by part (ii) of Lemma 5, D(R') < U(R') - (1 + o(1)). Finally, D(R) <
p - 21 D(R). Putting everything together, we have shown that D(R) =
p- 2770 Since p < n+ o(n) and £ > n — o(n), this bound is of the desired
size. a

The lower bound for quantum OBDDs stated in Theorem 1 follows by stan-
dard communication complexity arguments and the properties of MWS,, already
used above.

Proof of Theorem 1 — Lower bound for quantum read-once BPs: Let G be a
quantum OBDD computing MWS,, with error bounded by a constant e,
0<e<1/2 Let £ = n— O(p*>+%) for some constant § with 0 < § < 1/3.
Appropriately cutting the list of variables used as the variable order for G in two
parts gives a partition IT = (II1, IT) of the set of variables X UY that, w.l. 0. g.,
satisfies [IIy N X| = £ and |[II; N Y| < ¢ — 1. Choose a € 2™ somehow
arbitrarily and let iy, = o7,ny(a). Furthermore, again w.l.o.g., suppose that
I NnX ={1,...,4}. For any i, € {0,...,p — 1}, Lemma 2 yields the existence
of assignments b;_ 1,...,b;, ¢ € 2/ such that o7,nx (bi, ;) = (j —4,) mod p and
oy (bi, ;) = (j —iy) modp for j=1,...,¢

The given quantum OBDD G can now be used by the two players Alice
and Bob in a quantum one-way communication protocol for IND, as follows.
Let u € {0,1}¢ and v € {1,...,£} be the inputs for IND,. Alice follows the
computation in G for the partial input (u,a), regarding u as an assignment
to the variables in Iy N X, and sends the reached superposition as well as the
partial weighted sum o7, ~x (1) to Bob. Bob finishes the computation of G using
the partial input b;_ , and outputs the XOR of output bit of G with a(y,), if
yp € II1 NY, or with b;_ ,(y,), otherwise. It is easy to see that, analogously
to the end of the proof of the lower bound for randomized read-once BPs, this
gives a protocol for IND, that has the same error probability as G. As proved
by Klauck [10], the complexity of quantum one-way communication protocols
for IND, with bounded error is lower bounded by {2(¢), which together with the
facts that only O(log p) = O(logn) bits are required to communicate i,, and that
¢ >n — o(n) implies |G| = 2% as claimed. O
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