Secure Linear Algebra Using Linearly Recurrent Sequences

Eike Kiltz* Enav Weinreb

Abstract

In this work we present secure two-party protocols for various core problems in linear algebra. Our
main building block is a protocol to obliviously decide singularity of an encrypted matrix: Bob holds an
n X n matrix M, encrypted with Alice’s secret key, and wants to learn whether the matrix is singular
or not (and nothing beyond that). We give an interactive protocol between Alice and Bob that solves
the above problem with optimal communication complexity while at the same time achieving low round
complexity. More precisely, the number of communication rounds in our protogeljdog(n) and the
overall communication is roughlg(n?) (note that the input size ig?). At the core of our protocol
we exploit some nice mathematical properties of linearly recurrent sequences and their relation to the
characteristic polynomial of the matrik/, following [Wiedemann, 1986]. With our new techniques
we are able to improve the round complexity of the communication efficient solution of [Nissim and
Weinreb, 2006] fromn®-27 to polylog(n).

Based on our singularity protocol we further extend our result to the problems of securely computing
the rank of an encrypted matrix and solving systems of linear equations.

Key words. Secure Linear Algebra, Linearly Recurrent Sequences, Wiedemann'’s Algorithm.

1 Introduction

Linear algebra plays a central role in computer science in general and in cryptography in particular. Nu-
merous cryptographic applications such as private information retrieval, secret sharing schemes, multi-party
secure computation, and many more make use of linear algebra. In particular, the ability to efficiently
solve a set of linear equations constitutes an important algorithmic and cryptographic tool. In this work we
design efficient and secure protocols for various linear algebraic problems. Our protocols enjoy both low
communication and round complexity.

We concentrate on the following problem. Alice holds the private key of a public-key homomorphic
encryption system, and Bob holds a square madifixencrypted by Alice’s public key. Alice and Bob wish
to decide whethed/ is singular while leaking no other information dd. Many linear algebraic tasks
are efficiently reducible to this problem. Our protocol is based on an algorithm by Wiedemann for “black-
box linear algebra” [24] which is highly efficient when applied to sparse matrices. This algorithm uses
linearly recurrent sequencemd their relation to thgreatest common divisgroblem for polynomials (see
Section 3). Somehow surprisingly, we design a secure protocol based on this algorithm which is applicable

*CWI Amsterdam, The Netherlands. kiltz@cwi.nl. Supported by the research program Sentinels (http://www.sentinels.nl).
Sentinels is being financed by Technology Foundation STW, the Netherlands Organization for Scientific Research (NWO), and the
Dutch Ministry of Economic Affairs.

TDept. of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel. weinrebe@cs.bgu.ac.il. Partially supported by
the Frankel Center for Computer Science.

Dagstuhl Seminar Proceedings 06111
Complexity of Boolean Functions
http://drops.dagstuhl.de/opus/volltexte/2006/610

to generalmatrices. Previous secure protocols for linear algebraic problems were based on basic linear
algebra techniques like Gaussian Elimination. Our protocols exploit more advanced properties of linear
systems, and thus achieve improved complexity bounds.

Cramer and Dandgyd initiated the study of secure protocols for solving various linear algebraic prob-
lems [7]. Their work was done in the information theoretical multi-party setup, with the main focus on
reducing the protocols’ round complexity to a constant. The communication complexity of their protocols
is Q(n?) while the size of the inputs is merety(n?). Another known approach for designing secure pro-
tocols for the mentioned linear algebraic problems is to apply the garbled circuit method of Yao [25]. The
communication complexity of such protocols is related to the Boolean circuit complexity of the underlying
problems. However, as these problems are strongly related to the problem of matrix multiplication [5], the
communication complexity of the resulting protocol is essentially the circuit complexity of the latter. The
best known upper bound for this problem@$n*) [6] for w = 2.38, which is still larger than the input
size. In a recent paper, Nissim and Weinreb [19] introduced a protocol with communication complexity
of roughly O(n?). However, their protocol, which relies on the Gaussian elimination procedure, has round
complexityQ(n°-27), which is considered relatively high.

We design a protocol for deciding singularity which gets the best of previous results, both in terms of
communication and round complexity, up to a poly-logarithmic factor. We achieve communication com-
plexity of roughly O(n?) andpolylog(n) round complexity, assuming (similar to [19]) the existence of
homomorphic public-key encryption schemes. This leads to communication and round efficient protocols
for many linear algebraic problems. For example, consider the linear subspace intersection problem, in
which each of Alice and Bob holds a subspacéféfand they wish to securely decide whether there is a
non-zero vector in the intersection of their input subspaces. Evemsecurecomputation, it is shown in [2]
that the deterministic communication complexity of the problef(is?). This result agrees with ours up
to a poly-logarithmic factof. Hence, our secure protocol for this problem is optimal up to poly-logarithmic
factor, both in terms of communication and round complexity. Our protocols also give rise to communica-
tion and round efficient secure protocols for problems reducible to linear algebra, e.g., perfect matching, and
functions with low span program complexity [16].

Our Techniques. A simple reduction turns the problem of deciding if an encrypted input matfiis

singular, into deciding whether a systefix = v is solvable for a randomly chosen vecsar The main
technical tool we use for our protocols are linearly recurrent sequences. In a linear 8¢stemv, where

M is ann x n matrix andv is a vector, the vectors, Mv, M?v, ..., M?"v are clearly linearly depen-

dent. Roughly speaking, the scalars of this linear dependency are related to the characteristic and minimal
polynomials of the matrix\/. It turns out that computing a polynomial called timnimal polynomialof

the sequence, Mv, M?v, ..., M*"v is sufficient for deciding the solvability of the original linear system.

This polynomial, in turn, can be computed fromMv, M?v, ..., M?"v using the extended Euclidean
algorithm for GCD of polynomials.

In our protocol Bob hold€nc(M) and v, whereEnc(-) is a public-key homomorphic encryption
scheme, and Alice holds the private decryption key. In the first step, Bob needs to coenp(ie,
Enc(Mv), Enc(M?v), ..., Enc(M?™v). The homomorphic encryption scheme does not allow for multipli-
cation of encrypted values and thus Bob needs the “help” of Alice to perform the computations. However,
he cannot disclose the values/df or v to her. We give a method to securely comphite(v), Enc(Mv),

1We omit polylogarithmic factor from the complexity bounds discussed in the introduction.
2Although determining theandomizeccommunication complexity of subspace intersection is an open problem, it serves as an
evidence that our upper bound may be tight.

Enc(M?v), ..., Enc(M?"v) within 2logn rounds of communication. To securely compute the minimal
polynomial of the encrypted sequence using the extended Euclidean algorithm, we apply the well-known
general result by Yao [25], allowing for secure computation of a function with communication complexity
proportional to the Boolean circuit complexity of the computed function. We show a general method to
apply the construction of Yao, from a starting point where Bob holds an encrypted input and Alice holds the
decryption key. We stress that trying to apply Yao’s construction on the original linear algebraic problem
would result in arf2(n“) communication protocol.

The above mentioned protocol enabdiexidingwhether a linear system is solvable. In order to actually
find a random solution to the systeix = y, given encryptions ofi/ andy, we apply an algorithm by
Kaltofen and Saunders [15]. The technical difficulty in applying this algorithm is that it depends on the rank
of the matrixA/. Computing the rank ol/ in the clear would compromise the privacy of the protocol. We
overcome this problem by designing a protocol for computing an encryption of the rank of an encrypted
matrix. As the rank of a matrix is a basic concept in linear algebra, this protocol may be of independent
interest. We use the fact that multiplying a ranknatrix from the right and from the left by non-singular
matrices perturbs the matrix in a way that with high probability the toprleft: sub-matrix of the perturbed
matrix is non-singular [4]. The rank is computed then using oblivious binary search. We then show how to
implement a secure version of the Kaltofen-Saunders algorithm using only an encrypted form of the rank of
M.

Organization. In Section 2 we discuss the setting and some basic building blocks. In Section 3 we define
linearly recurrent sequences and discuss their basic properties. Then, in Section 4, we introduce our main
protocol for deciding singularity of an encrypted matrix. In Section 6, we design a protocol for solving
an encrypted linear system, based on a protocol for computing the rank of a matrix, which is presented in
Section 5. Then, in Section 7, we present an implementation of our basic sub-protocols using the garbled
circuit method of Yao, and finally, in Section 8, we demonstrate some applications of our secure protocols.

2 General Framework

Notation. Let IF' be a finite field withp elements, and denote = logp. For an encryption scheme, we
denote by its security parameter. W.L.o.g., we assume that the result of encrypting a field element is of
lengthO(\ + k) = O(\). We denote byieg(n) a function that is negligible im, i.e.,neg(n) = n=+W.

We view a vectow € F” as a column vector. To denote a row vector wewuSe Finally, we use th@(-)
notation to hide any poly-logarithmic factors, that@,f(n)) = O(f(n)polylog(n)).

Homomorphic encryption schemes. Our constructions use semantically-secure public-key encryption
schemes that allow for simple computations on encrypted data. In particular, we use encryption schemes
where the following operations can be performed without knowledge of the private key: (i) Given two en-
cryptionsEnc(m1) and Enc(ms), we can efficiently compute a random encryptiémc(m, + m2); and
(i) Given an encryptiorEnc(m) andc € T, we can efficiently compute a random encryptiemc(cm).
Several constructions of homomorphic encryption schemes are known, each with its particular properties
(see e.g. [22, 14, 11, 21, 23, 20, 3, 18, 8]). These have been in use in a variety of cryptographic protocols.
OverF = GF(2), for example, the encryption scheme of Goldwasser and Micali [14], based on quadratic
residuosity, is sufficient for our constructions.

For a vectorv € F", we denote byEnc(v) the coordinate-wise encryption of. That is, ifv =
(a1,...,an) Whereay,...,a, € I, thenEnc(v) = (Enc(ay),...,Enc(ay)). Similarly, for a matrix)/ €

Fm>m we denote byEnc(M) them x n matrix such tha€Enc(M)[i, j| = Enc(M]i, j]). An immediate
consequence of the above properties of homomorphic encryption schemes is the ability to perform the
following operations without knowledge of the secret key: (i) Given encryptions of two vdetofs) and
Enc(vs), we can efficiently computEnc(vy + v2), and similarly with matrices. (ii) Given an encryption
of a vectorEnc(v) and a constant € T, we can efficiently computEnc(cv). (iii) Given an encryption of
a matrixEnc(M) and a matrix)/’ of the appropriate dimensions, we can efficiently comiiste(M M)
andEnc(M’M), as any entry in the result matrix is a linear combination of some encrypted matrix entries.

In some cases we want to use the encryption schiemeo encrypt an integef where0 < ¢ < n. We
do this by encrypting the binary representatior/obit by bit. If / = Zﬁ‘)jo” ¢;2¢, wheret; € {0,1} for
every0 < i < logn, then we use the notatidincyin(¢) = (Enc(fiogn), - - -, Enc(€1), Enc(4p)).
Adversary model. Our protocols are constructed for the two-party semi-honest adversary model. Roughly
speaking, both parties are assumed to act in accordance with their prescribed actions in the protocol. Each
party may, however, collect any information he/she encounters during the protocol run, and try to gain
some information about the other party’s input. We will compose our protocols in a modular manner and
will argue about their privacy using well-known sequential composition theorems [13] in the semi-honest
adversary model.

Complexity Measures. Any interaction between Alice and Bob in the protocol is calladund of com-
munication. The total number of such interactions consistsdtied complexityof the protocol. In each
round some data is sent from Bob to Alice or from Alice to Bob. The size of all the data (i.e. the total
number of bits) that is communicated between Alice and Bob during the whole execution of the protocol is
called thecommunication complexityf the protocol. We make the convention to count the communication
complexity of our protocols in terms of multiples &f i.e. we count the number of encrypted val&es(-)
exchanged between Alice and Bob.

2.1 Useful Sub-Protocols

In our protocols Bob holds data encrypted by a public key homomorphic encryption scheme, while Alice
holds the private decryption key. We view our protocols as algorithms Bob executes on his encrypted
input. As mentioned above, the homomorphic encryption allows Bob to locally perform several simple
manipulations on his input. However, some operation require the help of Alice. In Table 1, we list a set
of operations Bob can perform using the help of Alice. These operations determine the communication
and round complexity of our protocols, and thus we added the complexities of each sub-protocol to the
table. Later, in Section 7, we show how to implement these sub-protocols within the mentioned complexity
bounds, enabling Bob to use Alice’s help to perform the described operations without disclosing any of his
data to her.

As an example of a protocol where Bob uses Alice’s help, we now present Prafg¢BRIX MULT
for encrypted matrix multiplication. Bob holds the encryptiding(A) andEnc(B) of two matricesA €
F» and B € ™. Alice holds the private decryption key. In the end of the protocol Bobs should
hold the encryptiorEnc(AB) of the product matrixAB € F"*™. Bob chooses two random matrices
R4 € F**¢andRp € F*™ and sends Alice the two matric&c(A + R4) and Enc(B + Rp), which
can be locally computed using the homomorphic propertiesnaf-). Alice decrypts these matrices and
returnsEnc((A+ R4) - (B+ Rp)) to Bob. Finally Bob locally computeSnc(AB) = Enc((A+ R4)(B +
Rp)) — Enc(ARp) — Enc(R4B) — Enc(RaRpg). The protocol runs in two rounds and the communication
complexity of this protocol i/ + ¢m + nm. The security proof for this protocol is straightforward.

Protocol name INPUT/OUTPUT Communication| Rounds
complexity

MATRIX MULT | Input: Enc(A), Enc(B) (A € F"*!, B € F'*™) tn+tm+nm | 2
OutputEnc(A - B)

NONZERO Input: Enc(z) (z € TF) O(k) 2
Output:Enc(1) if = # 0, Enc(0) if z =0

EQUAL Input: Encpin (), Encein(y) (0 < z,y < n) O(k) o(1)
Output:Enc(1) if z =y, Enc(0) if x # y

UNARY Input: Encpin(r) (0 <7 <n) O(kn) 0(1)
Output:Enc(d), d € F™, 6; = 1if r > 4, §; = 0 otherwise.

Table 1: Basic sub-protocols and their complexities.

3 Linearly Recurrent Sequences

We reduce the problem of deciding if a linear systéf: = v is solvable, to computing the minimal
polynomial of a certaidinearly recurrent sequenceln this section we formally define linearly recurrent
sequences and discuss some of their basic properties. We follow the exposition given in [12].

Let IF be field andV be a vector space ové. An infinite sequence = (a;);ex € VN is linearly
recurrent (ovefr) if there existsn € N and fo, ..., f, € F with f, # 0 such thab"7_ fja;+; = 0, for
alli € N. The polynomialf = 77, f;z? of degreen is called acharacteristic ponnomiabf a.

We now define a multiplication of a sequence by a polynomial. Foe 377 fjz/ € F[z] and

a = (a;)iex € VN, we set

fea= (Y fijairjien € VY.
j=0
This makedFY, together withe, into anlF[z]-module?

The property of being a characteristic polynomial can be expressed in terms of the operaton
polynomial f € F[z]\ {0} is a characteristic polynomial af ¢ F~ if and only if f e a = 0 where0 is
the all0 sequence. The set of all characteristic polynomials of a sequeacEYN, together with the zero
polynomial form an ideal iff'[z]. This ideal is called thannihilator of a and denoted by Ania). Since
any ideal in[F[z] is generated by a single polynomial, either Aap = {0} or there is a unique monic
polynomialm € Ann(a) of least degree such that) = {rm : r € F[x]} = Ann(a). This polynomial
is called theminimal polynomiabf a and divides any other characteristic polynomiahof\We denote the
minimal polynomial ofa by m,. The degree ofn, is called therecursion orderof a.

Let M € F™*" be a matrix, andi,v € F" be vectors. We will be interested in the following three
sequences: (i = (M?);ex Where the sequence elements are fidra <", (i) a = (M*v);en Where
the sequence elements are fréin= F". (i) a’ = (u' M*v);cn Where the sequence elements are from
V = F. We denote by, = det(M — zI,,) = I ; f;27, the characteristic polynomial 6ff.

Claim 3.1 Considermg,:, ma, ma, the minimal polynomials of the sequeneésa, A respectively. Then
M |Malmal far

3Roughly speaking, a module is something similar to a vector space, with the only difference that the “scalars” may be elements
of an arbitrary ring instead of a field. See any linear algebra textbook for a formal definition.

Proof: We first showma | fas. By the Cayley-Hamilton Theorerfy, (M) = 0. Consequently,

fruo A= 0" M)jen = (M’ far(M))ien = 0,
i=0

andfy; (M) is a characteristic polynomial df. Thereforema, the minimal polynomial ofA, dividesf,.
Next, to provema|ma, write ma = Y21 a;z’. Asma e A = 0, we getthat>-_j a; M) = 0.
Hence,

n

ma ea= Z M+] V))ieN = ZCLM J) Jien = (0 v)ien = 0.
7=0

Thereforem 4 is a characteristic polynomial efas well, and thisn,|ma . The proof ofm,/|m, is similar.
O

Corollary 3.2 The sequences a’, A are linearly recurrent of order at most.

4 Deciding Matrix Singularity

In this section we consider the following problem: Bob holdssar n dimensional matrixnc(M) over

a finite fieldIF, encrypted under a public-key homomorphic encryption scheme. Alice holds the private
decryption key, and they wish to decide whetléris singular, or equivalently, wheth@et(M) = 0. As
mentioned in Section 2, we view the protocol as an algorithm executed by Bob, in which some operations
require the help of Alice. The implementation of the secure sub-protocols for these operations is presented
in Section 7. Our protocol is based on an algorithm by Wiedemann for “black-box linear algebra” [24].
As a simple first step, we reduce the problem into checking if a certain random linear system is solvable.
A second reduction leads us to the problem of computing the minimal polynomial of a linearly recurrent
sequence. We then show how to securely compute this particular sequence, and finally, how to compute its
minimal polynomial to solve the original matrix singularity problem.

Ouir first step is to reduce the problem of deciding whette(1/) = 0 to deciding whether the linear
systemAx = v is solvable for some random vectorc F". If M is non-singular then, obviously, the linear
system must be solvable. On the other handgif(M) = 0, then with probability at least/ |F| > 1/2,
the linear system has no solution. Thus, repeating this experiniknt) solves the original problem with
overwhelming success probability.

Next, we reduce the problem of deciding whether the linear system- v is solvable to computing
ma, the minimum polynomial of the recurrent sequence of veciors(M'v);cn.

Claim 4.1 ([12]) (i) If ma(0) # 0 then the systemx = v is solvable. (i) Ifm,(0) = 0 thendet(M) = 0.

Proof: (i) Since by Claim 3.2 the order af is at mostn, we can writem, = I m;xt. ASm, is the
minimal polynomial ofa, we get that

MmaM™ + mpy 1M v+ ...+ miMv +molv =0.
Sincemgy = m,(0) is different to0, we get

_mgl(mnMnV My M v 4 miMv) =v

and hence
M(=mg (m, M" 'V + my, M2V + L myIv)) = v

Therefore, the syste/x = v is solvable.

(i) Let fys be the characteristic polynomial 8. By Claim 3.1, it holds thatn, | fa,. Sincem,(0) =0
we get thatz|m, and thuse| fa,. Therefore, the constant coefficient 6f; is 0. As the constant coefficient
of the characteristic polynomigh, is — det(M), we get thatlet(M) = 0. O

We are interested in finding the minimal polynomial of a linearly recurrent sequence of vacters
(M'v);en. This is done by picking a random vectorc F” and further reducing the problem to computing
the minimal polynomial of the linearly recurrent sequence of field elemants (u' Miv);cn. The
correctness of the reduction is proved in Lemma 12.17. in [12]. In particular, it is proved that for fields
of size at leasgn, the minimal polynomials oh anda’ are equal, with at least a constant probability.

Lemma 4.2 ([12]) LetM € F™*", v € F", m, be the minimal polynomial of the sequemlace (Mv);cn.
Then the probability that m,, is the minimal polynomial of the sequente= (u' M'v);cy for au € F»
chosen uniformly at random satisfies> 1 — deg(ma)/|F|.

To computem,., the minimal polynomial of the sequene& we first need to compute a prefix of the
sequence itself. As we will later see, the first entries of the sequence will suffice. As the communication
complexity of the sub-protocol for matrix multiplication is linear in the matrix size, we are interested in
computing(Enc(u’ M*v))o<i<2,—1 Using the least number of matrix multiplication operations. We next
show how to compute the sequence usligg » + 1 matrix multiplication operations.

First computeEnc(M?') for 0 < j < logn. This can be easily done ing n sequential matrix mul-
tiplications. For two matriceX andY of matching size lefX'|Y be the matrix obtained by concatenating
X with Y. Then compute the following using sequentiad » matrix multiplications: (Note that all the
matrices are of dimensions at masik n.)

Enc(Mv) = Enc(M)v
Enc(M3v|M?v) = Enc(M?) - Enc(Mv|v)

Enc(M v |MSv|M5v|M*v) = Enc(M?) - Enc(M3v|M?v|Mv]|v)

Enc(M?"—lv|M?~2y|...|M"™v) = Enc(M")-Enc(M" v|M"2v|...|v)

Finally, multiply each vectoEnc(Mv) from the left byu' to getEnc(u' Miv) for0 <i < 2n — 1.

Our next step is to compute the minimal polynomial. By Corollary 3.2, the order of the secplesce
mostn. To compute the minimal polynomial of the sequeatgiven the encryption of its firstn elements,
we use the sub-protocdIINPOLY. The protocol is based on the well-known general construction by
Yao [25], which supplies a constant round secure protocol for a fungtiaith communication complexity
that is linear in the size of the boolean circuit implementjhgSince the circuit size of the well-known
Berlekamp-Massey algorithm [17] for computing the minimal polynomiaDi®2k log k) we get a sub-
protocol withO(n?k) communication complexity and constant rounds. A constant round implementation
of the sub-protocoMINPOLY with O(nk) communication complexity appears in Section 7.

To summarize, ProtocINGULAR decides if a given encrypted square matrix is singular. To get a
constant success probability in each iteration of the protocol, we|fi8¢d be at leaskn. In casgdF| < 2n,
we work over an extension field, which costs a logarithmic factor in the communication complexity

“Itis not hard to derive a homomorphic encryption scheme over an extension fElgisén a homomorphic encryption scheme
overlF.

Protocol SINGULAR

Input: Enc(M) whereM € ™"
Output: Enc(0) if det(M) = 0 andEnc(1) otherwise.
Repeat the following (log) times:

1. Pick random vectora,v €y F".
Fori = 0...2n — 1 compute the values, = Enc(u' M'v) using2logn executions of the

matrix multiplication protocol.

2. Execute ProtocdINPOLY to computeEnc(ma/), an encryption of the minimal polynomial
of the sequence’ = (a})o<i<on—1-

3. Execute ProtocdlONZERO on Enc(ma/(0)).

Compute the logical AND of the/(logn) results and answer accordingly.

The following theorem summarizes the properties of ProtSENIGULAR. Due to lack of space, the
proof is moved to Appendix A.3.
Theorem 4.3 LetEnc(M) be an encrypted x n matrix over a finite field, such that[F| > 2n. Then Pro-

tocol SINGULAR securely checks if/ is singular with probabilityl —neg(n), communication complexity
O(n’*k) and round complexitpolylog(n), wherek = log |IF|.

5 Computing the Rank

In this section we show how to compufacy,, (rank()/)) given an encryptiofenc(M) of a matrix M €
F™mx" Thatis, ifr = rank(M), we are interested in outputtiritney,;, (). We compute the encryption of
the binary representation pbit by bit. We first show Protocdd ANK> that decides whetheank (M) > ¢

given a bit-wise encryption of a positive integer

Protocol RANK>

Input: Enc(M) whereM e F™*", forn < m andEncy,(¢) wherel < ¢ <mn.?
Output:Enc(1) if rank(M) > ¢ andEnc(0) otherwise.

Perform the followingu(log n) times:

1. Locally computeéEnc(M’) = P - Enc(M) - Q whereP and@ are random non-singulan x m
andn x n matrices respectively.

2. ComputeEnc(d) (with 6; = 1if £ > i andd; = 0 otherwise) fromEncy;, (¢) using thetUNARY
protocol. CreatéEnc(A), whereA is then x n diagonal matrixA = diag(d1,d2,...,0n).
Compute

Enc(M;) = Enc(M’) - Enc(A) + I,, — Enc(A),
wherel, is then x n identity matrix. Note that\/;, € F"*" is now the matrix that coincides
with M’ in the top-left¢ x ¢ sub-matrix and with the unit matrix in the— ¢ x n — ¢ bottom-right
sub-matrix.

3. Execute ProtocdINGULAR on M, and output accordingly.
Compute and output the logical OR of the results ofdfilng n) iterations.

%in m < n execute the protocol oBnc(M).

The protocol relies on the following simple linear algebraic claim.

Claim 5.1 ([4]) Letn < m be positive integersF' be a finite field, and/ be am x n matrix over[F.
Suppose < rank(M) and letP and @ bem x m andn x n randomly chosen full rank matrices over
Let M’ = PMQ, and denote the top-left x r sub-matrix ofA/’ by N’. Then with constant probability
rank(N') = r.

The proof of the next claim is moved to appendix A.1 due to lack of space.

Claim 5.2 ProtocolRANK> securely computes whetheink (1) > ¢ with probability1 — neg(n), com-
munication complexity) (n2k) and round complexitpolylog(n).

Next, in ProtocoRANK, we performlog n executions of Protocdt ANK>, to compute the encryption
of the rank ofM using a binary search. The protocol starts witk 2l1°2") and checks if the rank af/
is greater or equal té. In the first case the most significant bit &f’s rank, r,, is set tol and the check
is repeated with the new value= 2ll°e] 4 2llogn]=1 tg determine the second most significant bit of the
rank. In the latter case the the most significant bibo§ rank,r,, is set to) and the check is repeated with
the new valug = 2l°e™]=1_ This is repeated until all bits of the rank are determined. Note that the search
is performed obliviously, as the threshold rank given to ProtBcbNK> is encrypted. The full description
of protocolRANK and is given in Appendix A.1, together with the proof of Theorem 5.3.

Theorem 5.3 Let Enc()M) be an encryptedr x n matrix over a finite field. ProtocolRANK securely
computesEncy;, (rank(M)) with probability 1 — neg(n), communication complexit®(n?k) and round
complexitypolylog(n), wherek = log |FF|.

6 Solving Linear Equations

In this section we discuss the problem of solving a system of linear equations. Given encrizptiOhs)
andEnc(y), representing the linear systelfix = y, whereM € F"*" andy € [, we are interested in
outputting an encryptiofinc(x) of a random solution to the system, if the system is solvable. We present a
protocol that relies on ProtocBINGULAR.

The easy case to deal with is whelé is a non-singular square matrix. In this case it is enough to
computeEnc(M 1) and then execute ProtocM ATRIX MULT once to comput&nc(M ~1)Enc(y) =
Enc(M ~ly), which is the unique solution to the system (and hence is also a random solution). To compute
Enc(M~1) from Enc(M) we use ProtocoMATRIX INVERT. The protocol gets an encryptedx n
matrix Enc(M) as input, and outputs an encryption of a matrix and an encryption of a field element. If
M is invertible, the protocol outputBnc(M 1), Enc(1). Otherwise, it output&nc(R~!), Enc(0), where
R is a random non-singular x n matrix. The protocol uses ProtocelNGULAR as a sub-protocol. Its
implementation is simple and is described in Appendix A.2.

To reduce the general case to the non-singular case we will show how to apply an algorithm by Kaltofen
and Saunders [15] in the secure setting. The algorithm sdl{fes= y in the following way: (i) Perturb
the linear systend/x = y to get a systemd/’x = y’ with the same solution space. The perturbation has
the property that, with high probability, i is of rankr, thenM/ . ,., the top-leftr x r sub-matrix ofM’,
is non-singular. (ii) Pick a random vectar € F™ and sety.. to be the upper coordinates of the vector
y' 4+ M'u. (jii) Solve the linear system// . x, = y., and denote the solution hy. (iv) Let u* € F" be
a vector whose upper partis. and its lower part is zero. It can be shown thkat u* — u is a uniform
random solution to the systeM’x = y’ and thus is a uniform random solution to the original system. The

9

correctness proof for this algorithm may be found in [15, Theorem 4]. Note that this algorithm is correct
assuming that the systeiix = y is solvable.

Implementing the above algorithm in a secure protocol is not straightforward. On one hand, we need to
computer, the rank ofM, in order to invert the top-left sub-matrix @. On the other hand, computing
violates the privacy of the protocol, ascannot be extracted from a random solution to the linear system.
We overcome this problem using ProtoétANK from Section 5, to compute an encryptionrof

Next, we show how to implement the Kaltofen-Saunders algorithm having only an encryptioa: of
rank(M). The key idea is that we can work with thex r top-left sub-matrix of the perturbed matri{’,
without knowing the value of in the clear.

Protocol LINEAR SOLVE

Input: Enc(M) whereM € F™*™ andn < m, andEnc(y) wherey € IF™. This protocol assumes the
systemMx =y is solvable.
Output: Enc(x) wherex € F" is a random solution to the systehix = y.

1. Execute ProtocdR ANK on Enc(M) to computeEnc(r) wherer = rank(M).
2. Repeat the following (log n) times:
(a) Locally computéEnc(M’) = P - Enc(M) - Q andEnc(y’) = P - Enc(y) whereP andQ@
are random non-singulan x m andn x n matrices respectively.
(b) Compute the encrypted matibac(M)) as in Step 2 of Protocdt ANK>.

(c) Compute(Enc(H),Enc(b)) using protocoMATRIX INVERT, whereH = (M])™! €
F*™ andb = 1 if M/ is non-singular. IfM/. is singular therd = 0, indicating thatH is a
random matrix, and that this iteration of the protocol is faulty.

(d) Pick a random vectan € " and setEnc(y!.) for y,. € F" to be a vector whose upper
coordinates are the uppecoordinates oEnc(y’)+Enc(M’)u and lowem—r coordinates
areEnc(0). This can be easily using the protoddNARY .

(e) Execute the matrix multiplication protocdlATRIX MULT to computeEnc(u,) =
Enc((M})~")Enc(y}).

(f) ComputeEnc(Q~t(u — u,)).

3. OutputEnc(Q~!(u — u,)) for a round in whichb = 1.

Some remarks are in place. First, note that the protocol is valid only for solvable linear system. To check
if a system is solvable, it is sufficient to compare the rank of the matfi¢eend M|y where| stands for
concatenation. The encryption of the rank of these matrices can be computed using FtatN¢o| while
the comparison can be done using protdeQUAL.

Next we discuss the repetitions in Proto€dNEAR SOLVE. In Step 2a, we multiply the matri/
from the right and from the left by random non-singular matrices to get the nidtrixBy Claim 5.1, the top
left sub-matrix ofM’ is of rankr with constant probability. If this is the case, then the rest of the protocol
follows the Kaltofen-Saunders algorithm, and thus its correctness is implied by [15, Theorem 4]. If the
top-left sub-matrix ofM’ is not full rank, we get that = 0, and the output is discardédRepeating the
processv(log n) iteration ensures success probabilitylof neg(n).

SOutputting a result vector for which # 0 is simple. Keep an encrypted valughat is1 if and only if all the values ob in
previous iterations wer@. Set the output to bEnc(c) - Enc(u — u,) after every iteration. The output of the protocol will be the
output of the first iteration in which = 1.

10

As a final note, we stress that the requirement that m is made only for simplicity of presentation.
Otherwise, M would have been of dimensianin(m,n) x min(m,n) instead ofn x n, and the changes
needed in the rest of the protocol are minor. The following Theorem concludes the properties of Protocol
LINEAR SOLVE.

Theorem 6.1 LetEnc(M) be an encrypteeh xn matrix over a finite field", and letEnc(y) be an encrypted
vectory € ™. Protocol LINEAR SOLVE securely computeBnc(x), wherex € F™ is a random
solution ofM/x = y, with probabilityl — neg(n), communication complexity(n2k) and round complexity
polylog(n), wherek = log |IF|.

7 Implementation of the Sub-Protocols

In this section we will show how to implement the various sub-protocols presented in Section 2.1.

7.1 Applying Yao’s Garbled Circuit Method

In this section we show how to apply the well-knogarbled circuitmethod of Yao [25] to implement some

of the sub-protocols described in Table 1. In our protocols Bob typically holds anknp(tt), wherex is a

vector of field elements encrypted by a public-key homomorphic encryption scheme. Alice holds the private
decryption key. We show a general way to design a constant round secure protocols for a ffimfiin
communication complexity proportional to the Boolean circuit complexity.ofe design the protocols

such that Alice learns no information, while Bob leathe(f(x)).

In Yao’s two-party protocol [25] Alice and Bob hold private binary inputandy, respectively, and
wish to jointly compute a functionality(x, y), such that Alice learng(x, y) and Bob learns nothing. Lgt
be a functionality withn” inputs and’ outputs, which can be computes by a Boolean circuit of Giz&hen
the construction of Yao results in a protocol that runs in a constant number of rounds and communication
complexityO(G +m' + ¢').8

Yao’s method can be used in our setting as follows: Suppose Bob holds an encBpti{ar), where
x = (x1,...,) is a vector of field elements. Let: F* — ™ be a functionality. Bob wants to securely
compute the valu&nc((x)). The idea is to first mask the inpstwith a random vector. Then execute
Yao’s protocol on a modified functionality that first unmasks the input, then runs the functionajitgnd
finally re-masks the output with another random vestddetails follow.

First Bob chooses random vectars= (ry,...,r,) € F‘ ands = (s1,...,s,) € F™ and sends
Enc(x +r) to Alice. Alice decrypts to get the vectar+r € F* and converts each field element to a binary
string. Now Alice and Bob execute Yao'’s protocol on the following functiongfityThe input of Alice is
x + r and the input of Bob is, s. f first unmasks the vectarby computing the bits ofx + r) — r. Then it
runs the functionalityy on the inputx and masks the output vectgfx) by adding the vectas. This vector,

g(x) + s, is given back to Alice who encrypts it and sertas(g(x) + s) to Bob. Now Bob who knows the
random maslk in the cleartext can reconstrugtc(g(z)).

The privacy of the protocol is implied by the privacy of Yao’s protocol. We now compute its communi-
cation complexity in terms of'(f), the circuit complexity of the functionality as described above. The
number of input and output bits gfis ¢/ = k¢ andm’ = km, wherek = log |IF|. Addition and subtraction

5Here we make the (simplifying but reasonable) assumption that the primitives used in [25] (i.e., the 1-out-of-2 oblivious transfer
protocol and sending one garbled gate of the circuit which is usually done by sending the output of a pseudorandom bit generator)
have a communication complexi€y(\) (wherex = |Enc(-)|) for each execution.

11

Protocol name INPUT OUTPUT
INTERSECTION DECIDE | Alice : Subspacé’, C F" IsV,NV, ={0}?
Bob: Subspac#), C ™
COMMON LINEAR Alice: My € F"e*™ v, € F" | randomx with M x = v,, Mpx = v,
EQUATIONS Bob: Mp € F™ %" vy, € F™
DETERMINANT Alice: M, € F™*" det(Ma + Mp)
Bob: Mg € F>x"

Table 2: Linear algebra protocols with(n?) communication complexity angolylog(n) rounds.

can be done with a circuit of siz@(k), thus for masking and unmasking we ne@¢k(¢ + m)) gates.
Therefore the overall circuit siz€'(f) of the functionality f is O(C(g) + k(¢ + m)). This leads to the
following results.

Lemma 7.1 Letg : F* — F™ be a public functionality that can be represented by a binary circuit ofGize
Suppose Bob holds an encrypted input ve&tor(x), wherex € IF*. Then there exists a secure two-party
protocol that runs in constant rounds agt{C + k(m + ¢)) communication complexity such that Bob learns
the encrypted vectdinc(y), wherey = g(x) € F™, and Alice learns no information from the protocol.

In view of Lemma 7.1, the implementation of ProtocBlIONZERO, EQUAL andUNARY reduces to
implementing simple boolean circuits. For lack of space, we discuss these protocols in Appendix A.4.

7.2 Minimal Polynomial

Using the well-known Berlekamp/Massey algorithm [17] there exists an algebraic circuit ¢pgiZ¢ that
computes the minimal polynomial from a sequence- (a;);cn of maximal recursion order. Further
efficiency improvement can be obtained by noting that computing the minimal polynomial can actually be
reduced to computing the greatest common division (GCD) of two polynomial of degrdeor complete-

ness we give further details in Appendix C. Using the fast Extended Euclidean algorithm [12, Chapter 11]
the latter one can be carried out using an algebraic circuit ofGizdog n) = O(n).

By implementing each algebraic operation offewith a binary circuit of sizeD(k log k loglog k) =
O(k) we get a binary circuit of siz&(nk) for computing the minimal polynomial.

Lemma 7.2 Suppose Bob holds encrypted encrypted ve&ocsay), . . . , Enc(az,—1), wherea = (a;);en

is a linearly recurrent sequence of order at mast There exists a secure two-party protoddINPOLY
that runs in constant rounds an@(nk) communication complexity that returns the encrypted minimal
polynomialEnc(ms,) of a to Bob.

8 Applications

In previous sections we described protocols whose input was an encrypted. In this section we give com-
munication and round efficient protocols for a set of problems in linear algebra, improving upon previous

results in the two-party setting. We summarize our results in Table 2 and refer to Appendix B for the exact
problem definitions and the protocols.

12

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

J. Bar-llan and D. Beaver. Non-cryptographic fault-tolerant computing in constant number of rounds
of interaction. INPODC '89: Proceedings of the eighth annual ACM Symposium on Principles of
distributed computingpages 201-209, New York, NY, USA, 1989. ACM Press.

A. Beimel and E. Weinreb. Separating the power of monotone span programs over different fields. In
Proc. of the 44th IEEE Symp. on Foundations of Computer Sci@acres 428-437, 2003.

D. Boneh, E. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertextthdrSecond Theory
of Cryptography Conference — TCC 2Q@&ages 325-341, 2005.

A. B. Borodin, J. von zur Gathen, and J. E. Hopcroft. Fast parallel matrix and GCD computations.
Technical report, Cornell University, Ithaca, NY, USA, 1982.

P. Burgisser, M. Clausen, and M. A. Shokrollaigebraic complexity theoryspringer-Verlag, Berlin,
1997.

D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progression&STIRC '87:
Proceedings of the nineteenth annual ACM conference on Theory of comppaiggs 1-6. ACM
Press, 1987.

R. Cramer and |I. Damgaard. Secure distributed linear algebra in a constant number of rounds. In
CRYPTO ’'01: Proceedings of the 21st Annual International Cryptology Conference on Advances in
Cryptology pages 119-136. Springer-Verlag, 2001.

R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient multi-authority election
scheme. IMdvances in Cryptology — EUROCRYPT ®&cture Notes in Computer Science, pages
103-118. Springer-Verlag, 1997.

I. Damgaard, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft. Unconditionally secure constant-rounds
multi-party computation for equality, comparison, bits and exponentiationthdnrhird Theory of
Cryptography Conference — TCC 2Q®06. To Appeatr.

J. L. Dornstetter. On the equivalence between Berlekamp’s and Euclid’s algoritBEIE. Trans. Inf.
Theory it-33(3):428-431, 1987.

T. El Gamal. A public key cryptosystem and a signhature scheme based on discrete logarithms. In
Proceedings of CRYPTO 84 on Advances in cryptqlpgyges 10-18, New York, NY, USA, 1985.
Springer-Verlag New York, Inc.

J. von zur Gathen and J. Gerhakdodern computer algebraCambridge University Press, New York,
1999.

0. Goldreich. Foundations of Cryptography, Voume Il Basic ApplicatiorSambridge University
Press, 2004.

S. Goldwasser and S. Micali. Probabilistic encryption & how to play mental poker keeping secret all
partial information. INSTOC '82: Proceedings of the fourteenth annual ACM symposium on Theory
of computingpages 365-377, New York, NY, USA, 1982. ACM Press.

13

[15] E. Kaltofen and D. Saunders. On Wiedemann’s method of solving sparse linear systeA&dIC-
9: Proceedings of the 9th International Symposium, on Applied Algebra, Algebraic Algorithms and
Error-Correcting Codespages 29-38, London, UK, 1991. Springer-Verlag.

[16] M. Karchmer and A. Wigderson. On span programsPioc. of the 8th IEEE Structure in Complexity
Theory pages 102-111, 1993.

[17] J. L. Massey. Shift-register synthesis and BCH decodilig=E Trans. Inf. Theoryit-15:122-127,
19609.

[18] D. Naccache and J. Stern. A new public-key cryptosystem based on higher residd€s84 CS 98
pages 59-66, 1998.

[19] K. Nissim and E. Weinreb. Communication efficient secure linear algebraheldhird Theory of
Cryptography Conference — TCC 2Q@®06. To Appear.

[20] P. Pallier. Public-key cryptosystems based on composite degree residuosity clas&dsarioes in
Cryptology — EUROCRYPT '99ages 223-238, 1999.

[21] T. P. Pedersen. A threshold cryptosystem without a trusted pardiances in Cryptology — EURO-
CRYPT '91 pages 522-526, 1991.

[22] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key
cryptosystemsCommun. ACM21(2):120-126, 1978.

[23] T. Sander, A. Young, and M. Yung. Non-interactive cryptocomputing for NC1IFQE&S '99: Pro-
ceedings of the 40th Annual Symposium on Foundations of Computer Sgageé54, Washington,
DC, USA, 1999. IEEE Computer Society.

[24] D. H. Wiedemann. Solving sparse linear equations over finite fitlldi<E Trans. Inf. Theor32(1):54—
62, 1986.

[25] A. C. Yao. How to generate and exchange secret®radg. of the 27th IEEE Symp. on Foundations of
Computer Scienggpages 162—-167, 1986.

A Full Protocols

A.1 Matrix Rank

Protocol RANK

Input: Enc(M) whereM € F™*", forn < m.
Output: Encyin (r) wherer = rank(M).
1. Foreveryi = |logn| down toi = 0 do:
Set Enc(r;) to be the output of ProtocdRANK> on Enc(M) and Ency;,(¢), wherel =
(S:Hoenl . ok) 4+ 2i Note that the binary presentation Bhcyi,(¢) can be composed from

k=i+1
the already computed bits &hcy, (7).

2. OutputEncyin(r) = (Enc(7[10gn]), - - - » Enc(rg)).

14

Theorem 5.3 Let Enc(M) be an encryptedh x n matrix over a finite field". ProtocolRANK securely
computesEncy;, (rank(M)) with probability 1 — neg(n), communication complexity)(n?k) and round
complexitypolylog(n), wherek = log |IF|.

Proof: ProtocolRANK useslogn executions of protocdRANK> to perform a binary search for the
rank of M. The protocol is correct if and only if all the executionsRAANK > are correct, which happens
with probability 1 — neg(n). The bounds on round and communication complexity follow by the respective
bounds on th& ANK> protocol from Claim 5.2. O

A.2 Matrix Inversion

Bob holds an encrypted matrBnc(M). Alice holds the private decryption key. Based on the shared field
inversion protocol from Bar-llan and Beaver [1] we design a protocol with the following properties. The
protocol outputs an encryption of a matrix and an encryption of a field elemefd. iff invertible then in

the end of the execution Bob hol(Bnc(M ~1), Enc(1)) while if M is singular Bob get$Enc(R), Enc(0))

for a random non-singular matri. Alice learns nothing in the protocol.

Protocol MATRIX INVERT

Input: Enc(M) whereM € F™*".
Output: (Enc(M~1),Enc(1)) if M is invertible and(Enc(R~!), Enc(0)), whereR is a random non-
singularn x n matrix, if M is singular.

1. Alice and Bob execute ProtocSINGULAR on Enc(M). Denote the output of this step by
Enc(b).

2. Bob picks a random x n non-singular encrypted matrik. Bob uses the help of Alice to
compute the matri¥nc(M) = Enc(M) - Enc(b) + Enc(R) - Enc(1 — b).

3. Bob picks anothen x n random non-singular matrig.

4. Bob computes the encrypted matfinc(Q M) by multiplying Enc(M) from the left by the ma-
trix @, and send&nc(Q M) to Alice.

5. Alice decryptsEnc(QM) and computgQM)~! = M~'Q~'. Alice encryptsM Q! and
sends BolEnc(M Q).

6. Bob computegnc(M ') = Enc(M~'Q1)Q.
7. Bob locally output€nc(M 1), Enc(b).

It is easy to see that the matriX is always invertible. In cas#/ is invertible M/ = M, otherwise)M
is a random non-singular matrix. In both cases, Alice gets a random non-singular fafrjxand thus
learns no information in the protocol. In cakgis invertible, Bob learn&nc(M). Since Bob only learns
encrypted values from the protocol, he gets no information on the vallé. of

A.3 Proofs

Theorem 4.3 Let Enc(M) be an encryptedh x n matrix over a finite fieldF, such thatF| > 2n.
Then ProtocoBINGULAR securely checks ifl/ is singular with probabilityl — neg(n), communication
complexityO(n2k) and round complexitpolylog(n), wherek = log |IF|. Proof: We first prove that

if det(M) # 0 then the output of the protocol Enc(1). If in any iterationm, (0) = 0, this means that

15

the constant coefficient ofi, is 0, thusxz|my . By Claim 3.1,m4/|far, Where fy; is the characteristic
polynomial of the matrix\/. Hence, the constant coefficient ff; is 0, which impliesdet(M) = 0. Hence
if M is non-singular, the output of the entire protocol mustbe(1).

On the other hand, ilet(M) = 0 then, by part (i) of Claim 4.1, if the following two events happen, the
output of an iteration i&€nc(0): (i) The systemM z = v is not solvable. (iiyn, = ma. The probability of
event (i) is at leastl — 1/|[F|) > 1 — 1/2n > 1/2. The probability of event (ii), by Lemma 4.2, is at least
1 — deg(ma)/|F| > 1 —n/2n = 1/2. Therefore, with probability at leasy/4 the output of the iteration is
Enc(0). Hence the probability thatet(A/) = 0 and still in all thew(log) iterations the output i&nc(1)
is neg(n).

We account the communication and round complexity in each iteration of the protocol as follows: in
the first step we havelog n sequential executions of the matrix multiplication protocol, where each single
execution require$)(n?) communication and constant round. The complexity of the second step is, as
discussed abové&)(nk) of communication and constant rounds. According to Table 1, the equality proto-
col in the third step needS(k) communication and constant rounds. Computing the logical AND of the
w(logn) iteration results can be done trounds and communication which does not effect the asymp-
totic complexity of the protocol. Hence, afteflogn) repetitions we get a communication complexity of
O(log n(n? 4+ nk) = O(n?k) and a round complexity ab(log?(n)) = polylog(n), as required.

Security of the protocol follows by security of the sub-protocols used. We stress that even though Bob
knows the vectors1 andv in the clear this does not violate privacy of the protocol since the vectors are
random vectors and therefore could easily be simulated in a formal proof. However, an implementation of
the protocol within the same complexity and using encrypted vectors is also possible. O

Claim 5.2 ProtocolRANK> securely computes whethesnk(M) > ¢ with probability 1 — neg(n),
communication complexity)(n2k) and round complexityolylog(n).

Proof: ~ Supposeank(M) > ¢. Then, by Claim 5.1, in each iteration the matfik is non-singular with
constant probability. As ProtocBINGULAR is correct with probabilityl — neg(n), we get that in each
iteration, with constant probability, the output®9INGULAR is Enc(1). Hence the probability that in any
of the iterations the output FINGULAR is1 — neg(n).

On the other hand, ifank(M) < ¢, the the matrix)/; is singular in all rounds. Therefore, in each
iteration the output oSINGULAR is Enc(0) with probability 1 — neg(n). Therefore, the probability that
in any round the output SINGULAR is Enc(0) is neg(n). Hence the output of the protocol is correct
with the desired probability. The bounds on the round and communication complexity follow from the
complexity bounds of the ProtocBINGULAR (See Theorem 4.3). Note that computing the logical OR
of the w(logn) iteration results can be done throunds and communication which does not effect the
asymptotic complexity of the protocol.

O

A.4 ProtocolsNONZERO, EQUAL and UNARY

Letx € F. There clearly exist a binary circuit of size(k) that checks for: = 0. Applying Lemma 7.1
leads to the following implementation of ProtoddONZERO.

Lemma A.1 Suppose Bobs holds an encrypted field elerBentz). There exists a secure two-party pro-
tocol that runs in constant rounds aiie() communication complexity that returns to Beixc(1) if x # 0
andEnc(0) if x = 0.

16

Let0 < r,7 < n be two integers. There exist a binary circuit of si2€og n) that checks for > 1.
Applying this circuitn times in parallel we get an implementation of ProtodNARY .

Lemma A.2 Suppose Bobs holds encrypteaky, () with 0 < r # n. There exists a secure two-party
protocol that runs in constant rounds att{n log n+kn) = O(kn) communication complexity that returns
to Bob a vecto®¥ € IF" such thaty; = 1 if » > 7 andd; = 0 otherwise.

We remark that by the techniques from [9] it is further possible to implement the two proieQails\ L
and UNARY (without having to rely on Yao’s general method) in constant rounds and communication
complexityO(k) andO(kn), respectively.

The protocol forEQUAL is also easy to implement. Lét<,x,y < n. Designing a circuit of size
O(log n) for this problem is straightforward.

Lemma A.3 Suppose Bobs holds encrypteeky;, (), Encpin(y) with 0 < 2,y # n. There exists a secure
two-party protocol that runs in constant rounds a@dlogn + klogn) = O(k + logn) communication
complexity that returns to Bobnc(1) if x = y andEnc(0) otherwise.

B Applications

B.1 Linear Subspace Intersection

Let I be a finite field anch be a positive integer. Alice holds a subspateC F" of dimensionn, < n.
The subspac&’, is represented by am, x n matrix A, where the rows ofA spanV,. Similarly, Bob’s
input is a subspacEg CIF"* of dimensionn,, represented by am, x n matrix B. LettingV; = V4 N Vg,
Alice and Bob wish to securely study different propertied/pf

In [19], constant round)(n?) protocols were designed for securelgmputingthe subspacé’;, and
for securely computing the rank of the subsp&ge However, it turned out that the problem of securely
decidingwhether the subspadé; is the trivial zero subspace seems harder to solve. Ignoring security
issues, computing the intersection of the input subspaces is at least as hard as deciding whether they have a
non trivial intersection. However, constructingecureprotocol for the latter turns to be somewhat harder
as the players gain less information from its output.

The following claim from [19] reduces the problem of deciding subspace intersection, to computing
whether a matrix is of full rank:

Claim B.1 ([19]) DefineM = AB". ThenV; # {0} if and only if the matrix)/ is not full rank.

This gives rise to the following protocol:

17

Protocol INTERSECTION DECIDE

Input: Alice (resp. Bob) holdsa, xn (resp.n, xn) matrix A (resp.B) over a finite fieldF representing
a subspac®, CF" (resp.VpCEF"). Let BT be an x nj, matrix that represents the subspagg.
Output: If V; is the trivial zero subspace, Alice outputsElse, Alice output$.

1. Alice generates keys for a homomorphic public key encryption system, and sends&eh
and the public key.

def

2. Bob locally compute&nc(M), whereM =

3. Alice and Bob execute Protoc®ANK onEnc(M). Denote byEnc(r) the output of the protocol
held by Bob.

4. Alice and Bob execute protocBIQUAL on min n,,n; andEnc(r). Bob sends the encrypted
output to Alice who decrypts and outputs it.

AB*. Note that)M is an, x nj matrix.

This protocol has the same communication complexity as of the protocol designed in [19](kat js
However, the round complexity of this protocol, whichpislylog(n) is substantially bettérthen the round
complexity of [19], which isQ(n°27®). We note that the techniques in our paper are very different from
those of [19].

B.2 Solving a Common Linear Equation System

Let IF be a finite field and: be a positive integer. Alice holds a3 x n matrix M 4 and a vectowv, € F"e,
Similarly, Bob’s input is am, x n matrix Mg and a vectown, € F"™. Alice and Bob wish to securely
compute a random vectar € [F"* such that bottV/ 4x = v, and Mpx = vy

This problem can be viewed as computing a random vector from the intersection of the affine subspaces
representing the solutions to the systeMigsx = v, andMpx = v,. This problem was considered in [19],
who designed a protocol of communication complexity?) and round complexity2(n?-27%). We show a
protocol which improves the round complexityitolylog(n) while keeping the communication complexity
O(n?).

The protocol is simple: Alice generates keys for a homomorphic public key encryption system, and
sends BotEnc(My), Enc(v,) and the public key. Bob encrypts his input to get the encrypted linear system.

Enc(My) «— Enc(vg)

Enc(Mp) ~\ Enc(vp)
Alice and Bob then execute ProtoddINEAR SOLVE after which Bob hold&nc(x) wherex is a random
solution to the common system. Finally, bob seBds(x) to Alice, which decrypts and outputs

B.3 Computing the Determinant of a Shared Matrix

Alice, holdingM 4 € F™*", and Bob, holding\/z € F"*", share a matrid/ = M4 + Mpg. They wish to
compute thedeterminaniof M without leaking any other information dff. Again, we give aolylog(n)
round ano@(nQ) communication protocol for this problem, improving on previous results. The protocol is
again simple and is similar to protoddlATRIX INVERT: Alice generates keys for a homomorphic public

"we note that theolylog(n) factor in the round complexity of our protocol appears in the protocol of [19] as well. Hence our
protocol is more round efficient for small valuesrofs well.

18

key encryption system, and sends Boix(M 4) and the public key. Bob encrypts his input and computes
Enc(M) = Enc(M,) + Enc(Mp). Alice and Bob first execute protocSBINGULAR on Enc(M) and

let Enc(b) be the result of the protocol. Bob senBisc(b) to Alice, who decrypts to ge. If b = 0,
Alice outputs0. Otherwise, Bob picks a random non-singulak »n matrix R, locally computes and sends
Alice Enc(M R). Alice decrypts and computelet(M R) and sends Boknc(¢). Bob multipliesEnc(¢) by
det(R)~! to getEnc(det(M)), and sends it to Alice, who decrypts and outputs the result.

C Computing the minimal polynomial using the GCD algorithm

In this section we demonstrate an algorithm from [10] how to efficiently compute the minimal polynomial of
a sequencea = (a;);en Of recursion order, using the Extended Euclidean Algorithm on polynomials. By
the definition from Section 3 the minimal polynomial, of the sequenca is the unique monic polynomial
ma(x) = m(z) of least degree< n for whichm(xz) e a = 0. By division with remainder we can rewrite
this as

Ma - (a1 + agz + ... + agpz®™ 1) — q(z) - 22" = r(z), (1)

wherer(x) is a remainder polynomial of degreen, andg(z) is a quotient polynomial. Denote layfx) the
sum>"?", a;2* 1. If we apply the extended GCD algorithm to the two polynomigls) andz2", keeping
track of remainders, we get two sequenpgs), ¢;(z) such that the;; := p;(z) - a(x) — ¢;(z) - °" form
a series of polynomials whose degree is strictly decreasing. As soon as the degreeleds tham, we
have the required polynomials from (1) with, (x) = p;(z), ¢(x) = ¢;, andr(z) = r;(z).

19

