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Abstract. The organization metaphor is often used in the design and imple-
mentation of multiagent systems. However, few agent programming languages
provide facilities to define them. Several frameworks are proposed to coordinate
MAS with organizations, but they are not programmable with general purpose
languages. In this paper we extend the JADE framework with primitives to pro-
gram in Java organizations structured in roles and to enable agents to play roles
in organizations. Roles facilitate the coordination of agents inside an organiza-
tion and give new abilities in the context of organizations, called powers, to the
agents which satisfy the requirements necessary to play the roles. As primitives to
program organizations and roles we provide classes and protocols which enable
an agent to enact a new role in an organization and to interact with the role by
invoking the execution of powers, and to receive new goals to be fulfilled. Roles
have state and behaviour, thus, they are instances of classes and are strictly con-
nected with the organization offering them. Since roles and organizations can be
on a different platform with respect to the role player, the communication with
them happens via protocols. Moreover, since, besides using protocols, roles and
organizations can have complex behaviours, they are implemented by extending
the JADE agent class.

1 Introduction

Organizations are the subject of many recent papers in the MAS field, and also among
the topics of workshops like COIN, AOSE, CoOrg and NorMAS. They are used for
coordinating open multiagent systems, providing control of access rights, enabling the
accommodation of heterogeneous agents, and providing suitable abstractions to model
real world institutions [12].

Many models have been proposed [16], applications modeling organizations or in-
stitutions [22], software engineering methods using organizational concepts like roles
[26]. However, up to now, on the one hand, despite the development of several agent
programming languages among which 3APL [25], few of them have been endowed
with primitives for modeling organizations and roles as first class entities. Exceptions
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are MetateM [15], J-Moise+ [19], and the Normative Multi-Agent Programming Lan-
guage in [24]. The first, however, is BDI oriented and not a general purpose language
and is based on the notion of group. The second is more oriented to programming how
agents play roles in organizations. The third one, besides not being general purpose,
is more oriented to model the institutional structure composed by obligations than the
organizational structure composed by roles. On the other hand, frameworks for mod-
elling organizations like S-Moise+ [20] and MadKit [17] offer limited possibilities to
program organizations. The heterogeneity of solutions show a lack of a common agree-
ment upon a clear conceptual model of what is an organization; the ontological status
of organizations has been studied only recently and thus it is difficult to translate the or-
ganizational model in primitives for programming languages. Moreover, it is not clear
how an agent can interact with an organization, whether the organization has to be
considered like an object, a coordination artifact or as an agent [14]. The same holds
for the interaction with a role. Thus, in this paper, we address the following research
questions: (1) How to program organizations? How to introduce roles? (2) How agents
interact with organizations by means of the roles they play? And as subquestions: how
to specify the interaction between an agent and its role? How to specify the interaction
among roles? (3) How can an agent start playing a role? Which is the behaviour of an
agent playing a role? The methodology we use is to start from the ontological model
of organizations developed in [7], since it provides a precise definition of organizations
and specifies their properties, beyond the applicative needs of a specific language or
framework, and allows a comparison with other models. Moreover, this model has been
successfully used to give a logical specification of multiagent systems and to introduce
roles in object oriented languages, see powerJava [3]. This approach, due to the agent
metaphor, allows to model organizations and roles using the same primitives to model
agents, like in MetateM [14]. Despite the obvious differences with agents, like the lack
of autonomy and of an independent character in case of roles, the agent metaphor al-
lows to understand the new concepts using an already known framework. In particular,
interaction between agents and organizations and the roles they play, can be based on
communication protocols, which is particularly useful when agents and organizations
are placed on different platforms. For what concerns the description of the interaction
among players, organizations and roles we adopt the model of [6]. For what concerns
the modeling of how an agent plays a role we take inspiration from [11]. We apply this
conceptual model to JADE (Java Agent DEvelopment framework) [4], providing a set
of classes which extend it and offer the primitives for constructing organizations when
programming multiagent systems. We choose to program organization and roles using
the JADE software framework to program agents in Java due not only to its large use,
general purpose character and open-source philosophy, but also because, being devel-
oped in Java, it allows to partly adopt the methodology used to endow Java with roles
in the language powerJava [3]. Given the primitives for modeling agents and their com-
munication abilities, transferring the model of [7] in JADE is even more straightforward
than transferring it in Java. The extension of JADE consist in a new library of classes and
protocols. The classes provide the primitives used to program organizations, roles and
player agents, by extending the respective class. The FIPA based protocols we adopt
are something new respect to the powerJava language. By mean of them, in fact, we



introduce the possibility to have interaction between players, roles, and organizations
staying on different platforms, and also the possibility for the player, for example, of
evaluating about a method execution, and deciding of not to execute it, while powerJava
is on a single platform and use method invocation, and not message passing. The paper
is organized as follows. First, in Section 2, we summarize the model of organizations
and roles we take inspiration from. Second, in Section 3, we describe how the model is
realized by extending JADE, and in Section 4 we describe the communication protocols
which allow the interaction of the different entities. In Section 5 we underline related
and future work; Section 6 ends the paper.

2 The model of organizations and roles

The introduction of primitives for organizations and roles in JADE is mainly based
on the ontological model of organizations and roles of [7]. However, since this model
disregards the problem of how agents play roles in organizations, in [6] we integrated
in our model with the model of role playing of [11]. The model of [7] is focused on
the definition of the structure of organizations given their ontological status, which is
only partly different from the one of agents or objects. On the one hand, roles do not
exist as independent entities, since they are linked to organizations. Thus they are not
components like objects. Moreover, organizations and roles are not autonomous and act
via role players. On the other hand, organizations and roles are description of complex
behaviours: in the real world, organizations are considered legal entities, so they can
even act like agents, albeit via their representative playing roles. So, they share some
properties with agents, and, in some respects, can be modelled using similar primitives.

Thus, in our model roles are entities, which contain both state and behaviour: we
must distinguish with the term role, the role instance associated with a player, while the
general specification of a role is defined as a role type. For each agent, when it asks to
an organization to play a role of a given type, an instance is created, representing the
possibility for the player of interacting with the organization, and with the other roles,
and the state of the interaction between the agent and the organization. As recognized
by [10] this feature is quite different from other approaches which use roles only in the
design phase of the system, as, e.g., in [26].

The goals, together with the beliefs, attributed to a role (as also in [11]) describe the
behaviour expected from the player of the role, since an agent pursues his goals based
on his beliefs. The player should be aware of the goals attributed to the roles, since it is
expected to follow them (if they do not conflict with other goals of the agent).

Most importantly, roles work as “interfaces” between organizations and agents: they
give so called “powers” to agents, extending the abilities of agents, allowing them to
operate inside the organization and inside the state of other roles. An example of such
powers, called “institutional powers” in [21], is the signature of a director which counts
as the commitment of the entire institution. If, on the one hand, roles offer powers to
agents, they request from agents who want to play roles a set of requirements, abilities
that the agents must have, like also in [9]. Thus, the set of roles an agent can play is
not determined a priori, but it depends on which abilities are required by the role of an
institution.



Powers are invoked by players on their roles, but they are executed by the roles,
since they have both state and behaviour.

Boella and van der Torre [7]’s model focuses on the dynamics of roles in function
of the communication process: role instances evolve according to the speech acts of the
interactants. Where speech acts are an example of powers which change not only the
state of the role making the speech act but also of other roles (see [5]). E.g. the commit-
ments made by a speaker of a promise or by commands made by other agents playing
roles which are empowered to give orders. In this model, sets of beliefs and goals (as
[11] does) are attributed to the roles. They are the description of the expected behaviour
of the agent. The powers of roles specify how the state of the roles changes according to
the moves played in the interactions by the agents enacting other roles. Roles are a way
to structure the organization, to distribute responsibilities and acoordination means.
Roles allow to encapsulate all the interaction between an agent and an organization and
between agents in their roles. The powers added to the players can be different for each
role and thus represent different affordances offered by the organization to other agents
to interact with it [2].

Using the distinction of Omicini [22], we use our model [7] as an objective coor-
dination mechanism, like for example artifacts: organizations are first class entities of
the MAS rather than a mental constructions which agents use to coordinate themselves.
However, this model leaves unspecified, how given a role, its player will behave. In
Dastani [11], the problem of formally defining the dynamics of roles, is tackled iden-
tifying the actions that can be done in aopen system such that agents can enter and
leave. In [11] four operations to deal with role dynamics are defined:enact anddeact,
which mean that an agent starts and finishes to occupy (play) a role in a system, and
activate anddeactivate, which means that an agent starts executing actions (operations)
belonging to the role and suspends the execution of the actions. Although is possible to
have an agent with multiple roles enacted simultaneously, only one role can beactive
at the same time: when an agent performs a power, he is playing only one role in that
moment.

3 Organizations, roles, and players in JADE

In this section we describe how we use our model in [7] to extend the JADE framework
with primitives for programming organizations and roles.

JADE, to program a MAS, offer as basic elements the classAgent, different classes
of behaviours (like finite state machines), and protocols with the relative speech act
definitions, compliant with FIPA [13].

We have to introduce organizations and roles as first class entities, located in an-
other platform with respect to their member agents, with behaviours - albeit not au-
tonomously executed - and communication abilities. Thus, organizations and roles can
be implemented using the same primitives as agents. In JADE this amounts to having
special extensions of theAgent class,Organization andRole respectively, which
can be further extended to program organizations and roles. Analogously, to implement
agents who are able to play roles, thePlayer class is defined which extend the JADE
Agent class. Differently fromOrganization andRole, this class is used to imple-



ment autonomous agents. The behaviours and the communication protocols - described
in the next section - which allow organizations to work are inherited from these three
classes. E.g. all organizations must offer a suitable protocol to allow an agent to ask
playing a role, to verify if the agent fulfills the requirements of the role, and to enact the
role. The extensions of theRole class, like, e.g.,Buyer, represent the role types. Their
instances the role instances associated with an instance of theAgent.1 Organizations
and roles, however, differ in two ontological respect: first roles are associated to players,
second roles are not independent from the organization offering them. Thus, theRole
class is subject to an invariant, stating that it can be instantiated only when an instance
of the organization offering the role is present. Conversely, when an organization is
destroyed all its roles must be destroyed too.

A further difference of role classes is that to define “powers” as described in the
previous section, they must access the state of the organization they belong too: only
in this way it is possible that the signature of a role has the effect of modifying the
private state of the organization adding a commitment. To avoid making the state of the
organization public, the standard solution offered by Java is to use the so-called “inner
classes”. Inner classes are classes defined inside other classes (called “outer classes”).
An inner class shares the namespace of the outer class and of the other inner classes,
thus being able to access private variables and methods. Thus the classRole is defined
as an inner class of theOrganization class. Class extending theRole class must
be inner classes of the class extending theOrganization class (see Figure 1). E.g.,
theBuyer class extending theRole class must be an inner class of theShop class
extending theOrganization class. In this way the role can access the private state
of the organization and of the other roles. Note that this access is not unregulated, since
a specific role cannot access the entire private state of the organization and other roles,
but only those features which have been decided by the programmer of the role (who is
the same as the programmer of the organization, since the role is contained in it). E.g.,
the methods of theBuyer class can access the private state of both theShop class and
of other roles ofShop, like Seller.

If roles are implemented as inner classes, albeit extension of theAgent class, this
means two facts: first, the role instance must be on the same platform as the organization
instance it belongs to; second, the role agent can be seen as an object from the point of
view of the organization and of the other roles which can have a reference to it, besides
sending messages to it. In contrast, outside an organization the role agent is accessed
by its player (which can be on a different platform) only as an agent via messages,
and no reference to it is possible. So not even its public methods can be invoked. The
inner class solution for roles is inspired to the use of inner classes to model roles in
object oriented programming languages like in powerJava [3]. The use of inner classes
is coherent with the organization of JADE, where behaviours are often defined as inner
classes with the aim to better integrate them with the agent containing them.

1 Nothing prevents to have organizations which play roles in other organizations, like in the
model of [10], for this, and other combinations, it is possible to predefine classes and extend
them.



Fig. 1. UML representation

3.1 Organizations

To implement an organization it’s necessary to extendOrganization, subclass of
Agent, which offers protocols necessary to communicate with agents who want to
play a role, and the behaviours to manage the information about roles and their players.
Moreover, theOrganization class includes the definition of theRole inner class
that can be extended to implement new role classes in specific organizations.

To support the creation and management of roles theOrganization class is
endowed with the data structures and methods to create new role instances and to keep
the list of the AIDs (Agent ID) of role instances which have been created, associated
with the AIDs of their players. However, these methods are private, to avoid the misuse
by the programmer who could violate the organization invariants (e.g., to instantiate a
role first there must be a player, etc.).

TheEnact protocol allows starting the interaction between player and organiza-
tion. What happens is that the player sends a message to the organization requesting to
play a role of a certain type; if the organization considers the agent authorized to play
that role type, it sends to the caller a list of powers (what the role can do) and require-
ments (what the role can ask to player to do). At this point, the player can compare
his requirement list with the one sent from organization and communicate back if he
can play the role or if he can’t. Here, in fact, we can also consider that a not honest
player could lie to play a role for which he doesn’t have all the requirements. Only in
a second time, and only if the player will show his limits, some player recovering a
controlling role could apply sanctions to the dishonest one. It’s important to note that
only the player can begin theEnact protocol; the organization, in fact, is intended as
a collection of roles that players can play. The only way in which an organization could
begin an enactment protocol is to be a player that want to play a role inside another
organization.

Each organization has to maintain the list of agents playing roles in it, associating
with the player agent AID the role type and the role AID. While the association of a
player and a role is done automatically during the enactment of a role (see Section 4),



the programmer may query which role instances an agent is playing (specifying the
role type) or which is the player of a given role. Finally, the operation of leaving a role,
deact, is asked by the player to the role itself, so the class organization does not offer
any method or protocols for that.

Since roles are Java inner classes of an organization, the organization code can be
written in Java mostly disregarding what is a JADE application. Moreover, the inner
class mechanism allows the programmer to access the role state and viceversa, while
maintaining the modularity character of classes.

For helping players to find quickly one or more organizations offering a specific
role, Yellow Pages, a JADE feature, are used. They allow to register a pair(Organiza-
tion, RoleType) for each role in each organization; the interested player will only have
to query the Yellow Pages to obtain a list of these couples and choose the best for itself.
Then the candidate player can start the enactment protocol with the selected organiza-
tion.

3.2 Roles

As discussed above, a role is implemented by extending theRole class, thus, inheriting
the facilities offered by that class. In particular, the role class offers the protocols to
communicate with the player agent and the methods for the role programmer to use
these protocols.

To program a role, it is necessary to extend, inside a class extending the
Organization class, the inner classRole of theOrganization class.

In particular, the communication protocol with the player essentially allows (see
Figure 1): (1) To receive the request of invoking powers. (2) To receive the request to
deact the role. (3) To send to the player the request to execute a requirement. (4) To
receive from the player the result of the execution of a requirement. (5) To notify the
player the failure of executing the invoked power or the failure to receive all the results
of the requested requirements. The role programmer, thus, has to define the methods
which are the powers which can be invoked by the player, and to specify them in a
suitable data structure used by theRole class to select the requests of powers which
can be executed.

Allowing a player to invoke a power which results in the execution of a method by
the role could seem a violation of the principle of autonomy of agents, since it seems
that the player delegate to the role the execution. However, two things must be noted:
(1) The powers are the only way the players have to act on an organization. (2) The
execution of an invoked power may request, in turn, the execution by the player of
requirements needed to carry on the power, so the result of the power execution still
depends on the player.

The second point is important, since the player may refuse to execute a requested
requirement - as discussed in Section 3.3 - and the requirements determine the outcome
of the power, which thus varies from invocation to invocation and from player to player.

Since roles are not autonomous, the invocation of a power is not subordinated to the
decision of the role to perform it or not. In contrast with powers, a requirement cannot
be invoked. Rather it is requested by the role, and the player autonomously decides to



execute it or not. In the latter case the player is not complying anymore with its role and
it is deacted.

To remark this difference we will use the term invoking a power versus requesting a
requirement. Requests for the execution of requirements are not necessarily associated
with the execution of a power. They can be requested to represent the fact that a new
goal has been added to the role. For example, this can be the result of a task assignment
when the overall organization is following a plan articulated in subtasks to be distributed
among the players at the right moments, as in [20].

In case the new goal is a requirement of the player, the methodrequestRequirement
is executed, otherwise, if it is a power of the role, arequestResponsibility is executed.

– requestResponsibility(String): this method asks to the player to invoke a power of
the role.

– requestRequirement(String): this method invokes a requirement of the player. It
returns the result sent by the player if he complies with the requirement. The failure
of executing of a requirement results in the deactment of the role.

Analogously to requirements when the role notifies its player about the responsibil-
ity, it cannot be taken for granted that it will invoke the execution of the power. Note
that both therequestRequirement method and therequestResponsibility can be invoked
also by other roles or by the organization itself, due to the role’s limited autonomy.

Other methods are available only when agents endowed with beliefs represented,
e.g., as Jess knowledge bases:

– sendInform(String): this method is used to inform the player that the beliefs of the
roles are changed. This does not assume that the player adopts the conveyed beliefs
as well.

– addBelief(Belief) andaddGoal(Goal): they are invoked by the role’s behaviours or
by other roles’ to update the state of the role.

Besides the connection with its player, which is regulated by the protocols described
in Section 4, the role is an agent like any other, and it can be endowed with further
behaviours and further protocols to communicate with other roles of the organization
or even with other agents. At the same time it is a Java object as any other and can be
programmed, accessing both other roles and the organization internal state to have a
better coordination.

3.3 Players

Players of roles in organizations are JADE agents, which can reside on different plat-
forms with respect to the organization. However, since to play a role special behaviour
is needed, thePlayer class is offered.

An agent which can become a player of roles extends thePlayer class, which, in
turn, extends theAgent class. This class allows to model the states of the role playing
(enact, active, deactivated, deacted), the transitions from one state to the others, and
offers the protocols for communicating with the organization and with the role. A player



agent can play more than one role. Thus, an instance of the protocols and behaviours is
needed for each role played. The list of roles played by the agent, and the state of each
role (activated, deactivated), is kept in an hashtable.

The enactment procedure, described in Section 4, takes the AID of an organization
and of a role type and, if successful, it returns the AID of the role instance associated
to this player in the organization. From that moment the agent can activate the role
and play it. The activate state allows the player to receive from the role requests of
requirement execution and responsibilities (power invocation). Analogously, thePlayer
class allows an agent to deact and deactivate a role.

The behaviour of playing a role is modelled in the player agent class by means of a
finite state machine behaviour. The behaviour is instantiated for each instance of the role
the agent wants to play, by invoking the methodenact and specifying the organization
AID and the role type. The states are inspired to the model of [11]:

Exec requirement
(player’s internal method)

ENACT

Player Agent

Institution

DEACTIVATE

ACTIVATE

Role

DEACT
E

A

D

C

E G

F

Request(requirement)

Inform(0|1)

Request(power)

Inform(result)

Inform(reqFail)

Inform(powFail)

Power

Role

Institution

(a) (b)

Fig. 2. (a) The states of role playing. - (b) The behaviour of roles - A: ManagePwRequest (man-
ages the request from player); B: ManageReqRequest (if a requirement is needed); C: Execute
(executes the called power); D: MatchReq (checks if all requirements are ok); E: InformResult
(sends results to player); F: InformFail (sends fail caused by requirement missing); G: Inform-
PowerFail (sends fail caused by power failure)

Enact : The communication protocol (which contains another finite state machine it-
self) for enacting roles is entered. If it ends successfully with the reception of the
new role instance AID the deactivated state is entered. The hashtable containing the
list of played roles is updated. Otherwise, the deacted state is reached.

Activate : This state is modelled as a finite state machine behaviour which listens for
events coming from outside or inside the agent:

– If another behaviour of the agent decides to invoke a power of the role by means
of theinvokePowermethod (see below), the behaviour of the activated state



checks if the power exists in the role specification and sends an appropriate
message to the role agent. Otherwise an exception is raised.
If another behaviour of the agent decides to deactivate the role the deactivated
state is entered.

– If a message requesting requirements or to invoke powers arrives from the role
agent it plays, the agent will decide whether to comply with the new request
sent by the role. First of all it checks that the required behaviour exists or there
has been a mismatch at the moment of enacting a role.
If the role communicates to its player that the execution of a power is con-
cluded and sends the result of the power, this information is stored waiting to
be passed back to the behaviour which invoked the power upon its request (see
receivePowerResult).

The cyclic behaviour associated with this state blocks itself if no event is present
and waits for an event.

Deactivated : The behaviour stops checking for the invocation of requirements or pow-
ers from respectively the role and the player itself, and blocks until another be-
haviour activates the role again. The messages from the role and the power invoca-
tions from other behaviours pile up in the queue waiting to be complied with, until
an activation method is called and the active state is entered.

Deact : The associated behaviour informs the role that the agent is leaving the role and
cleans up all the data concerning the played role in the agent.

One instance of this finite state machine, that can be seen in Figure 2, is created
for each role played by the agent. This means that for a role only one power at time
is processed, while the others wait in the message queue. Note that the information
whether a role is activated or not is local to the player: from the role’s point of view there
is no difference. However, the player processes the communication of the role only as
long as it is activated, otherwise the messages remains in the buffer. More sophisticated
solutions can be implemented as needed, but they must be aware of the synchronization
problems (e.g., what happens if in the same moment a role sends a request to its player
and the player puts the role in a deactivated state?).

The Player class offers some methods. They can be used in programming the
other behaviours of the agent when it is necessary to make change the state of role
playing or to invoke powers. We assume that invocations of powers to be asynchronous.
The call returns a call id which is used to receive the correct return value in the same
behaviour if necessary. It is left to the programmer how to manage the necessity of
blocking of the behaviour till an answer is returned with the usualblock instruction
of JADE. This solution is coherent with the standard message exchange of JADE and
allows to avoid using more sophisticated behaviours based on threads. The methods
offered by this class are the following.

– enact(organizationAID, roleClassName): to request to enact a role an agent has to
specify the AID of the organization and the name of the class of the role. It returns
the AID of the role instance or an exception is raised.

– invokePower(roleAID, power): to invoke a power it is sufficient to specify the role
AID and the name of the behaviour of the role which must be executed. It returns
an integer which represents the id of the invocation.



– receivePowerResult(int): to receive, if needed, the result of the invocation of a
power (which is identified by means of the id).

– deact(roleAID),activate(roleAID),deactivate(roleAID) respectively definitively de-
acts the role, killing it and managing the data structure to remove all references to
it, activates a role agent that is in thedeactivate state, and temporarily deactivates
the role agent (e.g., immediately after a successfullyenact, the role agent goes in
thedeactivate state).

– addRequirement(String): When extending thePlayer class it is necessary to specify
which of the behaviours defined in it are requirements. I.e., the list of behaviours
which can be requested by a role which is played by the agent. This information is
used in thecanPlay private method which is invoked by theenact method to check
if the agent can play a role. This list may contain non truthful information, but the
failure to comply with the request of a commitment may result in the deactment to
the role as soon as the agent is not able to satisfy the request to execute a certain
requirement.

Moreover, defining a player requires to implement an abstract method to decide
whether to execute the requirements upon request from the roles. The decision about
the implementation of the method is

– adoptGoal(String): It is used to make the player autonomous with reference to re-
quests of role he plays: when the execution of a requirement is requested by the
role, this method returns true if the agent decides to execute it.

4 Interaction

In this section we describe the different protocols used in the interaction between agents
who want to play roles and organizations, and between players and their roles. All
protocols use standard FIPA messages, to enable also non JADE agents to interact with
organizations without further changes. Note that the protocols are always split in two
part: the side of the initiator and of the responder. While the organization is only the
responder of a protocol, roles and players can be both initiators and responder.

We refer to Figure 3, that describes the sequence diagram for interaction.

4.1 Agents and the organization

Behind theenacting state of the player described in the previous section, there is anen-
actment protocol inherited, respectively, as concerns the initiator and the receiver, from
the classesPlayer andOrganization. It forwards from the player to the organiza-
tion the request of enacting a specified role, and manages the exchange of information:
sending the specification of requirements and powers of the roles and checking whether
the player complies with the requirements.

The organization listens from messages from any agent (even if some restrictions
can be posed at the moment of accepting to create the role), while the subsequent com-
munication between player and role is private. After a request from an agent the be-
haviour representing the protocol forks creating another instance of itself to be ready



:RoleA

: Player

request(roleA)

[check_req() false]

[RoleA instantiable]
inform(true, reqlist[ ], powlist[ ])

inform(failure)
[RoleA non−instantiable]

: Organization

check_request()

agree(roleA)

failure(debug_info)

<<create>>

[agreed RoleA]

[ID RoleA]

[if any req]
request(requirements)

exec requirements()

inform(results)
exec_pow1()

[check_req() true]

inform(pow1_results)
[if pow1 executed]

request(pow1)

inform(roleAID)

Fig. 3. The interaction protocol

to receive requests of other agents in parallel. The first message is sent by the player as
initiator and is arequest to enact a role. The organization, if it considers the agent
authorized to play the role, returns to the candidate player a list of specifications about
the powers and requirements of the requested role which are contained in its knowl-
edge base, sending aninform message containing the list; otherwise, it denies to the
player to play the role, answering with aninform message, indicating the failure of
the procedure.

In case of positive answer, the player, invoking the methodcanPlay using the
information contained in the player about the requirements, decides whether to respond
to the organization that it can play the role (agree) or not (failure). The first answer
results in the creation of a new role instance of the requested type (e.g.,Buyer) and
in the update of the knowledge base of the organization with the information that the
player is playing the role. To the role instance the organization passes the AID of the role
player, i.e., the initiator of the enactment, so that it can eventually filter out the messages
not coming from its player. Aninform is sent back to the player agent, telling him
the played role instance’sAID (since it is implemented as an agent it has anAID), The
player, in this way, can address messages to the role and it can identify the messages
it receives from the role it plays. Then the agent updates its knowledge base with this
information, labeling the role as still deactivated. The protocol terminates in both the
player and the organization. This completes the interaction with the organization: the
rest of the interaction, including deacting the role, passes through the role instance
only. The final part of the protocol shows how the player and the role communicate,
for example, for a power request. The role can require the execution of one or more
requirements, from which can depend the power execution.



4.2 Players and their roles

The interaction between a player and its role is regulated by three protocols: the request
by the role of executing a requirement, the invocation of a power by the player, and the
request of the role to invoke a power. In all cases, the interaction protocol works only
between a player and the role instances it plays. Messages following the protocol but
which do not respect this constraint are discharged on both sides.

We start from the first case since it is used also in the second protocol during the
execution of a power. According to Dastani et al. [11] if a role is activated, the player
should (consider whether to) adopt its goals and beliefs. Since our model is distributed,
the role is separated from its player: the goals (i.e., the requirements) and beliefs of
the role have to be communicated from the role to its player by means of a suitable
communication protocol. Each time the state of the role changes, since some new goal
is added to it, the agent is informed by the role about it: either a requirement must be
executed or a power must be invoked. In this protocol, the initiator is the role, which
starts the behaviour when its methodrequestRequirement is invoked.

First of all, the agent checks if the requested requirement is in the list of the player’s
requirements, but this does not mean that it will be executed. Since the player agent
is autonomous, before executing the requirement, it takes a decision by invoking the
methodadoptGoal which is implemented by the programmer of the player.

The protocol ends by informing the role about the outcome of the execution of the
requirement or the refusal of executing it, using an “inform” (see bottom of Figure 2 b).

This protocol is used inside the protocol initiated by the player for invoking a power
of the role. After a request from the player, the role can reply with the request of
executing some requirements which are necessary for the performance of the power.
In fact, in the behaviour corresponding to the power, some invocation of the method
requestRequirement can be present. The protocol ends with the role informing
the agent about the outcome of the execution of the power.

A third protocol is used by the role to remind the agent about its responsibilities, i.e.,
the role asks its player to invoke a power executing the method
requestResponsibility. In this case the object of the request is not a require-
ment executable by the player, but a power, i.e., a behaviour of the role. So the player
has to decide whether and when to invoke the power.

In principle, the programmer could have invoked a power directly from the role,
instead of requesting it by means ofrequestResponsibility. However, with
this mechanism we want to model the case where the player is obliged to invoke the
power but the decision of invoking the power is left to the player agent who can have
more information about when and how invoke the power. It is left to the programmer of
the organization to handle the violation of such obligations.

The final kind of interaction between a player and its role is the request of a player
to deact the role. While deactivation is an internal state of the player, which is not
necessarily communicated to the role, deacting requires that the role agent is destroyed
and that the organization clears up the information concerning the role and its player,
removing the couple(Player, Role) from its data structures.



5 Related and future work

Our extension of JADE is inspired to the model of [7] which has been implemented
in Java creating the language powerJava [3]. With respect to powerJava there are sim-
ilarities and differences, which are due to the fact that in powerJava agents have been
reduced to objects, losing some features.

Few agent languages are endowed with primitives for modeling organization.
MetateM [14] is one of these, and introduces the notion of group by enlarging the no-
tion of agent with a context and a content. The context is composed by the agents (also
groups are considered as agents like in our model organizations are agents) which the
agent is part of, and the content is a set of agents which are included. The authors pro-
pose to use these primitives to model organizations, defining roles as agents included in
other agents and players as agents included in roles. This view risks to forget the differ-
ence between the play relation and the role-of relation which have different properties
(see, e.g., [23]).

Moreover it does not distinguish between powers. Finally MetateM is a language
for modeling BDI agents, while JADE has a wider applicability and is built upon on the
Java general purpose language.

About S-Moise+ features [20], we will improve our system with agent sets and sub-
set as particular inner classes in the Organization class. Very interesting is the matter
of cardinality, constraint that we will implement considering both minimum than max-
imum cardinality allowed for each group.

Concerning J-Moise+ [19], that is a combination of Jason [8] and Moise+ [18], we
will enrich our platform integrating it with a rule engine (like Jess), becoming able to
write beliefs and goals as rules. Very interesting is the matter of groups and schemes,
that we will consider to implement.

The principles of permission will be implemented through a specific new protocol,
calledPermissions, which will allow to a role a call to another role’s power, if
and only if the first role’s player can show (at the time of execution) his credentials
(additional requirements); if no additional requirement is given, the other role’s power
invocation cannot be done.

Another future work is related to Obligations [20]; we are going to implement them
by particular requirements that have to produce some result in a fixed time. If no result
is produced, then a violation occours and this behaviour is sanctioned in some way.
Planning goals too will be realized by requirements, that can be tested one after another
to play single missions.

6 Conclusions

In this paper we use the ontological model of organizations proposed in [7] to program
organizations. We use as agent framework JADE since it provides the primitives to
program the MAS in Java. We define a set of Java classes which extends the agent
classes of the JADE to have further primitives for building organizations structured into
roles.



Organizations and roles are implemented as extension of theAgent JADE class:
this allows to communicate remotely with them using protocols based on FIPA speech
acts, to identify organizations and roles with an AID rather than with a memory refer-
ence, to put on yellow-pages services the information about them, and to program them
using JADEBehaviours.

Roles, modelled as inner classes in Java, can be viewed as agents and as objects at
the same time depending on the perspective: for the external world they are agents with
an AID and communication capabilities, from the perspective of the organizations they
are objects which can be programmed in the traditional way. Being inner classes, all
roles of an organization can be programmed as a single program, since they all belong
to the same namespace.

Organizations and roles are agents with a limited autonomy, since they can act only
via the actions of the players of the roles. The interaction between them is made via a
set of protocols: a protocol between the organization and an agent to start enacting a
role, a protocol between the player and its role to invoke powers of a role, a protocol
between the role and its player to invoke the requirements, etc. The interaction among
roles can happen via normal agent protocol or directly by method invocation, since they
belong to the same namespace.

To play a role, an agent has first to contact the organization and then to execute
the requirements requested by the role. These requests for requirements represent the
expected behaviour of an agent in its role. The agent who plays a role can be in different
states with respect to the roles: enacting it, activated, deactivated and deacted.

It is possible to verify that a player fulfills the requirements during the execution
and not onlybefore the enactment of a role. In the JADE framework, it is up to the
programmers to decide which requirements to provide to an agent implementation at
design time by extending the class that contains the role specification. The advantage
of our proposal is that we only verify the presence of those requirements that are ac-
tually used by the agent during the specific execution, without considering all those
requirements that are not necessary to achieve the current goal. In perspective, if the
protocol specification were available for inspection before the decision of playing a
role, an agent could verify a priori if it owns all the requirements needed for achieving
its goal, disregarding all the others, in the line of what presented in [1]. This approach is
also important whenever an agent is allowed to decide whether satisfying a requirement
depending on the context of the execution. In some cases, it might either decide not to
use a requirement that it actually has, or select which requirement to use among a set of
available requirements.

To define the organizational primitives JADE offered advantages but also posed
some difficulties. First of all, being based on Java, it allowed to reapply the method-
ology used to implement roles in powerJava [3] to implement roles as inner classes.
Moreover, being based on Java it provides a general purpose language to create new
organizations and roles. Finally, being based on FIPA speech acts, it allows agents pro-
grammed in other languages to play roles in organizations, and viceversa, JADE agents
to play roles in organizations not implemented in JADE. However, the decision of us-
ing JADE has some drawbacks. For example, the messages used in the newly defined
protocols can be intercepted by other behaviours of the agents. This shows that a more



careful implementation should use a more complex communication infrastructure to
avoid this problem. Moreover, since JADE behaviours differently from methods do not
have a proper return value, they make it difficult to define requirements and powers.
Finally, due to the possible parallelism of behaviours inside an agent, possible synchro-
nization problems can occur. Under the programming and debugging point of view, an
objection could be that the (possible) execution of player and role on different platform
(and, then, in a separate way), can create difficult during the debugging phase. To solve
this problem it is necessary to develop a new debugging protocol, based on message
passing, that will be used to communicate, for example, when an exception is raised by
a power. This solution is perfectly lined up to the JADE philosophy.

In this paper we do not consider the problem of structuring organizations in sub-
organizations nor to model federated organizations residing on different platforms. A
prototype implementation has been constructed, as described in the paper.

The requirements mechanism will be used to implements many other important
features for MAS: obligations and permissions, groups (sets) and subgroups (subsets),
plans.
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