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Abstract. Matching two representations against one another is central
to many applications, e.g., matching observation against models in ob-
ject or scene recognition or matching a local perception against a global
map in self-localization if a mobile robot. In both examples, spatial infor-
mation structures are associated, i.e., the representation includes spatial
arrangement information of individual parts, either in a relative or an
absolute frame of reference.
In this paper the utility of qualitative configuration information for
matching is investigated. Qualitative configuration information expresses
relative arrangement information. It is argued that such information is
helpful for making side conditions of plausible matchings explicit, which
can improve matching efficiency as well as quality of the matching.
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1 Introduction

Many applications involve the task of matching two representations against one
another. For example scene recognition involves identifying a set of spatially
distributed objects. Many objects bear rich information which can be exploited
the recognition task, but it is information about the spatial arrangement of
the involved objects that allows for important distinctions. Consider you are
observing a scene that contains dishes, glasses, and sets of cutlery. These objects,
when nicely arranged on a table, gives rise to the hypothesis that you are about
to enjoy a nice meal, whereas piled up dishes, glasses, and clutter of cutlery
suggests dish washing to be your destiny.

This article investigates into matching tasks which are involved with match-
ing spatially embedded representations, i.e. representations whose parts are ar-
ranged in a spatial domain (e.g., picture space, tabletop, geographic space). The
term spatial matching is coined to summarize different facets of matching tasks,
aiming at the design of a common theoretic framework. One particular goal of
this approach is to device subclasses that can be dealt with efficiently. The role
of qualitative information in expressing confident side conditions will be high-
lighted. Qualitative information can even be exploited for identifying efficient
subclasses automatically.

There are several application areas for spatial matching, most notably visual
object recognition or robot localization. In the case study presented in this article
spatial matching in robot localization is highlighted, but the overall approach
presented here is independent of the application area.
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2 Spatial Matching

In this section a general theoretical approach to spatial matching is developed.
The overall goal is to compute an optimal matching between two representations
whereby optimality is evaluated by application-dependent measures. To enable
focusing on the spatial information the underlying representation is characterized
by two distinct layers, namely the features description layer and the feature
configuration layer. It is the feature configuration layer that exhibits similarities
through different fields of applications and provides a starting point for realizing
a universally applicable efficient matching framework.

2.1 Feature Description Layer

The feature description layer is introduced to abstract from the individual fea-
tures used in different applications. Features may be extracted by a computer
vision system (e.g., blobs, SIFT features) but they may also come from com-
pletely different information sources sources such spatial databases. Common
to all features is that one can assume availability of a feature distance measure
F ×F → R+

0 where F stands for the set of all possible features. Feature distance
may be a probability measure for feature identification, but it may also be a
similarity measure (e.g., shape similarity measure). In the degenerate case of
dealing with features not comprising any feature-intrinsic information, feature
distance may be just a constant value. Examples for features not comprising
any information are reflection points measured by radar-like sensors: it is only
known that there is some obstacle, but no properties other than its location are
available. Yet, location is not a feature-intrinsic feature but is part of the feature
configuration layer.

2.2 Feature Configuration Layer

Information about the spatial arrangement of features is gathered in the feature
configuration layer. Possible ways of utilizing configuration information include
local coordinate frames, relative information, etc. There are two ways in which
the value of configuration knowledge manifests itself:

– obtaining more plausible matchings
– computing matchings more efficiently

Regarding an improved plausibility of matchings, notice that configuration
information links together individual features and thereby establishes a larger
context than a single feature presents. This makes configuration information
valuable for matching—in the case of features lacking distinctive properties,
configuration knowledge is the only clue to feature identification. There two
types of configuration knowledge: absolute and relative information.

Using absolute configuration knowledge usually means to localize individual
features within a local coordinate system. When assigning features, congruency
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of local coordinates is examined and features may only get matched if their lo-
cal coordinates are agreeable. This requires that the alignment of the two local
coordinate systems involved is known or can be estimated. Such approach is
particularly popular in robot localization contexts, where landmarks observed
by the robot are registered in a local coordinate system which is defined by the
current position and orientation of the robot. Tracking landmarks from observa-
tion to observation allows the robot to keep track of its position1. Measuring the
movement of the robot provides an estimate on how local coordinate systems
between movements need to be aligned. The drawback of this approach is that a
reliable estimate of alignment is required. Moreover, matching is performed in an
iterative framework, which repeatedly alternates a matching and an alignment
phase to update the alignment estimate. This way the discrete, combinatorial
matching problem is transformed into an optimization task that aims at de-
termining the best fitting alignment of two feature sets. Such approaches (also
termed non-matching [4]) are closely related to iterative optimization, including
the problems of local minima.

Relative configuration knowledge, on the other hand, does not require prior
alignment information and is, thus, useful when no estimate exists how fea-
ture sets need to be aligned. This is for example the case in rotation invariant
recognition. The utility of relative configuration knowledge has already been in-
vestigated in the context of object recognition (see[4]), but not taken advantage
of in robot mapping. Yet, the use of relative configuration knowledge can help to
obtain more plausible matching results. Consider an example from the domain
of robot localization depicted in Fig. 1. A single observer (the robot) takes two
sensor readings and needs to recognize objects in the second reading. In other
words, it needs to track the objects it observes. In the first observation (Fig. 1
(a)) the robot detects two features A,B which—for the sake of simplicity—are
assumed to be indistinguishable. In a second observation, the observer detects
three features A′, B′, C ′. The task of determining the most plausible correspon-
dence should yield the correspondences A ∼ A′ and B ∼ B′. If individually
considering differences of position the result may be counter-intuitive as illus-
trated in Fig. 1 (c): since the spurious detection of C is closer to the expected
position of A, the correspondence A ∼ C is erroneously determined. Simulta-
neously considering the mapping A ∼ C and B ∼ B′ indicates that A and B
are indeed mapped to features much closer to one another than agreeable with
the initial observation. To overcome such problems, Neira and Tardós [5] pro-
posed an algorithm that jointly considers differences in position in a probabilistic
model.

Matching is a computational costly operation when aiming to determine
the optimal feature correspondence with respect to a given optimality crite-
rion. First, let us consider the problem space of feature-feature correspondences
faced in matching tasks. When matching two representations comprising n and

1 Among others, see [1,2,3].
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Fig. 1. (a) An observer located as marked by the cross detects two features,
A and B. (b) In a second observation from the same pose, three features are
detected at different positions. This can be the result of measurement noise.
(c) Both observations are matched using the compatible local reference system.
Individually considering the distances of associated features (nearest neighbor)
can result in a counter-intuitive matching (solid lines). Considering the relative
position of features (∆) allows handling this situation (dashes lines).
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potential correspondences to evaluate if not all features should necessarily be
matched (e.g., to account for changes). This is already infeasibly complex, so
additional knowledge must be exploited to reduce the search space and com-
putation time. Respecting configuration knowledge in the approach by Neira
and Tardós [5] still yields a exponential time worst-case complexity. However,
respecting relative configuration knowledge can in some cases lead to efficient
polynomial-time algorithms though. The idea is to interpret relative configura-
tion knowledge as confident knowledge, pruning the search space of feature cor-
respondences. Before identifying tractable spatial matching problems, we now
formulate the general matching framework.

3 Optimal Homomorphic Matching

Spatial matching is challenging in many regards: obtaining a plausible solution,
obtaining it efficiently, responding to potential changes that can happen, and
handling of uncertain knowledge. Unfortunately, plausibility of matching is hard
to define. Generally speaking, one desires that only similar features are associated
and that spatial configurations are respected, i.e. any matching needs to respect
to the overall spatial structure. Changes, measurement noise, and uncertainty
make it necessary to balance all contributing factors. Consequently, it is doubtful
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whether an indisputable definition of plausible matching exists at all. However,
a formal framework to express plausible matchings can very well be introduced.
The framework should exhibit these key features:

– Multiple assignments to handle alias effects in feature detection
– Even very similar sets of features sets are likely to be somewhat incongru-

ent and some features may not get associated; matchings may not be of
maximum cardinality

– Matchings shall maximize plausibility of features to correspondence modeled
by negation of a feature distance measure

– Side conditions to introduce confident configuration knowledge shall be ex-
pressible

The theoretical framework of matching in hypergraphs offers an elegant way
to include these features.

Definition 1 (Hypergraph) A graph G = (V,E) with a finite set of vertices
V and set of hyperedges E ⊆ 2V which is a subset of the powerset of vertices is
called hypergraph.

Matching problems in graph theory are usually studied in the context of bi-
partite graphs and there is one subtle difference between matching in bipartite
graphs versus matching in hypergraphs. In bipartite graph matching the task is
to select a subset of graph edges which connect the two subsets of vertices into
which each bipartite graph can be decomposed naturally. In hypergraphs, how-
ever, where edges span over multiple vertices there is no natural decomposition
and the little more elaborate notion of balanced hypergraphs [6] are required.

Definition 2 A hypergraph G is balanced if each odd cycle in G has an edge
containing at least three vertices of the cycle. Hereby, a cycle is defined as closed
path vi

ei→ vi+1
ei+1→ . . .

ej→ vj+1 = vi, whereby vi ∈ ei ∧ vi+1 ∈ ei. Analogously to
bipartite graphs, G = (V ′, V ′′, E) is used as notation, whereby V ′, V ′′ model two
disjunct sets of vertices to be associated.

Balanced hypergraphs allow for a straightforward generalization of matching.

Definition 3 (Balanced hypergraph matching) Let G = (V,E) be a bal-
anced hypergraph; then, M ⊆ E is a matching if M consists of pairwise disjoint
edges. If M is a vertex cover of G then M is called perfect.

The key feature is that matching in balanced hypergraphs allows us to assign
multiple features simultaneously, see Fig. 2 for an example.

Notably, this definition already includes the case of not-associated vertices
by allowing for hyperedges comprising single vertices. Therefore, the generalized
matching task can simply be formulated as the maximal weight vertex cover, i.e.,
we need to determine a set of edges which covers all vertices while maximizing
the weight associated with the edges. The idea is to use negated feature distance
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Fig. 2. Hypergraph modeling a matching that comprises a two-to-one correspon-
dence; edges in hypergraphs are depicted to enclose adjacent vertices.

(cf. Sec. 2.1) as edge weight, thereby minimizing the overall feature distance.
The formulation using vertex covers ensures that all features are regarded.

For incorporating side conditions to the matching, the notion of homomorphic
matchings that obey constraints has been introduced [7]. Since constraints are
usually defined for tuples of individual objects, but multiple correspondence
partners are allowed in the desired correspondence relation ∼⊆ 2F × 2G, it is
useful to first define an elementary correspondence relation ≈⊆ F × G with
respect to the correspondence relation ∼:

x ≈ y :⇔ ∃X, Y : X ∼ Y ∧ x ∈ X ∧ y ∈ Y (2)

This relation maps n-to-m-correspondences to 1-to-1 correspondences and
eases the definition of a homomorphic matching.

Definition 4 (Homomorphic matching) Let G = (V ′, V ′′, E) be a balanced
hypergraph and ∼ a matching. Let further C be an n-ary constraint on V ′, i.e. a
n-ary relation over the vertices. A matching defined by its correspondence re-
lation ∼ and induced elementary correspondence relation ≈ is homomorphic, if
the mapping from V ′ to V ′′ (and vice versa) respects the given constraint:

V ′ → V ′′ ∀v′
1, . . . , v

′
n ∈ V ′ : C(v′

1, . . . , v
′
n) ⇒ ∃v′′

1 , . . . , v′′
n ∈ V ′′ : v′

1 ≈ v′′
1 ∧ . . .∧

v′
n ≈ v′′

n ∧ C(v′′
1 , . . . , v′′

n)
V ′′ → V ′ ∀v′′

1 , . . . , v′′
n ∈ V ′′ : C(v′′

1 , . . . , v′′
n) ⇒ ∃v′

1, . . . , v
′
n ∈ V ′ : v′

1 ≈ v′′
1 ∧

. . . ∧ v′
n ≈ v′′

n ∧ C(v′
1, . . . , v

′
n)

Homomorphic matching with respect to a set of constraints is defined analogously.

As shown in [7] computing the optimal homomorphic matching with respect
to constraints C which present a total ordering is still polynomial time and
can be tackled within the Dynamic Programming (DP) paradigm [8]. The only
prerequisite is that the feature similarity measure exhibits a local optimality
criterion. Roughly speaking, the criterion demands that if in the globally optimal
association of feature sets F = {F1, . . . , Fm} and G = {G1, . . . , Gn} features
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Fi ⊂ F are associated with Gi ⊂ G, i = 1, . . . , k, then this association must also
be optimal in the subtask of associating Fi ∪Fj and Gi ∪Gj . It then holds that
the maximum weight match can be computed in O(|F |2 · |G|2) time.

4 Cyclic orientation knowledge in robot localization

Mobile robots can learn about there whereabouts by matching their local per-
ception against a global map. This is called the correspondence problem or the
problem of data association in robotics. The area of robot localization is partic-
ularly interesting as usually the features observable by a robot bear little infor-
mation only. Nevertheless, we expect the robot correctly to identify its position.
This requires to exploit the spatial arrangement information effectively.

TBD Summarize approach presented in [9]

5 Conclusions

TBD
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