
Challenges for Multi-function SoC Scheduling and Assistive Living
Services

Chi-Sheng Shih
Departmentof Computer Science and Information Engineering

Graduate Institute of Networking and Multimedia
National Taiwan University, Taipei, Taiwan 106

cshih@csie.ntu.edu.tw

1 Introduction

Tasks on assistive living devices and multi-function SoC
(MFSoC) have the requirements to meet certian timing con-
straint. Examples include the end-to-end throughput con-
straint on MFSoC and deadline constraint on assistive living
devices. However, the workload model on the two applica-
tion domains are different from conventional real-time work-
load models. The new workload model, hence, impose new
scheduling challenges on real-time computing community. In
this short paper, we will discuss the new workload models
and the challenging issues on scheduling such tasks.

2 Challenges on task scheduling on MFSoC

Multiple function SoC design are now popular for embed-
ded multimedia devices and consumer electronics because of
low energy consumption, and compact chip size. Take video
phone as an example. Figure 1 illustrates the task flows on a
video phone. In this example, both H.264 decoding flow and
MP3 decoding flow require Inverse Discrete Cosine Trans-
form (IDCT) and deQuantization (deQ) (Note that enhanced
implementation for the shown functions may be used to opti-
mize the performance but, without loss of generality, we only
show the basic implementations.) We can reduce manufac-
ture cost by allowing H.264 decoding and MP3 decoding task
flows to share the processing elements for IDCT and deQ.
Unlike general microprocessors, task execution on such pro-
cessing elements (or called IP) cannot be interrupted. Other-
wise, the result is lost and the task fails. The system needs to
start the task flow from the beginning. Consequently, the task
may fail to meet its performance requirement such as jitter re-
quirement. We can avoid such failures by adding memory to
queue up the inputs for the upcoming requests, and delay the
requests until the requested processing element is available.
However, without properly designed buffering and schedul-
ing mechanism, the system performance could be worsen in
certain cases.

First of all, adding buffers to the systems may prolong
task response times. It is mostly caused by the scheduling
anomaly which occurs when non-preemptible processing el-
ements are used in the systems. In particular, it may turn
the best-case performance into worst-case performance in the
platform-base SoC [5]. The literature in distributed (hard)

real-time computing community [4] show that it is extremely
difficult to explore such anomaly. Second, adding buffers to
the systems also increases the chip size, the manufacture cost,
and energy consumption. Figure 2 shows a bluetooth chip de-
signed by Ericsson in which more the memory occupies more
than half of the chip area.

Figure 2. Layout of Ericsson-VLSI Bluetooth
Chip [8]

One alternative for adding buffers is using external shared
memory to queue up the requests. However, this approach
greatly increases the communication overhead due to the re-
source contention on bus and memory controller.

There are three major challenges for meeting the timing
requirements for MFSoC.

• Worst-case response time analysis: analyzing the
worst case response times for all the tasks allows the de-
signers to foresee the timing behaviors of the tasks dur-
ing the design time. As discussed above, the tasks on
the multi-function SoCs are executed on non-preemptive
processing elements and have arbitrary release times.
However, there is no poly-nominal algorithm for worst
case response time analysis for such workloads.

• Optimal buffer allocation: buffer allocation for the
processing elements on an SoC has a significant impact
on the schedule for bus transactions and task executions.
An optimal buffer allocation should minimize the size of

Dagstuhl Seminar Proceedings 08071 
Scheduling 
http://drops.dagstuhl.de/opus/volltexte/2008/1486 

1



Time(t)

Time(t)

Time(t)

Time(t)
Microprocessor

PE(ME)

PE(HD)

PE(deQ)

H.264 Encoding

MP3 Decoding

H.264 Decoding

0 1 3 5

1

3 4

4 5

MP3 decoding fails.

H.264 Encoding Task Flow

PD1 ME Diff DCT Q VLC

MP3 Encoding Task Flow

PD3 HD deQ IDCT FB

H.264 Decoding Task Flow

PD2 deQ IDCT MC

Figure 1. Video Phone Application SoC

buffer so as to reduce the manufacture cost and minimize
the impacts on task scheduling.

• Efficient run-time scheduling: during the run-time,
scheduling decisions are made for every few millisec-
onds or less. Hence, the mechanism for selecting the
tasks to occupy the processing elements should be effi-
cient and scalable in terms of the system workloads.

Below we discuss the causes of the hardware contention
between the subtasks and develop a novel approach to avoid
such contention. Before moving on, we digress briefly to an-
swer a question that may arise: Why not simply add N-copies
buffer for each processing element to queue all new arrivals
and avoid hardware contention? Although adding N-copies
buffer may avoid or eliminate hardware contention, there are
several drawbacks to do so. First of all, adding intermediate
buffer increases the chip size and, hence, the manufacturing
cost. Secondly, a dispatcher is required for each processing
element to store new arrivals and the requesting queue can
be updated accordingly. Last but not least, it becomes too
complex to simulate or analyze the timing behaviors for the
system. Specifically, when non-preemptible resources such
as processing elements are shared among tasks, scheduling
anomalies may occur [1, 7, 3, 2], as discussed in detail ear-
lier. As a result, adding N-copies buffer in every processing
element not only increases the complexity of designing pro-
cessing elements but also causes unpredictable timing behav-
ior for the system.

According to our observation, a contention free schedule
can be found by controlling the starting time of a sequence of
hardware component request. The starting time control can be
implemented on microprocessors by controlling the departure
time of computation task on microprocessors. An example
shown in Figure 3 illustrates the rationale of controlling the
starting times of task flows.

The example uses the same task flow given in Figure 1.
The release times ofτ1, τ2 andτ3 are1, 3 and5, respectively.
As a reminder, subtaskτ3,1 will content ΠdeQ with subtask
τ2,2 at time 5 when every task is started at its release time in
FIFO manner as shown in Figure 1. The starting time guarder
intentionally delays the starting time ofτ3 (for instance, hold
τ3 on the microprocessor) until time 9. At time 9, the guarder
triggers subtaskτ3,1 to execute function “deQ.” By control-
ling the starting times for task flows, the hardware contention
between subtasksτ2,2 andτ3,1 are avoided.

Time(t)

Time(t)

Time(t)

Time(t)

πME

πHD

πdeQ

τ1 τ2 τ3

τ1 τ2 τ3

0 1 3 5 9
τ1,1

1
τ2,1

3 4
τ2,2 τ3,1

4 9

Figure 3. A contention free schedule by con-
trolling staring time.

The major challenges for the approaches are twofold: (1)
how to predict the hardware contention at a low run-time
overhead when a task flow arrives and (2) how to analyze the
worst case response time for each task flow so as to conduct
the schedulability test. An intuitive approach for avoiding
hardware contention is to analyze all possible combinations
of release times, and it is not difficult to show that the solu-
tion space exponentially grows.

2.1 Observation on Greedy Approach

One simple way to avoid processing element contention is
adding N-copies buffer for every processing element. Intu-
itively, this approach can queue up the arrival data and in-
creases the utilization of the processing elements. Hence,
the total response time should be shorten. However, it is
only applicable for independent processes. When the non-
preemptible resources are shared among task flows, which
is very common in multi-function SoC design, scheduling
anomalies occur. Figure 4 and Figure 5 show one example
for scheduling anomalies. Two task flows in Figure 4 and Fig-
ure 5,τ1 andτ2, are used to illustrate the scheduling anomaly
problem.

Task flowsτ1 andτ2 share two processing elements:π4

andπ7. Vertical arrows in the figures represent the release of
subtasks. We assume that the release times ofτ1,1 andτ2,1 are
time0 and2, respectively. When there are N-copies buffer at
π4 andπ7, and STG algorithm is not applied, Figure 4 shows
the schedule result.τ1,3 is blocked from time9 to time 12

andτ2,6 is blocked from time19 to time26 for processing el-
ement contention. The response times ofτ1 andτ2 are26 and

2



Time(t)

Time(t)

Time(t)

Time(t)

Time(t)

Time(t)

Time(t)
π1

π2

π3

π4

π5

π6

π7

τ1 τ2

0

τ1,1 τ2,1

2 3
τ1,2

2 9
τ2,2

3 8
τ1,3τ2,3

8 12 16
τ1,4

1816

12

τ2,4

19

191818

τ1,5

26

τ2,5

34

Figure 4. N-copies Buffer Schedule Example

Time(t)

Time(t)

Time(t)

Time(t)

Time(t)

Time(t)

Time(t)
π1

π2

π3

π4

π5

π6

π7

τ1 τ2

0

τ1,1 τ2,1

2 7 8
τ1,2

2 9
τ2,2

8 13
τ2,3τ1,3

9 13 17
τ1,4

1513

17

τ2,4

24

15 24

τ1,5

23

τ2,5

32

Figure 5. One-copy Buffer Schedule Example

34, respectively. When there is only one copy buffer in every
processing element and STG algorithm is applied, Figure 5
shows the schedule results. To avoid processing element con-
tention, the starting time ofτ2,1 is delayed for 5 units of time.
In other words, subtaskτ2,1 onπ1 does not start until time 8.
As a result, the response times of task flowsτ1 andτ2 are23

and32, respectively.
As shown in Figure 4, queuing up data on processing ele-

ment buffer might not help in completing a sequence of sub-
tasks earlier, while no delaying of subtask starting time is pro-
vided. This is because the buffering may change the execution
order of succussing subtasks and prolong the response time
for some of the tasks. Although it is possible to derive the op-
timal starting times under certain assumptions, the challenges
remain for general cases: (1) subtasks might share processing
elements and have precedence constraints among them, and
(2) a subtask has its flexibility to delay its starting time, and
the starting time delay of any subtask could have an impact
on that of other subtasks.

We must point out that even though it is very difficult to
have an optimal solution to determine a starting time delay
for each task flow, we could still have a pessimistic bound on
how long a subtask could be delayed by subtasks of other task
flows. For example, if a processing element might be shared
amongm subtasks, each subtask would not be delayed for the
execution on the processing element for more than(m − 1)c
units of time, wherec is the execution time on that processing
element.

2.2 Challenges for Buffer Placement on MFSoC

In this section, we discuss the challenges for buffer place-
ment of MFSoC. By the observation in Section 2.1, the read-
ers might note that the greedy approach does not always in-
troduce the minimum response time on task flows. How-
ever, task flows by STG algorithm will be longer than that of

adding N-copies buffer on every processing element in most
cases. In this section, we propose an algorithm to minimize
the response time by adding ”some” processing elements with
N-copies buffer and STG supporting. The motivating exam-
ple is shown in Figure 6 and Figure 7.

Task flowsτ1 andτ2 share three processing elements:π4,
π5 andπ6. Vertical arrows in the figures represent the release
times of subtasks. We assume that the release times ofτ1,1

andτ2,1 are time0 and2, respectively. Whenπ4 has N-copies
buffer and the STG algorithm is applied, Figure 6 shows the
schedule result. To avoid processing element contention, the
starting time ofτ1,3 is delayed for 1 units of time inπ4. The
response times ofτ1 andτ2 are27 and22, respectively. When
there is only one copy buffer in every processing element and
STG algorithm is applied, Figure 7 shows the schedule re-
sults. To avoid processing element contention, subtaskτ2,1

on π1 does not start until time 8. As a result, the response
times of task flowsτ1 andτ2 are23 and28, respectively. The
reader might note that the response times of each task in Fig-
ure 6 will be the same as adding N-copies buffer on every
processing element in the same task flow set. However, this
greedy approach will need more buffer size than Figure 6.

We can prove the NP-completeness of buffer placement
by showing that Knapsack problem[6] is as hard as the prob-
lem. One can consider the makespan of the task flow set as
the profit, processing element as an object and the size of N-
copies buffer of a processing element as the cost of an object,
in the Knapsack problem. In this section, we shall propose an
algorithm for the multi-flow buffer minimization problem. A
pseudo-polynomial time dynamic programming-based algo-
rithm is proposed to solve the problem.

3



Time(t)

Time(t)

Time(t)

Time(t)

Time(t)

Time(t)
π1

π2

π3

π4

π5

π6

τ1 τ2

0

τ1,1 τ2,1

2 3
τ1,2

2 8 9
τ2,2

3 8
τ1,3τ2,3

8 12 13 17

12

τ2,4

1717

τ1,4

22

17 22

τ2,5

22

τ1,5

27

Figure 6. π4 with N-copies Buffer Schedule Example

Time(t)

Time(t)

Time(t)

Time(t)

Time(t)

Time(t)
π1

π2

π3

π4

π5

π6

τ1 τ2

0

τ1,1 τ2,1

2 8 9
τ1,2

2 9
τ2,2

9 14
τ2,3τ1,3

9 13 14 18

13

τ1,4

1818

τ2,4

23

18 23

τ1,5

23

τ2,5

28

Figure 7. One-copy Buffer Schedule Example

3 Challengesfor Integrating Assistive Living
Devices

The use of medications is ubiquitous in terms of location
and time. According to the report issued by Committee on
Identifying and Preventing Medication Errors in 2007 [?],
more than 75%of U.S. adults take one medication (includ-
ing prescription or over the counter drugs, vitamin/mineral,
or herbal supplement.) Among them, more than thirty per-
cent take five different medications per week. Unfortunately,
errors in the medication-use process can occur at any point
of the process and in any care-setting. For instance, the re-
port [?] estimates that on average, at least one medication er-
ror per day per patient, with considerable variation in error
rates across facilities. Such medication errors harm at least
1.5 million people every year in United States, according to
the same report. The extra costs for treating drug-related in-
juries occurring in hospitals alone conservatively amount to
3.5 billion US dollars a year, not including lost wages and
productivity.

Medication-use system includes the prescription entry
sub-system in hospitals and clinics, prescription refill sub-
systems in pharmacies, and medication dispensing sub-
systems for medication users. Figure 8 illustrates the major
sub-systems in medication-use systems and the interactions
between them. Fortunately, many of the medication-use in-
juries are preventable. Among the preventable injuries, one
forth occurs in hospitals, one half occurs in long-term care
centers and the remainder occurs in outpatient clinics. How
information about a drug is communicated to providers and
consumers can directly affect the frequency of medication er-

Meidication Dispenser

PES PES PES

(Online) Drug Library

Local DB

Medication Authoring Tool

Prescription Entry Systems

Dispenser
Interface Specification

Dispenser
Command Interface

Medication Schedule Specification

n1 2

Figure 8. Medication Process

rors. Gandhi et al.[?] suggest that computerized prescribing
will be important in the outpatient setting, although it may
not yield significant safety benefits without added decision
support. Equally important are likely to be approaches that
improve communication between patients and providers.

Integrating medication sub-systems and automating the
medication process enhance the medication compliance and
prevent the medication errors, caused by communication mis-
takes between care-takers and medical institutes. There are
many attempts to integrate medication-use sub-systems to
help the patient in hospital or outpatient settings to comply
with medication directions. Many of them are designed and
implemented with typical medication-use process as shown
in Figure 8 and most of the systems are implemented as a
tightly-coupled close system.

A tightly-coupled close system has its own merits. For

4



instance, it may have better performance, compared to loosely
coupledsystems. However, it also has several drawbacks.

• Interoperability: interoperability is the ability of two
or more systems or components to exchange informa-
tion and to use the information that has been exchanged.
A close system may use proprietary message exchange
protocol, communication protocol, or message format.
As a result, other systems have less chance to exchange
information with it. As discussed earlier, medication-use
system is a dynamic system. The participant and how
the participant interact with each other change over time.
When a new participant joins or an existing feature is re-
vised, it may lead to major revision to other sub-systems
in the system.

• Reliability: a close system assumes that the participants
of the system are known and static. Hence, how the par-
ticipants interact with each other is defined in the sys-
tem and is difficult to revise. Hence, when some of the
participants malfunction, the system may not be able to
function well and, hence, have less reliability.

References

[1] L. Abeni and G. Buttazzo. Integrating multimedia applica-
tions in hard real-time systems. InIEEE Real Time System
Symposium, pages 4–13, 1998.

[2] Y.-S. Chen, L.-P. Chang, T.-W. Kuo, and A. K. Mok. Real-time
task scheduling anomaly:observations and prevention. InACM
SymposiumonAppliedComputing, Mar 2005.

[3] R. Graham. Bounds on the performance of scheduling
algorithm. Computer and Job Shop Scheduling Theory,
E.G.Coffman, pages 165–227, 1976.

[4] John A. Stankovic, Marco Spuri, Marco Di Natale, and Gior-
gio C. Buttazzo. Implications of classical scheduling results for
real-time systems.Computer, 28(6):16 – 25, June 1995.

[5] K. Richter, M. Jersak, and R. Ernst. A formal approach to mpsoc
performance verification.Computer, 36(4):60 – 67, April 2003.

[6] M. R. Garey and D. S. Johnson.Computersandintractability: a
guideto thetheoryof NP-completeness. W. H. Freeman, 1979.

[7] A. K. Mok. Tracking real-time systems requirements. In
Workshopon Modelling SoftwareSystemStructuresin a fastly
movingscenario, June 2000.

[8] S.B. Furber.ARM System-on-ChipArchitecture. Addison Wes-
ley Longman, 2000.

5




