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Abstract

It is well known that unconditionally secure bit commitment is impossible even in the
quantum world. In this paper a weak variant of quantum bit commitment, introduced
independently by Aharonov et al. [2] and Hardy and Kent [8] is investigated. In this
variant, the parties require some nonzero probability of detecting a cheating, i.e. if Bob,
who commits a bit b to Alice, changes his mind during the revealing phase then Alice
detects the cheating with a positive probability (we call this property binding); and if Alice
gains information about the committed bit before the revealing phase then Bob discovers
this with positive probability (sealing). In our paper we give quantum bit commitment
scheme that is simultaneously binding and sealing and we show that if a cheating gives
ε advantage to a malicious Alice then Bob can detect the cheating with a probability
Ω(ε2). If Bob cheats then Alice's probability of detecting the cheating is greater than
some �xed constant λ > 0. This improves the probabilities of cheating detections shown
by Hardy and Kent and the scheme by Aharonov et al. who presented a protocol that is
either binding or sealing, but not simultaneously both.

To construct a cheat sensitive quantum bit commitment scheme we use a protocol for a
weak quantum one-out-of-two oblivious transfer (

(
2
1

)
-OT). In this version, similarly as in

the standard de�nition, Alice has initially secret bits a0, a1 and Bob has a secret selection
bit i and if both parties are honest they solve the

(
2
1

)
-OT problem ful�lling the standard

security requirements. However, if Alice is dishonest and she gains some information
about the secret selection bit then the probability that Bob computes the correct value is
proportionally small. Moreover, if Bob is dishonest and he learns something about both
bits, then he is not able to gain full information about one of them.

1 Introduction

In bit commitment protocol Bob commits a bit b to Alice in such a way that Alice learns
nothing (in an information theoretic sense) about b during this phase and later on, in the
revealing time, Bob cannot change his mind. It is well known that unconditionally secure
bit commitment is impossible even when the parties use quantum communication protocols
([10, 11]). Thus, much e�ort has been focused on schemes using some weakened security
assumptions.

In a weak variant of quantum bit commitment, introduced independently by Aharonov et al. [2]
and Hardy and Kent [8], the protocol should guarantee that if one party cheats then the other
has good probability of detecting the mistrustful party. Speaking more precisely, we require
that if Bob changes his mind during the revealing phase then Alice detects the cheating with

1
Dagstuhl Seminar Proceedings 06111
Complexity of Boolean Functions
http://drops.dagstuhl.de/opus/volltexte/2006/622



a positive probability (we call this property binding) and if Alice learns information about the
committed bit before the revealing time then Bob discovers the leakage of information with
positive probability (sealing property).

In [8] Hardy and Kent give protocol that is simultaneously sealing and binding and prove
that if Alice (Bob) uses a strategy giving ε > 0 advantage then Bob (Alice, resp.) can detect
the cheating with a probability strictly greater then 0. The authors do not analyze, however,
the quantitative dependence of the probability on ε. In [2] Aharonov et al. present a similar
protocol to that proposed in [8] such that after depositing phase either Alice or Bob challenges
the other party and (1) when Alice asks Bob to reveal b and Bob in�uences the value with
advantage ε then she detects the cheating with probability Ω(ε2) and (2) when Bob challenges
Alice to return the depositing qubit and Alice predicts b with advantage ε then Bob detects
the cheating with probability Ω(ε2). Thus the protocol is either binding or sealing, but not
simultaneously both (the authors therefore call the protocol a quantum bit escrow). Aharonov
et al. left open whether simultaneous binding and sealing can be achieved.

In our paper we give the �rst, up to our knowledge, QBC scheme that is simultaneously
binding and sealing such that if Alice's cheating gives ε advantage then Bob can detect the
cheating with a probability which is Ω(ε2). If Bob cheats (anyhow) then Alice's probability
of detecting the cheating is greater than some �xed constant λ > 0, i.e. when Bob decides
to set the value b to 0 or to 1 and in the revealing time wants to change his mind then for
any strategy Bob uses the probability that Alice detects this attack is greater than λ. To
construct such scheme we use a protocol for a weak variant of quantum oblivious transfer.

1.1 Our Contribution

In the one-out-of-two oblivious transfer problem (
(
2
1

)
-OT, for short) Alice has initially two

secret bits a0, a1 and Bob has a secret selection bit i. The aim of a
(
2
1

)
-OT protocol is disclosing

the selected bit ai to Bob, in such a way that Bob gains no further information about the
other bit and Alice learns nothing at all. The problem has been proposed by Even et al. [7], as
a generalization of Rabin's notion for oblivious transfer [12]. Oblivious transfer is a primitive
of central importance particularly in secure two-party and multi-party computations. It is
well known ([9, 4]) that

(
2
1

)
-OT can be used as a basic component to construct protocols

solving more sophisticated tasks of secure computations such as two-party oblivious circuit
evaluation. Several secure OT protocols has been proposed in the literature [3, 5, 6] however,
even in quantum world, there exists no unconditionally secure protocol for

(
2
1

)
-OT (see e.g.

[11]).

In this paper we de�ne a weak variant of one-out-of-two oblivious transfer. Similarly as in the
standard de�nition, in a weak

(
2
1

)
-OT protocol Alice has initially secret bits a0, a1 and Bob has

a secret selection bit i and if both parties are honest1 they solve the
(
2
1

)
-OT problem ful�lling

the standard requirements. However if Alice is dishonest and she gains some information
about the secret selection bit then the probability that Bob computes the correct value is
proportionally decreased. Moreover, if Bob is dishonest he can learn about both bits, but if
he does so then he is not able to gain full information about one of them.

In the paper we present a weak
(
2
1

)
-OT protocol which, speaking informally (precise de�nitions

will be given in Section 3), ful�lls the following properties.

• If both Alice having initially bits a0, a1 and Bob having bit i are honest then Bob learns
the selected bit ai, but he gains no further information about the other bit and Alice
learns nothing.

1We say that a party is honest if it never deviate from the given protocol.
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• If Bob is honest and has a bit i and Alice learns i with advantage ε then for all
a0, a1 ∈ {0, 1} the probability that Bob computes the correct value ai, when the protocol
completes, is at most 1− Ω(ε2).

• If Alice is honest and has bits a0, a1 then for every i ∈ {0, 1} it is true that if Bob can
predict the value a1−i with advantage ε then the probability that Bob learns correctly
ai is at most 1− Ω(ε2).

The protocol can be used e.g. by the mistrustful parties for which computing the correct result
of

(
2
1

)
-OT is much more preferential than gaining addition information. In this paper we show

an application of the protocol for parties who require some nonzero probability of detecting a
cheating. Let us consider the following bit commitment protocol, where v := OT ((a0, a1), i)
means, for short, that Alice having initially a0, a1 and Bob knowing i perform the weak

(
2
1

)
-OT

protocol and when the protocol completes Bob knows the result v.

Protocol 1 (Cheat sensitive QBC) B commits bit b;

• Depositing phase
1. A chooses randomly bits a0, a1, a2, a3; B chooses randomly bits b′ and c;
2. A and B compute

v0 := OT ((a0, a1), b′); v1 := OT ((a2, a3), b) if c = 0 or

v0 := OT ((a0, a1), b); v1 := OT ((a2, a3), b′) if c = 1.
3. B reveals c.

• Revealing phase B reveals b;
◦ Sealing test: A sends to B a2c, a2c+1; B rejects when vc 6= OT ((a2c, a2c+1), b′).
◦ Binding test: B sends to A v1−c; A rejects when v1−c 6= OT ((a2−2c), a3−2c), b).

One of the main results of this paper says that using our weak
(
2
1

)
-OT protocol, the bit

commitment protocol above has the following properties: (1) If both Alice and Bob are
honest, then before revealing time Alice gains no information about b and at the revealing
phase both Bob and Alice accept; (2) if Alice learns b with advantage ε then Bob detects
cheating with probability Ω(ε2), and (3) if Bob tries to change b during the revealing phase
then for any strategy he uses the probability that Alice detects the cheating is greater than
some positive constant.

The paper is organized as follows. In Section 2 some basic quantum preliminaries are given.
In Section 3 we de�ne formally properties of a weak

(
2
1

)
-OT protocol and prove that the given

scheme ful�lls the properties. Section 4 gives formal de�nition of binding and sealing and
proves that Protocol 1 is simultaneously binding and sealing.

2 Preliminaries

The model of two-party computation we use in this paper is essentially the same as de�ned
in [2]. We assume that the reader is already familiar with basics of quantum cryptography
(see [2] for an exemplary summary of results that will be used in the following).

Let |0〉,|1〉 be an encoding of classical bits in our computational (perpendicular) basis. Let
|0×〉 = 1√

2
(|0〉 − |1〉), |1×〉 = 1√

2
(|0〉 + |1〉) be an encoding of classical bits in diagonal basis.

By Rα, α ∈ {0, 1
2 , 1}, we denote the unitary operation of rotation by an angle of α ·π/2. More

formally:

Rα :=
(

cos(α · π
2 ) sin(α · π

2 )
− sin(α · π

2 ) cos(α · π
2 )

)
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We should note that this operation allows us to exchange between the bit encoding in per-
pendicular and in diagonal basis. Moreover, by applying R1 we can �ip the value of the bit
encoded in any of those two bases.

For a mixed quantum state ρ and a measurement O on ρ, let ρO denote the classical dis-
tribution on the possible results obtained by measuring ρ according to O, i.e. ρO is some
distribution p1, . . . , pt where pi denotes the probability that we get result i. We use L1-norm
to measure distance between two probability distributions p = (p1, . . . , pt) and q = (q1, . . . , qt)
over {1, 2, . . . , t}: |p− q|1 = 1

2

∑t
i=1 |pi − qi|.

Let ||A||t = tr(
√
A†A), where tr(A) denotes trace of matrix A. A fundamental theorem gives

us a bound on L1-norm for the probability distributions on the measurement results:

Theorem 1 (see [1]) Let ρ0, ρ1 be two density matrices on the same Hilbert space H. Then

for any generalized measurement O |ρO0 − ρO1 |1 ≤ 1
2 ||ρ0 − ρ1||t. This bound is tight and the

orthogonal measurement O that projects a state on the eigenvectors of ρ0 − ρ1 achieves it.

A well-known result states that if |φ1〉, |φ2〉 are pure states, then || |φ1〉〈φ1| − |φ2〉〈φ2| ||t =
2
√

1− |〈φ1|φ2〉|2.

Lemma 1 Suppose Bob has a bit b s.t. Pr[b = 0] = 1/2 and let Alice generate a state with

two quantum registers. Assume she sends the second register to Bob, then Bob depending

on b makes some transformation on his part and sends the result back to Alice. Denote

by ρ0 density matrix of the resulting state for b = 0 and by ρ1 density matrix of the state

for b = 1. Then for any measurement O Alice makes and a value v Alice learns we have

Prb∈R{0,1}[v = b] ≤ 1/2 + |ρO0 −ρO1 |1
2 .

The proof of this lemma follows by some straight forward calculations and will be skipped
in this extended abstract. We will use some obvious variations of this lemma to bound the
advantage of Alice resp. Bob in what will follow.

3 Weak Oblivious Transfer

In this section we give the formal de�nition of the weak
(
2
1

)
-OT protocol and then present

protocol for this problem.

De�nition 1 We say that a two-party quantum protocol between Alice and Bob is a (δ, ε)-weak(
2
1

)
-OT protocol if the following requirements hold.

• If both Alice depositing initially bits a0, a1 and Bob having bit i are honest then Bob

learns the selected bit ai but in such a way that he gains no further information about

the other bit and Alice learns nothing.

• Whenever Bob is honest and has a selection bit i, with Pr[i = 0] = 1/2, then for every

strategy used by Alice, every value i′ Alice learns about i and for any value a′ Bob learns
at the end of the computation it holds that for all a0, a1 ∈ {0, 1}

if Pri∈R{0,1}[i′ = i] ≥ 1/2 + δ then Pri∈R{0,1}[a′ = ai] ≤ 1− ε.

• Whenever Alice is honest and deposits bits a0, a1, with Pr[ai = 0] = 1/2, then for every

strategy used by Bob, all values a′0, a
′
1 Bob learns about a0, a1, resp. it holds that for all

i ∈ {0, 1} if Pra0,a1∈R{0,1}[a′1−i = a1−i] ≥ 1/2 + δ then Pra0,a1∈R{0,1}[a′i = ai] ≤ 1− ε.
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Protocol 2 (
(
2
1

)
-OT function) Input A : a0, a1 ∈ {0, 1}, B : i ∈ {0, 1}; Output B : ai.

1. A chooses randomly α ∈R {0, 1
2} and h ∈R {0, 1} and sends to B:

Rα|a1 ⊕ h〉 ⊗Rα|a0 ⊕ h〉
2. B receives |Φ1〉 ⊗ |Φ0〉, chooses randomly β ∈R {0, 1} and sends Rβ|Φi〉 back to A.
3. A receives |Φ〉, computes R−1

α |Φ〉, measures the state in computational basis obtaining the

result n and sends m = n⊕ h to B.

4. B receives m and computes ai = m⊕ β.

Here, as usually, ⊗ denotes xor. Note that this protocol computes
(
2
1

)
-OT correctly if both

parties are honest. We will now focus on the question whether Protocol 2 still retains security
if we use it against malicious parties. The following theorem follows from Lemma 2 and 3
which will be proven in the remaining part of this section:

Theorem 2 Protocol 2 is (O( 2
√
ε), ε)-weak

(
2
1

)
-OT protocol.

3.1 Malicious Alice

Lemma 2 Let Alice and Bob perform Protocol 2 and assume Bob is honest and deposits a

bit i, with Pr[i = 0] = 1/2. Then for every strategy used by Alice, every value i′ Alice learns

about i and for any value a′ Bob learns at the end of the computation it holds that for all

a0, a1 ∈ {0, 1} if Pri∈R{0,1}[a′ = ai] ≥ 1− ε then Pri∈R{0,1}[i′ = i] ≤ 1/2 + 16
√
ε.

Proof: Any cheating strategy A of Alice can be described as preparing some state |Φ〉 =∑
x∈{0,1}2 |vx, x〉, sending the two rightmost qubits to Bob and perform some measurement

{H0,H1,H2,H3} on this what she gets back after Bob's round, where H0,H1,H2, H3 are four
pairwise orthogonal subspaces being a division of whole Hilbert space that comes into play,
such that, for l, k = 0, 1, if our measurement indicates the outcome corresponding to H2k+l

then it re�ects Alice's belief that i = l and that the message m = k should be sent to Bob.

Assume now, that a0 ⊕ a1 = 0. We should note that in this case m ⊕ a0 = β. So Alice,
in order to ensure the correct result of the protocol, has to indicate the value of β. Let
|S〉 = |v00, 00〉+ |v11, 11〉, |A〉 = |v01, 01〉+ |v10, 10〉. That is, |S〉 is a part of the state that is
symmetric with respect to qubits being sent to Bob and |A〉 is the rest being anti-symmetric.

Let ρa,b be a density matrix of Alice's system after Bob's round, corresponding to i = a and
β = b. After some calculations we get:

ρ0,0 =
∑

x=(x1,x2)∈{0,1}2 |vxx1〉〈vxx1|
+|v000〉〈v101|+ |v101〉〈v000|+ |v111〉〈v010|+ |v010〉〈v111|

ρ0,1 =
∑

x=(x1,x2)∈{0,1}2 |vxx1〉〈vxx1|
−|v001〉〈v100| − |v100〉〈v001| − |v110〉〈v011| − |v011〉〈v110|

ρ1,0 =
∑

x=(x1,x2)∈{0,1}2 |vxx2〉〈vxx2|
+|v000〉〈v011|+ |v011〉〈v000|+ |v111〉〈v100|+ |v100〉〈v111|

ρ1,1 =
∑

x=(x1,x2)∈{0,1}2 |vxx2〉〈vxx2|
−|v001〉〈v010| − |v010〉〈v001| − |v110〉〈v101| − |v101〉〈v110| .

where xt means �ipping bit xt, i.e. xt = 1− xt.

We look �rst onto possibilities of Alice's dishonest behaviour. In order to cheat, Alice has to
distinguish between density matrices γl = 1

2ρl,0 + 1
2ρl,1, where γl corresponds to i = l. By

examination of the di�erence of those matrices we get after some calculations that:

γ0 − γ1 =
1
2
|VS0〉〈VA1|+ 1

2
|VA1〉〈VS0| − 1

2
|VS1〉〈VA0| − 1

2
|VA0〉〈VS1|
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where |VS〉 = |v00〉 + |v11〉 and |VA〉 = |v10〉 − |v01〉. We can easily adapt Lemma 1 to show
that the advantage δ of Alice is at most

∑3
l=0 σl where

σl = |tr(Hl(γ0 − γ1)Hl
†)| ≤

∑
j∈{0,1}

1
2 |tr(Hl(|VS(j − 1)〉〈VAj|+ |VAj〉〈VS(j − 1)|)Hl

†)|

≤
∑

j∈{0,1}(|〈Ol
j |VAj〉| · |〈VS(1− j)|Ol

j〉|)

≤
∑

j∈{0,1} |〈Ol
j |VAj〉|

and |Ol
j〉 is an orthogonal, normalized projection of |VAj〉 onto subspace Hl. The second

inequality is true because we have tr(Hl|VAj〉〈ψ|Hl
†) = 〈Ol

j |VAj〉〈ψ|Ol
j〉 for every state |ψ〉.

Let jl be the index for which |〈Ol
jl
|VAjl〉| ≥ |〈Ol

1−jl
|VA(1− jl)〉|. Clearly, σl ≤ 2|〈Ol

jl
|VAjl〉|.

Moreover, we assume that σ0 + σ1 ≥ σ2 + σ3. If this is not the case we could satisfy this
condition by altering the strategy A of Alice (by appropriate rotation of her basis) in such a
way that the de�nitions of Hk and Hk+2 would swap leaving everything else unchanged.

We look now on the probability of obtaining the correct result by Alice. The probability p0

of Alice getting outcome β = 0 in case of β = 1 is at least

p0 ≥ 1
2〈O

0
j0
|ρ0,1|O0

j0
〉+ 1

2〈O
0
j0
|ρ1,1|O0

j0
〉 =

1
2 |〈O

0
j0
|v001〉 − 〈O0

j0
|v010〉|2 + 1

2 |〈O
0
j0
|v001〉 − 〈O0

j0
|v100〉|2

+1
2 |〈O

0
j0
|v110〉 − 〈O0

j0
|v011〉|2 + 1

2 |〈O
0
j0
|v110〉 − 〈O0

j0
|v101〉|2 .

So, by inequality |a− b|2 + |a− c|2 ≥ 1
2 |b− c|2 we get that

p0 ≥ 1
4 |〈O

0
j0
|v010〉 − 〈O0

j0
|v100〉|2 + 1

4 |〈O
0
j0
|v011〉 − 〈O0

j0
|v101〉|2

= 1
4 |〈O

0
j0
|VA0〉|2 + 1

4 |〈O
0
j0
|VA1〉|2 ≥ 1

16σ
2
0.

Similar calculation of the probability p1 of getting outcome β = 1 in case of β = 0 yields that
the probability of computing wrong result is at least

Pr[β′ 6= β] = Pr[β ⊕m 6= ai] ≥
1
16

(σ2
0 + σ2

1) ≥
1

256
(

3∑
l=0

σl)2.

Hence, the lemma holds for the case a0 ⊕ a1 = 0.
Since in case of a0 ⊕ a1 = 1 the reasoning is completely analogous - we exchange only the
roles of |VS〉 and |VA〉 and Alice has to know the value of β ⊕ i in order to give the correct
answer to Bob, the proof is concluded.

To see that quadratical bound imposed by the above lemma can be met, consider |Φ〉 =√
1− ε|000〉 +

√
ε|110〉. Intuitively, we label the symmetric and anti-symmetric part of |Φ〉

with 0 and 1. Let H2 = |01〉〈01|, H3 = 0. One can easily calculate that

ρ0,0 = (1− ε)|00〉〈00|+
√
ε(1− ε)(|00〉〈11|+ |11〉〈00|) + ε|11〉〈11|

ρ1,0 = (1− ε)|00〉〈00|+ ε|10〉〈10|

and therefore ||ρ0,0 − ρ1,0||t ≥
√
ε(1− ε)− 2ε. So, by Theoren 1 there exists a measurement

{H0,H1} allowing us to distinguish between those two density matrices with
√
ε(1− ε)− 2ε

accuracy and moreover H2,H3⊥H0,H1 since tr(H2ρ0,0H
†
2) = tr(H2ρ1,0H

†
2) = 0. Now, let

M = {H0,H1,H2,H3} be Alice's measurement. To cheat, we use the following strategy A
corresponding to her input a0 = a1 = 0. Alice sends |Φ〉 to Bob, after receiving the qubit
back she applies the measurement M . If the outcome is H2 then she answers a0 ⊕ β = 1 to
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Bob and sets i′ = 0 with probability 1
2 , in the other case she sends a0 ⊕ β = 0 to Bob and

according to the outcome being 0 or 1 she sets i′ = 0 (i′ = 1).
To see that this strategy gives correct result with probability greater than 1 − ε we should
note that probability of outcome H2 in case of β = 0 is 0 and in case of β = 1 is 1 − ε.
Therefore, since β = 0 with probability 1

2 , our advantage in determining the input of Bob is
greater than 1

2

√
ε− 3

2ε.

3.2 Malicious Bob

Now, we analyze Bob's possibility of cheating.

Lemma 3 Let Alice and Bob perform Protocol 2. Assume Alice is honest and deposits bits

a0, a1, with Pr[ai = 0] = 1/2. Then for every strategy used by Bob and all values a′0, a
′
1 which

Bob learns about a0, a1, it holds that: for all i ∈ {0, 1}

if Pra0,a1∈R{0,1}[a′i = ai] ≥ 1− ε2 then Pra0,a1∈R{0,1}[a′1−i = a1−i] ≤ 1/2 + 16
√

2ε.

Proof: Consider some malicious strategy B of Bob. Wlog we may assume that the probability
of a′0 = a0 is greater than the probability of a′1 = a1. Our aim is to show that

if Pra0,a1∈R{0,1}[a′0 6= a0] ≤ ε2 then Pra0,a1∈R{0,1}[a′1 = a1] ≤ 1/2 + 16
√

2ε.

Strategy B can be think of as a two step process. First a unitary transformation U is acting on
|Φa0,a1,h〉 = |v〉⊗Rα|a1 ⊕ h〉⊗Rα|a0 ⊕ h〉, where v is an ancillary state2. Next the last qubit
of U(|Φa0,a1,h〉) is sent to Alice3, she performs step 3 on these qubit and sends the classical bit
m back to Bob. Upon receiving m, Bob executes the second part of his attack: he performs
some arbitrary measurement {H0,H1,H2,H3}, where H0 (H1) corresponds to Bob's belief
that a0 = 0, a1 = 0 (resp. a0 = 0, a1 = 1) and H2 (H3) corresponds to a0 = 1 and a1 = 0
(resp. a0 = 1 and a1 = 1). In other words, outcome corresponding to H2l+k implies a′0 = l
and a′1 = k.

The unitary transformation U can be described by a set of vectors {V l,j
k } such that U(|v〉 ⊗

|l, j〉) = |V l,j
0 〉⊗|0〉+ |V l,j

1 〉⊗|1〉. Or alternatively in diagonal basis, by a set of vectors {W l,j
k }

such that U(|v〉 ⊗ |l×, j×〉) = |W l,j
0 〉 ⊗ |0×〉+ |W l,j

1 〉 ⊗ |1×〉.
We present now, an intuitive, brief summary of the proof. Informally, we can think of U as
about some kind of disturbance of the qubit Rα|a0 ⊕ h〉 being sent back to Alice. First, we
will show that in order to cheat Bob's U has to accumulate after Step 2, till the end of the
protocol, some information about the value of a0⊕h hidden in this qubit. On the other hand,
to get the proper result i.e. the value of a0, this qubit's actual information about encoded
value has to be disturbed at the smallest possible degree. That implies for Bob a necessity
of some sort of cloning that qubit, which turns out to impose the desired bounds on possible
cheating. We show this by �rst reducing the task of cloning to one where no additional hint in
the form of Rα|a1 ⊕ h〉 is provided and then an analysis of this simpli�ed process. Therefore,
the proof indicates that the hardness of cheating the protocol is contained in the necessity
of cloning, which gives us a sort of quantitative non-cloning theorem. Although, it seems to
concern only our particular implementation of the protocol, we believe that this scenario is
useful enough to be of independent interests.

2Note that this does not restrict Bob's power. Particularly, when Bob tries to make a measurement in the

�rst step then using a standard technique we can move this measurement to the second step.
3We can assume wlog that the last qubit is sent since U is arbitrary
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We analyze �rst Bob's information gain about a1. Wlog we may assume that Bob can distin-
guish better between two values of a1 if a0 = 0. That is

Pra1∈R{0,1}[a′1 = a1|a0 = 0] ≥ Pra1∈R{0,1}[a′1 = a1|a0 = 1].

Let now ρj,k,l be a density matrix of the system before Bob's �nal measurement, corresponding
to α = j · 1

2 , h = k, a1 = l and a0 = 0. The advantage δ of Bob in this case (i.e. δ such that
Pr[a′1 = a1 | a0 = 0] = 1/2 + δ) can be estimated by Lemma 1 by Bob's ability to distinguish
between the following density matrices:

1
4(ρ0,0,0 + ρ1,0,0 + ρ0,1,0 + ρ1,1,0) (case a1 = 0), and
1
4(ρ0,0,1 + ρ1,0,1 + ρ0,1,1 + ρ1,1,1) (case a1 = 1).

Using the triangle inequality we get that for the measurement O performed by Bob

δ ≤ 1
8
(|ρO0,0,0 − ρO0,1,1|1 + |ρO1,1,0 − ρO1,0,1|1 + |ρO0,1,0 − ρO0,0,1|1 + |ρO1,0,0 − ρO1,1,1|1). (1)

Each component corresponds to di�erent values of α and h ⊕ a1. And each component is
symmetric to the other in such a way that there exists a straight-forward local transformation
for Bob (i.e. appropriate rotation of the computational basis on one or both qubits) which
transform any of above components onto another. So, we can assume wlog that the advantage
in distinguishing between ρ0,0,0 and ρ0,1,1 δ0 = |ρO0,0,0 − ρO0,1,1|1 is the maximum component

in the right-hand side of the inequality (1) and therefore we have δ ≤ 1
2δ0. Let, for short,

γ0 = ρ0,0,0 and γ1 = ρ0,1,1. One can easily calculate that

γ0 = |0〉〈0| ⊗ |V 00
0 〉〈V 00

0 |+ |1〉〈1| ⊗ |V 00
1 〉〈V 00

1 | (2)

γ1 = |0〉〈0| ⊗ |V 01
1 〉〈V 01

1 |+ |1〉〈1| ⊗ |V 01
0 〉〈V 01

0 |. (3)

As we can see to each value of m in above density matrices corresponds a pair of vectors which
are critical for Bob's cheating. I.e. the better they can be distinguishable by his measurement
the greater is his advantage. But, as we will see later, this fact introduces perturbation of the
indication of the value of a0.

First, we take a look on the measurements H0, H1 performed by Bob. Let us de�ne σ2m+p

for p,m ∈ {0, 1} as follows

σ2m+p =

 |tr(Hp|0V 0p
p 〉〈0V 0p

p |H†
p)− tr(Hp|0V 0(1−p)

1−p 〉〈0V 0(1−p)
1−p |H†

p)| if m = 0,

|tr(Hp|1V 0p
1−p〉〈1V

0p
1−p|H

†
p)− tr(Hp|1V 0(1−p)

p 〉〈1V 0(1−p)
p |H†

p)| if m = 1.

Let for m = 0, p0 ∈ {0, 1} be such that σp0 ≥ σ1−p0 and similarly, for m = 1 let p1 ∈ {0, 1}
be such that σ2+p1 ≥ σ2+(1−p1). Then we get

|γO0 − γO1 |1 =
∑3

t=0 |tr(Htγ0H
†
t )− tr(Htγ1H

†
t )|

≤ 2(σp0 + σ2+p1) +
∑3

t=2 |tr(Htγ0H
†
t )− tr(Htγ1H

†
t )|.

We should see �rst that the second term in the above sum corresponds to advantage in
distinguishing between two values of a1 by measurement H2,H3 in case of a0 = 0. But those
subspaces re�ect Bob's belief that a0 = 1. Therefore, we have that

3∑
t=2

|tr(Htγ0H
†
t )− tr(Htγ1H

†
t )| ≤ Pra0,a1∈R{0,1}[a′0 6= a0|a0 = 0].
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So, we can neglect this term because it is of the order of the square of the advantage (if not
then our lemma would be proved). Hence we get: δ0

2 ≤ σp0 + σ2+p1 .

Now, we de�ne projection Om as follows. For m = 0 let O0 be the normalized orthogonal
projection of |0V 0p0

p0 〉 onto the subspace Hp0 if

tr(Hp0 |0V 0p0
p0

〉〈0V 0p0
p0

|H†
p0

) ≥ tr(Hp0 |0V
0(1−p0)
1−p0

〉〈0V 0(1−p0)
1−p0

|H†
p0

).

Otherwise, let O0 be the normalized orthogonal projection of |0V 0(1−p0)
1−p0

〉 onto Hp0 . Analo-

gously, we de�ne O1 as a normalized orthogonal projection of |1V 0p1
1−p1

〉 onto the subspace Hp1

if
tr(Hp1 |1V

0p1
1−p1

〉〈1V 0p
1−p1

|H†
p1

) ≥ tr(Hp1 |1V 0(1−p1)
p1

〉〈1V 0(1−p1)
p1

|H†
p1

)

else O1 is a normalized orthogonal projection of |1V 0(1−p1)
p1 〉 onto Hp1 . Hence we get

σp0 ≤ ||〈0V 0p0
p0

|O0〉|2 − |〈0V 0(1−p0)
1−p0

|O0〉|2|, σ2+p1 ≤ ||〈1V 0p1
1−p1

|O1〉|2 − |〈1V 0(1−p1)
p1

|O1〉|2|.

We would like now to investigate the probability of obtaining the correct result. Recall that
Pr[a1 = 0] = 1

2 . We should �rst note that the density matrices corresponding to initial con�g-
uration of the second qubit Rα|a1 ⊕ h〉 is now exactly 1

2 |0〉〈0|+
1
2 |1〉〈1| even if we know h and

α. So, from the point of view of the protocol those two con�gurations are indistinguishable.
Therefore, we can substitute the second qubit from the initial con�guration with a random bit
r encoded in perpendicular basis and the probability of obtaining proper result is unchanged.
We analyze the probability of computing the correct result in case of r = 0. Note, that the
vectors {V 0,j

k }k,j still describe U , but vectors {W 0j
k }k,j are di�erent, de�ned by U acting now

on initial con�guration |v〉 ⊗ |0〉 ⊗ Rα|j〉, with α = 1
2 . We investigate the correspondence

between {V 0j
k }k,j and the new vectors. For j = 0 we have:

U(|v00×〉) = 1√
2
U(|v00〉 − |v01〉) = 1√

2
(V 00

0 |0〉+ V 00
1 |1〉 − V 01

0 |0〉 − V 01
1 |1〉)

= 1
2((V 00

0 − V 00
1 − V 01

0 + V 01
1 )|0×〉+ (V 00

0 + V 00
1 − V 01

0 − V 01
1 )|1×〉)).

Similarly, for j = 1 we have:

U(|v01×〉) = 1√
2
U(|v00〉+ |v01〉) = 1√

2
(V 00

0 |0〉+ V 00
1 |1〉+ V 01

0 |0〉+ V 01
1 |1〉)

= 1
2((V 00

0 − V 00
1 + V 01

0 − V 01
1 )|0×〉+ (V 00

0 + V 00
1 + V 01

0 + V 01
1 )|1×〉)).

Thus, let us denote these vectors by

W̃ 00
0 =

1
2
((V 00

0 + V 01
1 )− (V 01

0 + V 00
1 )), W̃ 00

1 =
1
2
((V 00

0 − V 01
1 )− (V 01

0 − V 00
1 )),

W̃ 01
0 =

1
2
((V 00

0 − V 01
1 ) + (V 01

0 − V 00
1 )), W̃ 01

1 =
1
2
((V 00

0 + V 01
1 ) + (V 01

0 + V 00
1 )).

In order to obtain the correct result Bob has to distinguish between the density matrices
corresponding to two values of a0. In particular, he has to distinguish between density matrices
γ′0, γ

′
1 corresponding to two possible values of a0 knowing that m = 0. These density matrices

are:

γ′0 =
1
4
|0〉〈0| ⊗ (|V 00

0 〉〈V 00
0 |+ |V 01

1 〉〈V 01
1 |+ |W̃ 00

0 〉〈W̃ 00
0 |+ |W̃ 01

1 〉〈W̃ 01
1 |), (4)

γ′1 =
1
4
|0〉〈0| ⊗ (|V 01

0 〉〈V 01
0 |+ |V 00

1 〉〈V 00
1 |+ |W̃ 01

0 〉〈W̃ 01
0 |+ |W̃ 00

1 〉〈W̃ 00
1 |). (5)
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Now, the probability of failure i.e. the probability that in case of m = 0 Bob's measurement
indicates that a0 = 0 if in fact it is a0 = 1, is at least

tr(Hp0γ
′
1H

†
p0

) ≥ tr(|O0〉〈O0|γ′1) =
1
4
(|〈0V 01

0 |O0〉|2+|〈0V 00
1 |O0〉|2+|〈0W̃ 01

0 |O0〉|2+|〈0W̃ 00
1 |O0〉|2).

But since the fact that

W̃ 01
0 =

1
2
((V 00

0 − V 01
1 ) + (V 01

0 − V 00
1 )), W̃ 00

1 =
1
2
((V 00

0 − V 01
1 )− (V 01

0 − V 00
1 )),

and the parallelogram law (|a+ b|2 + |a− b|2 = 2|a|2 + 2|b|2), we have that this probability is
at least

1
4(|〈0W̃ 01

0 |O0〉|2 + |〈0W̃ 00
1 |O0〉|2) ≥ 1

8 |〈0V
00
0 |O0〉 − 〈0V 01

1 |O0〉|2

≥ 1
32(|〈0V 00

0 |O0〉| − |〈0V 01
1 |O0〉|)2(|〈0V 00

0 |O0〉|+ |〈0V 01
1 |O0〉|)2

≥ 1
32(|〈0V 00

0 |O0〉|2 − |〈0V 01
1 |O0〉|2)2 ≥

σ2
p0
32 .

Similarly we analyze density matrices γ′′0 , γ
′′
1 corresponding to two possible values of a0 know-

ing that m = 1. These density matrices are equal to resp. γ′1 and γ′0 after changing |0〉〈0| to
|1〉〈1|. Now, by repeating completely analogous estimation of failure's probability with usage

of vectors |V 01
0 〉, |V 00

1 〉, |W̃ 00
0 〉 and |W̃ 01

1 〉, we get that this probability is at least
σ2
2+p1
32 . There-

fore, since the vectors involved in imposing failure in both cases are distinct, we conclude that

Pra1∈R{0,1}[a′0 6= a0|r = 0] ≥
σ2

p0
+σ2

2+p1
32 . Hence we have

Pra1∈R{0,1}[a′0 6= a0] = 1
2Pra1∈R{0,1}[a′0 6= a0|r = 0] + 1

2Pra1∈R{0,1}[a′0 6= a0|r = 1]

≥
σ2

p0
+σ2

2+p1
64 ≥ δ2

128

and the lemma is proved.

Finally, it is worth mentioning that the value of m doesn't need to be correlated in any way
with value of ai. That is, Bob by using entanglement (for instance, straightforward use of Bell
states) can make the value of m independent of ai and still acquire perfect knowledge about
ai. He uses simple error-correction to know whether m = ai or m = 1−ai. His problems with
determining whether �ip has occurred, start only when he wants additionally to accumulate
some information about the value of ai ⊕ h.

To see that this quadratical bound can be achieved consider the following cheating strategy.
Let U∗ be such that U∗(|v〉 ⊗ |l, j〉) = |vj〉 ⊗ |l, j〉. So, |V l,j

j 〉 = |vj〉 ⊗ |l〉 and |V l,j
1−j〉 = 0.

Moreover, let 〈v0|v1〉 =
√

1− ε. As we can see, usage of U∗ accumulates some information
about value of j = a0⊕h by marking it with two non-parallel (therefore possible to distinguish)
vectors in Bob's system. We do now the following. We use U∗ on |v〉⊗Rα|a1 ⊕ h〉⊕Rα|a0 ⊕ h〉
and send the last qubit to Alice. When we get the message m which is exactly a0 with
probability4 of order 1− ε, we make an optimal measurement to distinguish between v0 and
v1. By Theorem 1 this optimal measurement has advantage of order

√
ε. So, after getting the

outcome j′, we know that Pr[j′ = a0 ⊕ h] ≥ 1
2 + Ω(

√
ε) and we can simply compute the value

of h′ = m⊕j′. Having such knowledge about the value of h′ we can distinguish between values
of a1 encoded in the second qubit Rα|a1 ⊕ h〉 with the advantage proportional to Ω(

√
ε).

4This can be easily computed - the perturbation arises when α = 1
2
.
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4 Cheat Sensitive Quantum Bit Commitment

We recall �rst a formal de�nition of the binding and sealing property of a quantum bit
commitment. We follow here the de�nition by Aharonov et al. [2]. Let us start with the
binding property. Assume Alice follows the bit commitment protocol and Bob is arbitrarily.
During the depositing phase Bob and Alice compute in some rounds a super-position |ψAB〉
with two quantum registers: one keeping by Bob and one by Alice. After a communication
phase Bob either uses a strategy trying to convince Alice to 0 or a strategy to convince
Alice to 1. Depending on the results of the computations Alice decides to one the values
vB ∈ {0, 1, err}; In case vB = err he rejects the protocol. Let pi be the probability that
Alice decides vB = i, and perr be the probability that Alice decides vB = err, when Bob uses
strategy 0. Analogously, denote the probabilities q0, q1, qerr for Bob's strategy 1. A protocol
is (δ, ε)-binding if whenever Alice is hones, for any Bob's strategy it is true: if perr, qerr ≤ ε
then |p0 − q0|, |p1 − q1| ≤ δ. A bit commitment protocol is (δ, ε)-sealing, if whenever Bob is
honest and deposits a bit b s.t. Pr[b = 0] = 1/2, for any Alice's strategy and a value c Alice
learns, it holds that: if Prb∈R{0,1}[Bob detects error] ≤ ε then Prb∈R{0,1}[c = b] ≤ 1/2 + δ.
The probability is taken over b taken uniformly from {0, 1} and the protocol.

Theorem 3 Using Protocol 2 as a black-box for computing OT, Protocol 1 is an (4
√
ε, ε)-

sealing. Moreover, there exists a constant λ > 0 such that for all strategies Bob uses it holds

max{perr, qerr} > λ, where perr (qerr) denotes the probability that Alice decides error when

Bob uses strategy for 0 (1 resp.).

Sketch of the proof: First, we note that in both calls to the OT function the inputs that
come into play in this executions are completely uncorrelated from the point of view of both
Alice and Bob. So, we can analyze them distinctly.

To see that this protocol is sealing we note that Alice in each call to OT function has to
take into account that with probability 1

2 Bob will check whether she knows what actu-
ally he has received during execution of this protocol. Moreover her cheating is e�ective
only if it is not checked, so only with probability of 1

2 . By Lemma 2, if a strategy al-

lows her to distinguish between possible values of b′ with advantage greater than 4 2
√

2ε then
Prb′∈R{0,1}[vc 6= OT ((a2c, a2c+1), b′)] ≥ ε.

In case of binding, we �rst notice that it is only useful for Bob to cheat in some particular
OT execution, chosen previously by Bob, which is used in the revealing phase for the binding
test. So wlog assume Bob cheats in the second OT execution and that in the last step of the
depositing stage he reveals c = 0. Let a′3, a

′
4, resp. denote the predicted values. Using the

notation given in the de�nition of the binding property we get that perr = Pr[a′3 6= a3], p0 =
Pr[a′3 = a3], and p1 = 0. Similarly we have qerr = Pr[a′4 6= a4], q0 = 0, and q1 = Pr[a′4 = a4].
Now by Lemma 3 we get that if Pr[a′i 6= ai] ≤ ε2 then Pr[a′1−i 6= a1−i] ≥ 1/2 − 162ε and for
some constant λ > 0 it follows that max{Pr[a′i 6= ai],Pr[a′1−i 6= a1−i]} > λ.

5 Concluding Remark

In this paper a weak variant of quantum bit commitment is investigated. We give quantum
bit commitment scheme that is simultaneously binding and sealing and we show that if a
malicious Alice gains some information about the committed bit b then Bob detects this with
a probability Ω(ε2). When Bob cheats then Alice's probability of detecting the cheating is
greater than a constant λ > 0. Using our bounds we get that the value is very small and an
interesting task would be to improve the constant.
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