Complete Characterization of Security Protocols
by Pattern Refinement*
(Work in Progress)

Cas Cremers

ETH Zurich, Dept. of Computer Science
Zurich, Switzerland
cremersc@inf.ethz.ch

Abstract. Recently, the notion of complete characterizations of secu-
rity protocols was introduced by Guttman and Thayer. We provide an
alternative definition of this concept, and extend an existing protocol
verification tool (Scyther) to compute our notion of complete character-
ization. We present both notions of complete characterization, discuss
their relative merits, and provide preliminary empirical results using an
extended version of the Scyther tool.

Keywords. Security Protocols, Analysis, Complete Characterization,
Tools

1 Introduction

Many tools exist to verify whether or not a given security protocol satisfies a
specific property, e.g. [1-3]. In general, recent developments in security protocol
analysis tools have focussed on improving performance, in order to improve the
coverage of the analysis [4], or to allow for verification of larger protocols [3].

A protocol designer using such tools, upon finding an attack, needs to locate
the fault in the protocol that caused the attack, and repair it. The repaired
protocol is then again verified by the tool, until no more attacks are found.
Hence it is crucial to be able to understand how the protocol works (or why it
doesn’t) from the output of such a tool. However, in general these tools share
some major drawbacks with other counterexample generating analysis methods:
the counterexample is often not minimal, and it is usually not clear how to find
the fault that causes it. Furthermore, if the particular counterexample is in some
sense not harmful, or will not occur in practical applications, the tools do not
provide a means to show all possible counterexamples/attacks (because this set
is usually in the order of the size of the state space, e.g. exponential or infinite).

An alternative approach for analysing and verifying protocols was started
in [5-7]. In this approach, the idea is not to verify a specific property, but to give
a concise finite representation of all possible behaviours of a security protocol,

* This work was supported by the Hasler Foundation, under ManCom project 2071.

Dagstuhl Seminar Proceedings 07421
Formal Protocol Verification Applied
http://drops.dagstuhl.de/opus/volltexte/2008,/1417

2 C.J.F. Cremers

in such a way that certain classes of security properties can be trivially verified.
Such a finite representation is called the complete characterization of a security
protocol. A tool called CPSA! (Cryptographic Protocol Shape Analyzer) was
developed to compute the complete characterizations. The approach is described
in e.g. [5] and uses and extended version of the Strand Space method [8], in
which the finite representations are expressed in terms of shapes using the so-
called skeletons-and-homomorphisms approach. We describe these concepts in
Section 2, and provide a brief introductory example below.

Ezample 1 (Needham-Schroeder (Skeletons, CPSA)). Consider the two-party ver-
sion of the Needham-Schroeder protocol. From the point of view of a responder
Bob, upon the completion of the protocol, the following must have happened:
there must be an honest agent that has performed the initiator role of the pro-
tocol, and received Bob’s nonce. However, this agent may or may not have been
communicating with Bob (representing either normal behaviour or the man-in-
the-middle attack). This message flow is represented below in Figure 1. Hence,
if we focus on honest agent behaviour only, the complete characterization of the
responder role is captured by a single message flow.

A {]-N_ﬂ i A-}}pubk((.‘; {lj\rﬂ i A‘}pubk(b’i B
U AN Noltpubk(ay {N." Nb|}pubu(A; U
* - — - L]
“l: {INw[} pubk () . - {Nb[} pubk() R t"

Fig. 1. Needham-Schroeder Shape for B (privk(A) uncompromised, N, fresh)

This single message flow captures the following execution traces: (1) assume
the private key of the initiator’s intended partner is known to the intruder (in
case privk(C) is known to the intruder), and (2) assume this private key is not
known to the intruder, and infer that the intended partner must be Bob (in case
C = B).

In this paper we show how to achieve an alternative form of complete charac-
terization, using a slightly different choice of finite representation for the possible
behaviours of the protocol, in terms of realizable patterns. We modify an exist-
ing protocol verification tool, called Scyther? [2], to compute these alternative
complete characterizations.

Ezample 2 (Needham-Schroeder (Patterns, Scyther)). Consider again the two-
party version of the Needham-Schroeder protocol. From the point of view of a
responder Bob, upon the completion of the protocol, the following must have

1 At the moment of writing this, CPSA is not available for download.
2 Scyther can be downloaded at http://people.inf.ethz.ch/cremersc/scyther /index.html

http://people.inf.ethz.ch/cremersc/scyther/index.html

Complete Characterization of Security Protocols by Pattern Refinement 3

happened: there must be an honest agent that has performed the initiator role
of the protocol, and received Bob’s nonce. If we take intruder actions into ac-
count, there are two distinct cases: either the intruder knows the secret key of the
partner of this agent, or this agent is talking to Bob. In this view, the complete
characterization of the responder role is captured by two distinct message flows:
First, the message flow in which the intruder knows the secret key of the initia-
tor’s supposed partner, and the intruder performs decryption and encryption of
messages. Second, the message flow in which the protocol runs as expected.

Hence, in this more fine-grained approach we distinguish between the two
sub-cases of the first example, and there is no need to infer agent equalities to
unfold the execution traces.

In this paper we discuss the relation between the two representations. In
short, the shapes approach provides a slightly more coarse, and therefore some-
times more concise representation than the pattern approach, but has a more
implicit relation with the actual behaviours of the protocol.

Furthermore, we provide extensive empirical results. We compare these re-
sults to the currently reported results of the CPSA tool, revealing three advan-
tages of the Scyther approach. First, the pattern refinement algorithm allows for
a wider range of protocols to be characterized. Second, if complete character-
ization is not achieved for a protocol, the pattern output still provides insight
into the protocol behaviour. Third, Scyther is more efficient at computing the
characterizations.

Purpose of the paper In this paper, we aim at providing a high-level idea of the
concept of complete characterization, and our novel way of computing it. We
report on our current work-in-progress and provide preliminary experimental
results. We will omit technical details and explain by example where possible.
The full technical details will be explained in the full paper.

Outline of the paper We start off by giving a high-level sketch of the complete
characterization concept, and the shapes and skeletons theory, in Section 2. We
describe the alternative characterization in terms of patterns in Section 3. We
provide a preliminary empirical analysis in Section 4 and conclude in Section 5.

2 Complete characterizations as shapes

The concept of complete characterization was introduced in [6]. The idea is
to consider a role of a particular role of a protocol, and give a concise finite
representation of all essentially different possible behaviours of the protocol that
include this particular role. Intuitively, the complete characterization provides a
concise answer to the question “which other events must also have occurred, if
we assume that this role was executed?”

4 C.J.F. Cremers

Strand spaces In this paper we omit technical details. We therefore assume the
reader is at least to some extent familiar with the basic of the Strand Space
method as described in e.g. [8]. There is one property we recall here, which con-
cerns capturing the generation of fresh terms (nonces). The Strand Space method
does not distinguish between different terms (except for having an explicit key
set), but Nonce generation is captured by the concept of unique origination: a
term ¢ can be said to uniquely originate from node n. This effectively connects
nonces to the first send event in the role instance in which they occur as a sub-
term. A set of such bindings of terms to a specific event is called the unique
origination set, and is written as unique.

Skeletons and homomorphisms Until recently, the Strand Space model was used
only to model possible execution traces of security protocols in general: as there
are no notions of e.g. protocol or variable instantiation in the original Strand
Space model. Hence, in order to be able to specify a protocol, and its relation
to protocol execution, modifications to the strand space model are introduced.

In the skeletons and homomorphisms approach, the strand space approach
is extended with a number of new notions.

First, in the original Strand Space method there is no way to indicate which
agents are honest, which in this method boils down to indicating which private
keys are not known to the intruder. In the skeletons and homomorphisms ap-
proach, there is an explicit set of private keys not known to the intruder, written
as non.

Second, the concept of variable instantiation is replaced by the notion of in-
formation preserving homomorphisms. In e.g. process calculus approaches, role
descriptions contain variables, which are instantiated in each of its possible exe-
cutions. In the Strand Space method no such variables occur. Instead, the proto-
col contains terms, which can be substituted by other (atomic) terms, as long as
the substitution is said to be information-preserving with respect to the unique
origination set unique, as well as the private key set non.

In the strand spaces terminology, a set of strands with a partial ordering
is referred to as a bundle. However, in the shapes setting, one only considers
regular strands (and thus only the behaviour of honest agents, and not that of
the intruder). As a result, a skeleton can correspond to the regular part of a
bundle, extended with the information in the associated nonand uniquesets: it
consists of a four tuple (nodes, <,non, unique). In particular, a skeleton is said
to be realizable if it corresponds to an execution trace of the protocol when all
agents whose keys are not in unique are considered to be compromised. Finally,
shapes are minimal realizable skeletons.

Ezample 3. In Figure 1 we have that unique = {N,} and non = {privk(A4)}.
The figure is a realizable skeleton (execution trace if we assume C to be com-
promised), and also a shape.

Complete characterization In terms of the notions described above, the complete
characterization of a protocol role is the set of all shapes of this protocol. In other

Complete Characterization of Security Protocols by Pattern Refinement 5

words, if the role is executed in a particular trace, then one of the shapes will also
occur in that trace. The complete characterization of a protocol is the complete
characterization of each of its roles.

In general, most protocols only have only very few shapes. We have seen
the responder role of the Needham-Shroeder protocol has only one shape. In
general, protocol roles of correct protocols (i.e. that satisfy strong authentication
properties) have usually only one shape. However, in theory protocols may also
have an infinite amount of shapes.

If finite, the complete characterization allows for easy verification of a large
class of authentication properties, e.g. if every shape of the responder role con-
tains an initiator role, then existence of an initiator is guaranteed for all exe-
cutions of the responder role. If one shape does not have an initiator role, it
represents a class of counterexamples.

3 Complete characterization by pattern refinement

In this section we describe an alternative approach to achieve a complete char-
acterization of a security protocols. This new approach uses patterns instead of
skeletons.

The skeletons, as described in the previous section, fix the behaviour of the
honest agents, and do not describe the intruder behaviour explicitly. Rather,
a realizable skeleton implies that there exists intruder behaviour such that the
events can be executed as described.

Patterns A pattern is a partially ordered set of protocol events. These protocol
events may contain type variables, e.g.

send(A, R40,V10)£0

where Rf0 is of type Agent and V{0 of type Message. This event represents any
send event by the agent A in thread 0. In general, the notation XtY denotes
that the event or term X is local to the thready Y.

Realizable patterns A pattern is said to be realizable if for any substitution that
meets the variable typing constraints, and any linearization of the partial order,
the sequence of resulting events forms a valid execution trace of the protocol.

Given a pattern pt of a protocol P, the pattern refinement algorithm in
Scyther [2] computes a set of realizable patterns such that the union of the
traces of the protocol with the realizable patterns, is equal to the traces of the
original pattern. For most patterns the set of realizable patterns that correspond
to the same set of traces, is finite.

Pattern subsumption The set of realizable patterns computed by pattern refine-
ment is not guaranteed to be minimal. In particular, it may be the case that the
set includes two patterns ptl, pt2, such that traces(P,ptl) C traces(P,pt2). In
such cases, ptl is redundant.

6 C.J.F. Cremers

‘We have implemented pattern subsumption tests in Scyther. These tests try to
determine for some patterns pt, pt’ of a protocol P whether or not traces(P, pt') C
traces(P, pt). Using these tests, the result set of the refinement algorithm is
minimized. This has only effect in a very limited number of cases, but has been
implemented to guarantee a form of minimality over the characterization.

Complete pattern characterization Using the pattern refinement algorithm in
combination with the subsumption tests, it is straightforward to construct a
complete characterization algorithm.

1. Given a protocol and a role, a pattern is constructed, with an arbitrary
thread identifier, e.g. 0, which is a direct translation of the description of
the role into trace events: roles are replaced by local role variables, e.g. R is
replaced by the variable Rf0, and local constants and variables are similarly
bound to the thread, i.e. a constant ni is replaced by the constant nif0, and
a variable X is replaced by the variable X#0. (Note that in terms of Scyther
internals, this corresponds to simply placing a “reachable” claim at the end
of the role.)

2. The resulting pattern is refined into the full set of realizable patterns, if
possible. (In terms of Scyther internals, this is captured by requesting all
attacks.)

3. Finally, the realizable pattern set is minimized by using the subsumption
tests.

Ezample 4. In Figure 2 we provide an example characterization of the respon-
der role of the Needham-Schroeder protocol. The result is two patterns, which
correspond to either the expected behaviour of the protocol on the left, or the
man-in-the-middle attack on the right. As a result, any trace of the protocol
that includes the events of the responder role, will necessarily also include the
events from one of the patterns in the complete characterization.

Comparing both characterization concepts At first sight, upon considering the
Needham-Schroeder example, it seems that both concepts differ significantly,
in the sense that the shape characterization is more coarse and therefore more
concise, than the pattern characterization.

The shape characterization is more coarse (and thus may be more concise) be-
cause the agents whose keys are not in the non set, may be instantiated by honest
or dishonest agents. In the cases where both these options can lead to traces of
the protocol, the pattern characterization will always distinguish between them.
As a result, we find that the two Needham-Schroeder patterns for the responder
role are subsumed by one shape in the skeletons-and-homomorphisms approach.

We note that the more coarse definition in terms of shapes has a disadvan-
tage: the relation between the shape and its possible executions is slightly more
complicated. Consider e.g. the example in Figure 1. In the case that privk(C) is
not known to the intruder, and C' # B, the shape does not represent a valid ex-
ecution. Hence, in some sense, the shape is an over-approximation of all possible

Complete Characterization of Security Protocols by Pattern Refinement

Run #2
any agent [#2 in role 1

I-> any agent I#2
R ->Eve

Const ni#2

Var nr -> nr#1

Initial intruder knowledge

Run #1
any agent R#1 in role R

I-> any agent #2
R -> any agent R#1

Const nr#

Var ni -> ni#2

.

Run #2
any agent I#2inrolel
| -> any agent 1#2
R -> any agent R#1
Const ni#2
Var nr -> nr#l
Run #1
! any agent R#1 inrole R
send_1 to R#1 | -> any agent 1#2
{ ni#2,1#2 } pk(R#1) R -> any agent R#1
Const nr#l
Var ni -> ni#2
y
read_1 from 1#2

{ ni#2,1#2 } pk(R#1)

y

send_2to 1#2
{ ni#2,nr# } pk(1#2)

read_2 from R#1
{ ni#2,nr#1 } pk(1#2)

y

send_3to R#1
{ nr#l } pk(R#1)

T~

read_3 from 1#2
{ nr#l } pk(R#1)

claim R1

Reachable

[Id 2] Protocol ns3, role R, claim type Reachable

read_1 from #2
{ ni#2,1#2 Jpk(R#1)

send_2 to [#2
{ ni#2,nr#1 }pk(I#2)

fake sender Eve

read_3 from T#2
{ nr#t] }pk(R#1)

claim_R1
Reachable

send_1 to Eve
{ ni#2,1#2 }pk(Eve)

read_2 from Eve
{ ni#2,nr#1 }pk(I#2)

send_3 to Eve
{ nr#1 }pk(Eve)

[Id 3] Protocol ns3, role R, claim type Reachable

7

Fig. 2. Needham-Schroeder, role R complete characterization: exactly two pat-

terns

valid executions. In the case of patterns, any well-typed substitution of variables

is by definition a valid execution trace.

8 C.J.F. Cremers

However, as the more abstract shapes can be more concise, an obvious next
question is whether we can abstract from patterns in the same way, to obtain
a coarser characterization, which could correspond more closely to the shapes
characterization. Hence we introduce the notion of shape approzimation. In this
approximation, an agent communicating with a compromised agent (usually rep-
resented by Eve in Scyther) may also choose to communicate with any honest
agent. Internally, this involves two changes:

— All occurrences of Eve are turned into a variable Anybody of type Agent
— All patterns are projected onto their regular behaviour only, i.e. intruder
events are filtered out

After this, pattern subsumption is tested again, and certain patterns will be sub-
sumed by others: e.g. the normal behaviour of the Needham-Schroeder protocol
is now a subclass of the regular behaviour of the man-in-the-middle attack, in
which Anybody is mapped to Bob.

We discuss empirical results obtained from this approximation in Section 4.

4 Preliminary empirical results

We have applied the modified Scyther algorithm to the protocol models found
in the Scyther distribution. These include a large subset of the SPORE repos-
itory [9]. We have characterized each role of these protocols, by default named
as I (Initiator), R (Responder) and S (Server). The names of the protocols
correspond directly to the names of the protocols as chosen in the Scyther dis-
tribution.

The Scyther tool was run using its default settings (maxruns=>5, typed vari-
ables).

In this default setup, not all roles could be completely characterized. Of the
115 roles characterized in this set, Scyther produced complete characterizations
for 75 roles. We summarize the results in Table 1 and 2.

In Table 1 we list the protocols for which Scyther was able to characterize all
roles. For each role, the number of patterns in the characterization is reported.
E.g. the two party Needham Schroeder protocol (ns3) has 2 patterns for its
responder role, representing the correct behaviour and the man-in-the-middle
attack. The Needham-Schroeder-Lowe protocol (nsl3) has only 1 pattern for the
responder, reflecting that only the correct behaviour is possible.

In Table 2 we list the protocols for which the tool did not yield full character-
izations of each role. For roles for which the characterization was not complete,
we write > X to denote that Scyther finds X patterns, but cannot determine
whether these represent a complete characterization, or that more patterns are
needed.

Approxzimating Shape Characterization using patterns We have experimented
with an approximation of the Complete Shape Characterization of protocols. In

Complete Characterization of Security Protocols by Pattern Refinement 9

Table 1. Complete Pattern Characterizations (Scyther)

Protocol ID
andrew

=
w

andrew-Ban
andrew-LoweBan
ccitth09-1

ccitth09-1c
ccitth09-ban3

ns3

nsl3

ksl-Lowe
neustub-GuttmanHwang

neustub-GuttmanHwang-Repeat
otwayrees

woolamPi-1

woolamPi-2

woolamPi-3

woolamPi-f

yahalom

yahalom-BAN

yahalom-Lowe

el Ve e e e e e e e e e e e M
N = W= N RO OOl = N DN e

= = = = = N N O = =

yahalom-Paulson

this approximation, an agent communicating with a compromised agent (repre-
sented by Eve) may also choose to communicate with any honest agent.

In our test set, this shape approximation did not cause many changes. We
summarize the changes in Table 3. Note that as we did not have access to the
exact protocol descriptions used in CPSA, the numbers in the last table may
not be comparable to the numbers produced by Scyther.

5 Preliminary conclusions and future work

We have sketched an alternative formulation of the complete characterization of
a protocol role in terms of realizable patterns. This approach can result in a larger
characterization set than the shapes-based approach by Doghmi, Guttman and
Thayer, but has the advantage of having a more direct relation to the execution
traces.

The protocol verification tool Scyther was extended to generate the complete
characterizations in patterns. Furthermore, we have implemented an alternative
type of patterns, intended to approximate the coarseness of the shapes approach.
Extensive empirical testing has already been performed with a large set of pro-
tocols. Our approach can deal with all reported CPSA examples, and also with
protocols that have been reported to be problematic for CPSA, such as Otway-
Rees, for which CPSA currently does not terminate.

10 C.J.F. Cremers

Table 2. Incomplete Pattern Characterizations (Scyther)

Protocol ID I R S
andrew-Concrete >2 > 2 -
ccittb09-3 1 >20 -
smartright 1 >1 -
denningSacco >1 >1 1
denningSacco-Lowe >2 >2 1
kaochow 1 > 2 1
kaochow-2 >1 > 2 1
kaochow-3 >1 >2 1
ksl >2 >2 1
needhamschroederpk >20 >20 1
needhamschroederpk-Lowe >20 > 20 1
needhamschroedersk >1 >1 1
needhamschroedersk-amend >1 >1 >1
neustub-Hwang 2 >2 1
spliceAS >18 >20 1
spliceAS-CJ >18 >19 1
spliceAS-HC >18 >20 1
tmn > 15 1 12
wmf 1 >4 >4
wmf-Lowe >4 >4 >4
woolam 3 >3 3
woolamPi 1 >7 >3

Table 3. Scyther: from patterns to shape approximation

Protocol ID Role Patterns Shape approx.
ccitt509-3 R > 20 >5
ns3 R 2 1
needhamschroederpk 1 > 20 > 10
needhamschroederpk R > 20 > 10
needhamschroederpk-Lowe I > 20 > 10
needhamschroederpk-Lowe R > 20 > 10
spliceAS I > 18 > 12
spliceAS R >20 > 16
spliceAS-CJ 1 > 18 >12
spliceAS-CJ R > 19 >9
spliceAS-HC 1 > 18 > 12
spliceAS-HC R > 20 > 16
tmn 1 > 15 >9
tmn S 12 1

Complete Characterization of Security Protocols by Pattern Refinement 11

As future work we will further analyze the empirical results, and optimize
the pattern subsumption testing, which is currently the most time-consuming
step in our method. Nevertheless, all characterizations performed here ran in
less than a few seconds. In particular, in the cases which were also handled by
CPSA, it seems Scyther is at least twice as fast.

Our preliminary results indicate that the pattern approach for complete char-
acterization is both useful and feasible. It is useful in the sense that the relation to
execution traces is straightforward, and feasible in the sense that many protocols
have finite pattern characterizations, and that Scyther can efficiently compute
the complete characterizations in terms of patterns.

References

1. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules.
In: Proc. 14th IEEE Computer Security Foundations Workshop (CSFW), IEEE
Computer Society (2001) 82-96

2. Cremers, C.: Scyther - Semantics and Verification of Security Protocols. Ph.D.
dissertation, Eindhoven University of Technology (2006)

3. Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuellar, J.,
Drielsma, P.H., Hedm, P.C., Kouchnarenko, O., Mantovani, J., Médersheim, S.,
von Oheimb, D., R., M., Santiago, J., Turuani, M., Vigano, L., Vigneron, L.: The
AVISPA tool for the automated validation of internet security protocols and appli-
cations. In: Proc. of CAV’2005. LNCS 3576. Springer-Verlag (2005) 281-285

4. Cremers, C., Lafourcade, P.: Comparing state spaces in automatic security protocol
verification. In: Proc. 7th International Workshop on Automated Verification of
Critical Systems (AVoCS). Electron. Notes Theor. Comput. Sci., Elsevier Science
Publishers B. V. (2007)

5. Doghmi, S., Guttman, J., Thayer, F.: Searching for shapes in cryptographic proto-
cols. In: Proc. 13th Int. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Volume 4424 of Lecture Notes in Computer Science.,
Springer-Verlag (2007) 523-537

6. Doghmi, S., Guttman, J., Thayer, F.: Skeletons and the shapes of bundles. http:
//www.ccs.neu.edu/home/guttman/skeletons.pdf (2006)

7. Doghmi, S., Guttman, J., Thayer, F.: Completeness of the authentication tests. In:
Proc. 12th European Symposium on Research in Computer Security (ESORICS).
(2007)

8. Thayer, F., Herzog, J., Guttman, J.: Strand spaces: Proving security protocols
correct. Journal of Computer Security 7 (1999) 191-230

9. Jacquemard, F.: Security Protocols Open Repository (SPORE) (2007) Available at
http://www.lsv.ens-cachan.fr/spore/index.html.

http://www.ccs.neu.edu/home/guttman/skeletons.pdf
http://www.ccs.neu.edu/home/guttman/skeletons.pdf
http://www.lsv.ens-cachan.fr/spore/index.html

	Complete Characterization of Security Protocols by Pattern Refinement (Work in Progress)
	Cas Cremers

