The complexity of Boolean functions from
cryptographic viewpoint
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Abstract

Cryptographic Boolean functions must be complex to satisfy Shan-
non’s principle of confusion. But the cryptographic viewpoint on com-
plexity is not the same as in circuit complexity. The two main criteria
evaluating the cryptographic complexity of Boolean functions on F3' are
the nonlinearity (and more generally the r-th order nonlinearity, for every
positive r < n) and the algebraic degree. Two other criteria have also
been considered: the algebraic thickness and the non-normality. After
recalling the definitions of these criteria and why, asymptotically, almost
all Boolean functions are deeply non-normal and have high algebraic de-
grees, high (r-th order) nonlinearities and high algebraic thicknesses, we
study the relationship between the r-th order nonlinearity and a recent
cryptographic criterion called the algebraic immunity. This relationship
strengthens the reasons why the algebraic immunity can be considered as
a further cryptographic complexity criterion.

Index Terms - Boolean function, nonlinearity, Reed-Muller code.

1 Introduction

Let n be any positive integer. We denote by B,, the set of all n-variable Boolean
functions (from the vector space F3' of binary vectors of length n to Fy). We
denote by @ the additions in Fj, in FJ' and in B,. The representation of
Boolean functions which is mostly used in cryptography is the algebraic normal
form (ANF):

flay, - xy) = @ Ay <Hx1“> = @ a, x".

u€Fp uEFy

The (global) degree of the ANF (which exists and is unique, for every Boolean
function) is called the algebraic degree of the function. It is affine invariant: the
degree of any function f equals that of any affinely equivalent function fo A (A
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element of the general affine group, the set of all affine automorphisms of F}).
The Boolean functions whose algebraic degrees do not exceed 1 are the affine
functions.

The Hamming weight of a Boolean function f is the size of its support
{z € F}; f(x) =1} and the Hamming distance between two functions f and g
is the Hamming weight of the Boolean function f @ g. The nonlinearity N'L(f)
of a Boolean function f is its minimum Hamming distance to affine functions.
It is a natural complexity criterion: complex functions are supposed to be very
different from the simplest (i.e. affine) Boolean functions, and the Hamming
distance is a natural measure to evaluate this difference. Several years after
the introduction of this notion by Rothaus [37] (the name came later), it has
been confirmed as the main criterion quantifying the resistance of ciphers using
the function to several kinds of attacks (linear and correlation attacks). The
nonlinearity is affine invariant and can be expressed by means of the Walsh
transform of f (i.e. the discrete Fourier - or Hadamard - transform of the

function (—1)f):
fw = 3 (1o
zeF}

where u - denotes the usual inner product u-x = w121 D - - - B u,x,. We have:

HOIR (1)

ueky

any Boolean function f on n variables satisfies the so-called covering radius
bound NL(f) < 2"~ —2%/2=1_ This upper bound can be achieved for even
values of n. The functions for which equality holds are called bent functions.
These functions are used in coding theory for designing optimal error correcting
codes (e.g. the Kerdock code), in combinatorics (their supports are difference
sets and they can then be used in designs), and in telecommunications for gen-
erating sequences for CDMA. But in cryptography, they have the drawback of
being unbalanced (they do not output as many 0’s and 1’s).

Nonlinearity is the most important criterion among those cryptographic cri-
teria on Boolean functions (used in conventional cryptosystems) which are re-
lated to Shannon’s principle of confusion. This principle [40] has been intro-
duced in 1949. Since then, its relevance to modern cryptography has always
been verified. It is related to the complexity of the Boolean functions involved
in the cryptosystems (stream ciphers, block ciphers).

Nonlinearity is related to attacks on stream ciphers (cf. [6, 18]) and block ci-
phers as well (cf. the linear attack by Matsui [28]). Two other criteria play
also important roles: the algebraic degree and the number of monomials in the
ANF (i.e. the number of nonzero a,’s). The complexity of the “higher order



differential attack” on block ciphers due to Knudsen and Lai [22, 23] depends
on the algebraic degrees of the Boolean functions involved in the system. The
linear complexity of a sequence generated by several Linear Feedback Shift Reg-
isters (LFSR) combined by a nonlinear function, or of a single one, filtered by
a nonlinear function, depends on the degree of the function and on the number
of monomials in its ANF (these parameters condition therefore the resistance
to Berlekamp-Massey algorithm, cf. [27, 38], see also [30], page 208).

But these two criteria do not fit perfectly with the cryptographic reality.
Indeed, in the case of the first one, changing a few bits in the output to a
function of low degree does not change much its robustness, and it can move
the degree up to n (or to n — 1 if the original function was balanced and if we
want to keep balancedness, since we need then to change at least two output
bits). The proper criterion is the nonlinearity profile: let N'L,.(f) denote the
distance between f and the set of all functions of degrees at most r (the so-called
Reed-Muller code), we call N'L,.(f) the r-th order nonlinearity of f, and the
nonlinearity profile is the sequence of NL,.(f) forr =1,...,n—1. Forr > 1, it
must be large but not necessarily almost optimum'. The optimum, that is, the
maximum possible value of N'L,.(f) is unkown for r > 1 and n > 8 (and also
for r =1 and n > 9 odd); the best known asymptotic upper bound has been
given in [12]: maxy N L,.(f) <27~ ! — @ (L+V2)72. 272 £ O(n2).

The number of monomials in the ANF of the function is not a proper crite-
rion either: as pointed out by W. Meier and O. Staffelbach in [29], the general
complexity criteria which are mostly interesting in cryptographic framework are
affine invariant because the attacks on cryptosystems using Boolean functions
(e.g. filtered Linear Feedback Shift Registers, block ciphers) often work with
the same complexity when the functions are replaced by affinely equivalent ones.
The number of monomials in the ANF is not affine invariant. An extreme ex-
ample (given by Meier and Staffelbach) of a function with many monomials
in its ANF and whose behavior is similar to a function with few monomials is
the function whose ANF contains all monomials: it equals [[_, (z; @ 1) and is
affinely equivalent to the single monomial [}, ;.

Definition 1 The algebraic thickness 7 (f) of a Boolean function f is the mini-
mum number of monomials with nonzero coefficients in the ANF of the functions
f oA, where A ranges over the general affine group.

n

Equivalently, for every Boolean function f(z) = @, Fp Ou (IT;—; z:"*), the pa-
rameter 7 (f) is the minimum number of monomials in the ANF of the functions
@%F; ay (IT;(li(x))") where the [;’s are affine functions whose linear parts
are linearly independent.

For instance, the indicator 1g of any k-dimensional flat E (defined by 1g(z) =1
if x € E; 0 otherwise) being affinely equivalent to H:.":_lk x;, we have 7 (1g) = 1.
This is true in particular for & > n—1, that is, for every nonzero affine function.
Every non-affine quadratic function (i.e. any function of degree 2) being affinely

1For 7 = 1, a good approximation of the function by an affine function leads to very efficient
attacks. So the nonlinearity must be very high.



equivalent to z1xo B - - O Top_1Tak B Top+1 (where 2k + 1 < n) if the function
is balanced and to x122 @ - -+ ® Xop_1Tak O t0 X1X2 B+ - D Tog_1Z2r 1 (Where
2k < n) otherwise (cf. [26]), we have T (f) < |n/2]| + 1, where | | denotes the
integer part.

A fourth criterion can be considered. It already plays a role in the research on
general (non-cryptographic) complexity of Boolean functions. It also generalizes
a notion introduced by H. Dobbertin in [19].

Definition 2 Let k < n. A Boolean function f on F3' is called k-normal (resp.
weakly-k-normal) if there exists a k-dimensional flat on which f is constant

(resp. affine).

Clearly, k-normality implies weak-k-normality and weak-k-normality implies
(k — 1)-normality. The complexity criterion we are interested in is non-k-
normality with small k (smaller is &, harder is the criterion).

Non-normality is a natural complexity criterion to consider in cryptography:
since any affine function is constant on an affine hyperplane, it is natural to
expect from a complex function to be non-constant on any flat of some low
dimension.

This complexity criterion is not yet related to explicit attacks on ciphers. But
the situation of the degree and of the nonlinearity, when they were first consid-
ered, was similar (for instance, the linear attack has been discovered by Matsui
[28] sixteen years after Rothaus [37] introduced the idea, but not the term, of
nonlinearity). Moreover, there is a relation (cf. Proposition 1) between (non)-
normality and nonlinearity which shows that to have a chance to be highly
nonlinear, a function must be non-(weakly)-normal at a reasonably deep level.

The normality has a nice relationship with the nonlinearity:

Proposition 1 Let f be a weakly-k-normal Boolean function on F3'. Then
Nﬁ(f) < 2n—1 _ 21<',—17 (2)

or equivalently
k <logy[2" "t — NL(f)] + 1.

We refer to [8] for a survey of the different proofs of this result.

2 Random functions are almost surely highly
complex

Recall that, asymptotically, almost all Boolean functions have high circuit com-
plexities (more precisely, the density of the set of n-variable Boolean functions
with high complexity tends to 1 when n tends to infinity). Lupanov [25] calls
this the Shannon effect (Shannon [41] observed it in 1949).

It is a simple matter to check the Shannon effect also for the algebraic degree:



almost all Boolean functions have degrees at least n — 1 since the number of n-
) _ 22"7n71

n

variable Boolean functions of degrees at most n — 2 equals 931 (
and is negligible with respect to the number 22" of all n-variable Boolean func-
tions.

In [32], D. Olejér and M. Stanck showed the same Shannon effect on the non-
linearity: almost all Boolean functions on F3' have nonlinearities greater than
2" —¢1\/n 2%, where ¢; = \/In2(1 + €0)/2 (where €5 > 0 is arbitrary).

Let us generalize their result to the nonlinearity profile. We shall need the
following well-known lemma (see [1, 26]):

Lemma 1 Let N be any positive integer and 0 < A < 1/2. Then
NH>(N)
=< 2 (%)
8NA(1—X) o<ican V4
< 9NH2(N) 2N672N(1/27)\)2

where Ho(x) = —xlogy(z) — (1 — ) logy (1 — x) is the binary entropy function.

Theorem 1 Let ¢ be any strictly positive real number. For every r, the density
of the set of functions such that

s greater than

1_— 2(1—c2 logye) 20—, (1)
and, if ¢?log, e > 1, it tends to 1 when n tends to co.
Proof. The number of functions of degrees at most r equals 9310 (1), For every

such function h, the number of Boolean functions f whose Hamming distance
to h is upper bounded by some number D equals

Hence, the number of Boolean functions f such that

equals




This number is upper bounded by 92" =e* X, (%) log2¢ " according to Lemma
1. Thus, the number of those Boolean functions which have r-th order non-

linearity smaller than or equal to 2"~ ' — ¢y />0 (") 2”2 is smaller than

i

9(1—c®logy €) 37, (7)+2" -

Note that />_7_ (}) can be replaced by /(") in Theorem 1, since >;_, (%)

is equivalent to (7:)
The Shannon effect works also for the two other criteria:

Theorem 2 ([7]) Let ¢ be any strictly positive real number. The density in B,

2, 2

of the subset {f € B, | T(f) > 2" '—cn 2"%" } is greater than 1—27" +7 ¢=’n
and, if c?logy e > 1, then this density tends to 1 when n tends to infinity. For
every n > 3, a Boolean function f such that T(f) >2""1 —n 277 emists.

Theorem 2 implies that, for every A < 1/2, there exists IV such that, for every
n > N, a Boolean function f such that 7(f) > X 2" exists. But, unless X is
small, N is greater than 3. We can take N =9 for A = % and N =12 for A = %.

Open problem:
We do not know if there exist functions f such that 7(f) > 27~ 1. o

We know (cf. [33]) that, for n odd > 15, there exist Boolean functions with
nonlinearities strictly greater than 27! — 2"5 . According to Proposition 1,
these functions cannot be weakly—"%‘l—normal (and a fortiori they cannot be
”;1-normal). S. Blackburn and H. Dobbertin, using a counting argument, have

also observed (see [19]) that for every even n > 12, there exist non-F-normal
Boolean functions on F3'. In fact, a stronger Shannon effect exists for the non-

normality criterion:

Theorem 3 ([7]) Let k,, be a sequence of integers (greater than 2) such that
% tends to infinity. The density in B, of the set of all Boolean functions on

3 which are not weakly-ky,-normal is greater than 1 — on(kn+1)=2"" o0 tends
to 1 when n tends to infinity.

For every n > 12, there exist non-weakly- L%J -normal functions; for every n >
16, there exist non—weakly—(L%J - 1) -normal functions.

This result implies that, if we have @ > 1 and alogy,n < k,, for every n, then
asymptotically, almost all Boolean functions are non-weakly-k,,-normal.

n

We have also checked that for every n > 12, there exist non—LQJ—normal func-
tions with T (f) > max(22",2"~1 —n 2"2) and nonlinearity NL(f) > 2"~ —

V2
But we know that for n < 7, all Boolean functions are | % |-normal (cf. [20]). In
fact, k-normality for k =~ n/2, which is unusual for large n, is common for low




n.
As usual, the proof of existence of non-normal functions does not give exam-
ples of such functions. Alon, Goldreich, Hastad and Peralta give in [2] several
constructions of functions that are nonconstant on flats of dimension n/2. This
is not explicitly mentioned in the paper. What they actually show is that the
functions (they say, the sets) are not constant on flats defined by equations
Ti, = a1,...,Ti,,, = aps2. To prove that, they use however the fact that the sets
have small bias with respect to linear tests. As this property is invariant w.r.t.
affine transformations, it implies the result.

There are also explicit constructions that work for dimensions (1/2 — €) n, for
some small € > 0 very recently found by Jean Bourgain [4].

Functions that are nonconstant on flats of dimensions n° for every § > 0 are
also given in [3]. These constructions are very good asymptotically (but may
not be usable to obtain functions in explicit numbers of variables).

As far as we know, no construction is known below n?.

Remark:

Theorem 3 remains essentially valid (except for the number “12”) if, in the def-
inition of weakly-k-normal functions, we replace “there exists a k-dimensional
flat on which the function is affine” by “there exists a k-dimensional flat such
that the restriction of the function to this flat has degree < [”, where [ is some
fixed positive integer. o

So, almost all Boolean functions are deeply non-normal. On the contrary,
quadratic functions are §-normal if n is even and Weakly—”%“l—normal if n is odd,
according to the properties of these functions recalled in the introduction. What
about functions of degree 3?7 Do they behave similarly to quadratic functions
or do they behave more as general functions, with respect to normality (and to
nonlinearity when n is odd)? For nonlinearity, this is an open problem. But for
normality, we know the existence of non-k,,-normal Boolean functions of degree
3, where k,, is negligible with respect to n.

Proposition 2 ([7]) Let l,, be any sequence of positive integers such that %

tends to infinity. The density of the set of all Boolean functions of degrees at

most 3 on F3 which are not weakly-l,-normal in the set of all Boolean functions
n)_(in

of degrees at most 3 is greater than or equal to 1 — o+ 1) == (3)= (') and it

tends to 1 when n tends to infinity. For every n > 15, there exist non-weakly-

(%w -normal functions of degree 3.

Same remark as above can be done for Proposition 2, with [ = 2. And this
proposition can also be generalized to higher fixed degrees.

All the results above are essentially valid if we restrict ourselves to balanced
functions. Indeed, the number of balanced functions on Fj' equals (23,1) =
(22" ~"/2), according to Stirling’s formula, and all the arguments used in the

proofs still work.



3 A recent criterion: the algebraic immunity

The recent algebraic attacks [14] have led to further characteristics that a cryp-
tographic Boolean function must have. These attacks cleverly use over-defined
systems of multivariate nonlinear equations to recover the secret key (or to re-
cover the initialization of the cipher, which is sufficient for breaking it, since all
the rest is supposed to be public). The idea of using such systems comes from
C. Shannon, but the improvement in the efficiency of the method is recent. The
core of the analysis in the standard algebraic attack is to find out low degree
functions g # 0 and h such that fg = h (where fg is the product of f and g, i.e.
has support the intersection of their supports). It has been shown in [31] that
this is equivalent to the existence of a low degree nonzero annihilator of f or of
1@ f, that is, of a function g such that fg =0 or (1® f)g = 0. The algebraic
immunity of a Boolean function f, quantifying the resistance to the standard al-
gebraic attack of the pseudo-random generators using it as a nonlinear function
is then defined as follows.

Definition 3 Let f be any n-variable Boolean function. Its algebraic immunity
AI(f) equals the minimum algebraic degree of all the nonzero annihilators of f
and of all the nonzero annihilators of f @& 1.

Clearly, since f is an annihilator of f @ 1 (and f @ 1 is an annihilator of f), the
algebraic immunity is upper bounded by the degree.

As shown in [14], we always have AI(f) < [g] This bound is tight. Also,
we know that almost all Boolean functions have algebraic immunities close to

this optimum; more precisely, for all a < 1, AI(f) is almost surely greater than

2 — /% 1In(7%5): see [17]. Hence, in the case of this criterion too, almost all
2 2 aln?2

Boolean functions are highly complex.

In [15] is given an lower bound on the (first order) nonlinearity of functions
with given algebraic immunity. Let us recall how this bound can be proven
and what it is: we clearly have Z?:Iéf)fl (M) < wt(f) < Z?;OAI(f) (), since
otherwise, the linear system expressing that a function g of degree at most
AI(f)—11is an annihilator of f (resp. of f@1) would have non-trivial solutions
(indeed, its number of equations would be strictly smaller than its number
of unknowns); it is a simple matter to show that, for every affine function
h, the algebraic immunity of f @ h is at least AI(f) — 1; this implies that
NL(f) = H02 ().

As observed in [10], this bound can easily be generalized to the higher order
nonlinearity: it is a simple matter to show that, for every function h of degree

at most r, the algebraic immunity of f @ h is at least AI(f) — r; this implies
that N'L,(f) > S ()).

?

In [24], M. Lobanov has improved upon the lower bound obtained in [15]. He

obtained that:
AI(f)—2

IV GERDY (”2_1)

=0



We extend this lower bound into a bound on the general r-th order nonlinearity.
We obtain a bound which is asymtotically slightly better than the lower bound
obtained in [10], and which improves upon it in a majority of cases, for the
numbers of variables used in cryptographic practice. The way of proving this
more difficult result may also present some interest.

3.1 A preliminary result on the dimension of the vector
space of prescribed degree annihilators of a function

In the next lemma, we extend to all Boolean functions a result from [24] which
dealt only with affine functions.

Lemma 2 Letn, r and k be positive integers. Let h be any n-variable Boolean
function of algebraic degree r. The dimension of the set Any(h) of those anni-
hilators of degrees at most k of h is at most Zf:o (M) - Zf:o "N-

Proof:

Since h has degree  and since the dimension of Any(h) is invariant under affine
equivalence, we can assume without loss of generality that h(z) = z12- -2, ®
k(x), where k has degree at most r and where the term zjxs-- -z, has null

coefficient in its ANF. For any choice of n — r bits wy41,..., Uy, the restric-
tion Ay, ... .u, of h obtained by fixing the variables x,,1,...,%, to the values
Upt1, .-, Up (respectively) has degree 7, and has therefore odd weight (i.e. has
a support of odd size), since r is the number of its variables. Hence Pty
has weight at least 1. For every (¢y41,...,un) € F3 ™", let us then denote by
Tupyiy,.ou, @ vector x such that (2,41,...,2n) = (Upg1,...,u,) and h(z) = 1.
Let g be an element of Ang(h), and let g(z) = Z a,z* be its ANF (where
weor <k

z* = T[], z}" and where wt denotes the Hamming weight).

Since we have h(z) = 1 = g(z) = 0 and since g(z) = >, <, Gu, Where u < z
means that every coordinate of u is upper bounded by the corresponding co-
ordinate of x, the coefficients a, are the solutions of the system S of linear

equations » a, = 0. If, in each equation, we transfer all unknowns
Lo un

ay, such that (uq,...,u,-) # (0,...,0) to the right hand side, we obtain a system
S’ in the unknowns a, such that (uy,...,u,) = (0,...,0). Replacing the right
hand sides of the resulting equations by 0 (i.e. considering the corresponding
homogeneous system S))) gives the system that we obtain when we characterize
the (n —r)-variable annihilators of degrees at most k of the constant function 1,
considered as a function in the variables x,41,...,x,. Since the constant func-
tion 1 admits only the null function as annihilator, this means that the matrix
of S} has full rank Zf:o ("77). Hence, S has rank at least Zf:o ("77). The

dimension of Any,(h) is therefore upper bounded by Y% (M - SF (") O

(2

URTy,

Remark: If h has weight 2” — 2" then the dimension of Any(h) equals
Zi:or ("77). Indeed, h @ 1 is then the indicator of an (n — r)-dimensional

?



flat (see e.g. [26]), and we may without loss of generality assume that h(z) =
2129 2, @ 1. Then the elements of Any(h) are the products of h(z) ®1 =
x1x2 -+ -z, with functions in the variables z,1,...,2, whose degrees are at
most k — r. The dimension of Anj(h) equals then 7" (";"). Note that, in
the case r = 1, this is the value of the upper bound given by Lemma 2, that is,

the value obtained by Lobanov.

3.2 Relationship between the algebraic immunity and the
nonlinearity profile

Theorem 4 Let f be a Boolean function in n variables and let r be a positive
integer. The nonlinearity of order v of f satisfies:

AI(f)—r—1

venze (")

=0

Proof:

Let h be any function of degree at most r and let d be the Hamming distance be-
tween f and h. Since the Hamming weights of the functions f(h®1) and (f®1)h
satisfy wt(f(h@1))+wt((f®1)h) = d, we have min(wt(f(h®1)), wt((f®1)h)) <
d/2. T min(wt(f(h®1)), wt((f®1)h)) = wt(f(h®1)), let fi = fand hy = hB1.
Otherwise, let f1 = f @1 and hy = h. We have then wt(f1hy) < d/2.

Let k& be any positive integer. A Boolean function of degree at most k& be-
longs to Ang(f1h1) if and only if the coefficients in its ANF satisfy a system of

wt(f1h1) equations in Zf:o (") variables. Hence we have: dim(Any(fih1)) >
Yo (7) —d/2.
We have dim(Ang(h1)) < maxj_, (Zf:o ") _Zf:o (n;y)> — Zf:o ") -

Zf:o ("7'), according to Lemma 2.
If dim(Ang(fih1)) > dim(Ang(h1)), then there exists an annihilator g of fi1hy
which is not an annihilator of ;. Then, gh; is a nonzero annihilator of f; and
has degree at most k +r. Thus, if k = AI(f) —r — 1, we arrive to a contradic-

tion. We deduce that dim(AnAI(f),r,l(flhl)) < dim(AnAI(f),T,l(hl)). This
implies: Z’-“éf)*r*l (M —d/2< ngéﬂfril (M- Zf‘:[éf)iril ("77), that is:

1= ?

AI(f)—r—1 n—r
d>?2 Z < ‘ >
1
1=0

Hence the nonlinearity of order r of f is lower bounded by this same expression.[]

Remarks:
1. The bound of Theorem 4 is better than the bound of [10] for every n < 12
and for every value of AI(f) and r. We give in Table 1, for each value of
13 < n < 30, the few values of AI(f) and of r for which the bound of Theorem
4 is worse than the bound of [10].

10



2. Lobanov’s bound does not guarantee that having a high algebraic immunity
implies a high resistance to the correlation attacks. Indeed, such resistance needs
a high (first order) nonlinearity and even for AI(f) = (n + 1)/2, which is the
highest possible algebraic immunity of an n-variable function, a nonlinearity of
2 Zgggl)/%z (" =2t - ((nT:)l/z) o 2n L \/% (the minimum ensured by
Lobanov’s bound) is not quite satisfactory. But the bound of [10] and Theorem
4, with r > 2, show that having a high algebraic immunity is a strong property,
not only with respect to the resistance to algebraic attacks, but also with respect
to the resistance to higher order attacks. Indeed, the complexity of such attacks
increases fastly with the order.

3. If r > AI(f), then the bound of Theorem 4 and the bound of [10] give no
information; we have then no lower bound on N'L,.(f). But if f is balanced, we
have an upper bound: as shown in [9], we have indeed N'L,.(f) <271 — 2=,
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n | AI(f) T
13 7 34
14 7 3
15 8 2-5
16 8 3-5
17 8 34
17 9 2-6
18 8 34
18 9 2-6
19 8 34
19 9 2-6
19 10 2-7
20 9 3-5
20 10 2-7
21 9 3-5
21 10 2-7
21 11 2-8
22 9 3-5
22 10 2-7
22 11 2-8
23 9 3-5
23 10 37
23 11 2-8
23 12 2-9
24 9 4-5
24 10 36
24 11 2-8
24 12 2-9
25 9 4
25 10 36
25 11 2-8
25 12 2-9
25 13 2-10
26 10 36
26 11 3-8
26 12 2-9
26 13 2-10
27 10 36
27 11 37
27 12 2-9
27 13 2-10
27 14 2-11

Table 1: THE FEW CASES WHERE THE BOUND OF [10] IS BETTER THAN THE
BOUND OF THEOREM 4, FOR n < 27
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