
Uniprocessor EDF Feasibility is an Integer

Problem

Enrico Bini

Scuola Superiore Sant’Anna, Real-Time Systems Lab
Piazza Martiri della Libertà 33, 56127, Pisa, Italy

Abstract. The research on real-time scheduling has mostly focused on
the development of algorithms that allows to test whether the constraints
imposed on the task execution (often expressed by deadlines) are verified
or not. However, in many design scenarios the task set is only partially
known and these algorithms cannot be applied because they require the
complete knowledge of all the parameters of the task set. Moreover, very
often the designer has the freedom to select some of the task set pa-
rameters in order to maximize the system performance, and an arbitrary
selection of the free parameters can lead either to poor performance or to
a constraint violation. It is then useful to describe the feasibility region

of the task set parameters by equations instead of by algorithms, so that
optimization algorithms can be applied to find the best assignment to
the free variables.
In this paper we formulate the EDF schedulability on a single proces-
sor through a combination of linear constraints. We study the geometry
of the feasibility region of task deadlines when computation times and
periods are known.

Keywords. EDF schedulability condition, optimal deadline assignment.

1 Introduction

The software of control systems is typically implemented through a set of periodic
activities performing data sampling, sensory processing, control, action planning,
and actuation. When several of such activities execute concurrently in the same
processor, however, each control task may experience a variable delay and jitter,
mainly due to the interference created by the other tasks. If not properly taken
into account, delays and jitter may degrade the performance of the system and
even jeopardize its stability [1–3].

A common practice to reduce jitter and delay is to limit the execution interval
of each task by setting a suitable relative deadline. Working on this line, Baruah
at al. [4] proposed two methods (with different complexity and performance) for
assigning shorter relative deadlines to tasks and guaranteeing the schedulability
of the task set.

Several authors [5–8] independently proposed different algorithms for com-
puting the minimum deadline of a newly arrived task, assuming the existing

Dagstuhl Seminar Proceedings 08071
Scheduling
http://drops.dagstuhl.de/opus/volltexte/2008/1488

2 E. Bini

task set is feasibly schedulable by Earliest Deadline First (EDF). The problem
of these methods is that they can hardly be extended to reduce a set of arbitrary
deadlines, but can only be applied to a single task at a time, following a given
order, as suggested by [8]. In this way, however, the only task which experiences
a significant deadline reduction is the first task in the sequence, since it can
use all the slack available in the task set to minimize its deadline, leaving little
margin for the remaining tasks. To apply a more uniform deadline reduction in
the task set, Balbastre et al. [7] proposed an algorithm able to scale all deadlines
by the same factor. The problem of this approach, however, is that a uniform
deadline reduction may not achieve a significant improvement in terms of jitter
and delays, because all deadlines are reduced and, in some cases, the schedule
could even remain unchanged.

In this paper, we formally demonstrate an alternative condition for testing the
schedulability under the EDF scheduling algorithm. This new formulation allows
the description of the feasibility region of the task deadlines. The knowledge of
such a region is extremely useful in the design process, since it allows the designer
to select the set of relative deadlines that maximizes a given performance index
defined over the task set. This paper greatly simplifies the approach proposed by
Bini and Buttazzo [9] and it provides deeper insights. Nonetheless also a convex
restriction of the feasibility region was described [9].

2 Terminology and Notation

We now present the adopted terminology and notation.

The execution platform is a single processor and the preemption is allowed.

We consider a set T of n periodic tasks. Each task, denoted by τi, is activated
periodically over time. The amount of work that must be executed by a task at
each activation is called job. All the jobs of the task τi have the same execution
time Ci and are activated every period Ti. The jobs of τi must complete not
later than Di time units after the activation (Di is called relative deadline or,
sometimes, simply deadline). We say that the task set T has implicit deadlines if
Di = Ti, constrained deadlines if Di ≤ Ti, or arbitrary deadlines if the deadlines
are not constrained. In this paper we assume arbitrary deadlines. Sometime we
denote the task τi also by the triplet (Ci, Ti, Di) and the task set T by (C,T,D),
which are the vectors of computation times, periods, and deadlines.

The critical scenario of activations (i.e. if no deadline is missed in the critical
scenario then no deadline is ever missed) occurs when all the tasks start activat-
ing jobs at the same time. It is then convenient to label by 0 the instant when
all the tasks start activating their first job. Given these hypothesis, it follows
that the activation of the jth job of τi occurs at aij = (j − 1)Ti and its absolute
deadline dij is at dij = (j − 1)Ti + Di.

Another significant feature related to the task τi is its utilization Ui = Ci

Ti
.

It represents the fraction of time that is required by the task. The sum of all
the task utilizations U =

∑n
i=1 Ui is the total utilization of the task set. It is

Uniprocessor EDF Feasibility is an Integer Problem 3

straightforward to see that if U > 1, then some deadline is going to be missed
because the processor is overloaded.

All these parameters (Ci, Ti, Di) are real-valued. We extend the notion of
least common multiple also to real numbers meaning that, given a, b ∈ R then

lcm(a, b) = inf{x ∈ R : ∃p, q ∈ N+ x = p a = q b}

We schedule the jobs by EDF [10]. EDF assigns the highest priority to the job
which has the earliest absolute deadline dij . If two jobs have the same absolute
deadline, tie is broken arbitrarily.

3 Standard Schedulability Analysis in EDF

The schedulability analysis is developed to check whether some deadlines can be
missed or not. The classic way of performing schedulability analysis is based on
the “demand-supply” approach. In this approach, it is required that the work
demanded by the task set does not exceed the time supplied by the execution
platform.

In the EDF scheduling algorithm, the demand is given by amount of com-
putation required by all the jobs whose activation aij and absolute deadline dij

can fit in an interval long t. Since the activation ai1 of the first job of τi occurs
at 0, the maximum number of τi jobs that can fit the interval [0, t] is

max

{

0,

⌊

t + Ti − Di

Ti

⌋}

Figure 1 shows the number of jobs given by the previous expression as t varies.

0

1

2

3

4

jobs num. in [0, t]

t

Fig. 1. Number of jobs of a single task.

Since the critical scenario occurs when all the tasks are activated simulta-
neously the demand of the task set is given by the sum of the demand of each
task

n
∑

i=1

max

{

0,

⌊

t + Ti − Di

Ti

⌋}

Ci

Hence the next theorem provides a necessary and sufficient condition for the
EDF schedulability.

4 E. Bini

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(3,7,7)

(3,6,9)

(1,4,3)
1

1

1

1 2 2

2

1 2

3

1

3 4

3

2 3

2

4

t

t,
P

i
max{0,

j

t−Di+Ti

Ti

k

}Ci

Fig. 2. The EDF schedulability test.

Theorem 1 (Lemma 3 in [11]). The task set T = {(Ci, Ti, Di) : i = 1, . . . , n}
is schedulable by EDF if and only if:

∀t ≥ 0

n
∑

i=1

max

{

0,

⌊

t + Ti − Di

Ti

⌋}

Ci ≤ t (1)

In Figure 2 we provide also a graphical representation of Theorem 1. In the
figure, the task parameters are reported in the (Ci, Ti, Di) format on the left
of the task schedule. The activations are labelled by the index of the task job
on the right of the upward arrow. Similarly the deadlines are labelled by the
job index on the left of the corresponding downward arrow. Adjacent jobs are
colored by alternative colors.

In the scenario depicted in Figure 2 it can be noticed that at time 15 the
second job of task τ2 misses its deadline. This deadline miss is revealed by The-
orem 1. In fact, it can be seen in the figure that the Equation (1) is not verified
at time 15.

Uniprocessor EDF Feasibility is an Integer Problem 5

The necessary and sufficient condition of Eq. (1) is clearly impractical, since
it requires to check an infinite number of inequalities. Several works addressed
the problem of reducing the number of instants where the inequality of Eq. (1)
can be checked while preserving the necessity of the condition. First it can be
observed that for any pair of adjacent absolute deadlines da and db, if Eq. (1)
is true at da then it is also true ∀t ∈ [da, db[, because the left hand side of
Eq. (1) remains constant whereas the right hand side increases. This allows to
restrict the test to the set of all the absolute deadlines. Using upper bounds of
the demand the set of deadlines can be further reduced to a finite set [11].

4 Integer Problem Formulation

Very often, some of the task parameters can be freely selected by the designer. For
example, in control systems the algorithm that needs to be executed is known,
whereas the period and the deadline of the control task can be programmed. In
this circumstance, the designer desires a characterization of the feasible assign-
ment of Ti and Di given the value of the computation times Ci. Sometime it is
also possible that the performance of the system can be expressed as a function
of periods and deadlines. In this case the design problem becomes an optimiza-
tion problem, where the variables are periods and deadlines, the goal function
is the system performance, and the constraint is given by the condition of EDF
schedulability.

Unfortunately, the condition expressed by Theorem 1 is not well suited to be
used in optimizations, because the presence of the floor ⌊·⌋ operator breaks any
property of the constraints that is desirable for optimization (such as linearity).
For this reason, some efforts have been devoted to the derivation of alternative
way to formulate the necessary and sufficient condition for EDF schedulability.

The following Theorem provides a convenient way to formulate an equivalent
condition of Theorem 1 that is expressed by a combination of linear constraints.

Theorem 2. The task set T = {(Ci, Ti, Di) : i = 1, . . . , n} is schedulable by
EDF if and only if:

∀k ∈ N
n \ {0} ∃i ∈ Ik (Ti − Ci)ki −

∑

j 6=i

Cjkj ≥ Ti − Di (2)

where
Ik = {j : kj 6= 0}

is the set of non-zero indexes in k.

Proof. We will prove that Equations (1) and (2) are equivalent.
Eq. (1) ⇒ Eq. (2): we are given a vector k ∈ N

n different that 0 ∈ N
n and

we must find an index i in Ik = {j : kj 6= 0} using the hypothesis of Eq. (1).
Since k 6= 0 then Ik 6= ∅. Let us define

∀j ∈ Ik dj = Dj + (kj − 1)Tj

6 E. Bini

which is the absolute deadline of the kj job of τj . Notice that from kj ≥ 1 it
follows that dj ≥ 0.

We claim that the index i satisfying Eq. (2) is such that

di = max
j∈Ik

{dj} (3)

This value is well defined because Ik 6= ∅.
Now we exploit the Equation (1) for t = di. We have

n
∑

j=1

max

{

0,

⌊

di + Tj − Dj

Tj

⌋}

Cj ≤ di

max

{

0,

⌊

di + Ti − Di

Ti

⌋}

Ci +
∑

j 6=i

max

{

0,

⌊

di + Tj − Dj

Tj

⌋}

Cj ≤ di

max {0, ki}Ci +
∑

j 6=i

max

{

0,

⌊

di + Tj − Dj

Tj

⌋}

Cj ≤ Di + (ki − 1)Ti

(Ti − Ci)ki −
∑

j 6=i

max

{

0,

⌊

di + Tj − Dj

Tj

⌋}

Cj ≥ Ti − Di (4)

Equation (4) is quite similar to Equation (2) that we want to prove. To conclude

the demonstration we need to find a lower bound of max
{

0,
⌊

di+Tj−Dj

Tj

⌋}

. We

have

∀j ∈ Ik max

{

0,

⌊

di + Tj − Dj

Tj

⌋}

≥

⌊

di + Tj − Dj

Tj

⌋

≥

≥

⌊

dj + Tj − Dj

Tj

⌋

= kj (5)

Similarly

∀j /∈ Ik max

{

0,

⌊

di + Tj − Dj

Tj

⌋}

≥ 0 = kj (6)

Finally, from Equation (4) by using the lower bounds of Equations (5) and
(6), it follows that for the index i selected such that Eq. (3) holds, we have

(Ti−Ci)ki−
∑

j 6=i

Cjkj ≥ (Ti−Ci)ki−
∑

j 6=i

max

{

0,

⌊

di + Tj − Dj

Tj

⌋}

Cj ≥ Ti−Di

as required.

Eq. (2) ⇒ Eq. (1). Given t ≥ 0, we build the mapping t 7→ k = (k1, . . . , kn) ∈
N

n defined by

kj = max

{

0,

⌊

t + Tj − Dj

Tj

⌋}

Uniprocessor EDF Feasibility is an Integer Problem 7

Given this mapping, the Equation (1) that needs to be proved can be rewritten
as

∀t ≥ 0

n
∑

j=1

kjCj ≤ t (7)

For all the t ≥ 0 such that k = 0 we have

n
∑

j=1

kjCj = 0 ≤ t

On the other hand, for all the t ≥ 0 such that k 6= 0 we can invoke Equa-
tion (2) from which it follows that we have an index i ∈ Ik such that

(Ti − Ci)ki −
∑

j 6=i

Cjkj ≥ Ti − Di

n
∑

j=1

Cjkj ≤ (ki − 1)Ti + Di =

(⌊

t + Ti − Di

Ti

⌋

− 1

)

Ti + Di ≤
t − Di

Ti
Ti + Di

n
∑

j=1

Cjkj ≤ t

Hence Equation (7) is demonstrated and the Theorem is proved.

Formulating the EDF schedulability condition through Theorem 2 allows an
easier characterization of the region of the feasible parameters of the task set.
For example, from Theorem 2 it follows directly that a task set T is schedulable
by EDF if and only if

T ∈
⋂

k∈Nn\{0}

⋃

i∈Ik







(C,T,D) : (Ti − Ci)ki −
∑

j 6=i

Cjkj ≥ Ti − Di







(8)

Below we examine in details some special cases when the information on the
task set are partially known.

5 The region of feasible deadlines

We consider the problem of determining the region of the feasible task deadlines,
given the computation times C and the periods T. This problem can arise when
the designer has to assign the deadlines to the tasks in order to minimize the
response times or the jitter in the task execution. In fact response times and
jitter can heavily affect the performance, for example, in control systems [12].

Since the computation times and the periods are known, it is convenient to
rewrite Equation (8) by isolating the free deadline variables. We can then say
that the task set T is schedulable by EDF if and only if

D ∈ domD =
⋂

k∈Nn\{0}

⋃

i∈Ik

{Di ≥ k · C− (ki − 1)Ti} (9)

8 E. Bini

where domD is then the region of all the deadlines that make the task set feasible.
Since the expression of right hand side of Eq. (9) is a lower bound on the deadline,
then we can compactly call it Dlb

i . Hence the region of feasible deadlines domD

becomes
domD =

⋂

k∈Nn\{0}

⋃

i=1,...,n

{D ∈ R
n : Di ≥ Dlb

i } (10)

where Dlb
i is defined as

Dlb
i (k) =

{

k ·C − (ki − 1)Ti if ki 6= 0

+∞ if ki = 0
(11)

To gain some knowledge on the geometry of domD we propose an example.
Let us consider a set of two tasks with computation times C = (2, 3) and periods
T = (4, 7). By applying Eq. (11), we can compute the deadline lower bounds
Dlb

i associated to some integer vectors purposely selected for the example. For
each selected vector k, Table 1 shows the two resulting coordinates of the corre-
sponding bounds Dlb(k) derived by Eq. (11). In Figure 3 we draw the six regions

k = (k1, k2) Dlb
1 (k) Dlb

2 (k)

(1, 0) C1 = 2 +∞
(0, 1) +∞ C2 = 3
(1, 1) C1 + C2 = 5 C1 + C2 = 5
(2, 1) 2C1 + C2 − T1 = 3 2C1 + C2 = 7
(0, 2) +∞ 2C2 − T2 = −1
(1, 2) C1 + 2C2 = 8 C1 + 2C2 − T2 = 1

Table 1. Vertexes for the sample task set.

corresponding to the k values selected in Table 1. It can be noticed that when
both k1 and k2 are different than zero then the resulting region is the union of
two half-planes. When there is only one non-zero coordinate in k then the con-
straint becomes an half-plane. Finally notice that the constraints corresponding
to k = (1, 0) and k = (0, 1) are the (necessary) conditions D1 ≥ C1 and D2 ≥ C2

respectively.
Finally, when intersecting all the regions of Figure 3 as required by the defi-

nition of domD (see Eq. (10) then we obtain the region shown in Fig. 4. Notice
that the exact domD resulting from Eq. (10) can be smaller than the region
shown in Figure 4 because Eq. (10) requires to intersect regions such as in Fig. 3
for all k ∈ N

n, whereas Figure 4 is derived for a subset of integer vectors.
Moreover it can be noticed that the first four vertexes dominate the oth-

ers, meaning that the region described by them is not restricted by the other
constraints.

This example suggests that the exact feasibility region domD may be simply
computed from a finite set of integer vectors. Section 5.1 provides a method for
determining such a set, by removing redundant points.

Uniprocessor EDF Feasibility is an Integer Problem 9

0

1

2

3

4

5

6

7

−1

0

1

2

3

4

5

6

7

−1

0

1

2

3

4

5

6

7

−1

0

1

2

3

4

5

6

7

−1

0

1

2

3

4

5

6

7

−1

1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

−1

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
D1

D1D1D1

D1 D1

D2

D2D2D2

D2 D2

Fig. 3. Deadlines satisfying the condition for the values of k in Table 1.

0

1

2

3

4

5

6

7

−1

1 2 3 4 5 6 7 8
D1

D2

Fig. 4. domD when k ∈ {(1, 0), (0, 1), (1, 1), (0, 2), (1, 2), (2, 1)}.

5.1 Reducing the set of k’s

The derivation of the feasible deadline space based on Eq. (10) is still infeasible,
because it requires the intersection of infinite regions, derived from all possible
k’s ranging in N

n\{0}. However, as we observed in the previous section, a region

associated to a vector k̂ can be ignored if k̂ is dominated by some other integer
vector k. For instance, in Figure 4, (1, 2) is dominated by (0, 1). We start by
defining formally the idea of domination.

Definition 1. We say that an integer vector k̂ is dominated by the integer
vector k if

∀i = 1, . . . , n Dlb
i (k̂) ≤ Dlb

i (k). (12)

10 E. Bini

In fact, if all the coordinates of Dlb(k̂) are smaller than or equal to the corre-
sponding coordinates of Dlb(k), then the intersection with the region associated

with k̂ cannot eliminate any portion of the space of deadlines that has not al-
ready been eliminated by the region associated with k. Below we will exploit
this property to make an effective computation of the deadline space.

Now we translate Eq. (12) as a constraint on the integers k and k̂.

{

∀i ∈ Ik Dlb
i (k̂) ≤ Dlb

i (k)

∀i /∈ Ik Dlb
i (k̂) ≤ Dlb

i (k)
{

∀i ∈ Ik Dlb
i (k̂) ≤ k · C− (ki − 1)Ti

∀i /∈ Ik Dlb
i (k̂) ≤ +∞

∀i ∈ Ik k̂ · C− (k̂i − 1)Ti ≤ k · C− (ki − 1)Ti

∀i ∈ Ik (k̂i − ki)(Ti − Ci) −
∑

j 6=i

(k̂j − kj)Cj ≥ 0 (13)

For a given k, Eq. (13) describes the region of the integer vectors k̂ that are
dominated by k. Such a region is a cone whose vertex is at k, which can be
formally defined by

cone(k, Ik) = {k̂ ∈ N
n : ∀i ∈ Ik (k̂i − ki)(Ti − Ci) −

∑

j 6=i

(k̂j − kj)Cj ≥ 0} (14)

These cones are important because they allow a significant reduction of the
number of integer vectors to be tested. In fact, suppose there is a finite subset
of integer vectors domK ⊆ N

n \ {0} such that N
n \ {0} can be covered by cones

with vertex in domK as follows

N
n \ {0} =

⋃

k∈domK

cone(k, Ik) (15)

then domD can be equivalently defined as

domD =
⋂

k∈domK

⋃

i=1,...,n

{D ∈ R
n : Di ≥ Dlb

i } (16)

In fact, the vectors in domK are explicitly checked by the test of Eq. (16), whereas
the vectors in

⋃

k∈domK

(cone(k, Ik) \ {k})

which are the points in the cones except the vertexes, are not required to be
tested because dominated by some vector in domK.

This remarkable property deserves a definition.

Definition 2. We say that a set domK ⊆ N
n \ {0} is dominant when all the

integers k̂ ∈ N
n \ {0} are dominated by some integer k ∈ domK.

Uniprocessor EDF Feasibility is an Integer Problem 11

Figure 5 shows three examples of cone(k, Ik), when n = 2. The black dots
represent three possible vertexes of the cones (resp. (0, 2), (1, 1), and (4, 0)),
whereas the white dots represent the sets of integers which are dominated by
cone((0, 2), {2}), cone((1, 1), {1, 2}), and cone((4, 0), {1}) respectively.

1

2

3

4

5

1 2 3 4 5 6 7 80
k1

k2

Fig. 5. Examples on cone(k, Ik).

The key problem is then to find a small dominant domK, since a small domK

results in a faster computation of domD from Eq. (16). It is quite clear that for
large cones, a dominant set domK can be smaller, because a large cone allows
dominating more integer vectors, and consequently the number of integer vectors
that need to be explicitly checked is smaller. Hence we proceed by studying in
depth the cones.

To derive the properties of the cones, it can be noticed from Eq. (14) that
the coefficients of the hyperplanes delimiting the cone do not change with k,
meaning that the “shape” of the cone remains unaltered for the same set of
non-zero indexes Ik. More formally, we can state the property of “invariance for
translation” as follows

cone(k, Ik) = cone(0, Ik) + k (17)

with the implicit meaning that the plus sign at the right-hand side of Eq. (17)
means a translation of the set. Due to this translation property, we can restrict
the study to the cone placed at the origin cone(0, I) and then extend the results
to the other cones by translation.

The following theorem allows the definition of a finite dominant subset domK,
starting from some vector kmax ∈ cone(0, {1, . . . , n}).

Theorem 3. Let kmax ∈ cone(0, {1, . . . , n}), kmax 6= 0. Then

domK = {k ∈ N
n \ {0} : 0 ≤ ki ≤ kmax

i } (18)

satisfies the covering property of Eq. (15).

Proof. We have to prove that N
n \ {0} can be covered by cones whose vertexes

are in domK. Given k̂ ∈ N
n \ {0} we will build the proper k ∈ domK such that

k̂ ∈ cone(k, Ik).

12 E. Bini

Through the euclidean division, let’s define qi and ri as follows

∀i = 1, . . . , n k̂i = qik
max
i − ri qi ∈ N, 0 ≤ ri ≤ kmax

i − 1

and let us set q = maxi{qi}. Since k̂ 6= 0 we have q ≥ 1. Let us also set I = {i =

1, . . . , n : qi = q}. We claim that the cone vertex k such that k̂ ∈ cone(k, Ik) is
defined as follows

{

ki = kmax
i − ri if i ∈ I

ki = 0 if i /∈ I
.

First of all, we verify that k ∈ domK. Since 0 ≤ ri ≤ kmax
i , it follows that

1 ≤ ki ≤ kmax
i . Moreover k 6= 0 because I is not empty. A posteriori we verify

that such a definition of k allows asserting that I = {i : ki 6= 0} = Ik. In fact

i ∈ I ⇒ ki = kmax
i − ri ⇒ ki 6= 0 ⇒ i ∈ Ik

i /∈ I ⇒ ki = 0 ⇒ i /∈ Ik

Finally, we verify that the constructed k dominates k̂, as required.

k̂ ∈ cone(k, Ik) = cone(k, I) ⇔ ∀i ∈ I (k̂i − ki)(Ti − Ci) −
∑

j 6=i

(k̂j − kj)Cj ≥ 0.

(19)
We will proceed by finding lower estimates of the previous inequality, for all

i ∈ I.

(k̂i − ki)(Ti − Ci) −
∑

j 6=i
j∈I

(k̂j − kj)Cj −
∑

j 6=i
j /∈I

(k̂j − kj)Cj =

(qik
max
i − ri − (kmax

i − ri))(Ti − Ci) −
∑

j 6=i
j∈I

(qjk
max
j − rj − kj)Cj −

∑

j 6=i
j /∈I

k̂jCj =

(q − 1)kmax
i (Ti − Ci) − (q − 1)

∑

j 6=i
j∈I

kmax
j Cj −

∑

j 6=i
j /∈I

k̂jCj ≥

(q − 1)kmax
i (Ti − Ci) − (q − 1)

∑

j 6=i
j∈I

kmax
j Cj −

∑

j 6=i
j /∈I

(q − 1)kmax
j Cj =

(q − 1)



kmax
i (Ti − Ci) −

∑

j 6=i

kmax
j Cj



 ≥ 0

because q ≥ 1 and kmax ∈ cone(0, {1, . . . , n}). Hence the inequality of Eq. (19)
is proved and the theorem follows.

Theorem 3 allows reducing the problem of computing the EDF feasible dead-
lines domD to the problem of finding an integer vector kmax in cone(0, {1, . . . , n})
other than the vertex 0. If this point is found, then the Equation (16) allows

Uniprocessor EDF Feasibility is an Integer Problem 13

computing the space of EDF feasible deadlines. Unfortunately, the complexity is
still proportional to the cardinality of domK, which is

∏n
i=1(k

max
i + 1)− 1. How

do we search for a suitable point kmax that minimizes the complexity? Does
kmax always exist?

We propose to span onto all the integer vectors in cone(0, {1, . . . , n}), moving
to the direction of the vertex at 0. This strategy can be implemented by an
Integer Linear Programming (ILP) problem.

The first constraint of the ILP problem must translate the property that
k ∈ cone(0, {1, . . . , n}). From Eq. (14), it follows that the constraint is expressed
by the inequality

∀i = 1, . . . , n ki(Ti − Ci) −
∑

j 6=i

kjCj ≥ 0. (20)

Then a second constraint must erase the vertex from the cone because we require
(see Theorem 3) that k 6= 0. Hence we add

n
∑

i=1

ki ≥ 1 (21)

which erases only 0 from N
n.

Finally, we set the minimization direction for reducing the cardinality of
domK. The goal of the problem is to minimize

∏

i(ki +1). However this function
is not well suited for the ILP problem because it is not linear. Hence we choose
the following convenient linear cost function

n
∑

i=1

ki (22)

which approximates |domK| at the first order in the point 0.

An example Now, it is worth showing how the previous result can be applied to
compute a dominant set domK for the sample task set used in this paper. When
C = (2, 3) and T = (4, 7), the solution of the ILP problem is kmax = (2, 1).
In Figure 6, black dots represent the integers that belong to domK as defined
by Eq. (18). For each k ∈ domK we also draw the corresponding cone(k, Ik). It
can be seen that all the integers are dominated by some k ∈ domK, as proved
in Theorem 3. It can also be noticed that cone((2, 0), {1}) ⊆ cone((1, 0), {1})
meaning that domK \ {(2, 0)} is dominant as well. This allows us to assert that
the region of feasible deadline domD that was drawn in Figure 4 is exact, since
domK is contained in the set of integer vectors k that was selected for drawing
the figure.

In the next subsection we investigate what are the parameters affecting the
complexity of a dominant set domK, computed through the ILP formulation of
Equations (20), (21), and (22).

14 E. Bini

1

2

3

4

5

1 2 3 4 5 6 7 80
k1

k2

Fig. 6. An example of domK.

5.2 Complexity of domK

From the Figures 5 and 6 it is quite clear that the solution of the ILP problem
described in Equations (20), (21), and (22) depends on the width of the cone.
The wider the cone, the smaller the solution, and consequently the fewer points
in domK.

For measuring the cone width we translated the n hyperplanes of the bound-
ary in such way the the ith hyperplane passes through the vector ei, which has
all zeros except in the ith, position where it has 1 (see Figure 7 for a graphical
representation). Then, we computed the intersection point kint: if kint has large

hyperplane 1

hyperplane 2

k1

k2

kint

Fig. 7. Finding the width of the cone.

coordinates then the cone is narrow, and vice versa. The coordinates of kint are
the solution of the following linear system:











T1 − C1 −C2 · · · −Cn

−C1 T2 − C2 · · · −Cn

...
...

. . .
...

−C1 −C2 . . . Tn − Cn











· kint =











T1 − C1

T2 − C2

...
Tn − Cn











Uniprocessor EDF Feasibility is an Integer Problem 15

and, by the Cramer’s rule, we find

kint
i =

(Ti − Ci)(1 −
∑

j 6=i Uj) +
∑

j 6=i Cj(1 − Uj)

Ti(1 − U)
.

The coordinates of kint are inversely proportional to 1−U , meaning that the
set domK grows as U approaches 1. This means that, for small values of U , the
size of domK is small. On the other hand, as the total utilization U approaches
1, the size of a dominant set domK increases and, consequently, the complexity
of Eq. (16) grows exponentially with n.

Note that the dependency of the complexity on the total processor utilization
U is also typical of the processor demand test proposed by Baruah et al. [11],

which requires to test all the absolute deadline not exceeding
P

i(Ti−Di)Ui

1−U . This
confirms that, as the total utilization U approaches 1, the EDF schedulability
guarantee tests become intrinsically more complex.

U approaching 1 We already observed that as U approaches 1, the cone cone(0,
{1, . . . , n}) becomes narrower. When U is exactly 1, the cone becomes a line.
Let us consider more closely the case when n = 2 and U = U1 + U2 = 1. When
Ik = {1}, the constraints of the cone that describes the k̂ ∈ N

2 dominated by
some k (Eq. (14)) becomes

k̂ ∈ cone(k, {1}) ⇔ (k̂1 − k1)(T1 − C1) − (k̂2 − k2)C2 ≥ 0

⇔ T1(k̂1 − k1)(1 − U1) − T2(k̂2 − k2)U2 ≥ 0

⇔ T1(k̂1 − k1) − T2(k̂2 − k2) ≥ 0 (23)

Similarly, when Ik = {2} we have

k̂ ∈ cone(k, {2}) ⇔ (k̂2 − k2)(T2 − C2) − (k̂1 − k1)C1 ≥ 0

⇔ T1(k̂1 − k1) − T2(k̂2 − k2) ≤ 0 (24)

Finally, when Ik = {1, 2} both Equation (23) and (24) must hold, then we have

k̂ ∈ cone(k, {1, 2}) ⇔ T1(k̂1 − k1) − T2(k̂2 − k2) = 0 (25)

To clarify the two tasks case we propose a numerical example to show a tight
set of integers domK and the resulting region of feasible deadlines domD. To
achieve U = 1 we choose C = (2, 3.5) and T = (4, 7). For these values the set

domK = {(0, 1), (1, 0), (1, 1), (2, 1), (2, 2), (3, 2), (4, 2), (4, 3),

(5, 3), (6, 3), (6, 4), (7, 4)} (26)

is dominant, as it can be noticed in Figure 8. In the figure we can see that
cone((1, 0), {1}), the lower gray triangle, and cone((0, 1), {2}), the upper gray
triangle, dominate most of the integers (the dominated integer vectors are rep-
resented by white dots). The other degenerate cones, represented by lines whose

16 E. Bini

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 130
k1

k2

Fig. 8. domK when U = 1.

equation is Eq. (25), can dominate all the remaining points in N
2 \{(0, 0)} when

they are placed at the integers in domK (represented by black dots).
We conclude this example by drawing the resulting region of feasible dead-

lines. Since previously we showed that the set domK as in Eq. (26) is dominant,
then it is sufficient to evaluate the deadline values Dlb(k) for all k ∈ domK

to have an exact description of the feasible region of deadlines. In Table 2 we

k = (k1, k2) Dlb(k)

(0, 1) (+∞, 3.5)
(1, 0) (2, +∞)
(1, 1) (5.5, 5.5)
(2, 1) (3.5, 7.5)
(2, 2) (7, 4)
(3, 2) (5, 6)
(4, 2) (3, 8)
(4, 3) (6.5, 4.5)
(5, 3) (4.5, 6.5)
(6, 3) (2.5, 8.5)
(6, 4) (6, 5)
(7, 4) (4, 7)

Table 2. Dlb for the example.

computed these deadline and in Figure 9 we report the corresponding region of
feasible deadlines.

References

1. Kalman, R., Bertram, J.: A unified approach to the theory of sampling systems.
J. Franklin Inst. 267 (1959) 405–436

Uniprocessor EDF Feasibility is an Integer Problem 17

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

0
D1

D2

Fig. 9. The region of feasible deadline of the example.

2. Kushner, H.J., Tobias, L.: On the stability of randomly sampled systems. IEEE
Transactions on Automatic Control 14 (1969) 319–324

3. Davidson, C.: Random sampling and random delays in optimal control. PhD thesis,
Department of Optimization and Systems Theory, Royal Institute of Technology,
Sweden (1973)

4. Baruah, S.K., Buttazzo, G., Gorinsky, S., Lipari, G.: Scheduling periodic task sys-
tems to minimize output jitter. In: Proceedings of the 6th International Conference
on Real-Time Computing Systems and Applications, Hong Kong (1999) 62–69

5. Zheng, Q., Shin, K.G.: On the ability of establishing real-time channels in point-to-
point packet-switched networks. IEEE Transactions on Communications 42 (1994)
1096–1105

6. Buttazzo, G., Sensini, F.: Optimal deadline assignment for scheduling soft aperi-
odic task in hard real-time environments. IEEE Transactions on Computers 48

(1999) 1035–1052
7. Balbastre, P., Ripoll, I., Crespo, A.: Optimal deadline assignment for periodic

real-time tasks in dynamic priority systems. In: Proceedings of the 18th Euromicro
Conference on Real-Time Systems, Dresden, Germany (2006) 65–74

8. Hoang, H., Buttazzo, G., Jonsson, M., Karlsson, S.: Computing the minimum
EDF feasible deadline in periodic systems. In: Proceedings of the 12th IEEE
International Conference on Embedded and Real-Time Computing Systems and
Applications, Sydney, Australia (2006) 125–134

9. Bini, E., Buttazzo, G.: The space of EDF feasible deadlines. In: Proceedings of
the 19th Euromicro Conference on Real-Time Systems, Pisa, Italy (2007) 19–28

10. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard
real-time environment. Journal of the Association for Computing Machinery 20

(1973) 46–61
11. Baruah, S.K., Mok, A.K., Rosier, L.E.: Preemptively scheduling hard-real-time

sporadic tasks on one processor. In: Proceedings of the 11th IEEE Real-Time
Systems Symposium, Lake Buena Vista (FL), U.S.A. (1990) 182–190

12. Cervin, A., Lincoln, B., Eker, J., Årzén, K.E., Buttazzo, G.: The jitter margin and
its application in the design of real-time control systems. In: Proceedings of the
10th International Conference on Real-Time and Embedded Computing Systems
and Applications, Göteborg, Sweden (2004)

