
Secure Linear Algebra Using Linearly Recurrent Sequences

Eike Kiltz∗ Enav Weinreb†

Abstract

In this work we present secure two-party protocols for various core problems in linear algebra. Our
main building block is a protocol to obliviously decide singularity of an encrypted matrix: Bob holds an
n × n matrix M , encrypted with Alice’s secret key, and wants to learn whether the matrix is singular
or not (and nothing beyond that). We give an interactive protocol between Alice and Bob that solves
the above problem with optimal communication complexity while at the same time achieving low round
complexity. More precisely, the number of communication rounds in our protocol ispolylog(n) and the
overall communication is roughlyO(n2) (note that the input size isn2). At the core of our protocol
we exploit some nice mathematical properties of linearly recurrent sequences and their relation to the
characteristic polynomial of the matrixM , following [Wiedemann, 1986]. With our new techniques
we are able to improve the round complexity of the communication efficient solution of [Nissim and
Weinreb, 2006] fromn0.275 to polylog(n).

Based on our singularity protocol we further extend our result to the problems of securely computing
the rank of an encrypted matrix and solving systems of linear equations.

Key words. Secure Linear Algebra, Linearly Recurrent Sequences, Wiedemann’s Algorithm.

1 Introduction

Linear algebra plays a central role in computer science in general and in cryptography in particular. Nu-
merous cryptographic applications such as private information retrieval, secret sharing schemes, multi-party
secure computation, and many more make use of linear algebra. In particular, the ability to efficiently
solve a set of linear equations constitutes an important algorithmic and cryptographic tool. In this work we
design efficient and secure protocols for various linear algebraic problems. Our protocols enjoy both low
communication and round complexity.

We concentrate on the following problem. Alice holds the private key of a public-key homomorphic
encryption system, and Bob holds a square matrixM , encrypted by Alice’s public key. Alice and Bob wish
to decide whetherM is singular while leaking no other information onM . Many linear algebraic tasks
are efficiently reducible to this problem. Our protocol is based on an algorithm by Wiedemann for “black-
box linear algebra” [24] which is highly efficient when applied to sparse matrices. This algorithm uses
linearly recurrent sequencesand their relation to thegreatest common divisorproblem for polynomials (see
Section 3). Somehow surprisingly, we design a secure protocol based on this algorithm which is applicable

∗CWI Amsterdam, The Netherlands. kiltz@cwi.nl. Supported by the research program Sentinels (http://www.sentinels.nl).
Sentinels is being financed by Technology Foundation STW, the Netherlands Organization for Scientific Research (NWO), and the
Dutch Ministry of Economic Affairs.

†Dept. of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel. weinrebe@cs.bgu.ac.il. Partially supported by
the Frankel Center for Computer Science.

Dagstuhl Seminar Proceedings 06111
Complexity of Boolean Functions
http://drops.dagstuhl.de/opus/volltexte/2006/610

to generalmatrices. Previous secure protocols for linear algebraic problems were based on basic linear
algebra techniques like Gaussian Elimination. Our protocols exploit more advanced properties of linear
systems, and thus achieve improved complexity bounds.

Cramer and Damg̊ard initiated the study of secure protocols for solving various linear algebraic prob-
lems [7]. Their work was done in the information theoretical multi-party setup, with the main focus on
reducing the protocols’ round complexity to a constant. The communication complexity of their protocols
is Ω(n3) while the size of the inputs is merelyO(n2). Another known approach for designing secure pro-
tocols for the mentioned linear algebraic problems is to apply the garbled circuit method of Yao [25]. The
communication complexity of such protocols is related to the Boolean circuit complexity of the underlying
problems. However, as these problems are strongly related to the problem of matrix multiplication [5], the
communication complexity of the resulting protocol is essentially the circuit complexity of the latter. The
best known upper bound for this problem isO(nω) [6] for ω ∼= 2.38, which is still larger than the input
size. In a recent paper, Nissim and Weinreb [19] introduced a protocol with communication complexity1

of roughlyO(n2). However, their protocol, which relies on the Gaussian elimination procedure, has round
complexityΩ(n0.275), which is considered relatively high.

We design a protocol for deciding singularity which gets the best of previous results, both in terms of
communication and round complexity, up to a poly-logarithmic factor. We achieve communication com-
plexity of roughlyO(n2) andpolylog(n) round complexity, assuming (similar to [19]) the existence of
homomorphic public-key encryption schemes. This leads to communication and round efficient protocols
for many linear algebraic problems. For example, consider the linear subspace intersection problem, in
which each of Alice and Bob holds a subspace ofF

n and they wish to securely decide whether there is a
non-zero vector in the intersection of their input subspaces. Even forinsecurecomputation, it is shown in [2]
that the deterministic communication complexity of the problem isΩ(n2). This result agrees with ours up
to a poly-logarithmic factor.2 Hence, our secure protocol for this problem is optimal up to poly-logarithmic
factor, both in terms of communication and round complexity. Our protocols also give rise to communica-
tion and round efficient secure protocols for problems reducible to linear algebra, e.g., perfect matching, and
functions with low span program complexity [16].

Our Techniques. A simple reduction turns the problem of deciding if an encrypted input matrixM is
singular, into deciding whether a systemMx = v is solvable for a randomly chosen vectorv. The main
technical tool we use for our protocols are linearly recurrent sequences. In a linear systemMx = v, where
M is ann × n matrix andv is a vector, the vectorsv,Mv,M2v, . . . ,M2nv are clearly linearly depen-
dent. Roughly speaking, the scalars of this linear dependency are related to the characteristic and minimal
polynomials of the matrixM . It turns out that computing a polynomial called theminimal polynomialof
the sequencev,Mv,M2v, . . . ,M2nv is sufficient for deciding the solvability of the original linear system.
This polynomial, in turn, can be computed fromv,Mv,M2v, . . . ,M2nv using the extended Euclidean
algorithm for GCD of polynomials.

In our protocol Bob holdsEnc(M) and v, whereEnc(·) is a public-key homomorphic encryption
scheme, and Alice holds the private decryption key. In the first step, Bob needs to computeEnc(v),
Enc(Mv), Enc(M2v), . . ., Enc(M2nv). The homomorphic encryption scheme does not allow for multipli-
cation of encrypted values and thus Bob needs the “help” of Alice to perform the computations. However,
he cannot disclose the values ofM or v to her. We give a method to securely computeEnc(v), Enc(Mv),

1We omit polylogarithmic factor from the complexity bounds discussed in the introduction.
2Although determining therandomizedcommunication complexity of subspace intersection is an open problem, it serves as an

evidence that our upper bound may be tight.

2

Enc(M2v), . . ., Enc(M2nv) within 2 log n rounds of communication. To securely compute the minimal
polynomial of the encrypted sequence using the extended Euclidean algorithm, we apply the well-known
general result by Yao [25], allowing for secure computation of a function with communication complexity
proportional to the Boolean circuit complexity of the computed function. We show a general method to
apply the construction of Yao, from a starting point where Bob holds an encrypted input and Alice holds the
decryption key. We stress that trying to apply Yao’s construction on the original linear algebraic problem
would result in anΩ(nω) communication protocol.

The above mentioned protocol enablesdecidingwhether a linear system is solvable. In order to actually
find a random solution to the systemMx = y, given encryptions ofM andy, we apply an algorithm by
Kaltofen and Saunders [15]. The technical difficulty in applying this algorithm is that it depends on the rank
of the matrixM . Computing the rank ofM in the clear would compromise the privacy of the protocol. We
overcome this problem by designing a protocol for computing an encryption of the rank of an encrypted
matrix. As the rank of a matrix is a basic concept in linear algebra, this protocol may be of independent
interest. We use the fact that multiplying a rankr matrix from the right and from the left by non-singular
matrices perturbs the matrix in a way that with high probability the top-leftr×r sub-matrix of the perturbed
matrix is non-singular [4]. The rank is computed then using oblivious binary search. We then show how to
implement a secure version of the Kaltofen-Saunders algorithm using only an encrypted form of the rank of
M .

Organization. In Section 2 we discuss the setting and some basic building blocks. In Section 3 we define
linearly recurrent sequences and discuss their basic properties. Then, in Section 4, we introduce our main
protocol for deciding singularity of an encrypted matrix. In Section 6, we design a protocol for solving
an encrypted linear system, based on a protocol for computing the rank of a matrix, which is presented in
Section 5. Then, in Section 7, we present an implementation of our basic sub-protocols using the garbled
circuit method of Yao, and finally, in Section 8, we demonstrate some applications of our secure protocols.

2 General Framework

Notation. Let F be a finite field withp elements, and denotek = log p. For an encryption scheme, we
denote byλ its security parameter. W.l.o.g., we assume that the result of encrypting a field element is of
lengthO(λ + k) = O(λ). We denote byneg(n) a function that is negligible inn, i.e.,neg(n) = n−ω(1).
We view a vectorv ∈ Fn as a column vector. To denote a row vector we usev>. Finally, we use thẽO(·)
notation to hide any poly-logarithmic factors, that is,Õ(f(n)) = O(f(n)polylog(n)).
Homomorphic encryption schemes. Our constructions use semantically-secure public-key encryption
schemes that allow for simple computations on encrypted data. In particular, we use encryption schemes
where the following operations can be performed without knowledge of the private key: (i) Given two en-
cryptionsEnc(m1) andEnc(m2), we can efficiently compute a random encryptionEnc(m1 + m2); and
(ii) Given an encryptionEnc(m) andc ∈ F, we can efficiently compute a random encryptionEnc(cm).
Several constructions of homomorphic encryption schemes are known, each with its particular properties
(see e.g. [22, 14, 11, 21, 23, 20, 3, 18, 8]). These have been in use in a variety of cryptographic protocols.
OverF = GF(2), for example, the encryption scheme of Goldwasser and Micali [14], based on quadratic
residuosity, is sufficient for our constructions.

For a vectorv ∈ F
n, we denote byEnc(v) the coordinate-wise encryption ofv. That is, if v =

〈a1, . . . , an〉 wherea1, . . . , an ∈ F, thenEnc(v) = 〈Enc(a1), . . . ,Enc(an)〉. Similarly, for a matrixM ∈

3

F
m×n, we denote byEnc(M) the m × n matrix such thatEnc(M)[i, j] = Enc(M [i, j]). An immediate

consequence of the above properties of homomorphic encryption schemes is the ability to perform the
following operations without knowledge of the secret key: (i) Given encryptions of two vectorsEnc(v1) and
Enc(v2), we can efficiently computeEnc(v1 + v2), and similarly with matrices. (ii) Given an encryption
of a vectorEnc(v) and a constantc ∈ F, we can efficiently computeEnc(cv). (iii) Given an encryption of
a matrixEnc(M) and a matrixM ′ of the appropriate dimensions, we can efficiently computeEnc(MM ′)
andEnc(M ′M), as any entry in the result matrix is a linear combination of some encrypted matrix entries.

In some cases we want to use the encryption schemeEnc to encrypt an integer̀ where0 ≤ ` ≤ n. We
do this by encrypting the binary representation of`, bit by bit. If ` =

∑log n
i=0 `i2i, where`i ∈ {0, 1} for

every0 ≤ i ≤ log n, then we use the notationEncbin(`) = (Enc(`log n), . . . ,Enc(`1),Enc(`0)).
Adversary model. Our protocols are constructed for the two-party semi-honest adversary model. Roughly
speaking, both parties are assumed to act in accordance with their prescribed actions in the protocol. Each
party may, however, collect any information he/she encounters during the protocol run, and try to gain
some information about the other party’s input. We will compose our protocols in a modular manner and
will argue about their privacy using well-known sequential composition theorems [13] in the semi-honest
adversary model.

Complexity Measures. Any interaction between Alice and Bob in the protocol is called around of com-
munication. The total number of such interactions consists theround complexityof the protocol. In each
round some data is sent from Bob to Alice or from Alice to Bob. The size of all the data (i.e. the total
number of bits) that is communicated between Alice and Bob during the whole execution of the protocol is
called thecommunication complexityof the protocol. We make the convention to count the communication
complexity of our protocols in terms of multiples ofλ, i.e. we count the number of encrypted valuesEnc(·)
exchanged between Alice and Bob.

2.1 Useful Sub-Protocols

In our protocols Bob holds data encrypted by a public key homomorphic encryption scheme, while Alice
holds the private decryption key. We view our protocols as algorithms Bob executes on his encrypted
input. As mentioned above, the homomorphic encryption allows Bob to locally perform several simple
manipulations on his input. However, some operation require the help of Alice. In Table 1, we list a set
of operations Bob can perform using the help of Alice. These operations determine the communication
and round complexity of our protocols, and thus we added the complexities of each sub-protocol to the
table. Later, in Section 7, we show how to implement these sub-protocols within the mentioned complexity
bounds, enabling Bob to use Alice’s help to perform the described operations without disclosing any of his
data to her.

As an example of a protocol where Bob uses Alice’s help, we now present ProtocolMATRIX MULT
for encrypted matrix multiplication. Bob holds the encryptionsEnc(A) andEnc(B) of two matricesA ∈
F

n×` andB ∈ F
`×m. Alice holds the private decryption key. In the end of the protocol Bobs should

hold the encryptionEnc(AB) of the product matrixAB ∈ Fn×m. Bob chooses two random matrices
RA ∈ Fn×` andRB ∈ F`×m and sends Alice the two matricesEnc(A + RA) andEnc(B + RB), which
can be locally computed using the homomorphic properties ofEnc(·). Alice decrypts these matrices and
returnsEnc((A + RA) · (B + RB)) to Bob. Finally Bob locally computesEnc(AB) = Enc((A + RA)(B +
RB))− Enc(ARB)− Enc(RAB)− Enc(RARB). The protocol runs in two rounds and the communication
complexity of this protocol isn` + `m + nm. The security proof for this protocol is straightforward.

4

Protocol name INPUT/OUTPUT Communication Rounds
complexity

MATRIX MULT Input: Enc(A),Enc(B) (A ∈ Fn×`, B ∈ F`×m) `n + `m + nm 2
OutputEnc(A ·B)

NONZERO Input: Enc(x) (x ∈ F) O(k) 2
Output:Enc(1) if x 6= 0, Enc(0) if x = 0

EQUAL Input: Encbin(x), Encbin(y) (0 ≤ x, y ≤ n) O(k) O(1)
Output:Enc(1) if x = y, Enc(0) if x 6= y

UNARY Input: Encbin(r) (0 ≤ r ≤ n) O(kn) O(1)
Output:Enc(δ), δ ∈ Fn, δi = 1 if r ≥ i, δi = 0 otherwise.

Table 1: Basic sub-protocols and their complexities.

3 Linearly Recurrent Sequences

We reduce the problem of deciding if a linear systemMx = v is solvable, to computing the minimal
polynomial of a certainlinearly recurrent sequence. In this section we formally define linearly recurrent
sequences and discuss some of their basic properties. We follow the exposition given in [12].

Let F be field andV be a vector space overF. An infinite sequencea = (ai)i∈N ∈ V N is linearly
recurrent (overF) if there existsn ∈ N andf0, . . . , fn ∈ F with fn 6= 0 such that

∑n
j=0 fjai+j = 0 , for

all i ∈ N. The polynomialf =
∑n

j=0 fjx
j of degreen is called acharacteristic polynomialof a.

We now define a multiplication of a sequence by a polynomial. Forf =
∑n

j=0 fjx
j ∈ F[x] and

a = (ai)i∈N ∈ V N, we set

f • a = (
n∑

j=0

fjai+j)i∈N ∈ V N.

This makesFN, together with•, into anF[x]-module.3

The property of being a characteristic polynomial can be expressed in terms of the operation•. A
polynomialf ∈ F[x]\ {0} is a characteristic polynomial ofa ∈ FN if and only if f • a = 0 where0 is
the all-0 sequence. The set of all characteristic polynomials of a sequencea ∈ FN, together with the zero
polynomial form an ideal inF[x]. This ideal is called theannihilator of a and denoted by Ann(a). Since
any ideal inF[x] is generated by a single polynomial, either Ann(a) = {0} or there is a unique monic
polynomialm ∈ Ann(a) of least degree such that〈m〉 = {rm : r ∈ F[x]} = Ann(a). This polynomial
is called theminimal polynomialof a and divides any other characteristic polynomial ofa. We denote the
minimal polynomial ofa by ma. The degree ofma is called therecursion orderof a.

Let M ∈ Fn×n be a matrix, andu,v ∈ Fn be vectors. We will be interested in the following three
sequences: (i)A = (M i)i∈N where the sequence elements are fromV = Fn×n. (ii) a = (M iv)i∈N where
the sequence elements are fromV = F

n. (iii) a′ = (u>M iv)i∈N where the sequence elements are from
V = F. We denote byfM = det(M − xIn) =

∑n
i=1 fjx

j , the characteristic polynomial ofM .

Claim 3.1 Considerma′ ,ma,mA, the minimal polynomials of the sequencesa′,a,A respectively. Then
ma′ |ma|mA|fM .

3Roughly speaking, a module is something similar to a vector space, with the only difference that the “scalars” may be elements
of an arbitrary ring instead of a field. See any linear algebra textbook for a formal definition.

5

Proof: We first showmA|fM . By the Cayley-Hamilton TheoremfM (M) = 0. Consequently,

fM •A = (
n∑

j=0

fjM
i+j)i∈N = (M ifM (M))i∈N = 0,

andfM (M) is a characteristic polynomial ofA. ThereforemA, the minimal polynomial ofA, dividesfM .
Next, to provema|mA, writemA =

∑n
i=0 aix

i. AsmA •A = 0, we get that(
∑n

j=0 ajM
i+j)i∈N = 0.

Hence,

mA • a = (
n∑

j=0

aj(M i+j · v))i∈N = ((
n∑

j=0

ajM
i+j ·)v)i∈N = (0 · v)i∈N = 0.

ThereforemA is a characteristic polynomial ofa as well, and thisma|mA. The proof ofma′ |ma is similar.
2

Corollary 3.2 The sequencesa,a′,A are linearly recurrent of order at mostn.

4 Deciding Matrix Singularity

In this section we consider the following problem: Bob holds ann × n dimensional matrixEnc(M) over
a finite fieldF, encrypted under a public-key homomorphic encryption scheme. Alice holds the private
decryption key, and they wish to decide whetherM is singular, or equivalently, whetherdet(M) = 0. As
mentioned in Section 2, we view the protocol as an algorithm executed by Bob, in which some operations
require the help of Alice. The implementation of the secure sub-protocols for these operations is presented
in Section 7. Our protocol is based on an algorithm by Wiedemann for “black-box linear algebra” [24].
As a simple first step, we reduce the problem into checking if a certain random linear system is solvable.
A second reduction leads us to the problem of computing the minimal polynomial of a linearly recurrent
sequence. We then show how to securely compute this particular sequence, and finally, how to compute its
minimal polynomial to solve the original matrix singularity problem.

Our first step is to reduce the problem of deciding whetherdet(M) = 0 to deciding whether the linear
systemAx = v is solvable for some random vectorv ∈ Fn. If M is non-singular then, obviously, the linear
system must be solvable. On the other hand, ifdet(M) = 0, then with probability at least1/ |F| ≥ 1/2,
the linear system has no solution. Thus, repeating this experimentω(log n) solves the original problem with
overwhelming success probability.

Next, we reduce the problem of deciding whether the linear systemAx = v is solvable to computing
ma, the minimum polynomial of the recurrent sequence of vectorsa = (M iv)i∈N.

Claim 4.1 ([12]) (i) If ma(0) 6= 0 then the systemAx = v is solvable. (ii) Ifma(0) = 0 thendet(M) = 0.

Proof: (i) Since by Claim 3.2 the order ofa is at mostn, we can writema =
∑n

i=0 mix
i. As ma is the

minimal polynomial ofa, we get that

mnMnv + mn−1M
n−1v + . . . + m1Mv + m0Iv = 0.

Sincem0 = ma(0) is different to0, we get

−m−1
0 (mnMnv + mn−1M

n−1v + . . . + m1Mv) = v

6

and hence
M(−m−1

0 (mnMn−1v + mn−1M
n−2v + . . . + m1Iv)) = v.

Therefore, the systemMx = v is solvable.
(ii) Let fM be the characteristic polynomial ofM . By Claim 3.1, it holds thatma|fM . Sincema(0) = 0

we get thatx|ma and thusx|fM . Therefore, the constant coefficient offM is 0. As the constant coefficient
of the characteristic polynomialfM is−det(M), we get thatdet(M) = 0. 2

We are interested in finding the minimal polynomial of a linearly recurrent sequence of vectorsa =
(M iv)i∈N. This is done by picking a random vectoru ∈ Fn and further reducing the problem to computing
the minimal polynomial of the linearly recurrent sequence of field elementsa′ = (u>M iv)i∈N. The
correctness of the reduction is proved in Lemma 12.17. in [12]. In particular, it is proved that for fields
of size at least2n, the minimal polynomials ofa anda′ are equal, with at least a constant probability.

Lemma 4.2 ([12]) LetM ∈ Fn×n, v ∈ Fn, ma be the minimal polynomial of the sequencea = (M iv)i∈N.
Then the probabilityp thatma is the minimal polynomial of the sequencea′ = (u>M iv)i∈N for a u ∈ Fn

chosen uniformly at random satisfiesp ≥ 1− deg(ma)/|F|.

To computema′ , the minimal polynomial of the sequencea′, we first need to compute a prefix of the
sequence itself. As we will later see, the2n first entries of the sequence will suffice. As the communication
complexity of the sub-protocol for matrix multiplication is linear in the matrix size, we are interested in
computing(Enc(u>M iv))0≤i≤2n−1 using the least number of matrix multiplication operations. We next
show how to compute the sequence using2 log n + 1 matrix multiplication operations.

First computeEnc(M2j
) for 0 ≤ j ≤ log n. This can be easily done inlog n sequential matrix mul-

tiplications. For two matricesX andY of matching size letX|Y be the matrix obtained by concatenating
X with Y . Then compute the following using sequentiallog n matrix multiplications: (Note that all the
matrices are of dimensions at mostn× n.)

Enc(Mv) = Enc(M)v
Enc(M3v|M2v) = Enc(M2) · Enc(Mv|v)

Enc(M7v|M6v|M5v|M4v) = Enc(M4) · Enc(M3v|M2v|Mv|v)
... =

...
Enc(M2n−1v|M2n−2v| . . . |Mnv) = Enc(Mn) · Enc(Mn−1v|Mn−2v| . . . |v)

Finally, multiply each vectorEnc(M iv) from the left byu> to getEnc(u>M iv) for 0 ≤ i ≤ 2n− 1.
Our next step is to compute the minimal polynomial. By Corollary 3.2, the order of the sequencea′ is at

mostn. To compute the minimal polynomial of the sequencea′ given the encryption of its first2n elements,
we use the sub-protocolMINPOLY. The protocol is based on the well-known general construction by
Yao [25], which supplies a constant round secure protocol for a functionf , with communication complexity
that is linear in the size of the boolean circuit implementingf . Since the circuit size of the well-known
Berlekamp-Massey algorithm [17] for computing the minimal polynomial isO(n2k log k) we get a sub-
protocol withÕ(n2k) communication complexity and constant rounds. A constant round implementation
of the sub-protocolMINPOLY with Õ(nk) communication complexity appears in Section 7.

To summarize, ProtocolSINGULAR decides if a given encrypted square matrix is singular. To get a
constant success probability in each iteration of the protocol, we need|F| to be at least2n. In case|F| < 2n,
we work over an extension field, which costs a logarithmic factor in the communication complexity4.

4It is not hard to derive a homomorphic encryption scheme over an extension field ofF given a homomorphic encryption scheme
overF.

7

Protocol SINGULAR

Input: Enc(M) whereM ∈ Fn×n

Output:Enc(0) if det(M) = 0 andEnc(1) otherwise.
Repeat the followingω(log n) times:

1. Pick random vectorsu,v ∈R F
n.

For i = 0 . . . 2n − 1 compute the valuesa′i = Enc(u>M iv) using2 log n executions of the
matrix multiplication protocol.

2. Execute ProtocolMINPOLY to computeEnc(ma′), an encryption of the minimal polynomial
of the sequencea′ = (a′i)0≤i≤2n−1.

3. Execute ProtocolNONZERO onEnc(ma′(0)).

Compute the logical AND of theω(log n) results and answer accordingly.

The following theorem summarizes the properties of ProtocolSINGULAR. Due to lack of space, the
proof is moved to Appendix A.3.

Theorem 4.3 LetEnc(M) be an encryptedn×n matrix over a finite fieldF, such that|F| ≥ 2n. Then Pro-
tocolSINGULAR securely checks ifM is singular with probability1−neg(n), communication complexity
Õ(n2k) and round complexitypolylog(n), wherek = log |F|.

5 Computing the Rank

In this section we show how to computeEncbin(rank(M)) given an encryptionEnc(M) of a matrixM ∈
F

m×n. That is, ifr = rank(M), we are interested in outputtingEncbin(r). We compute the encryption of
the binary representation ofr bit by bit. We first show ProtocolRANK≥ that decides whetherrank(M) ≥ `
given a bit-wise encryption of a positive integer`.

Protocol RANK≥

Input: Enc(M) whereM ∈ Fm×n, for n ≤ m andEncbin(`) where1 ≤ ` ≤ n. a

Output:Enc(1) if rank(M) ≥ ` andEnc(0) otherwise.

Perform the followingω(log n) times:

1. Locally computeEnc(M ′) = P · Enc(M) · Q whereP andQ are random non-singularm × m
andn× n matrices respectively.

2. ComputeEnc(δ) (with δi = 1 if ` ≥ i andδi = 0 otherwise) fromEncbin(`) using theUNARY
protocol. CreateEnc(∆), where∆ is the n × n diagonal matrix∆ = diag(δ1, δ2, . . . , δn).
Compute

Enc(M ′
`) = Enc(M ′) · Enc(∆) + In − Enc(∆),

whereIn is then × n identity matrix. Note thatM ′
` ∈ Fn×n is now the matrix that coincides

with M ′ in the top-left̀ × ` sub-matrix and with the unit matrix in then− `×n− ` bottom-right
sub-matrix.

3. Execute ProtocolSINGULAR onM ′
` and output accordingly.

Compute and output the logical OR of the results of theω(log n) iterations.

ain m < n execute the protocol onEnc(M>).

8

The protocol relies on the following simple linear algebraic claim.

Claim 5.1 ([4]) Let n ≤ m be positive integers,F be a finite field, andM be am × n matrix overF.
Supposer ≤ rank(M) and letP andQ bem × m andn × n randomly chosen full rank matrices overF.
Let M ′ = PMQ, and denote the top-leftr × r sub-matrix ofM ′ by N ′. Then with constant probability
rank(N ′) = r.

The proof of the next claim is moved to appendix A.1 due to lack of space.

Claim 5.2 ProtocolRANK≥ securely computes whetherrank(M) ≥ ` with probability1− neg(n), com-
munication complexitỹO(n2k) and round complexitypolylog(n).

Next, in ProtocolRANK, we performlog n executions of ProtocolRANK≥, to compute the encryption
of the rank ofM using a binary search. The protocol starts with` = 2blog nc and checks if the rank ofM
is greater or equal tò. In the first case the most significant bit ofM ’s rank,r`, is set to1 and the check
is repeated with the new value` = 2blog nc + 2blog nc−1 to determine the second most significant bit of the
rank. In the latter case the the most significant bit ofM ’s rank,r`, is set to0 and the check is repeated with
the new valuè = 2blog nc−1. This is repeated until all bits of the rank are determined. Note that the search
is performed obliviously, as the threshold rank given to ProtocolRANK≥ is encrypted. The full description
of protocolRANK and is given in Appendix A.1, together with the proof of Theorem 5.3.

Theorem 5.3 Let Enc(M) be an encryptedm × n matrix over a finite fieldF. ProtocolRANK securely
computesEncbin(rank(M)) with probability 1 − neg(n), communication complexitỹO(n2k) and round
complexitypolylog(n), wherek = log |F|.

6 Solving Linear Equations

In this section we discuss the problem of solving a system of linear equations. Given encryptionsEnc(M)
andEnc(y), representing the linear systemMx = y, whereM ∈ Fm×n andy ∈ Fm, we are interested in
outputting an encryptionEnc(x) of a random solution to the system, if the system is solvable. We present a
protocol that relies on ProtocolSINGULAR.

The easy case to deal with is whereM is a non-singular square matrix. In this case it is enough to
computeEnc(M−1) and then execute ProtocolMATRIX MULT once to computeEnc(M−1)Enc(y) =
Enc(M−1y), which is the unique solution to the system (and hence is also a random solution). To compute
Enc(M−1) from Enc(M) we use ProtocolMATRIX INVERT. The protocol gets an encryptedn × n
matrix Enc(M) as input, and outputs an encryption of a matrix and an encryption of a field element. If
M is invertible, the protocol outputsEnc(M−1),Enc(1). Otherwise, it outputsEnc(R−1),Enc(0), where
R is a random non-singularn × n matrix. The protocol uses ProtocolSINGULAR as a sub-protocol. Its
implementation is simple and is described in Appendix A.2.

To reduce the general case to the non-singular case we will show how to apply an algorithm by Kaltofen
and Saunders [15] in the secure setting. The algorithm solvesMx = y in the following way: (i) Perturb
the linear systemMx = y to get a systemM ′x = y′ with the same solution space. The perturbation has
the property that, with high probability, ifM is of rankr, thenM ′

r×r, the top-leftr × r sub-matrix ofM ′,
is non-singular. (ii) Pick a random vectoru ∈ Fn and sety′r to be the upperr coordinates of the vector
y′ + M ′u. (iii) Solve the linear systemM ′

r×rxr = y′r, and denote the solution byur. (iv) Let u∗ ∈ Fn be
a vector whose upper part isur and its lower part is zero. It can be shown thatx = u∗ − u is a uniform
random solution to the systemM ′x = y′ and thus is a uniform random solution to the original system. The

9

correctness proof for this algorithm may be found in [15, Theorem 4]. Note that this algorithm is correct
assuming that the systemMx = y is solvable.

Implementing the above algorithm in a secure protocol is not straightforward. On one hand, we need to
computer, the rank ofM , in order to invert the top-left sub-matrix ofM . On the other hand, computingr
violates the privacy of the protocol, asr cannot be extracted from a random solution to the linear system.
We overcome this problem using ProtocolRANK from Section 5, to compute an encryption ofr.

Next, we show how to implement the Kaltofen-Saunders algorithm having only an encryption ofr =
rank(M). The key idea is that we can work with ther × r top-left sub-matrix of the perturbed matrixM ′,
without knowing the value ofr in the clear.

Protocol LINEAR SOLVE

Input: Enc(M) whereM ∈ Fm×n andn ≤ m, andEnc(y) wherey ∈ Fm. This protocol assumes the
systemMx = y is solvable.
Output:Enc(x) wherex ∈ Fn is a random solution to the systemMx = y.

1. Execute ProtocolRANK onEnc(M) to computeEnc(r) wherer = rank(M).

2. Repeat the followingω(log n) times:

(a) Locally computeEnc(M ′) = P · Enc(M) ·Q andEnc(y′) = P · Enc(y) whereP andQ
are random non-singularm×m andn× n matrices respectively.

(b) Compute the encrypted matrixEnc(M ′
r) as in Step 2 of ProtocolRANK≥.

(c) Compute(Enc(H),Enc(b)) using protocolMATRIX INVERT, whereH = (M ′
r)
−1 ∈

F
n×n andb = 1 if M ′

r is non-singular. IfM ′
r is singular thenb = 0, indicating thatH is a

random matrix, and that this iteration of the protocol is faulty.

(d) Pick a random vectoru ∈ Fn and setEnc(y′r) for y′r ∈ Fn to be a vector whose upperr
coordinates are the upperr coordinates ofEnc(y′)+Enc(M ′)u and lowern−r coordinates
areEnc(0). This can be easily using the protocolUNARY.

(e) Execute the matrix multiplication protocolMATRIX MULT to computeEnc(ur) =
Enc((M ′

r)
−1)Enc(y′r).

(f) ComputeEnc(Q−1(u− ur)).

3. OutputEnc(Q−1(u− ur)) for a round in whichb = 1.

Some remarks are in place. First, note that the protocol is valid only for solvable linear system. To check
if a system is solvable, it is sufficient to compare the rank of the matricesM andM |y where| stands for
concatenation. The encryption of the rank of these matrices can be computed using ProtocolRANK, while
the comparison can be done using protocolEQUAL.

Next we discuss the repetitions in ProtocolLINEAR SOLVE. In Step 2a, we multiply the matrixM
from the right and from the left by random non-singular matrices to get the matrixM ′. By Claim 5.1, the top
left sub-matrix ofM ′ is of rankr with constant probability. If this is the case, then the rest of the protocol
follows the Kaltofen-Saunders algorithm, and thus its correctness is implied by [15, Theorem 4]. If the
top-left sub-matrix ofM ′ is not full rank, we get thatb = 0, and the output is discarded.5 Repeating the
processω(log n) iteration ensures success probability of1− neg(n).

5Outputting a result vector for whichb 6= 0 is simple. Keep an encrypted valuec that is1 if and only if all the values ofb in
previous iterations were0. Set the output to beEnc(c) · Enc(u − ur) after every iteration. The output of the protocol will be the
output of the first iteration in whichb = 1.

10

As a final note, we stress that the requirement thatn ≤ m is made only for simplicity of presentation.
Otherwise,M ′

r would have been of dimensionmin(m,n) × min(m,n) instead ofn × n, and the changes
needed in the rest of the protocol are minor. The following Theorem concludes the properties of Protocol
LINEAR SOLVE.

Theorem 6.1 LetEnc(M) be an encryptedm×n matrix over a finite fieldF, and letEnc(y) be an encrypted
vector y ∈ F

m. Protocol LINEAR SOLVE securely computesEnc(x), wherex ∈ F
n is a random

solution ofMx = y, with probability1−neg(n), communication complexitỹO(n2k) and round complexity
polylog(n), wherek = log |F|.

7 Implementation of the Sub-Protocols

In this section we will show how to implement the various sub-protocols presented in Section 2.1.

7.1 Applying Yao’s Garbled Circuit Method

In this section we show how to apply the well-knowngarbled circuitmethod of Yao [25] to implement some
of the sub-protocols described in Table 1. In our protocols Bob typically holds an inputEnc(x), wherex is a
vector of field elements encrypted by a public-key homomorphic encryption scheme. Alice holds the private
decryption key. We show a general way to design a constant round secure protocols for a functionf , with
communication complexity proportional to the Boolean circuit complexity off . We design the protocols
such that Alice learns no information, while Bob learnsEnc(f(x)).

In Yao’s two-party protocol [25] Alice and Bob hold private binary inputsx andy, respectively, and
wish to jointly compute a functionalityf(x, y), such that Alice learnsf(x, y) and Bob learns nothing. Letf
be a functionality withm′ inputs and̀ ′ outputs, which can be computes by a Boolean circuit of sizeG. Then
the construction of Yao results in a protocol that runs in a constant number of rounds and communication
complexityO(G + m′ + `′).6

Yao’s method can be used in our setting as follows: Suppose Bob holds an encryptionEnc(x), where
x = (x1, . . . , x`) is a vector of field elements. Letg : F` → F

m be a functionality. Bob wants to securely
compute the valueEnc((x)). The idea is to first mask the inputx with a random vectorr. Then execute
Yao’s protocol on a modified functionalityf that first unmasks the input, then runs the functionalityg, and
finally re-masks the output with another random vectors; Details follow.

First Bob chooses random vectorsr = (r1, . . . , r`) ∈ F
` and s = (s1, . . . , sm) ∈ F

m and sends
Enc(x+ r) to Alice. Alice decrypts to get the vectorx+ r ∈ F` and converts each field element to a binary
string. Now Alice and Bob execute Yao’s protocol on the following functionalityf : The input of Alice is
x+ r and the input of Bob isr, s. f first unmasks the vectorx by computing the bits of(x+ r)− r. Then it
runs the functionalityg on the inputx and masks the output vectorg(x) by adding the vectors. This vector,
g(x) + s, is given back to Alice who encrypts it and sendsEnc(g(x) + s) to Bob. Now Bob who knows the
random masks in the cleartext can reconstructEnc(g(x)).

The privacy of the protocol is implied by the privacy of Yao’s protocol. We now compute its communi-
cation complexity in terms ofC(f), the circuit complexity of the functionalityf as described above. The
number of input and output bits off is `′ = k` andm′ = km, wherek = log |F|. Addition and subtraction

6Here we make the (simplifying but reasonable) assumption that the primitives used in [25] (i.e., the 1-out-of-2 oblivious transfer
protocol and sending one garbled gate of the circuit which is usually done by sending the output of a pseudorandom bit generator)
have a communication complexityO(λ) (whereλ = |Enc(·)|) for each execution.

11

Protocol name INPUT OUTPUT
INTERSECTION DECIDE Alice : SubspaceVa ⊆ Fn Is Va ∩ Vb = {0}?

Bob: SubspaceVb ⊆ Fn

COMMON LINEAR Alice: MA ∈ Fna×n, va ∈ Fna randomx with MAx = va, MBx = vb

EQUATIONS Bob: MB ∈ Fnb×n, vb ∈ Fnb

DETERMINANT Alice: MA ∈ Fn×n det(MA + MB)
Bob: MB ∈ Fn×n

Table 2: Linear algebra protocols with̃O(n2) communication complexity andpolylog(n) rounds.

can be done with a circuit of sizeO(k), thus for masking and unmasking we needO(k(` + m)) gates.
Therefore the overall circuit sizeG(f) of the functionalityf is O(C(g) + k(` + m)). This leads to the
following results.

Lemma 7.1 Letg : F` → F
m be a public functionality that can be represented by a binary circuit of sizeC.

Suppose Bob holds an encrypted input vectorEnc(x), wherex ∈ F`. Then there exists a secure two-party
protocol that runs in constant rounds andO(C +k(m+`)) communication complexity such that Bob learns
the encrypted vectorEnc(y), wherey = g(x) ∈ Fm, and Alice learns no information from the protocol.

In view of Lemma 7.1, the implementation of ProtocolsNONZERO, EQUAL andUNARY reduces to
implementing simple boolean circuits. For lack of space, we discuss these protocols in Appendix A.4.

7.2 Minimal Polynomial

Using the well-known Berlekamp/Massey algorithm [17] there exists an algebraic circuit of sizeO(n2) that
computes the minimal polynomial from a sequencea = (ai)i∈N of maximal recursion ordern. Further
efficiency improvement can be obtained by noting that computing the minimal polynomial can actually be
reduced to computing the greatest common division (GCD) of two polynomial of degree2n. For complete-
ness we give further details in Appendix C. Using the fast Extended Euclidean algorithm [12, Chapter 11]
the latter one can be carried out using an algebraic circuit of sizeO(n log n) = Õ(n).

By implementing each algebraic operation overF with a binary circuit of sizeO(k log k log log k) =
Õ(k) we get a binary circuit of sizẽO(nk) for computing the minimal polynomial.

Lemma 7.2 Suppose Bob holds encrypted encrypted vectorsEnc(a0), . . . ,Enc(a2n−1), wherea = (ai)i∈N
is a linearly recurrent sequence of order at mostn. There exists a secure two-party protocolMINPOLY
that runs in constant rounds and̃O(nk) communication complexity that returns the encrypted minimal
polynomialEnc(ma) of a to Bob.

8 Applications

In previous sections we described protocols whose input was an encrypted. In this section we give com-
munication and round efficient protocols for a set of problems in linear algebra, improving upon previous
results in the two-party setting. We summarize our results in Table 2 and refer to Appendix B for the exact
problem definitions and the protocols.

12

References

[1] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in constant number of rounds
of interaction. InPODC ’89: Proceedings of the eighth annual ACM Symposium on Principles of
distributed computing, pages 201–209, New York, NY, USA, 1989. ACM Press.

[2] A. Beimel and E. Weinreb. Separating the power of monotone span programs over different fields. In
Proc. of the 44th IEEE Symp. on Foundations of Computer Science, pages 428–437, 2003.

[3] D. Boneh, E. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts. Inthe Second Theory
of Cryptography Conference – TCC 2005, pages 325–341, 2005.

[4] A. B. Borodin, J. von zur Gathen, and J. E. Hopcroft. Fast parallel matrix and GCD computations.
Technical report, Cornell University, Ithaca, NY, USA, 1982.

[5] P. Bürgisser, M. Clausen, and M. A. Shokrollahi.Algebraic complexity theory. Springer-Verlag, Berlin,
1997.

[6] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. InSTOC ’87:
Proceedings of the nineteenth annual ACM conference on Theory of computing, pages 1–6. ACM
Press, 1987.

[7] R. Cramer and I. Damgaard. Secure distributed linear algebra in a constant number of rounds. In
CRYPTO ’01: Proceedings of the 21st Annual International Cryptology Conference on Advances in
Cryptology, pages 119–136. Springer-Verlag, 2001.

[8] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient multi-authority election
scheme. InAdvances in Cryptology – EUROCRYPT ’97, Lecture Notes in Computer Science, pages
103–118. Springer-Verlag, 1997.

[9] I. Damgaard, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft. Unconditionally secure constant-rounds
multi-party computation for equality, comparison, bits and exponentiation. Inthe Third Theory of
Cryptography Conference – TCC 2006, 2006. To Appear.

[10] J. L. Dornstetter. On the equivalence between Berlekamp’s and Euclid’s algorithms.IEEE Trans. Inf.
Theory, it-33(3):428–431, 1987.

[11] T. El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In
Proceedings of CRYPTO 84 on Advances in cryptology, pages 10–18, New York, NY, USA, 1985.
Springer-Verlag New York, Inc.

[12] J. von zur Gathen and J. Gerhard.Modern computer algebra. Cambridge University Press, New York,
1999.

[13] O. Goldreich. Foundations of Cryptography, Voume II Basic Applications. Cambridge University
Press, 2004.

[14] S. Goldwasser and S. Micali. Probabilistic encryption & how to play mental poker keeping secret all
partial information. InSTOC ’82: Proceedings of the fourteenth annual ACM symposium on Theory
of computing, pages 365–377, New York, NY, USA, 1982. ACM Press.

13

[15] E. Kaltofen and D. Saunders. On Wiedemann’s method of solving sparse linear systems. InAAECC-
9: Proceedings of the 9th International Symposium, on Applied Algebra, Algebraic Algorithms and
Error-Correcting Codes, pages 29–38, London, UK, 1991. Springer-Verlag.

[16] M. Karchmer and A. Wigderson. On span programs. InProc. of the 8th IEEE Structure in Complexity
Theory, pages 102–111, 1993.

[17] J. L. Massey. Shift-register synthesis and BCH decoding.IEEE Trans. Inf. Theory, it-15:122–127,
1969.

[18] D. Naccache and J. Stern. A new public-key cryptosystem based on higher residues. InACM CCS 98,
pages 59–66, 1998.

[19] K. Nissim and E. Weinreb. Communication efficient secure linear algebra. Inthe Third Theory of
Cryptography Conference – TCC 2006, 2006. To Appear.

[20] P. Pallier. Public-key cryptosystems based on composite degree residuosity classes. InAdvances in
Cryptology – EUROCRYPT ’99, pages 223–238, 1999.

[21] T. P. Pedersen. A threshold cryptosystem without a trusted party. InAdvances in Cryptology – EURO-
CRYPT ’91, pages 522–526, 1991.

[22] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key
cryptosystems.Commun. ACM, 21(2):120–126, 1978.

[23] T. Sander, A. Young, and M. Yung. Non-interactive cryptocomputing for NC1. InFOCS ’99: Pro-
ceedings of the 40th Annual Symposium on Foundations of Computer Science, page 554, Washington,
DC, USA, 1999. IEEE Computer Society.

[24] D. H. Wiedemann. Solving sparse linear equations over finite fields.IEEE Trans. Inf. Theor., 32(1):54–
62, 1986.

[25] A. C. Yao. How to generate and exchange secrets. InProc. of the 27th IEEE Symp. on Foundations of
Computer Science, pages 162–167, 1986.

A Full Protocols

A.1 Matrix Rank

Protocol RANK

Input: Enc(M) whereM ∈ Fm×n, for n ≤ m.
Output:Encbin(r) wherer = rank(M).

1. For everyi = blog nc down toi = 0 do:
Set Enc(ri) to be the output of ProtocolRANK≥ on Enc(M) and Encbin(`), where ` =
(
∑blog nc

k=i+1 rk2k) + 2i. Note that the binary presentation ofEncbin(`) can be composed from
the already computed bits ofEncbin(r).

2. OutputEncbin(r) = (Enc(rblog nc), . . . ,Enc(r0)).

14

Theorem 5.3 Let Enc(M) be an encryptedm × n matrix over a finite fieldF. ProtocolRANK securely
computesEncbin(rank(M)) with probability 1 − neg(n), communication complexitỹO(n2k) and round
complexitypolylog(n), wherek = log |F|.

Proof: ProtocolRANK useslog n executions of protocolRANK≥ to perform a binary search for the
rank ofM . The protocol is correct if and only if all the executions ofRANK≥ are correct, which happens
with probability1− neg(n). The bounds on round and communication complexity follow by the respective
bounds on theRANK≥ protocol from Claim 5.2. 2

A.2 Matrix Inversion

Bob holds an encrypted matrixEnc(M). Alice holds the private decryption key. Based on the shared field
inversion protocol from Bar-Ilan and Beaver [1] we design a protocol with the following properties. The
protocol outputs an encryption of a matrix and an encryption of a field element. IfM is invertible then in
the end of the execution Bob holds(Enc(M−1),Enc(1)) while if M is singular Bob gets(Enc(R),Enc(0))
for a random non-singular matrixR. Alice learns nothing in the protocol.

Protocol MATRIX INVERT

Input: Enc(M) whereM ∈ Fn×n.
Output: (Enc(M−1),Enc(1)) if M is invertible and(Enc(R−1),Enc(0)), whereR is a random non-
singularn× n matrix, if M is singular.

1. Alice and Bob execute ProtocolSINGULAR on Enc(M). Denote the output of this step by
Enc(b).

2. Bob picks a randomn × n non-singular encrypted matrixR. Bob uses the help of Alice to
compute the matrixEnc(M̃) = Enc(M) · Enc(b) + Enc(R) · Enc(1− b).

3. Bob picks anothern× n random non-singular matrixQ.

4. Bob computes the encrypted matrixEnc(QM̃) by multiplyingEnc(M̃) from the left by the ma-
trix Q, and sendsEnc(QM̃) to Alice.

5. Alice decryptsEnc(QM̃) and compute(QM̃)−1 = M̃−1Q−1. Alice encryptsM̃−1Q−1 and
sends BobEnc(M̃−1Q−1).

6. Bob computesEnc(M̃−1) = Enc(M̃−1Q−1)Q.

7. Bob locally outputsEnc(M̃−1),Enc(b).

It is easy to see that the matrix̃M is always invertible. In caseM is invertibleM̃ = M , otherwiseM̃
is a random non-singular matrix. In both cases, Alice gets a random non-singular matrixQM̃ , and thus
learns no information in the protocol. In caseM is invertible, Bob learnsEnc(M−1). Since Bob only learns
encrypted values from the protocol, he gets no information on the value ofM .

A.3 Proofs

Theorem 4.3 Let Enc(M) be an encryptedn × n matrix over a finite fieldF, such that|F| ≥ 2n.
Then ProtocolSINGULAR securely checks ifM is singular with probability1 − neg(n), communication
complexityÕ(n2k) and round complexitypolylog(n), wherek = log |F|. Proof: We first prove that

if det(M) 6= 0 then the output of the protocol isEnc(1). If in any iterationma′(0) = 0, this means that

15

the constant coefficient ofma′ is 0, thusx|ma′ . By Claim 3.1,ma′ |fM , wherefM is the characteristic
polynomial of the matrixM . Hence, the constant coefficient offM is 0, which impliesdet(M) = 0. Hence
if M is non-singular, the output of the entire protocol must beEnc(1).

On the other hand, ifdet(M) = 0 then, by part (i) of Claim 4.1, if the following two events happen, the
output of an iteration isEnc(0): (i) The systemMx = v is not solvable. (ii)ma′ = ma. The probability of
event (i) is at least(1 − 1/|F|) ≥ 1 − 1/2n > 1/2. The probability of event (ii), by Lemma 4.2, is at least
1− deg(ma)/|F| > 1− n/2n = 1/2. Therefore, with probability at least1/4 the output of the iteration is
Enc(0). Hence the probability thatdet(M) = 0 and still in all theω(log n) iterations the output isEnc(1)
is neg(n).

We account the communication and round complexity in each iteration of the protocol as follows: in
the first step we have2 log n sequential executions of the matrix multiplication protocol, where each single
execution requiresO(n2) communication and constant round. The complexity of the second step is, as
discussed above,̃O(nk) of communication and constant rounds. According to Table 1, the equality proto-
col in the third step needsO(k) communication and constant rounds. Computing the logical AND of the
ω(log n) iteration results can be done in2 rounds and communication which does not effect the asymp-
totic complexity of the protocol. Hence, afterω(log n) repetitions we get a communication complexity of
Õ(log n(n2 + nk) = Õ(n2k) and a round complexity ofω(log2(n)) = polylog(n), as required.

Security of the protocol follows by security of the sub-protocols used. We stress that even though Bob
knows the vectorsu andv in the clear this does not violate privacy of the protocol since the vectors are
random vectors and therefore could easily be simulated in a formal proof. However, an implementation of
the protocol within the same complexity and using encrypted vectors is also possible. 2

Claim 5.2 ProtocolRANK≥ securely computes whetherrank(M) ≥ ` with probability 1 − neg(n),
communication complexitỹO(n2k) and round complexitypolylog(n).

Proof: Supposerank(M) ≥ `. Then, by Claim 5.1, in each iteration the matrixM ′
` is non-singular with

constant probability. As ProtocolSINGULAR is correct with probability1 − neg(n), we get that in each
iteration, with constant probability, the output ofSINGULAR is Enc(1). Hence the probability that in any
of the iterations the output ofSINGULAR is 1− neg(n).

On the other hand, ifrank(M) < `, the the matrixM ′
` is singular in all rounds. Therefore, in each

iteration the output ofSINGULAR is Enc(0) with probability1 − neg(n). Therefore, the probability that
in any round the output ofSINGULAR is Enc(0) is neg(n). Hence the output of the protocol is correct
with the desired probability. The bounds on the round and communication complexity follow from the
complexity bounds of the ProtocolSINGULAR (See Theorem 4.3). Note that computing the logical OR
of the ω(log n) iteration results can be done in2 rounds and communication which does not effect the
asymptotic complexity of the protocol.

2

A.4 ProtocolsNONZERO, EQUAL and UNARY

Let x ∈ F. There clearly exist a binary circuit of sizeO(k) that checks forx = 0. Applying Lemma 7.1
leads to the following implementation of ProtocolNONZERO.

Lemma A.1 Suppose Bobs holds an encrypted field elementEnc(x). There exists a secure two-party pro-
tocol that runs in constant rounds andO(k) communication complexity that returns to BobEnc(1) if x 6= 0
andEnc(0) if x = 0.

16

Let 0 ≤ r, i ≤ n be two integers. There exist a binary circuit of sizeO(log n) that checks forr ≥ i.
Applying this circuitn times in parallel we get an implementation of ProtocolUNARY.

Lemma A.2 Suppose Bobs holds encryptedEncbin(r) with 0 ≤ r 6= n. There exists a secure two-party
protocol that runs in constant rounds andO(n log n+kn) = O(kn) communication complexity that returns
to Bob a vectorδ ∈ Fn such thatδi = 1 if r ≥ i andδi = 0 otherwise.

We remark that by the techniques from [9] it is further possible to implement the two protocolsEQUAL
and UNARY (without having to rely on Yao’s general method) in constant rounds and communication
complexityÕ(k) andÕ(kn), respectively.

The protocol forEQUAL is also easy to implement. Let0 ≤, x, y ≤ n. Designing a circuit of size
O(log n) for this problem is straightforward.

Lemma A.3 Suppose Bobs holds encryptedEncbin(x),Encbin(y) with 0 ≤ x, y 6= n. There exists a secure
two-party protocol that runs in constant rounds andO(log n + k log n) = O(k + log n) communication
complexity that returns to BobEnc(1) if x = y andEnc(0) otherwise.

B Applications

B.1 Linear Subspace Intersection

LetF be a finite field andn be a positive integer. Alice holds a subspaceVA ⊆ Fn of dimensionna ≤ n.
The subspaceVA is represented by anna × n matrix A, where the rows ofA spanVA. Similarly, Bob’s
input is a subspaceVB⊆Fn of dimensionnb, represented by annb × n matrix B. LettingVI = VA ∩ VB,
Alice and Bob wish to securely study different properties ofVI .

In [19], constant roundO(n2) protocols were designed for securelycomputingthe subspaceVI , and
for securely computing the rank of the subspaceVI . However, it turned out that the problem of securely
decidingwhether the subspaceVI is the trivial zero subspace seems harder to solve. Ignoring security
issues, computing the intersection of the input subspaces is at least as hard as deciding whether they have a
non trivial intersection. However, constructing asecureprotocol for the latter turns to be somewhat harder
as the players gain less information from its output.

The following claim from [19] reduces the problem of deciding subspace intersection, to computing
whether a matrix is of full rank:

Claim B.1 ([19]) DefineM = AB>. ThenVI 6= {0} if and only if the matrixM is not full rank.

This gives rise to the following protocol:

17

Protocol INTERSECTION DECIDE

Input: Alice (resp. Bob) holds ana×n (resp.nb×n) matrixA (resp.B) over a finite fieldF representing
a subspaceVA⊆Fn (resp.VB⊆Fn). Let B> be an× n′b matrix that represents the subspaceV >

B .
Output: IfVI is the trivial zero subspace, Alice outputs1. Else, Alice outputs0.

1. Alice generates keys for a homomorphic public key encryption system, and sends BobEnc(A)
and the public key.

2. Bob locally computesEnc(M), whereM
def= AB⊥. Note thatM is ana × n′b matrix.

3. Alice and Bob execute ProtocolRANK onEnc(M). Denote byEnc(r) the output of the protocol
held by Bob.

4. Alice and Bob execute protocolEQUAL on minna, n′b andEnc(r). Bob sends the encrypted
output to Alice who decrypts and outputs it.

This protocol has the same communication complexity as of the protocol designed in [19], that isÕ(n2).
However, the round complexity of this protocol, which ispolylog(n) is substantially better7 then the round
complexity of [19], which isΩ(n0.275). We note that the techniques in our paper are very different from
those of [19].

B.2 Solving a Common Linear Equation System

LetF be a finite field andn be a positive integer. Alice holds anna × n matrixMA and a vectorva ∈ Fna .
Similarly, Bob’s input is anna × n matrix MB and a vectorvb ∈ Fnb . Alice and Bob wish to securely
compute a random vectorx ∈ Fn such that bothMAx = va andMBx = vb.

This problem can be viewed as computing a random vector from the intersection of the affine subspaces
representing the solutions to the systemsMAx = va andMBx = vb. This problem was considered in [19],
who designed a protocol of communication complexityÕ(n2) and round complexityΩ(n0.275). We show a
protocol which improves the round complexity topolylog(n) while keeping the communication complexity
Õ(n2).

The protocol is simple: Alice generates keys for a homomorphic public key encryption system, and
sends BobEnc(MA), Enc(va) and the public key. Bob encrypts his input to get the encrypted linear system.(

Enc(MA)
Enc(MB)

)
x =

(
Enc(va)
Enc(vb)

)

Alice and Bob then execute ProtocolLINEAR SOLVE after which Bob holdsEnc(x) wherex is a random
solution to the common system. Finally, bob sendsEnc(x) to Alice, which decrypts and outputsx.

B.3 Computing the Determinant of a Shared Matrix

Alice, holdingMA ∈ Fn×n, and Bob, holdingMB ∈ Fn×n, share a matrixM = MA + MB. They wish to
compute thedeterminantof M without leaking any other information ofM . Again, we give apolylog(n)
round andÕ(n2) communication protocol for this problem, improving on previous results. The protocol is
again simple and is similar to protocolMATRIX INVERT: Alice generates keys for a homomorphic public

7we note that thepolylog(n) factor in the round complexity of our protocol appears in the protocol of [19] as well. Hence our
protocol is more round efficient for small values ofn as well.

18

key encryption system, and sends BobEnc(MA) and the public key. Bob encrypts his input and computes
Enc(M) = Enc(MA) + Enc(MB). Alice and Bob first execute protocolSINGULAR on Enc(M) and
let Enc(b) be the result of the protocol. Bob sendsEnc(b) to Alice, who decrypts to getb. If b = 0,
Alice outputs0. Otherwise, Bob picks a random non-singularn × n matrix R, locally computes and sends
Alice Enc(MR). Alice decrypts and computèdet(MR) and sends BobEnc(`). Bob multipliesEnc(`) by
det(R)−1 to getEnc(det(M)), and sends it to Alice, who decrypts and outputs the result.

C Computing the minimal polynomial using the GCD algorithm

In this section we demonstrate an algorithm from [10] how to efficiently compute the minimal polynomial of
a sequencea = (ai)i∈N of recursion ordern using the Extended Euclidean Algorithm on polynomials. By
the definition from Section 3 the minimal polynomialma of the sequencea is the unique monic polynomial
ma(x) = m(x) of least degree≤ n for which m(x) • a = 0. By division with remainder we can rewrite
this as

ma · (a1 + a2x + . . . + a2nx2n−1)− q(x) · x2n = r(x), (1)

wherer(x) is a remainder polynomial of degree< n, andq(x) is a quotient polynomial. Denote bya(x) the
sum

∑2n
i=1 aix

i−1. If we apply the extended GCD algorithm to the two polynomialsa(x) andx2n, keeping
track of remainders, we get two sequencespi(x), qi(x) such that theri := pi(x) · a(x) − qi(x) · x2n form
a series of polynomials whose degree is strictly decreasing. As soon as the degree ofri is less thann, we
have the required polynomials from (1) withma(x) = pi(x), q(x) = qi, andr(x) = ri(x).

19

