
Verifying Randomized Consensus Protocols
with Common Coins

Song Gao§†, Bohua Zhan§†, Zhilin Wu§†, Lijun Zhang§†‡
§University of Chinese Academy of Sciences, China

†Institute of Software, Chinese Academy of Sciences, China
‡Institute of Intelligent Software, Guangzhou, China

{gaos, bzhan, wuzl, zhanglj}@ios.ac.cn

Abstract—Randomized fault-tolerant consensus protocols with
common coins are widely used in cloud computing and blockchain
platforms. Due to their fundamental role, it is vital to guarantee
their correctness. Threshold automata is a formal model designed
for the verification of fault-tolerant consensus protocols. It
has recently been extended to probabilistic threshold automata
(PTAs) to verify randomized fault-tolerant consensus protocols.
Nevertheless, PTA can only model randomized consensus proto-
cols with local coins.

In this work, we extend PTA to verify randomized fault-
tolerant consensus protocols with common coins. Our main idea
is to add a process to simulate the common coin (the so-called
common-coin process). Although the addition of the common-coin
process destroys the symmetry and poses technical challenges, we
show how PTA can be adapted to overcome the challenges. We
apply our approach to verify the agreement, validity and almost-
sure termination properties of 8 randomized consensus protocols
with common coins.

Index Terms—Randomized consensus, Threshold automata,
Distributed protocols, Common coin

I. INTRODUCTION

Consensus is a fundamental problem in distributed comput-

ing, where a number of processes need to agree on some data

values during computation. Consensus protocols are generally

designed to be fault-tolerant or resilient, which means that they

can withstand the existence of Byzantine or unreliable pro-

cesses. Consensus protocols have many important applications

in various fields, such as cloud computing and blockchains.

As a result, there is a large body of work on designing and

verifying consensus protocols [1]–[7]. However, formal veri-

fication of consensus protocols remains a difficult challenge,

especially when the protocols are probabilistic and/or make

use of additional cryptographic primitives.

The correct consensus protocols must meet three conditions:

agreement, validity and termination. The result of FLP impos-

sibility [8] states that there is no deterministic protocol that

satisfies the consensus of an asynchronous distributed system,

where any process can fail arbitrarily. Randomness provides a

solution to reach consensus when the termination requirement

is weakened to require termination with probability 1. In this

way, the FLP argument no longer prohibits consensus: non-

terminating executions still exist, but collectively they can only

occur with probability 0.

Ben-or [1] and Rabin [2] proposed the first randomized

consensus protocols, which laid the foundation for subsequent

designs and contributed significantly to the development of the

field. Early versions of randomized consensus protocols make

use of a local coin for randomization, where each process

throws the coin independently. As a consequence, they have

an exponential expected number of rounds, making them of

theoretical interest but of limited practical use. Rabin [2]

introduced an additional computational power called a com-
mon coin, which delivers the same sequence of random bits

b0, b1, . . . , br to all processes (each bit bi has the value 0 or 1
with probability 1/2). The common coin is powerful as it can

provide a constant expected number of rounds.

However, designing and proving the correctness of a ran-

domized fault-tolerant distributed protocol is challenging. Ad-

ditionally, there exist several attacks [9], [10] against peer-

reviewed and even practically used protocols. The attacks

motivate formal verification of randomized fault-tolerant pro-

tocols. Threshold automata (TA) [4], [11] have been used

extensively for the verification of fault-tolerant distributed pro-

tocols. The work of Bertrand et al. [5] proposes an extension of

threshold automata by adding probability, probabilistic thresh-

old automata (PTA). The consensus properties of protocols

are reduced to queries on a one-round threshold automaton,

which can be automatically checked using Byzantine Model

Checker (ByMC) [12]. However, this approach assumes local

coins (the randomness in each process is independent) and

cannot be used directly for protocols involving common coins.

Extending PTAs to deal with common coins brings ad-

ditional challenges. As processes are modeled as identical

automata and the symmetry is essential in the TA and PTA

theories, we cannot simply let one distinguished process toss

the common coin. Moreover, throwing the common coin is

assumed not to be subjected to Byzantine faults. Hence, a

nontrivial extension of PTA is necessary for modeling common

coins as well as extending parameterized verification methods

to an asymmetric system. We propose such an extension, by

adding an additional automaton for modeling the common

coin, as well as extra shared variables for communication

between the common coin automaton and other processes. We

fully revisit the theories of threshold automata and probabilis-

tic counter systems as well as adapt the theorems and proofs.

We then reduce correctness and termination checks of the

extended model to single-round queries on non-probabilistic

threshold automata, which can be checked using ByMC.

403

2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

2158-3927/24/$31.00 ©2024 IEEE
DOI 10.1109/DSN58291.2024.00047

a) Computation Model: In this work we consider asyn-

chronous processes, which means that each process proceeds

at its own pace, which may vary arbitrarily with time, and

remains always unknown to the other processes. The system

is made up of a finite set of n asynchronous processes.
Processes communicate by exchanging messages through

an asynchronous reliable point-to-point network. This network

ensures that a message that has been sent is eventually received

by its destination process without any loss, duplication or

modification. Although there is no bound on the delay for

message transfer, the network guarantees that the messages

will be delivered correctly. The term “point-to-point” indicates

that there is a bi-directional communication channel between

each pair of processes, allowing a receiving process to identify

the sender of a message. We assume that there are up to t
processes may exhibit Byzantine faults.

This computation model is denoted BAMPn,t[∅] (BAMP

stands for Byzantine Asynchronous Message Passing). This

model is both restricted with a resilience condition and en-

riched with additional computational power. More precisely,

BAMPn,t[n > 3t,CC] denotes that the computational model

is enriched with a common coin with up to t < n/3 Byzantine

processes in the system.
ε-Good is an important property of the common coin

abstraction: for any value v ∈ {0, 1}, all correct parties output

v with probability ≥ ε. If a coin is 1
2 -good, we call it a strong

coin. In this paper, we consider only the protocols that employ

strong coins.
b) Contributions: The contributions of our work are as

follows:

• We propose an extension of probabilistic threshold au-

tomata to incorporate common coins, and an extension

of probabilistic counter system which removes the re-

strictions in the PTA method.

• As the proposed extensions break the crucial symmetry in

TA and PTA, we revisit several theorems for reducing the

verification of multi-round, probabilistic specifications to

the checks of single-round, non-probabilistic formulas,

and re-prove their correctness in our extended model.

• We reduce the correctness and termination conditions

for probabilistic threshold automata with a common coin

to a set of queries for single-round threshold automata.

The termination conditions include those for checking the

binding hyperproperty [7].

• Using the above framework and the ByMC tool, we verify

a benchmark of 8 randomized distributed protocols using

common coins. The verification is capable of reproducing

the adaptive attack proposed in [9] against [13], and

verifying that the fixed versions are correct.

c) Outline of the paper: The remaining sections of the

paper are as follows. Sect. II gives a motivating example of

common-coin-based protocol and its attack under an adaptive

adversary. Sect. III introduces the framework of (probabilistic)

threshold automata and extended counter systems with com-

mon coins. Sect. IV introduces randomized distributed con-

sensus protocols and its correctness properties. Sect. V is the

main part of the paper, describing our verification approach,

reducing correctness of the protocol to proof obligations that

can be checked using ByMC. We describe the experiments in

Sect. VI, review related work in Sect. VII and conclude in

Sect. VIII with a discussion of future work.

II. MOTIVATING PROTOCOL AND ITS ATTACK

Common coin is a powerful abstraction to achieve random-

ized consensus, but the use of common coin in the presence

of an adaptive adversary makes it more difficult to reason

about termination of the protocol. In particular, the work

of Mostéfaoui et al. [13] proposed the first signature-free

protocol, namely MMR14, to achieve asynchronous Byzantine

consensus, with O(n2) messages and tolerance of t < n/3
Byzantine processes. However, an attack [9] was later found

for the protocol. In order to demonstrate the abstraction of

common coin and the structure of a multi-round BFT protocol,

we describe the protocol and its attack in some detail.

The protocol MMR14 makes use of another abstraction

called BV-broadcast, where each process broadcasts a binary

value and obtains binary values in return. First, the i’th process

Pi broadcasts its chosen value vi. Then some value v is

received from t + 1 processes and if v is not broadcast, it

again broadcasts v. Finally, when some value v is received

from 2t+ 1 different processes, it adds the value v to the set

bin values of values it received.

The complete consensus protocol proceeds in a number of

rounds. Each process begins with a proposed value vi, and

let esti be the current estimate of the value to be decided

upon, which is initialized to be vi. In each round, each process

performs BV-broadcast of esti using message of type EST,

and waits until the set bin values becomes nonempty. Then

it BV-broadcasts each value in bin values using message of

type AUX. Next, it waits until receiving n−t messages of type

AUX, carrying values in the set bin values , and then let s be

the value of the next throw of the common coin. Let values
be the set of values in these AUX messages. If values is a

singleton {v}, then v becomes the new esti . Further, if v = s,

then v is decided upon. If values contains both 0 and 1, then

the new esti is the coin value s.

The paper [13] gives a proof of termination of the protocol

in expected finite number of rounds. The basic idea is by

dividing the protocol into two distinct phases. In the first

phase, it is guaranteed that all correct processes will eventually

have the same value. It follows from the observation that at the

end of each round, a correct process updates its value to either

the only majority v (if it exists) or the common coin result.

Then with probability 1/2 the common coin result is equal to

v and all correct processes get the same value v at the end

of this round. Thus, the expected number of rounds for this

to occur is bounded by 2. Moving on to the second phase, all

correct processes broadcast the agreed-upon value v and we

can easily conclude that it happens in every later round. Then

with probability 1/2 the common coin result aligns with v
and consequently all correct processes decide v in this round.

Similarly, the expected number of rounds for the second phase

404

1: est i ← init ; ri ← 0;

2: while true do
3: ri ← ri + 1; BV broadcast(EST,ri,est i);
4: wait until (bin valuesi[ri] �= ∅);

5: broadcast(AUX,ri,w), where w ∈ bin valuesi[ri];
6: wait until (∃ a set of (n−t) (AUX,ri,x) messages from

distinct processes such that valuesi ⊆ bin valuesi[ri],
where valuesi is the set of values in the messages);

7: s ← random(); % common coin %

8: if (valuesi = {v}) % i.e., |valuesi| = 1 %

9: then est i ← v;

10: if v = s then decide(v) if not yet done;

11: end if
12: else est i ← s;

13: end if
14: end while

Fig. 1: Randomized Consensus Protocol MMR14 for Correct

Process Pi

is bounded by 2. Combining the two phases, the expected

termination time is four rounds.

However, this proof neglects the ability of an adaptive

adversary to obtain the value of the common coin and then

manipulates the behavior of the Byzantine processes as well as

the schedule for sending messages to make the protocol never

terminate. In more detail, consider a smallest system consisting

of 3 correct processes A1, A2, B1 and a Byzantine process

Pbyz , and at a round k, A1, A2 propose estimate value 0 while

B3 proposes 1. The adversary can delay A2’s reception of all

messages unboundedly, while A1 and B1 proceed until they

have the same set values = bin values = {0, 1}. Therefore

they both enter Line 12 and can only set their est value to

be the coin result s. Later Pbyz can manipulate the order of

A2 receiving messages, make its values set equal to {1− s}
and finally set its est value as 1− s. At the end of this round,

two correct processes have their new est value s and one has

1 − s, which is either the same or dual to the initial state. It

indicates that no correct process can ever terminate.

This attack was later fixed by the authors in the journal

version of the paper [14]. Moreover, the work by Abraham

et al. [7] proposes a general framework for building protocols

tolerating crash or Byzantine failures, and the implementation

in the paper can also be viewed as a fixed version of MMR14.

A key contribution of [7] is proposing the binding condition,

which summarizes the property the protocol must satisfy in

order to prevent the above attack. Intuitively, the binding

condition states that in any round of an execution, by the

time the first correct process accesses the common coin, there

is already a value b ∈ {0, 1} such that in any extension of

the execution, no process may output b in the same round.

Since the adversary gains knowledge of the common coin

only when the first correct process accesses it, the adversary

can no longer always manipulate the Byzantine processes to

output the opposite value. A formal definition of the binding

condition, in the language of threshold automata defined in

our work, will be given in Sect. V-B.

1: input bi ∈ {0, 1};

2: broadcast message bi;
3: wait until (∃ di ∈ {0, 1} is received

⌈
n+1
2

⌉
times);

4: decide(di)

Fig. 2: Naive Voting Protocol for Correct Process Pi

I0

I1

S

D0

D1

r1

r2

r3

r4 r1 = (I0, S, true, v0 ++);
r2 = (I1, S, true, v1 ++);
r3 = (S,D0, 2 · (v0 + f) ≥ n+ 1, /);
r4 = (S,D1, 2 · (v1 + f) ≥ n+ 1, /);

Fig. 3: Threshold Automaton for Naive Voting

III. THE FRAMEWORK OF PROBABILISTIC THRESHOLD

AUTOMATA EXTENDED WITH COMMON COINS

A. Threshold Automata

Let us start with threshold automata [4], [11], [12]. A

threshold automaton describes how a correct process runs

in a concurrent system, and it usually contains local loca-

tions, variables and transition rules. Then the system can be

abstracted as a counter system of multiple copies of such

threshold automata, and its running states can be captured by

the counters of locations.

Example 1 Fig. 2 shows a simple protocol of majority voting,
and we model it with the threshold automaton shown in Fig. 3.
We assume that there are n processes in total, and f is the
number of Byzantine processes. We run n − f instances of
the threshold automaton; each instance is modeling a correct
process.

There are two initial locations {I0, I1}, which indicate
the input of the process, and two final locations {D0, D1}
for its decision value. The shared variables v0, v1 represent
the number of messages sent by the correct processes. The
transition rules show steps of the protocol: r1, r2 for Line
2 and r3, r4 for Line 3. Let c0 be the configuration where
v0 = v1 = 0, and all counters are 0 expect the counter of I0
equals n− f . This configuration corresponds to a concurrent
system where all correct processes have the same input 0 and
have not yet broadcast any message.

Byzantine processes are not directly modeled in the au-
tomaton. However, Byzantine behaviors can be captured by
their impact on the transitions of correct processes and on the
threshold guards. For instance, assume that P1,P2,P3 involve
in the naive voting protocol and P3 is Byzantine. P1 and
P2 propose different binary values, therefore their threshold
automata start with different initial states and reach location
S. P1 and P2 cannot proceed if they receive no message from
P3, and if any of them decides value 0, i.e. its automaton

405

reaches location D0, we can infer that Byzantine process P3

sends a message with value 0 to it. In the threshold automaton,
it is represented as a non-deterministic choice of r3 and r4.

B. Probabilistic Threshold Automata Extended with Common
Coins

We present the framework of probabilistic threshold au-

tomata and counter systems extended with common coins,

illustrating the definitions in the example of Fig. 4, a model

of MMR14. The automata rules are given in Table I.

a) Environments: (Probabilistic) threshold automata are

defined relative to an environment Env = (Π,RC, N), where

Π is a set of parameters that range over N0, RC is the

resilience condition, a formula in linear integer arithmetic over

parameters. Intuitively, a valuation of Π determines the number

of different types of process in the system, RC defines the set

of admissible parameters PRC = {p ∈ N
|Π|
0 : p |= RC}.

N : PRC → N
2
0 is a function that maps a vector of admissible

parameters to the number of modeled processes and common

coins in the system.

Example 2 In the threshold automata of Fig. 4, the parame-
ters are n, f, t and cc, denoting the total number of processes,
the actual number of Byzantine processes, the maximum
number of Byzantine processes while ensuring the correctness,
and the number of common coins, respectively. The resilience
condition is n > 5t ∧ t ≥ f ∧ f ≥ 0 ∧ cc ≥ 1, while the
function N is given by (n, f, t, cc) �→ (n− f, 1), as we model
only n− f correct processes and 1 common coin explicitly.

Next, we can define the (non-probabilistic) threshold au-

tomata for correct processes and the probabilistic threshold

automata for common coins in the multi-round setting.

b) Threshold Automata for Correct Processes: Formally,

a (non-probabilistic) threshold automaton over an environment

(Π,RC, N) is a tuple TAn = (Ln,Vn,Rn), where

• Ln: a finite set of locations, which contains the following

disjoint subsets: initial locations In, final locations Fn,

and border locations Bn, with |Bn| = |In|;
• Vn: a finite set of variables, including shared variables Γ

and coin variables Ω;

• Rn: a finite set of rules;

A simple guard is an expression of the form

b · x ≥ ā · p� + a0 or b · x < ā · p� + a0 ,

where x ∈ Γ is a shared variable, ā ∈ Z
|Π| is a vector of

integers, a0, b ∈ Z, and p is the vector of all parameters.

Similarly, we can define a coin guard in the same form but on

a coin variable.

A rule is a tuple r = (from, to, ϕ,u), where from, to ∈ Ln

are the source and destination locations, ϕ is a conjunction of

guards, and u ∈ N
(|Γ|+|Ω|)
0 is the update vector.

Note that for any rule r = (from, to, ϕ,u), we have an

additional restriction on ϕ that it should be either a conjunction

of simple guards or a conjunction of coin guards. We call a rule

r coin-based if r.ϕ is a conjunction of coin guards; otherwise

it is non-coin-based. Another restriction on u is necessary that

the projection of u on the coin variables should be 0, that is,

executing a rule in the threshold automata for correct processes

should always keep the coin variables unchanged.

Threshold automata can model protocols with multiple

rounds that follow the same code. Informally, a round starts

from border locations and ends in final locations, and the

code of a round is modeled by the transitions between initial

locations and final locations. As |Bn| = |In|, we see that

from each border location there is one rule towards an initial

location, and it has the form (�, �′, true,0) where � ∈ Bn and

�′ ∈ In. There are round-switch rules that let processes move

from final locations of a certain round to border locations of

the next round. They can be described as rules (�, �′, true,0)
where � ∈ Fn and �′ ∈ Bn. The set of round-switch rules is

denoted by Sn ⊆ Rn. A location belongs to Bn if and only

if all incoming edges are in Sn. Similarly, a location is in Fn

if and only if there is only one outgoing edge and it is in Sn.

A threshold automaton is called canonical if every rule r
that lies on a cycle ensures that r.u = 0, and we consider

only canonical ones in this work.

For binary consensus, every correct process, say Pi, has an

initial value initi ∈ {0, 1}, and its valid decision value (if any)

should also be binary. Therefore, we can partition every set of

locations In, Fn and Bn into two subsets In
0 �In

1 , Fn
0 �Fn

1

and Bn
0 �Bn

1 , respectively. For every v ∈ {0, 1}, the partitions

follow the 2 rules below:

1) The processes that are initially in a location � ∈ In
v have

the initial value v.

2) Rules connecting locations from Bn and In respect the

partitioning, i.e., they connect Bn
v and In

v . Similarly,

rules that connect the locations of Fn and Bn respect

the partitioning.

For common-coin-based protocols with a step for deciding a

binary value, we can introduce two subsets, decision locations

Dn
v ⊆ Fn

v , v ∈ {0, 1}. Intuitively, a process is in Dn
v locations

in round k if and only if it decides v in that round. Decision

locations are accepting locations in a threshold automaton.

Example 3 Fig. 4(a) depicts a threshold automaton with bor-
der locations Bn = {J0, J1}, initial locations In = {I0, I1},
final locations Fn = {E0, E1, D0, D1}, and decision loca-
tions Dn = {D0, D1}. As a0, a1, b0, b1 are shared variables
and cc0, cc1 are coin variables , there are 6 coin-based
rules r22, r23, r24, r25, r26 and r27. The round-switch rules are
represented by dashed arrows, and the self loops are omitted.

c) Probabilistic Threshold Automata for Common Coins:
A probabilistic threshold automaton for a common coin over

an environment (Π,RC, N) is PTAc = (Lc,Vc,Rc), which

extends the definition of threshold automata in the part of

rules.

Here a rule is a tuple r = (from, δto, ϕ,u), where from ∈
Lc is the source location, δto ∈ Dist(Lc) is a probabilistic

distribution over the destination locations, ϕ is a conjunction

of simple guards, and u ∈ N
(|Γ|+|Ω|)
0 is the update vector.

406

J0

J1

I0

I1

S0

S1

S2

B0

B1

B′
0

B′
1

B2 M⊥

M0

M1

D0

D1

E0

E1

r1

r2

r3

r4

r5

r7

r6

r8

r9

r10

r11

r12

r13

r14

r15

r16
r17

r18

r19

r20

r21

r22

r23

r24

r25

r26

r27

(a)

J2 I2

N0

N1

C0

C1

ra rb
0.5

0.5

rc

rd

re

rf

(b)

Fig. 4: Multi-round Threshold Automata for MMR14, with Self Loops Omitted

If there exists � ∈ Lc such that r.δto(�) = 1, we call the

distribution a Dirac distribution and the rule a Dirac rule r =
(from, �, ϕ,u).

Note that we remove the restriction on the occurrence of

non-Dirac rules, while [5] requires that the destination loca-

tions of all non-Dirac rules should be in Fc. The restrictions

on rules are different in probabilistic threshold automata for

common coins: r.ϕ should only involve simple guards, and

r.u cannot modify the values of shared variables.

Example 4 Fig. 4(b) shows a probabilistic threshold automa-
ton for the common coin in MMR14. We have border locations
Bc = {J2}, initial locations Ic = {I2}, and final locations
Fc = {C0, C1}. The only non-Dirac rule is rb.

Finally, given Env = (Π,RC, N), the non-probabilistic

threshold automaton TAn = (Ln,Vn,Rn) for correct pro-

cesses and the probabilistic threshold automaton PTAc =
(Lc,Vc,Rc) for common coins, we have that they share the

same set of variables, i.e., Vn = Vc, and their sets of locations

and rules are naturally disjoint. For simplicity, we write L for

Ln∪Lc, V for Vn and R for Rn∪Rc. Note that (L,V,R) does

not form a probabilistic threshold automaton for this system.

C. Extended Probabilistic Counter Systems

The semantics of the probabilistic multi-round system is

an infinite-state Markov decision process (MDP). Given an

environment Env = (Π,RC, N), a threshold automaton TAn =
(Ln,Vn,Rn) for correct processes and a probabilistic thresh-

old automaton PTAc = (Lc,Vc,Rc) for the common coin, we

define the semantics, called counter system Sys(TAn,PTAc)
over Env, to be the infinite-state MDP (Σ, I,Act,Δ), where

• Σ: the set of configurations,

• I ⊆ Σ : the set of initial configurations,

• Act = R × N0: the set of actions labelled by round

numbers,

• Δ : Σ × Act → Dist(Σ) is the probabilistic transition

function.

a) Configurations: A configuration is a tuple c =
(κ,g,p), where the function c.κ : L×N0 → N0 describes the

values of the location counters in each round, c.g : V×N0 →
N0 defines the values of the variables in each round, and the

TABLE I: The Rules of the Multi-round Threshold Automaton

for MMR14

Rules Guard Update

r1, r2 true -
r3 true b0++
r4 true b1++
r6,r12 b0 ≥ t+ 1− f b0++
r5,r11 b1 ≥ t+ 1− f b1++
r7, r9 b0 ≥ 2t+ 1− f a0++
r8, r10 b1 ≥ 2t+ 1− f a1++
r13 b1 ≥ 2t+ 1− f -
r14 b0 ≥ 2t+ 1− f -
r15, r16, r17 a0 ≥ n− t− f -
r18, r19, r20 a1 ≥ n− t− f -
r21 a0 + a1 ≥ n− t− f ∧ a0 ≥ 0 ∧ a1 ≥ 0 -
r22, r25, r26 cc0 > 0 -
r23, r24, r27 cc1 > 0 -
ra, rb true -
rc true cc0++
rd true cc1++

vector c.p shows the values of the parameters. We denote the

vector (g[x, k])x∈V of all variables in round k by g[k], and

denote the vector (κ[�, k])�∈L of location counters in round k
by κ[k].

A configuration is initial if all processes as well as the

common coin are in initial locations of round 0, and all

variables evaluate to 0. A threshold guard evaluates to true

in a configuration c for a round k, written c, k |= ϕ, if

for all its conjuncts b · x ≥ ā · p� + a0, it holds that

b · c.g[x, k] ≥ ā · (c.p�) + a0, and similarly for conjuncts

of the other form.

b) Actions and Probabilistic Transition Function: An

action α = (r, k) ∈ Act stands for the execution of a rule

r ∈ L in round k by a single process.

We say an action α unlocked in a configuration c if the guard

of its rule evaluates to true in round k, that is, c, k |= r.ϕ.

An action α = (r, k) is applicable to a configuration c
if α is unlocked in c and the location counter value at

round k for the source location of its rule is at least 1,

formally, c.κ[r.from, k] ≥ 1. When an action α is applicable to

configuration c and � is a potential destination location for the

probabilistic action α, we denote the resulting configuration

407

as apply(α, c, �). In this resulting configuration, the parameters

remain unchanged, the variables are updated according to the

update vector α.u, and the values of location counters are

modified in a natural way: in round α.k, the counter of source

location α.from decreases by 1, the counter of destination

location � increases by 1, and the others remain unchanged.

The probabilistic transition function Δ is defined such that

for any two configurations c and c′, and for any action α
applicable to c, we have

Δ(c, α) (c′) =
{

α.σto(�) if apply(c, α, �) = c′

0 otherwise

D. Non-probabilistic Extended Counter Systems

Given a probabilistic threshold automaton PTA over an

environment, we can replace probability with non-determinism

and get a non-probabilistic threshold automaton TAPTA.

Definition 1 Given a PTA = (L,V,R) over an environment
Env, its non-probabilistic threshold automaton is TAPTA =
(L,V,Rnp) over Env where the set of rules Rnp is defined
as {r� = (from, �, ϕ,u) | r = (from, δto, ϕ,u) ∈ R ∧ � ∈
L ∧ δto(�) > 0}.

In words, Rnp contains all Dirac rules in R, and turns all prob-

abilistic branches of non-Dirac rules into non-deterministic

Dirac rules. We write TA for TAPTA when the automaton PTA
is clear from the context, e.g., the non-probabilistic threshold

automaton of PTAc is TAc.

Given an environment Env = (Π,RC, N), a threshold au-

tomaton TAn for correct processes and a probabilistic thresh-

old automaton PTAc for the common coin, we can first get

the non-probabilistic TAc, and then define an infinite non-

probabilistic counter system Sys∞(TAn,TAc) over Env, to be

the tuple (Σ, I,Act′, R). The set of configurations and initial

configurations Σ, I are defined as in Sect. III-C. An action

t ∈ Act′ is a tuple (r, k) ∈ (Rn ∪ Rc
np) × N0, and R is

the transition relation. Two configurations c0, c1 are in the

transition relation, i.e., (c0, c1) ∈ R if and only if there exists

an action t such that t(c0) = c1.

In the non-probabilistic counter system, a (finite or infinite)

sequence of transitions is called schedule, and it is often

denoted by τ . A schedule τ = t1, t2, . . . , t|τ | is applicable

to a configuration c if there is a sequence of configurations

c0, c1, . . . , c|τ | such that for every 1 ≤ i ≤ |τ | we have

that ti is applicable to ci−1 and ci = ti(ci−1). Given a

configuration c0 and a schedule τ , we denote by path(c0, τ)
a path c0, t1, c1, . . . , t|τ |, c|τ | where tt(ci−1) = ci for every

1 ≤ i ≤ |τ |. Similarly we define an infinite schedule τ and an

infinite path also denoted by path(co, τ).
An infinite path is fair if no transition is applicable forever

from some point on. Equivalently, when a transition is applica-

ble, eventually either its guard becomes false, or all processes

leave its source location.

E. Adversaries

The non-determinism is usually resolved by a so-called ad-

versary. We denote by Σ+ the set of all non-empty sequences

of configurations. An adversary is a function a : Σ+ → Act,
which given a sequence of configurations ξ ∈ Σ+ selects

an action applicable to the last configuration of ξ. Given a

configuration c and an adversary a, we generate a family of

paths, depending on the outcomes of non-Dirac transitions,

and we denote this set by paths(c, a). An adversary a is fair

if all paths in paths(c, a) are fair.

The Markov Decision Process (MDP) Sys(TAn,PTAc) over

Env together with an initial configuration c and an adversary
a induce a Markov chain, written as Mc

a. We denote by P
c
a

the probability measure over infinite paths starting at c in the

latter Markov chain.

An adversary a is round-rigid if it is fair, and if every

sequence of actions it produces can be decomposed into a

concatenation of sequences in the form s0 · s1 · s2 . . ., where

the sequence sk contains only actions of round k. We denote

the set of all round-rigid adversaries by AR.

The atomic propositions APk and stutter equivalence dis-

cussed in this work follow the definitions in [5].

IV. RANDOMIZED DISTRIBUTED CONSENSUS PROTOCOLS

The consensus problem was first introduced by Lamport et

al. [15]. It can be stated in a basic, generic manner: One or

more processes may propose some value. How do we get a

collection of correct processes to agree on exactly one of those

proposed values?

In binary cases, assuming each correct process pi proposes

a value vi ∈ {0, 1}, each of them has to decide a binary value.

Definition 2 (Consensus) Consensus is reached if the follow-
ing properties hold:

• Agreement: No two correct processes decide different
values.

• Validity: A decided value was proposed by a correct
process.

• Termination: Each correct process decides.

The famous FLP impossibility shows that no deterministic

consensus protocol can be possible in asynchronous settings

as soon as one node may crash. Ben-or [1] and Rabin [2] are

the first to show that the impossibility can be circumvented

via randomness. In this paper, we focus on randomized binary

consensus protocols in asynchronous systems, where random-

ization is provided by common coins. Randomized Consensus
is then defined by Agreement, Validity, plus the following

Almost-sure Termination property: Each correct process de-

cides with probability 1. For round-based protocols, consider

the event E(i, r): process pi decides by round r. Then this

termination property is re-stated as: for any correct process

p i, we have limr→+∞ P(E(i, r)) = 1.

Now we can express the specifications in LTL−X as follows:

• Agreement: no two correct processes decide differently.

408

For both v ∈ {0, 1}, the following holds: ∀k, k′ ∈ N0.

A(F
∨

�∈Dn
v

κ[�, k] > 0 → G
∧

�′∈Dn
1−v

κ[�′, k′] = 0)

(Agree)

• Validity: if all correct processes have v as the initial

value, then no process decides 1−v. For both v ∈ {0, 1},

the following holds: ∀k ∈ N0.

A(G
∧

�∈In
v

κ[�, 0] = 0 → G
∧

�′∈Dn
v

κ[�′, k] = 0) (Valid)

• Almost-sure Termination under Round-rigid Adversaries:

For every initial configuration s and every round-rigid

adversary a, the following holds:

P
s
a[∃k ∈ N0. G

∧
�∈Fn\Dn

κ[�, k] = 0] = 1 (Termin)

V. VERIFICATION OF RANDOMIZED CONSENSUS

A. Towards verifying non-probabilistic properties

For the specifications of safety properties, i.e., Agreement
and Validity, we observe that they are both non-probabilistic

properties and concern about locations in the threshold au-

tomata of correct processes. Agreement contains two round

variables k and k′, and Validity considers round 0 and k. We

would like to check these specifications in the ByMC tool,

which allows the properties to use only one round number.

Therefore, we introduce two round invariants that refer to one

round and prove that these two round invariants imply the

consensus properties Agreement and Validity as follows.

The first round invariant claims that in every round and in

every path, once a correct process decides v ∈ {0, 1} in a

round, no correct process ever enters a location from Fn
1−v in

that round. Formally, ∀k ∈ N0.

A(F
∨

�∈Dn
v

κ[�, k] > 0 → G
∧

�′∈Fn
1−v

κ[�′, k] = 0) (Inv1)

The second round invariant claims that in every round and

in every path, if no correct process starts a round with a value

v ∈ {0, 1}, then no correct process ever ends that round with

v. Formally, ∀k ∈ N0.

A(G
∧

�∈In
v

κ[�, k] = 0 → G
∧

�′∈Fn
v

κ[�′, k] = 0) (Inv2)

Round switch lemma is useful in the following reasoning. It

states that in every round and in every run, if no process ever

enters a final location with value v, then in the next round,

there will be no process in any initial location with value v.

Lemma 1 (Round switch) For every Sys= Sys∞(TAn, TAc)
and every v ∈ {0, 1}, we have: ∀k ∈ N0.

A(G
∧

�∈Fn
v

κ[�, k] = 0 → G
∧

�′∈In
v

κ[�′, k + 1] = 0) (RS)

Proof It follows from the definitions of Iv , Fv and Bv . �
Proposition 1 If Sys |= (Inv1)∧(Inv2), then Sys |= (Agree)∧
(Valid).

The proof is omitted due to length constraints.

We utilize a similar method as [5] to check one-round

properties. The main idea is to prove that there exists a

counterexample to the property in the multi-round system if

and only if there is a counterexample in a single-round system.

To this end, we prove the following two theorems in the non-

probabilistic extended counter systems Sys∞(TAn,TAc).
The first theorem states that every finite schedule can be

reordered into a round-rigid one that is stutter equivalent

regarding LTL−X formulas over proposition from APk, for all

rounds k, therefore it is sufficient to reason about the round-

rigid schedules.

Theorem 1 For every configuration c and every finite sched-
ule τ applicable to c, there is a round-rigid schedule τ ′ such
that the following holds:

• Schedule τ ′ is applicable to configuration c,
• τ ′ and τ reach the same configuration when applied to

c, i.e., τ ′(c) = τ(c),
• for every k ∈ N0, we have that path(c, τ ′) and path(c, τ)

are stutter equivalent w.r.t. APk.

The next theorem provides a simple way to check spec-

ifications with one round number, which include both round

invariants (Inv1) and (Inv2). It allows us to check specifications

using single-round systems. First we need to build the single-

round threshold automata for TAn and TAc.

Definition 3 Given a TA=(L,V,R) over Env, its single-
round threshold automaton is TArd=(L∪B′,V,Rrd), where
B′={�′: � ∈ B} are copies of border locations, and the
set of transition rules Rrd= (R\S) ∪ S ′ ∪ Rloop, where
Rloop= {(�′, �′, true,0)} are self-loops at locations in B′, and
S ′={(from, �′, true,0): (from, �′, true,0) ∈ S with �′ ∈ B′}
consists of modifications of round-switch rules.

Intuitively, given a multi-round TA, we can remove its

round-switch rules, add two more border locations B′ and rules

that direct final locations to B′ and self-loops. In this way, we

get a single-round threshold automaton TArd starting from

B and ending with B′, which models in some round a correct

process starts and ends with a binary value, respectively. Given

the single-round threshold automata for correct processes

(TAn
rd) and common coin (TAc

rd), in a similar way, we can

construct a single-round counter system Sysk (TAn
rd,TA

c
rd)

to model the system in round k.

Theorem 2 Let TA be non-blocking, and let all fair execu-
tions of Sys0 (TAn

rd,TA
c
rd) terminate w.r.t. all possible initial

configurations. If ϕ[k] is a LTL−X formula over APk for a
round variable k ∈ N0 , the following points are equivalent:

• Sys∞(TAn,TAc) |= ∀k ∈ N0.Aϕ[k]
• Sys0 (TAn

rd,TA
c
rd) |= Aϕ[0] with respect to the initial

configurations Σu, where Σu is the union of all renamed

409

Somitted part

D0

D1

E0

E1

M0

M1

M⊥

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

Fig. 5: The Common Part in the Threshold Automata of (C)

initial configurations from all rounds.

The proofs are omitted due to length constraints.

B. Round-rigid probabilistic termination

Considering the differences in the design of common-coin-

based consensus protocols, we can roughly divide them into

three categories. For each category of protocols, they have

similar sufficient conditions for their almost-sure termination.

Specifically, let Sys = Sys∞(TAn,TAc) and Env =
(Π, RC,N) be the counter system and environment of the

protocol, and nc is the number of modeled correct processes,

we can classify the protocols in the following way:

(A) the protocol does not have a “decide” action, that is,

there are no accepting locations D in TAn, the threshold

automata of correct processes;

(B) the protocol has a “decide” action and all its messages

and conditions contain only binary values, that is, there

are accepting locations D in TAn, and for every pair of

shared variables on the same messages s0, s1 ∈ Γ and

every final configuration cf ∈ F , cf .s0 + cf .s1 ≤ nc;

(C) the protocol has a “decide” action and uses a “Binary

Crusader Agreement” primitive, that is, there are accept-

ing locations D in TAn, and there is a common part in

TAn as shown in Fig. 5;

1) Sufficient conditions for (A) protocols: In this category

of protocols, there is no “decide” action, and the Almost-
sure Termination property is stated as “the probability of

not all correct processes having the same value in R round

is O(2−R)”. The proof target of Almost-sure Termination
property for (A) protocols can be formalized as follows. For

every initial configuration c and every round-rigid adversary

a, the following holds:

P
c
a[∃k ∈ N0, ∃v ∈ {0, 1}. G

∧
�∈Fn

1−v

κ[�, k] = 0] = 1 (1)

We need two sufficient conditions to prove their Almost-sure
Termination property under round-rigid schedules:

• (C1) states the existence of a positive probability lower

bound for all processes ending round k with the same

final values. Formally, if there is a probability bound p ∈
(0, 1], such that for every round-rigid adversary a, every

k ∈ N0, and every configuration ck that is initial for

round k, it holds that

P
ck
a [∃v ∈ {0, 1}. G

∧
�∈Fn

1−v

κ[�, k] = 0] ≥ p .

• (C2) states that if all correct processes start round k with

the same value v ∈ {0, 1}, then they will all end with v
in that round. Formally, ∀v ∈ {0, 1}, ∀k ∈ N0.

A(G
∧

�∈In
v

κ[�, k] = 0 → G
∧

�′∈Fn
v

κ[�′, k] = 0) .

Combining conditions (C1) and (C2), under every round-

rigid adversary, from any initial configuration of round k, the

probability that all correct processes end with the same value

in that round is at least p, and it holds for any future round.

Thus, the probability not to have the same value within n
rounds is at most (1− p)n, which tends to 0 when n tends to

infinity.

Proposition 2 If Sys |= (C1) and Sys |= (C2),then Sys |= (1).

The proof is trivial.
2) Sufficient conditions for (B) protocols: The protocols

in this category can decide a binary value, and their messages

contain only binary values. Their desired Almost-sure Termi-
nation property requires that all correct processes decide the

same value v ∈ {0, 1} with probability 1, and it can be stated

as follows:

For every initial configuration c and every round-rigid

adversary a, the following holds:

P
c
a[∃k ∈ N0, ∃v ∈ {0, 1}. G

∧
�∈Fn\Dn

v

κ[�, k] = 0] = 1 (2)

Similarly we have to introduce three sufficient conditions to

prove this specification:

• (C1) states the existence of a positive probability lower-

bound for all processes ending round k with the same

final values. Formally, if there is a probability bound p′ ∈
(0, 1], such that for every round-rigid adversary a, every

k ∈ N0, and every configuration ck that is initial for

round k, it holds that

P
ck
a [∃v ∈ {0, 1}. G

∧
�∈Fn

1−v

κ[�, k] = 0] ≥ p .

• (C2′) states the existence of a positive probability lower-

bound for all correct processes deciding the same value

v ∈ {0, 1} in round k if all correct processes start

round k with the same value v. Formally, if there is a

probability bound p′ ∈ (0, 1], such that for every round-

rigid adversary a, every k ∈ N0, and every configuration

ck that is initial for round k, it holds that:

∀v ∈ {0, 1}, ∀k ∈ N0.

P
ck
a [G

∧
�∈In

1−v

κ[�, k] = 0 → G
∧

�∈Fn\Dn
v

κ[�′, k] = 0] ≥ p′.

Note that local-coin-based protocols with “decide” steps in

[5] share the same sufficient condition (C2) for probabilis-

tic termination with category (A) protocols, while category

(B) protocols require a probabilistic condition (C2′). The

difference lies in the guard of such “decide” steps: in a local-

coin-based protocol, a correct process decides a binary value

410

when it receives enough messages of certain type; however, in

category (B) (and also (C)) protocols, it additionally requires

the value equals the common coin (see Line 10 in Fig. 1).

Proposition 3 Assume that there are accepting locations D
in TAn, and for every pair of shared variables on the same
messages s0, s1 ∈ Γ and every final configuration cf ∈ F ,
cf .s0 + cf .s1 ≤ nc. If Sys |= (C1) and Sys |= (C2′) , then
Sys |= (2).

Proof Let us fix the environment Env = (Π, RC,N), an initial
configuration c0 of Sys and a round-rigid adversary a.

Two possible options may occur along a path π ∈
paths(c0, a):
(a) ∃v ∈ {0, 1}.π |= G(

∧
�∈Fn

v
κ[�, 0] = 0),

(b) ∀v ∈ {0, 1}.π |= F(
∨

�∈Fn
v
κ[�, 0] > 0),

In words, either round 0 ends with a final configuration
where all correct processes have the same value, or round 0
ends with a final configuration where both 0 and 1 present. In
case (a), we have π |= G(

∧
�∈Fn

v
κ[�, 0] = 0) and by (C1),

for round k = 0, the probability that this case happens is at
least p.

Consider the next round. By Round switch lemma (RS), we
have that in round 1 all correct processes start with the same
value v, two possible options may occur:
(c) π0 |= G

∧
�∈Fn\Dn

v
κ[�′, 1] = 0,

(d) π0 |= F
∨

�∈Fn\Dn
v
κ[�′, 1] > 0,

In words, either all correct processes decide v in this
round, or it ends with a final configuration where not all
correct processes decide. According to (C2′), for round 1 the
probability that case (c) happens is at least p′, if case (a)
happens in round 0.

Combine the first two rounds together. If case (a) happens in
round 0 and case (c) happens in round 1, all correct processes
decide the same binary value at the end of round 1, and its
probability is at least p · p′. Therefore the probability that not
all correct processes decide the same binary value at the end
of first two rounds is at most (1− p · p′).

By iterating the reasoning, consider the event E(2r): not all
correct processes decide the same binary value at the end of
first 2r rounds. Thus for round 2n, we have that

P
c0
a [E(2n)] ≤ (1− p · p′)n

lim
n→+∞P

c0
a [E(2n)] = 0 (3)

The limit when n tends to infinity yields that the probability
of not having round-rigid termination is 0. In conclusion,
all correct processes decide the same binary value with
probability 1. �

3) Sufficient conditions for (C) protocols: The Almost-
sure Termination property of (C) protocols shares the same

formula as (2). However, they are based on Binary Crusader
Agreement, a weaker version of the binary consensus, which

introduces the third value ⊥ for “not sure about 0 or 1”, and

the value ⊥ is usually encoded by sending/receiving valid

messages containing both values 0 and 1.

Fig. 5 shows the common structure of a single-round

non-probabilistic threshold automaton for correct processes

in the (C) protocols. Besides the final locations F =
{E0, E1, D0, D1}, there are 3 locations representing the output

of Binary Crusader Agreement primitive. We denote the set

of locations {M0,M1,M⊥} by M. When receiving enough

messages containing either a binary value or ⊥ tagged with

type M , it enters a location in M based on the number of mes-

sages received (encoded by variables m0,m1 and m⊥). There

are two templates for the guard of r3: m0 +m1 ≥ n− t− f ,

and m0 + m1 + m⊥ ≥ n − t − f . The transitions r5 − r10
are all coin-based rules. r5, r8, r9 share the same coin-based

guard cc0 > 0, which stands for the common coin result 0,

while r6, r7, r10 share the same coin-based guard cc1 > 0.

Here we introduce the property binding, which is proposed

in [7]. Abstractly, a protocol obtains the binding property if

no matter what the adversary does, it is forced to choose (bind

to) in the present in a way that restricts all future outcomes

of the protocol.

Definition 4 (Binding) Let time τ be the first time such that
there is a party that is correct and enters a location in M
at time τ . At time τ , there is a value b ∈ {0, 1} such that no
correct party enters M1−b in any extension of this execution.

Formally, given a finite path π, we denote the set of all
paths that take π as its prefix by Exts(π). For every initial
configuration c0, every round-rigid adversary a and every
round k, the following holds:

∀π ∈ paths(c0, a). π |= F
∨

�∈M
κ[�, k] > 0 →

(∃b ∈ {0, 1}, ∀π′ ∈ Exts(π). π′ |= Gκ[M1−b, k] = 0)

The binding property states that for every execution prefix

that some correct processes enter a location in M in round k,

there is a single binary value b such that no correct process

can enter location M1−b in this round in any future extension

of this prefix. Note that this is an instance of a hyperproperty
because it characterizes sets of executions, i.e., all possible

extensions of a prefix, instead of individual executions as in

standard safety or liveness properties.

It is natural to require that if a correct process enters

M0 in round k then no correct process ever enters M1,

that is, A(Fκ[M0, k]>0 → Gκ[M1, k]=0) (and similarly for

M1). However, it is different for the cases where a correct

process enters M⊥, because the transition r3 from S to M⊥
concerns the total number of messages instead of the exact

number of each message, and the propositions on the numbers

of messages are not supported in the threshold automata

approach. Therefore, we propose a solution to further refine

the model, particularly the transition rule to M⊥, and encode

the binding property by five sufficient conditions.

Assume that r3 = (S,M⊥, ϕ,0), that is, it is a transition

rule from location S to location M⊥, guarded by formula ϕ,

and it keeps the shared variables unchanged. We can remove

r3 and instead add three locations N0, N1, and N⊥ as well as

the following transition rules:

411

Somitted part

D0

D1

E0

E1

M0

M1

M⊥

N0

N1

N⊥

r1

r2

rA3

rB3

rC3

r4

r03

r13

r⊥3

r5

r6

r7

r8

r9

r10

Fig. 6: A Refined Model of the Common Part

• rA3 = (S,N0, ϕ ∧m0 > 0,0)
• rB3 = (S,N1, ϕ ∧m1 > 0,0)
• rC3 = (S,N⊥, ϕ ∧m0 = 0 ∧m1 = 0,0)
• ri3 = (Ni,M⊥, true,0), for i ∈ {0, 1,⊥}

It is easy to observe that the modification does not block

the automaton. By reasoning about the counter values of

location N0, N1 and N⊥, we can infer the number of messages

received, which is impossible in the original automaton.

Here we list the sufficient conditions for binding property

as follows:

• (CB0): if a correct process enters M0 in round k, then

no correct process ever enters M1, that is, ∀k ∈ N0.
A(Fκ[M0, k] > 0 → Gκ[M1, k] = 0);

• (CB1): if a correct process enters M1 in round k, then

no correct process ever enters M0, that is, ∀k ∈ N0.
A(Fκ[M1, k] > 0 → Gκ[M0, k] = 0);

• (CB2): if a correct process enters N0 and then M⊥ in

round k, then no correct process ever enters M1, that is,

∀k ∈ N0. A(Fκ[N0, k] > 0 → Gκ[M1, k] = 0);
• (CB3): if a correct process enters N1 and then M⊥ in

round k, then no correct process ever enters M0, that is,

∀k ∈ N0. A(Fκ[N1, k] > 0 → Gκ[M0, k] = 0);
• (CB4): if a correct process enters N⊥ and then M⊥

in round k, then no correct process ever enters M0

or M1, that is, ∀k ∈ N0. A(Fκ[N⊥, k] > 0 →
G

∧
�∈{M0,M1} κ[�, k] = 0);

Proposition 4 If TAn has such a subpart as Fig. 6 and Sys
satisfies all (CB0)-(CB4), then Sys satisfies Binding property.

Proof Let time τ be the first time such that there is a party
that is correct and enters a location in M at time τ . There
are five possible options for the correct process:

• it enters M0 through the transition rule r1, then by (CB0)
we can set the binary value b = 0 and no correct process
can enter location M1−b = M1, that is, Gκ[M1] = 0;

• it enters M1 through the transition rule r2, then by (CB1)
we can set the binary value b = 1 and no correct process
can enter location M1−b = M0, that is, Gκ[M0] = 0;

• it enters M⊥ through the transition rule rA3 , then by
(CB2) we can set the binary value b = 0 and no correct
process can enter location M1−b = M1;

• it enters M⊥ through the transition rule rB3 , then by
(CB3) we can set the binary value b = 1 and no correct
process can enter location M1−b = M0;

• it enters M⊥ through the transition rule rC3 , then by
(CB4) we can set the binary value b = 0 and no correct
process can enter location M1−b = M1;

To conclude, at time τ , there must be a value b ∈ {0, 1} such
that no correct party enters M1−b in any extension of this
execution. �

Proposition 5 Assume that there are accepting locations D in
TAn, and there is a subpart in TAn as shown in Fig. 6. If Sys
satisfies Binding property as well as (C2′), then Sys |= (2).

Proof Fix the environment Env = (Π, RC,N), a round-rigid
adversary a and an initial configuration c0. Assume that the
common coin is ε-Good, that is, for any value v ∈ {0, 1}, the
common coin result equals v with probability ≥ ε > 0.

Consider any round k, let time τk be the first time such
that there is a process that is correct and enters a location
in M at time τk. By binding property, at time τk we can
have a binary value b such that no correct process can ever
enter M1−b in this round. Because all coin-based rules (r5 −
r10) start from a location in M, no correct process has ever
executed a coin-based rule at time τk. In other words, at time
τk the common coin of round k is not yet tossed, therefore the
common coin result is independent of the binary value b. Note
that the common coin result has at least ε possibility of being
value b. If no correct process can ever enter M1−b in round
k and the common coin result is b, all correct processes will
have the same value b at the end of round k. To conclude, by
binding property, there is a positive probability lower bound
ε for all correct process ending round k with the same final
value, and it coincides the condition (C1).

Follow the same aforementioned reasoning, and we prove
that with probability 1 all correct processes decide the same
binary value. �

Corollary 1 Assume that there are accepting locations D in
TAn, and there is a subpart in TAn as shown in Fig. 5. If Sys
satisfies all (CB0)-(CB4) conditions, as well as (C2′) , then
Sys |= (2).

Proof It follows directly by Propositions 4 and 5. �

4) Reducing probabilistic to non-probabilistic specifica-
tions: Note that the sufficient conditions (C2), as well as

(CB0)-(CB4), are non-probabilistic specifications with one

round number, so that we can check them using the method

in Sect. V-A; while (C1) and (C2′) are probabilistic, we

need to further reduce its verification to verification of non-

probabilistic specifications.

The method for local coins in [5] requires that there exists

at most one “coin-based” rule in a threshold automaton and it

must lie at the end of a round. We remove those restrictions on

the “common-coin-based” rules. In fact, it is even allowed that

a single-round path in a threshold automaton contains multiple

“common-coin-based” rules. This makes the extended model

412

more expressive, while it keeps good properties, such as the

following lemma.

Lemma 2 Let Env be the environment, AR be the set of
round-rigid adversaries and I be the set of initial configu-
rations over Env. In the single-round probabilistic counter
system Sys(TAn

rd,TA
c
rd), for every LTL−X formula ϕ over

atomic proposition AP, the following statements are equiva-
lent:

• ∃p > 0, ∀c ∈ I, ∀a ∈ AR. Pc
a(ϕ) ≥ p,

• ∀c ∈ I, ∀a ∈ AR, ∃π ∈ paths(c, a). π |= ϕ

The proof is omitted due to length constraints.

By applying Lemma 2, we observe that the probabilistic

sufficient conditions are equivalent to non-probabilistic spec-

ifications with the existential quantifier in the single round

system Sys(TAn
rd,TA

c
rd). We can further turn them into non-

probabilistic specifications that can be checked by ByMC, and

in the end prove the sufficient conditions (C1) and (C2′).

VI. EXPERIMENTS

We have applied our approach to eight randomized fault-

tolerant consensus protocols that make use of common coins,

including:

1) Randomized Byzantine consensus (Rabin83) in [2],

the first common coin-based randomized consensus pro-

tocol. It tolerates Byzantine faults when t < n/10.

2) Randomized Byzantine consensus (CC85(a)) in [16],

which proposes a simple implementation of common

coin and has an optimal resilience condition n > 3t.
3) Randomized Byzantine consensus (CC85(b)) in [16],

which is an adaptation of Rabin83 and raises the bound

of Byzantine faults to t < n/6.

4) Randomized Byzantine agreement (FMR05) in [17],

which contains one communication step in each round,

and can resist up to n/5 Byzantine faults.

5) Randomized Byzantine agreement (KS16) in [18],

which builds on Bracha’s [19] and replaces the local

coin in each process with a common coin. Its resilience

condition remains n > 3t.
6) The protocol (MMR14) by Mostéfaoui et al. [13], which

contains an attack by adaptive adversary resulting in

non-termination.

7) In Miller’s post [9] there is a discussion to fix the bug

of MMR14, and the fixed version (Miller18) was later

used in the Dumbo protocol [20].

8) Randomized Byzantine agreement (ABY22) in [7] based

on binding crusader agreement, which tolerates t Byzan-

tine faults when n > 3t.

For each protocol, we build two versions of one-round

threshold automata for probabilistic and non-probabilistic

properties. We input both automata into ByMC, which im-

plements the parameterized model checking techniques.

Table III gives a summary of the properties and conditions

that were verified in our experiments. The round invariants

inv1 and inv2 are sufficient conditions for Agreement and

Validity, and the others are sufficient conditions for Almost-
sure termination. Given the set of all possible locations L and

a subset S = {�1, . . . , �n}, we adopt the shorthand notation

for LTL−X formulae: EX{S} stands for
∨

�∈S κ[�] �= 0, that

is, at least one threshold automaton enters a location in S;

ALL{S} stands for
∧

�∈L\S κ[�] = 0, that is, all threshold

automata enter the locations in S. Take (Inv2) as example,

its formula states that for every execution where all correct

processes propose value 0 in a round, it is always true that no

process can end with value 1 in that round.

Table II shows the computational results of the experiments:

column |L| and |R| give the numbers of automata locations

and rules. In the columns for properties, “nschemas” stands

for the number of checked schemas of executions. The com-

putational times are given in seconds if not specified, and

“CE” stands for a reported counterexample. The benchmarks

of category (C) are challenging for the technique of Konnov

et al. [4]: the sizes of their threshold automata are too large,

and as a result their experiments timeout for a 24-hour limit.

Therefore we check the first six rows with a laptop with Intel

Core i7-12650H, while the last two experiments are conducted

on a computing server of 216 cores AMD EPYC 7702 in

parallel mode. We ran each experiments 10 times and listed

the average values for nschemas and time.

As can be seen in Table II, the benchmarks of categories (A)

and (B) have small sizes and they can be quickly verified for

the three properties. A violation of Binding sufficient condi-

tions is found for MMR14 within 10 seconds at best.The found

counterexample contains the system settings, e.g. n = 193
and t = 64, an initial configuration as well as a sequence

of actions. It reports that the resulted state does not satisfy

the formula of (CB2). We analyze its execution and find that

it follows the pattern of the designed attack in [9]: firstly

some correct processes access the common coin, then the

adaptive adversary obtains the coin value v and manipulates

the messages, and finally a correct process gets its new est
value as 1− v. By repeating the last actions we can complete

the duality in the attack. Miller18 and ABY22, two fixed

versions of MMR14, both pass the check, while it takes over

11 and 10 hours to check all their sufficient conditions for

Almost-sure Termination properties.

Table II reveals a positive correlation between the number

of checked schemas and the verification time, and the worst-

case schemas depend on the size of the automaton and the

structure of the formula. Given that a threshold automaton

is tightly coupled with its protocol, reducing the number of

locations and transition rules is not straightforward without

sacrificing essential meaning. Another critical factor affecting

the maximum number of schemas is the presence of mile-

stones. Intuitively, when a milestone is reached, certain thresh-

old guards (inequations) are always true/false in the future

executions. Interestingly, different types of messages lead to

varying numbers of milestones. As an illustrative example, we

modify ABY22 to create 5 threshold automata of the same size

but with different milestone counts. The maximum numbers

of schemas are then calculated and presented in Table IV.

413

TABLE II: Benchmarks of 8 Different Common Coin-Based Protocols

Automaton Agreement Validity A.S. Termination
Name category |L| |R| nschemas time nschemas time nschemas time (total)

Rabin83 (A) 7 17 6 0.25 2 0.20 8 0.43
CC85(a) (B) 9 18 342 4.93 42 0.50 171.5 2.70
CC85(b) (B) 10 17 6 0.25 2 0.20 8 0.32
FMR05 (B) 10 16 6 0.23 2 0.21 2 0.32
KS16 (B) 11 26 18 0.75 5 0.31 15 0.76
MMR14 (C) 17 29 28918 298.90 1442 8.74 - CE

Miller18(mpi) (C) 22 48 > 106 605 253534 226 > 108 11h46m47s
ABY22(mpi) (C) 22 49 > 106 583 106098 71 > 108 10h13m14s

TABLE III: Properties Checked for Value 0

Label Formula
(Inv1) A F(EX{D0}) → G (¬EX{E1, D1})
(Inv2) A ALL{I0} → G (¬EX{E1, D1})
(C1) A F(EX{D0, E0}) → G(¬EX{D1, E1})
(CB0) A F(EX{M0}) → G(¬EX{M1})
· · · · · ·

TABLE IV: Maximum Numbers of Schemas for Threshold

Automata with Different Milestones

Name Formula nmilestones max-nschemas
ABY22 (CB0) 10 98182294
ABY22-1 (CB0) 9 15129955
ABY22-2 (CB0) 8 2650445
ABY22-3 (CB0) 7 257126
ABY22-4 (CB0) 6 28918
ABY22 (Inv2) 10 7479057
ABY22-1 (Inv2) 9 1298630
ABY22-2 (Inv2) 8 253534
ABY22-3 (Inv2) 7 28395
ABY22-4 (Inv2) 6 3592

VII. RELATED WORK

In recent years, there have been steady advance in creating

ever more complex distributed consensus protocols, in order

to optimize for performance while preserving its guarantees of

fault-tolerance. HoneyBadger [21] is the first practical asyn-

chronous atomic broadcast protocol. The Dumbo family of

protocols [20], [22] build upon HoneyBadger to obtain further

improvements in performance and latency. All these protocols

use asynchronous Byzantine agreement as a substep. The

increasing complexity of these protocols make it more urgent

to develop scalable formal techniques for their verification.

There have been a long line of work on verification of

fault-tolerant distributed protocols. Earlier work [3], [23] make

use of Cadence SMV and the probabilistic model checker

PRISM to verify protocols consisting of 10-20 processes. For

parameterized verification, the key development is the proposal

of threshold automata, and theoretical results reducing the

correctness in the general case to model checking on a finite

system [4], [11]. These results are implemented in the ByMC

tool [12] for verifying protocols in practice.

Bertrand et al. [5] extend the framework of threshold

automata with probabilistic transitions, namely probabilistic

threshold automata, and reduce the safety and liveness verifi-

cation of a multi-round randomized protocol to checking on

a one-round automaton. In that paper, round-rigid adversaries

are assumed in the proof of termination. This restriction is

relaxed to that of weak adversaries in [24].
In the direction of compositional reasoning, the work by

Bertrand et al. [6] verified the consensus protocol of Red Belly

Blockchain by reducing the protocol into two parts: an inner

broadcast protocol and an outer decision protocol, verified

each part separately and then composed the correctness results.
Besides the use of threshold automata, there is also work

using Ivy and TLA proof system to verify a simplified version

of HotStuff [25], a protocol for repeated distributed consensus

used in permissioned blockchains [26]. The work by Attiya et

al. [27] focused on verifying Byzantine fault-tolerant protocols

based on directed acyclic graphs (DAGS), some of which also

make use of randomness in the form of common coins.

VIII. CONCLUSION

In this paper, we proposed an extension of probabilistic

threshold automata that supports the use of common coins,

that can be used to model fault-tolerant randomized distributed

protocols for reaching consensus. We reduce the correct-

ness properties of consensus protocols: agreement, validity,

and termination to queries on single-round non-probabilistic

threshold automaton, which can be checked using ByMC.

Key parts of the queries correspond to the binding condition

preventing an adaptive adversary from delaying decision by

the protocol indefinitely. Using this framework, we verified

eight consensus protocols that make use of common coins,

and were able to reproduce an attack found in earlier work.
Our work can be viewed as a further step toward verify-

ing complex Byzantine consensus protocols, such as Hon-

eyBadger [21] and Dumbo [20], both of which make use

of asynchronous Byzantine agreement. Future work includes

the development of composition reasoning techniques as well

as reasoning about cryptographic primitives that are part of

those protocols. Finally, we intend to remove the restriction

of round-rigid adversaries in the proof of termination, perhaps

by using methods similar to those proposed in [24].

ACKNOWLEDGMENT

This work is supported by CAS Project for Young Scien-

tists in Basic Research, Grant No.YSBR-040, ISCAS New

Cultivation Project ISCAS-PYFX-202201, and ISCAS Basic

Research ISCAS-JCZD-202302.
This work is part of the European Union’s Horizon

2020 research and innovation programme under the Marie

Skłodowska-Curie grant no. 101008233.

414

REFERENCES

[1] M. Ben-Or, “Another advantage of free choice: Completely asyn-
chronous agreement protocols (extended abstract),” in Proceedings of
the Second Annual ACM Symposium on Principles of Distributed Com-
puting. Montreal Quebec Canada: ACM, 1983.

[2] M. O. Rabin, “Randomized byzantine generals,” in 24th Annual Sym-
posium on Foundations of Computer Science. Tucson, Arizona, USA:
IEEE, 1983.

[3] M. Z. Kwiatkowska and G. Norman, “Verifying randomized byzantine
agreement,” in Formal Techniques for Networked and Distributed Sys-
tems - FORTE 2002. Houston, Texas, USA: Springer, 2002.

[4] I. V. Konnov, M. Lazic, H. Veith, and J. Widder, “A short counterexample
property for safety and liveness verification of fault-tolerant distributed
algorithms,” in Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017. Paris, France:
ACM, 2017.

[5] N. Bertrand, I. Konnov, M. Lazic, and J. Widder, “Verification of
randomized consensus algorithms under round-rigid adversaries,” Int.
J. Softw. Tools Technol. Transf., vol. 23, no. 5, pp. 797–821, 2021.

[6] N. Bertrand, V. Gramoli, I. Konnov, M. Lazic, P. Tholoniat, and
J. Widder, “Holistic verification of blockchain consensus,” in 36th
International Symposium on Distributed Computing, DISC 2022, Au-
gusta,Georgia, USA, 2022.

[7] I. Abraham, N. Ben-David, and S. Yandamuri, “Efficient and adaptively
secure asynchronous binary agreement via binding crusader agreement,”
in PODC ’22: ACM Symposium on Principles of Distributed Computing.
Salerno, Italy: ACM, 2022.

[8] M. J. Fischer, N. A. Lynch, and M. Paterson, “Impossibility of dis-
tributed consensus with one faulty process,” J. ACM, vol. 32, no. 2, pp.
374–382, 1985.

[9] A. Miller, “Bug in aba protocol’s use of common
coin,” last Accessd 8 Sep 2023. [Online]. Available:
https://github.com/amiller/HoneyBadgerBFT/issues/59

[10] I. Abraham, G. Gueta, D. Malkhi, L. Alvisi, R. Kotla,
and J. Martin, “Revisiting fast practical byzantine fault
tolerance,” CoRR, vol. abs/1712.01367, 2017. [Online]. Available:
http://arxiv.org/abs/1712.01367

[11] I. V. Konnov, H. Veith, and J. Widder, “On the completeness of
bounded model checking for threshold-based distributed algorithms:
Reachability,” Inf. Comput., vol. 252, pp. 95–109, 2017. [Online].
Available: https://doi.org/10.1016/j.ic.2016.03.006

[12] I. Konnov and J. Widder, “Bymc: Byzantine model checker,” in Lever-
aging Applications of Formal Methods, Verification and Validation.
Distributed Systems - 8th International Symposium, ISoLA. Limassol,
Cyprus: Springer, 2018.

[13] A. Mostefaoui, H. Moumen, and M. Raynal, “Signature-free asyn-
chronous byzantine consensus with t < n/3 and o(n2) messages,” in
Proceedings of the 2014 ACM Symposium on Principles of Distributed
Computing, 2014.

[14] A. Mostéfaoui, H. Moumen, and M. Raynal, “Signature-free asyn-
chronous binary byzantine consensus with t < n/3, o(n2) messages,
and O(1) expected time,” J. ACM, vol. 62, no. 4, pp. 31:1–31:21, 2015.

[15] L. Lamport, R. E. Shostak, and M. C. Pease, “The byzantine generals
problem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401,
1982. [Online]. Available: https://doi.org/10.1145/357172.357176

[16] B. Chor and B. A. Coan, “A simple and efficient randomized byzantine
agreement algorithm,” IEEE Trans. Software Eng., vol. 11, no. 6, pp.
531–539, 1985.

[17] R. Friedman, A. Mostéfaoui, and M. Raynal, “Simple and efficient
oracle-based consensus protocols for asynchronous byzantine systems,”
IEEE Trans. Dependable Secur. Comput., vol. 2, no. 1, pp. 46–56, 2005.

[18] V. King and J. Saia, “Byzantine agreement in expected polynomial time,”
J. ACM, vol. 63, no. 2, pp. 13:1–13:21, 2016.

[19] G. Bracha, “Asynchronous byzantine agreement protocols,” Inf. Com-
put., vol. 75, no. 2, pp. 130–143, 1987.

[20] B. Guo, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo: Faster
asynchronous BFT protocols,” in CCS ’20: 2020 ACM SIGSAC
Conference on Computer and Communications Security, Virtual Event,
USA, November 9-13, 2020, J. Ligatti, X. Ou, J. Katz, and
G. Vigna, Eds. ACM, 2020, pp. 803–818. [Online]. Available:
https://doi.org/10.1145/3372297.3417262

[21] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger
of BFT protocols,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, October
24-28, 2016, E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers,
and S. Halevi, Eds. ACM, 2016, pp. 31–42. [Online]. Available:
https://doi.org/10.1145/2976749.2978399

[22] Y. Gao, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo-
ng: Fast asynchronous BFT consensus with throughput-oblivious
latency,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2022, Los Angeles,
CA, USA, November 7-11, 2022, H. Yin, A. Stavrou, C. Cremers,
and E. Shi, Eds. ACM, 2022, pp. 1187–1201. [Online]. Available:
https://doi.org/10.1145/3548606.3559379

[23] M. Z. Kwiatkowska, G. Norman, and R. Segala, “Automated verification
of a randomized distributed consensus protocol using cadence SMV and
PRISM,” in Computer Aided Verification, 13th International Conference.
Paris, France: Springer, 2001.

[24] N. Bertrand, M. Lazic, and J. Widder, “A reduction theorem
for randomized distributed algorithms under weak adversaries,”
in Verification, Model Checking, and Abstract Interpretation
- 22nd International Conference, VMCAI 2021, Copenhagen,
Denmark, January 17-19, 2021, Proceedings, ser. Lecture Notes
in Computer Science, F. Henglein, S. Shoham, and Y. Vizel, Eds.,
vol. 12597. Springer, 2021, pp. 219–239. [Online]. Available:
https://doi.org/10.1007/978-3-030-67067-2 11

[25] L. Jehl, “Formal verification of hotstuff,” in Formal Techniques
for Distributed Objects, Components, and Systems - 41st IFIP WG
6.1 International Conference, FORTE 2021, Held as Part of the
16th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2021, Valletta, Malta, June 14-18, 2021,
Proceedings, ser. Lecture Notes in Computer Science, K. Peters and
T. A. C. Willemse, Eds., vol. 12719. Springer, 2021, pp. 197–204.
[Online]. Available: https://doi.org/10.1007/978-3-030-78089-0 13

[26] M. Yin, D. Malkhi, M. K. Reiter, G. Golan-Gueta, and I. Abraham,
“Hotstuff: BFT consensus with linearity and responsiveness,” in
Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, PODC 2019, Toronto, ON, Canada, July 29 - August 2,
2019, P. Robinson and F. Ellen, Eds. ACM, 2019, pp. 347–356.
[Online]. Available: https://doi.org/10.1145/3293611.3331591

[27] H. Attiya, C. Enea, and S. Nassar, “Faithful Simulation of Randomized
BFT Protocols on Block DAGs,” in 34th International Conference on
Concurrency Theory (CONCUR 2023), Dagstuhl, Germany, 2023.

415

