
The optimal sequence compression
(Preliminary unfinished version)

A.E. Andreev

LSI Logic Corporation, AE-187

1551 McCarthy Blvd.

CA 95305 Milpitas, USA

andreev@lsil.com

12-25-2005

Abstract

This paper presents the optimal compression for sequences with unde-
fined values.

Let we have (N −m) undefined and m defined positions in the boolean

sequence
−→

V of length N . The sequence code length can’t be less then m

in general case, otherwise at least two sequences will have the same code.
We present the coding algorithm which generates codes of almost m

length, i.e. almost equal to the lower bound.
The paper presents the decoding circuit too. The circuit has low com-

plexity which depends from the inverse density of defined values D(
−→

V ) =
N

m
.
The decoding circuit includes RAM and random logic. It performs

sequential decoding. The total RAM size is proportional to the

log
“

D(
−→

V )
”

,

the number of random logic cells is proportional to

log log
“

D(
−→

V )
”

∗

“

log log log
“

D(
−→

V )
””

2

.

So the decoding circuit will be small enough even for the very low density
sequences. The decoder complexity doesn’t depend of the sequence length
at all.

1 Introduction

The problem consideration follows to the well known technical problem – com-
pression of test vectors for large digital designs. The undefined points of se-
quence are called ”don’t care” values in this terminology.

1
Dagstuhl Seminar Proceedings 06111
Complexity of Boolean Functions
http://drops.dagstuhl.de/opus/volltexte/2006/602



The random test vectors cover usually the main portion of the circuit failures.
The not big random vectors amount usually cover more then 95% of failures.
We need usually much more additional vectors to cover the remaining several
percents of the failures, which not covered by random vectors.

The new random vectors don’t increase coverage after some point (usually
95-97%). So we have to create individual vectors for individual failures or for
small groups of failures from the remaining.

These vectors save their test properties when we are changing some of the
vector positions. Such positions are called ”don’t care”. We can put any value
(0 or 1) instead of ”don’t care” on each of those potions.

There are many papers which deal with the subject of coding and decoding
test vectors with ”don’t care” values. The results observation can be found for
example in [21].

There are at least several groups of methods:

• Periodically-loaded schemes with a fixed number of free variables per test
cube: [1] , [2], [3].

• Periodically-loaded schemes with a variable number of free-variables per
test cube: [4] ,[5], [6] , [7] , [8].

• Continuous-flow schemes with a fixed number of free variables per test
cube: [18],[9], [11], [12], [13], [14], [15], [16].

• Continuous-flow schemes with a variable number of free variables per test
cube: [20], [17] , [18] , [19]

All of them some how use LFSR seeding for encoding and decoding. The second
common characteristic: it is unknown how close those methods to the optimal
solution.

It is easy that code length of general sequence with m ”care” positions have
to be at least m, because the number of such sequences more then 2m. So this
is natural lower bound for the code length.

We introduce new coding and decoding architecture for sequences with don’t
care values. The code length in our case is close to m, i.e. we produce almost
optimal codes for those sequences.

More then 15 years ago the development of small mathematical theory has
been completed: the asymptotical complexity of partial boolean functions –
[22], [23], [24], [25], [26], [27], [28] . The author of this paper has proved the last
result in this theory.

The partial boolean function is function of boolean arguments with boolean
values defined on some subset of boolean cube. Any sequence with don’t care
values can be represented as partial boolean function. This is the function
defined on binary representations of indexes correspondent to ”care” values.
The function value on some index is the correspondent sequence member.

The circuit compute partial boolean function if produces the same values on
the function definition area. It can produce any value on the rest of boolean
cube.

2



The main result of mentioned theory: the natural code length of the circuit
for computing partial boolean function defined on m points is close to m. Our
idea roughly is to use circuit code of correspondent partial function for encoding
sequences with ”don’t care” values.

2 Formalization and main result

Let
−→
V is the vector from {0, 1, ∗}N , where Sn is the set of all n-dimensional

vectors with the components from the set S. Let M(
−→
V ) be the set of all indexes

correspond to the ”care ” values and µ(
−→
V ) is the number of such values. We

consider indexes as vectors from {0, 1}n, where n = ⌈log(N)⌉, the log(x) is
log2(x) by default.

Let F−→
V

(x1, x2, ..., xn) be the partial boolean function computes the value
−→
V [i] from vector representation of index i. It has ”don’t care” value if i >= N .

By µ(F ) we denote the number of values from {0, 1}, i.e. µ(
−→
V ) = µ(F−→

V
).

The code length for vector
−→
V is tightly connected with the complexity of

the function F−→
V

. The standard code of the computing F−→
V

minimal circuit can

be used as compression of the vector
−→
V . This is the main idea of this paper.

The only reasons we don’t do exactly this is the complexity of finding minimal
circuit and complexity of decoding device.

Our approach is to create code which close to the minimal circuit code in
average, but has simple algorithms for encoding and decoding.

*

*

1

*

*

0

*

*

1

*

*

*

*

*

0

*

1

*

*

1

*

*

*

*

1

*

*

0

*

0

1

0

1

0

1

1

1

0

0

0

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

0

1

1

0

1

1

0

0

0

0

1

0

1

0

1

0

⇒ ⇒

Figure 1: Coding and Decoding

The general coding and decoding diagram is captured on the Figure 1. The
coding (compression) algorithm is working in software realization. Its result
is the tester program. The run time of this software isn’t critical because the
compression have to be done just once. By the way our compression algorithm
is simple so this run time is small versus the test vectors creation run time.

3



The code (tester program) is the binary vector
−→
C . It sectioned on words of

(k +2) width for some positive integer k. The word length is represented at the
program start by the code

0 0 ...0
︸ ︷︷ ︸

k

1 1 .

The each word w[i] of the program rest sectioned on the 2-bit command com[i]
and k-bit data data[i]. The 3 types of command are defined:

• 00 – pause, the data is the transmission pause duration in this case

• 01 – transmission, the data have to be sequentially transmitted in this
case

• 11 – stop, the tester have stop program execution at that point

We suppose that interface between tester and decoder includes 2 signals

• code – sequential vector code

• cen – (code enable) the decoder accept the code only if cen == 1

The tester sends code to the decoder in mentioned above bursts with pauses,
because the output vector of decoder has more bits versus the compressed code.
We don’t consider here the standard clock and reset signals and leave the reset
sequence outside of our scope.

Let the informative part of tester program is the sequence of (k + 2)-length
words

(com[i] , data[i]) , i = 1, 2, ..., s ,

then the transmission sequence code[j], cen[j] and transmission duration t can
be computed by the simple program on Figure 2

The Figure 3 captures the global decoder architecture and interface between
tester and decoder.

The decoder output includes 2 signal

• vect – sequential vector

• ven – (vector enable) the decoder output is void if V EN == 0.

The decoder output is almost continuous. I.e. there is some initialization period
when ven == 0 but after some point ven became 1 and decoder continuously
transmits test vector to the design. The ven signal goes low when transmission
has finished.

Let
−→
C is the tester program. Let ts and te are the first and last cycles

t respectively when ven[t] = 1. We denote by D(
−→
C ) the decoder D output

vector, i.e.

D(
−→
C ) = (vect[ts],vect[ts + 1], ...,vect[te]) .

Let

X∗ =

∞⋃

N = 1

XN .

4



void tester(int k, int* com, int* data, int s,

int* code, int* cen, int& t)

{

int i, j; t = 0;

for(i = 0; i < s; i++){

switch(com[i]){

case 0: for(j=0; j<data[i]; j++){

code[t]=0; cen[t]=0; t++;

} break;

case 1: for(j=0; j<k; j++){

code[t]=(data[i]>>j)%2; cen[t]=1; t++;

} break;

case 3: return; break;

}

}

}

Figure 2: The tester program

The compression system S is the pair S =
(

F
S,DS

)

where

• F
S is the compression function F

S : {0, 1, ∗}∗ −→ {0, 1}∗

• D
S is decoding circuit

such that for any positive integer N and for any
−→
V ∈ {0, 1, ∗}N the vector

−→
W = D

S(FS(
−→
V )) is belong to the set {0, 1}N and

−→
V [i] ∈ {0, 1} =⇒

−→
W [i] =

−→
V [i] , i = 0, 1, ..., N − 1 .

The F
S(
−→
V ) is the code of vector

−→
V .

Let Lcode(S, N, m) is the maximal code length for vectors from {0, 1, ∗}N

with m components from {0, 1} and (N − m) components equal to ∗ (”don’t
care”).

We define for the circuit D the following measures

• Lm(D) is the total number of memory bits

• lm(D) is the number of memories

• Lc(D) is the number of cells

This paper introduces the parametrical family of decoders and corespondent
compression algorithms.

5



CIRCUITCEN

CODE

VEN

VECT

MEMORY

M1

MEMORY

M2

o o o
MEMORY

MK

Figure 3: The decoder architecture

Theorem 2.1. There exists the sequence of compression systems Sα ,α ≥ α0,

such that

Lcode(Sα, N, m) ≤ m + O (2−α ∗ N) + O (α)

Lc

(

D
Sα

)

≤ O
(
(log α)(log log α)2

)

lm

(

D
Sα

)

≤ O (log log α)

Lm

(

D
Sα

)

≤ O (α)

3 Partial Boolean Functions Decomposition

3.1 History

Let L(
−→
V ) is the minimal possible complexity of computing F−→

V
circuit. We con-

sider circuits from all gates with two or one input. We suppose that complexity
of circuit is circuit size. Let introduce the Shannon function

L(N, m) = max
−→
V ∈{0,1,∗}N : µ(

−→
V )≤m

L(
−→
V ) .

C.Shannon (1949) [22] has put the complexity problem and has obtained the
first results in this direction. He has proved:

L(N, N) = Θ

(
N

log N

)

.

O.Lupanov (1956) [23] has obtained the asymptotic behavior of Shannon
function:

L(N, N) ∼
N

log N
.

6



E.Nechiporuk (1965) [24] has obtained first results about worst case com-
plexity for partial boolean function:

L(N, m) ∼
m

log m
.

He has prove this asymptotic in the case where m = N1−o(1). L.Sholomov
(1969) [25] has proved this asymptotic behavior for more general case.

N.Pipenger (1977) [26] has considered the classes of partial functions with
fixed part of units. He has put Shannon function L(N, m, α) – worst case
complexity of partial functions with size of domain m and with α-part of units.

He has proved asymptotic behavior of this function

L(N, m, α) ∼ (−α log α − (1 − α) log(1 − α))
m

log m

in the case where m = Ω (N) , min(α, 1 − α) = Ω(1).
A.Andreev (1989) [28] has proved the best result for function L(N, m). He

has proved

L(N, m) ∼
m

log m
+ O(log N)

(no restrictions for domain size). We will use A.Andreev basic technic from this
paper and [27] too.

3.2 Decomposition Architecture

H2 H1 H0 G0

G1

G2

OR

Figure 4: The partial function canonical representation.

7



Let F (−→x ), −→x = (x1, x2, ..., xn), is partial boolean function. Let n ≥ n2 ≥
n1 ≥ n0 and

−→
x2 = (x1

2, x
2
2, ..., x

n2

2 ) ,

−→
x1 = (x1

1, x
2
1, ..., x

n1

1 ) ,

−→
x0 = (x1

0, x
2
0, ..., x

n0

0 ) .

Let H2, H1 and H0 are boolean operators

H2 : {0, 1}n −→ {0, 1}n2 ,

H1 : {0, 1}n2 −→ {0, 1}n1 ,

H0 : {0, 1}n1 −→ {0, 1}n0 .

The function F (−→x ) can be represented as

−→
x2 = H2(

−→
x ) ; −→

x1 = H1(
−→
x2) ; −→

x0 = H0(
−→
x1) ;

F (−→x ) = G0(
−→
x0) ∨ G1(

−→
x1) ∨ G2(

−→
x2)

To be able define G0, G1 and G2 we have to introduce intermediate functions

F2 : {0, 1}n2 −→ {0, 1, ∗} ,

F1 : {0, 1}n1 −→ {0, 1, ∗} .

Let U−1(b) is the of all a such that U(a) = b.
The function F determines function F2 based on operator H2 by

F2(b) =







0 if H2
−1(b)

⋂
F−1(0) 6= ∅

1 if H2
−1(b)

⋂
F−1(1) 6= ∅

∗ otherwise

We assume that

F (a1) = 0, F (a2) = 0 =⇒ H2(a1) 6= H2(a2).

The function F2 determines functions F1 and G2 based on operator H1 by
following way.

F1(b) =







0 if H1
−1(b)

⋂
F2

−1(0) 6= ∅
1 if H1

−1(b)
⋂

F2
−1(0) = ∅; H1

−1(b)
⋂

F2
−1(1) 6= ∅

∗ otherwise

G2(a) =

{
1 if F2(a) = 1; H2

−1(H1(a))
⋂

F2
−1(0) 6= ∅

0 otherwise

The function F1 determined functions F0 and G1 based on operator H0 by
similar way. We let G0 = F0.

8



References

[1] Knemann, B., LFSR-Coded Test Patterns for Scan Designs, Proc. of Euro-
pean Test Conf., pp. 237-242, 1991.

[2] Hellebrand, S., J. Rajski, S. Tarnick, S. Venkataraman and B. Cour-
tois, Built-In Test for Circuits with Scan Based on Reseeding of Multiple-
Polynomial Linear Feedback Shift Registers, IEEE Trans. on Computers,
Vol. 44, No. 2, pp. 223-233, Feb. 1995.

[3] Krishna, C.V., A. Jas, and N.A. Touba, ”Test Vector Encoding Using Partial
LFSR Reseeding”, Proc. of IEEE International Test Conference, pp. 885-893,
2001.

[4] Zacharia, N., J. Rajski, and J. Tyszer, Decompression of Test Data Using
Variable-Length Seed LFSRs, Proc. of VLSI Test Symposium, pp. 426-433,
1995.

[5] Zacharia, N., J. Rajski, J. Tyszer, and J. Waicukauski Two Dimensional
Test Data Decompressor for Multiple Scan Designs, Proc. of International
Test Conf., pp. 186-194, 1996.

[6] Rajski, J., J. Tyszer, and N. Zacharia, Test Data Decompression for Multiple
Scan Designs with Boundary Scan, IEEE Trans. on Comp., Vol. 47, No. 11,
pp. 1188-1200, Nov. 1998.

[7] Hellebrand, S., B. Reeb, S. Tarnick, and H.-J. Wunderlich, Pattern Genera-
tion for a Deterministic BIST Scheme, Proc. of International Conference on
Computer-Aided Design (ICCAD), pp. 88-94, 1995.

[8] Krishna, C.V., and N.A. Touba, ”Reducing Test Data Volume Using LFSR
Reseeding with Seed Compression ”, Proc. of IEEE International Test Con-
ference, pp. 321-330, 2001.

[9] Jas, A., B. Pouya, and N.A. Touba, Virtual Scan Chains: A Means for
Reducing Scan Length in Cores, Proc. of VLSI Test Symposium, pp. 73-78,
2000.

[10] Bayraktaroglu, I., and A. Ogailoglu, Test Volume and Application Time
Reduction Through Scan Chain Concealment, Proc. of Design Automation
Conference, pp. 151-155, 2001.

[11] Bayraktaroglu, I., and A. Ogailoglu, Decompression Hardware Determi-
nation for Test Volume and Time Reduction through Unified Test Pattern
Compaction and Compression, Proc. of VLSI Test Symposium, pp. 113-118,
2003.

[12] Mitra, S., and K.S. Kim, XMAX: X-tolerant architectures for Maximal
Test Compression, Proc. of International Conference on Computer Design,
pp. 326-330, 2003.

9



[13] Rajski, J., et al., Embedded Deterministic Test for Low Cost Manufacturing
Test, Proc. of Int. Test Conf., pp. 301-310, 2002.

[14] Mrugalski, G., J. Rajski, and J. Tyszer, High Speed Ring Generators and
Compactors of Test Data, Proc. of VLSI Test Symposium, pp. 57-62, 2003.

[15] Hamzaoglu, I., and J.H. Patel, Reducing Test Application Time for Full
Scan Embedded Cores, Proc. of Int. Symposium on Fault Tolerant Comput-
ing, pp. 260-267, 1999.

[16] Hsu, F.F., K. M. Butler, J. H. Patel, ”A Case Study on the Implementation
of the Illinois Scan Architecture,” Proc. of International Test Conference, pp.
538-547, 2001.

[17] Volkerink, E.H., and S. Mitra, Efficient Seed Utilization for Reseeding
Based Compression, Proc. of VLSI Test Symposium, pp. 232-237, 2003.

[18] Bayraktaroglu, I., and A. Ogailoglu, Test Volume and Application Time
Reduction Through Scan Chain Concealment, Proc. of Design Automation
Conference, pp. 151-155, 2001.

[19] Rao, W., I. Bayraktaroglu, and A. Orailoglu, Test Application Time and
Volume Compression through Seed Overlapping, Proc. of Design Automa-
tion Conference, pp. 732-737, 2003.

[20] Knemann, B., A SmartBIST Variant with Guaranteed Encoding Proc. of
Asian Test Symposium, pp. 325-330, 2001.

[21] C.V. Krishna and Nur A. Touba 3-Stage Variable Length Continuous-Flow
Scan Vector Decompression Scheme. Proceedings of the 22nd IEEE VLSI
Test Symposium (VTS 2004)

[22] Shannon, C.E. (1949), The synthesis of two-terminal swiching circuits, Bell.
Syst. Tech. J. 28, pp.59-98.

[23] Lupanov, O.B. (1956) About gating and contact-gating circuits, Dokl.
Akad. Nauk SSSR 111, pp.1171-11744. (In Russian), English translation
in Soviet Math. Docl.

[24] Nechiporuk, E.I. (1965), About the complexity of gating circuits for the
partial boolean matrix, Dokl. Akad. Nauk SSSR 163, pp.40-42. (In Russian).
English translation in Soviet Math. Docl.

[25] Sholomov, L.A. (1969) About realization of partial boolean functions by
circuits from functional elements, Problemy Kibernet. 21, pp.215-226. (in
Russian). English Translation in Systems Theory Res. v.21, 1971.

[26] Pippenger, N. (1977) Information theory and the complexity of Boolean
functions, Math. Systems Theory 10, pp.129-167.

10



[27] Andreev A.E. The universal principle of self-correction. Mat. Sbornik
127(169), N 6, p.147-172, 1985.(In Russian) English transl. in Math. USSR
Sbornik, vol.55, 1986, N 1, pp.145-169.

[28] Andreev, A.E. (1989), On the complexity of the realization of partial
Boolean functions by circuits of functional elements, Diskret. mat. 1, pp.36-
45. (In Russian). English translation in Discrete Mathematics and Applica-
tions 1, pp.251-262.

11


