Challenges for Multi-function SoC Scheduling and Assistive Living
Services

Chi-Sheng Shih
Departmenof Computer Science and Information Engineering
Graduate Institute of Networking and Multimedia
National Taiwan University, Taipei, Taiwan 106
cshih@csie.ntu.edu.tw

1 Introduction real-time computing community [4] show that it is extremely
difficult to explore such anomaly. Second, adding buffers to
the systems also increases the chip size, the manufacture cost,
and energy consumption. Figure 2 shows a bluetooth chip de-
signed by Ericsson in which more the memory occupies more
than half of the chip area.

Tasks on assistive living devices and multi-function SoC
(MFSoC) have the requirements to meet certian timing con-
straint. Examples include the end-to-end throughput con-
straint on MFSoC and deadline constraint on assistive living
devices. However, the workload model on the two applica-
tion domains are different from conventional real-time work-
load models. The new workload model, hence, impose new
scheduling challenges on real-time computing community. In
this short paper, we will discuss the new workload models
and the challenging issues on scheduling such tasks.

2 Challenges on task scheduling on MFSoC

Multiple function SoC design are now popular for embed-
ded multimedia devices and consumer electronics because of
low energy consumption, and compact chip size. Take video
phone as an example. Figure 1 illustrates the task flows on a
video phone. In this example, both H.264 decoding flow and
MP3 decoding flow require Inverse Discrete Cosine Trans- Figyre 2. Layout of Ericsson-VLSI Bluetooth
form (IDCT) and deQuantization (deQ) (Note that enhanced Chip [8]
implementation for the shown functions may be used to opti- P
mize the performance but, without loss of generality, we only
show the basic implementations.) We can reduce manufac-
ture cost by allowing H.264 decoding and MP3 decoding task .
flows to share the processing elements for IDCT and deQ.MeMOry to queue up the requests. However, this approach

Unlike general microprocessors, task execution on such prodreéatly increases the communication overhead due to the re-
cessing elements (or called IP) cannot be interrupted. OtherSCUrce contention on bus and memory controller. .
There are three major challenges for meeting the timing

wise, the result is lost and the task fails. The system needsto ' . ts for MESoC
start the task flow from the beginning. Consequently, the task'€dUIrements ior ot.

may fail to meet its performance requirement such as jitterre- o \Worst-case response time analysis: analyzing the

quirement. We can avoid such failures by adding memory to \yorst case response times for all the tasks allows the de-
queue up the inputs for the upcoming requests, and delay the gjgners to foresee the timing behaviors of the tasks dur-
requests until the requested processing element is available. jnq the design time. As discussed above, the tasks on

One alternatie for adding buffers is using external shared

However, without properly designed buffering and schedul- the multi-function SoCs are executed on non-preemptive

ing mechanism, the system performance could be worsenin processing elements and have arbitrary release times.

certain cases. However, there is no poly-nominal algorithm for worst
First of all, adding buffers to the systems may prolong case response time analysis for such workloads.

task response times. It is mostly caused by the scheduling

anomaly which occurs when non-preemptible processing el- e Optimal buffer allocation: buffer allocation for the
ements are used in the systems. In particular, it may turn processing elements on an SoC has a significant impact
the best-case performance into worst-case performance inthe on the schedule for bus transactions and task executions.
platform-base SoC [5]. The literature in distributed (hard) An optimal buffer allocation should minimize the size of

Dagstuhl Seminar Proceedings 08071
Scheduling
http://drops.dagstuhl .de/opus/volltexte/2008/1486

H.264 Encoding
B MP3 Decoding

H.264 Decoding H.264 Encoding Task Flow
Microprocessor 77 222 NN\ | | PD1 | | ME H Diff H DCT H Q I_’l VLC |
01 3 5 Time(t)
'V Z MP3 Encoding Task Flow
PE(ME)
1 Time(t) [PD3 =] HD [de@ }—]DCT =] FB]

PE(HD) 2&%

Time(t) H.264 Decoding Task Flow

[P2 =] ae@ =T }—] e]

Time(t)

MP3 decoding fails.

Figure 1. Video Phone Application SoC

buffer so as to reduce the manufacture cost and minimize nEn 8
the impacts on task scheduling.
e Efficient run-time scheduling: during the run-time, fmelt)
scheduling decisions are made for every few millisec- e
onds or less. Hence, the mechanism for selecting the
tasks to occupy the processing elements should be effi- D
cient and scalable in terms of the system workloads.

Time(t)

Time(t)

TdeQ k e

Below we discuss the causes of the hardware contention ! 9 Time(®)
between the subtasks and develop a novel approach to avoid Figure 3. A contention free schedule by con-
such contention. Before moving on, we digress briefly to an- trolling staring time.
swer a question that may arise: Why not simply add N-copies
buffer for each processing element to queue all new arrivals
and avoid hardware contention? Although adding N-copies The major challenges for the approaches are twofold: (1)
buffer may avoid or eliminate hardware contention, there are gy to predict the hardware contention at a low run-time
several drawbacks to do so. First of all, adding intermediate g\erhead when a task flow arrives and (2) how to analyze the
buffer increases the chip size and, hence, the manufacturingyrst case response time for each task flow so as to conduct
cost. Secondly, a dispatcher is required for each processingne schedulability test. An intuitive approach for avoiding
element to store new arrivals and the requesting queue camgrgware contention is to analyze all possible combinations

be updated accordingly. Last but not least, it becomes t00u¢ rglease times, and it is not difficult to show that the solu-
complex to simulate or analyze the timing behaviors for the jon space exponentially grows.

system. Specifically, when non-preemptible resources such
as processing elements are shared among tasks, scheduli .
anoF;naIies mgy occur [1, 7, 3, 2], as discugsed in detail ear%;-1 Observation on Greedy Approach
lier. As a result, adding N-copies buffer in every processing
element not only increases the complexity of designing pro- One simple way to avoid processing element contention is
cessing elements but also causes unpredictable timing behavadding N-copies buffer for every processing element. Intu-
ior for the system. itively, this approach can queue up the arrival data and in-
According to our observation, a contention free schedule creases the utilization of the processing elements. Hence,
can be found by controlling the starting time of a sequence ofthe total response time should be shorten. However, it is
hardware component request. The starting time control can benly applicable for independent processes. When the non-
implemented on microprocessors by controlling the departurepreemptible resources are shared among task flows, which
time of computation task on microprocessors. An exampleis very common in multi-function SoC design, scheduling
shown in Figure 3 illustrates the rationale of controlling the anomalies occur. Figure 4 and Figure 5 show one example
starting times of task flows. for scheduling anomalies. Two task flows in Figure 4 and Fig-
The example uses the same task flow given in Figure 1.ure 5,71 andr,, are used to illustrate the scheduling anomaly
The release times of;, 75 andrs arel, 3 and5, respectively. problem.
As a reminder, subtasks ; will contentIl;. with subtask Task flowsr; and, share two processing elements;
T2,2 at time 5 when every task is started at its release time inandr. Vertical arrows in the figures represent the release of
FIFO manner as shown in Figure 1. The starting time guardersubtasks. We assume that the release timegs0andr, ; are
intentionally delays the starting time of (for instance, hold time 0 and2, respectively. When there are N-copies buffer at
73 0N the microprocessor) until time 9. At time 9, the guarder 7, andn;, and STG algorithm is not applied, Figure 4 shows
triggers subtasks ; to execute function “deQ.” By control- the schedule resultr; 3 is blocked from time9 to time 12
ling the starting times for task flows, the hardware contention andr; ¢ is blocked from timel9 to time 26 for processing el-
between subtasks , andrs ; are avoided. ement contention. The response times;odndr, are26 and

EBn B8n

Figure 4.

@Bn 8

Time(t)

Time(t)

Time(t)

Time(t)

Figure 5. One-copy Buffer Schedule Example

34, respectively. When there is only one copy buffer in every adding N-copies buffer on every processing element in most
processing element and STG algorithm is applied, Figure 5cases. In this section, we propose an algorithm to minimize
shows the schedule results. To avoid processing element conthe response time by adding "some” processing elements with
tention, the starting time af, ; is delayed for 5 units of time. N-copies buffer and STG supporting. The motivating exam-
In other words, subtask ; onm; does not start until time 8. ple is shown in Figure 6 and Figure 7.
As a result, the response times of task flawsndr, are23
ands32, respectively.

As shown in Figure 4, queuing up data on processing ele-)
ment buffer might not help in completing a sequence of sub- Task flowsr; andr, share three processing elements;
tasks earlier, while no delaying of subtask starting time is pro- 75 andrg. Vertical arrows in the figures represent the release
vided. This is because the buffering may change the executiorfimes of subtasks. We assume that the release times;of
order of succussing subtasks and proiong the response tim@ndr,,; are timed and2, respectively. Whem, has N-copies
for some of the tasks. Although it is possible to derive the op- buffer and the STG algorithm is applied, Figure 6 shows the
timal starting times under certain assumptions, the challengeschedule result. To avoid processing element contention, the
remain for general cases: (1) subtasks might share processingtarting time ofr; 3 is delayed for 1 units of time imy. The
elements and have precedence constraints among them, ari@sponse times of, andr, are27 and22, respectively. When
(2) a subtask has its flexibility to delay its starting time, and there is only one copy buffer in every processing element and
the starting time delay of any subtask could have an impactSTG algorithm is applied, Figure 7 shows the schedule re-
on that of other subtasks. sults. To avoid processing element contention, subtask

We must point out that even though it is very difficult to On m does not start until time 8. As a result, the response
have an optimal solution to determine a starting time delay times of task flows, andr, are23 and28, respectively. The
for each task flow, we could still have a pessimistic bound on reader might note that the response times of each task in Fig-
how long a subtask could be delayed by subtasks of other taskire 6 will be the same as adding N-copies buffer on every
flows. For example, if a processing element might be sharedprocessing element in the same task flow set. However, this
amongm subtasks, each subtask would not be delayed for thegreedy approach will need more buffer size than Figure 6.
execution on the processing element for more than- 1)c
units of time, where is the execution time on that processing

element.
We can prove the NP-completeness of buffer placement

by showing that Knapsack problem[6] is as hard as the prob-
2.2 Challenges for Buffer Placement on MFSoC lem. One can consider the makespan of the task flow set as

the profit, processing element as an object and the size of N-

In this section, we discuss the challenges for buffer place-copies buffer of a processing element as the cost of an object,

ment of MFSoC. By the observation in Section 2.1, the read- in the Knapsack problem. In this section, we shall propose an
ers might note that the greedy approach does not always inalgorithm for the multi-flow buffer minimization problem. A
troduce the minimum response time on task flows. How- pseudo-polynomial time dynamic programming-based algo-
ever, task flows by STG algorithm will be longer than that of rithm is proposed to solve the problem.

|77 R = g

Time(t)
Time(t)
Time(t)
71,3
1213 17 Time(t)
5
12 17 22 Time(t)
Ty ¥ T
6
17 22 27 Time(t)
Figure 6. 74 with N-copies Buffer Schedule Example
1 &
71,1 T2,1
!
0 2 8 Time(t)
71,2
T2
2 Time(t)
3
Time(t)
Ty
9 13 14 18 Time(t)
* T1.4 f T2.4
7r E RO
13 18 23 Time(t)
* 715 * 725
.
18 23 28 Time(t)
Figure 7. One-copy Buffer Schedule Example
3 Challengesfor Integrating Assistive Living I T [Y-
Devices — = eee [
! N Prescription Entry Systems
The use of medications is ubiquitous in terms of location i<m—{ Medication Authoring Tool
and time. According to the report issued by Committee on 3 J

Identifying and Preventing Medication Errors in 2007 [?],
more than 75%of U.S. adults take one medication (includ-

: L o A 1
ing prescription or over the counter drugs, vitamin/mineral, oo e e—T
or herbal supplement.) Among them, more than thirty per- "%ﬁi
cent take five different medications per week. Unfortunately, pedicaronipipense)
errors in the medication-use process can occur at any point
of the process and in any care-setting. For instance, the re- Figure 8. Medication Process
port [?] estimates that on average, at least one medication er-
ror per day per patient, with considerable variation in error
rates across facilities. Such medication errors harm at least . . -
1.5 million people every year in United States, according to '0rs. Gandhi et al.[?] suggest that computerized prescribing
the same report. The exira costs for treating drug-related in-Will b€ important in the outpatient setting, although it may
juries occurring in hospitals alone conservatively amount to N0t Yield significant safety benefits without added decision
3.5 billion US dollars a year, not including lost wages and SUPport. Equally important are likely to be approaches that
productivity. improve co.mmumc.atlo.n between patients and prOV|dgrs.
Medication-use system includes the prescription entry Integrating medication sub-systems and automating the
sub-system in hospitals and clinics, prescription refill sub- medication process enhance the medication compliance and
systems in pharmacies, and medication dispensing subprevent the medication errors, causec_i by pommunlcatlon mis-
systems for medication users. Figure 8 illustrates the majortakes between care-takers and medical institutes. There are
sub-systems in medication-use systems and the interaction§1any attempts to integrate medication-use sub-systems to
between them. Fortunately, many of the medication-use in-help the patient in hospital or outpatient settings to comply
juries are preventable. Among the preventable injuries, onewith medication directions. Many of them are designed and
forth occurs in hospitals, one half occurs in long-term care implemented with typical medication-use process as shown
centers and the remainder occurs in outpatient clinics. Howin Figure 8 and most of the systems are implemented as a
information about a drug is communicated to providers and tightly-coupled close system.
consumers can directly affect the frequency of medication er- A tightly-coupled close system has its own merits. For

oo Medication Schedule Specification

instance, it may have better performance, compared to loosely
coupledsystems. However, it also has several drawbacks.

e Interoperability: interoperability is the ability of two
or more systems or components to exchange informa-
tion and to use the information that has been exchanged.
A close system may use proprietary message exchange
protocol, communication protocol, or message format.
As a result, other systems have less chance to exchange
information with it. As discussed earlier, medication-use
system is a dynamic system. The participant and how
the participant interact with each other change over time.
When a new participant joins or an existing feature is re-
vised, it may lead to major revision to other sub-systems
in the system.

e Reliability: a close system assumes that the participants
of the system are known and static. Hence, how the par-
ticipants interact with each other is defined in the sys-
tem and is difficult to revise. Hence, when some of the
participants malfunction, the system may not be able to
function well and, hence, have less reliability.

References

(1]

(2]

(3]

(4]

(5]
(6]
(7]

(8]

L. Abeni and G. Buttazzo. Integrating multimedia applica-
tions in hard real-time systems. IEEE Real Time System
Symposium, pages 4-13, 1998.

Y.-S. Chen, L.-P. Chang, T.-W. Kuo, and A. K. Mok. Real-time
task scheduling anomaly:observations and preventioACH

Symposiunon Applied Computing, Mar 2005.
R. Graham. Bounds on the performance of scheduling

algorithm. Computer and Job Shop Scheduling Theory,

E.G.Coffman, pages 165-227, 1976.
John A. Stankovic, Marco Spuri, Marco Di Natale, and Gior-

gio C. Buttazzo. Implications of classical scheduling results for

real-time systemsComputer, 28(6):16 — 25, June 1995.
K. Richter, M. Jersak, and R. Ernst. A formal approach to mpsoc

performance verificationrComputer, 36(4):60 — 67, April 2003.
M. R. Garey and D. S. Johnso@omputerandintractability: a

guideto thetheoryof NP-completeness. W. H. Freeman, 1979.
A. K. Mok. Tracking real-time systems requirements. In

Workshopon Modelling SoftwareSystemStructuresn a fastly

movingscenario, June 2000.
S.B. FurberARM System-on-Chip\rchitecture. Addison Wes-

ley Longman, 2000.

