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Abstract—With the continuous development of deep learning, 

convolutional neural network (CNN) has been widely applied 

to the field of fault diagnosis. However, most of the previous 

methods rely on complex signal processing knowledge or 

feature extraction methods, and thus cannot achieve end-to-

end fault diagnosis. In this paper, we put forward a multiscale 

dense convolutional network (MSDCN) for the fault 

identification of rolling bearing. First of all, a modified coarse-

graining procedure is introduced to incorporate multiscale 

learning ability into CNN model. Then a novel dense 

convolutional neural network architecture (DCNN) is designed 

for the feature extraction of the mechanical vibration signals. 

Finally, an end-to-end fault diagnosis framework which is 

based on the improved coarse-grained process and the 

designed DCNN, is presented. The bearing data collected from 

the fault simulator is used to verify the effectiveness of the 

proposed method. Experiments show that the proposed 

approach outperforms some competitive methods in terms of 

diagnostic accuracy. 

Keywords: Convolutional neural network (CNN); fault diagnosis; 

multiscale dense convolutional network (MSDCN); mechanical 

vibration signals. 

I.  INTRODUCTION  

As an important part mechanical equipment, the failure 
of rolling element bearings during operation will lead to high 
maintenance costs [1]. Therefore, it is of great significance to 
use the one-dimensional vibration signal collected by the 
sensor to carry out real-time status monitoring and fault 
diagnosis of the rolling element bearings.  

In recent years, with the continuous development of 
machine learning research, data-driven fault diagnosis 
methods have gradually become mainstream applications in 
the field of fault diagnosis [2]. Traditional intelligent fault 
diagnosis methods usually consist of three steps including 
feature extraction, feature selection and fault classification. 
Feature extraction is a key step in fault diagnosis [3]. The 
frequently used methods include wavelet transform (WT), 
spectral analysis (SA), empirical mode decomposition 
(EMD), Fourier transform (FFT) and so on [4]. Feature 
selection can eliminate low-sensitivity, cross-correlation, and 

useless features from the extracted features, thereby reducing 
the dimension of features. Popular feature extraction 
approaches include principal component analysis (PCA) and 
independent component analysis (ICA) etc. [5]. Finally, fault 
classification inputs selected features into the fault classifier, 
and fault classification results can be obtained through 
iterative training of the classifier. Backpropagation neural 
networks (BPNN), support vector machine (SVM) and K-
nearest neighbor method (KNN) are the most widely used 
classifiers [6].  

The above data-driven methods have largely promoted 
the development of fault diagnosis. However, they also 
reveal some shortcomings [7]. On the one hand, feature 
selection often relies on the experience and expertise of 
engineers, which brings subjectivity and blindness to 
diagnostic work. In addition, fault features extracted 
manually are easily interfered by noise, and features 
reflecting weak faults are easily concealed by noise. On the 
other hand, the features extracted by such methods are 
mainly used for specific fault diagnosis, which leads to their 
poor generalization ability, making it difficult to apply them 
in industrial practice. 

In 2006, Hinton et al. [8] proposed the concept of deep 
learning (DL). DL applies a deep neural network structure to 
extract features from input sample data layer by layer, and 
learns the nonlinear relationship between data and labels. It 
is able to extract feature information intelligently, which gets 
rid of the shortcomings of traditional methods that require 
manual feature extraction and expert experience. 
Convolutional neural network (CNN) is one of the important 
branches of deep learning [9]. It has powerful feature 
extraction capabilities and has been widely used in image 
recognition and natural language processing [10], [21], [22]. 
In recent years, some scholars have applied CNN to the field 
of fault diagnosis.  

Zhang et al. proposed a domain-adaptive convolutional 
neural network for the fault identification of rolling bearing 
operating under different working conditions [11]. A coupled 
dense connected CNN model for fault recognition of 
planetary gearbox was put forward by Jiao et al. [12]. Peng 
et al. [13] proposed a multi-branch and multi-scale 
convolutional neural network for the fault identification of 
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wheelset bearing. Jiang et al. [14] proposed a new multi-
scale CNN model for the fault diagnosis of gearbox. These 
existing CNN models have greatly enriched the means of 
fault diagnosis. 

The existing approaches are expected to extract rich 
feature information from the raw vibration signals. 
Nevertheless, mechanical equipment usually runs under 
various operating conditions [23]. This brings huge 
challenges to feature extraction and fault diagnosis tasks. 
This paper focuses on building an end-to-end network 
framework for intelligent fault diagnosis. The main 
contributions are given as follows: 

[1] A modified coarse-graining procedure is introduced to 
incorporate multiscale feature extraction capability into 
the traditional CNN models. 

[2] A novel dense connection convolutional neural network 
(DCNN) structure is designed to extract abundant 
feature information from mechanical signals. 

[3] An end-to-end fault diagnosis framework is proposed 
based on the designed DCNN model. 

[4] The proposed method outperforms some competitive 
methods in terms of the overall diagnostic accuracy. 

 

The rest of this paper is organized as follows. Section II 
will elaborate the proposed method. An experiment will be 
carried out to verify the effectiveness of the proposed 
approach in Section III. The conclusion will be given in 
Section IV. 
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Figure 1. Flowchart of the coarse-graining procedure 
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Figure 2. Flowchart of the modified coarse-graining procedure 
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Figure 3. Architecture of dense connection convolutional network proposed 

in this paper 

II. PROPOSED METHOD 

In this Section, a new CNN model named multiscale 
dense convolutional network (MSDCN) will be presented in 
detail.  

A. Modified Coarse-graining Procedure 

The purpose of introducing the coarse-graining procedure 
is to incorporate multiscale learning ability into traditional 
CNN models. The flowchart of the traditional coarse-
graining procedure is shown in Fig. 1.  Given a time series 

,  1ix i N   ,  the  coarse-grained time series can be 

obtained by the following equation: 

             ( )
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where τ denotes the scale factor, and {1 2 }  ，， ; Round(‧) 

represents the rounding operation. When τ =1, the obtained 
coarse-grained time series is actually the raw signal. When 
τ>1, the coarse-graining operation can be regarded as the 
combination of average operation and down sampling 
operation [15]. 

The traditional coarse-graining procedure is effective for 
the multiscale analysis of vibration signal. However, it also 
has some shortcomings [16]. First of all, the traditional 
coarse-graining procedure does not have continuous shift 
operation, which leads to the loss of feature information of 
the raw signal. In addition, the length of the obtained coarse-
grained time series is shorter than the original signal, which 
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is not conducive to subsequent analysis. To deal with this 
problem, a modified coarse-graining procedure is introduced. 
The flowchart of the modified coarse-graining procedure is 

displayed in Fig. 2. Given a time series ,  1ix i N   ,  the  

coarse-grained time series can be obtained by the following 
equation: 

                  ( )
11

y ,  1 1,
j

j i

i j

x j N







+ −

=

=   − +                   (2) 

where τ denotes the scale factor, and {1 2 }  ，， . The 

modified coarse-graining procedure can overcome the 
shortcomings of traditional coarse-graining procedure. In 
addition, the modified coarse-graining procedure is easy to 
implement in comparison with some complex multiscale 
transformation. 
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Figure 4. Framework of the proposed approach 

TABLE I.  DETAILED CONFIGURATION OF THE DESIGNED MSDCN 

312 ×1 /

Classification layer 7 ×1 /

9×1conv, stride 1

/

Concatenate 312-[128×1] /

Convolution 312-[128×1] 1×1conv, stride 1

88-[128×1]

104-[128×1]

Parameters

9×1conv, stride 1

1×1conv, stride 1

2×1pool, stride 2

9×1conv, stride 1

9×1conv, stride 1

1×1conv, stride 1

2×1pool, stride 2

56-[256×1]

72-[256×1]

Transition Block-1 40-[256×1]

Transition Block-2 72-[128×1]

Output Size

512×1

8-[512×1]

16-[512×1]

40-[512×1]
Dense Block-1

Dense Block-2

Lanyers

Input

Convolution

Dense Block-3

Global Ave-pool

 

B. Dense Connection Learning 

Dense connection learning is a recently proposed 
structure that aims to improve the feature extraction learning 
ability of traditional CNN [24]. As is described in previous 
studies, the dense connection learning block is a state-of-the-
art learning structure, which is composed of dense layers and 
transition layers. The detailed description can be found in 
[12], [17], and [18]. In this paper, we propose a new dense 
connection convolutional neural network structure (DCNN). 
As can be seen from Fig. 3, the proposed DCNN includes 
three dense connection blocks in its architecture. Each dense 
block has two convolutional layers; the kernels of 9 × 1 with 
stride 1 are used in all convolutional layers. The growth rate 
of dense block is set to 16. The designed DCNN structure is 
expected to extract rich feature information from the input 
signals. 

C. Framework of the Proposed Approach 

In this Section, we will put forward a multiscale dense 
convolutional network (MSDCN) for the fault identification 
of rolling bearing. The framework of the proposed MSDCN 
is graphically displayed in Fig. 4. First of all, the modified 
coarse-graining procedure is carried out to get the multiscale 
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representations of the input signal. Then the obtained coarse-
grained signals are fed into three DCNN connected in a 
parallel manners. The three DCNN subnets share the same 
architecture as displayed in Table I. Let the extracted feature 
vectors by the three subnets denoted as C1, C2 and C3, 
respectively. Then the extracted feature vectors are 
concatenated: 

                                   C = [C1, C2, C3],                              (3) 

where C denotes the obtained feature vector; [‧] represents 

concatenation operator. Furthermore, a 1×1 convolutional 

layer is used to reduce the aliasing effect of the feature 
vector C. Finally, we input the feature C into a global 
average pool layer and a softmax layer, and then we can get 
the health condition of the monitored machine. The detailed 
structure information of proposed MSDCN is shown in 
Table I.  The proposed framework can achieve end-to-end 
fault classification tasks, which means that no prior 
knowledge is required in the fault diagnosis process. 

TABLE II.  EXPERIMENTAL RESULTS OF MSDCN AND DCNN 

Model Accuracy F1 score

MSDCN 99.25% 99.25%

DCNN 98.61% 98.60%
 

 

Figure 5. Motor-bearing system used in the experiment. 

III. EXPERIMENTAL VERIFICATION 

In this Section, we will implement an experiment to 
validate the effectiveness of MSDCN. 

A. Experiment Setting and Data Description 

All the algorithms involved in this research are running 
on the python 3.7 platform. The back propagation algorithm 
is applied to learn the parameters of the proposed model. We 
use Adam algorithm with learning rate 0.005 to accelerate 
the training of MSDCN. The batch size and training epoch 
are set to 200 and 50, respectively. 

As is graphically displayed in Fig. 5, the rolling bearing 
data is collected from a motor-bearing system. The rolling 
bearing HRB 6205 is selected as the study object. There are 
seven health conditions for the bearing, i.e., Healthy status 
(H), ball fault of the bearing (F1), Inner ring fault of the 
bearing (F2), Outer ring fault of the bearing (F3), Outer ring 
and ball failure of the bearing (F4), Inner ring and ball failure 
of the bearing (F5), Inner outer ring and ball failure of the 
bearing (F6). For each condition, there are 1300 samples for 

training procedure and 400 samples for testing procedure. 
There are 512 points in each sample. Since there are 7 health 
conditions for the bearing, the fault diagnosis task can be 
regarded as a 7 classification problems. 

B. Effectiveness of the Modified Coarse-graining 

Procedure 

First of all, we will discuss the effectiveness of the 
modified coarse-graining procedure. The DCNN model is 
used to compare with the proposed MSDCN. The 
architecture of the DCNN model is the same as that of 
MSDCN’s subnetwork. The experimental results of the two 
methods are displayed in Table II. It can be seen that 
MSDCN outperforms DCNN in terms of accuracy and F1 
score. It is worth pointing out that the accuracy obtained by 
DCNN is as high as 98.61%, which verifies the effectiveness 
of the designed DCNN architecture. In addition, the 
validation cures of the two models are also displayed in Fig. 
6. It can be seen that the MSDCN model converges 
significantly faster than DCNN model, and its accuracy is 
higher.  

TABLE III.  EXPERIMENTAL RESULTS OF THE FOUR METHODS 

Model Accuracy F1 score

CNN 97.18% 97.17%

WDCNN 97.68% 97.68%

MSCNN 97.36% 97.36%

MSDCN 99.25% 99.25%
 

 

Figure 6. Testing cures of MSDCN and DCNN. 

C. Compared with Competitive Methods 

The proposed MSDCN are compared with some 
competitive methods, namely, a five layer CNN in [20], 
WDCNN [19], and MSCNN [14]. The experimental settings 
of these methods are same. The experimental results of the 
four methods are shown in Table III. Compared with CNN, 
WDCNN and MSCNN, the accuracy of MSDCN is 
increased by 2.07%, 1.57% and 1.89%, respectively. The 
confusion matrix of the results is also given in Fig. 7. It can 
be seen that the proposed method can obtain the highest 
accuracy rate in each category, except for healthy samples, 
which implies that the proposed MSDCN has achieved 
satisfactory results. In addition, the F1 score of these methods 
is also listed in Table III. F1 score is completely consistent 
with the accuracy result, which further verifies the previous 
analysis.  
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CNN WDCNN

MSCNN MSDCN  

Figure 7. Confusion matrix of the four models. 

 

Figure 8. Feature visualization via t-SNE. 

In addition to the above analysis on accuracy and F1 
score, we also conduct visualization analysis to give readers 
a more intuitive understanding of MSDCN. So t-distributed 
stochastic neighbor embedding (t-SNE) [25] method is 
introduced to give a more intuitive result. The results by the 

four methods are shown in Fig. 8. It can be seen that, 
compared with CNN, WDCNN and MSCNN, the proposed 
method can better aggregate samples of the same type of 
label, and at the same time better distinguish samples of 
different labels, which shows the superiority of MSDCN. In 
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summary, MSDCN can get a more satisfactory result than 
the other three competitive methods. 

IV. CONCLUSION 

In this paper, a novel MSDCN is developed and an end-
to-end framework based on MSDCN is presented for the 
fault identification of rolling element bearing. To begin with, 
we introduce a modified coarse-graining procedure to 
incorporate multiscale learning ability into CNN model. 
Then a novel dense connection architecture (DCNN) is 
designed for the feature extraction of the mechanical 
vibration signals. Finally, an end-to-end fault diagnosis 
framework, which is based on improved coarse-grained 
process and the designed DCNN, is presented. The bearing 
data collected by the motor-bearing system is used to verify 
the effectiveness of the proposed method. Experimental 
results show that, compared with CNN, WDCNN and 
MSCNN, the accuracy of MSDCN is increased by 2.07%, 
1.57% and 1.89%, respectively. 

The proposed framework can achieve end-to-end fault 
classification tasks, which means that no prior knowledge is 
required in the fault diagnosis process. In the future, we will 
implement the proposed MSDCN on more dataset to further 
validate its effectiveness. 
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