
Fault Jumping Attacks against Shrinking

Generator

Marcin Gomu lkiewicz1, Miros law Kuty lowski1, Pawe l Wlaź2

Wroc law University of Technology1

Lublin University of Technology2

Abstract

In this paper we outline two cryptoanalytic attacks against hardware
implementation of the shrinking generator by Coppersmith et al., a clas-
sic design in low-cost, simple-design pseudorandom bitstream generator.
This is a report on work on progress, since implementation and careful
adjusting the attack strategy in order to optimize the atatck is still not
completed.

1 Introduction

This paper briefly presents a preliminary version of two new fault attacks ([2])
against the LFSR-based shrinking generator proposed by Coppersmith et al.
[4]. The shrinking generator is one of the major designs for efficient and secure
pseudorandom generators, due to its simplicity and resistance to the known
cryptographic attacks. Our attacks are unique in many ways. As far as we
know, the use of a fault attack against the shrinking generator is fairly new
concept (see [10]); on top of that the fault model assumed here seems to be
quite in line with the technical feasibility.

The paper is organized as follows: first we give extremely brief overview of
the shrinking generator and previous fault attacks against it. Then we describe
the new ideas, pointing out the missing parts.

The Shrinking Generator The shrinking generator [4] is an attempt to
create cryptographically strong pseudorandom bitstream generator out of rela-
tively weak components. Many other solutions of this kind [7, 1, 3] were proven
to be weak [14, 15]. The shrinking generator successfully faces the trial of
time: the best known attacks against it are exponential in the LFSR’s length
[5, 8, 11, 12, 13], or based on the assumption that the feedback is known [6].

Amazingly, the construction of the shrinking generator is very simple. It
consists of two bitstream generators (most frequently LFSRs) we shall call the
base (or input) generator A and the control generator C; their output is denoted
as a1, a2, a3, . . . and c1, c2, c3, . . ., respectively. The output Z = z1, z2, z3, . . . is
composed of those and only those of ai for which ci = 1. Formally:

zt = ai if t =
i∑

j=1

cj and ci = 1 (1)

1Dagstuhl Seminar Proceedings 06111
Complexity of Boolean Functions
http://drops.dagstuhl.de/opus/volltexte/2006/611

Previous Fault Attacks on Shrinking Generator The paper [10] we show
two fault attacks against the shrinking generator. The first one is based on the
assumption that the clocks of the internal generators can be desynchronized (a
similar assumption was used in [9]), the second one is essentially based on possi-
bility of replacing the control register by a source of independent, random bits,
while keeping the input register’s contents. The first attack gives quite powerful
results (with high probability only a couple of possible control sequences, includ-
ing the correct one), but the assumptions made require the cooperation of the
device’s manufacturer (and / or a very careless design of the integrated circuit
implementing the shrinking generator). The second attack, while quite feasible
from a technical point of view, gives only moderately strong results (candidates
for the bits of the input sequence, correlated, but not neccessarily equal to the
correct one).

2 New Attack

We shall now show the outline of a new attack against the shrinking generator.
This time, in opposition to the previous work [10] we shall assume that the
control register is an LFSR with known feedback, while the input generator
may be arbitrarily chosen random bit generator. Our aim is to discover the
contents of the control register.

Notations and Assumptions We shall adopt the notations from Section 1.
On top of that we shall assume that one can cause exactly one bit-flip within the
control register and rerun the generator. That is, if the register has length n, and
its’ cells contain (from the beginning to the end) cn, cn−1, . . . , c2, c1, then it is
possible to get the output sequence Z ′ corresponding to the c′n, c′n−1, . . . , c

′
2, c

′
1,

where all but one c′i are equal to ci. Of course, the fault injected into the control
generator will propagate when the generator is working and gradually many bits
are influenced by the change.

We also assume that we posses nice algorithm that can detect insertions or
deletions of (single) bits in the binary stream. That is, we assume taht if A is
given two streams:

S = s1, s2, . . . , si−1, si, si+1, . . . , sk

and
S′ = s1, s2, . . . , si−1, si+1, . . . , sk

it should reply ”REMOVE(i)”, or given two streams:

S = s1, s2, . . . , si, si+1, . . . , sk

and
S′ = s1, s2, . . . , si, r, si+1, . . . , sk

it should reply ”INSERT(i)”. For a couple of delete / insert operations A should
say e.g. ”INSERT(2) and REMOVE(5) and REMOVE(10)”; it is also acceptable
that the algorithm A outputs a couple of possible replies to one query, say:
”INSERT(2) or INSERT(3)”, or something like ”(REMOVE(2) or REMOVE(3))
and INSERT(7)”.

2

Attack Having all this we proceed as follows:
Since the feedback of the control register is known, we can express all its’

output as linear functions of its’ (yet unknown) state. For example, if register
C has length 5 and its’ feedback is the sum of the last two bits in register, its’
output equals (all sums are regarded to be modulo 2):

c1, c2, c3, c4, c5,
c1 + c2, c2 + c3, c3 + c4, c4 + c5, c1 + c2 + c5,
c1 + c3, c2 + c4, c3 + c5, c1 + c2 + c4, c2 + c3 + c5,
c1 + c2 + c3 + c4, c2 + c3 + c4 + c5, c1 + c2 + c3 + c4 + c5,
c1 + c3 + c4 + c5, c1 + c4 + c5, c1 + c5,
c1, c2, c3, c4, c5,
. . .

We take two outputs: one from the correct computation, the other one – from
a computation with exactly one bit in C flipped. We guess the position of
the flipped bit and comparing the answer given by A on these outputs with
(unknown) output of the LSFR we construct a system of linear equations.

For example, assume that an algorithm said ”REMOVE(1) and INSERT(3)
and (REMOVE(8) or REMOVE(9))”. We assume that flipped bit was c1 and we
check the first possibility: ”REMOVE(1) and INSERT(3) and REMOVE(8)”. If
so, then the changes in the control sequence must occur at positions 1, 6, 10, 11,
14, 16, 18, 19, 20, 21, and so on. Since we observed an insertion of an element
on the first position in the output, we may think that c1 was one (and it was
flipped to zero), c1 + c2 was zero (and was changed to one), and c1 + c2 + c5 was
one (and was changed to zero). This leads to a linear system: c1 = 1

c1 + c2 = 0
c1 + c2 + c5 = 1

We can also deduce some information from the location of points where changes
occured. If the first change was visible at the first position, the c1 must have
been one; since second change was visible at the third position, then c1 + c2 +
c3 + c4 + c5 + (c1 + c2 mod 2) = 3, and

c1 + c2 + c3 + c4 + c5 + (c1 + c2 mod 2) + (c2 + c3 mod 2)+
+(c3 + c4 mod 2) + (c4 + c5 mod 2) + (c1 + c2 + c5 mod 2) = 8 .

Having all that information we try to solve given linear equations to find ci’s or
to learn that they are contradictory (which means that assumed flipped bit was
guessed wrong, or A has given a wrong answer).

Let us comment that the answers of A should take into account the following
phenomena:

1. The first difference between two outputs is due to the bit flipped. If a new
bit occurs in the second output, we know for sure that the control bit was
flipped from 0 to 1.

2. If the faults occured at a position ci where i is not much less than n then,
due to propagation of faults via feedback function for quite a long (and
fixed) time the control generator outputs exactly the same data, so the
output of the shrinking generator is exactly the same. This long sequence

3

is a witness of the correctness of our hypothesis. Usually, the opposite
hypothesis is excluded for the same reasons. The only case, when the
both possibilities remain open is when the output of the generator from
this moment, say b1, b2, . . ., has the property that

r, b1, b2, . . . , bk = b2, b3, . . . , bk+2

where r is a new bit inserted and k corresponds to the number of ones in
the output of the control generator between the first fault position and
the next position where the fault yields a change. Obviously, then we
have b1 = b3, b2 = b4, b3 = b5, There are only 4 solutions to these
equations.

3. The distance bitween the first and the second position in the output se-
quences where operations REMOVE and INSERT are proposed by A yield
also information on how many ones occur in the output of the control
generator in a certain (known) interval.

4. Gradually, the distances between positions where the changes at the con-
trol sequence occur become small, so the analysis becomes useless. There-
fore it is better to commence with injecting a new fault. However, now we
know more: certain positions of the control sequence are known.

3 Dual Attack

This attack is in some way dual to the attack presented in Section 2: here we
assume that the input register is a LFSR with a known feedback, the control
register is an arbitrarily chosen bitstream generator, and our aim is to find the
contents of the input register. Although this attacks seems to be more difficult,
it can also present a threat to some shrinking generator’s implementations.

Notations and Assumptions As before, we adopt the notation from Sec-
tion 1. Let the input register A be LFSR of length n with known feedback
and its’ internal registers contain bits an, an−1, . . . , a2, a1 (a1 is at the output
position). As before, we assume that one can flip exactly one of ai, and get the
output sequence Z (with the same bitstream C).

Attack If we assume that a certain bit in A have been flipped, then since A
is described by linear equations we can predict precisely all the changes in A’s
output sequence. Because C was not changed, we should see about half of the
changed bits changed. Then, by a careful analysis we can deduce some linear
expressions with ci’s as variables.

For example, if we expect changes in A sequence on positions 1, 10, 15, 22,
etc., and we see changes on 1, 5 and 8 position in output (Z) bitstream, it is
sound to assume that: 

c1 = 1∑10
j=1 cj = 5

c10 = 1∑15
j=1 cj = 8

c15 = 1

4

(see 1). Of course, there are also different valid (although less probable) as-
sumptions, such as: 

c1 = 1∑10
j=1 cj = 5

c10 = 1∑22
j=1 cj = 8

c22 = 1

etc.
Having those linear expressions we try to solve the appropriate systems to

find C’s output or learn that our conditions were contradictory.

4 Conclusions

The yet unimplemented attack ideas show that properly tailored fault analysis
should yield a lot of information about the internal state of the shrinking gener-
ator or similar design, for very realistic fault assumptions. This shows that the
designs such as the shrinking generator deserve a lot of attention and either a
tamper resistant hardware implementation or redesigning the generator on the
algorithmic level.

References

[1] T. Beth, F. C. Piper, The Stop-and-Go Generator, Advances in Cryp-
tology – EUROCRYPT ’84, LNCS tom 209, str. 88–92, Springer-Verlag,
1985

[2] Dan Boneh, Richard A. DeMillo, Richard J. Lipton, On the Importance
of Checking Cryptographic Protocols for Faults, Advances in Cryp-
tology – EUROCRYPT ’97, LNCS 1233, pp. 37–51, Springer-Verlag, 1997

[3] W. Chambers, D. Gollmann, Clock-Controlled Shift Registers:
A Review, IEEE J. Selected Areas Comm., 7(4): 525–533, May 1989

[4] Don Coppersmith, Hugo Krawczyk, Yishay Mansour, The Shrinking
Generator, Advances in Cryptology – CRYPTO ’93, LNCS 773, pp. 22–
39, Springer-Verlag, 1993

[5] Ed Dawson, Jovan Dj. Golič, Leone Simpson, A Probabilistic Correla-
tion Attack on the Shrinking Generator, Information Security and
Privacy – ACISP ’98, LNCS 1438, pp. 147–158, Springer-Verlag, 1998

[6] Patrik Ekdahl, Thomas Johansson, Willi Meier, Predicting the Shrink-
ing Generator with Fixed Connections, Advances in Cryptology –
EUROCRYPT 2003, LNCS 2656, pp. 330–344, Springer-Verlag, 2003

[7] P. R. Geffe, How to Protect Data with Ciphers That Are Really
Hard to Break, Electronics, Jan. 4, pp. 99–10, 1973

[8] Jovan Dj. Golič, Luke O’Connor, Embedding and Probabilistic Cor-
relation Attacks on Clock-Controlled Shift Registers, Advances in

5

Cryptology – EUROCRYPT ’94, LNCS 950, pp. 230–243, Springer-Verlag,
1995

[9] Marcin Gomu lkiewicz, Miros law Kuty lowski, Theodor Heinrich Vierhaus,
Pawe l Wlaź, Synchronization Fault Cryptanalysis for Breaking
A5/1, International Workshop on Efficient and Experimental Algorithms
– WEA’05, LNCS 3503, pp. 415–427, Springer Verlag, 2005.

[10] Marcin Gomu lkiewicz, Miros law Kuty lowski, Pawe l Wlaź, Fault Crypt-
analysis and the Shrinking Generator, International Workshop on
Efficient and Experimental Algorithms – WEA’06, LNCS 4007, pp. 61–72,
Springer Verlag, 2006.

[11] Matthias Krause, Stefan Lucks, Erik Zenner, Improved Cryptanalysis
of the Self-Shrinking Generator, Information Security and Privacy –
ACISP 2001, LNCS tom 2119, str. 21–35, Springer-Verlag, 2001

[12] W. Meier, O. Staffelbach, The Self-shrinking Generator, Advances in
Cryptology – EUROCRYPT ’94, LNCS 950, pp. 205–214, Springer-Verlag,
1995

[13] Miodrag Mihaljevic, A Faster Cryptanalysis of the Self-shrinking
Generator, Information Security and Privacy – ACISP ’96, LNCS 1172,
pp. 182–188, Springer-Verlag, 1996

[14] T. R. N. Rao, Chung-Huang Yang, Kencheng Zeng, An Improved Linear
Syndrome Algorithm in Cryptanalysis With Applications, Ad-
vances in Cryptology – CRYPTO ’90, LNCS 537, pp. 34–47, Springer-
Verlag, 1991

[15] Erik Zenner, On the Efficiency of the Clock Control Guessing At-
tack, Information Security and Cryptology – ICISC 2002, LNCS 2587,
pp. 200–212, Springer-Verlag, 2003

6

