o
¢

3
A
/s"i"
NPOMHBEVS -
Sl
nVpPPoPo

National Technical University of Athens

SCHOOL OF ELECTRICAL
AND COMPUTER ENGINEERING

DivisioN oF COMPUTER SCIENCE

Optimizing Query Answering over Expressive
Ontological Knowledge

DOCTOR OF PHILOSOPHY
of

ILTANNA S. KOLLIA
Electrical and Computer Engineer N.T.U.A. (2009)

Athens, April 2014

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL & COMPUTER ENGINEERING
DivisioN oF COMPUTER SCIENCE

SEXNE]

Optimizing Query Answering over Expressive
Ontological Knowledge

DOCTOR OF PHILOSOPHY
of

ILTIANNA S. KOLLIA
Electrical and Computer Engineer N.T.U.A. (2009)

Advisory Commitee: Andreas-Georgios Stafylopatis
Birte Glimm
Giorgos Stamou

A .-G. Stafylopatis B. Glimm G. Stamou
Professor N.T.U.A. Assistant Professor Assistant Professor
University of Ulm N.T.U.A.
P. Tsanakas M. Koubarakis K. Kontogiannis
Professor N.T.U.A. Professor U.O.A. Associate Professor
N.T.U.A.
I. Horrocks
Professor

University of Oxford

Athens, April 2014

ILIANNA S. KOLLIA
Doctor Electrical and Computer Engineer N.T.U.A.

(© 2014 - All rights reserved
The approval of the Ph.D. Thesis from the School of Electrical and Computer En-

gineering of N.T.U.A. does not indicate acceptance of the opinions of the author
(L.5343/1932, Article 202).

Contents

1 Introduction 1
1.1 Description LOgIiCsot 2
1.2 Semantic Web Standards................ . 5)
1.3 Thesis Contribution i 10
1.4 Thesis Outline. e 11

2 Foundations of Description Logics 13
2.1 Syntax and Semantics 13

2.1.1 Expressive Description Logics - The DL-Lite Family 16
2.1.2 Light-weight Description Logics 16
2.2 Reasoning Techniques............. . i 16
2.3 Ontological Query Answeringcoiiiiiiiiiiiiieann.. 19

3 Query Answering and Optimization Approaches 21

3.1 Query Answering over Databases and Triple Stores 21
3.1.1 Databases ... 21
3.1.2 Triple StOreso 24

3.2 Query Answering over Ontologies 26
3.2.1 Materialization Techniques.................. 27
3.2.2 Query Rewriting Techniques 29
3.2.3 Techniques for Expressive Ontological Knowledge............. 31
3.2.4 Approximation Techniques................................... 34

4 Query Answering Optimizations 37
4.1 Motivation 37
4.2 Preprocessing for Information Extraction............................ 39

4.2.1 Information Extraction from Reasoner Models................ 40
4.2.1.1 Individual Clustering 44

4.3 Query Answering and Axiom Template Ordering 44
4.3.1 Cost Functions for Conjunctive Instance Queries 50
4.3.2 Cost Functions for General Queries 54

4.4 Related Work. ... 56

4.5 Extension of the Approach to Approximate Query Answering Systems 58

4.6 DISCUSSION . .. vttt ettt 61

5 Optimizations for Complex Axiom Templates 63
5.1 Axiom Template Rewriting 63
5.2 Concept and Role Hierarchy Exploitation 64

Query Answering Algorithm 73

6.1 Algorithm Description 73
6.2 Termination, Soundness and Completeness 80
Evaluation 87
7.1 The System Architecture.......... i 87
7.2 Experimental Results 87
721 Query Orderingoiiiiiiiii 88
7.2.2 Complex Axiom Template Optimizations..................... 94
Semantic Access to Cultural Content 99
8.1 Metadata Enrichment and Query Answering for Improved Resource
DISCOVETY . e 101
8.2 Experimental Evaluation of the System........................... ... 103
Conclusions and Future Work 109
9.1 Conclusions and Significance of the Work.................... 109
9.2 Future Work. 111
Bibliography 115

i

List of Figures

0.1
6.1
7.1

8.1
8.2
8.3
8.4

Concept and role hierarchies 65
Concept hierarchy example 78
The main phases of query processing in our system 88
The architecture of the proposed system............................. 100
RDF output of an example record............. 102
Closed and Open VASESuri it 106
Vases with different number of handles 106

1l

List of Tables

4.1 Query Ordering Example i 53
6.1 Queried Ontology 7
7.1 Query answering times for LUBM(1,0) and LUBM(2,0) 90
7.2 Plan statistics ... 90
7.3 Number of individuals in LUBM universities......................... 91
7.4 Scalability testing for LUBM 91
7.5 Query answering times for UOBM and statistics..................... 92
7.6 Queries used for SPARQL-DL tests 93
7.7 Query answering times for SPARQL-DL queries over LUBM(1,0)

and statistics ... 93
7.8 Query answering times for complex GALEN queries 95
7.9 Sample complex queries for the GALEN ontology.................... 95
7.10 Query answering times for complex FBbt_XP queries 97
7.11 Sample complex queries for the FBbt_XP ontology 97

8.1 Excerpt of the used thematic ontology in Description Logic syntax ... 105
8.2 Response times and system results L. 106

ABSTRACT

Query answering over ontologies, i.e., the computation of answers to user queries
based not only on explicitly stated information but also on implicit knowledge is an
important task in the context of the Semantic Web. In this direction, the SPARQL
query language has recently been extended by the World Wide Web Consortium
(W3C) with so-called entailment regimes. An entailment regime defines how queries
are evaluated under more expressive semantics than SPARQL’s standard simple
entailment, which is based on subgraph matching.

In this thesis we describe a sound and complete algorithm for the OWL Direct
Semantics entailment regime of SPARQL (SPARQL-OWL). The proposed SPARQL-
OWL queries are very expressive since variables can occur within complex concepts
and can also bind to concept or role names apart from individuals. Initially, we
present a cost-based query planning strategy for SPARQL queries issued over an
OWL ontology. The costs of the model are based on information about the in-
stances of concepts and roles that are extracted from a model abstraction built by
an OWL reasoner. A static and a dynamic algorithm are presented which use these
costs to find optimal or near optimal execution orders for the templates of a query.
For the dynamic case, we improve the performance by exploiting an individual clus-
tering approach that allows for computing the cost functions based on one individual
sample per cluster. Afterwards, we propose optimizations that target particularly
the complex queries that are allowed in SPARQL-OWL. These optimizations exploit
query rewriting techniques and the concept and role hierarchies to efficiently answer
such queries.

The proposed algorithm and optimizations have been implemented in a sys-
tem called OWL-BGP. Our experimental study, using this system, shows that the
static ordering usually outperforms the dynamic one when accurate statistics are
available. This changes, however, when the statistics are less accurate, e.g., due
to non-deterministic reasoning decisions. For complex SPARQL-OWL queries we
observe an improvement of up to three orders of magnitude due to the proposed
optimizations. Finally, we show that the implemented system works well in a real
world application about cultural heritage data.

Keywords: SPARQL query answering, SPARQL-OWL, OWL Direct Semantics

entailment regime, query planning, query optimization

vil

Acknowledgements

I would like to thank my supervisor Professor Andreas-Georgios Stafylopatis for
his support and valuable help whenever needed during my Ph.D. studies. Moreover,
I would like to thank my second supervisor Birte Glimm, Assistant Professor at
the University of Ulm in Germany, for her continuous help and support both when
working for my Ph.D. under her guidance in Ulm and through our weekly Skype
meetings. I would also like to thank her, as well as Dr. Yevgeny Kazakov, for
being so eager to help me whenever some problem arose during my whole stay in
Ulm. I would also like to thank the third member of my Ph.D. Advisory Committee
Assistant Professor Giorgos Stamou for the continuous interaction we had during all
this period. All three created a friendly, high-level working environment from the
beginning to the end of my Ph.D. and I truly thank them for this.

I would also like to give my sincere thanks to Professor Ian Horrocks, who was the
supervisor of my M.Sc. Thesis at the University of Oxford, and Professor Manolis
Koubarakis of the University of Athens for accepting being external members of my
Ph.D. Committee. Special thanks to Professor Panayiotis Tsanakas for his assistance
during all my Ph.D. studies and to Associate Professor Kostas Kontogiannis for
participating in my Ph.D. Examination Committee.

I would also like to thank all my friends and colleagues, who provided me with
good company and a nice working environment that were of great assistance to my
working in a calm and dedicated manner. Last but not least, I thank my family -my
parents, Stefanos and Loula and my brother Dimitris- for the continuous help and
support they provided during all my studies.

1X

Abbreviations

ABox
BGP
CIDOC
CRM
CPU
DC

DL
DL-KB
DLP
EAD
EDM
e.g.
ESE
etc.
FIFO
FOL
FSS
GCI
IH

I/0
IRI

KB
LIDO
LUBM
METS
MPEG
OWL
RDF
RDFS
SKOS
SURF
SVM
TBox
UOBM
w.r.t.
WWW
W3C
XML

Assertional Box

before Christ

Basic Graph Pattern

CIDOC Conceptual Reference Model

Central Processing Unit

Dublin Core

Description Logics

Description Logic Knowledge Base
Description Logic Program
Encoded Archival Description
Europeana Data Model

for example

Europeana Semantic Elements

et cetera

First In First Out

First Order Logic

Functional Style Syntax

General Concept Inclusion
Induction Hypothesis
Input/Output

International Resource Identifier
Knowledge base

Lightweight Information Describing Objects
Lehigh University Benchmark
Metadata Encoding and Transmission Standard
Motion Pictures Experts Group
Web Ontology Language

Resource Description Framework
RDF Schema

Simple Knowledge Organization System
Speeded Up Robust Features
Support Vector Machine
Terminological Box

University Ontology Benchmark
with respect to

World Wide Web

World Wide Web Consortium
Extensible Markup Language

X1

Chapter 1

Introduction

The last couple of years the area of knowledge representation and reasoning [15]—a
subfield of Artificial Intelligence—has gained much attention. This area is centered
around the way knowledge should be organized and processed so that it can be used
by reasoning procedures to extract useful conclusions. A knowledge representation
system consists of a knowledge base (KB), where constraints and facts about the
modeled world are stored. There are several knowledge representation formalisms
proposed in the literature; in the current thesis we focus on Description Logics
(DLs), which are a decidable fragment of First Order Logic (FOL) and the logical
foundation of the Web Ontology Language (OWL); a language widely used in the
Semantic Web [13, 118]. The Semantic Web is an extension of the World Wide
Web - WWW | in which information is organized in such a way that it is processable
and understandable by computer programs, which can carry out complex tasks in a
(semi-)automatic way. Description Logic systems have been widely used in several
practical applications including medical informatics [111, 142, 128, 122, 38|, life
sciences [141, 120, 140, 115, 130, 1], cultural heritage [81, 80] and image processing
and multimedia [9, 97, 109, 79].

Description Logic and generally knowledge representation systems give users the
ability to ask (complex) queries over the stored knowledge and, through appropriate
algorithms, to retrieve answers to them based not only on explicitly stated facts,
but also on implicit or inferred knowledge. Several methods have been developed for
query answering over Description Logic systems, most of which focus on conjunc-
tive queries well known from the area of databases [2]. Since such systems either
work with simple description logics or are not practical enough for logics of higher
expressivity, the aim of this thesis is to propose a novel Description Logic query lan-
guage that allows higher order features and to develop a query answering algorithm
together with optimizations for answering such queries over expressive Description
Logic knowledge bases.

This chapter gives an informal introduction to the formalisms used in the thesis.
Section 1.1 introduces Description Logics and the used query language, which we call
SPARQL-OWL. The intuition for this query language comes from SPARQL [110], a
query language widely used in the area of RDF triple stores; in fact, every SPARQL-
OWL query can be mapped to a SPARQL query and vice versa. In Section 1.2 the
connection between the two languages is made clear by explaining how a query
issued in SPARQL can be transformed to a query in the proposed SPARQL-OWL
language. Note that the tool that has been developed in the context of the thesis

1

Chapter 1. Introduction

takes SPARQL queries as input and using this translation it produces SPARQL-
OWL queries which are afterwards evaluated using the query answering algorithm
and optimizations proposed in the thesis.

1.1 Description Logics

Description Logics [7] are a family of knowledge representation languages that can
be used to represent the knowledge of an application domain in a structured and
formally well-understood way. Like other logical formalisms they define the syntaz
and semantics of modeled information. Syntax refers to the definition of the symbols
used by the formalism, as well as the rules that combine these symbols to more
complex constructs while semantics refers to the definition of the interpretations
given to the syntactic symbols as well as the interpretations of their combinations.
Description logics are a decidable fragment of First Order Logic [28] and are widely
used in several domains.

A Description Logic knowledge base (DL-KB), usually called ontology, typically
consists of two parts, the terminological and the assertional part. In the termino-
logical part, called TBox a vocabulary of the used terms is provided, together with
axioms describing the meaning of these terms. The assertional part, called A Boz, is
used to state assertions about concrete data. The main building blocks of DLs are
concept names, (abstract) role names and individual names or individuals. For exam-
ple, in a university domain we can have individual names like mary, maths, concept
names like Person, Student, UndergraduateStudent, Professor, Course, GraduateCourse
and role names like takesCourse, teachesCourse. (Complex) concepts in DLs are
built using concept, role and individual names that are connected through construc-
tors. The semantics of DLs is given by means of interpretations. An interpretation
T = (AT, %) consists of a non-empty set of objects AZ called the interpretation do-
main, and an interpretation function -£. The interpretation function maps concept
names to sets of objects in AZ, role names to binary relations between objects in
AT x AT and individual names to objects in AZ. Using the semantics of concept, role
and individual names the semantics of more complex concepts can be determined
[7]. For example, assume that we want to define the concept of a student that takes
a graduate course. This can be described by the following concept:

Student M JtakesCourse.GraduateCourse (1.1)

Informally, in an interpretation Z, the concept name Student (GraduateCourse) is
mapped to the set containing all objects that are students (graduate courses) and
the role name takesCourse is mapped to the set of pairs of objects; the first ele-
ment of each pair is an object that takes a course and the second element is the
course that it takes. The concept uses conjunction (M), which is interpreted as set
intersection and an existential restriction. An individual, say mary, belongs to the
existential restriction (JtakesCourse.GraduateCourse) if there is an individual that is
a GraduateCourse and is related to mary via the takesCourse role. Depending on the
used constructors there are DLs of different expressivity.

Axioms contain, on the one hand, general information about the modeled do-
main, i.e., the relationships between concept names and role names and, on the other
hand, information about concrete instance data, i.e., how individuals are related to

Chapter 1. Introduction

concept names and to other individuals through role names. For example, assume
that we want to state that students are either undergraduate students or they take
at least 3 graduate courses. This statement is represented by the following concept
inclusion axiom:

Student C UndergraduateStudent LI > 3 takesCourse.GraduateCourse (1.2)

The example above contains a disjunction constructor (U) and a qualified number
restriction (> 3 takesCourse.GraduateCourse). From a semantics point of view, we
say that Axiom (1.2) is satisfied in an interpretation Z, if it holds in Z that the set
of students is a subset of the set consisting of the individuals that belong either to i)
the set of undergraduate students or to ii) the set of individuals that are connected
via the role takesCourse to at least three individuals from the set of graduate courses
or to iii) both sets. Examples of assertional axioms are shown below:

UndergraduateStudent(mary) (1.3)

takesCourse(mary, maths) (1.4)

Axiom (1.3) is a concept assertion and states that mary is an UndergraduateStudent.
Axiom (1.4) is a role assertion and states that mary is connected to maths via the
takesCourse role. Semantically, Axiom (1.3) is satisfied in an interpretation Z if
mary (more correctly the object in AT to which mary is mapped) belongs to the
set of undergraduate students in Z. Similarly, one can define when an interpretation
7 satisfies Axiom (1.4). An interpretation that satisfies all axioms of a knowledge
base is called a model.

The computation of inferences by a knowledge base system is called reasoning.
The standard reasoning services provided by description logic systems are the fol-
lowing;:

e Knowledge base consistency checking: to check whether a knowledge base
contains a contradiction. A contradiction arises when a fact and the negation
of the fact can both be derived by the axioms of the knowledge base.

e Concept satisfiability checking: to check, given a knowledge base and a con-
cept, whether there is a model of the knowledge base in which the given concept
is interpreted to a non-empty set of objects.

e Concept subsumption checking: to check, given a knowledge base and two
concepts, whether for every model Z of the knowledge base, the set of objects
to which Z interprets the first given concept is a subset of the set of objects
to which 7 interprets the second given concept. Subsumption checking is used
to build a taxonomy of concept names, called concept hierarchy, through a
process called classification.

e Instance checking: to check, given a knowledge base, a concept (role) and an
individual (pair of individuals) whether for every model Z of the knowledge
base the object to which the individual (the pair of objects to which the pair
of individuals) is interpreted by Z is an element of the set the concept (role)
is interpreted by Z.

Chapter 1. Introduction

It has been shown that all these reasoning services can be transformed to KB con-
sistency checking [7]. As it has been stated before, the reasoning problems in DLs
are decidable. The complexity of these problems, however, depends on the DL un-
der consideration. The more expressive a DL is, the more complex the inference
problems are in this DL, i.e., there is a trade-off between expressivity of a DL and
complexity of the reasoning tasks in this DL. The presence of disjunctive axioms
like Axiom (1.2) in a knowledge base often makes reasoning problems “harder” in
this logic. For example, consistency checking (and hence all standard reasoning
problems) in the description logic SROZQ, which is the description logic under-
pinning OWL 2 DL (and the language of interest in this thesis) is 2-NEXPTIME
complete [72].

There are many reasoning algorithms developed in the literature for DLs of
different expressivity [61, 59, 60, 58, 95, 96]. The most commonly used (hyper)tableau
reasoning algorithms test the consistency of a knowledge base by constructing a
model or else by proving that there is no model; i.e., there is a contradiction. Because
of the high worst case complexity of reasoning over expressive DLs, currently used
algorithms employ several optimizations to achieve practicality. In practical systems,
consistency checking is usually performed by tools called reasoners. There are several
reasoners for expressive DLs, like Racer Pro [47], Fact++ [136], Pellet [126], or
HermiT [119].

Another important service that knowledge representation systems provide is that
of answering queries. When computing answers to queries, such systems do not
only return the explicitly given knowledge, but they also take into account the
implicit knowledge coming from the inference procedure. In highly expressive DLs
query answering is usually based on consistency checking and is thus a task of
high computational complexity [34, 32, 30, 101]. Work has only recently begun on
optimizing the query answering services of DL systems. Note that in knowledge
bases, in contrast to databases, the open world assumption is adopted, according
to which it is assumed that the knowledge we have over the domain of interest
is incomplete; absence of information does not mean negative information. More
details about this assumption and consequences it entails are given in Section 3.2.

Since the focus in this thesis is the optimization of query answering over ex-
pressive Description Logics such as SROZQ, the description of SPARQL-OWL, the
used query language, is given next. In the proposed language, standard conjunctive
instance queries, i.e., conjunctive queries which allow only distinguished variables
(conjunctive queries without existential variables) can be expressed as well as com-
plex queries, which allow for higher order features; variables in queries can appear
not only in place of individuals, like in standard conjunctive queries, but also in
place of concepts and roles. The answers to such queries consist of mappings of
variables to concept, role and individual names from the queried knowledge base
such that, after replacing the query variables with the corresponding concept, role
or individual names from the variable mappings, all query conjuncts are true in
every model of the knowledge base.

For example, one can ask a standard conjunctive query for the chairs of a uni-
versity and the graduate courses that they teach:

q = {Chair(?z), teaches(?x, 7y), GraduateCourse(7y)},

where Chair, GraduateCourse are concept names, teaches is a role name and 7x,7y

4

Chapter 1. Introduction

are variables. Note that it is not necessary to enumerate the variables in the query
head. If we assume that the queried knowledge base contains the following TBox
and ABox:

T =A
Person M JisHeadOf.Department C Chair (1.5)
Course N JtakesCourse™.GraduateStudent C GraduateCourse (1.6)
}
A={
GraduateStudent(mary) (1.7)
takesCourse(mary, maths) (1.8)
Person(tom) (1.9)
Course(maths) (1.10)
teaches(tom, maths) (1.11)
isHeadOf (tom, csdep) (1.12)
Department(csdep) (1.13)

}

then the answer to the above query ¢ is the mapping 7z — tom, 7y — maths, since
the assertion Chair(tom) is a consequence of Axioms (1.5), (1.9), (1.12) and (1.13),
teaches(tom, maths) is explicitly given in the ABox and GraduateCourse(maths) is
a consequence of Axioms (1.6), (1.7), (1.8) and (1.10) (note that takesCourse™ is
the inverse of the role takesCourse, i.e., if takesCourse™(a, b) holds then it also holds
takesCourse(b, a)).

Another type of valid query in the language, that asks for the individuals that
take more than four graduate courses, is the following:

q = {> 4 takesCourse.GraduateCourse(?x)}
The following is a query in which variable 7z appears in place of a concept:

q = {Professor C JisHeadOf.7x}

This query asks for the concepts whose instances are individuals to which every
instance of the concept Professor is related via the role isHeadOf.

In the rest of the thesis we usually call such queries with variables in nested
concept and role positions complex queries or queries with complex axiom templates.
Moreover, we use the term ontology instead of knowledge base.

1.2 Semantic Web Standards

In this section we briefly discuss some of the Semantic Web standards for knowl-
edge representation and query answering [53], since, in the current thesis, we use a
Description Logic query language that directly corresponds to an extension of the
SPARQL query language [110].

Chapter 1. Introduction

Several standards for ontologies and queries have been developed in the context
of the Semantic Web, including the Resource Description Framework (RDF), RDF
Schema (RDFS), the Web Ontology language (OWL), its extension OWL 2 and
SPARQL. RDF [90] is used for the representation of information about web resources
in the form of triples consisting of a subject, a predicate and an object. RDF terms
can be either International Resource Identifiers (IRIs), or blank nodes or literals.
Blank nodes in RDF denote the existence of a resource without explicitly stating its
name, while literals are strings of characters. The subject of triples can be either
an IRI or a blank node, while the object can be any RDF term. The predicate of
triples can only be an IRI. An RDF graph is a set of RDF triples in which nodes are
used to represent the subject and object of RDF triples and edges to represent the
predicate of triples. RDFS [16] extends RDF with more expressive representation
features to allow for modeling schema information such as sub-concept relationships.

OWL [22] and its revision OWL 2 [42] provide a powerful and flexible ontology
modeling language that can capture features such as concept hierarchies, incomplete,
or negative information. OWL has been historically considered as an extension
of RDF, that is why there are two kinds of formal semantics for OWL, i.e., the
Direct Semantics [93] and the RDF-based Semantics [116]. The Direct Semantics
of OWL is defined for a fragment of OWL, called OWL DL that satisfies certain
syntactic conditions [94]. OWL Full, i.e., OWL without any restriction, can only
be interpreted under the RDF-based Semantics. Under the Direct Semantics of
OWL, there is a direct correspondence between DL axioms and OWL axioms [93, 7]
even though OWL axioms have a different representation from DL axioms. Please
note that concepts are usually called classes and (abstract) roles are called object
properties in OWL. Moreover, OWL defines data properties (called concrete roles
in DL terminology) and literals. Without loss of generality we do not consider
data properties and literals in this thesis; the presented optimizations can easily be
transferred to this case.

We generally abbreviate IRIs using prefixes rdf, rdfs, owl, and xsd to refer to the
RDF, RDFS, OWL, and XML Schema Datatypes namespaces, respectively. The
empty prefix is used for an imaginary example namespace, which we completely
omit in DL syntax.

Example 1. An ezample of an RDF graph in the form of RDF triples is given next:

:mary :takesCourse maths. (1.14)
:maths rdf:type :Course. (1.15)
‘takesCourse rdfs:domain :Student. (1.16)

Triple (1.14) states that mary takes as course maths. Triple (1.15) states that maths
is a course. Triple (1.16) states that every individual that takes a course is a student.

SPARQL [110] was standardized in 2008 by the World Wide Web Consortium
(W3C) and has recently been extended to SPARQL 1.1 [50]. Since 2008, SPARQL
has developed into the main query language for the Semantic Web and is now
supported by most RDF triple stores. The query criteria are given in the form
of RDF triples possibly with variables in place of subject, predicate or object of the
triples (this kind of triples with variables are called triple patterns). The subject
and the object of a triple pattern can be an RDF term or a variable, while the

6

Chapter 1. Introduction

predicate can be an IRI or a variable. A set of triple patterns is called a basic
graph pattern (BGP). The query evaluation mechanism defined in the SPARQL
Query specification [110] is based on subgraph matching. Each instantiation of the
variables that yields a subgraph of the queried RDF graph constitutes a solution.
This form of query evaluation is also called simple entailment since it can equally
be defined in terms of the simple entailment relation between RDF graphs [51].

Example 2. An example of a SPARQL query is
SELECT ?x,7y FROM <ontologylRI> WHERE { ?x :takesCourse 7y. }

The FROM clause of the SPARQL query contains the IRI of the queried RDF
graph while the WHERE clause (the part of the SPARQL query where the query
criteria are stated) consists of a basic graph pattern: an RDF graph written in Turtle
syntax [10], where some nodes or edges are replaced by variables. The SELECT
clause contains the variables to be selected, i.e., the variables whose bindings will
appear in the query’s result sequence. The answer to this SPARQL query over
the RDF graph of Example 1 is, according to subgraph matching, the mapping
?x —:mary, Ty —:maths. Although the SPARQL specification uses Turtle, other
query syntaxes can also be defined. Pellet accepts, for example, queries where the
BGP is written in Manchester Syntax [56].

Example 3. If we assume now that we have the following SPARQL query
SELECT ?x,7y FROM <ontologylRI> WHERE { ?x rdfitype :Student. }

the answer to this query over the RDF graph of Example 1 is the empty set under
the standard SPARQL semantics, i.e., subgraph matching. This happens because
there is no explicitly stated tuple in the queried RDF graph which states that mary
is a student. In order to deduce this fact we need RDFS or OWL entailment.
SPARQL 1.1 includes several entailment regimes [36] in order to use more elaborate
entailment relations, such as those induced by RDF Schema (RDFS) [51] or OWL
[93, 116]. Query answering under such entailment regimes is more complex as it may
involve retrieving answers that only follow implicitly from the queried graph. While
several implementations for SPARQL’s RDFS entailment regime are available (e.g.,
Oracle 11g,! Apache Jena,? or Stardog?®), the development of tools that provide full
SPARQL support under OWL semantics is still an ongoing effort.

In this thesis we are interested in the OWL 2 Direct Semantics entailment regime
of SPARQL [36, 31], which uses the OWL 2 Direct Semantics entailment relation [93].
Since the Direct Semantics of OWL is defined in terms of OWL structural ob-
jects [94], the first step of the translation process is to map the queried RDF graph
to an OWL ontology. Note that a mapping from RDF graphs to OWL ontolo-
gies is only defined for certain well-formed RDF graphs that correspond to OWL 2
DL ontologies (ontologies that satisfy certain syntactic conditions) [105]. The RDF
graph of Example 1 can be translated to an OWL 2 DL ontology Og containing the

http://www.oracle.com/de/products/database/overview/index.html
’http://jena.apache.org
3http://stardog.com

Chapter 1. Introduction

following structural objects in functional-style syntax (FSS) [94].

ObjectPropertyAssertion(:takesCourse :mary maths) (1.17)
ClassAssertion(:Course :maths) (1.18)
ObjectPropertyDomain(:takesCourse :Student) (1.19)

which in DL notation can be written takesCourse(mary, maths), Course(maths),
JtakesCourse. T C Student. Note that some OWL modeling constructs correspond to
several RDF triples and the RDF triples might contain auxiliary blank nodes that are
not part of the corresponding OWL object and are not visible in the corresponding
axiom in FSS. For example, OWL axioms using the ObjectSomeValuesFrom complex
class expression like in

ClassAssertion(ObjectSomeValuesFrom(:takesCourse :GraduateCourse) :mary)

stating that mary takes at least one graduate course is translated to the following
RDF triples:

‘mary rdfitype _:b

_:b rdf:type owl:Restriction ;

_:b owl:onProperty :takesCourse ;

_:b owl:someValuesFrom :GraduateCourse

in which the blank node _:b is used to connect the RDF triples. After the translation
of the queried RDF graph to an OWL ontology, the BGP(s) of the query are mapped
to (extended) structural objects, which can have variables in place of classes, object
properties or individuals. According to this, the BGP of Example 3 is mapped to
ClassAssertion(:Student ?z) in functional-style syntax or Student(?z) in DL syntax.
We call such extended DL axioms aziom templates. The axiom Student(mary) is
entailed by the ontology Og under the Direct Semantics of DLs (or OWL). Hence,
the mapping 7z — mary is returned as an answer to the query of Example 3 by
SPARQL 1.1.

We do not recall the complete surface syntax and semantics of SPARQL here
since the only part that is specific to the evaluation of SPARQL queries under OWL’s
Direct Semantics is the evaluation of BGPs. More complex WHERE clauses, which
use operators such as UNION for alternative selection criteria or OPTIONAL to
query for optional bindings [110], can be evaluated simply by combining the results
obtained by the BGP evaluation. Similarly, the projection of variables from the
SELECT clause is a straightforward operation over the results of the evaluation of
the WHERE clause. Therefore, we focus here on BGP evaluation only.

Please note that there are two types of individual variables in SPARQL; standard
(distinguished) variables and anonymous individuals (also known as blank nodes).
The anonymous individuals in the query are treated like distinguished variables with
the difference that they cannot be selected and, hence, their bindings cannot appear
in the query answer. This is in contrast to conjunctive queries, where anonymous
individuals are treated as existential variables. On the other hand, anonymous in-
dividuals can occur in the query answer as bindings to distinguished variables, i.e.,
SPARQL treats anonymous individuals from the queried ontology as (Skolem) con-
stants. This treatment of anonymous individuals has been chosen for compatibility
with SPARQL’s standard subgraph matching semantics.

8

Chapter 1. Introduction

In order to implement the RDF(S) entailment regime, systems can simply ex-
tend the queried graph with inferred information (materialization) and can then use
SPARQL’s standard evaluation mechanism over the materialized graph in order to
compute the query results. Similarly, when users move on to systems that support
the OWL RL profile [92], the OWL RL rule set from the OWL 2 specification can
be used to compute the query answers (again via materialization). If one were to
change the semantics of blank nodes for SPARQL’s entailment regimes to reflect
conjunctive query semantics, one could no longer use materialization plus a stan-
dard SPARQL query processor to implement the entailment regime. This happens
because, intuitively, the presence of an assertion containing a blank node with ex-
istential semantics in the queried ontology is equivalent to an assertion axiom with
an existential restriction, which is not included in the materialization set (the ma-
terialization set contains only assertions about named individuals), i.e., an axiom
of the form r(a, _:b), in which _:b has an existential semantics is equivalent to an
axiom of the form (3r.T)(a). We now explain this point in more detail through an
example. Let us assume that we have the RDF triple :a :r _:b in which the blank
node _:b has an existential semantics and the BGP {?x r 7y}, in which 7y is an
existential (non-distinguished) variable. The triple :a :r _:b is not included in the
materialization set since _:b has an existential semantics and hence the answers to
the above BGP is the empty set and not the mapping ?x +:a. This means that the
materialization would not be a sound and complete procedure for query answering
in this case.

If one were to change the semantics of blank nodes only for the OWL Direct
Semantics entailment regime, where materialization cannot (directly) be used to
implement the regime, it could happen that users get less answers for queries posed
over an OWL DL ontology than for queries posed over an RDF(S) subset of the
OWL DL ontology, which is counter-intuitive. For example, let us assume that we
have the RDF triple :a :r _:b and the BGP {7z r 7y} of a SPARQL query. The
answer to this query in RDF(S) under SPARQL’s semantics (i.e., if we treat _:b as a
constant) would be 7z +— :a, 7y — _:b. Now, if we see the queried graph as an OWL
ontology containing the axiom r(a, -:b), the BGP as the axiom template r(?z, 7y) and
we assume that _:b has an existential semantics (we assume that 7y, as in the case
of RDF(S) is a distinguished variable) then the answer of the same query over the
equivalent OWL ontology would be different from the case of RDF(S), i.e., the empty
set, because variable 7y from the BGP needs to be mapped to a concrete named
individual. For brevity and without loss of generality, in the following we assume
that neither the query nor the queried ontology contains anonymous individuals.

For a more detailed introduction to SPARQL queries and their algebra we refer
interested readers to [53, 106]. For further details about the translation procedure,
we refer interested readers to the W3C specification that defines the mapping be-
tween RDF graphs and OWL structural objects [105] and to the W3C specification
of the OWL Direct Semantics entailment regime of SPARQL [37] that defines the
extension of this mapping between BGPs and OWL objects with variables.

The range of queries that can be formulated in SPARQL under the OWL Di-
rect Semantics entailment regime, i.e., SPARQL-OWL, goes beyond standard con-
junctive queries [32, 101], which are already supported by several OWL reason-
ing systems. Although SPARQL-OWL does not allow for proper non-distinguished
variables, it poses significant challenges for implementations, since, for example,

Chapter 1. Introduction

variables can occur within complex class expressions and can also bind to class or
property names [78, 77, 76].

There is not yet a standardized and commonly implemented query language
for expressive OWL DL ontologies. Several of the widely deployed systems support,
however, some query language. Pellet supports SPARQL-DL [125], which is a subset
of SPARQL, adapted to work with OWL’s Direct Semantics. The kinds of SPARQL
queries that are supported in SPARQL-DL are those that can directly be mapped to
reasoner tasks. Similarly, KAON2 [65, 64] supports SPARQL queries, but restricted
to ABox queries/conjunctive instance queries. Racer Pro [47] has a proprietary
query language, called nRQL [49], which allows for queries that go beyond ABox
queries, e.g., one can retrieve sub- or super-concepts of a given concept. TrOWL?*
is another system that supports SPARQL queries, but the reasoning in TrOWL is
approximate, i.e., an OWL DL ontology is rewritten into an ontology that uses a
less expressive language before reasoning is applied [134]. Furthermore, there are
systems such as QuOnto® or Requiem,® which support profiles of OWL 2, and which
support conjunctive queries, e.g., written in SPARQL syntax, but with proper non-
distinguished variables. Of the systems that support all of OWL 2 DL, only Pellet
supports non-distinguished variables as long as they are not used in cycles, since
decidability of cyclic conjunctive queries is to the best of our knowledge still an
open problem.

1.3 Thesis Contribution

Over the last decade, much effort has been spent on optimizing standard reasoning
tasks such as entailment checking, classification (i.e., the computation of the concept
hierarchy), or realization (i.e., the computation of instances of all concepts and roles)
[7, 57, 123, 137, 33]. The optimization of query answering algorithms has, however,
mostly been addressed for conjunctive queries in OWL profiles, most notably the
OWL 2 QL profile [18, 82, 108, 112].

In the current thesis we address the problem of efficient SPARQL query evalua-
tion over OWL 2 DL/SROZQ ontologies by proposing a query answering algorithm
and a range of novel optimizations that deal in particular with the expressive fea-
tures of SPARQL such as variables in place of concepts or roles. To the best of our
knowledge, there is no other work yet on the optimization of such complex queries
with variables in nested positions in axiom templates.

Since consistency checking is an expensive knowledge base operation (for the case
of SROZQ it is 2-NEXPTIME complete) to which every other standard reasoning
task is reduced, as we explained in Section 1.1, our goal in the thesis is to reduce
the number of consistency checks that are performed in the process of answering a
SPARQL-OWL query, which, in turn, generally leads to a reduction in the query
execution time. In order to achieve this, we first present a general query answering
algorithm and we afterwards work in two directions. On the one hand, we adapt
the cost-based query planning techniques, commonly used in the area of databases
[2, 29], to work with ontological knowledge and with complex queries that can be

“http://trowl.eu
Shttp://www.dis.uniromal.it/~quonto/
Shttp://www.comlab.ox.ac.uk/projects/requiem/home.html

10

Chapter 1. Introduction

expressed in SPARQL-OWL. On the other hand, we propose query rewriting tech-
niques and show how specialized OWL reasoning tasks and the concept and role
hierarchies can be used to reduce the number of performed consistency checks and
thus the query execution time for complex queries.

The proposed approach has been implemented and a system has been developed
for efficiently answering SPARQL-OWL queries.” Using this tool, we evaluate the
efficiency of the proposed query ordering and optimization techniques.

1.4 Thesis Outline

The thesis is organized as follows:

In Chapter 2 we present the standard syntax and Tarski-style model theoretic
semantics of Description Logics and the reasoning tasks that they support.
Moreover, the syntax and semantics of the SPARQL-OWL queries are formal-
ized.

In Chapter 3 we present some widely used query answering and optimization
approaches in the area of databases and ontologies and explain how these tech-
niques are related or differ from our approach. For query answering techniques
over less expressive DLs than SROZQ; i.e., the DL that is considered in the
current thesis, we focus on possible problems one faces if one tries to extend
these techniques to more expressive DLs.

In Chapter 4 we describe a general query evaluation algorithm and present
the foundations of our cost model regarding the ordering of query atoms. This
includes a description of the information that is extracted from the reasoner
model construction procedure and an analysis of how this information is used
to define the cost functions.

In Chapter 5 we propose optimizations for complex axiom templates, i.e.,
axiom templates in which variables appear in nested concept or role positions.
The notion of the polarity of variables within axiom templates is defined, which
is exploited to reduce the performed consistency checks through the pruning
of possible query mappings.

In Chapter 6 we present the proposed query answering algorithm which ex-
ploits the optimizations developed in Chapters 4 and 5 and we prove termina-
tion, soundness and completeness of the algorithm.

In Chapter 7 an evaluation showing the effectiveness of the proposed optimized
query answering approach is presented.

In Chapter 8 we show how the implemented system combined with a query
rewriting system can be used on a cultural heritage application scenario.

In Chapter 9 the contribution of the thesis is summarized and directions are
given for future work.

The work in this thesis has been published in several conferences and journals [73,
74, 81, 80, 79, 75, 35].

"https://code.google.com/p/owl-bgp/

11

12

Chapter 1.

Introduction

Chapter 2

Foundations of Description Logics

In this chapter we give a formal introduction in Description Logics (DLs) (Sec-
tion 2.1) and in the reasoning techniques used in DLs (Section 2.2). Moreover, we
describe a Description Logic query language (Section 2.3), the syntax and semantics
of which is based on the OWL Direct Semantics entailment regime of SPARQL as
discussed in Section 1.2.

2.1 Syntax and Semantics

SROIZQ is the description logic underpinning OWL 2 DL which is the language
considered in the current thesis. The optimizations we present do not need all fea-
tures of SROZQ, hence we here only present SHOZQ formally, which allows for a
shorter and easier to follow presentation and we afterwards discuss the additional
features of SROZQ. In the following, we usually refer to knowledge bases as on-
tologies. We now define the syntax and semantics of SHOZQ as well as the most
widely used DL reasoning services.

Definition 1 (Syntax of SHOZQ). Let N¢, Ng, and N; be countable, infinite,
and pairwise disjoint sets of concept names, role names, and individual names,
respectively. We call S = (N¢, Ng, Ni) a signature. The set rol(S) of SHOZQ-
roles over S (or roles for short) is Np U{r~ | r € Ng}, where roles of the form r~
are called inverse roles. A role inclusion axiom is of the form r C s with r,s roles.
A transitivity axiom is of the form trans(r) for r a role. A role hierarchy H is a
finite set of role inclusion and transitivity axioms.

For a role hierarchy H, we define the function inv over roles as inv(r) := r~ if
r € Ng and inv(r) := s if r = s~ for a role name s € Ng. Further, we define Ty
as the smallest transitive reflexive relation on roles such that r & s € H implies
r Ty s and inv(r) Ty inv(s). We write r =y s if r Ty s and s Ty r. A role r is
transitive w.r.t. H (notation v+ Ty 1) if a role s exists such that r Ty s, s Ty 1,
and trans(s) € H or trans(inv(s)) € H. A role s is called simple w.r.t. H if there is
no role r such that r is transitive w.r.t. H and r Cy s.

Given a signature S = (N¢, Nr, N;) and a role hierarchy H, the set of SHOZQ-
concepts (or concepts for short) over S is the smallest set built inductively over
symbols from S using the following grammar, where o € N;, A € Ng,n € Ny, s is a
simple role w.r.t. H, and r is a role w.r.t. H:

Cu= T|L|{o}|A|-C|CC|CUC|Vr.C|3Ir.C|<ns.C|>2ns.C.

13

Chapter 2. Foundations of Description Logics

In number restrictions only simple roles are allowed and this is a measure to
ensure decidability of the Description Logic. In the following, we use = n s.C' as a
syntactic shortcut for <n s.C' and >n s.C.

Definition 2 (Semantics of SHOZQ-concepts). An interpretation Z = (A%, %)
consists of a non-empty set AT, the domain of Z, and a function -Z, which maps
every concept name A € N¢ to a subset AT C AT, every role name r € Ng to a
binary relation v C AT x AT, and every individual name a € N; to an element
at € AT. For each role name r € Ng, the interpretation of its inverse role (r*)Z
consists of all pairs (5,6") € AT x AT for which (§',0) € rT.

The semantics of SHOZQ-concepts over a signature S 1s defined as follows:

_ a7 ey ({07 = {07}
(=)I:AI\CI (CnD)y*=c*nD* (CUD)*=Cc*uD*
(Vr.C)YE = {6 € AT | if (6,0") € T, then §' € CT}
(Ir.C)E = {6 € AT | there is a (5,0') € r* with &' € C*}
(<ns.C)f = {6 e AT |4(s%(5,C)) < n}
(=ns.C)f = {0 e AT |4(s%(5,C)) >n}

where §(M) denotes the cardinality of the set M and s*(6,C) is defined as
{6 € AT | (5,8 € s* and &' € C*}.

Definition 3 (Syntax and Semantics of Axioms and Ontologies, Entail-
ment). For C, D concepts, a (general) concept inclusion axiom (GCI) is an expres-
sion C' T D. We introduce C = D as an abbreviation for C T D and D T C.
A finite set of GCIs is called a TBox. A (concept or role) assertion axiom is an
expression of the form C(a), r(a,b), —r(a,b), a = b, or a % b, where C is a concept,
r 1s a role, and a,b € Ny are individual names. An ABox is a finite set of assertion
azxioms. An ontology O is a triple (T, H,A) with T a TBox, H a role hierarchy, and
A an ABox. We use N&, NS, and NP to denote, respectively, the set of concept,
role, and individual names occurring in O.

Let T = (AZ,-1) be an interpretation. Then T satisfies a role inclusion aziom
r C s if rt C st, T satisfies a transitivity axiom trans(r) if v is a transitive binary
relation, and a role hierarchy H if it satisfies all role inclusion and transitivity axioms
in H. The interpretation T satisfies a GCI C T D if C* C D*; and T satisfies a
TBox T if it satisfies each GCI in T. The interpretation I satisfies an assertion
aziom C(a) if a* € C*, r(a,b) if (a*,bF) € r*, =r(a,b) if (a*,0") ¢ %, a =~ b if
al = b, and a % b if a* # b ; T satisfies an ABox A if it satisfies each assertion in
A. We say that T satisfies O if T satisfies T, H, and A. In this case, we say that
7 is a model of O and write T = O. We say that O is consistent if O has a model.

Given an azxiom o, we say that O entails a (written O = «) if every model T of
O satisfies a.

Note that the axiom —r(a,b) is only allowed in SROZQ, but it is equivalent
to the axiom {a} C Vr.—{b}, or equivalently (Vr.={b})(a) that are both allowed in
SHOZQ, which means that the addition of it in SROZQ is syntactic sugar. The
description logic SROZQ further allows for a number of features:

14

Chapter 2. Foundations of Description Logics

e It allows role chains (complex role inclusion axioms) of the form hasFather o
hasBrother C hasUncle. An interpretation Z = (AI, ~I) satisfies a role chain
riory C 73 if for every 6,8,0” € AZ, the following holds: if (§,0") €
r¥ and (0',0"”) € rZ then (§,0") € ri.

e It supports the special concept Self, which can be used in axioms of the form
Narcissist C Jloves.Self. For Z = (AZ,) an interpretation and § € A7 it holds
(Fr.Self) = {5 | (6,8) € r*}.

e It allows for defining roles that are reflexive (Ref(r)), irreflexive (Irr(r)), sym-
metric (Sym(r)), asymmetric (Asy(r)) and it allows disjoint roles (Dis(r1,72)).
Let Z = (A%, 1) be an interpretation and 4§, ', 8" € AZ. Then Z satisfies:

— Ref(r) if (5,8) € r* for every § € A*

— lrr(r) if (5,0) & r for every § € AT

— Sym(r) if (8,8") € r* implies (¢',6) € r*
— Asy(r) if (5,4") € r implies (&', 5) & r*

— Dis(rq,m) if rfnri =10

e It allows for defining the top or universal role (T,). Let Z = (AZ,-T) be an
interpretation and §,8" € AT. T, is interpreted as {(6,d") | 6,8’ € AT}

To avoid the undecidability result that comes from the addition of complex role
inclusion axioms to an ontology, that can be as simple as ALC, a syntactic regu-
larity condition is placed on role chains. Moreover, restrictions are placed on roles
that can be used in some of the additional axioms; for example only simple roles
are allowed in axioms of the form Ref(r), Irr(r), Sym(r), Asy(r), Dis(r1,72) and in
number restrictions (as in SHOZQ). For a detailed introduction to SROZQ we
refer interested readers to [58]. In the following, we assume that the set of role
names Ny contains the top role, T,, and the bottom role, L,, which is interpreted
as (). Moreover, we assume that the sets N§ and NS for an ontology O contain the
concepts T, L and the roles T, and L, respectively, irrespective of whether these
appear in . Furthermore, we assume that the role hierarchy H of an ontology is
integrated in the TBox 7 and, hence, when we use 7, we actually mean 7 U H.
We next define the standard reasoning tasks with respect to an ontology O. Note
that all these reasoning problems can be reduced to ontology consistency checking.

Definition 4 (Standard Reasoning Tasks). Consistency checking means to check
whether a given ontology O is consistent, i.e., whether it has a model. Concept
satisfiability checking means to check, given an ontology O and a concept C, whether
C is satisifiable w.r.t. O, i.e., if there is a model T of O with C* # (). Concept
subsumption checking means to check, given an ontology O and two concepts C'
and D, whether D subsumes C' w.r.t. O (written O = C C D), i.e., if CT C D*
holds for every model Z of O. Concept instance checking means to check, given an
ontology O, a concept C' and an individual a, whether a is an instance of C w.r.t.
O (written O = C(a)), i.e., if a¥ € CT holds for all models T of O. Role instance
checking means to check, given an ontology O, a role r, and two individuals a and
b, whether the pair of individuals (a,b) is an instance of the role r w.r.t. O (written

O Er(a,b)), i.e., if (a®,b%) € v holds for all models T of O.

15

Chapter 2. Foundations of Description Logics

2.1.1 Expressive Description Logics - The DL-Lite Family

As we discussed in Section 1.1, the expressivity of a DL depends on the construc-
tors that are used. For example, the description logic ALC allows the constructors
T,1L,=,M,,3,V. The extension of ALC with transitive roles, i.e., ALCr+ is usu-
ally denoted by the letter S. The use of additional letters denotes an additional
constructor, for example the letter Z is used for inverse roles, the letter Q for num-
ber restrictions, the letter O for nominals, the letter H for role inclusions and the
letter R for complex role inclusions, reflexivity and role disjointness. This naming
scheme explains the name of SROZQ. Moreover, each logic can further be extended
with concrete domains, such as strings or integers. In such a case, one distinguishes
between abstract roles that relate two individuals and concrete roles that relate an
individual with a data value, as discussed in Section 1.2. The extension of a DL
with concrete domains is denoted by the letter D in parenthesis after the DL name.

2.1.2 Light-weight Description Logics

There are applications, in which the need for efficient and scalable reasoning dom-
inates over the need for expressive knowledge representation formalisms, the rea-
soning tasks in which have a high computational complexity. For this reason, three
light-weight Description Logics, each a fragment of ALC, have been introduced
that have favorable computational properties and which correspond to fragments of
OWL. These are DLP, i.e., a shortcut used for Description Logic Programs, DL-Lite
and £L£. The most important reasoning tasks are tractable in each of these lan-
guages, i.e., they can be performed in polynomial time. For example, these logics
allow for tractable query answering in data complexity [104]. In particular, DLP
[44], is a fragment containing axioms that can be translated to rules in First Order
Horn Logic without function symbols. It corresponds to the OWL 2 RL fragment
of OWL and it is widely used for reasoning with Web data. ££ and EL£TT [5] un-
derpinning OWL 2 EL is used in huge biomedical ontologies that consist mainly of
terminological axioms. DL-Lite [18] is widely used in applications where there is a
huge amount of data stored in traditional databases. Query answering in DL-Lite
can be realized through the use of a query rewriting approach and the translation of
rewritten conjunctive queries to SQL queries, which are afterwards evaluated over
the database with traditional database query answering techniques. We now present
the axioms that are allowed in the basic DL-Lite, i.e., DL-Litecoe, so that the reader
can get an idea of the expressive power of DL-Lite. DL-Lite.. only allows concept
inclusion axioms of the form B; C By, where B is a concept of the form A or Ir. T,
or Ir~.T for some concept name A € Ng and some role name r € Npi, while B,
is a possibly negated concept of the same form as Bj, i.e., By is of the form A,
. T, Ir=. T, A, =3r. T or =3r~.T. An extension of DL-Lite.y., called DL-Liteg,
which provides the logical underpinning for OWL 2 QL additionally allows for role
hierarchies.

2.2 Reasoning Techniques

In this section, we give a brief overview over the main reasoning techniques used
in SROZQ ontologies since our cost-based query planning and the other presented

16

Chapter 2. Foundations of Description Logics

optimizations rely on these techniques.

In order to check whether an ontology O entails an assertion axiom c«, one
typically checks whether O U {—a} has a model. If that is not the case, then every
model of O satisfies @ and O |= «. For example, to check whether an individual a is
an instance of a concept C' w.r.t. an ontology O, we check whether adding the concept
assertion ~C'(a) to O leads to an inconsistency. To check this, most OWL reasoners
use a model construction calculus such as tableau or hypertableau. (Hyper)tableau
calculi [96] start from the initial set of ABox assertions and, by applying derivation
rules, they try to construct (an abstraction of) a model of O. Derivation rules usually
add new concept and role assertion axioms, they may introduce new individuals, they
can be non-deterministic, leading to the need to choose between several alternative
assertions to add or they can lead to a clash when a contradiction is detected.
To show that an ontology O is (in)consistent, (hyper)tableau calculi construct a
derivation, i.e., a sequence of sets of assertions Ay, ..., A,, such that

e A, contains all ABox assertions in O,
e A, is the result of applying a derivation rule to A; and
e A, is the final set of assertions where no more rules are applicable.

If a derivation exists such that A, does not contain a clash, then O is consistent
and A, is called a pre-model of O. Otherwise O is inconsistent. Each assertion
in a set of assertions 4; is derived either deterministically or non-deterministically.
An assertion is derived deterministically if it is derived by the application of a de-
terministic derivation rule from assertions that were all derived deterministically.
Any other derived assertion is derived non-deterministically. It is easy to know
whether an assertion was derived deterministically or not because of the depen-
dency directed backtracking [7, 137] that most (hyper)tableau reasoners employ.
In the pre-model, each individual @ is assigned a label L£(a) representing the con-
cepts it is (non)deterministically an instance of and each pair of individuals (a, b)
is assigned a label L£((a, b)) representing the roles through which individual a is
(non)deterministically related to individual b. Given a pre-model, a model for O
can be constructed by a process called unraveling [139].

We next briefly describe tableau calculi together with optimizations pointing to
their differences from hypertableau calculi [96], which we use in the current thesis.
In tableau algorithms, the commonly used derivation rules are shown below:

e Li-rule: Given (Cy U Cy)(a), derive either Cy(a) or Cy(a)

M-rule: Given (C; M Cy)(a), derive C(a) and Cy(a)

F-rule: Given 3r.C(a), derive r(a,b) and C(b) for b a fresh individual

V-rule: Given Vr.C'(a) and r(a,b), derive C(b)
e C-rule: Given a GCI C' C D and an individual a, derive (-C' U D)(a)

The U-rule and C-rule are non-deterministic in the sense that, when they are in-
voked, tableau algorithms need to make a non-determinsitc guess and backtrack in
case this guess leads to a contradiction, something which can give rise to exponen-
tial behaviour. The C-rule, in particular, adds a disjunction for each GCI to each

17

Chapter 2. Foundations of Description Logics

individual in an ABox and therefore is a major source of inefficiency. To control
the non-determinism arising from GCIs most tableau calculi employ absorption op-
timizations [7, 135, 62]. The basic absorption algorithm tries to rewrite GCIs into
the form A C C where A is a concept name. After such preprocessing, instead of
deriving —A LI C' for each individual in an ABox, C(a) is derived only if an ABox
contains A(a). In this way the non-determinism introduced by the absorbed GClIs
is localized. Heuristics are often used to find good absorptions (i.e., absorptions
that lead to a small amount of non-determinism), however, it is not guaranteed
that the optimal absorption is found. The used hypertableau calculus generalizes
all known absorption techniques and guarantees deterministic behaviour when the
input ontology is Horn! and the least amount of non-determinism otherwise. Naive
application of (hyper)tableau rules does not always terminate. For example, con-
sider a TBox containing the axiom B C 3r.B and the assertion B(a). It is obvious
that, in this case, the axioms are only satisfied in an infinite model and tableau algo-
rithms would construct an infinite number of ABoxes during the model construction
phase, which contain a chain of r-successors. To ensure termination (i.e., to ensure
that only finite model abstractions are constructed) in such cases, (hyper)tableau
algorithms employ blocking. Only the (new) individuals created due to existential
restrictions can be blocked and thus these individuals are called blockable, in contrast
to named individuals appearing in the ABox. Note that named individuals can be
connected in an arbitrary way, whereas blockable individuals can only be connected
in a forest shaped way (assuming that the DL under consideration does not contain
nominals). Depending on the expressivity of the DL language used, one can employ
different kinds of blocking strategies such as subset blocking [6], equality blocking
or (ancestor) pairwise blocking [59, 61, 7].

In the remainder we focus on the description of the hypertableau calculus, which
is used in the current thesis. The hypertableau algorithm is a hybrid of resolution
and tableau. For ease of presentation, we analyze the hypertableau calculus for the
description logic S, i.e., ALC extended with transitive roles. For a more detailed
description of hypertableau calculus for more expressive description logics interested
readers are referred to [95, 96]. The hypertableau calculus does not operate on O
directly but, in order to reduce non-determinism, it translates a DL knowledge base
into a set of DL-clauses C, i.e., clauses of a specific form, and an ABox A that
together are equisatisfiable with O.

Hypertableau (and tableau reasoners) typically do not deal with transitivity
directly. Tableau calculi have a specific rule, which can handle concepts of the
form Vr.C' where r is a non-simple role. Hypertableau algorithms, on the other
hand, translate concepts of the form Vr.C' into DL-clauses, so the tableau rule that
handles transitivity cannot be used. That is why hypertableau algorithms perform a
preprocessing step which eliminates transitivity axioms from O but simulates their
effect using additional GCIs. More details about this transitivity elimination is
given in Section 4.2. It should be noted that, during this preprocessing step, the DL
axioms are normalized so that all negations are made explicit and to ensure that
the resulting DL-clauses are compatible with blocking.

A DL-clause is a universally quantified implication of the form Ai”, U; — \/7_, V,
where U; and V; are called the antecedent and the consequent atoms respectively.

LA Horn ontology is an ontology which contains only Horn clauses, i.e., clauses (disjunctions of
literals) that contain at most one positive literal.

18

Chapter 2. Foundations of Description Logics

Each antecedent atom is of the form A(z),r(z,y) and each consequent atom is of
the form B(z),3r.B(x), where A is a concept name, B a possibly negated concept
name and r a role. DL-clauses can straightforwardly be interpreted in First Order
Logic and, intuitively, they state that at least one consequent atom must be true
whenever all atoms in the antecedent are true.

The main derivation rule of the calculus is the Hyp-rule. The Hyp-rule is applica-
ble to a DL-clause r = A, U; — V/j_, V; and an ABox A if a mapping o from the
variables in r to the individuals in A exists such that o(U;) € A for each 1 <i <m
and o(V;) € A for each 1 < j < n. In this case, A; = AU{L} if n = 0, otherwise
the rule non-deterministically derives A; = AU {o(V;)} for 1 < j <mn.

The F-rule is applicable to (3r.B)(a) € A if no individual b exists such that
r(a,b) € A and B(b) € A. In this case, A is extended to A; = AU {r(a,b), B(b)},
where b is a fresh successor of a.

The L-rule derives obvious contradictions. If A contains both A(a) and —A(a),
the rule derives A; = AU{L}, i.e., A; contains a clash.

2.3 Ontological Query Answering

Inspired by the SPARQL OWL Direct Semantics entailment regime we define the
syntax and semantics of our queries. The BGPs of SPARQL queries can easily be
transformed to these DL queries because of the mapping of (sets of) RDF triples
to OWL structural objects as discussed in Section 1.2 and the direct translation
between OWL structural objects and DL axioms. The optimization techniques that
we develop in the current thesis concern the evaluation of each BGP separately,
therefore we focus on the BGP parts of SPARQL. In the following, we directly write
BGPs in DL notation extended to allow for variables in place of concept, role and
individual names in axioms. It is worth reminding that SPARQL does not support
existentially quantified variables, which is in contrast to database-style conjunctive
queries, where one typically also has existential /non-distinguished variables. For
brevity and without loss of generality, we assume here that neither the query nor
the queried ontology contains anonymous individuals.

Definition 5 (Query). Let S = (N¢, Ng, N;) be a signature. A query signature S,
w.r.t. § is a siz-tuple (N¢, Ng, N;, Vo, Vg, Vi), where Vo, Vg, and Vi are count-
able, infinite, and pairwise disjoint sets of concept variables, role variables, and
individual variables disjoint from N¢o, Ng, and N;. A concept term is an element
from No U Ve. A role term is an element from Nr U Vg. An individual term is
an element from N;U Vi. An axiom template over S, is a SROZQ axiom over S,
where one can also use concept variables from V¢ in place of concept names, role
variables from Vg in place of role names, and individual variables from Vi in place
of individual names. A query q w.r.t. a query signature S, is a non-empty set of az-
iom templates over S,. We use Var(q) (Var(at) for an axiom template at) to denote
the set of all variables in q (at) and |q| to denote the number of axiom templates
in q. Let t,t' be individual terms; we call aziom templates of the form A(t) with
A € N¢ concepts atoms, templates of the form r(t,t") with r € Ng role atoms, and
templates of the form t ~ t' equality atoms; in general we call such templates query
atoms. A conjunctive instance query ¢ w.r.t. a query signature S, is a non-empty
set of query atoms.

19

Chapter 2. Foundations of Description Logics

For a function p, we use dom(j) to denote the domain of . Let O be an ontology
over § and q = {aty,...,at,} a query over S, consisting of n axiom templates. A
mapping u for q over O is a total function ju: Var(q) — N§ U NS U NP such that

1. u(v) € NG for each v € Vo N dom(p),

2. p(v) € NS for each v € Vi N dom(p),

3. u(v) € NP for each v € VN dom(p), and
4. OUu(q) is a SROZQ ontology.

We write 11(q) ((at)) to denote the result of replacing each variable v in q (at) with
pu(v). The set Ff = {p | puis a mapping for q over O} contains the compatible
mappings for q over O. A mapping p is a solution mapping or a certain answer
for q over O if O |= u(q). We denote the set containing all solution mappings for
q over O with fo or with ans(Q, q). The result size or the number of answers of a
query q over O is given by the cardinality of the set Qg) (ans(O,q)).

Note that the last condition in the definition of mappings (Condition 4) is re-
quired to ensure decidability of query entailment. For example, without this con-
dition, a reasoner might have to test instantiated axiom templates where a role
variable has been replaced by a non-simple role in a number restriction, which is not
allowed in Description Logic axioms. Note also that in the query we do not indicate
which variables are to be selected since we do not consider the straightforward task
of projection here. In the following, we sometimes write a mapping u for a query
q over an ontology O as a set of variable mappings, each element of which maps a
variable 7z in dom(u) to pu(?z). We now define the notion of the union of mappings
and the notion of the restriction of a mapping over a set of variables, which are used
in the next chapters.

Definition 6 (Union of Mappings). Let O be an ontology, q a query and puy, jia
mappings for q over O such that pi(?x) = ps(?z) for all 7z € dom(uy) N dom(ps).
The union of the mappings p1 and po is defined as follows: (puy U po)(?x) = pi(?x)
if 7z € dom(py) and (uy U po)(?x) = po(?x) otherwise.

Definition 7 (Restriction of Mapping over Variables). Let O be an ontology,
q a query, 1 a mapping for ¢ over O and X C dom(u) a subset of the variables in
the domain of p. The restriction of p over X is the mapping jyx = {7 — a [z €
X and p(?x) = a}.

In the remainder, unless otherwise stated, we use S for a signature (N¢, Ng, N;),
O to denote a SROZQ ontology over S, A, B € N for concept names from O, r, s €
Np, for role names from O, a,b € Nj for individual names from O, C', D for (complex)
concepts, 7x, 7y, 7z for variables, ¢;,, ¢;, for concept terms, ry,, ry, for role terms, ¢, ¢’
for individual terms, ¢ = {aty, ..., at,} for a query with n axiom templates over the
query signature S, = (N¢, Ng, Ni, Ve, Vg, Vi), Fff for the compatible mappings
and qu or ans(Q, q) for the solution mappings of ¢ over O. Moreover, we use the
term conjunctive queries to refer to standard conjunctive queries which allow for
non-distinguished variables and the term conjunctive instance queries to refer to
conjunctive queries without non-distinguished variables.

20

Chapter 3

Query Answering and
Optimization Approaches

In this chapter, we present state-of-the-art query answering and optimization tech-
niques as implemented in databases (Section 3.1) and knowledge bases (Section 3.2).
The description of database query answering and optimization techniques in Sec-
tion 3.1 aims at providing the intuition for the query ordering techniques described
in the next chapter. The description of knowledge base query answering techniques
and optimizations aims at describing alternative widely used techniques to the tech-
niques developed in this thesis and places our work in context. In the next chapter
(Section 4.6), we explain how the developed query ordering techniques can be em-
ployed by each of the approaches presented in this chapter.

3.1 Query Answering over Databases and Triple
Stores

3.1.1 Databases

The procedure that is followed by a database management system to answer queries
consists of the following steps:

1. The query given by the user in a database query language like SQL is first
translated to a more useful representation so that it can be processed efficiently.
One such representation is relational algebra and the translation is done by
the query parser of the system.

2. Afterwards, the query optimizer searches several alternative equivalent exe-
cution plans and strategies for the query and chooses the one that can be
evaluated most efficiently.

3. In the end the execution engine executes the query chosen by the query opti-
mizer.

In the following, we briefly describe the query optimization module of database
systems. In databases, query optimization [68, 2, 67, 20, 29] happens at several
levels. At the logical (relational algebra) level, the system tries to find an expression
(execution plan) that is equivalent with the given expression but which can be

21

Chapter 3. Query Answering and Optimization Approaches

executed more efficiently. For example, at this level the system may move a selection
operator for a join relation in front of a base relation or it may order joins differently.
Let 04—, be a selection for attribute A, r, s relations and let us assume that s contains
the attribute A whereas r does not. In this case we can use the equivalent expression
T <1 0 a=q(s) instead of oa—,(r > s), which generally leads to smaller intermediate
relations as it reduces the tuples of the s relation before performing the join. At the
physical level, the system tries to choose a detailed processing strategy for the query,
such as the choice of an algorithm that will be used for the execution of an operator,
the choice of the specific index that will be used. For example, at this level the
system decides what kind of (physical) join operators like nested loop, sort-merge
or hash join will be used based on the presence/absence of indexes, like BT-trees or
hash indexes and how the execution of the operators will be tuned.

The difference between the running time of a good strategy and that of a bad
one can be huge [121]. In order to distinguish between different execution plans,
the optimizer assigns a cost to each plan. This cost can be estimated in terms
of different parameters, like disc access (how many block transfers to and from
secondary memory are expected to be made) or CPU time. Disc access that is slow
in comparison to memory access is usually prominent in the cost of processing a
query. In order to estimate this cost accurately, query optimizers use statistical
information for the database relations, such as relation sizes (number of tuples in
relations), tuple sizes of relations in bytes, number of blocks in disc that contain
tuples of a relation or the number of tuples of a relation that fit in a block. There
are different ways one can estimate this cost; the simplest is by estimating the size
of intermediate results. In reality, a cost estimation algorithm should take into
account the actual cost of the algorithms used for the joins (different algorithms will
incur different costs), whether one relation has an index which influences the cost or
not, but this simple cost estimation is reasonable and accurate in many cases since
the cost is approximately proportional to the number of 1/Os which is generally
monotonic in the number of retrieved tuples. An efficient query evaluation method
should, therefore, aim at minimizing the tuples retrieved at each step.

We now focus on the problem of estimating an efficient join order (i.e., an order
for the atoms of a query which yields the least cost). In order to estimate the cost
of a join order, the database management system holds a set of statistics, like the
cardinality of the relations, the number of distinct values for each attribute of the
relations and, as we stated above, the system often aims at choosing plans that yield
the least intermediate result sizes.

We now show how the size of a join between two relations can be estimated.
Based on this, the cost of a query plan, i.e. a sequence of joins, can be easily
computed by taking the sum of the estimated sizes of the intermediate joins. Let
us assume that we have the relations (A, B) and s(B, (), where A, B and C' are
attributes and we want to estimate the size of the join r < s. Let us assume that
n, denotes the size of r (number of tuples in r) and V' (A,r) the number of distinct
values for the attribute A of r. In the general case (i.e., B is not a key for r and
s), a tuple t of r is expected to produce n,/V(B,s) tuples in r > s, since this is
the average number of tuples in s with a specific value for the B attribute. Hence,
all tuples in r will produce n, * ns/V (B, s) tuples in r > s. If we change the roles
of r and s in the previous estimate we will get ng * n,./V(B,r) tuples in r > s.
If V(B,r) # V(B,s) then the tuples in the difference of the two sets of estimates

22

Chapter 3. Query Answering and Optimization Approaches

are possibly invalid tuples that are not in the join. Hence the smallest of the two
estimates is probably the most accurate.

In order to more accurately estimate relation and join sizes more complex tech-
niques can be used such as histograms, parametric or sampling methods.

Methods based on histograms [89, 66] estimate join sizes based on detailed stored
information about the underlying relations. A histogram can represent the number
(or fraction) of the tuples having each value for an attribute of a relation. If there are
many values for an attribute, then only the most frequent values may be recorded
individually; the other values can be counted in groups. Several kinds of histograms
have been proposed, the most common of which are the equi-width histograms,
in which the range of values of an attribute is split into intervals or “buckets” of
equal widths and the height of the histogram at an interval represents the number
of values in the corresponding range or the frequency of each attribute value in the
data and the equi-height histograms, in which the frequencies of the attribute values
associated with each range is the same independent of the number of these attribute
values in the range. Storing and maintaining detailed statistics about relations could
be prohibitively costly in terms of space and computational overhead, particularly
in the presence of updates.

Parametric methods [89] provide size estimates using statistical data distribu-
tion functions. In most cases these approaches place certain assumptions on the
distribution of data, like the uniform data distribution assumption, and assume
that data under different attributes/relations are independent. However, realistic
data distribution could be rather arbitrary and complex and therefore cannot easily
be simulated by pure mathematical models such as Poisson or Normal distribution.
Hence parametric methods are rather limited in their use. A clear advantage of these
methods is their efficiency as they require no disk I/Os and little computational and
space overheads.

Sampling methods [100] collect information for size estimation by examining a
small fraction of the database instances that are relevant for the query at run time.
Sampling methods have been shown to produce rather accurate estimates regardless
of the underlying data distributions and dependencies. Unlike parametric methods
they do not require a priori assumptions about how the data fit in a probability
distribution. Unlike histograms they do not require storing and maintaining de-
tailed statistics about the data. They are robust in the presence of correlation of
attributes, which generally allows accurate estimation for queries that involve many
operators. Despite all these advantages, sampling is an expensive method which re-
quires accessing tuples and relations several times at run time. As with similar such
techniques there is a trade off between achieving good estimation accuracy (achieved
by taking more samples) and high efficiency (achieved by taking less samples).

In order to find the best execution plan w.r.t. running time we need algorithms
that construct plans over the execution plan space whose cost is determined by
estimation techniques as discussed above. The enumeration of several alternative
plans can be done by exhaustive search possibly enhanced by pruning techniques
that exclude unlikely candidates for good solutions. Most state of the art methods
employ dynamic programming techniques for enumerating plans in an appropriate
order. According to dynamic programming, for n relations we find the cost for
each subset containing 1,...,n relations inductively, i.e., to compute the costs for
relations of size k 4+ 1, 0 < k < n, we take the ordering that leads to the least cost

23

Chapter 3. Query Answering and Optimization Approaches

for relations of size k and then add one more relation to the already constructed join
order such that the total join expression yields the least cost. For relations of size
n the join order that yields the least computed cost (more efficient join order) gives
us the best way to compute the join of all the relations as well as the estimated cost
of that method. Minimizing the total cost of the execution plan according to the
underlying cost model is feasible but practical only for a limited number of joins.

Since enumerating all possible plans using dynamic programming is not practical,
heuristic techniques can be used for reducing the number of plans for which their cost
needs to be estimated but considering the least cost plan. For example, for finding
a good join ordering, a greedy heuristic technique can be used, where we start by
joining the pair of relations whose result has the smallest estimated cost and then
repeat the process for the result of that join and the other relations in the (remaining)
set to be joined. In a similar way, the selectivity of the join relation computed as
the size of the join result to the size of the cartesian product of the two relations
can be used. According to the minimum selectivity heuristic [129], at each step the
relation that yields the minimum join selectivity when joined with the current join
is added to the join computed so far. This heuristic is based on the assumption
that good solutions are generally characterized by intermediate results with small
cardinality. Apart from these, other heuristically based algorithmic enumeration
techniques have been presented in the literature including branch and bound, hill
climbing, simulated annealing, genetic programming [129, 29]. The branch and
bound approach, for example, begins by using heuristics to find a good plan and
then prunes plans for subqueries (sub-joins) which have a cost greater than the cost
of the already found good plan, while updating the cost and best plan in case a
better plan is found. Often these cheaper heuristic techniques produce very good
execution plans but there is a risk of returning very poor plans.

In database literature static optimization-ordering techniques are mainly used
(i.e., the query is ordered in the beginning before query execution). Dynamic or-
dering has also been proposed in the database literature in the context of adaptive
query processing systems [41]. Dynamic ordering aims at overcoming the limitations
of static optimization such as the lack of necessary statistics and of good selectivity
estimates at compile time and the absence of knowledge for the runtime mappings
of a query’s variables at compile time. These techniques take into account changes
that happen to the evaluation environment at runtime and modify the execution
plan at runtime (i.e., they change the used operators for joins or the order in which
the (remaining) query atoms are evaluated).

3.1.2 Triple Stores

Triple store query answering systems have a similar structure to database systems.
A query parser parses the query to an abstract query, which is subsequently opti-
mized. The optimization module searches for an efficient execution plan between
several equivalent plans, which is afterwards executed by the query execution mod-
ule. Query ordering and optimization techniques have recently been applied in the
context of triple stores for queries that are posed over RDF graphs and expressed
in the SPARQL query language. As in databases, query ordering techniques over
RDF graphs are based on the estimation of the sizes of triple patterns and joins of
triple patterns (i.e., the number of RDF triples that match a triple pattern or a join

24

Chapter 3. Query Answering and Optimization Approaches

of triple patterns) and aim at reducing the cardinality of intermediate results.

The work of Stocker et al. [131] is among the first works presenting a frame-
work for selectivity based optimization of BGPs of SPARQL queries. The authors
propose an algorithm that is a slight variation of the minimum selectivity algo-
rithm described above and uses several kinds of heuristics together with precom-
puted statistics for the estimation of the sizes and selectivities of triple patterns and
joined triple patterns. The selectivity of a triple pattern ¢ is estimated by the formula
sel(t) = sel(s)-sel(p)-sel(o), where sel(s), sel(p), sel(o) denote the selectivity of the
subject, predicate and object respectively of the triple pattern, and which assumes
that sel(s), sel(p) and sel(o) are statistically independent. The authors estimate
the sizes (and selectivities) of (bound or unbound) subjects and objects of triples
patterns using statistics relating to the number of triples, the number of distinct
subjects and histograms representing object values distributions for each predicate.
Regarding the sizes of predicates they accurately precompute them. The sizes of
joined triple patterns are precomputed by executing SPARQL queries for every pair
of predicates that is related through a term of the RDF(S) schema vocabulary, in
case such a vocabulary exists, and these sizes are cached for future use. The size
estimates are accurate for triple patterns with unbound subjects and objects and
they are used together with the size of restricted subjects or objects to estimate the
size of patterns with bound subjects or objects.

The authors of RDF-3X [99] use a dynamic programming algorithm for deter-
mining an efficient join order which is based on two kinds of statistics for selectivity
estimation. They use specialized histograms for RDF data, which can handle triple
patterns and joins. The disadvantage is that these histograms are mostly based on
the assumption that predicates are independent, which most of the time is not true.
For example, the triple patterns

?x :studentOf 7y.

?x takesCourse 7z.

are highly correlated since most objects that are students take a course. In other
words, searching just one triple pattern is nearly as selective as searching for all
of them. That is why they also use precomputed frequent join paths in the RDF
graphs, which cover some cases of correlations between predicates but are time and
space inefficient. When these frequent join paths are available they are used during
query optimization, otherwise the specialized histograms are used assuming that
predicates are not correlated.

In order to capture correlations between join predicates, which very commonly
exist in RDF graph patterns, Neumann et al. [98] propose a novel statistical synop-
sis technique called characteristic sets. Characteristic sets are proposed as a more
suitable technique than histograms for the estimation of the cardinality of (joined)
triple patterns, which takes into account the heterogeneous and string oriented na-
ture of RDF. In principle, characteristic sets capture the co-occurence of predicates
with the same entities (subject or object) in the RDF data. Entities that have
the same characteristic set tend to be semantically similar and this is the fact on
which the authors are based to estimate the selectivity of join predicates. In [63]
the authors also give emphasis to the dependencies (correlations) between predi-
cates that exist in SPARQL basic graph patterns and propose the use of Bayesian
networks and chain histograms to precompute statistics for star and chain RDF

25

Chapter 3. Query Answering and Optimization Approaches

paths which are subsequently used for the estimation of the cardinality of star and
chain shaped graph patterns, which are common shapes for SPARQL basic graph
patterns. Star graph patterns have the form of a number of triple patterns with
different predicates sharing the same subject variable, while chain patterns are se-
quences of triple patterns where the object of a triple pattern is the subject of
the next triple pattern. An example of a star pattern is the one given above, i.e.,
?x studentOf 7y, 7x :takesCourse 7z. An example of a chain pattern is the following:
?x takesCourse 7z, 7z :isTaughtBy 7y, 7y :teachesAt ?w. For the estimation of the
cardinality of arbitrarily shaped basic graph patterns the authors decompose them
to a set of star and chain basic graph patterns and combine the precomputed statis-
tics for star and chain paths to estimate the overall cardinality of the composite
basic graph pattern. Kaoudi et al. [70] adapt the formula for the estimation of the
size of a join that is used in databases and that has been described in Section 3.1
to work with triple pattern joins. In this work, the adapted formula for join size
estimation, which is based on the number of triples that match the two triple pat-
terns, and the number of distinct values that join variables of the triple patterns can
take, is used for cost estimation in a distributed environment. Moreover, it is worth
noting that in this work Kaoudi et al. propose a dynamic ordering algorithm that
uses a variation of the minimum selectivity heuristic and seeks to construct query
plans that minimize the number of intermediate results during query evaluation.

3.2 Query Answering over Ontologies

Query answering over ontologies differs from query answering over databases. In
databases, it is assumed that we have complete knowledge about the instances of
schema predicates (concept and role names), i.e., the closed world assumption is
adopted. In Description Logics or generally First Order Logic ontologies, on the
other hand, we adopt the open world assumption, i.e., it is assumed that we have
an incomplete description of the domain; absence of information does not mean
negative information.

A consequence of the fact that DL ontologies employ the open world assumption
is that an ontology usually has more than one model and query answering over an
ontology requires checking whether the (Boolean) query (created after the use of a
mapping function) is satisfied in all these models of the ontology. This is in contrast
to databases, in which the database instance created by the database schema and
data defines exactly one model and in which query answering requires the check of
this single model. This explains why query answering with respect to a DL ontology
is a (computationally) harder task than query answering with respect to a database.

We now present an example which shows the effect that the open (ontologies) and
closed (databases) world assumptions have on query answering caused by one (in
databases) versus many models (in knowledge bases). Let us assume that we have
an ontology O with O = (0, {A(a), B(b)}). In this ontology it holds O (= A(b) and
O £ —A(b); some models of O satisfy the assertion A(b), i.e., if Z is such a model
Z = O and T = A(b), while some other models of O do not satisfy the assertion
A(D), i.e., if 7 is such a model Z = O and T }= A(b), i.e., Z = —A(b). In contrast,
the database instance D = {A(a), B(b)} defines exactly one model, namely, Z, with
AT = {a,b}, AT = {a}, B* = {b} and it holds Z = —A(b). The above means that
a query ¢ = {—A(?z)} has no answer over O, whereas it has the answer 7z +— b

26

Chapter 3. Query Answering and Optimization Approaches

over D.

In Description Logic ontology systems we usually do not adopt the Unique Name
Assumption, which is adopted in database systems and according to which different
individual names are assumed to be mapped to distinct elements in models.

Since the query ordering techniques usually depend on the employed reasoning
algorithm and optimizations, we first briefly describe some well known optimization
techniques for answering conjunctive (instance) queries. Each of these approaches
can easily be adapted to work using our SPARQL parsing framework. For the
techniques that are not applicable to OWL 2 DL ontologies, we briefly state the
reasons why this is the case.

3.2.1 Materialization Techniques

Materialization techniques, also known as saturation techniques, have been applied
for ontology based query answering. These techniques have been widely used in
the context of RDFS for queries issued over RDF graphs. They work by extending
the queried graph with all the relevant consequences that are implied under the
RDFS semantics. This allows for using SPARQL’s standard subgraph matching
over the extended graph in order to compute answers under the RDFS semantics.
An obvious disadvantage of materializing all consequences is that the extended graph
can be quadratically larger than the original graph [133].

Saturation techniques can also be used for profiles of OWL. In particular, the
OWL 2 RL [92] profile was designed such that rule-based implementations can apply
a set of inference rules to make OWL RL consequences explicit. The queried ontology
is first saturated by applying some completion rules and then the query is answered
based on the produced assertion axioms [86]. We illustrate this by the following
example.

Example 4. Let us assume that we have an ontology with the following TBox T
and ABox A:

T =A

Person M JisHeadOf.Department C Chair, (3.1)
Man LI Woman C Person,
Chair C UniversityStaff (3.3)
}

A={
Woman(mary), (3.4)
isHeadOf (mary, maths Department) (3.5)
Department(mathsDepartment) (3.6)

}

and we want to answer the query

q = {UniversityStaff(?z)}

27

Chapter 3. Query Answering and Optimization Approaches

We first compute the saturation of A w.r.t. to T by producing all implicit conse-
quences, i.e., all entailed assertions. In particular, from Azioms (3.2) and (3.4)
we get Person(mary) and from this aziom and Azioms (3.1), (3.5) and (3.6) we get
Chair(mary). Finally, from this axiom and Aziom (3.3) we get UniversityStaff (mary).
Hence the saturation set A" is the following:

A" = {Woman(mary), isHeadOf (mary, maths Department), Person(mary),
Department(mathsDepartment), Chair(mary), UniversityStaff (mary)) }

Using A" we can easily see that the mapping 7x — mary is the only answer for q.

There are several well known RDF repository systems that perform some amount
of OWL RL reasoning like AllegroGraph,! Apache Jena,? Virtuoso,® Oracle 11g,*
OWLim,®> Sesame.® The use of materialization techniques is problematic in case
the data change frequently because in such case the frequent recomputation of the
entailed implicit facts is required which is a costly operation.

Extending saturation approaches to OWL 2 DL necessarily leads to unsoundness
and/or incompleteness of query answering since the presence of disjunctive informa-
tion in OWL DL no longer allows for a single canonical extension of the queried
ABox w.r.t. the TBox, i.e., there is no unique partial closure of the set of ABox as-
sertions that contains all relevant OWL DL consequences. For example, the axioms
Person = Man LU Woman and Person(mary) of an ontology cannot be satisfied in a
unique canonical model that could be used to answer queries since in one model
we would have that mary is a man, whereas in another model, we would have that
mary is a woman. Note that if we restrict the saturation to facts that hold in all
models, we are able to find sound and complete answers to conjunctive (instance)
queries using this saturation set. However, this is not the case for queries that go
beyond conjunctive queries. For example, let us assume that we have an ontology
O with the following TBox and ABox:

T ={Student C BScStudent LI MScStudent LI PhDStudent}
A ={Student(maria), -PhDStudent(maria)}

For the saturation A’ of O it holds A" = A. Now, let us assume that we have the
query

q = {BScStudent(?z) LI MScStudent(?z)}

The answer to this query should be the mapping 7z +— mary, since mary is a
student but not a PhD student, which means that mary is either a BScStudent
or a MScStudent as a consequence of the TBox axiom. However, based on the
saturated set there is no answer for this query. Moreover, the presence of existential
quantification (on the right hand side of axioms) leads to the addition of assertions
about new individuals in the saturated set and it cannot be guaranteed that the

http://www.franz.com/agraph/allegrograph/
2http://jena.apache.org
3http://virtuoso.openlinksw.com
“http://www.oracle.com
Shttp://www.ontotext.com/owlim
Shttp://www.openrdf .org

28

Chapter 3. Query Answering and Optimization Approaches

saturated set will be finite. For example, if we have an ontology with TBox 7 =
{Person T dhasFather.Person} and ABox A = {Person(mary)} the saturated set
would contain an infinite chain of hasFather relations between newly introduced
individuals.

It is worth noting that for the OWL EL profile, there is no set of materialization
rules given in the specification, but it recently has been shown that such techniques
are nevertheless also applicable [85]. In this work, the saturation of the OWL EL
ontology leads to the creation of a (saturated) datalog program that can be used to
answer queries.

3.2.2 Query Rewriting Techniques

The OWL 2 QL profile was designed to allow query answering via query rewriting: a
query over an OWL 2 QL TBox and a set of instance data stored in a data repository
can be answered by rewriting the query w.r.t. the TBox and then answering the
rewritten query in the data repository. OWL 2 QL, as discussed in Section 2.1.2 is
based on DL-Liteg, one of a family of Description Logics developed by Calvanese et
al [17, 18]. Query rewriting techniques for DL-Lite are based on the notion of first
order rewritability according to which, given a DL-Lite TBox 7 and a conjunctive
query ¢, one can compute a First Order Logic query ¢7 such that, for every ABox
fivans(cry“4>>Q):: ans(<®7“4>7q7)'

Query rewriting techniques focus on modifying the query rather than the queried
data and are sound and complete for conjunctive queries. In order to apply the
technique, the ontology is split into a schema or TBox and a data part or ABox.
The data part can then be stored in a standard database, while the schema part is
used to rewrite a query into a union of one or more conjunctive queries such that the
resulting rewritten query can be evaluated over the data alone without taking the
schema into account. Thus, standard database storage techniques and optimizations
can immediately be used for query evaluation. Query rewriting techniques are widely
used in the context of ontology based data access. In this context the user formulates
a conjunctive query ¢ that uses terms from the vocabulary of a TBox 7 and the
ontology based data access system rewrites ¢ using 7 to a new query ¢’ such that
for any ABox A the answers to g over the consistent (7,.A) are the same as the
answers of ¢7 over A.

Calvanese et al. [18] proposed and implemented in the QuOnto system” [3] the
first algorithm for query rewriting for the family of DL-Lite description logics which
uses the TBox axioms as rewriting rules and computes a union of conjunctive queries
that is a rewriting of ¢ w.r.t. 7. Intuitively, the algorithm uses the axioms in 7T to
replace concepts and roles in the query by concepts and roles that imply them.

Example 5. If we assume that we have the following TBox and ABox:

T ={Student C UniversityMember, takesGraduateCourse C takesCourse}
A ={Student(mary), takesGraduateCourse(mary, maths)}

and that we ask the conjunctive instance query

q = {takesCourse(?z, 7y), UniversityMember(7x)}

"http://www.dis.uniromal.it/quonto/

29

Chapter 3. Query Answering and Optimization Approaches

the proposed algorithm applies the TBox axioms backwards producing new subqueries
that can produce answers when evaluated over databases. In particular, we can apply
takesGraduateCourse C takesCourse to the takesCourse(?z, 7y) query atom and obtain
a new query

q' = {takesGraduateCourse(?z, 7y), UniversityMember(?z)}
By applying now Student C UniversityMember to ¢’ we get the query
q" = {takesGraduateCourse(?z, 7y), Student(?z)}
In the same way by applying Student T UniversityMember to ¢ we get
q" = {takesCourse(?z, 7y), Student(?z)}

After applying to each query atom all the applicable axioms, we can obtain a union of
conjunctive queries that retrieves all the query answers when posed over the ABox
data only. In our example, the union of conjunctive queries that the algorithm
returns contains the four queries q, ¢ ¢" and ¢". The answer over the ABoxr A
given above is Tx — mary, Ty — maths.

The data complexity of query answering w.r.t. DL-Lite is in ACj [18, 104], which
means that query evaluation can be performed efficiently. However, the size of the
rewritten queries can be large making in some cases the performance not satisfactory
in practice. In particular, the size of the rewritings is in the order of (| 7-|¢|)?, where
|7 | and |¢| are the sizes of the TBox and the original conjunctive query, respectively.
In an effort to reduce the huge number of produced rewritings, an alternative res-
olution based query rewriting technique was proposed by Pérez-Urbina et al. [107]
and was implemented in the Requiem system.® This approach rewrites the initial
conjunctive query to a union of conjunctive queries which is, generally, smaller in
size than the rewriting produced by QuOnto as it is shown by a thorough experi-
mental evaluation [107]. Several other optimization techniques have been developed
for reducing the size of the rewritten query even further [39, 21, 112]. Chortaras
et al. [21] implemented the Rapid system, which applies the rewriting rules only in
those cases that lead to the creation of useful, non-redundant conjunctive queries
avoiding many query subsumption tests. However, even when using optimization
techniques that try to reduce the number of the rewritings, the rewritings’ size are
still worst case exponential in the size of the original query and hence cannot always
be evaluated efficiently using existing database technology.

Rosati et al. [114] proposed a quite different query rewriting technique for DIL-
Lite, which generates a non-recursive datalog program instead of a union of conjunc-
tive queries and was implemented in the Presto system. This allows the “hiding”
of the exponential blow-up inside the rules instead of generating explicitly the dis-
junctive normal form delegating, in this way, part of the computational complexity
of this task to the (deductive) database system. However, the technique is still
worst case exponential. Gottlob et al. [40] presented an approach which produces a
polynomial time rewriting but it uses additional entities.

It should be noted that query rewriting techniques can also be used with the
OWL EL profile, but the rewriting then produces a datalog query instead of a union

8http://www.cs.ox.ac.uk/isg/tools/Requiem/

30

Chapter 3. Query Answering and Optimization Approaches

of conjunctive queries [113, 108]. Deductive databases can then be used to evaluate
the datalog query over the data.

Finally, an approach, called combined rewriting has been proposed by Kontchakov
et al. [82] for the description logic DL-Lite and by Lutz et al. [87] for the descrip-
tion logic EL. Their approach is quite different from the standard query rewriting
approach since the proposed algorithm rewrites both the query and the ABox w.r.t.
the TBox. Kontchakov et al. [82] propose a polynomial rewriting over the data
expanded by applying DL-Lite axioms (without role inclusions) from the queried
ontology and introducing a small number of fresh individuals. This combined ap-
proach is not efficient in the presence of updates since in such cases the expensive
rewriting (extension) of the data w.r.t. the TBox would need to be done frequently.

Query rewriting techniques have also been developed and implemented in a sys-
tem called Clipper for more expressive Horn DLs, like Horn-SHZQ [27].

Current query rewriting techniques cannot be applied to more expressive lan-
guages such as OWL 2 DL because these techniques are based on the canonical
model property of the considered DL, according to which, from a satisfiable ontol-
ogy O, one can construct a canonical model Zp such that ans(Zp,q) = ans(O,q)
for every positive First Order Logic query ¢. In other words, in DLs that enjoy
the canonical model property, we do not need to look at all models to answer a
conjunctive query; the canonical model suffices and can be used to find all query
answers to conjunctive queries. The presence of disjunctive information results in
the existence of non-homomorphically related models that differ in the queries they
entail and hence cannot be represented by a unique canonical model. For example,
as it has been stated in Section 3.2.1 the following two axioms of an ontology O

Person C Man LU Woman
Person(mary)

cannot be satisfied in a unique canonical model that could be used to answer queries
since in one model we would have that mary is a man, whereas in another model,
we would have that mary is a woman.

3.2.3 Techniques for Expressive Ontological Knowledge

For more expressive, (possibly) non-deterministic ontologies query answering is main-
ly based on model building procedures such as tableau and hypertableau calculi.
There are several widely used reasoners that use (hyper)tableau techniques and op-
timizations to answer queries, some of which are Pellet’ and Racer.!® A couple of
optimizations for conjunctive instance queries over OWL DL ontologies have been
presented by Sirin et al. [124]. These take advantage of instance retrieval optimiza-
tion techniques that have been developed for tableau reasoners. Query answering
optimization techniques over OWL 2 DL ontologies using (hyper)tableau reasoners
are also the focus of this thesis. These techniques have been implemented using
the HermiT reasoner.!' In Section 4.4, we compare the query ordering techniques
developed for Pellet [124] and Racer [47] with those developed in the current thesis.

http://clarkparsia.com/pellet/
Onttp: //www.racer-systems. com
"Uhttp://hermit-reasoner.com

31

Chapter 3. Query Answering and Optimization Approaches

In order to better understand the differences and given the fact that query order-
ing techniques depend to some extent on the employed reasoning algorithm and
optimizations, in the following, we briefly describe some well known optimization
techniques for instance retrieval employed by Pellet and Racer. Since consistency
checking is an expensive operation and query answering is reduced to consistency
checking, the goal of these optimizations is to reduce the number of performed con-
sistency checks by cheaply finding obvious (non-)instances of query atom concepts
and roles.

For finding obvious instances of concepts and roles usually a precompletion, i.e.,
a set of assertions that is obtained by the application of only deterministic tableau
rules is exploited. Since a precompletion contains only the deterministic assertions
or the assertions that have been created by deterministic rules, it is obvious that
the precompletion represents a common part of every model of the queried ontology.
This means that one can (cheaply) determine obvious instances of concepts and
roles by looking at this precompletion set. This precompletion set can be extracted
from the pre-model construction procedure during the initial ontology consistency
check and it can be cached for future use. This check is usually performed in the
beginning before query answering takes place; any logical statement is entailed by
an inconsistent ontology. In order to be able to extract deterministically derived
assertions from the pre-model, one needs to keep dependency information for each
concept (role) assertion that appears in the pre-model [137, 7], i.e., one needs to keep
information regarding the concept (role) assertions that caused the creation of other
concept (role) assertions due to the application of tableau rules. If such information
is cached for each concept (role) assertion, the cases where a non-deterministic choice
is made can easily be identified and assertions which depend on non-deterministic
choices can be excluded from the precompletion set. Optimized DL reasoners keep
such statistics for optimized (dependency directed) backtracking while searching the
non-deterministic branches during the consistency check.

For finding obvious non-instances the pseudo model merging technique [46] can
be used, which is a (cheap) sound but incomplete technique to determine if an
individual a is not an instance of a concept C' without considering concept and role
assertions for other individuals of the queried ontology O = (7, A) and avoiding
many expensive consistency checks. According to this technique assuming that we
have a pseudo model for the (satisfiable) concept —C' (which can be built after
a concept satisfiability test) and a pseudo model for the individual a (which can
be extracted from the label of the individual in the pre-model built for the initial
consistency check of the ontology) we check if the pseudo model for —=C' can be
merged with the pseudo model of the individual a; if there are no concept and role
interactions between the two pseudo models that lead to a clash, this means that
the ABox AU {a : =C'} is consistent w.r.t. 7 and hence we can conclude that a is
not an instance of C.

Apart from caching pseudo models and exploiting precompletion or pre-model
information, binary instance retrieval [48] is generally used to reduce the individuals
that need to be tested in the case of a query atom of the form C(?z). Binary instance
retrieval uses a divide and conquer technique and tries to decide whether a set of
individuals are non-instances of a concept using one consistency check. In particular,
for testing for possible instances of a concept C', the candidate instance set is split
into two partitions. For each partition, a single consistency check is performed. If

32

Chapter 3. Query Answering and Optimization Approaches

the consistency check is successful, it is safe to consider all individuals belonging to
the partition as non-instances of the tested concept C'. Otherwise, we further split
the partition and process the resulting partitions in the same way. In this case, one
performs one consistency check to potentially determine several (non-)instances of C.
The method is highly efficient if the partitioning is done in a way that maximizes the
chance that non-instances of the queried concept all belong to the same partition.

In the next chapter, we discuss the optimization techniques used for query an-
swering in our context. Even in the presence of optimizations, techniques based on
consistency checking over OWL 2 DL ontologies suffer from scalability issues, i.e., a
query answering system that is based on the reduction of query answering to ABox
consistency checking does not scale well, when the amount of data increases even
when optimizations are employed.

In an effort to improve scalability, summarization and refinement techniques
have been developed by Dolby et al. [24, 25] and implemented in the SHER system
[26], which determine query answers testing a group of individuals in each tableau
consistency check rather than a single individual. According to these techniques,
a summary ABox is computed from the original ABox before the beginning of the
query evaluation procedure. The summary ABox is created by aggregating individ-
uals that belong to the same concepts into a single summary individual. To answer
an instance query, every individual in the summary ABox is used to instantiate the
query. For each such individual the negation of the instantiated query concepts are
added to the summary ABox and the summary ABox is tested for consistency. If
it is consistent then all individuals that are mapped to the summary individual are
not answers to the query. In case of inconsistency, it holds that either a subset
of the individuals that are mapped to the summary individual are answers to the
query or the inconsistency was the result of the summarization procedure (this holds
because individuals are aggregated based only on the concepts, i.e., role assertions
are not taken into account when the summary ABox is created) in which case a
refinement step follows in which the summary ABox becomes more precise based
on inconsistency justifications (minimal assertion sets implying the inconsistency).
To find answers to role atoms, Dolby et al. use a more complex procedure. A con-
junctive instance query is answered by joining the answers of every query concept
or role. Note that summarization and refinement techniques generally provide a
more efficient partitioning of individuals than divide and conquer techniques such
as binary instance retrieval described above.

In order to deal with large amounts of data and remain scalable, a different
approach has been developed by Hustadt et al. [64] and Motik et al. [91]. In this
work, the reduction of a SHZQ knowledge base to a disjunctive datalog program
that entails the same set of ground facts as the original knowledge base and hence
gives the same answers to conjunctive instance queries has been explored. Using the
datalog program one can take advantage of optimization methods from deductive
databases, such as the join order optimization or the magic set transformation [11]
for finding answers to queries more efficiently. This work resulted in the creation of
the KAON2 reasoner.'?

12http://kaon2.semanticweb.org

33

Chapter 3. Query Answering and Optimization Approaches

3.2.4 Approximation Techniques

In practice, current systems that perform query answering over expressive Descrip-
tion Logic languages are not as scalable as needed, when they have to answer
queries over large amounts of data. Hence, in order to achieve practicality, ap-
proximate query answering systems have been proposed, which are based on ap-
proximate reasoning algorithms. Approximate systems usually sacrifice soundness
and/or completeness in order to speed-up the query answering performance; approx-
imate query answering algorithms can either be (i) sound and incomplete, i.e., they
under-approximate the set of certain or known query answers, or (ii) they can be
complete but unsound, i.e., they over-approximate the set of certain answers or (iii)
they can be unsound and incomplete. Typical examples of such algorithms rewrite
the queried ontology into a simpler logic in such a way that computing the results
over the simplified ontology yields the desired under- or over-approximation. For
example, for the evaluation of a conjunctive query ¢ over an ontology O, an approx-
imate query answering algorithm could evaluate ¢ over an ontology @', where O’ is
created from O after the removal of a set of axioms. It is obvious that answering ¢
over (0’ results in an under-aproximation of query answers of ¢ over O (due to the
monotonicity property of description logics), i.e., the query answering procedure is
sound but incomplete. Several approximate query answering algorithms have been
proposed in the literature.

Hitzler et al. [54] and Tserendorj et al. [138] describe an approximate system for
query answering over SHZQ description logics called Screech. Screech uses KAON2
to transform a SHZQ ontology into a disjunctive datalog program, which gives the
same answers to instance queries as the original ontology, and it then transforms
the disjunctive datalog program to a non-disjunctive one by changing disjunctions to
conjunctions. Afterwards, it uses this program for approximately answering queries;
the used approximation algorithm is complete but not always sound for instance
queries over SHZQ ontologies. Other variants of the algorithm remove disjunctive
rules instead of converting disjunctions to conjunctions and, hence, are sound but
incomplete or they hold only one of the disjuncts of disjunctive rules and throw
away the rest, resulting in unsound and incomplete procedures for ABox reasoning.

Pan et al. [102] present an approximation algorithm for computing answers to
conjunctive queries over OWL DL ontologies. They propose to approximate the
queried OWL DL ontology O with a DL-Lite ontology O, that consists of the (finite)
set of DL-Lite axioms created using only terms from the vocabulary of O and which
are entailed by O. The authors call this set an entailment set. This DL-Lite ontology
can be used by scalable rewriting techniques to find query answers as discussed in
Section 3.2.2. In such a way sound (but generally incomplete) answers to conjunctive
queries are produced. It should be stated though that in the case of conjunctive
queries that do not contain non-distinguished variables, i.e., for conjunctive instance
queries, the described method provides sound as well as complete answers. Pan et
al. [103] use these entailment sets to additionally produce an over-approximation of
query answers by removing atoms with non-distinguished variables from the query.
Since such over-approximation can produce many unsound answers, they propose a
technique, which is based on transforming the ontology, based on the query, apart
from the query only, to create stricter over-approximations. For the creation of the
entailment sets they use a fully-fledged OWL DL reasoner for checking entailment
of DL-Lite axioms over OWL DL ontologies, which can be expensive.

34

Chapter 3. Query Answering and Optimization Approaches

Kaplunova et al. [71] approximate a SHZ TBox 7 to an OWL 2 QL TBox 77, such
that for any ABox A containing only assertions about concept names the answers
to a concept instance query q over 7 is a subset of the answers of ¢ over 7y, i.e., the
answers of ¢ over 77, is an over-approximation of the answers over the queried SHZ
ontology. After some preprocessing, the authors transform non-deterministically
each axiom C C D in T to a DL-Lite axiom C’ T D’ such that C C C’ and
D’ € D. The proposed procedure can lead to the creation of inconsistent ontologies
from consistent ones after the approximation and, moreover, the non-determinism
involved in the transformation of axioms to DL-Lite means that approximating O
can be expensive.

ABox materialization systems such as OWLim, which, as discussed in Sec-
tion 3.2.1, perform sound and complete query answering for conjunctive (instance)
queries over OWL 2 RL ontologies, behave as approximate query answering systems
when they have to answer queries over more expressive ontologies. For ontologies
outside the OWL 2 RL profile, these systems are sound for conjunctive queries but
they are generally incomplete as they disregard the ontology axioms that are not
in the OWL 2 RL fragment. Some of these systems additionally handle certain
kinds of axioms that fall outside the OWL 2 RL fragment. In several application
domains, application developers that use such incomplete systems are interested in
knowing “how incomplete” a system is, i.e., the degree of (in)completeness of a sys-
tem w.r.t. a TBox of some expressivity and a query. This information is also useful
when application developers want to compare the degree of (in)completeness of sev-
eral approximate query answering systems and choose the one that better satisfies
their needs taking into account the trade-off between scalability and completeness.
Cuenca Grau et al. [43] address this issue by a data generation technique; the au-
thors generate a collection of datasets such that if a system is complete for a given
TBox T and query ¢q and each of the generated datasets, then it is complete for T,
q and any dataset. These generated datasets can be used to provide completeness
guarantees. However, providing such guarantees is not always possible. That is why
Cuenca Grau et al. further define conditions on ontologies and queries under which
systems behave as complete reasoners.

A recent approximate query answering technique for OWL 2 DL ontologies has
been proposed by Zhou et al. [143] and it is based on the use of an OWL 2 RL
reasoner to find an under- and an over-approximation of query answers. Given an
ontology O and a conjunctive query ¢, the under-approximation of query answers is
found by using the OWL 2 RL reasoner to answer ¢ over O, i.e., ontology axioms
outside OWL 2 RL are disregarded. To compute the over-approximation, Zhou et
al. approximates the queried OWL 2 DL ontology O with an OWL 2 RL ontology
Ogr such that Ogy = O. The RL ontology is created by a sequence of steps that
are roughly described below. First, O is transformed to a disjunctive datalog pro-
gram using a variant of structural transformation of First Order Logic [96]. Then
the disjunctive datalog program is transformed to a non-disjunctive one by trans-
forming disjunctions in the head of the rules to conjunctions and by using fresh
individuals to skolemize existentially quantified variables. Finally, the datalog pro-
gram is transformed back into an OWL 2 RL ontology by rolling up datalog rules to
OWL 2 RL axioms and eliminating non-RL axioms. An RL reasoner is then used
to find an over-approximation of query answers. The tuples in the over- minus the
under-approximation set are possible query answers and for completeness we need

35

Chapter 3. Query Answering and Optimization Approaches

to test these using an OWL 2 DL reasoner. Since this is expensive for huge datasets,
Zhou et al. [144] present a backward chaining technique applicable to Horn OWL 2
ontologies for identifying a subset of the ontology that is sufficient for determining
whether these possible answers are real ones using an OWL 2 DL reasoner such as
HermiT.

Since the query answering techniques that we use can be seen as query approx-
imation techniques, in the next chapter, we explain how they differ from some of
the above described approximate systems and how the developed, in this thesis,
approach can be used with approximate systems.

36

Chapter 4

Query Answering Optimizations

4.1 Motivation

A straightforward algorithm to compute the answers for a query ¢ is to test, for
each mapping p, whether O |= pu(q). Since only terms that are used in O can occur
in the range of a mapping p for ¢ over O, there are finitely many mappings to test.
In the worst case, however, the number of mappings that have to be tested is still
exponential in the number of variables in the query. Such an algorithm is sound and
complete if the reasoner used to decide entailment is sound and complete since we
check all mappings for variables that can constitute actual solution mappings.

Optimizations cannot easily be integrated into the above sketched algorithm
since it uses the reasoner to check for the entailment of the instantiated query as a
whole and, hence, does not take advantage of relations or dependencies that may
exist between the individual axiom templates in ¢g. For a more optimized evaluation,
one can evaluate the query axiom template by axiom template. Initially, the solution
set contains only the identity mapping, which does not map any variable to a value.
One then picks the first axiom template, extends the identity mapping to cover the
variables of the chosen axiom template and then uses a reasoner to check which of
the mappings instantiate the axiom template into an entailed axiom. One then picks
the next axiom template and again extends the mappings from the previous round
to cover all variables and checks which of those mappings lead to an entailed axiom.
Thus, axiom templates which are very selective and are only satisfied by very few
solutions reduce the number of intermediate solutions. Choosing a good execution
order, therefore, can significantly affect the performance.

For example, let ¢ = {A(?z),r(?x,7y)} with 72,7y € V;. The query belongs
to the class of conjunctive instance queries. We assume that the queried ontology
contains 100 individuals, only 1 of which belongs to the concept A. This A instance
has 1 r-successor, while we have overall 200 pairs of individuals related with the
role 7. If we first evaluate A(?x), we test 100 mappings (since 7z is an individual
variable), of which only 1 mapping satisfies the axiom template. We then evaluate
r(?z,?7y) by extending the mapping with all 100 possible mappings for 7y. Again
only 1 mapping yields a solution. For the reverse axiom template order, the first
axiom template requires the test of 100 - 100 mappings. Out of those, 200 remain
to be checked for the second axiom template and we perform 10,200 tests instead
of just 200. Note also that the number of intermediate results when the query is
evaluated in the order A(?z), r(?z,?7y) is smaller than when it is evaluated in the

37

Chapter 4. Query Answering Optimizations

reverse order (2 versus 201).

As it has been discussed in Section 3.1 in the context of databases or triple stores,
cost-based ordering techniques for finding an optimal or near optimal join ordering
have been widely applied [129, 131]. These techniques involve the maintenance of
a set of statistics about relations and indexes, e.g., number of pages in a relation,
number of pages in an index, number of distinct values in a column, together with
formulas for the estimation of the selectivity of predicates and the estimation of the
CPU and I/0 costs of query execution that depends amongst others, on the number
of pages that have to be read from or written to secondary memory. The formulas
for the estimation of selectivities of predicates (result output size of query atoms)
estimate the data distributions using histograms, parametric or sampling methods
or combinations of them. Ordering strategies as implemented in databases or triple
stores are, however, not directly applicable in our setting. In the presence of expres-
sive schema level axioms, we cannot rely on counting the number of occurrences of
explicitly given triples, since the inferred triples should also be taken into account.
We also cannot, in general, precompute all relevant inferences to base our statis-
tics on materialized inferences since materialization techniques are not sound and
complete procedures for answering (complex) queries over ontologies in expressive
languages as discussed in Section 3.2.1. Furthermore, to order queries over ontolo-
gies we should not only aim at decreasing the number of intermediate results, but
also take into account the cost of checking or computing the solutions. This cost
can be very significant with OWL reasoning and its precise estimation before query
evaluation is difficult as this cost takes values from a wide range, e.g., due to nonde-
terminism and the high worst-case complexity of the standard reasoning tasks. For
example, as it has already been stated the description logic SROZQ, which under-
pins the OWL 2 DL standard, has a worst case complexity of 2-NEXPTIME [72] and
typical implementations are not worst case optimal. The hypertableau algorithm
that we use has a worst case complexity of 3-NEXPTIME in the size of the ontology
[72, 96]. For several kinds of axiom templates we can, however, directly retrieve
the solutions from the reasoner instead of checking entailment. For example, for
C(7x), reasoners typically have a method to retrieve concept instances. Although
this might internally trigger several tests, most methods of reasoners are highly op-
timized and avoid as many tests as possible. Furthermore, reasoners typically cache
several results such as the computed concept hierarchy and retrieving sub-concepts
can then be realized with a cache look-up. Thus, the actual execution cost might
vary significantly. Notably, we do not have a straight correlation between the num-
ber of results for an axiom template and the actual cost of retrieving the solutions
as is typically the case in triple stores or databases. This requires cost models that
take into account the cost of the specific reasoning operations as well as the number
of results.

As motivated above, we distinguish between simple and compler axiom tem-
plates. Simple axiom templates are those that correspond to dedicated reasoning
tasks and are evaluated efficiently. The evaluation of complex axiom templates
might require iterating over the compatible mappings and by checking entailment
for each instantiated axiom template. An example of a complex axiom template is

(Fr.2z)(?y).

Definition 8 (Simple and Complex Axiom Templates). Let ¢, ¢;, be concept
terms, 1y, 1, be role terms and t,t' be individual terms. The set of simple axiom

38

Chapter 4. Query Answering Optimizations

Algorithm 1 evaluate(O, q)
Input: O: the queried SROZQ ontology
q: a query over O
Output: a set of solutions for evaluating ¢ over O

1: S == {po | dom(pu) = 0}

2: for i=1,...,n do

3: R:=10

4: for each i € S do

5: if isSimple(at;) and Var(at;) \ dom(u) # 0 then

6: R:=RU{y/ Upu | € callSpecificReasonerTask(u(at;))}
7 else if Var(at;) \ dom(u) = () then

8: if O = p(at;) then

9: R:= RU{u}

10: end if

11: else

12: B :={y | i/ (?z) = a, for 7x € Var(at;) \ dom(u),

a€ NE orae NS orae NP and
1 (?y) = p(?y) for 7y € dom(u)}

13: for each 1/ € B do
14: if O = 1/(at;) then
15: R:=RU{u}

16: end if

17: end for

18: end if

19: end for

200 S:=R

21: end for

22: return R

templates contains templates of the form: ¢, T ¢y, T, T 14y, ¢y (2), 7, (8,1, t = 1.
All the rest are complex axiom templates. The function isSimple(at) takes an azxiom
template at and returns true if it is simple; otherwise it returns false.

Based on the above, Algorithm 1 is a simple general algorithm showing the
proposed procedure to answer a query ¢ using any (hyper)tableau reasoner. For a
simple axiom template, which contains so far unbound variables, we call a specialized
reasoner method to retrieve entailed results, i.e., mappings for unbound variables
(callSpecificReasonerTask in line 6). We now give the general outline of the algorithm;
in the next section we explain in more detail how the method callSpecificReasonerTask
works. For templates with all their variables bound, we check whether the mappings
lead to entailed axioms (lines 11 to 18). Otherwise, for complex templates that do
not have all their variables bound, we check which of the compatible mappings lead
to entailed axioms.

4.2 Preprocessing for Information Extraction

In this section, we first present a way of preprocessing the queried ontology to
extract information (Section 4.2.1) that is useful for ordering the axiom templates

39

Chapter 4. Query Answering Optimizations

in a query (Section 4.3). We afterwards propose a clustering of individuals based
on the information extracted from the queried ontology (Section 4.2.1.1). This
preprocessing is useful for axiom templates of the form ¢, (t), ry, (¢,), or t ~ t/,
where ¢, is a concept term, r;, is a role term and ¢,¢" are individual terms.

4.2.1 Information Extraction from Reasoner Models

The first step in the ordering of query atoms is the extraction of statistics by exploit-
ing information generated by reasoners. We use the labels of an initial pre-model
to provide information about the concepts the individuals belong to or the roles
with which one individual is connected to another one. We exploit this information
similarly as was suggested for determining known or possible (non-)subsumers for
concepts during classification [33].

We first use an example to show how a hypertableau algorithm creates a pre-
model of a satisfiable ontology and how information in this pre-model is exploited
for creating ordering statistics. Let us assume that we have an ontology O = (T, A)
as shown below:

Student C VtakesCourse.Course

Student C GraduateStudent LI UndergraduateStudent
GraduateStudent C VtakesCourse.GraduateCourse
Student(mary)

takesCourse(mary, maths)
This ontology is translated to the following DL-clauses:

Student(x) A takesCourse(z,y) — Course(y)
Student(z) — GraduateStudent(z) V UndergraduateStudent(x)
GraduateStudent(x) A takesCourse(x,y) — GraduateCourse(y)

— Student(mary)

N N /N /N /N
il el
Ol = W NN =
~— ~— ~— ~— ~—

— takesCourse(mary, maths)

We start constructing a derivation using the derivation rules of the hypertableau
calculus. The initial set of assertions is

Ay = {Student(mary), takesCourse(mary, maths)} (4.6)

By applying clause (4.1) to Ay we get
Ay = {Student(mary), takesCourse(mary, maths), Course(maths) } (4.7)

By applying clause (4.2) to A; we get

Ay = {Student(mary), takesCourse(mary, maths),

4.8
Course(maths), GraduateStudent' (mary)} (48)

Note that the assertion GraduateStudent(mary) has a superscript. This superscript
is used to denote that this assertion has been derived non-deterministically. The
other alternative would be to add the assertion UndregraduateStudent(mary) to A,.

40

Chapter 4. Query Answering Optimizations

The hypertableau algorithm makes a random choice between the two assertions when
both have concept names as predicates as is the case in the example above. In case
we have a combination of concept name atoms and existential concept atoms, like
A(x) Vv 3Ir.B(z) as the consequent atoms of a DL clause, the algorithm first adds the
instantiated concept name assertions to the derivation set using the Hyp-rule of the
hypertableau calculus and in case this leads to clashes it then tries the existential
concept assertions. The intuition behind this is that the addition of concept names
in the labels of individuals can lead to less complex models and hence it may be
efficient to try the instantiated concept atoms first. By applying clause (4.3) to A
we get

Az = {Student(mary), takesCourse(mary, maths), Course(maths),

4.9
GraduateStudent' (mary), GraduateCourse' (maths)} (4.9)

The assertion GraduateCourse(maths) is assigned the same superscript as the asser-
tion GraduateStudent(mary) to denote that it was derived by a hypertableau rule
using the non-deterministically derived assertion GraduateStudent(mary). In Aj
there is no clash and no more rule is applicable; As is called a pre-model. In this
pre-model there are assertions that are derived deterministically such as:

Student(mary), takesCourse(mary, maths), Course(maths)
and assertions that are derived non-deterministically such as:
GraduateStudent(mary), GraduateCourse(maths).

We keep the known (K) and possible instances (P) for each concept and role. In
our example, we have

K|[Student] = {mary}, K|[Course| ={maths}, KJtakesCourse] = {(mary, maths)}

P|GraduateStudent] = {mary}, P[GraduateCourse] = {maths}

Since it is not very obvious, we further show two examples of how a role can
have possible instances. Let us assume that we have an ontology

O={AC Ir{b}uar{c} Ala)}

and that we want to check whether it is consistent. Let us assume that a pre-model is
constructed, in which the concept assertion 3r.{b}(a) is non-deterministically chosen
to be added. Using this pre-model we get that b is a possible r-successor of a. Let
us now see a more complex example that shows how possible instances for roles are
created using at most cardinality restrictions and role hierarchies. Let us assume
that we have an ontology

0= {A ES 2S'T>T E S, S(a7bl)> S(a, b2)7r(aa b3)7A<a)}

Since O [= r C s, the pre-model contains the assertion s(a,bs) and since we have
three s-successors of a and a is an instance of A, because of the first axiom in O
the hypertableau algorithm non-deterministically merges two individuals from the

41

Chapter 4. Query Answering Optimizations

Algorithm 2 initializeKnownAndPossibleConceptlnstances(O)
Input: a consistent SROZQ ontology O

1: A, := buildPreModelFor(O)

2: for all a € NP do

3: forall Ae Ly, (a) do

4: if A(a) was derived deterministically then
5: K[A] .= K[A] U {a}

6: else

7 P[A] .= P[A]U{a}

8: end if

9: end for

10: end for

set {b1, b, b3}. If we assume that the individuals b; and b3 are non-deterministically
chosen to be merged, we get from this pre-model that b; is a possible r-successor of
a.

We now formalize the procedure of extracting known and possible instances from
the initial pre-model. In the hypertableau calculus, the following two properties hold
for each ontology O and each constructed pre-model A,, for O:

(P1) for each concept name A (role name), each individual a (pair of individuals
(a,b)) in A,, if A€ L4, (a) (r € Ly,({a,b))) and the assertion A(a) (r(a,b))
was derived deterministically, then it holds O = A(a) (O = r(a,b)).

and an ar-

b)
)
L4, ((a,0))),

(P2) for an arbitrary individual a in A, (pair of individuals (a, b) in A4,
bitrary concept name A (simple role name), if A & L4, (a) (r ¢

then O = A(a) (O B r(a,b)).

For simplicity, we assume here that equality (=) is axiomatized and =~ is treated
as a reflexive, symmetric, and transitive role. We use these properties to extract
information from the pre-model of a satisfiable ontology O.

Definition 9 (Known and Possible Instances). Let A, be a pre-model for an
ontology O. An individual a is a known (possible) instance of a concept name
A in A, denoted a € K4, [A] (a € Py, [A]), if A € L4, (a) and A(a) is derived
deterministically (non-deterministically) in A,. A pair of indiwviduals (a,b) is a
known (possible) instance of a simple role name r in A,, denoted {a,b) € K4, (r),
if r € La,({a,b)) and r(a,b) is derived deterministically (non-deterministically) in
A,.. The individual a is (possibly) equal to the individual b, written a € Kx[b] and
b e Kila] (a € Py[b] and b € Pxla]) if a &= b has been deterministically (non-deter-
ministically) derived in O.

In the remainder, we assume that the known and possible instances are defined
w.r.t. some arbitrary pre-model A, for O and we simply write K[A], K[r], Kx[a],
P[A], Plr], and Ps[a]. Intuitively, K[A] contains individuals that can safely be con-
sidered instances of the concept name A. On the other hand, the possible instances
require costly consistency checks in order to decide whether they are real instances
of the concept, while individuals that neither belong to K[A] nor P[A] can safely be
assumed to be non-instances of A.

42

Chapter 4. Query Answering Optimizations

Algorithm 2 outlines a procedure to initialize the relations for known and pos-
sible concept instances. The information we extract involves the maintenance of
the sets of known and possible instances for all concepts of O. One can define a
similar algorithm for initializing the known and possible instances of simple roles
and for (possibly) equal individuals. In our implementation, we use a more involved
procedure to only store the direct types of each individual, where a concept name
A is a direct type of an individual a in an ontology O if O |= A(a) and there is no
concept name B such that O = BC A, O |= B(a) and O [~ B = A.

Hypertableau and tableau reasoners typically do not deal with transitivity di-
rectly. In order to deal with non-simple roles, O is expanded with additional axioms
that capture the semantics of the transitive relations before a pre-model is built. In
particular, for each individual a and non-simple role r, new concepts C, and C/ are
introduced and the axioms C,(a) and C, C Vr.C! are added to O. The consequent
application of the transitivity encoding [96] produces axioms that propagate C” to
each individual b that is reachable from a via an r-chain. The known and possible
r-successors of a can then be determined from the C} instances.

The technique presented in this paper can be used with any (hyper)tableau
calculus for which properties (P1) and (P2) hold. All (hyper)tableau calculi used
in practice that we are aware of satisfy property (P1). Pre-models produced by
tableau algorithms as presented in the literature also satisfy property (P2); however,
commonly used optimizations, such as lazy unfolding, can compromise property
(P2), which we illustrate with the following example. Let us assume we have an
ontology O containing the axioms

AC 3r.(CND) (4.10)
B=3rC (4.11)
A(a) (4.12)

It is obvious that in this ontology A is a subconcept of B (hence, O = B(a))
since every individual that is r-related to an individual that is an instance of the
intersection of C' and D is also r-related to an individual that is an instance of
the concept C. However, even though the assertion A(a) occurs in the ABox, the
assertion B(a) is not added in the pre-model when we use lazy unfolding. With lazy
unfolding, instead of treating (4.11) as two disjunctions =B LI 3r.C' and BLIVr.(=C)
as is typically done for general concept inclusion axioms, B is only lazily unfolded
into its definition Jr.C' once B occurs in the label of an individual. Thus, although
(FIr.(C M D))(a) would be derived, this does not lead to the addition of B(a).

Nevertheless, most (if not all) implemented calculi produce pre-models that sat-
isfy at least the following weaker property:

(P3) for an arbitrary individual a in A,, and an arbitrary concept name A where A

is primitive in O,' if A &€ L4, (a), then O £ A(a).

Hence, properties (P2) and (P3) can be used to extract (non-)instance information
from pre-models. For tableau calculi that only satisfy (P3), for each non-primitive
concept name A in O we need to add to P[A] the individuals in O that do not
include the concept A in their label.

LA concept A is considered primitive in O if O is unfoldable [137] and it contains no axiom of
the form A= FE

43

Chapter 4. Query Answering Optimizations

The proposed technique for determining known and possible instances of con-
cept and role names and equivalent individuals can be used in the same way with
both tableau and hypertableau reasoners. Since tableau algorithms often introduce
more nondeterminism than hypertableau, one might, however, find less deterministic
derivations, which results in less accurate statistics.

It is worth noting that the above presented technique that creates sets of known
and possible instances for concepts and roles can be seen as an approximate in-
stance retrieval algorithm, which computes an under- (known instances) and an
over- (possible instances) approximation of instances of concepts and roles.

4.2.1.1 Individual Clustering

In this section, we describe the procedure for creating clusters of individuals within
an ontology O using a constructed pre-model A, of O. Two types of clusters are
created: concept clusters and role clusters. Concept clusters contain individuals
having the same concepts in their label and role clusters contain individuals with
the same concept and role labels. Role clusters are divided into three categories,
those that are based on the first individual of role instances, those based on the
second individual and those based on both individuals.

Definition 10 (Concept and Role Clusters). Let O be an ontology and A,
a pre-model for O. We define the following two relations Py and P, thalt map an
individual a from O to the roles for which a has at least one successor or predecessor,
respectively:

Pi(a) ={r|r € La,({a,b)) for somebc NP}

Py(a) ={r|r € La,((ba)) for somebc NP}
Based on these relations, we build three different partitions over NP : concept clus-

ters C'C, role successor clusters PCY, and role predecessor clusters PCs and we
partition N° x NP into role clusters PCyy such that the clusters satisfy:

for each C € CC.(for each ai,as € C.(L4,(a1) = L4, (az)

for each C € PCy.(for each ay,ay € C.(L 4, (a1) = La,(az) and Pi(a;) = Pi(az)
for each C € PCy.(for each aj,as € C.(L4,(a1) = La,(az) and Pa(ay) = Py(as)
for each C € PChs.(for each (a1, as), (a3, ays) € C.

(La,(ar) = La,(a3), La,(az) = La,(as) and La,({a1,a2)) = L4, ({as,as))))

We use these clusters in the next section to optimize the dynamic query ordering
strategy.

)
)
)

4.3 Query Answering and Axiom Template Or-
dering

In this section, we describe two different algorithms (a static and a dynamic one) for
ordering the axiom templates of a query based on some costs and then we deal with
the formulation of these costs. We first introduce the abstract graph representation
of a query ¢ by means of a labeled graph G, on which we define the computed
statistical costs.

44

Chapter 4. Query Answering Optimizations

Definition 11 (Query Join Graph). A query join graph G, for a query q is a
tuple (V, E, EL), where

o V =q is a set of vertices (one for each axiom template);

e ECV XV isa set of edges; such that (aty,aty) € E if Var(aty) N Var(aty) # 0
and at; # aty;

e Ey is a function that assigns a set of variables to each (aty,aty) € E such that
E(aty,aty) = Var(aty) N Var(aty).

In the remainder, we use G for the query join graph of g.

Our goal is to find a query execution plan, which determines the evaluation
order for axiom templates in ¢q. Since the number of possible execution plans is
of order |g|!, the ordering task quickly becomes impractical. In the following, we
focus on greedy algorithms for determining an execution order, which prune the
search space considerably. Roughly speaking, we proceed as follows: We define a
cost function, which consists of two components (i) an estimate for the costs of
the reasoning tasks needed for the evaluation of an axiom template and (ii) an
estimate for the result size, i.e., the number of results that the evaluation of an
axiom template will incur. Both components are combined to induce an order
among axiom templates. In this paper, we simply build the sum of the two cost
components, but different combinations such as a weighted sum of the two values
could also be used. For the query plan construction we distinguish static from
dynamic planning. For the former, we start constructing the plan by adding a
minimal template according to the order. Variables from this template are then
considered bound, which changes the cost function and might induce a different
order among the remaining axiom templates. Considering the updated order, we
again select the minimal axiom template that is not yet in the plan and update
the costs. This process continues until the plan contains all templates. Once a
complete plan has been determined the templates are evaluated. The dynamic case
differs in that after selecting a template for the plan, we immediately determine the
solutions for the chosen template, which are then used to update the cost function.
While this yields accurate cost estimates, it can be very costly when all solutions
are considered for updating the cost function. Sampling techniques can be used to
only test a subset of the solutions, but we show in Section 7 that random sampling,
i.e., randomly choosing a percentage of the individuals from the so far computed
solutions, is not adequate. For this reason, we propose an alternative sampling
approach that is based on the use of the previously described individual clusters.

We first briefly describe how we can use the sets of known and possible concept
and role instances and the sets of known and possible equivalent individuals, which
have been constructed during the initial ontology consistency check, as explained in
Section 4.2.1, for optimizing the evaluation of some simple axiom templates. The
method callSpecificReasonerTask in Algorithm 1, line 6 from Section 4.1, has been
implemented to evaluate such axiom templates more efficiently using these cached
sets.

1. For concept (role) atoms of the form A(?z) (r(?x,?y)) the set of known in-
stances of the concept A (role r) are immediately returned as answers by the

45

Chapter 4. Query Answering Optimizations

method callSpecificReasonerTask, while only the individuals in the set of possi-
ble instances that, when used to instantiate the atoms, lead to entailed axioms,
are returned as answers by the method.

2. For role atoms of the form r(a,?z) (r(?z,a)), the sets of known and possible
instances of r are again exploited to extract known and possible r-successors
(predecessors) of a. Known successors (predecessors) of a are immediately
returned as answers by the method callSpecificReasonerTask, while only those
possible successors (predecessors) that when used to instantiate the atoms,
lead to entailed axioms, are returned as answers by the method.

3. For the evaluation of templates of the form ?z(7x) (?z(7z,7y), 7z(a,?z),
?z(?x,a)) the answer is the union of the answers coming from the iteration
over all concept (role) names appearing in the queried ontology; in each such
iteration, a concept A (role s) is considered, i.e., we have A(?z) (s(7z,?7y),
s(a,?z), s(?x,a)), and the procedure followed in case 1 (cases 1 and 2) above
can be applied to find the answers of the concept (role) instantiated template.

4. For templates of the form ?z(a) (7z(a,b)) the concepts (roles) for which a
({a,b)) is a known instance (pair of instances) are returned, while from the
concepts for which a ({a,b)) is a possible instance (pair of instances) only
those which when used to instantiate the templates lead to entailed axioms
are returned as answers.

5. Similarly, for atoms of the form a ~7x or ?x =~ a the known and possible
equivalent sets for the individual a can be used to either directly (from the
set of known equivalent individuals) or after some consistency checks (using
the set of possible equivalent individuals) retrieve the answers of the atom
evaluation.

6. For atoms of the form 7z ~7y the answer is the union of the answers coming
from the iteration over all individuals appearing in the queried ontology; in
each such iteration, an individual a is considered, i.e., we have 7z ~ a or a =7x
and the procedure followed in case 5 can be applied to find the answers of the
individual instantiated atom.

7. For (Boolean) atoms of the form A(a), r(a,b), a ~ b the sets of known and
possible instances are again used to decide whether the axiom is entailed with
(set of known instances and known equivalent individuals) or without (set of
possible instances and possible equivalent individuals) a consistency check.

Assuming that the concept and role hierarchies are precomputed before the be-
ginning of query evaluation and cached in the reasoner’s internal structures, tem-
plates of the form ¢;, C ¢;, and 1y, C 7, are evaluated by performing look-ups in
the cached hierarchies.

We now present an example to make the difference between static and dynamic
planning clearer and justify why dynamic ordering can be beneficial in our setting.

Example 6. Let O be an ontology and g = {A(?x),r(?z,?y), B(?y)} a conjunctive
instance query over O. Suppose that for the known and possible instances of the

46

Chapter 4. Query Answering Optimizations

query concepts and roles we have

b}
fr9,h}

K[A] = {a} Klr] =10 K[B]
PlA] = {c e} Plr] = {(c,d), (e, [)} PlB]

and let us assume that the possible instances of A, B and r are, in fact, real instances
(note that we do not have this information from the beginning). Please have in mind
that the possible instances of concepts or roles are more costly to evaluate than the
known instances since they require expensive consistency checks in order to decide
whether they are real instances.

According to static planning, an ordering for query atoms is first determined.
In particular, the atom r(7x,?y) is chosen first since it has the least number of
known and possible instances (|K[r]| = 0 and |P[r]| = 2 versus |K[A]| = 1 and
|P[A]| =2 and |K[B]| =1 and |P[B]| = 3). Then the atom A(?x) is chosen since
it has less known and possible instances than B(?y), i.e., |K[A]| = 1 and |P[A]| = 2
versus |K[B]| = 1 and |P[B]| = 3 for B(?y). Hence, the chosen execution plan in
static planning is P = (r(?xz,7y), A(?z), B(?y)). Afterwards, the query is evaluated
according to the chosen execution plan, i.e., the atom r(?x,?y) is evaluated first,
which gives the solution mappings

{
{

O ={{Tr—c,y—d},{lv—ey— f}}.

This requires 2 consistency checks for the 2 possible instances of r. Afterwards, we
check which of the 7x mappings, ¢ and e, are known or possible instances of A. Since
both ¢ and e are possible instances, we check whether they are real instances of A
(this requires 2 consistency checks). Hence, the solution mappings are

Q=0 ={{lz—cly—d},{7cr—ely— [}}

In the end, we check which of the 7y mappings, d and f, are known or possible
instances of B. For the only possible instance, f, we find after one consistency
check that f is indeed an instance of B. Hence, the solution mappings for q over O
are

Qf ={{Tr—ey— f}}

and finding the solution required 5 consistency checks.

According to dynamic planning, an ordering is determined while we evaluate the
query. For the same reasons as before, the atom r(?x,?7y) is chosen to be evaluated
first and the solution mappings are, as before,

O ={{Tr—c,y—d},{tTv—ey— f}}

requiring 2 consistency checks. We afterwards check which of the Ty mappings, d
and f, are known or possible instances of B. Note that this only requires a look-up
since if we find d or f to be among the possible instances, we do not check whether
the individual is indeed an instance or not. Here only f is a possible instance. We
also check which of the 7x mappings, ¢ and e, are known or possible instances of A.
Here, both ¢ and e are possible instances, i.e., we have 2 relevant possible instances

47

Chapter 4. Query Answering Optimizations

for A(?z) and 1 for B(?y). Hence, the atom B(?y) is chosen to be evaluated next,
resulting in the solution sequence

D ={{lz—e,7y— f}}

for the (partial) execution plan (r(?x,?7y), B(?y)), requiring 1 consistency check. In
the end, we check whether the 7x mapping, e, is a known or possible instance of A.
Since e is a possible instance, we check whether it is a real instance (this requires 1
consistency check). Hence, the solution mappings for q are

00 = ({75 ety o 1),

which have been found by performing 4 consistency checks, one less than in the static
case.

Note that in dynamic ordering we perform less checks than in static ordering,
since in this case we can exploit the results of joins of query atoms and more in-
formation regarding the possible instances of atoms (i.e., which of them are real
instances), which is determined as a result of evaluating the atoms while ordering
them.

We now make the process of query plan construction more precise, but we leave
the exact details of defining the cost function and the ordering it induces to later.

Definition 12 (Static and Dynamic Ordering). A static (dynamic) cost func-
tion w.r.t. ¢ over O is a function s: ¢ x 2¥"@ — R x R (d: ¢ x 2'7 — R x R),
where with Fg) we denote the set of compatible mappings for q over O. The two
L Rss) ((Ech,Rsh)) for an awiom template at € q are combined to yield
a static ordering <, (dynamic ordering =), which is a total order over the azx-
iom templates of q such that, for at,at’ € q, we say that at < at’ (at =<4 at’) iff
Eci, + Rs, < Ec®, +Rs:, (Ec?, + Rs?, < Ec%, +RsZ,).

An execution plan for q is a duplicate-free sequence of axiom templates from
q. The initial execution plan s the empty sequence and a complete execution plan
is a sequence containing all templates of q. Let P; = (aty,...,at;) with i < |q| be
an execution plan for q with query join graph G, = (V, E, Er). The set of bound
variables of at; within P; for i > 1 is V,(at;) = Var(at;) N Var({aty,...,at;_1})
else Var(at;) = 0. Let C, be the set of complexr axiom templates in q. We next
define which axiom templates can be used to extend an incomplete execution plan.
Let at be an axiom template in P;, the set suc;(at) contains the axiom templates
that are connected to at and not yet in P;, i.e., suc;(at) = {at’ € ¢ | (at,at’) €
E at’" ¢ {aty,...at;}}. Based on this, we define the set of connected successor
axiom templates for P; as S = {at | at’ € {aty,...,at;} and at € suc(at’)}. We
further allow for including axiom templates that are only connected to a complex
aziom template from S; and define the potential next templates ¢; for P, w.r.t. G,
as q; = q if P; is the initial execution plan and otherwise

g =S; U U suc;(at).

ate Cy NS

costs (EcS

Given P, the static (dynamic) ordering now induces an execution plan Py, =
(atl,. .. ,ati,atiﬂ) with ati+1 € q; and ati+1 js at (ati+1 jd at) fOT each at € q;
such that at # at; ;.

48

Chapter 4. Query Answering Optimizations

Note that according to the above definition, for P; an execution plan, it can be
the case that ¢; contains templates that are assigned the same minimal cost by the
cost function. In such case, one can choose any of these templates to add to P;.
Moreover, according to the above definition for the case of queries containing only
simple axiom templates we have that, for ¢ > 0, the set of potential next templates
only contains templates that are connected to a template that is already in the plan
since unconnected templates cause an unnecessary blowup of the number of inter-
mediate results. For queries with complex templates the set of potential next axiom
templates can additionally contain templates that do not share common variables
with any template that is already in the plan. This different handling of queries with
complex templates is reasonable since, before evaluating a complex axiom template
that requires many consistency checks, we want to reduce the number of candidate
bindings, by first evaluating other simple (cheaper) templates that bind variables
which appear in the complex one.

Example 7. Let O be an ontology and ¢ = {7 T A7y C r,B C 37y.7x} a
query. Assuming that systems usually precompute the concept and role hierarchies
before they accept queries, the evaluation of the first two templates, i.e., 7x T A and
7y C r, require cheap cache look-ups, whereas the axiom template B T 37y.7x, re-
quires costly consistency checks. Hence, it is reasonable to first evaluate the first two
(cheap) templates to reduce the mappings for 7x and 7y and then evaluate the third
(expensive) template, by checking which of the reduced mappings yield an entailed
axiom.

An example that shows the actual gain we get from handling the ordering of
complex axiom templates in this way is presented in Chapter 7.

Let n = |¢q| and P, = (aty,...,at,) be a complete execution plan for ¢ over
O determined by static ordering. The procedure to find the solution mappings
Qf for P, is recursively defined as follows: Initially, our solution set contains only
the identity mapping 9 = {po}, which does not map any variable to any value.
Assuming that we have evaluated the sequence P; = (aty,...,at;), i < n and we have
found the set of solution mappings €2;, in order to find the solution mappings €2;,; of
P, 1, we use specific reasoning tasks to extend the mappings in €); to cover the new
variables of at;; if at;;; is a simple axiom template or the entailment check service
of reasoners if at;;; does not contain new variables or if at;;; is a complex axiom
template. In dynamic planning the difference is that the execution plan construction
is interleaved with query evaluation. In particular, let n = |¢| and P; = (at; .. .at;)
with i < n be a (partial) execution plan for ¢ determined by dynamic ordering and
let €2; be the solution mappings of P;. In order to find P;,; we extend P; with a new
template, at;yq, from ¢, i.e., P,y = (aty,...at;11), which, according to the dynamic
cost function, has the minimal cost among the potential next templates ¢; for P;.
The dynamic cost function assigns costs to templates at iteration ¢ + 1 taking into
account the solution mappings €2;. We afterwards evaluate the atom at;,q, i.e., we
find the solution mappings €2; ;1 of P,;; by extending the solution mappings €); of
P; in the same way as in the static case. In Chapter 6 in Algorithm 4, we show the
complete procedure we follow to answer a query.

We now define the cost functions s and d more precisely, which estimate the
cost of the required reasoner operations (first component) and the estimated result
output size (second component) of evaluating an axiom template. The intuition

49

Chapter 4. Query Answering Optimizations

behind the estimated value of the reasoner operation costs is that the evaluation of
possible instances is much more costly than the evaluation of known instances since
possible instances require expensive consistency checks whereas known instances
require cheap cache look-ups. The estimated result size takes into account the
number of known and possible instances and the probability that possible instances
are actual instances.

The time needed for an entailment check can change considerably between on-
tologies and even within an ontology (depending on the involved concepts, roles
and individuals). In order to more accurately determine the entailment cost we use
different entailment cost values depending on whether the template under consid-
eration is a template of the form ¢, (t), i, (t, '), t = t', ¢, T ¢y, 1, 14, OF &
complex axiom template, where ¢;,, ¢, are concept terms, 7y, 1y, are role terms
and t,t" are individual terms. In the following we write C, to denote the cost of a
cache look-up in the internal structures of the reasoner, C'r as a placeholder for the
relevant entailment cost value and Pjg for the possible instance success, i.e, the esti-
mated percentage of possible instances that are actual instances. The costs C'p and
CE are determined by recording the average time of previously performed look-ups
and entailment checks for the queried ontology, e.g., during the initial consistency
check, classification, or for previous queries. The possible instance success, Pg,
was determined by testing several ontologies and checking how many of the initial
possible instances were real ones, which was around 50% in nearly all ontologies.

Apart from the relations for the known and possible instances from Section 4.2.1,
we use the following auxiliary relations:

Definition 13 (Successor and Predecessor Relations). Let r be a role and a
an indwidual. We define sucK[r| and preK[r] as the set of individuals with known
r-successors and r-predecessors, respectively:

sucK[r] :=={a | 3b.{a,b) € K[r]} and preK[r] :={a | 3b.(b,a) € K][r]}.

Similarly, we define sucK|r,a] and preK[r,a] as the known r-successors of a and the
known r-predecessors of a, respectively:

sucK[r,a] :=={b | (a,b) € K|r|} and preK[r,a| .= {b| (b,a) € K|r]}.

We analogously define the functions sucP[r], preP[r], sucP[r,a], and preP[r,a] by
replacing K{[r] with P[r] in the above definitions.

Next, we define the cost functions for the case of conjunctive instance queries, i.e.,
queries containing only query atoms. In Section 4.3.2 we extend the cost functions
to deal with general queries.

4.3.1 Cost Functions for Conjunctive Instance Queries

The static cost function s takes two components as input: a query atom and a set
containing the variables of the query atom that are considered bound. The function
returns a pair of real numbers for the reasoning cost and the result size for the query
atom.

Initially, all variables are unbound and we use the number of known and possible
instances or successors/predecessors to estimate the number of required look-ups

20

Chapter 4. Query Answering Optimizations

and consistency checks for evaluating the query atom and for the resulting number
of mappings. For an input of the form (A(?x),0) or (r(?z,?y),) the resulting pair
of real numbers for the computational cost and the estimated result size is computed
as

(|K[at]| -d-CL + |Plat]| - d - Cg, |K]at]| + Pis - | P[at]]),

where at denotes the predicate of the query atom (A or r) and the factor d represents
the depth of the concept for at = A(7x) or role for at = r(7x,?y) hierarchy. We
use this factor since we only store the direct types of each individual (roles of which
individuals are instances) and, in order to find the instances of a concept (role), we
may need to check all its sub-concepts (sub-roles) for known or possible instances.
If the query atom is a role atom with a constant in the first place, i.e., the input
to the cost function is of the form (r(a,?x), (), we use the relations for known and
possible successors to estimate the computational cost and result size:

(|sucK[r,al| - d - Cp + |sucP[r,al| - d - Cg, |sucK|r, a]| + Pig - |sucP[r, a]|).

Analogously, we use preK and preP instead of sucK and sucP for an input of the form
(r(?z,a), (). Finally, if the atom contains only constants, i.e., the input to the cost
function is of the form (A(a),0), (r(a,b),d), the function returns (d - Cp, 1) if the
individual is a known instance of the concept or role, (d - Cg, Pjs) if the individual
is a possible instance and (d - Cp,0) otherwise, i.e., if the individual is a known
non-instance.

For equality atoms of the form 7z ~7y, a ~7z, 7x &~ a or a ~ b, we again
exploit information from the initial pre-model as described in Section 4.2.1. Based
on the cardinality of Ky[a] and Px[a], we can define cost functions for the different
cases of query atoms and bound variables. For inputs of the form (?z ~ a, () and
(a = 7x,()), the cost function is defined as:

(IKx[all - CpL + |Pxla]] - Cr, |Kxlal| + Pis - [Px[a]]).

For inputs of the form (?z &~ ?y, (), the cost function is computed as:

< > (IExlal - O +|Pxfd]| - Cr)/2, Y (IK<lall + Prs- IPz[a]l)/2>

aENP a€eNP

For inputs of the form (a ~ b, (), the function returns (Cy, 1) if b € K. [a], (Cg, Prs)
if b € Py[a], and (Cp,0) otherwise (i.e., b is not equivalent to a).

After determining the cost of an initial query atom, at least one variable of a
consequently considered atom is bound, since during the query plan construction
we move over atoms sharing a common variable and we assume that the query is
connected. We now define the cost functions for atoms with at least one variable
bound. We make the assumption that atoms with unbound variables are more
costly to evaluate than atoms with all their variables bound. For a query atom
r(?z,7y) with only 7z bound, i.e., function inputs of the form (r(?x,?y), {?z}), we
use the average number of known and possible successors of the role to estimate the
computational cost and result size:

K[| P |Kr]| [Plr]|
<]sucK[r]| d CL+\sucP[r]] d-Cr, |sucK[7’]]+]sucP[r]\ PIS>

o1

Chapter 4. Query Answering Optimizations

In case only 7y in r(7z,?7y) is bound, we use the predecessor functions preK and
preP instead of sucK and sucP. Note that we now work with an estimated average
number of successors (predecessors) for one individual.

For atoms with all their variables bound, we use formulas that are comparable
to the ones above for an initial plan, but normalized to estimate the values for one
individual. For an input query atom of the form A(?x) with 7z a bound variable we
use

<|K[A]| -d-Cp+ |P[A]|-d-Cg |K[A]|+ Pis- |P[A]|>

INP| ’ NP |
Such a simple normalization is not always accurate, but leads to good results in
most cases as we show in Chapter 7. Similarly, we normalize the formulas for role
atoms of the form r(7x,?y) such that {?x, 7y} is the set of bound variables of the
atom. The two cost components for these atoms are computed as

<|K[r]| -d-Cp+|Pl]|-d-Cp |K[r]| + Prs- |P[r]|>
[NP| - INP] NP NP

For role atoms with a constant and a bound variable, i.e., atoms of the form r(a, 7z)
(r(?z,a)) with 7z a bound variable, we use sucK[r, a] and sucP[r, a] (preK[r, a] and
preP[r, a]) instead of K[r] and P[r] in the above formulas and we normalize by | N?|.

Similarly, we normalize the cost functions for inputs with equality atoms and
bound variables, depending on whether the atoms contain one or two bound vari-
ables. For inputs of the form (?z =~ a,{?z}), (a ~7z,{?z}), we divide the cost
function components for inputs of the form (?x ~ a,) and (a ~?z,0) by |[NP|. For
an input of the form (?z ~ y, {7z, 7y}), we divide the cost function components for
input of the form (?x ~?y,0) by |[N°|-|NP|. For inputs of the form (?z ~?y, {?x}),
and (?z ~7y,{?y}), we divide the cost function components for input of the form
(7z =7y, 0) by |[NP|.

The dynamic cost function d is based on the static function s, but only uses the
first equations, where the atom contains only unbound variables or constants. The
function takes a pair (at,2) as input, where at is a query atom and {2 is the set of
solution mappings for the atoms that have already been evaluated, and returns a
pair of real numbers using matrix addition as follows:

d(at, Q) = > s(u(at),)

HES

When sampling techniques are used, we compute the costs for each of the potential
next atoms for an execution plan by only considering one individual of each relevant
cluster. Which cluster is relevant depends on the query atom for which we compute
the cost function and the previously computed bindings. For instance, if we compute
the cost of a role atom r(?x, 7y) and we have already determined bindings for 7z, we
use the role successor cluster PC}. Among the 7z bindings, we then just check the
cost for one binding per cluster and assign the same cost to all other 7z bindings of
the same cluster.

Example 8. Let q be a conjunctive instance query that contains the atom A(?x) and
let us assume that we have to find the cost (using the dynamic function) of A(?x)
within an execution plan for q. We further assume that from the evaluation of
previous query atoms in the plan we have already determined a set of intermediate

52

Chapter 4. Query Answering Optimizations

Table 4.1: Query Ordering Example
already executed current atom at Kl[at] Plat] real from P|at]

1 A(?x) 200 350 200
2 r(?z, 7y) 200 200 50
3 B(?y) 700 600 400
4 r(?z, 7y) A(?x) 100 150 100
5 r(?z, Ty) B(?y) 50 50 40
6 r(?z,?y), B(?y) A(?x) 45 35 25
7 r(?z,?y), A(Yx) B(?y) 45 40 25

solutions with the mappings a,b, or ¢ for Tx and that a,b, and c belong to the
same concept cluster. According to dynamic ordering we need to find the cost of
each instantiated atom using the static cost function, i.e.,

d(A(?x), Q) = s(A(a),D) + s(A(D), D) + s(A(c), D).

If we additionally use cluster based sampling, we find the cost for only one individual
of each cluster, let us say a, and then assign the same cost to all other individuals
from the cluster which are mappings for 7z in Q). Hence, the cost of the atom A(?x)
when sampling is used, 1s computed as

avoiding the computation of s(A(b),D) and s(A(c), D).

An example that is similar to Example 6 (but with a greater number of instances)
and shows how ordering is achieved by the use of the defined static and dynamic
functions is shown below. We assume that ¢ is a query consisting of the three query
atoms: A(?z), r(?z,?y), B(?y). Table 4.1 gives information about the known and
possible instances of these atoms within a sequence. The second column shows
already executed sequences P;_; = (aty,...,at; 1) for the atoms of ¢. Column 3
gives the current atom at; and column 4 (5) gives the number of mappings to known
(possible) instances of at that satisfy at the same time the atoms (aty,...,at; 1)
from column 2. Column 6 gives the number of real instances from the possible
instances for the current atom. For example, row 4 says that we have evaluated the
atom r(7z,7y) and, in order to evaluate A(7x), we only consider those 100 known
and 150 possible instances of A that are also mappings for 7x. We further assume
that we have 10,000 individuals in our ontology . We now explain, using the
example, how the above described formulas work. We assume that C';, < C'g, which
is always the case since a cache look-up is less expensive than a consistency check
and that the Cg values are the same for all query concepts and roles. For ease
of presentation, we further do not consider the factor for the depth of the concept
or role hierarchies. In both techniques (static and dynamic) the atom r(7z, 7y) is
chosen first since it has the least number of possible instances (200) while it has the
same (or smaller) number of known instances (200) as the other atoms (g is the
initial solution mapping that does not map any variable):

s(r (22, 7),0) = d(r(?2, 7y), {o}) = (200 - Cp, + 200 - C, 200 + Prs - 200),
s(A(?x),0) = d(A(?x),{po}) = (200 - Cp, + 350 - Cg, 200 + Pys - 350),
s(B(?y),0) = d(B(?y), {1to}) = (700 - C1, + 600 - C, 700 + Py - 600).

23

Chapter 4. Query Answering Optimizations

In the case of static ordering, the atom A(?z) is chosen after r(?x,?y) since A has
less possible (and known) instances than B (350 versus 600):

200 350 200 4 350 - Prs
A7), {?2}) = Cp+ s
s(A(?z),{7z}) <10,000 L 10,000 ~®' 10,000 >’
700 600 700 + 600 - Prg
B(?y),{?y}) = O+ e
s(B(*y),{7y}) <10,000 LT 10,000 “® T 10,000 >

Hence, the order of evaluation in this case is P = (r(?x, 7y), A(?x), B(?y)) leading
to 200 (row 2) + 150 (row 4) 4+ 40 (row 7) entailment checks. In the dynamic case,
after the evaluation of r(7z, ?7y), which gives a set of solutions 2, the atom B(7y)
has fewer known and possible instances (50 known and 50 possible) (row 5) than
the atom A(?z) (100 known and 150 possible) (row 4) and, hence, a lower cost:

d(B(?y),Q4) = (50 - C, + 150 - Cp, + 50 - Cg, 50 + 0 + 50 - Pig),
d(A(?2),) = (100 - Cp + 0 - Cp + 150 - Cg, 100 + 0 4 150 - Pyg).

Note that applying a solution p € Q) to B(7y) (A(?z)) results in a query atom
with a constant in place of 7y (?x). For B(?y), it is the case that out of the 250
r-instances, 200 can be handled with a look-up (50 turn out to be known instances
and 150 turn out not to be instances of B), while 50 require an entailment check.
Similarly, when considering A(7z), we need 100 look-ups and 150 entailment checks.
Note that we assume the worst case in this example, i.e., that all values that 7z
and 7y take are different. Therefore, the atom B(7y) is chosen next, leading to the
execution of the query atoms in the order P = (r(7x,?y), B(?y), A(?z)) and the
execution of 200 (row 2) + 50 (row 5) + 35 (row 6) entailment checks.

4.3.2 Cost Functions for GGeneral Queries

We now explain how we order the remaining simple and complex axiom templates.
We again use statistics from the reasoner, whenever these are available. In case
the reasoner cannot give estimates, one can still work with statistics computed from
explicitly stated information or use upper bounds to estimate the reasoner costs and
the result size of axiom templates.

We first consider a general concept assertion axiom template. Let Kpg[a] be the
concepts of which a is a known instance, Pgla] the concepts of which a is a possible
instance. These sets are computed from the sets of known and possible instances of
concepts. For an input of the form (?z(a),) the cost function is defined as

(IKpla]| - d- Cp + |Pgla]| - d - Cp, |Kpla]| + Prs - | Pp[al]),
For an input of the form (?z(?y), 0), the cost function is defined as
< > (K[B]l-d-Cp+|P[B]|-d-Cg), Y (K[B]|+ Fis- !P[B]D>
BeNg BeNG

For inputs of the form (?z(a),{?x}) and (?z(?y), {7z, ?y}), we normalize the above
functions by |[N&| and |[NP|-|N&| respectively. For inputs of the form (?x(?y), {?z})
and (?z(?y),{?y}) we normalize the function for inputs of the form (?z(7y),0) by
|INE| and | NP| respectively.

o4

Chapter 4. Query Answering Optimizations

For general role assertion axiom templates, there are several cases of cost func-
tions depending on the bound variables. We next define the cost functions for some
cases. The cost functions for the other cases can similarly be defined. For an input
of the form (?z(?z, 7y), D), the cost function is defined as :

< Y (KW -d-Co+|Pl]l-d-Cr), Y (IK[]| + Prs- \P[TH)>-

(@) (@)
reNg reNg

For inputs of the form (?z(a, ?y), ?), the cost function is defined as:

< Z (|sucK[r,al]| - d - Cp, + |sucP[r,a]| - d - CE), Z (|sucK]r, a]| + Pjs - |sucP]r, a]\)> :

1”EN}§,’9 TEN}?
For an input of the form (7z(7x, 7y), {?z}), the cost function is defined as:

Klr]|-d-Cp +|Plr]|-d-Cg Klr||+ Ps- |P|r
<Z| [r]] |]\;;9|\H| ’Z| [”TN}?yl[”>'

reNg reNg

Last, for inputs of the form (?z(7z,?y),{?x}), the two cost components are com-
puted as:

B o P K[l Pl
<r€ZNg <|5“CK[T]| @ Cot |sucP[r]| d CE) 7T€ZM? <|sucK[r]| t |sucP[r]| P15)>

For concept (role) inclusion axiom templates of the form ¢;, T ¢, (ry, T ry,),
where ¢, ¢;, concept terms (7,7, role terms), we need look-ups in the computed
concept (role) hierarchy in order to compute the answers (assuming that the concept
(role) hierarchy is precomputed).

One can define similar cost functions for other types of axiom templates (com-
plex axiom templates) by either using the available statistics or by relying on told
information from the ontology. For this work, however, we just define a cost function
based on the assumption that we iterate over all possible values of the respective
variables and do one consistency check for each value. Hence, we define the following
general cost function for these cases:

(INT- Cg, [N]),

where N € {N&, N9, NP} as appropriate for the variable that is tested. As dis-
cussed in Section 4.3.1, the dynamic function is based on the static one and is applied
only to the above described cases for an empty set of bound variables.

Proposition 1. Let g be a query over an ontology O, s and d the static and dynamic
cost functions defined in Sections 4.3.1 and 4.3.2. The ordering induced by s and d
15 a total order over the axiom templates of q.

Proof. The cost functions s and d are defined for all kinds of axiom templates and
return two real numbers to each possible input. Since, according to Definition 12,
the orders <, and =<, are based on the addition of the two real numbers, addition
of reals yields again a real number, and since < is a total order over the reals, we
immediately get that <, and <; are total orders. O

It is obvious that the ordering of axiom templates does not affect soundness and
completeness of a query evaluation algorithm.

5}

Chapter 4. Query Answering Optimizations
4.4 Related Work

Techniques for ordering the atoms of a conjunctive instance query issued over an
ontology have already been studied. As in databases, these techniques are based
on the estimation of the costs of different join orderings and the selection of the
ordering with the least cost. These costs are computed by preprocessing the queried
ontology and extracting useful information. Well known examples of reasoners that
use some sort of query ordering are Pellet [126] and Racer Pro [47] which are both
tableau based reasoners.

The problem of finding good orderings for the templates of a query issued over an
ontology has already been preliminarily studied [124, 84, 48]. Sirin et al. [124] explore
query ordering for conjunctive instance queries and Kremen et al. [84] extend these
query ordering techniques to queries expressed in SPARQL-DL [125], a language that
allows to mix TBox and ABox queries that are similar to our queries with simple
axiom templates only. Similarly to our work, Sirin et al. [124] as well as Kremen et
al. [84] exploit reasoning techniques and information provided by reasoner models
to create statistics about the cost and the result size of axiom template evaluations
within execution plans. A difference is that they use cached models for cheaply
finding obvious concept and role (non-)instances, whereas in our case we do not
cache any model or model parts. Instead, we process the pre-model constructed for
the initial ontology consistency check and extract the known and possible instances
of concepts and roles from it. We subsequently use this information to create and
update the query atom statistics. The use of the hypertableau algorithm often leads
to less non-determinism which, informally, means that we can get on average more
known and less possible instances for concept and role names from a hypertableau
pre-model than from a pre-model constructed by a tableau algorithm. Moreover,
Sirin et al. and Kremen et al. compare the costs of complete execution plans —after
heuristically reducing the large number of possible complete plans — and choose
the one that is most promising before the beginning of query execution. This is
different from our cheap greedy algorithm that finds, at each iteration, the next
most promising axiom template. Our experimental study shows that this is equally
effective as the investigation of all possible execution orders.

In more detail, for the actual cost estimation, Kremen et al. use two functions
for each axiom template, which take as input the queried ontology O, the set of
bound variables B and the atom at:

1. The function EC(O, B, at) estimates the cost of the ontology operation that
is needed to evaluate the atom at based on the bound variables in B. The
authors define six different ontology operation costs, namely, noSat, oneSat,
instRetr, typeRetr, classify and realize for operations requiring no consistency
check, one consistency check, a concept instance retrieval, a retrieval of types
of an individual, classification and realization respectively. These costs are
considered fixed values; they do not depend on the atom being evaluated.

2. The function EB(O, B, at) estimates the number of results that the evaluation
of atom at will produce. To get such estimates the authors use information
from the cached precompletion for conjunctive instance query atoms and told
axioms to estimate the results of the remaining axiom templates.

26

Chapter 4. Query Answering Optimizations

We now show through an example how the costs of complete execution plans are
determined in Kremen et al:

Example 9. Let O be an ontology, q the following query:
q = {GraduateStudent(7z), Woman(?y), Professor(?y), isAdvisedBy(?x, 7y)}
abbreviated as {GS(?z), W(?y), P(?y),iAb(?z,?y)} and
P = (GS(7x),iAb(?z, 7y), W(?y), P(?y))

an execution plan for q. The formula for the estimation of the cost of the execution
plan is:

Cost =EC(O,0,GS(?z)) + EB(O, 0, GS(?z)) - (EC(O,{?z},iAb(?z, 7y)) + EB(O, {?x},iAb(?x, ?y))
- (EC(O, {7z, 7y}, W(?y)) + EB(O, {7z, 7y}, W(?y)) - (EC(O, {7z, 7y}, P(?y))
+ EB(O, {7z, 7y},P(?y))))) = instRetr + EB(O, 0, GS(?x)) - (noSat + EB(O, {7z}, iAb(?x, ?y))
- (oneSat + EB(O, {7z, 7y}, W(?y)) - (oneSat + EB(O, {?x, 27y}, P(?y)))))

For the case of conjunctive instance queries, as the one in Example 9, Sirin et
al. perform the preprocessing described above and cache useful information for the
estimation of the result output size EB of query concept and role atoms. Instead
of checking all individuals of the queried ontology for determining concept and role
atom sizes they take a random sample of individuals and check how many of the
individuals in the sample are obvious (non-)instances without performing any con-
sistency check and they then generalize the result to all individuals. According
to an experimental evaluation of the authors [124], a 20 percent sample is a good
percentage for accurate size estimation.

In the implementation of Pellet? the values for the ontology operation costs have
been chosen rather randomly and do not accurately represent the actual costs. For
example, the operation of checking whether an individual a is an instance of the
concept A is always assigned a oneSat cost irrespective of whether a is a known
instance of the concept A (which would require no consistency check) or an un-
known instance of A (which would require one consistency check). In the same way,
an atom that involves retrieving the instances of one concept is given a constant
instRetr cost irrespective of which concept is involved (in reality retrieval queries for
different concepts require a different number of consistency checks to be performed).
In order to more accurately depict the real ontology operation cost we have ‘quan-
tified’ the number of needed consistency checks by the number of possible instances
of a concept or role and use this number for the cost computation. Moreover, we
have defined different consistency check values depending on whether we refer to
concept templates, role templates, equality atoms, sub-concept templates, sub-role
templates or complex axiom templates. These values have been determined by tak-
ing the average of the running time of previously performed tests for each respective
operation to better depict the cost of each operation.

Moreover, in Sirin et al. the results of joins between query atoms are taken
into account through inaccurate average values in the cost computation. In order
to find more accurate cost estimates in the presence of non-deterministic axioms,
we have additionally used dynamic ordering and compared it to static ordering.

’http://clarkparsia.com/pellet/

57

Chapter 4. Query Answering Optimizations

According to the dynamic ordering algorithm, we order the templates while we
evaluate the query. In each run of the algorithm, the costs of the next candidate
atoms are determined by taking into account the solution mappings computed so
far and the template with the least cost is added to the (partial) execution plan.
In his work [83], Kremen has also presented a similar dynamic ordering algorithm.
Since iterating over all individuals in each run is costly, we have further combined
dynamic ordering with clustering techniques and have shown that these techniques
lead to better performance particularly in ontologies that contain disjunctions and
do not allow for purely deterministic reasoning.

Haarslev et al. [48] discuss by means of an informal example the ordering criteria
they use to find efficient query execution plans for conjunctive instance queries in
Racer Pro. In particular, they use traditional database cost based optimization
techniques, which means that they take into account only the cardinality of concept
and role atoms to decide about the most promising ordering exploiting techniques
as the ones described in the beginning of the section. As previously discussed, this
can be inadequate especially for ontologies with disjunctive information.

4.5 Extension of the Approach to Approximate
Query Answering Systems

As it was stated in Section 4.2.1, the procedure we followed to extract sets of known
concept and role instances can be seen as an approximate sound but incomplete
instance retrieval algorithm for determining under-approximations of instances of
concepts and roles, while the procedure for extracting sets of possible concept and
role instances can be seen as an approximate complete but unsound instance re-
trieval algorithm for determining over-approximations of instances of concepts and
roles. In fact, any approximate instance retrieval algorithm that satisfies the condi-
tions of Definition 14 creates under- and over-approximations of instances of concept
and roles. Such algorithm has the same interface as the algorithm we use for in-
stance retrieval and hence can efficiently exploit the optimizations developed within
our framework. More formally, the definition of an approximate instance retrieval
algorithm is given below:

Definition 14 (Approximate Instance Retrieval Algorithm). Let O = (T, A)
be an ontology and at a concept or role atom such that the concept or role is from
the signature of O. An approximate instance retrieval algorithm inst(Q,at) re-

turns a pair of sets of (total) functions from Var(at) to individual names from O,
(K[at], P[at]), such that:

1. if u € Kyat], then O |= p(at), and

2. for each total function u from Var(at) to individual names from O such that
O = pu(at), 1 € K [at] U Bfat].

In Definition 14 we use K;[at] and P;[at] to denote the known and possible in-
stances of the atom at. The relationship between the sets K; and K, P, and P (K
and P were defined in Section 4.2.1) is given below, taking cases about the atom
at into account that can appear in a conjunctive instance query (without loss of
generality we assume that we have only concept and role atoms):

o8

Chapter 4. Query Answering Optimizations

Algorithm 3 intersecQans(O, q)
Input: O: a SROZQ ontology
q: a conjunctive instance query
Output: (K;[q|, P[q]): K:lq], P:[q] sets of known and possible answers for ¢
1: for at € ¢ do

2: (Kiat], P[at]) := inst(O, at)

3: if K,[g] and P[g| not initialised then

4 1<Kt[<1],Pt[CJ]> = (Ki[at], Fi[at])

5: else

6: Kilq] := Ki[q] < Kyat]

T Rlg] = (Rlg] e Plat]) U (Kiq] b Pat]) U (Plg] >a Kofat])
8 end if

9: end for

10: return (K;[q], P[q])

o if at is A(7z), then K,[A(?2)] = K[A], B[A(?2)] = P|A]
o if at is (7, 7y), then K,[r(?z, ?y)] = K[r], P.[r(?z, 7y)] = Plr]

o if at is r(a, ?y), then K,[r(a,?y)] = sucK|r,a], P.[r(a, ?y)] = sucP[r, a]
o if at is 7(?z, a), then K[r(?z, a)] = preK|r,a], By[r(?z,a)] = preP[r, d]

In Algorithm 3 (intersecQans) we show how K; and P, can be extended to cover
sets of query atoms and how the used instance retrieval algorithm and generally every
approximate instance retrieval algorithm that satisfies the conditions of Definition 14
can be used to develop an approximate query answering algorithm that satisfies the
conditions of Definition 15. We now define the conditions that an approximate query
answering algorithm should satisfy.

Definition 15 (Approximate Query Answering Algorithm). Let O = (T, A)
be an ontology, and q a conjunctive instance query. An approximate query answering
algorithm apprQA(Q, q) returns a pair of sets of (total) functions from Var(q) to
individual names from O, (Ky[q], Pi[q]), such that:

1. if u € Kilq], then p € ans(O,q), and
2. for each total function p from Var(q) to individual names from O such that

p € ans(O,q), 1 € Kilq] U Plql.

Afterwards, we give an example that shows the intuition behind Algorithm 3
and how the algorithm is applied.

Example 10. Let O be an ontology and ¢ = {A(?x),r(?z,7y), B(?y)} a conjunctive

istance query over O. Suppose that for the known and possible instances of the

query concepts and roles we have
K[A] = {a} K[r] = {{a,)} K[B] =
PlA] = {b} Plr] =A{

29

Chapter 4. Query Answering Optimizations

From these sets, we can conclude that the mapping {7z — a,?y — c} is a cer-
tain/known answer to q, since a € K[A], (a,c¢) € K]r] and ¢ € K[B]. However,
only the mapping {?x — b,7y — d} is a possible answer for q since b € P[A],
(b,d) € Plr] and d € K|[B]; the mapping (b,e) cannot be an answer for q since
although (b,e) € P[r] and b € P[A], e ¢ K[B]U P|[B].

We now show a run of Algorithm 3 on this example. If we take q in the order
given, we first initialize K[q] to {{?x — a}} and Pq| to {{?x — b}}. During
the next iterations, the (preliminary) set Ky[q] is extended by performing a natural
join with the known answers for the current atom at. The set P[q| is extended by
performing a natural join of it with both K[at] and Pi[at] and of K[q] with P,[at]
i order to guarantee that all possible answers are preserved, i.e., we next process
r(?z,7y) and obtain

Kilgl ={{?z = a,?y = c}},
Plq] ={{?z — b,7y — d}, {72 — b, 7y — e} }.

We finally process B(?y) and obtain

Kilq) = {{?v = a,?y = c}},
Plq] = {{?x = b,7y > d}},

which is the output of Algorithm 3.
Lemma 1. Algorithm intersecQans is an approrimate query answering algorithm.

Proof. We prove the lemma by induction on the length of the query ¢ given as input
to the algorithm intersecQans(0O, q).

Base case: For ¢ = {at} the two conditions of the definition of approximate query
answering algorithms are satisfied. Indeed,

L. if p € Ki[ql, ie., p € Ky[at] then O = p(at) (since inst(O, at) is an approximate
instance retrieval algorithm), which means that O = u(q).

2. for each total function p from Var(g) to individual names from O such that
p € ans(O,q), i.e., p € ans(O, {at}), i.e.,, O = u(at), it holds u € K;[at]U P;[at]
(since inst(O,at) is an approximate instance retrieval algorithm), i.e., p €
Kilq] U Pg].

Inductive Step: Let ¢ = ¢ U {at} and let us assume that intersecQans(O, q) is an
approximate query answering algorithm (IH). We prove that intersecQans(O, ¢') is
also an approximate query answering algorithm by showing that the two conditions
of Definition 15 hold for ¢'.

1. If p € Ki[¢'], this means that jvarq) € K¢[q] and pyvarar) € K¢[at] (it can easily
be seen from the construction of K;[¢'] in intersecQans(O,¢’)). By induction
hypothesis fvar(q) € ans(O, ¢) and, since inst(O, at) is an approximate instance
retrieval algorithm, O = fyvarar)(at). Since p = fivar(q) >I Mvar(at), it holds
w € ans(O,q').

2. For each total function p from Var(¢’) to individual names from O such that
p € ans(O, ¢'), it holds pyvar(q) € ans(O,q) and O |= ftvar(ar) (at). By induction

60

Chapter 4. Query Answering Optimizations

hypothesis, fijvar(q) € K¢[q]UP:[q] and pipvarar) € Ki[at]U P[at], since inst(O, at)
is an approximate instance retrieval algorithm. It holds 1 = ftjvar(g) > f|var(at)-
We distinguish between the following cases (these can easily be seen from the
construction of P;[¢'] in intersecQans(O, ¢')):

o if jivar(g) € K¢[q] and pyvarar) € Kilat], then p € Ky[q']
o if pvar() € Kiq] and pupvarar) € Pyfat], then p € P[]

o if pvar) € Prlq] and pupvarar) € Kifat], then p € P[]
]

o if pvar() € Prlq] and pupvarar) € Pyfat], then p € P[]

We see from the above that in any case p € K;[¢'| U P[¢'].
[

We now briefly discuss the relation between our algorithm (if we treat the sets of
known and possible concept and role instances as under- and over-approximations of
instances of query concepts and roles) and approximate query answering techniques
proposed in the literature [102, 143]. The works of Pan et al. [102] and Zhou et
al. [143] described in Section 3.2.4 are based on an under-approximation and an
over-approximation set for a query ¢, which can be seen as our K;[q] and P;[q| sets.
The approach by Pan et al. computes the materialization w.r.t. concept and role
name assertions of the OWL DL ontology in the process of transforming the initial
queried OWL DL ontology O to a DL-Lite ontology Op. In other words, every
concept and role name assertion containing terms from the signature of O is created
and checked whether it is entailed by O before the beginning of the query answering
procedure, which can be expensive. This is different from the approach we use, in
which we do not materialize every concept name and role name assertion beforehand;
we do it only on demand when a query asks for it. Zhou et al. creates under-
and over-approximations by transforming the queried ontology to two OWL RL
ontologies, which are then used to find under- and over-approximations of answers
to conjunctive queries using an OWL RL engine as described in Section 3.2.4.

4.6 Discussion

In this section we widen the applicability of the presented cost-based query order-
ing techniques for the case of conjunctive instance queries. As it has been stated
before, the presented cost functions can be used with any (hyper)tableau reason-
ing system, since any reasoner holds information about deterministically and non-
deterministically derived assertions. The presented query ordering techniques can
also be used when optimizations such as caching, absorption, pseudo model merging,
binary instance retrieval or lazy unfolding (discussed in Section 4.2.1) are employed.
The cost functions might, however, require some adaptation to take the reduction
in the required number of consistency checks into account. For example, the cost
functions need to take into account cached pre-completion information, i.e., the
number of obvious concept and role instances need to be estimated and used in the
computation of the cost functions. The possible instances can be determined by the
assertions that are derived non-deterministically as discussed in Section 4.2. The use
of absorption techniques in tableau algorithms can reduce the number of possible

61

Chapter 4. Query Answering Optimizations

instances. When pseudo-model techniques are used, the set of possible instances can
be reduced by determining obvious non-instances among possible instances, some-
thing which needs to be depicted in the cost functions. The cost functions should
also take into account the reduction in the number of possible instances when the bi-
nary instance retrieval optimization is used, something which may be more difficult
to determine beforehand.

The presented query ordering cost functions are general and can be used by any of
the query answering algorithms presented in Chapter 3. In deterministic ontologies,
like OWL 2 RL and OWL 2 QL, the cost functions are based only on the cardinality
of the sets of known instances of concept and role names, since, in such ontologies,
the sets of possible instances for all concepts and roles are empty. Note that in
OWL 2 RL and OWL 2 QL traditional query ordering techniques from databases
and triple stores can also be applied. As we have discussed in Section 3.2.1, in
OWL 2 RL ontologies the complete materialization is computed before the beginning
of the query answering procedure. This materialization set, which is used to find
sound and complete answers to conjunctive queries, can be seen as an (extended)
database and hence traditional query ordering techniques from databases and triple
stores can be used to find good query orders. Similarly, in OWL 2 QL ontologies,
the rewritten conjunctive queries are evaluated over databases or triple stores and
hence traditional query ordering techniques can be used.

62

Chapter 5

Optimizations for Complex Axiom
Templates

In this chapter we describe optimizations we have developed for complex axiom
templates.

5.1 Axiom Template Rewriting

Some costly to evaluate axiom templates can be rewritten into axiom templates that
can be evaluated more efficiently and yield an equivalent result. Before we go on to
describe the axiom template rewriting technique, we define what a concept template
is, which is useful throughout the section.

Definition 16 (Concept Template). Let S, = (N¢, Ng, Ng, Ve, Vg, Vi) be a
query signature w.r.t. a signature S = (N¢, Ng, Nr). A concept template over S,
is a SROZQ concept over S, where one can also use concept variables from Vg in
place of concept names, role variables from Vg in place of role names and individual
variables from Vi in place of individual names.

Definition 17 (Rewriting). Let at be an aziom template over Sy, t.t1,...1t, indi-
viduals or individual variables from S, and C,C4, ..., C,, concept templates over S,.
The function rewrite takes an axiom template and returns a set of axiom templates
as follows:

o ifat=(CyM...MCy)(t), then rewrite(at) = {C1(t),...,Cn(t)};

o ifat=CLCC,M...MC,, then rewrite(at) = {C C Cy,...,C C C,};

e ifat=C1U...UC, EC, then rewrite(at) = {C; C C,...,C, C C}.

o ifat=1t) ~ ...~ t,, then rewrite(at) = {t; = to,ty X t3,...,th1 ~1,}.

To understand the intuition behind such transformation, we consider a query
with only the axiom template: 7z T 3r.7y M A. Its evaluation requires a quadratic
number of consistency checks in the number of concepts (since 7z and 7y are concept
variables). The rewriting yields: 7z © A and ?x T 3r.7y. The first axiom template
is now evaluated with a cheap cache look-up (assuming that the concept hierarchy
has been precomputed). For the second one, we only have to check the usually few
resulting bindings for 7z combined with all other concept names for 7.

63

Chapter 5. Optimizations for Complexr Aziom Templates

Note that Description Logics typically do not support n-ary equality axioms t; ~
. & t,, but only binary ones, whereas in OWL, one can typically also write n-ary
equality axioms. Since our cost functions are only defined for binary equality axioms,
we equivalently rewrite an n-ary one into several binary ones. One could even further
optimize the evaluation of such atoms by just evaluating one binary equality axiom
template and by then propagating the binding for the found equivalent individuals
to the other equality axioms. This is valid since equality is a congruence relation.
It can be easily proved that for any ontology O, ans(O, {at}) = ans(O, rewrite(at)).

5.2 Concept and Role Hierarchy Exploitation

The number of consistency checks required to evaluate a query can be further re-
duced by taking the concept and role hierarchies into account. Once the concepts
and roles are classified (this can ideally be done before a system accepts queries), the
hierarchies are stored in the reasoner’s internal structures. We further use the hier-
archies to prune the search space of solutions in the evaluation of certain axiom tem-
plates. We illustrate the intuition with the example Infection C JhasCausalLinkTo.?x.
If A is not a solution and B C A holds, then B is also not a solution. Thus, when
searching for solutions for ?x, we choose the next binding to test by traversing the
concept hierarchy top-down. When we find a non-solution A, the subtree rooted
in A of the concept hierarchy can safely be pruned. Queries over ontologies with
a large number of concepts and a deep concept hierarchy can, therefore, gain the
maximum advantage from this optimization. We employ similar optimizations using
the role hierarchies.

In the example above, we can prune the sub-concepts of A because ?x has positive
polarity in the axiom template Infection C dhasCausalLinkTo.”z., i.e., 7x occurs
positively on the right hand side of the axiom template. In case a variable 7z has
negative polarity in an axiom template of the form C C Cs, i.e., 7x occurs directly
or indirectly under a negation on the right hand side of the axiom template or
positively on the left-hand side of the axiom template, one can, instead, prune the
super-concepts.

We now run an example that shows in more detail how the concept-role polarity
optimization is used for pruning query answers in the process of finding answers to
a complex query. Let us assume that we have an ontology O containing a TBox
T ={sCrBLC 3rA} and an empty ABox with N§ = {T, A, B, L} and N§ =
{T,,r,s,1,} and that we have classified the TBox and have computed the concept
and role hierarchies shown in Figure 5.1. And let us assume that we want to answer
the query

qg={BLC37y.7z}

Both variables 7y and 7z have positive polarity in the axiom template of the query
and hence we start by checking the mapping:

poo p(te) =T, p(?y) =T,

This mapping is an answer for q over O, and hence we create new mappings for each
of the direct sub-concepts of the mapping for 7z, i.e., T, and for each of the direct

64

Chapter 5. Optimizations for Complexr Aziom Templates

Figure 5.1: Concept and role hierarchies

sub-roles of the mapping for 7y, i.e., T,. The new mappings are:

Hr: M1(?13) = A, M1<?y> =T,
po: po(?x) =B, u(?y) =T,
ps ps(Pr) =T, ps(?y) =r

Since all these three mappings are answers we expand them further by taking
direct sub-concepts for the mappings for 7z and direct sub-roles for the mappings
for 7y. Hence, we have the following mappings

o for p:
pa: pa(Pz) = A, pa(y) =r
ps: ps(Px) =L, ps(Ty) =T,
o for ps:
pe: po(?x) = B, pe(Ty) =
pre pe(Pw) =L, pr(ty) =T,
o for ps:

ps: ps(?r) = A, ps(Ty) =r
po: po(?r) = B, pe(Ty) =7
pao: pao(Px) =T, pio(?y) = s

From these mappings only p4 (and ug, which is the same) is an answer and hence
we take the following mappings, which in the end are not answers:

par: pn(?z) =L, pn(Py) =7
pags paa(?x) = A, pia(ty) = s

From the above example, we see that we have overall tested 13 mappings, whereas if
we had tried every combination of variable mappings, we would have tested 4x4 = 16
mappings. It is obvious that the proposed hierarchy traversal can lead to the creation
of the same mappings more than once. This means that by caching mappings
that have already been tested we can further reduce the mappings that need to
be tested. In the above example, the mappings u4 and ug are the same as are the
mappings ps and g7 and the mappings g and pg. If we perform the above described
optimizations, the number of tests are reduced to 10.

We next specify more precisely the polarity of a concept variable in a concept
template or in an axiom template.

65

Chapter 5. Optimizations for Complexr Aziom Templates

Definition 18 (Concept Polarity). Let 7z € Vo be a concept variable and
C,Cy,Cy, D concept templates, v a role, and n € Ng. We define the polarity of
?x in C as follows: Tx occurs positively in ?x. Furthermore, 7x occurs positively
(negatively)

e in D if 7x occurs negatively (positively) in D,

e in CyMCy or Cy UCy if 7 occurs positively (negatively) in Cy or Csy,
e inIr.D,Vr.D, or = nr.D if 7x occurs positively (negatively) in D,

o in < nr.D if 7x occurs negatively (positively) in D

e in=mnnr.D if 7x occurs in D.

We further say that 7x occurs positively (negatively) in Cy T Cy if 7z occurs nega-
tively (positively) in Cy or positively (negatively) in Cy. We further define a partial
function pol, that maps a concept variable 7x and a concept template C' (axiom tem-
plate of the form Cy T Cy) to pos if Tx occurs only positively in C' (Cy C Cy) and
to neg if 7z occurs only negatively in C' (C; C Cs).

Note that no matter whether 7z occurs positively or negatively in a concept
template D, in any concept template C' of the form = n r.D, 7z occurs positively
as well as negatively. This is due to the fact that C is equivalent to the concept
template < n r.D M > n r.D in which 7z occurs positively and negatively. Since the
function pol, is not defined for variables that appear both positively and negatively,
the concept hierarchy cannot be exploited in this case. For example, consider the
concept template =7z U 3r.7z, (axiom template 7z C Ir.7x), where 7z appears both
positively and negatively. It is obvious that if O = A C 3r. A, where O is an ontology
and either O = AC Bor O = B C A, it does not hold that O = B C 3r.B.

Before proving the correctness of the proposed optimization, we first show the
relationship between entailment and concept membership, which is used in the sub-
sequent proofs.

Lemma 2. Let at be an axiom template over an ontology O of the form Cy T Cy
and p a mapping for at over O. It holds that O = u(Cy T Cy) iff there exists
an interpretation T = (A%, 1) and an element 6 € AT such that T &= O and
0 ¢ [L(ﬁcl L OQ)I.

Proof. O W~ nu(Cy £ Cy) holds iff there exists an interpretation Z = (AZ, %) and an
element § € AT such that Z = O and 6 € u(Cy)* and 6 ¢ u(Cy)%, which holds iff
§ € u(Cy)* and § € u(—Cy)*, which is equivalent to § € u(Cy M —Cs)*, which is
equivalent to d € pu(—(=Cy U Cy))%, which holds iff § & u(—=Cy U Cy)*. O

The following theorem holds for every axiom template of the form C; C Cj.
Note that we assume here that concept assertion templates of the form C'(a) are
expressed as the equivalent axiom templates {a} T C. We use C¢4)=4, Where A
is a concept name, to denote the concept obtained by applying the extension of u
that also maps 7z to A.

Theorem 1. Let O be an ontology, A, B concept names such that O = A C B,
C1, Cy concept templates, C7 C Cy an azxiom template, C' = -Ci U Cy, 7x € Vi a
concept variable occurring in C' and p a mapping that covers all variables of C' apart
from ?x.

66

Chapter 5. Optimizations for Complexr Aziom Templates

1.

2.

For pol (?x,C") = pos the following holds:
ZfOb&(Cl ECQ) (?2)=B> th€n0b’£(01|:02) —A

For pol (?x,C") = neg the following holds:
if O W (Cy C Cy)yra)=a, then O B (C1 C Cy)yon)=n

Proof. Due to Lemma 2, it suffices to show for every model Z = (AZ, 1) of O and
element § € AT the following (which is formalized in contrapositive form):

1.

2.

For pol (?z, C') = pos it holds that if 6 € (C\,z)=a)%, then § € (Cyon=p)*.
For pol (?z, C') = neg it holds that if § € (Cy2)=p)*, then § € (Cpm=a)*.

We prove the claim by induction on the structure of the concept template C"

For C' =7z, 7z occurs positively in C. Now, if § € (?x,(7;)=4), that is § € A%,
it is easy to see that 6 € B since O = A C B by assumption. Hence,
0 € (Papuirm)=p)".

For C' = =D and pol (?z,C) = pos, if § € (—D,22)=4)F, we have to show that
§ € (Dyen=p)t. Note that pol.(?z, D) = neg. In contrary to what is to be
shown, assume that 6 € (D#(?I)ZB)I. Since O = A C B and by induction
hypothesis § € (D, z75)=4)" which is a contradiction. The proof is analogous
for pol,(?z,C) = neg.

For ¢ = C; M Cy and pol,(?z,C) = pos, if 6 € ((C1 M Ca)uou)=a)F, then
6 € (Crym=a)t and & € (Capy24)=4)". Since O = A C B and by induction hy-
pothesis, § € (Clu(?x):B)I and 0 € (C’QNUJC):B)Z. Thus, § € ((01|_|CQ)M(?QC):B)I.
The proof is analogous for pol.(?z,C) = neg.

The proof for C'; LI Cy is analogous to the one for Cy M Ch.

For C' = 3r.D and pol (?z,C) = pos, if § € ((3r.D),u72)=4)*, then & has at
least one r-successor, say ¢’, that is an instance of D 2z)-4. Since O = AC B
and by induction hypothesis, 6’ € D, ¢,)—p. Hence, § € (Ir. (DM(?I):B))Z =
((3r.D) u22)=5)*. The proof is analogous for pol,(?z, C') = neg.

For C = Vr.D and pol (?z,C) = pos, if 6 € ((Vr.D),en=a)F, then § €
(Vr.(D) u22)=a)* and each r-successor of ¢ is an instance of D zy)=4. Since
O | A C B and by induction hypothesis, these r-successors are also instances
of Dyoz)=p. Hence, 6 € (Vr.(Dyop=5))* = ((Vr.D)ue2=5)*. The proof is
analogous for pol (?z,C) = neg.

For C = > n r.D and pol, (?z,C) = pos, if § € ((= n r.D),@n=a)*, then
0 has at least n distinct r-successors which are instances of D, 2;)—4. Since
O E A C B and by induction hypothesis, these successors are instances of
D, (72)=p- Hence, 0 has at least n distinct r-successors that are instances of
D, ¢2»=p and, therefore, 6 € (= n r.(D),0m=5)F = (= n r.D),en=p)*. The
proof is analogous for pol,(?z, C) = neg.

For C = < n r.D and pol (?z,C) = pos, if § € ((< n r.D)yen=a)", we
have to show that § € ((< n r.D),en=p)". Note that pol.(?z, D) = neg.
In contrary to what is to be shown, assume that 6 € (=(< n r.D)M(m):B)I,

67

Chapter 5. Optimizations for Complexr Aziom Templates

ie, 0 € (=2 n+1 rD),en=p)’. Hence, ¢ has at least n + 1 distinct r-
successors which are instances of D, z,)=p. Since pol.(?z, D) = neg and by
induction hypothesis, these D, ,)—p instances are also D,,(7;)—4 instances and
d € (Zn+1r.(D)yen=a)F = (= n+1r.D),en=a)", whichis a contradiction.
The proof is analogous for pol (?z,C') = neg.

e For C' = (= nr.D), the polarity of 7z in C is always positive and negative,

so pol.(?z,C') is undefined and the case cannot occur. -

We now extend this optimization to the case of role variables and we first define
the polarity of a role variable in a concept template or in an axiom template.

Definition 19 (Role Polarity). Let 7z € Vg be a role variable, C,Cy,Cy, D con-
cept templates, r a role, and n € Ny. We define the polarity of 7x in C' as fol-
lows: ?x occurs positively in 3?7x.D, F72~.D, > n 7x.D, > n 72~.D, = n Tz.D,
and = n 7x~.D; ?x occurs negatively in V?x.D, V?x~™.D, < n ?x.D, < n Tz”.D,
=n?x.D, and =n ?x~.D. Furthermore, 7x occurs positively (negatively)

e in D if 7x occurs negatively (positively) in D,
e in CyMCy or CyUCy if 7x occurs positively (negatively) in Cy or Csy,

e indr.D, 3%x.D, F7x~.D, 2 nr.D, 2 n?x.D, > n?x".D,Vr.D, Yx.D, or
V?x~.D if 7x occurs positively (negatively) in D,

e in<nr.D, <n?c.D, or<n?x".D if 7x occurs negatively (positively) in D,
e in=nr.D if 7x occurs in D.

We further say that ?x occurs positively (negatively) in Cy © Cy if 7x occurs nega-
tiely (positively) in Cy or positively (negatively) in Cy. We define a partial function
pol, that maps a role variable 7x and a concept template C' (axiom template of the
form Cy C Cs) to pos if 7z occurs only positively in C' (C; C Cy) and to neg if 7x
occurs only negatively in C' (Cy C Cy).

We now show, that the hierarchy optimization is also applicable to role variables,
provided they occur only positively or only negatively.

Theorem 2. Let O be an ontology, r,s role names such that O = r C s, C1,Cy
concept templates, C; © Cy an axiom template, C' = —C; U Cy, 7w € Vi a role
variable occurring in C' and pu a mapping that covers all variables of C' apart from
7x.

1. For pol (?z,C) = pos the following holds:
Zfo I}'é (Cl E C2)y(?:r):s; then O bé (Ol E OQ),LL(?x):r~

2. For pol.(?x,C) = neg the following holds:
Zfo % (Ol E CQ),u(?a:):r; then O Pé (Cl E CQ),u(?J:):s-

Proof. Due to Lemma 2, it suffices to show for every model Z = (A%, %) of O and
element § € AZ the following (which is formalized in contrapositive form):

1. For pol,(?z,C) = pos it holds that if § € (Cyrz)=r)*, then 6 € (Cpyra)=s)*-

68

Chapter 5. Optimizations for Complexr Aziom Templates

2. For pol,(?z,C) = neg it holds that if § € (Cyy22)=5)%, then § € (Clyra)=r)*.
We prove the claim by induction on the structure of the concept template C"

e For C' = d7x.D, where D is a concept template that does not contain ?7x.
We have pol,(?z,C) = pos. Assume, § € ((372.D),22)=), that is, § €
(Fr.u(D))*. Then there is some &' € AT such that (6,d") € r* and §' € u(D)*.
Since O |= 1 C s, we also have (6,8’ € s* and, therefore, 6 € (Is.u(D))* =
((H?ZE.D)M(?I)ZS)I.

e For C' = V?x.D, where D is a concept template that does not contain ?7x.
We have pol,(?z,C) = neg. If § € ((V?2.D),(72)=s)*, we have to show that
§ € ((V?2.D),¢22)=r)*. In contrary to what is to be shown, assume that § €
(=(V?2.D) y22)=r)%, 1.e., & € (3r.u(=D))*. Hence, there is some §" € AT such
that (6,¢") € r¥ and &' € pu(=D)*. Since O = r C s, we also have (4,4") € s*
and, therefore, § ¢ (Vs.u(D))* = ((V?2.D),(22)=s)*, which is a contradiction.

e For C = > n 7x.D where D is a concept template that does not contain
?z. We have pol,(?z,C) = pos. Assume, § € ((= n ?2.D),22)=r)*, that is
§ € (= nr.u(D))* and § has at least n distinct r-successors which are instances
of u(D). Since O = r C s these r-successors are also s-successors of J and,
therefore, § € (= n s.u(D))* = (= n ?2.D)y22)=s)*

e For C' = < n 7x.D where C is a concept template that does not contain ?x.
We have pol,.(?z,C) = neg. If § € ((< n ?2.D),72)=5)F, we have to show that
6 € (€ n ?.D)yem=)" In contrary to what is to be shown, assume that
§ € (=(< n?.D)yon=)t, Le, d € (= n+1ru(D))r. Hence, § has at least
n + 1 distinct r-successors, which are instances of (D). Since O = r C s,
these r-successors are also s-successors and § € ((= n+ 1 s.u(D)))* = ((>
n+17?z.D),en=s)F, which is a contradiction.

e For C = C, 1N Cy and pol,(?z,C) = pos, if 6 € ((Cy M Cy)yz)=r)*, then
6 € (Chupey=r)" and 6 € (Capy20)=r)*. Since O |=r E s and by induction hy-
pothesis, § € (Clu(fm):s)z and § € (Cgu(fgw)zs)z. Thus, § € ((Cl M CQ)M(?QC):S)I.
The proof is analogous for pol,(?z,C') = neg.

e The proof for C4 LI (5 is analogous to the one for C; M Cs.

e For C' = =D and pol,(?z,C) = pos, if § € (—D,em=r)*, we have to show
that 6 € (—D,22)=5)*. Note that pol,(?z, D) = neg. In contrary to what is to
be shown, assume that § € (D,s)=s)*. Since O = r C s and by induction
hypothesis § € (D,2z)=r)* which is a contradiction. The proof is analogous
for pol,.(?z,C') = neg.

e For C'= 3p.D and pol,(?z,C) = pos, we also have pol,(?z, D) = pos. Now, if
6 € ((3p-D)pze)=r)*, then ¢ has at least one p-successor that is an instance of
D,¢22)=r. Since O |= r C s and by induction hypothesis, this p-successor is an
instance of D, ¢5)=s. Hence, § € ((Elp.D)#(’gx):S)I. The proof is analogous for
pol,(?z,C) = neg.

69

70

Chapter 5. Optimizations for Complexr Aziom Templates

For C = 372.D and pol,(?z,C) = pos, we also have pol.(?x, D) = pos. Note
that 7z occurs in D since otherwise the case is handled already above. Now, if
6 € ((3?2.D)y72)=r)*, then § has at least one r-successor which is an instance
of D2)=r- Since O = r C s and by induction hypothesis, ¢ has at least one
s-successor that is an instance of D ;). Hence, 6 € ((EI?m.D)M(?x)zs)Z.

For C' = Vp.D and pol,(?z,C) = pos, we also have pol.(?x, D) = pos. Now,
if 0 € ((Vp.D)u2a)=r)F, then 6 € (Vp.(D)y(ez)=r)* and each p-successor of ¢ is
an instance of D,(74)—,. Since O |=r C s and by induction hypothesis, these
p-successors are also instances of D, 7,—,. Hence, § € (Vp.(D“(?x):s))I =
((Vp.D) u(22)=s)*. The proof is analogous for pol,(?z, C') = neg.

For C' = V?x.D and pol,.(?z,C) = neg, we also have pol,(?z, D) = neg. Note
that 7z occurs in D since otherwise the case is handled already above. Now,
if 6 € ((V?2.D),¢22)=s)*, we have to show that § € ((V?2.D),2z)=)". In
contrary to what is to be shown, assume that 0 ¢ ((V?z.D),0m=), e,
§ € (3r.(=D) 22)=r)*. Hence, there is some ¢’ € AT such that (4,4") € r* and
& € ((-D)uza)=r)t. Since O =1 C s, ¢ is also an s-successor of § and, by
induction hypothesis, we have ¢’ € ((—=D),,(7z)=s)* which is a contradiction.

For C'= > n p.D and pol,(?z,C) = pos, if 6 € ((= n p.D),22)=r)*, then ¢ has
at least n distinct p-successors that are instances of D24y Slnce OErCs

and by induction hypothesis, these p-successors are also instances of D,,(74)—s.

Hence, § € ((= n p.D),22)=5)*. The proof is analogous for pol,.(?z, C’) = neg

For C' = > n ?z.D and pol,.(?x,C) = pos, we also have pol, . (?z, D) = pos.
Note that 7z occurs in D since otherwise the case is handled already above.
Now, if § € ((= n ?2.D),22)=)*, then 6 has at least n distinct r-successors
which are instances of D,,7z)—,. Since O |= r C s and by induction hypothesis,
0 has at least n distinct s-successors that are instances of D, 7,)—s. Hence,
5 € (> n 70.D)yen0).

For C = < n p.D and pol,(?z,C) = pos, if § € ((< n p.D),ow=r)", we
have to show that § € ((< n p.D),em=s)*. Note that pol,.(?z, D) = neg.
In contrary to what is to be shown, assume that § € (—(< n p. D) p(7)=s) s

e, 6 € (= n+1pD)yos=s)t. Hence, § has at least n + 1 distinct p-
successors which are instances of D, (74)—s. Since pol,.(?z, D) = neg and by
induction hypothesis, these D, ¢,)—, instances are also D,,2,)—, instances and
§ € (Zn+1p.(D)uoe)=r)t = (= n+1p.D),er=r)", which is a contradiction.
The proof is analogous for pol,.(?z,C') = neg.

For C = < n ?7x.D and pol,(?z,C) = neg, we have pol,(?z, D) = pos. Note
that 7z occurs in D since otherwise the case is handled already above. If
6 € ((€ n ?2.D)yoz)=s)" we have to show that § € ((< n ?2.D)y00=)"
In contrary to what is to be shown, assume that § € (=(< n ?ZE.D)M(?x):r)I,

, 0 € (= n+1?D)yen=r)*. Hence, ¢ has at least n + 1 distinct r-
successors which are instances of D, 7,)—,. Since O = r C s, and by induction
hypothesis, these r-successors are also s-successors and instances of D, (7z)—s.
Hence, § € (= n+ 1 ?2.D),72)=s)", which is a contradiction.

Chapter 5. Optimizations for Complexr Aziom Templates

e For C = (=n ?x.D) or C = (= n r.D), the polarity of 7z in C is always
positive and negative, so pol,.(?z,C) is undefined and the case cannot occur.

e The cases for 7z occurring in the form of an inverse (7z~) are analogous, given

that O =ErCsif O =r~ C s, -

71

72

Chapter 5. Optimizations for Complexr Aziom Templates

Chapter 6

Query Answering Algorithm

In this chapter we present the proposed query answering algorithm together with
the developed optimizations and prove that it is a terminating, sound and complete
procedure.

6.1 Algorithm Description

Algorithm 4 shows an optimized way of evaluating queries using static ordering.
In some places in the algorithm we use p as a partial function for a query ¢ (atom
at) for which Conditions 1, 2 and 3 of Definition 5 (Section 2.3) hold. This appears
to be so, because of the way that axiom templates are evaluated (they are evaluated
one by one in a row); in an iteration of the algorithm some variables from the
template under analysis may have already been bound from a previous iteration
(from previous templates in the plan). Hence, when we write u(at) in the algorihm
we denote the result of replacing each variable v € dom(p) NVar(at) in at with p(v).

First, axiom templates are simplified where possible (rewrite, line 1). The method
rewrite takes a query ¢, iterates over all its templates and rewrites each of them
according to Definition 17 of Section 5.1. The rewritten templates form a new query
¢, which has the same set of answers over O as q.

Next, the method connectedComponents (line 2) partitions the axiom templates
into sets of connected components, i.e., within a component the templates share
common variables, whereas between components there are no shared variables. Un-
connected components unnecessarily increase the amount of intermediate results
and, instead, one can simply combine the results for the components in the end
(line 32).

For each component, we proceed as described below: we first determine an order
(method order in line 5). The method order takes an ontology O and a query ¢
over O, and iterates |¢q| times finding, at each iteration i, the next template at;
that, according to Definition 12 (Section 4.3), should be added next to the (partial)
execution plan (aty,...,at;_1) using the static cost function defined in Section 4.3.
The method returns a complete execution plan for g over O.

For a simple axiom template, which contains so far unbound variables, we call a
specialized reasoner method to retrieve entailed results, i.e., mappings for unbound
variables (callSpecificReasonerTask in line 10), which has already been described
in Section 4.3. For templates with all their variables bound, we check whether
the mappings lead to entailed axioms (lines 11 to 14). For all other cases, i.e.,

73

Chapter 6. Query Answering Algorithm

Algorithm 4 evaluate(O, q)

Input: O: the queried SROZQ ontology

q: a query over O

Output: a set of solutions for evaluating g over O
1: ¢ = rewrite(q)

2: ¢, ..., q™:=connectedComponents(q’)

3: for j=1, ..., m do

4: S = {po | dom(po) = 0}

5: ..., at, := order(O, ¢/)

6: for i=1,...,n do

T R:=10

8: for each p1 € S; do

9: if isSimple(at;) and Var(at;) \ dom(u) # () then
10: R:=RU{y/ Upu | € callSpecificReasonerTask(u(at;))}
11: else if Var(at;) \ dom(u) = () then

12: if O = p(at;) then

13: R:=RU{u}

14: end if

15: else

16: Vopt 1= {72 |72 & dom(p), Theorem 1 or 2 applies to ?z and at;}
17: B := initializeVariableMappings(O, at;, t, Vopt)
18: while B # () do

19: 1’ := removeMapping(B)
20: if O = 1/(at;) then
21: R:=RU{y}
22: for each 7z € V,,; do
23: B := B U getPossibleMappings(O, 7z, at;, it’)
24: end for
25: end if
26: end while
27: end if
28: end for
29: S; =R
30: end for
31: end for
320 Rans ={p1U...Upy | 1 € 55,1 <5 <m}
33: return R,

74

Chapter 6. Query Answering Algorithm

Algorithm 5 initializeVariableMappings(O, at, y, Vopt)
Input: O: the queried SROZQ ontology

at: an axiom template

w: a partial mapping

Vopt: the variables of at to which Theorem 1 or 2 applies
Output: a set of mappings

LS = {u}

2: for each 7z € Var(at) \ dom(u) do

33 R:=10

4: if 7x € Vi and 7z € Vi, then

5: for each i/ € S do

6: if pol.(?x,at) = pos then

7 W(lx) =T

8: else

9: p(?x) =L

10: end if

11: R:=RU{u}

12: end for

13: elseif 7z € Vi and 7z € V,,;, then
14: for each i/ € S do

15: if pol,(?z,at) = pos then

16: W(?x) =T,

17: else

18: w(lx) =1,

19: end if
20: R:=RU{u}

21: end for

22: else

23: R:={y | (?x) =a,a € N ora € N§ or a € N° and p/(?y) = ju1(?y)

for py € S and 7y € dom(pq)}

24: end if

25: S:=R

26: end for

27: return S

for complex axiom templates with unbound variables, we check which compatible
mappings yield an entailed axiom (lines 15 to 27). In particular, we first initialize
a set B of candidate mappings for the unbound variables of the axiom template
(line 17, which refers to Algorithm 5). Algorithm 5 initializes the unbound variables
of axiom templates on which Theorem 1 or 2 of Section 5.2 applies to T (T,) or
1 (L,) depending on whether the respective polarity function returns pos or neg
(see Definitions 18 and 19 in Section 5.2). For template variables on which the
optimization is not applicable, all compatible mappings are returned (line 23 of
Algorithm 5). The method removeMapping (line 19) returns a mapping p’ from
B deleting this mapping from B. From an implementation point of view, B has
been implemented as a FIFO structure and the method removeMapping returns
(and removes from B) the first mapping in the structure. We then instantiate the
axiom template using p' and check entailment. In case the entailment holds, we

5

Chapter 6. Query Answering Algorithm

Algorithm 6 getPossibleMappings(O, 7z, at, i)
Input: O: the queried SROZQ ontology
?x: a concept or role variable
at: an axiom template in which 7z occurs
p: a mapping with 7z € dom(pu)
Output: a set of mappings
1: S:=10
2: if 7x € V¢ then
3: if pol.(7x,at) = pos then
4: Si={u | W (?r) = A, Ais a direct sub-concept of p(?z) in O,
1 (7y) = p(?y) for 7y € dom(p) \ {7x}}

5. else

6 S={p | /(?x) = A, Ais a direct super-concept of p(?x) in O,
1 (7y) = u(?y) for 7y € dom(p) \ {z}}

7. end if

8: else

9: if pol (7z,at) = pos then

10: S = {p | ¢/ (?x) = r,r is a direct sub-role of u(?z) in O,
1 (?y) = p(?y) for 7y € dom(p) \ {?z}}

11: else

12: S={p | ¢/(?x) = r,r is a direct super-role of p(?x) in O,
1 (?y) = p(?y) for 7y € dom(p) \ {?x}}

13: end if

14: end if

15: return S

first extend the set R with the current mapping ' and we afterwards extend the
set B of possible mappings for the variables to which the hierarchy optimization of
Section 5.2 is applicable (getPossibleMappings in line 23). For example, if we just
checked a mapping p that maps a concept variable 7z to the concept name A and 7z
only occurs positively in the axiom template, then we add to the set B all mappings
that map 7z to a direct sub-concept! of A (see Algorithm 6, line 4). We then repeat
the procedure until B is empty (lines 18 to 26).

In the implementation we use a more involved procedure for the while loop
(lines 18 to 26) , i.e., in order to avoid checking entailment of an instantiated axiom
template more than once with the same mapping, which can be the case with the
concept (role) hierarchy traversal that we perform as we have explained in the exam-
ple in Section 5.2, we keep track of already processed mappings and check only those
that have not been checked in a previous iteration of the while loop. As a further op-
timization we directly (i.e., without performing a consistency check) add to the set
of solution mappings, mappings that are equivalent? to mappings that are already

We say that a concept name A is a direct sub-concept of a concept name B w.r.t. O, if
O = A C B and there is no other concept name A’ such that O = A’ C B, O E AC A" and
O A= A" In a similar way we can define the direct super-concept, the direct sub-role and
direct super-role.

2Let p and p/ be two mappings for a query ¢ over an ontology O (dom(u) = dom(u')). We say
that p and p' are equivalent mappings if for each ?z € (dom(u)N (Ve U Vg)) it holds u(?z) = p/(?x)
and for each 7y € (dom(p) N Vi) it holds u(?y) ~ u/(?y)

76

Chapter 6. Query Answering Algorithm

Table 6.1: Queried Ontology

T= {A4CA ACA ACA A= {Ax(a) Ax(b)
AsC Ay A7 C A3 ApC A Aq(D) Ai(c)
Ag E A4 A11 E AG A4 EZ 27”.1411} (Al L Ag)(a)}

in the set of solution mappings, since such mappings are also answers. For ease of
presentation, the above described optimizations are not shown in Algorithm 4.

For the dynamic ordering, Algorithm 4 has to be changed as follows: We first
compute the number of axiom templates in the currently evaluated connected com-
ponent ¢’; i.e., n := |¢’|. We then swap line 5 and line 6, i.e., instead of ordering
all axiom templates before the loop that evaluates the axiom templates, we order
within the for loop. The function order gets as additional input parameters the set
of currently computed solutions S; and the already evaluated (partial) execution
plan (aty,...,at; 1) if i > 1 else the empty sequence if there is no plan so far; i.e.,
if ©+ = 1. It returns the next cheapest axiom template according to Definition 12
and using the dynamic ordering function defined in Section 4.3. Hence, we have
at; := order(O, ¢/, S;, (atq,...at;—1)) if i > 1, else aty := order(O, ¢/, S}, ()), instead
of aty,...,at, := order(O, ¢’). We further insert a line after calling order to remove
the cheapest axiom template from the current component: ¢/ := ¢/ \ {at;}. As
a result, the next iteration of the for loop (lines 6- 30) will compute the cheapest
axiom template amongst the not yet evaluated templates until, in the last iteration,
we only have one axiom template left.

Note that the presented algorithm is a general algorithm in which any reasoner
that implements the callSpecificReasonerTask method can be used. If the used rea-
soner additionally provides statistics for query ordering that are more accurate w.r.t.
the way that it implements the reasoning tasks then a good ordering can be obtained.
Note also that the reduction in the number of consistency checks for complex ax-
iom templates, when the hierarchy optimization of Section 5.2 is used, is not taken
into account by the cost functions in the ordering procedure, since it is difficult to
estimate this reduction beforehand; i.e., before query evaluation takes place.

We next show a run of Algorithm 4 for the ontology O = (T,.A) shown in
Table 6.1, where A; for 1 < i < 11 are concept names, r a role name and a,b,c
individual names. In the beginning, before a system accepts queries, a check is
usually performed to determine whether the queried ontology is consistent. The
ontology O is consistent and let us assume that the sets K[As] = {a,b}, P[As] =0,
K[A;] = {b,c}, P[A;] = {a} have been constructed during this check (the known
and possible sets for all other concepts and roles are empty). Moreover, we assume
that O has been classified; in Figure 6.1 we show the concept hierarchy.

Let ¢ = {A1(7x), Aa(7x), 7y © Ay, 7y C 3.7z} be a query. The method rewrite
does not have any effect on ¢ and hence ¢ = ¢q. The query ¢ is split to two
connected components by method connectedComponents, i.e., ¢! = {A;(?z), A2(?2)}

and ¢> = {7y C A,,7y C Ir.7z}. For ¢' the method order returns the execution
plan (Ay(?z), A1(?z)), since Cg > Cf, and

where Cp, Cg are the look-up and entailment costs, Prg is the possible instance
success, Ec}, is the cost of the reasoning task required to evaluate at and Rs, is
the result output size that the evaluation of at incurs, using the static cost function

7

Chapter 6. Query Answering Algorithm

Figure 6.1: Concept hierarchy example

defined in Section 4.3 and d is the depth of the concept hierarchy. In the first
iteration of the for loop (lines 6-30), since, according to Definition 8 (Section 4.1),
Ay(?z) is a simple template, S = {uo}, R = 0 and Var(Ay(?z)) \ dom(ug) = {72},
the method callSpecificReasonerTask returns a set R, which contains mappings of 7x
to the known instances a,b of Ay (doing look-ups in the cached sets of known and
possible instances of Ay), i.e., R = {{?z — a},{?z — b}}. From line 29, S; = R.
In the second iteration of the for loop, R = () and the template A;(?z) is under
consideration. The mapping u = {7z — a} in S; is first considered for the template
Ay (?zx). Since A(?x) is a simple template, Var(A;(?z))\ dom(u) = 0 and O £ A (a)
(a consistency check is performed for determining whether the possible instance a of
Aj is a real instance of Ay), R = (). Afterwards, the mapping u = {7z +— b} in S is
considered for the simple template A;(?x) and since Var(A;(?z)) \ dom(u) = () and
O = A;(b) (this is determined by a cache look-up), R = {7z — b} and S; = R =
{?x — b}. In the next iteration of the for loop (lines 3-31) the component ¢ is under
consideration. The method order returns the execution plan (7y C Ay, 7y C Ir.7z2),
since

EcS,ca, + RSS,ca, = 13-Cp +4 <13-13- Cp + 13- 13 = EC 5,5, + RSS,c5,.

In the first iteration of the for loop (lines 6-30), since, according to Definition 8
(Section 4.1), 7y C Ay is a simple template, So = {u}, R = 0, and Var(?y C
Ay)\dom(po) = {?y}, the method callSpecificReasonerTask returns a set of mappings
R, which contains mappings of 7y to sub-concepts of A4 using look-ups in the cached
concept hierarchy. From lines 10 and 29,

So=R={{Ty— A}, {7y — As}, {7y — Ao}, {7y — L}}.

In the second iteration of the for loop (lines 6-30), the template 7y T J.r?z is
under consideration. In lines 8-28 we iterate over every pu € S;. We will show
how the algorithm runs for p = {?y — A4}. The run of the for loop (lines 8-
28) for the other mappings in S is similar. From line 16, V,,; = {7z} and B =

78

Chapter 6. Query Answering Algorithm

initializeVariableMappings(O, 7y T J.r7z, u,{7z}). It holds 7z € Var(?y C Ir.72) \
{?y}, 72 € Vo NV, and pol (72, 7y T 3r.?7z) = pos. Hence, from lines 11 and 25
of Algorithm 5 S = R = {{?y — A4, 7z — T}} and, hence, from Algorithm 4,
B ={{?y+— A4, 7z +— T}}. From line 19, the only mapping, let us say p’ is removed
from B. Since O = Ay T 3Ir.T, R = {{?y — Ay,72z — T}} and for 7z € V,,,
B = getPossibleMappings(O, 7z, 7y T J.r?z, ') from line 23. Since 7z € Vo and
pol (?z, 7y C Ir.7z) = pos,

B = {{7y — A4, 72— Al}, {7y — A47 72— Az}, {?y — A4, 72— Ag}}

In the next iteration of the while loop in lines 18-26, the first mapping p' = {?y —
Ay, 7z — Aq} is considered and removed from B for which holds O £ Ay, C 3r.A;.
Afterwards, we choose the next mapping in B, i.e., ' = {7y — Ay, 7z — Ay} for
which again holds O £~ Ay C 3r.A. In the end, we choose the mapping ' = {7y —
Ay, 7z As}. Since O = Ay C IrAs, R={{y— Ay, 72— TH {7y — Ay, 72 —
As}} and B = {{?y — Ay, 72— A}, {7y — A4, 72 — Az}}. In the next iteration
of the while loop we choose y/ = {7y — A4, 7z — Ag}. Since O = Ay C Ir.Ag, the
sets R (in line 21 of Algorithm 4) and B (from Algorithm 6) are updated to

R={{?y— Ay, 72— T}H{%y— Ay, 72— A3} {7y — Ay, 72 — Ag}} and
B={{?y— Ay, 72— A}, {7y — Ay, 72— A1 }}.

In the same way, the mapping ¢/ = {7y — A4, 72z — A7} does not lead to an
entailed by O axiom and, hence, is not added to the set R. The mapping u' =
{7y — Ay, 7z — A} leads to an entailed by O axiom and, hence, is added to the
set R, i.e.,

R = {{7y — A4, 72— T}, {‘7y — A4, T2 Ag}, {7y — A4, T2 AG}, {73/ — A4, T2 AH}}

Finally, the mapping {?y — A4, 7z — L} does not lead to an entailed by O axiom
and, hence, is not added to the set R. In a similar way the else statement of lines 15-
27 is run for each of the other mappings in S5. In fact, the mappings tested for the
other two mappings in Sy, i.e., {7y — Ag} and {7y — Ay} are exactly the same with
those described above for the mapping {7y — A4}, if we map the variable 7y to Asg
or Ag instead of A,. Similarly, the mapping {7y — L} leads to entailed axioms for
every concept used as a mapping for 7z. Hence, the set S5 in line 29 contains the
mappings:

Soy={{ty— As, 72— T} {7y — Ag, 72— A3}, {7y = Ay, 22— As}, {7y — A4, 72 — A1}
{ty = Ag, 72— T}H{%y— Ag, 72— A3}, {7y — Ag, 72— Ag}, {7y — Ag, 72— An}

{ty = Ag, 72— T}H{%y+— Ag, 72— A3}, {7y — Ag, 72 — Ag}, {7y — Ag, 72— A1}
{ty—= L7220 TH{?y— L,72— A1}, {7y~ L, 72— A}, {7y — L, 72— A3}

{ty— L, 72— Au}, {7y — L, 72— A5}, {7y — L, 72— A}, {7y — L, 72— A7}

{7y~ L, 72— Ag}, {7y — L, 72— Ao}, {7y — L, 72— A}, {7y — L, 72— A1}

{ty— L, 72— L}}

The output R,,s of Algorithm 4 is the cartesian product of the mappings in S; and
S as shown in line 32.

79

Chapter 6. Query Answering Algorithm

6.2 Termination, Soundness and Completeness

In this section we prove that the Algorithm 4 terminates and is sound and complete
as long as the used reasoning algorithm is sound and complete.
First we prove that Algorithm evaluate terminates.

Theorem 3. (Termination) Algorithm evaluate terminates.

Proof. The query ¢ has a finite number of axiom templates. The methods rewrite,
connectedComponents, order are all terminating procedures. The method rewrite
iterates over the axiom templates of ¢ and rewrites each to a set of equivalent
axiom templates according to Definition 17. The method connectedComponents
splits the rewritten query to a finite number, m, of connected components while
the method order orders the templates as explained in Section 4.3. The method
callSpecificReasonerTask is assumed to be a terminating procedure and returns a
finite number of mappings. The method initializeVariableMappings returns a finite
number of mappings that are assigned to the set B in line 17. In this method
variables of the atom at under analysis that are not in the domain of the current
mapping p are initialized, i.e., unbound variables of at (i.e., variables of u(at)) to
which Theorem 1 or 2 (Section 5.2) is applied, are mapped either to T, L, T, or
1, and concept, role and individual variables to which Theorem 1 or 2 does not
apply are mapped to corresponding values from the finite set of concept, role and
individual names that appear in 0. At each iteration of the while loop in lines 18-
26, a mapping p € B is examined and removed from B and the set B is (possibly)
extended by the set of mappings that the method getPossibleMappings returns. The
method getPossibleMappings creates new mappings by changing values of concept or
role variables in p to direct sub-concepts, super-concepts, sub-roles or super-roles
while traversing, at each iteration, the concept and role hierarchies top down or
bottom up (depending on the polarity of variables). Since the concept and role
hierarchies are finite, the set B will contain a finite number of mappings at each
iteration and hence the while loop will be repeated a finite number of times. n

In the following, we prove that algorithm evaluate is sound and complete. Let
Rans be the set of solution mappings that algorithm evaluate returns. By sound we
mean that R, C ans(O, q). By complete we mean that ans(O, q) C Ryys.

Theorem 4. (Soundness) Let q be a query, O an ontology and R,,s the output
of Algorithm 4. It holds that if i € Rans then u € ans(O, q).

Proof. The method rewrite (see Definition 17) does not affect the answers to a query
q over O, i.e., ans(O,q) = ans(O,rewrite(q)). The method connectedComponents
does not affect the answers of ¢; it just splits the query into several components
(line 2) that are evaluated separately (lines 3-31) and the cartesian product of the
answers is then taken (line 32) [30], i.e.,

ans((’), Q> = U ans((’), QJ)
j=1

Hence, it is enough to show that the set of mappings S; (line 29) that is the output
of lines 4-30 is indeed a solution set for ¢ = ¢; over O.

80

Chapter 6. Query Answering Algorithm

The method order (line 5) does not change the query in any way; it just orders
the axiom templates as explained in Section 4.3, i.e., ans(O, ¢) = ans(O, order(O, q)).
Hence, we afterwards show that the algorithm in lines 6-30 is sound for ¢ = ¢; over
O. In the following, with R; we denote the value of R after the i*! iteration of the
for loop in lines 6-30 and R,, is the set of solution mappings that the for loop of
lines 6-30 of Algorithm 4 gives. We prove that for any mapping u such that p € R,,,
it holds p € ans(O,q), ie., p € ans(O,{at;...at,}) (for every template at € ¢,
O E p(at) assuming that the used reasoner is sound). We prove this by induction
on the number of iterations of the for loop in lines 6-30 .

Base case: For at; in the beginning of the for loop (lines 6-30), S; = {uo}, Ro = 0.
We show that for any mapping p' if ¢/ € Ry then p/ € ans(O, aty). There are three
cases for at;:

1. The atom at; is simple and it has free variables (variables not mapped by
fo € Rp). Then the algorithm calls an appropriate task of a sound (and
complete) reasoner to retrieve the solution mappings S for the variables of
po(aty), i.e., the variables of aty, and, hence, Ry = S and S € ans(O, at;) (due
to reasoner soundness).

2. The atom at; does not contain free variables (variables not mapped by puyg),
which, in this case, means that at; does not contain variables, (i.e., it is a
Boolean atom). In this case, ' = . Since a sound reasoner is used to decide
whether O = p/(aty), ¢/ € Ry only if 1/ € ans(O, aty).

3. The atom at; is a complex atom which contains free variables (variables not
mapped by o). Since y' € Ry it was added by line 21 of the algorithm. Since
we again assume that a sound reasoner is used to decide whether O |= 1/(aty),
this means p/ € ans(O, aty).

Inductive step: Let Rj be the output of the for loop at lines 6-30 at iteration
k with 1 < k < n. Let us assume that p is a mapping such that u € Ry
and p € ans(O,{aty,...,aty}) (IH). We will show that if p/ € Ry then i/ €
ans(O, {aty,...,atg1}). Since yu/ € Ry, this means that a mapping u € Ry, caused
its production through lines 8-28 of Algorithm 4 while processing the atom atg,; of
q. There are three cases:

1. The atom aty,; is simple and it has free variables (variables not mapped
by i € Ry). Then the algorithm calls an appropriate task of a sound (and
complete) reasoner to retrieve the solution mappings S for the variables of
p(atgy1). Since p/ € Ryyq, this means that there is a mapping p” € S such
that ¢/ = p” U p from the way R is constructed in line 10. Since p” € S this
means O =y (u(ate1)) (1" maps variables of aty1 that were not mapped in
i, i.e., the domains of p and p” are disjoint) and, since ' = p”"Up, it holds O |=
1 (atg41). From induction hypothesis p € ans(O, {aty,...at;}), and since the
domains of p and p” are disjoint and ¢/ = pUp”, @' € ans(O, {aty, ..., atk11}).

2. The atom aty,; does not contain free variables (variables not mapped by
i € Ry). Since p/ € Rgyq this means that O | p/(atyyq) and ¢ =
holds from lines 11-14 of the algorithm. From induction hypothesis p €
ans(O, {aty,...,aty}) and since ¢/ = p and a sound reasoner is used to de-
cide whether O = i/ (atg11), it holds p/ € ans(O, {aty, ..., atx1}).

81

82

Chapter 6. Query Answering Algorithm

3. The atom aty,; is a complex atom which contains free variables (variables

not mapped by p € Ry). Since p/ € Ryyq it was added by line 21 of the
algorithm whose precondition is O | p/(atgy1). The mapping ' is a map-
ping in the set B and, according to lines 15-27, has been produced either 1)
directly by the call of the method initializeVariableMappings(O, ati 11, ft, Vopt)
with © € Ry (line 17) or ii) indirectly by a sequence of calls of the method
getPossibleMappings which was initially called for a mapping p; in the set
produced by initializeVariableMappings(O, ati1, it, Vopt), where p € Ry (lines
18-26). Hence, we need to first prove the following Lemma, in which with B,
we denote the set B in the end of the r'" iteration of the while loop.

Lemma 3. Letn be|q|, u € Ry with 1 < k < n, atgy1 the atom under analysis
at the (k+1)" jteration of the for loop (lines 6-30), | the number of runs of the
while loop in lines 18-26, when the mapping p is chosen (line 8) and ' € B,
with 0 < r < 1. For y and p' it holds uidom(u) = l.

Proof. We prove the above claim, by induction on the number of runs of the
while loop in lines 18-26 for u € Ry.

Base case: For By, it holds B, = initializeVariableMappings(O, atj1, £, Vopt),
where V,,; are the variables of ji(aty+;) to which Theorem 1 or 2 of Section 5.2
applies. The method initializeVariableMappings iterates over the variables of
p(atg41) and creates mappings for them. In lines 4-21 of Algorithm 5 mappings
for the unbound concept (role) variables of u(at,1) to which Theorem 1 or
Theorem 2 applies are created and in line 23 mappings for the concept, role
or individual variables of p(atyy1) to which Theorem 1 and 2 does not apply
are created. In other words, for every mapping p1 € By, 1 = p U py where
it € Ry is the mapping with which initializeVariableMappings is called and
dom(pz) = Var(atg.1) \ dom(p), which means that the domains of p and ps
are disjoint. Hence, it holds pt1jqom(u) = 4-

Inductive step: Let us assume that y € R, with 1 <k <n and ui dom(y) = M
holds for every mapping y/ € B, with 0 < r < [(IH). We will show that
,u":iom(u) = 1 holds for every mapping p” € B,;1. There are two cases for
a mapping p” € B,i1: i) p” € B, and it was not chosen (and removed)
by method removeMapping at the r'® iteration for which case ,ui’dom(u) = U
from TH and ii) yu” was created and added to B,;; in line 23 by method
getPossibleMappings. The method getPossibleMappings takes a mapping u' €
B, and a concept (role) variable 7z € V,,; to which Theorem 1 or Theorem 2
applies and which was not bound by p (was not in the domain of) and it
maps 7z to a different value in Algorithm 6, i.e., a direct sub-concept (line 4)
or super-concept (line 6) (direct sub-role (line 10) or super-role (line 12)) of
the current concept (role) name producing the set B,,;. This means that the
mappings for the variables in dom(u) do not change in any way in B,y and,

hence, for every " € Byyq it holds g, = . O

Since O |= ' (atg41) and the reasoner used to decide entailment is sound and
by Lemma 3, 14] o=, We get by IH that p' € ans(O, {aty,...atg1})

Chapter 6. Query Answering Algorithm

Note that the optimization according to which mappings that are equivalent to
already checked solution mappings are directly added to the answer set does not
affect soundness; this follows from the following, easy to prove, lemma.

Lemma 4. Let O be an ontology, q a query over O, u, i’ two equivalent mappings
for q over O and p' € ans(O, q). Then p € ans(O, q).

]

Theorem 5. (Completeness) Let q be a query, O an ontology and Re,s the output
of Algorithm 4. It holds that if i € ans(O, q) then 1 € Raps.

Proof. The method rewrite (see Definition 17) does not affect the answers to a query
q over O, i.e., ans(O,q) = ans(O,rewrite(q)). The method connectedComponents
does not affect the answers of ¢; it just splits the query into several components
(line 2) that are evaluated separately (lines 3-31) and we then take the cartesian
product of the answers (line 32). Hence, it is enough to show that the set of solution
mappings ans(O, {aty,...,at,}) is a subset of R,, i.e., the output of the loop in
lines 4-30 at iteration n.

The method order (line 5) does not change the query in any way; it just orders
the axiom templates as explained in Section 4.3, i.e., ans(O, q) = ans(O, order(q)).
Hence, we afterwards show that the algorithm in lines 6-30 is complete for g = g;
over O. In the following, with R; (0 < i < n) we denote the value of R after the
ith iteration of the for loop in lines 6-30. Let R, be the set of solution mappings
that the for loop of lines 6-30 of Algorithm 4 gives. We prove that for any mapping
p such that p € ans(O, q), i.e., u € ans(O,{at; ...at,}) (for every template at € ¢,
O [p(at) assuming that the reasoner used to decide entailment is complete) it
holds u € R,. We prove this by induction on the number of iterations of the for
loop in lines 6-30.

Base case: For at; in the beginning of the for loop (lines 6-30), S; = {uo}, Ro = 0.
We show that if p/ € ans(O, aty) then ' € Ry. There are three cases for at;.

1. The atom at; is simple and it has free variables (variables not mapped by
po € Rp). Then the algorithm calls an appropriate task of a (sound and)
complete reasoner to retrieve the solution mappings S for the variables of
po(at;) and from line 10 it holds Ry = S and, hence, for every mapping
p' € ans(O, aty) it holds i/ € R; due to reasoner completeness.

2. The atom at; does not contain free variables (variables not mapped by puyg),
which in this case means that the atom at; does not contain variables, (i.e., it
is a Boolean atom). In this case, p = po and, since ¢’ € ans(O, aty) and since
the reasoner used to decide whether O = p/(at;) is complete this means that
O E i/ (aty) holds, which, by line 13, implies that 4’ € R;.

3. The atom at; is a complex atom which contains free variables (variables not
mapped by p). Note that the variables of pg(at;) are mapped to values from
O, i.e., concept variables are mapped to concept names from N&, role variables
are mapped to role names from NS and individual variables are mapped to
individual names from NP. We prove the claim by assuming that it does not
hold and by deriving a contradiction. So, let us assume that p’ € ans(O, aty),
which means that O | p/(aty) holds (since the reasoner used to decide en-
tailment is complete), but x & R;. The method initializeVariableMappings is

83

Chapter 6. Query Answering Algorithm

called with py € Ry, at; and V,,, i.e., the variables of jg(aty) to which Theo-
rem 1 or Theorem 2 of Section 5.2 applies, iterates and initializes all variables
of uo(aty). For each such variable 7z there are three cases:

o 'v € V,,y and 7z € V¢ (ie., 7z is an optimization concept variable),
in which case variable 7z is mapped to T or L depending on whether
the polarity of variable 7z in at; is positive or negative according to
Definition 18 (Section 5.2).

o v €V, and 7x € Vi (7x is an optimization role variable), in which case
variable 7x is mapped to T, or L, depending on whether the polarity
of variable 7z in at; is positive or negative according to Definition 19
(Section 5.2).

o 'v & Vo (7x is not an optimization variable), in which case several
mappings are created and added to S. There are three cases:

— ?x is a concept variable in which case mappings are added to S, each
of which maps ?z to a concept name in N&.

— 7z is a role variable in which case mappings are added to S, each of
which maps ?x to a role name in N§.

— 7z is an individual variable in which case mappings are added to S,
each of which maps ?z to an individual name in NP.

Hence, for variables in yu(aty) that are not in V,,, all compatible mappings are
added to S and returned by method initializeVariableMappings(O, aty, 10, Vopt)-
Variables in V,,; are initialized to T, L, T,, or L, (i.e., not all compatible
mappings are added to S in this case in initializeVariableMappings). Let [be
the number of runs of the while loop in lines 18-26 when the mapping p € S
is chosen (line 8). In each run r of the while loop, with 0 < r < [, one mapping,
let us say " € B,, is examined and either O |= u(aty) or O [~ u(aty) (note
that this check is performed by a complete reasoner). From Lemma 3, it holds

Hidom(uo) = Ho-

e if O | p/(aty) then p” € Ry (line 21 of Algorithm 4) and B,11 = (B, \
{W'})UQ, where @ = |J getPossibleMappings(O, ?x,aty, 1), i.e., for

?$€Vopt
each 7z € V,,; there are four cases:

— if 7x € V¢ and the polarity of 7z in aty is positive (negative) then,
for every concept name A such that A € N& and A is a direct sub-
concept (super-concept) of p”(7x), we add the mapping uy to Byi1,
where u1(?y) = p’(?7y) for 7y € dom(p”) \ {7z} and py(?x) = A.

— if 7z € V and the polarity of 7z in at; is positive (negative) then, for
every role name s such that s € N and s is a direct sub-role (super-
role) of p(?z), we add the mapping uy to B,y1, where py(?y) =
W (Ty) for 7y € dom(p”) \ {72} and py (7x) = s.

o if O}~ p(aty) then p” € Ry and B,y = B, \ {¢"}. For each 7z € V,,;

there are four cases:

— ?7x € V¢ and the polarity of 7z in aty is positive (negative). Ac-
cording to Theorem 1 Condition 1 (Condition 2) of Section 5.2, for

84

Chapter 6. Query Answering Algorithm

each concept name A such that A C p”(?x) (¢"(?z) © A) it holds
O F u(aty), where pyi(?7y) = p’(?y) for 7y € dom(p”) \ {7z} and
p1(?x) = A and, hence, mappings to sub-concepts (super-concepts)
of ¢/ (?x) are pruned.

— 7x € Vg and the polarity of 7z in at; is positive (negative). According
to Theorem 2 Condition 1 (Condition 2) of Section 5.2, for each role
name s such that s C p”(?z) (1’ (?z) C s) it holds O £ py(aty),
where 1y (?y) = p"(?y) for 7y € dom(p”) \ {?z} and py(?z) = s and,
hence, mappings to sub-roles (super-roles) of p”(7x) are pruned.

Hence, for mappings p” which lead to O = p’(aty), all mappings of variables
in V,, to (direct) sub-concepts or sub-roles (for variables with positive po-
larity in at;) or to (direct) super-concepts or super-roles (for variables with
negative polarity in at;) are added to B, 1, else mappings of variables in V,
to sub-concepts or sub-roles (for variables with positive polarity in at;) or to
super-concepts or super-roles (for variables with negative polarity in at;) are
pruned. From the above it follows that, if i/ & Ry, then y/ was pruned from
the set of (possible) solution mappings either because u' was tested directly
in line 20 of Algorithm 4 by a complete reasoner and O = p/(aty), which con-
tradicts our hypothesis, or, because O F~ ps(aty) and it holds p/(?z) T pa(?x)
(u2(?z) T /(?2)) for each variable 7z € V,,; with positive (negative) polarity
and p/'(?y) = ua(?y) for every other variable 7y, from which according to The-
orems 1 and 2 (Section 5.2) follows that O [~ 1/(aty), which also contradicts
our hypothesis.

Inductive step: Let R, be the output of the for loop in lines 6-28 at iteration k
with 1 < k < n. Let us assume that for every p such that p € ans(O, {aty, ..., aty})
it holds u € Ry (IH). We show that if i/ € ans(O, {aty,...,aty1}) then ¢/ € Ry
assuming that a complete reasoner is used for deciding entailment. Since ' €
ans(O, {aty, ... atg41}), this means that wy, a0y € ans(O,{at, ... aty}) or
p€ ans(O,{aty, ... aty}) for p = Uy ((aty, oty From IH we have p € Ry We
prove that p/ € Ry.i. There are three cases for aty:

1. The atom aty,; is simple and it has free variables (variables not mapped
by p € Ry). Since the used reasoner is (sound and) complete, the method
callSpecificReasonerTask returns all solution mappings S for the atom p(atg1).
Hence, it is the case that for every p” with p” € ans(O, pu(atysq)), p” € S,
which means that p/ € Ryq with ¢/ = pU p” (line 10 of Algorithm 4), where
i, 1" have disjoint domains.

2. The atom atg,; does not contain free variables (variables not mapped by pu €
Ry). Hence ¢/ = p and, since p € ans(O, aty, ..., atg, 1), which by reasoner
completeness, means that O = p/(atgy1) holds, this means that y' € Ryiq
(line 13 of Algorithm 4).

3. The atom atj; is a complex atom which contains free variables (variables not
mapped by u € Ry). Let us assume that the statement to be proved does not
hold, i.e., i’ € ans(O, {aty,...atx11}) but 4/ € Riy1. The proof is exactly the
same as the proof for the base case if we substitute g € Ry and at; from the
base case with © € Ry and aty,; respectively.

85

86

Chapter 6. Query Answering Algorithm

[]

Chapter 7

Evaluation

In this chapter we first present the architecture of the implemented system. Since
entailment regimes only change the evaluation of basic graph patterns, standard
SPARQL algebra processors can be used that allow for custom BGP evaluation.
Furthermore, standard OWL reasoners can be used to perform the required reason-
ing tasks.

7.1 The System Architecture

Figure 8.1 depicts the main phases of query processing in our prototypical system.
In our setting, the queried graph is seen as an ontology that is loaded into an
OWL reasoner. Loading the ontology and the initialization of the reasoner are
performed before the system accepts queries. We use the ARQ library® of the Jena
Semantic Web Toolkit for parsing the query and for the SPARQL algebra operations
apart from our custom BGP evaluation method. The BGP is parsed and mapped
into axiom templates by our BGP parser. The resulting axiom templates are then
passed to a query optimizer, which applies the axiom template rewriting and then
searches for a good query execution plan based on statistics provided by the reasoner.
Afterwards, the query is evaluated as described in Algorithm 4 of Section 6. For the
evaluation in the next sections we use the HermiT reasoner? for OWL reasoning,
but any other reasoner that implements the standard reasoning tasks could be used.

7.2 Experimental Results

We tested the developed optimizations with standard benchmarks and a range of
custom queries that test complex axiom template evaluation over more expressive
ontologies. All experiments were performed on a Mac OS X Lion machine with a
2.53 GHz Intel Core i7 processor and Java 1.6 allowing 1GB of Java heap space. We
measure the time for one-off tasks such as classification separately since such tasks
are usually performed before the system accepts queries. The ontologies and all code
required to perform the experiments are available online.®> The developed system,*

'http://jena.sourceforge.net/ARQ/
2http://www.hermit-reasoner.com/
3http://code.google.com/p/query-ordering/
“http://code.google.com/p/owl-bgp/

87

Chapter 7. FEvaluation

SPARQL determines OWL Reasoner uses
query " | owLontology |
i BGP Execution
Query Algebra N Wﬁ BGP [;arsing ‘
Parsin j
9 Object _ | BGPRewritng |
Algebra Evaluation BGP v
Query solution solution ‘ BGP Reordering ‘
<—
sequence sequence i BGP Evtaluation |

Figure 7.1: The main phases of query processing in our system

called OWL-BGP, is implemented as a SPARQL wrapper that can be used with
any reasoner that implements the OWLReasoner interface of the OWL API [55]. In
Section 7.2.1 we compare the different ordering strategies that have been developed
on two benchmarks (LUBM and UOBM) that contain queries with variables only
in place of individuals (i.e., queries containing only query atoms). We also show the
effect of ordering on LUBM using some custom queries with simple axiom templates
created for SPARQL-DL [84]. In Section 7.2.2 we show the effect of the proposed
optimizations for queries with complex axiom templates. For the evaluation we have
used the HermiT hypertableau reasoner.® Other reasoners such as Pellet® or Racer
Pro” could equally well be used with our implementation as long as they provide
an interface with the required ordering statistics, i.e., the number of known and
possible instances of concepts and roles for the computation of the cost functions
used for query ordering. Without any optimizations, providing this interface with
statistics can easily be realized as described in Chapter 4. The presented query
ordering techniques can also be used when optimizations such as caching, pseudo
model merging techniques, binary instance retrieval, or absorption are employed.
The cost functions might, however, require some adaptation to take the reduction
in the required number of consistency checks into account as discussed in Section 4.6.

It is worth noting that the TrOWL reasoning framework® started to use our
SPARQL wrapper to provide SPARQL support. An adaptation to also provide
statistics is, to the best of our knowledge, still outstanding, although this should
be straightforward. As it has been discussed in Section 3.2.4, TrOWL is based on
two approximate reasoners: one that under-approximates (computation of concept
and role instances is sound, but incomplete) [102] and one that over-approximates
(computation of concept and role instances is complete, but unsound) [103]. In
such a setting, the under-approximation can straightforwardly be seen as the known
instances and the over-approximation minus the under-approximation as the possible
instances.

7.2.1 Query Ordering

We tested our ordering techniques with the Lehigh University Benchmark (LUBM)
[45] as a case where no disjunctive information is present and with the more expres-
sive University Ontology Benchmark (UOBM) [88].

Shttp://www.hermit-reasoner.com/
Shttp://clarkparsia.com/pellet/
"http://www.racer-systems.com
Shttp://trowl.eu

88

Chapter 7. FEvaluation

We first used the 14 conjunctive ABox queries provided in LUBM. From these,
Queries 2, 7, 8, 9 are the most interesting ones in our setting since they contain many
atoms and ordering them can have an effect in running time. We tested the queries
on LUBM(1,0) and LUBM(2,0) which contain data for one and two universities
respectively, starting from index 0. LUBM(1,0) contains 17,174 individuals and
LUBM(2,0) contains 38,334 individuals. LUBM(1,0) took 19 s to load and 0.092 s
for classification and initialization of known and possible instances of concepts and
roles and known and possible equivalent individuals. The clustering approach for
concepts took 1 s and resulted in 16 clusters. The clustering approach for roles
lasted 4.9 s and resulted in 17 role successor clusters, 29 role predecessor clusters
and 87 role clusters. LUBM(2,0) took 48.5 s to load and 0.136 s for classification
and initialization of known and possible instances. The clustering approach for
concepts took 3.4 s and resulted in 16 clusters. The clustering approach for roles
lasted 16.3 s and resulted in 17 role successor clusters, 31 role predecessor clusters
and 102 role clusters. Table 7.1 shows the execution time for each of the four
queries for LUBM(1,0) and LUBM(2,0) for four cases: i) when we use the static
algorithm (columns 2 and 6), ii) when we use the dynamic algorithm (columns 3
and 7), iii) when we use random sampling, i.e., taking half of the individuals that
are returned (from the evaluation of previous query atoms) in each run, to decide
about the next cheapest atom to be evaluated in the dynamic case (columns 4 and 8)
and iv) using the proposed sampling approach that is based on clusters constructed
from individuals in the queried ontology (columns 5 and 9). The queries marked
with (*) are the queries where the static and dynamic algorithms result in a different
ordering. In Queries 7 and 8 we observe an increase in running time when the
dynamic technique is used (in comparison to the static) which is especially evident
on Query 8 of LUBM(2,0), where the number of individuals in the ontology and the
intermediate result sizes are larger. Dynamic ordering also behaves worse than static
in Queries 2 and 9. This happens because, although the dynamic algorithm chooses
a better ordering than the static algorithm, the intermediate results (that need to
be checked in each iteration to determine the next query atom to be executed) are
quite large and hence the cost of iterating over all possible mappings in the dynamic
case far outweighs the better ordering that is obtained. We also observe that a
random sampling for collecting the ordering statistics in the dynamic case (checking
only 50% of individuals in €;_; randomly for detecting the next query atom to be
executed) leads to much worse results in most queries than plain static or dynamic
ordering. This happens since random sampling often leads to the choice of a worse
execution order. The use of the cluster based sampling method performs better than
the plain dynamic algorithm in all queries. In Queries 2 and 9, the gain we have
from the better ordering of the dynamic algorithm when sampling is used is much
more evident. This is the case since we use at most one individual from every cluster
for the cost functions computation and the number of clusters is much smaller than
the number of the otherwise tested individuals in each run.

In order to show the effectiveness of our proposed cost functions we compared
the running times of all the valid plans (plans that comply to the connectedness
condition of Definition 12 of Section 4.3, i.e., plans on which consecutive atoms
share at least one common variable) with the running time of the plan chosen by
our method. In the following we show the results for LUBM(1, 0), but the results
for LUBM(2,0) are comparable. In Table 7.2 we show, for each query, the number

89

Chapter 7. FEvaluation

Table 7.1: Query answering times in milliseconds for LUBM(1,0) and LUBM/(2,0) using
i) the static algorithm ii) the dynamic algorithm, i) 50% random sampling (RSampling),
iv) the constructed individual clusters for sampling (CSampling)

LUBM(1,0) LUBM(2,0)
Q Static Dynamic RSampling CSampling | Static Dynamic RSampling CSampling
*2 51 119 390 37 162 442 1,036 153
7 25 29 852 20 70 7 2,733 64
8 485 644 639 551 622 866 631 660
x9 1,099 2,935 3,021 769 | 6,108 23,202 14,362 3,018

Table 7.2: Statistics about the constructed plans and chosen orderings and running times
in milliseconds for the orderings chosen by Pellet and for the worst constructed plans

Q | PlansNo Chosen Plan Order Pellet Plan | Worst Plan
Static | Dynamic | Sampling

2 336 2 1 1 51 4,930

7 14 1 1 1 25 7,519

8 56 1 1 1 495 1,782

9 336 173 160 160 1,235 5,388

of valid plans (column 2), the order of the plan chosen by the static, dynamic,
and cluster based sampling methods if we order the valid plans by their execution
time (columns 3,4,5; e.g., a value of 2 indicates that the ordering method chose the
second best plan), the running time of HermiT for the plan that was created by Pellet
(column 6) as well as the running time of the worst constructed plan (column 7).

The comparison of our ordering approach with the approach followed by other
reasoners that support conjunctive query answering such as Pellet or Racer Pro is
not very straightforward. This is the case because Pellet and Racer have many
optimizations for instance retrieval [126, 48], which HermiT does not have. Thus,
a comparison between the execution times of these reasoners and HermiT would
not convey much information about the effectiveness of the proposed query ordering
techniques. The idea of comparing only the orderings computed by other reasoners
with those computed by our methods is also not very informative since the orderings
chosen by different reasoners depend on the costs of specific tasks in these reasoners
and, hence, are, to some extent, reasoner dependent, i.e., an ordering that is good for
one reasoner and which leads to an efficient evaluation may not be good for another
reasoner. We should note that when we were searching for orderings according
to Pellet, we switched off the simplification optimization that Pellet implements
regarding the exploitation of domain and range axioms of the queried ontology for
reducing the number of query atoms to be evaluated [124]. This has been done in
order to better evaluate the difference of the plain ordering obtained by Pellet and
HermiT since our cost functions take into account all the query atoms.

We observe that for all queries apart from Query 9 the orderings chosen by our
algorithms are the (near)optimal ones. For Queries 2 and 7, Pellet chooses the
same ordering as our algorithms. For Query 8, Pellet chooses an ordering which,
when evaluated with HermiT, results in higher execution time. For Query 9, our
algorithms choose plans from about the middle of the order over all the valid plans
w.r.t. the query execution time, which means that our algorithms do not perform
well in this query. This is because of the greedy techniques we have used to find the
execution plan which take into account only local information to choose the next
query atom to be executed. The ordering chosen by Pellet for Query 9 does also not

90

Chapter 7. FEvaluation

Table 7.3: Number of individuals in LUBM with increasing number of universities
LUBM(3,0) LUBM(4,0) LUBM(5,0) LUBM(6,0) LUBM(7,0) LUBM(8,0) LUBM(9,0)
55,664 78,579 102,368 118,500 144,612 163,552 183,425

Table 7.4: Query answering times in seconds for LUBM with increasing number of uni-
versuities

Q[LUBM(3,0) [LUBM(4,0) [LUBM(5,0) [LUBM(6,0) [LUBM(7,0) | LUBM(8,0) | LUBM(9,0)
2 0.35 0.62 1.26 1.71 2.26 3.11 418
7 0.11 0.16 0.23 0.32 0.33 0.33 0.40
8 0.77 0.91 1.27 1.29 1.34 1.44 1.65
9 18.49 42.98 85.54 116.88 181.07 235.06 312.71
all 20.64 55.16 90.99 138.84 213.59 241.85 323.15

perform well. We see that, in all queries, the worst running times are many orders
of magnitude greater than the running times achieved by our ordering algorithms.
In general, we observe that in LUBM static techniques are adequate and the use of
dynamic ordering does not improve the execution time compared to static ordering.

In order to show the scalability of the system, we next run the LUBM queries
with different numbers of universities, i.e., LUBM(i,0) where ¢ ranges from 3 to
9. Table 7.3 shows the number of individuals appearing in each ABox of different
university size. The running times of Queries 2, 7, 8, 9 as well as the running time
of all the 14 LUBM queries are shown in Table 7.4. Note that the results shown
are for the case that static ordering is performed. From this table we see that for
all queries, the running time increases when the number of individuals of the ABox
increases, which is reasonable. We observe that query answering over ontologies is
still not as scalable as query answering over databases and this is so, because of
the more expressive schema that has to be taken into account and the fact that
we have incomplete information in contrast to databases where we have complete
information.

Unlike LUBM, the UOBM ontology contains disjunctions and the reasoner makes
also non-deterministic derivations. In order to reduce the reasoning time, we re-
moved the nominals and only used the first three departments containing 6,409
individuals. The resulting ontology took 16 s to load and 0.1 s to classify and ini-
tialize the known and possible instances. The clustering approach for concepts took
1.6 s and resulted in 356 clusters. The clustering approach for roles lasted 6.3 s and
resulted in 451 role successor clusters, 390 role predecessor clusters and 4,270 role
clusters. We present results for the static and dynamic algorithms on Queries 4,
9, 11, 12 and 14 provided in UOBM, which are the most interesting ones because
they consist of many atoms. Most of these queries contain one atom with possible
instances. As we see from Table 7.5, static and dynamic ordering show similar per-
formance in Queries 4, 9, 11 and 12. Since the available statistics in this case are
quite accurate, both methods find the optimal plans and the intermediate result set
sizes are small. For both ordering methods, atoms with possible instances for these
queries are executed last. In Query 14, the dynamic algorithm finds a better order-
ing which results in better performance. The effect that the cluster based sampling
technique has on the running time is not as obvious as in the case of LUBM. This
happens because in the current experiment the intermediate result sizes are not very
large and, most importantly, because the gain obtained due to sampling is in the
order of milliseconds whereas the total query answering times are in the order of

91

Chapter 7. FEvaluation

Table 7.5: Query answering times in seconds for UOBM (1 university, 3 departments)
and statistics

Q| Static | Dynamic | CSampling | PlansNo Chosen Plan Order Pellet Worst
Static | Dynamic | Sampling Plan Plan

4| 13.35 13.40 13.41 14 1 1 1 13.40 271.56

9 186.30 188.58 185.40 8 1 1 1 636.91 636.91

11| 0.98 0.84 1.67 30 1 1 1 0.98 | > 30 min
12 0.01 0.01 0.01 4 1 1 1 0.01 | > 30 min
14| 94.61 90.60 93.40 14 2 1 1| > 30 min | > 30 min
g | 191.07 98.24 100.25 6 2 1 1| > 30 min | > 30 min
qp | 47.04 22.20 22.51 6 2 1 1 22.20 | > 30 min

seconds obscuring the small improvement in running time due to sampling. In all
queries the orderings that are created by Pellet result in the same or worse running
times than the orderings created by our algorithms.
In order to illustrate when dynamic ordering performs better than static, we also
created the two custom queries:
¢ = { isAdvisedBy(?z,?y), GraduateStudent(?7z), Woman(?y) }
g2 = { SportsFan(?z), GraduateStudent(?x), Woman(?z) }

In both queries, P[GraduateStudent|, P[Woman] and P[isAdvisedBy| are non-empty,
i.e., the query concepts and roles have possible instances. The running times for
dynamic ordering are smaller since the more accurate statistics result in a smaller
number of possible instances that have to be checked during query execution. In
particular, for the static ordering, 151 and 41 possible instances have to be checked
in query ¢ and g¢o, respectively, compared to only 77 and 23 for the dynamic order-
ing. Moreover, the intermediate results are generally smaller in dynamic ordering
than in static leading to a significant reduction in the running time of the queries.
Interestingly, query ¢» could not be answered within the time limit of 30 minutes
when we transformed the three query concepts into a conjunction, i.e., when we
asked for instances of the intersection of the three concepts. This is because for
complex concepts the reasoner can no longer use the information about known and
possible instances and falls back to a more naive way of computing the concept
instances. Again, for the same reasons as before, the sampling techniques have no
apparent effect on the running time of these queries.

For each query of the SPARQL-DL tests issued over LUBM(1,0) [84] (see Ta-
ble 7.6), Table 7.7 shows the running time of the plan chosen by our method (column
2), the number of valid plans, i.e., plans that comply to the connectedness condition
of Definition 12 (column 3), the order of the chosen plan if we order the valid plans
by their execution times (column 4), the running time of HermiT for the plan that
was created by Pellet (column 5) as well as the running time of the worst constructed
plan (column 6). The queries as shown in Table 7.6 are ordered according to our
static ordering algorithm. Since reasoning for LUBM is deterministic, we use static
planning to order the axiom templates. Dynamic planning does not improve the ex-
ecution times (actually it makes them worse) since, as it has been explained before,
with only deterministic reasoning we have most of the important information for
ordering from the beginning and the overhead caused by dynamic ordering results
in worse query execution time.

From the results of Table 7.7 one can observe that for Queries 1, 2, 3, 4 and 8 the
proposed ordering chooses the optimal plan among all valid plans. For Queries 5, 6, 7,

92

Chapter 7. FEvaluation

Table 7.6: Queries used for SPARQL-DL tests

1 GraduateStudent(?x) 6 GraduateStudent(?x)
y(?x, 72) y(Tx, Tw)

Course(?w) ?2(7w)

GraduateCourse T =7z

2 ?c € Employee 7 2cCT
Te(?x) Te(?x)

Student(?z) teachingAssistantOf (?x, 7y)
undergraduateDegreeFrom(?z, 7y) takesCourse(?x, 7y)

3 7y € memberOf 8 ?c C Person
?y(?z, University0) 7c(?x)

Person(?x) advisor(?z, 7y)

4 ?y(GraduateStudentb, 7w) 9 ?c C Person
72(7w) Tc(?x)

7z C Course teachingAssistantOf (7, 7y)

Course(?y)

5 7z C Course 10 ?p C worksFor
?z(7w) ?p(?y, Tw)

y(?z, Tw) 7c(?y)

GraduateStudent(?x) ?c C Faculty

advisor(?z, 7y)

GraduateStudent(?z)

memberOf (?z, 7w)

Table 7.7: Query answering times in seconds for the queries of Table 7.6 over LUBM(1,0)
and statistics

Query | Chosen Ordering | PlansNo | Chosen Plan | Pellet Plan | Worst Plan
Time Order Time Time

1 0.36 2 1 0.81 0.81
2 0.03 14 1 0.03 0.61
3 0.05 4 1 0.05 5.45
4 0.01 4 1 0.01 11.46
5 26.10 8 5 3.30 454.25
6 10.49 8 2 11.90 499.65
7 0.42 14 6 0.42 2.68
8 0.23 4 1 0.23 0.80
9 0.19 8 4 0.19 0.47
10 0.80 812 21 0.93 992.77

9 and 10 the optimal plan is not chosen according to the proposed cost estimation
algorithm. For Queries 5, 7, 9 and 10 this is due to the greedy techniques we have
used for finding in each iteration of our ordering algorithm the next cheapest axiom
template to be evaluated. For example, the optimal plan for Query 10 starts with
the template GraduateStudent(?z), which is not the cheapest one according to our
cost based technique and then, while moving over connected templates, a different
order is chosen than the order chosen by our algorithm. It turns out that all valid
plans beginning with the atom GraduateStudent(?z) lead to better execution times
than the plan chosen by our algorithm resulting in the existence of several better
plans than the chosen one. For Query 6 we do not find the optimal plan because we
have overestimated the cost of the disjoint axiom template and hence have missed

93

Chapter 7. FEvaluation

the optimal ordering.

Nevertheless, the chosen plans lead to execution times for all queries that are
up to three orders of magnitude lower than those when the worst plans are chosen.
For queries in which the proposed ordering does not lead to the optimal plan, one
has to additionally take into account the time we saved from not computing the
costs for the |g!| possible orderings, which can be very high. We observe that for
all queries apart from Query 5, the orderings created by Pellet result in the same
or worse running times than the orderings created by our algorithms. Interestingly
for Query 5, Pellet finds a plan that when evaluated with HermiT results in better
execution time than the plan chosen by our algorithms. As discussed before, HermiT
misses the optimal plan in this case because of the greedy techniques that we use
for query ordering according to which HermiT chooses first the locally cheapest
template 7z C Course, whereas the plan chosen by Pellet starts with the template
?y(?z, 7w), which results in a better ordering.

7.2.2 Complex Axiom Template Optimizations

In the absence of suitable standard benchmarks for arbitrary SPARQL queries, we
created a custom set of queries as shown in Tables 7.9 and 7.11 for the GALEN and
the FBbt_XP ontology, respectively. Systems that fully support the SPARQL Direct
Semantics entailment regime are still under development, which makes it hard to
compare our results for these kinds of queries with other systems.

GALEN is a biomedical ontology. It’s expressivity is (Horn-)SHZF and it con-
sists of 2,748 concepts and 413 abstract roles. FBbt_XP is an ontology taken from
the Open Biological Ontologies (OBO) Foundry [127]. It falls into the SHZ frag-
ment of SROZQ and consists of 7,221 concepts and 21 abstract roles. We only
consider the TBox part of FBbt_XP since the ABox is not relevant for showing the
different effects of the proposed optimizations on the execution times of the consid-
ered queries. GALEN took 3.7 s to load and 11.1 s to classify (concepts and roles),
while FBbt_XP took 1.5 s to load and 7.4 s to classify.

The execution times for the queries of Tables 7.9 and 7.11 are shown on the
right-hand side of Tables 7.8 and 7.10, respectively. We have set a time limit of
30 minutes for each query. For each query, we tested the execution once without
optimizations and once for each combination of applicable optimizations from Sec-
tions 4.3 and 5. In Tables 7.8 and 7.10, one can also see the number of consistency
checks that were performed for the evaluation of each query and each combination
of the applicable optimizations as well as the number of results of each query. In
these tables we have taken the time of the worst ordering of query atoms for the
cases in which the ordering optimization is applicable but not enabled. Note that
only the complex axiom templates require consistency checks to be evaluated; the
simple ones (subsumption axiom templates in this case) need only cache look-ups in
the reasoner’s internal structures since the concepts and roles are already classified.

GALEN Queries: As expected, an increase in the number of variables within
an axiom template leads to a significant increase in the query execution time because
the number of mappings that have to be checked grows exponentially in the number
of variables. This can, in particular, be observed from the difference in execution
time between Query 1 and 2. From these two queries, it is evident that the use of
the hierarchy exploitation optimization leads to a decrease in execution time of up

94

Chapter 7. FEvaluation

Table 7.8: Query answering times in seconds for the queries of Table 7.9 with and without

optimizations
Query | Ordering Hierarchy Rewriting | Consistency Time | AnswersNo
Exploitation Checks

1 2,750 1.68 10
1 X 50 0.18 10
2 1,141,250 578.98 214
2 X 1,291 9.85 214
3 X >30 min
3 X 19,250 102.37 2,816
3 X X 3,073 2.69 2,816
4 X X > 30 min
4 X X > 30 min
4 X X 16,135 7.68 51
4 X X X 197 1.12 51
5 X > 30 min
5 X 1,883 0.67 4,392
5 x X 1,883 0.8 4,392

Table 7.9: Sample complex queries for the GALEN ontology
1 Infection C JhasCausalLinkTo.?x
2 Infection C 37y.7x
3 72 C Infection M JhasCausalAgent.7y
4 NAMEDLigament = NAMEDInternalBodyPart 11 7x

?x € JhasShapeAnalagousTo?y M 37z linear
5 7?2z © NonNormalCondition

7z C ModifierAttribute

Bacterium C J37z.7w

7y C StatusAttribute

7w C AbstractStatus

?x C 37y.Status

to two orders of magnitude. Query 3 can only be completed in the time limit if at
least the query rewriting optimization is enabled. We can get an improvement of
up to three orders of magnitude in this query, by using rewriting in combination
with the hierarchy exploitation. Query 4 can only be completed in the given time
limit if at least ordering and rewriting is enabled. Rewriting splits the first axiom
template into the following two simple axiom templates, which are evaluated much
more efficiently:

NAMEDLigament © NAMEDInternalBodyPart and NAMEDLigament C?x

After the rewriting, the ordering optimization has an even more pronounced effect
since both rewritten axiom templates can be evaluated with a simple cache look-up.
Without ordering, the complex axiom template could be executed before the simple
ones, which leads to the inability of answering the query within the time limit of 30
min. Without a good ordering, Query 5 can also not be answered within the time
limit. The ordering chosen by our algorithm is shown below. Note that the query
consists of two connected components: one for the axioms containing 7z and 7w and

95

Chapter 7. FEvaluation

another one for the axioms containing ?x and 7y.

7z C ModifierAttribute
7w C AbstractStatus
Bacterium C 37z.7w

7y C StatusAttribute
72z C NonNormalCondition
?x C d7y.Status

In this query, the hierarchy exploitation optimization does not improve the execu-
tion time since, due to the chosen ordering, the variables on which the hierarchy
optimization can be applied, are already bound when it comes to the evaluation of
the complex templates. Hence, the running times with and without the hierarchy
exploitation are similar. The number of consistency checks is significantly lower
than the number of answers because the overall results are computed by taking the
cartesian products of the results for the two connected components. Interestingly,
for queries with complex axiom templates, it does not make sense to require that
the next axiom template to evaluate shares a variable with the previously evaluated
axiom templates, as in the case of simple axiom templates. For example, if we would
require that, the first connected component of the query would be executed in the
following order:

7z C ModifierAttribute
Bacterium C 372.7w
7w C AbstractStatus

this results in 294,250 instead of 1,498 consistency checks since we no longer use a
cheap cache look-up check to determine the bindings for 7w, but first iterate over
all possible 7w bindings and check entailment of the complex axiom template and
then reduce the computed candidates when processing the last axiom template.
Although our optimizations can significantly improve the query execution time,
the required time can still be quite high. In practice, it is, therefore, advisable to
add as many restrictive axiom templates (axiom templates which require only cache
look-ups) for query variables as possible. For example, the addition of 7y C Shape
to Query 4 reduces the runtime from 1.12 s to 0.65 s. We observe, as expected, that
the execution time for each query and applicable optimization is analogous to the
number of consistency checks that are performed for the evaluation of the query.
FBbt_XP Queries: For Queries 1, 2, 3, 5 and 6, on which the ordering op-
timization is applicable, we observe a decrease in execution time up to two orders
of magnitude when the ordering optimization is used. The ordering optimization is
important for answering Queries 1, 2 and 3 within the time limit. For all queries,
the additional use of the hierarchy exploitation optimization leads to an improve-
ment of up to three orders of magnitude. We observe that in some queries the effect
of the hierarchy exploitation is more profound than in others. More precisely, the
smaller the ratio of the result size to the number of consistency checks without the
hierarchy optimization, the more pronounced is the effect when enabling this op-
timization. In other words, when more tested mappings are indeed solutions, one
can prune fewer parts of the hierarchy since pruning can only be performed when

96

Chapter 7. FEvaluation

Table 7.10: Query answering times in seconds for the queries of Table 7.11 with and
without optimizations

Query | Ordering Hierarchy Rewriting | Consistency Time | AnswersNo
Exploitation Checks

1 X 151,683 44.13 7,243
1 X > 30 min
1 X X 11,262 5.64 7,243
2 X 14,446 37.38 7,224
2 X > 30 min
2 x x 12,637 39.20 7,224
3 X 72,230 357.59 188
3 X > 30 min
3 X X 54,186 252.41 188
4 166,129 486.81 68
4 X 1335 17.03 68
5 166,129 457.84 0
5 x 21,669 19.68 0
5 X 907 11.74 0
5 X X 3 0.01 0
6 X X > 30 min
6 X X 43,338 183.66 43,338
6 X X > 30 min
6 X X X 32,490 152.38 43,338

Table 7.11: Sample complex queries for the FBbt_XP ontology

1 ?7x C Vpart_of.7y
72 C FBbt_00005789
2 7y C part_of
72 C V?y.FBbt_00001606
3 7z C 37y.FBbt_00025990 6
7y C overlaps

4 FBbt_00001606 C 37y.7x

5 FBbt_00001606 C J7y.7x

7y E develops_from
7y C FBbt_00001884
?p C part_of

T C I 7y N 7w

we find a non-solution. In Query 2, we even observe a slight increase in running
time when the hierarchy optimization is used. This is because the optimization can
only prune few candidate mappings, which does not outweigh the overhead caused
by maintaining information about which hierarchy parts have already been tested.
In Query 6, the rewriting optimization is important to answer the query within the
time limit. When all optimizations are enabled, the number of consistency checks
is less than the result size (32,490 versus 43,338) since only the complex axiom
template requires consistency checks.

97

98

Chapter 7. FEvaluation

Chapter 8

Semantic Access to Cultural
Content

The current state of the art in cultural heritage implements a model whereby many
aggregators, content providers and projects feed their content into a national, the-
matic, or European portal, and this portal is then used by the end user to find
cultural items. Typically, the content is described with the aid of standard schemas
(metadata schemas) that contain information about resources. Europeana' is be-
ing developed as the single, direct and multilingual gateway to Europe’s cultural
heritage that provides integrated access to digital objects from cultural heritage or-
ganizations (museums, libraries, archives and audio-visual archives). Several cross-
domain, vertical or thematic aggregators are being deployed at regional, national
and international level in order to reinforce this initiative by collecting and convert-
ing metadata about existing and newly digitized resources. Due to the diversity
of content types and of metadata schemas used to annotate the content, semantic
interoperability has been identified as a key issue during the last years.?

The main approach to interoperability of cultural content metadata has been the
usage of well-known standards in the specific museum, archive and library sectors
and their mapping to a common data model used at the European level. The
currently employed Europeana Semantic Elements® (ESE) Model is a Dublin Core?-
based application profile providing a generic set of terms that can be applied to
heterogeneous materials thereby providing a baseline to allow contributors to take
advantage of their existing rich descriptions. The latter constitute a knowledge
base that is constantly growing and evolving, both by newly introduced annotations
and digitization initiatives, as well as through the increased efforts and successful
outcomes of the aggregators and the content providing organizations.

The new Europeana Data Model® (EDM) is introduced as a data structure aim-
ing to enable the linking of data and to connect and enrich descriptions in accordance
with the Semantic Web developments. Its scope and main strength is the adoption
of an open, cross-domain framework in order to accommodate the growing number
of rich, community-oriented standards such as LIDO (Lightweight Information De-

http://www.europeana.eu

2First Workshop on Semantic Interoperability in the European Digital Library (SIEDL 2008)
3http://www.europeana.eu/schemas/ese/

“http://dublincore.org/

Shttp://www.europeana.eu/schemas/edm/

99

Chapter 8. Semantic Access to Cultural Content

e ——
Metadata Semantic
Ingestion <:> Repository
1
-

Museums

| —
- Semantic r]
Libraries m— Query Answering —————|

e —

EDM

Ontology

Archives
- Semantic

Enrichment

< Domain
Metadata
Standards

Thematic
Terminologies

Figure 8.1: The architecture of the proposed metadata aggregation and semantic query
answering system

scribing Objects)® for museums, EAD (Encoded Archival Description)” for archives
or METS (Metadata Encoding and Transmission Standard)® for libraries. Apart
from its ability to support standards of high richness, EDM also enables source
aggregation and data enrichment from a range of third party sources while clearly
providing the provenance of all information.

Following ongoing efforts to investigate usage of the semantic layer as a means to
improve user experience, we are facing the need to provide a more detailed semantic
description of cultural content. Semantic description of cultural content, accessible
through its metadata, would be of little use, if users were not in position to pose
their queries in terms of a rich integrated ontological knowledge. Currently, this
is performed through a data storage schema, which highly limits the aim of the
query. Therefore the use of query answering techniques that are based not only
on string matching over data that are stored in databases, but also on the implicit
meaning that can be found by reasoning based on detailed domain terminological
knowledge is important. In this way, content metadata can be terminologically de-
scribed, semantically connected and used in conjunction with other, useful, possibly
complementary content and information, independently published on the web. A
semantically integrated cultural heritage knowledge, facilitating access to cultural
content is, therefore, achieved. The key for this is to semantically connect metadata
with ontological domain knowledge through appropriate mappings.

Figure 8.1 shows the architecture of the whole system for access to cultural
heritage content, depicting the workflow of cultural aggregation processing and query
answering. On the left hand side, cultural content providers (museums, libraries,
archives) and aggregators wish to make their content visible to Europeana. This is
performed by ingesting (usually a subset of) their content metadata descriptions to
the Europeana portal. This is a rather difficult task, mainly due to the heterogeneity
of the metadata storage schemas (from both technological and conceptual point of

Shttp://www.lido-schema.org
"http://www.loc.gov/ead/
8http://www.loc.gov/standards/mets/

100

Chapter 8. Semantic Access to Cultural Content

view) that need to be transformed to the EDM form. The Metadata Ingestion
module provides users with the ability to map and transform their data to EDM
elements through a graphical interface and an associated automatic procedure. The
result of this module is an EDM version of the cultural content metadata. Moreover,
through the Semantic Enrichment module, the translated metadata are represented
as RDF triples, in the form of formal assertional knowledge and the Semantic Web
principles, and stored in the Semantic Repository.

The metadata elements are represented in the semantic repository as descrip-
tions of individuals, i.e., connections of individuals with entities of the terminological
knowledge. This knowledge is an ontological representation of EDM (the EDM On-
tology), that is connected, on the one hand, to Domain Metadata Standards (Dublin
Core, LIDO, CIDOC CRM? etc) sharing terminology with them and providing the
general description of ‘Who?’, “‘What?’, ‘When?’ and ‘Where?’ for every digital ob-
ject and, on the other hand, to more specific terminological axioms providing details
about species, categories, properties, interrelations etc. (e.g., brooches are made of
copper or gold). The latter knowledge (the Thematic Ontologies) is developed by
the providers and aggregators and can be used both for semantic enrichment of con-
tent metadata, and for reasoning in the Semantic Query Answering module. Thus,
it provides the user with the ability to build complex queries in terms of the above
terminology and access cultural content effectively.

In this chapter, we describe a cultural heritage application of the ontological
query answering techniques that have been described in the previous chapters. In the
next section, we first briefly describe how the enrichment of metadata is performed
through the use of thematic ontologies. Afterwards, we focus on the query answering
part of the system and show how we can combine the already implemented system
described in Chapter 6 with a query rewriting system to efficiently answer user
queries. In Section 8.2 we show an experimental study of the proposed system.

8.1 Metadata Enrichment and Query Answering
for Improved Resource Discovery

As we already described, the metadata are initially collected from data providers
and mapped to a common semantic data model, i.e., EDM in our case. The trans-
formation of the data of content providers to data in terms of the EDM ontology
results in a set of RDF triples that are more like an attribute-value set for each ob-
ject. An example of an RDF instance record is shown in Figure 8.2 where one can
see that EDM, on the one hand, re-uses terms from other namespaces, like RDF(S),
SKOS (Simple Knowledge Organization System) or DC (Dublin Core) namespaces
and, on the other hand, introduces new terms. Since the EDM ontology is a general
ontology referring to metadata descriptions for each object, the usage of thematic
ontologies for different domains is necessary in order to add semantically processable
information to each object. For example, the information that an object is of type
vase may not be adequate for a specific application; one may be interested in the
specific type of vase, like amphora or alabaster, or, in absence of such information,
in the characteristics that a vase should have in order to be classified to a spe-
cific type. First, thematic ontologies are created in collaboration with field experts.

Ywww.cidoc-crm.org/

101

Chapter 8. Semantic Access to Cultural Content

<rdf:RDF
xmins:rdf="http://www.w3.org/1992/02 /22 -rdf-syntax-ns#"
xmins:baseURI="http://base URI/™
xmins:skos="http:/ fwww.w3.0rg/2004/02/skos/cores"
xmins:ens="http://www.europeana.eu/schemas/edm,"
xmins:ore="http://www.openarchives.org/orefterms/™
xmins:dcterms="http:/ purl.org/dc/terms/"
xmins:de="http:/{purl.crg/dc/elements/1.1/"
xmins:ese="http://www_ europeana.eu/schemas/ese/" >
<rdf:Description rdf-about="http://baseURI/PhysicalThing/Local IDEN/MBN/54/28213">
<rdf-type>Museum object</rdf-type=
<rdf-type rdf:-resource="http://www . europeana.eu/schemas/edm,/PhysicalThing" />
</rdf.Description>
<rdf:Description rdf-about="http://baseURI/Aggregation/AggregationRes139">
<ens:landingPage
rdf-resource="http://collections.culture.gr/ltemPage. aspx ?Objecti=1%33"/>
<dc:creator=Athena; Greece</dc:creator>
<ens:aggregatedCHO rdfresource="http://baseUR|/PhysicalThing/Local
IDEM/MBI/54/28213">
<rdf-type rdf:resource="http://www.openarchives.orgfore/terms/Aggregation" />
</rdf:Description=
<rdf:Description rdf-about="http://baseURI/Proxy/ProxyRes139">
<dcterms:spatial></dcterms:spatial=
<dc:type=Emypadn Atopwn</doctype>
<dc:title>Emypadn 15uwmnxng</dctitle>
<dcsource=Ymnouvpyelo NoAmopol - Toupwpou</dosource>
<dcidentifier>EMN/MBMN/54/28=/dcidentifier>
<ens:language>Gresk</ens:language>
<ens;proxyln rdf-rescurce="http://baseURl/Aggregation/AzgregationRes1353" />
zdctype=Emypadn emrippua</dotype>
<dc:description>Enypadr. Midea and Gawieu ko pdppapo. Aemel TUAPG TG dv
apiotepng ywviag. Yjpog 20 ek, mharog 14,2 ek, mayog 2,6 ex., 0og ypappdrwy 2-2,2 ex.
Npogkevon: Beooakovikn, MNapskkhnol Mipyou Avatohwol TEouE, Kowtd oto Tpuywwio.
Keipevo emypadris: YNEP) [EYKHE / @{1JA{ININOY.</dc-description=
<dcterms-created>Sog awwvags/dcterms:created:=
<dcrights>Ymoupysio MNolmopow - Tovpurpok</dorights>
<dcrights>Hellenic Ministry of Culture - Tourism</dc:rights>
<dcterms-medium></dcterms-medium:>
<dcterms:spatial>Movczio Bulavrvou Mokmopol</doterms:spatial>
<ensicountry>Gresce</ens:country>
<dc:source=Hellenic Ministry of Culture - Tourism</dc-source>
<rdf-type rdf-resource="http://www openarchives.org/ore/terms/Proxy”/>
<ens;provider=Athena, Greece</ens-provider>
<ens:;proxyFor rdfresource="http://baseURI/PhysicalThing/Local IDEM/MBIM/54/258213" />
<ens:type>IMAGE</ens type>
</rdf:Description=
<frdf:RDF

Figure 8.2: RDF output of an example record

These ontologies include individuals which represent objects, concepts which define
sets of objects and roles defining relations between objects. Then, the data values
filling the attributes of the EDM-RDF instances are transformed to individuals of
the thematic ontologies. These individuals are then grouped together to form con-
cepts as imposed by the thematic ontologies. The transformation of data values to
individuals is performed, from a technical point of view, by mapping the data values
to IRIs. After this transformation the data is stored in a semantic repository, from
where they can be extracted through queries.

We now describe the techniques we have used to answer queries efficiently. In
particular, we have used our implemented system and combined it with a query
rewriting system. In this way, we exploit the advantages of both query answering
methods.

The query rewriting method that we use works with the Description Logic DL-

102

Chapter 8. Semantic Access to Cultural Content

Liter [4, 18] (OWL 2 QL), which as stated in Section 2.1 is an extension of DL-
Lite.ore that additionally allows for role hierarchies. As discussed in Section 3.2.2, the
DL-Lite languages are appropriate for splitting the problem of query answering into
two parts: the reasoning part which expands the initial query taking into account
terminological knowledge provided by the TBox and the data retrieval part which
retrieves the instances of the expanded query from the repository. We remind readers
of the query rewriting approach through an example.

Example 11. Let T be a TBox which consists of the two axioms :

WorkOfArt C dmadeBy.Artist (8.1)
Painting C WorkOfArt

and we ask the query
q = {madeBy(?z, 7y), Artist(?y)} (8.3)
The rewriting of q w.r.t. T consists of q and the following queries :

q' = {WorkOfArt(?z)} (8.4)
q" = {Painting(?z)} (8.5)

Algorithm 7 summarizes the strategy followed for the implementation of query
answering over cultural data. The input to the system is a conjunctive instance
query ¢, given by the user in SPARQL, and the queried ontology O = (T, A),
i.e., the semantic repository and the relevant knowledge from the EDM ontology,
the domain metadata standards and the thematic ontologies. The output of the
system is the set of answers of ¢ over O, i.e., all the mappings of query variables to
individuals of the semantic repository (the individuals of the ABox .A) that satisfy
the restrictions of the query and the ontology O.

Let us now describe the functionality of the system. In the beginning, the call
of the procedure findOWLQLTerm(7) results in the computation of 7¢, that is the
maximal subset of the terminology 7T containing only DL-Liter axioms. Then, with
the aid of a rewriting algorithm rewrQA, all the rewritings @), of ¢ in terms of Ty,
are computed, then executed over the ABox A, with the aid of execute and the set
Ans of correct answers is computed and given to the user. Obviously, Ans is not the
complete query answer set if 7\ Tor # 0, so in this case, we call the query answering
engine evaluate that finally computes all the correct answers based on Algorithm 4
of Chapter 6. The strong point of this hybrid query answering system is its ability
to work progressively, i.e., to compute first query answers that come from the QL
fragment of OWL and are easier to compute and then answers from the OWL DL
fragment that are more difficult to be computed. Note that the answers returned
by the rewriting method are not re-checked by method evaluate.

8.2 Experimental Evaluation of the System

The implemented system first uses the metadata aggregation subsystem to aggregate
the content provided to Europeana by different providers. We focus on the hellenic

103

Chapter 8. Semantic Access to Cultural Content

Algorithm 7 evaluateCulturalQueries
Input: O: the queried ontology (7, .A)
q: a conjunctive instance query ¢
Output: Ans: the answers of ¢ over O
: Tor = findOWLQLTerm(7)
Q= {rewrQA(q, ,TQL)}
Ans := {execute(Q,, A)}
if 7\ 7oL # 0 then
Ans := Ans U {evaluate(O, ¢)}
end if

content in Europeana, provided through the Athena project,’® since it is for this

content that we possess thematic knowledge. This knowledge is used to illustrate
the performance of the proposed semantic query answering methodology.

This content has been transformed to LIDO XML format. Each of the LIDO
records represents a museum object (proxy instance) and is described among others
by an identifier, a type, a description, the material it is made of, the museum where
it can be found, the date it was created. All this information is given as data values
(strings) of LIDO elements. In particular, this cultural content is classified in 55
categories (such as pottery, jewelry, stamps, wall paintings, engravings, coins) and
more than 300 types, within 17 time periods from 35,000 b.c. up to today.

In the following, 40,000 of the—provided to Europeana—hellenic objects have
been included in our study, with an equivalent amount of more than one million
(1,000,000) RDF triples being generated and used for query answering. Using the
metadata aggregation subsystem, the LIDO XML records were transformed to EDM
RDF (were mapped to the EDM ontology). However, this mapping does not suffice
for reasoning over these data, because the EDM ontology contains only general
axioms about the concepts and roles that describe the records. Moreover, data
values - strings are used for the description of objects, which do not allow for complex
reasoning. For example, the field that refers to the type of a cultural object is given
as a string and, hence, cannot be efficiently exploited by reasoning procedures.

To achieve semantic access, thus providing representations that can be exploited
by reasoners, we used the thematic knowledge for hellenic monuments created in
the framework of the Polemon project of the Directorate of the National Archive of
Monuments,'! which has been included in the Polydefkis terminology thesaurus of
Archaeological Collections and Monuments [12, 23, 69]. Polydefkis is a terminology
thesaurus that adopts a classification of objects according to their usage, operation,
material they are made of, appearance and decoration. Based mainly on usage, a
large number of objects and monument types has been classified accordingly.

In the following, we focus on the part of this knowledge referring to types of vases,
since metadata and photos of vases were provided by most above-mentioned hellenic
content providers to Europeana through the metadata aggregation subsystem. In
particular, the knowledge used contains axioms about vases in ancient Greece, i.e.,
concept inclusion axioms referring to the different types of vases, such as amphora,
alabaster, crater, as well as axioms regarding the appearance, usage, creation period

10 Access to cultural heritage networks across Europe
"Uhttp://nam.culture.gr

104

Chapter 8. Semantic Access to Cultural Content

and the material vases were made of. An excerpt from this knowledge (in Description
Logic syntax) mainly focusing on the use of vases is provided in Table 8.1.

Table 8.1: Excerpt of the used thematic ontology in Description Logic syntaz

Amphora C BigVase N ClosedVase

Alabaster C VaseWithoutHandles

Crater C JhasBase.NarrowBase

Pycnometer C JhasBody.CylindricalBody

Amphora # Alabaster

Bowl C OpenVase

Lecythus C VaseWithoutHandles L VaseWithOneHandle
EnclosedProduct C Solid U Liquid

Solid # Liquid

DrinkingLiquid C Liquid

Water C DrinkingLiquid

Perfume C Liquid

Cereal C Solid

Usage = Carrying U Storing L Drinking

dcontains™. T C EnclosedProduct

dJisUsedFor™. T C Usage

Alabaster C JisUsedFor.Carrying M Jcontains(QOil LI Perfume)
Amphora C disUsedFor.Carrying LI JdisUsedFor.Storing
Aryballos C dcontains.Perfume

Cup C disUsedFor.Drinking

Hydria C disUsedFor.Carrying M Jcontains.Water

Vase M JisUsedFor.Storing C StorageVase

Vase M Imadeln.ArchaicPeriod T ArchaicVase
JdisUsedFor.Storing M Jcontains.Liquid C LiquidStorageVase

After the creation of the above described thematic ontology, the EDM instances
were mapped to terms of this ontology. In particular, from the data values appearing
in the range of some roles, individual IRIs were created and after being connected
(through roles) to proxy instances they were added to the ontology. These were
further linked to concepts and roles of the ontology. The creation of individual
IRIs and their mapping to the thematic ontology was done using string matching
and stemming on the fields of the EDM ontology regarding the type, creation date,
material and museum in which proxy instances are found. The OWL API [55]
has been used for the creation of the thematic ontology and for the parsing and
processing of the EDM RDF data. For some data values, proxy instances were
directly assigned to concepts of the ontology. For example, each proxy has been put
as an instance of one vase type. As far as the creation date of objects is concerned,
time was split to periods of particular interest and each proxy instance was assigned
to one of these periods according to the value in the appropriate field of the EDM
RDF data. The resulting tuples of this procedure were then added in a Sesame!?
repository.

Using the above described ontologies and data sets, we applied the methodology
described in Section 8.1 to provide answers to queries. In particular, the procedure

2http://www.openrdf .org/

105

Chapter 8. Semantic Access to Cultural Content

Table 8.2: Response times (ms) of the two query answering methods and system results

Query Time(1) | Time(2) | Results | Results \

Reas

1. ¢ = {Bowl(7z)} 145 3,765 127 127

2. ¢ = {OpenVase(?z)} 165 13,080 404 0

3. ¢ = {Vase(?z), madeBy(7x, 7y), 295 15,911 348 0

Clay(?y), madeln(?x, 7z),

CopperPeriod(7z)}

4. ¢ = {VaseWithoutHandles(?x)} 217 16,859 357 0

5. ¢ = {ArchaicAmphora(?x), 223 27,945 19 0
isUsedFor(?z, 7y),

Storing(?y)}

Figure 8.3: A closed vase (on the left) and an open vase (on the right)

rewrQA is performed by the Rapid system [21], a goal-oriented rewriting system. The
procedure evaluate is performed by the implemented system described in Algorithm 4
of Chapter 6. All experiments were performed on a Windows 7 machine with a
double core 2.53GHz Intel x86 64 bit processor and Java 1.6.

A sample of the tested queries together with their running times are shown in
Table 8.2. The second column refers to the running times of the rewrQA and execute
methods of Section 8.1, while the third column refers to the running time of the
method evaluate of Section 8.1. Table 8.2 does not show the total running time of
our system, since it progressively provides the results as they are computed by the
two methods. The fourth column shows the number of results of our system, while
the fifth column shows the number of results of the system when we do not use
reasoning.

We start with nearly database/triple store queries that do not need any reasoning
to get answered but involve only a retrieval task from the repository and continue

Figure 8.4: A vase without handles (left), with one handle (middle) and with two handles
(right)

106

Chapter 8. Semantic Access to Cultural Content

with queries that make use of knowledge that is expressible in OWL 2 DL (SROZQ).
In particular, Query 1 is matched to triples that are explicitly found in the triple store
without any reasoning taking place. Queries 2,3,4,5 all require the use of reasoning.
For Queries 2,3 we can take all the answers from the query rewriting technique, i.e.,
the query rewriting approach is complete for these queries. Queries 4 and 5 use some
OWL 2 DL axioms of the created thematic ontology, which are not expressible in DL-
Litegr. In this case, we use the query answering approach described in Algorithm 4
of Section 6.1 to retrieve complete answers. The query rewriting technique does not
return all answers for these queries, i.e., it is incomplete. Looking at the time it takes
to answer the queries, it is evident that the query rewriting technique scales much
better for larger amounts of data. However, as we stated before it is incomplete
for some queries. The query ordering optimizations presented in Chapter 4 have
an effect on the answering times of Queries 3 and 5, which contain more than
one atoms. In particular, static ordering produces good results in both cases. It is
important to notice that, without the use of the thematic ontology and the proposed
semantic query answering system, much fewer results would be obtained, as shown
in Table 8.2 (Results \ Reas). Figure 8.3 shows an example of a closed and an open
vase; the latter is included in the results of Query 2 of Table 8.2, while Figure 8.4
shows examples of vases with zero, one and two handles; the first is included in the
results of Query 4 of Table 8.2. All examples shown can be found in the website of
the Hellenic Ministry of Culture and Tourism.!3

As future work one could explore whether techniques that are currently used for
query answering over expressive knowledge using OWL RL reasoning systems can
be used with OWL QL systems. For example, one could explore how the use of a
query rewriting algorithm over a transformation of the queried OWL DL ontology
could lead to the production of a small over-approximation set of query answers
over the OWL DL ontology as is done in OWL RL [143, 144]. In this way, only
the mappings in the over- minus the under-approximation set remain to be checked
by method evaluate. Moreover, work that has been done in ontology repair for
repairing an OWL DL ontology O for a given incomplete OWL RL reasoner over O
may be relevant [132]. For example, one could explore if and under which conditions
repairing an OWL DL ontology O could make an (incomplete) OWL QL reasoner
over O, complete over O plus some additional axioms.

Before closing this chapter, it is worth noting that the images of the cultural
objects are usually provided by content providers apart from their metadata. Since,
the knowledge given by content providers (in the form of metadata) may be incom-
plete, for example, there may be a vase for which it is not specified or it cannot
be concluded (by the use of the metadata and ontology) whether it has zero, one
or two handles, the images of cultural objects can be exploited to extract addi-
tional information. In this direction, work has been performed that combines the
described query answering module with machine learning techniques, in particular,
Support Vector Machines (SVMs) [52], to, more accurately, answer user queries us-
ing features extracted from the images of the cultural objects [79]. In particular, we
have used the MPEG-7 features [19] together with the SURF features (Speeded-Up
Robust Features) [8] of cultural images extracted by the use of image processing
algorithms to train SVMs so that they learn to classify the objects to specific cat-
egories like vase types (amphora, bowl, hydria) or vase characteristics (open vase,

3http://collections.culture.gr/

107

Chapter 8. Semantic Access to Cultural Content

vase with two handles); we have trained one SVM for each concept of the queried
ontology. The input to each SVM is a two-dimensional matrix, each value of which
represents the similarity between a pair of images from the training set based on
their visual feature vector; as a similarity measure we have used a normalized linear
kernel function [117, 14]. The output of each SVM is a category/concept, to which
the cultural object should be classified. Afterwards, the trained SVMs are used to
classify new cultural objects; each SVM can decide whether an object belongs or
does not belong to a category based on its visual features which are given as input to
the SVM. The answer to a concept instance retrieval query is computed by iterating
over all objects and taking those objects that the respective SVM classified to the
query concept. The answer to a concept query (containing a conjunction of concept
atoms) according to the SVM is then taken after joining the query answers for each
query concept atom. In the end, the answer to a concept query is computed by
taking the union of the answers provided by the SVM and the answers provided
by Algorithm 4 of Section 6.1 using the ontology and metadata that are described
above. For more information we refer interested readers to [79].

108

Chapter 9

Conclusions and Future Work

Query answering in the context of ontologies has gained much attention during the
last couple of years. Because of the high worst case complexity of answering con-
junctive instance queries over ontologies represented in Description Logics, current
methods targeting the development of practical systems mainly follow two distinct
directions. The first direction suggests reduction of the expressivity of the ontology
language used for the representation of the domain knowledge, while the second sac-
rifices completeness of the query answering process, providing as much expressivity
as it is needed. Up to now, there is not much work in optimizing query answering
over ontologies in expressive Description Logics, like SROZQ.

9.1 Conclusions and Significance of the Work

In this thesis, we aimed at bridging the gap between high expressivity of the queried
ontological knowledge and practicality of query answering over this knowledge. The
main goal was the development of a query answering algorithm together with op-
timizations for SPARQL-OWL query answering over ontologies in expressive lan-
guages. SPARQL-OWL is a very expressive query language, which allows queries
with variables in place of concept and role names apart from individuals. To the
best of our knowledge, there is no work that aims at optimizing answering such
complex queries.

In the beginning, we have introduced related work and analyzed existing tech-
niques and optimizations for answering conjunctive instance queries. Afterwards,
we have focused on devising and optimizing an algorithm for efficiently evaluating
queries. In order to achieve this, the following tasks were performed:

e Development of a query evaluation algorithm for the OWL 2 Direct Semantics
entailment regime of SPARQL: The SPARQL OWL entailment regime only
specifies the set of valid mappings for query variables giving implementors the
freedom to decide how they will compute the answers using a great variety of
different procedures such as tableau, hypertableau, resolution. In the current
thesis we have chosen to use hypertableau calculi and have defined an efficient
way to evaluate queries by taking into account relations that exist between
axiom templates. The presented algorithm is, nevertheless, more generally
applicable and, instead of hypertableau, other reasoning calculi can be used.

e Definition of a cost model for ordering the axiom templates of queries: We

109

Chapter 9. Conclusions and Future Work

have developed a procedure to search for efficient query execution plans. The
possible plans for a query are distinguished in terms of their costs, which
are determined by means of a cost function and, based on this, the plans are
placed in an order of increasing cost. The computation of the costs is based on
information about the known and possible instances of concepts and roles and
the known and possible equivalent individuals. This information is extracted
from a model abstraction built by an OWL reasoner. We have presented two
cost functions, a static and a dynamic one and, based on these functions, we
have devised algorithms for finding optimal or near optimal query execution
orders. According to static ordering, the costs (and the execution order) are
determined in the beginning before the actual query evaluation takes place,
whereas, in the dynamic case, the costs are computed in parallel with query
evaluation, taking into account the results of the execution of previous axiom
templates in the plan. For the dynamic case we have improved the performance
by exploiting an individual clustering approach that allows for computing the
cost functions based on one individual sample per cluster. Moreover, we have
explained that the algorithm for the extraction of the known and possible sets
of concept and role instances can be seen as an approximate instance retrieval
algorithm, in which, the known instances are an under-approximation and the
possible instances are an over-approximation of the answers to a query atom.
This means that any approximate instance retrieval algorithm can be used in
place of the instance retrieval algorithm used in the thesis for answering queries
with the proposed query answering and optimization techniques. Moreover,
we have shown how our instance retrieval algorithm can be used to define a
query answering algorithm.

Development of optimizations for queries with complex axiom templates: We
have developed optimizations that exploit the concept and the role hierarchies
of the queried ontologies in order to reduce the number of consistency checks
performed during the evaluation of complex axiom templates. For this reason,
we have defined the notion of polarity of concept and role variable occurrences
within axiom templates and proved that, depending on the polarity, we can
traverse the concept and role hierarchies in such a way, that some possible
solution mappings can be pruned, reducing in this way the number of expensive
consistency checks that need to be performed.

Development of a system for efficiently answering SPARQL-OWL queries and
evaluation of this system: The proposed approach has been implemented and a
system has been developed that can be used for efficiently answering SPARQL-
OWL queries over OWL 2 DL ontologies.! The system has been implemented
as a SPARQL wrapper that can be used with any reasoner that implements
the OWLReasoner interface of the OWL API [55]. The developed system has
already started to be used; the TrOWL reasoning framework uses the SPARQL
wrapper to provide SPARQL support. Using this system, we have evaluated
the efficiency of the proposed query ordering and optimization techniques.
From our experimental study it has become obvious that the static ordering
usually outperforms the dynamic one when accurate statistics are available.

https://code.google.com/p/owl-bgp/

110

Chapter 9. Conclusions and Future Work

This changes, however, when the statistics are less accurate, e.g., due to non-
deterministic reasoning decisions. The performance of the system is usually
improved when cluster-based sampling is used during query evaluation. For
queries that go beyond conjunctive instance queries, we observe an improve-
ment of up to three orders of magnitude when the proposed optimizations are
used.

e Use of the developed system in a practical application: The developed system
has been used for answering queries over a large amount of data coming from
the cultural heritage domain.

9.2 Future Work

The work in the current thesis can be extended in several directions. In every case
the goal is to further reduce the number of consistency checks performed during the
query evaluation procedure.

First of all, the approximate query answering algorithm that has been described
in Section 4.5 to quickly find sound answers to conjunctive instance queries can
easily be extended to a sound and complete query answering algorithm, as shown
in Algorithm 8 (evaluatelntersecQans). Algorithm 8 takes as input an ontology O
and a query ¢ and, using Algorithm intersecQans from Section 4.5, it returns a
set of solutions that consists of the known solutions for ¢, i.e., the set K;[g] and
those possible solutions that lead to the entailment of the instantiated query by
O. 1t is interesting to see how efficient this algorithm is when applied to real life
ontologies. In general, we expect that this algorithm will have similar performance
results with the query answering algorithm presented in the thesis for conjunctive
instance queries that contain atoms with only known instances, since, in this case,
both algorithms find answers to such queries by joining the known instances of
every atom in each query. For the case of queries containing atoms with possible
instances the picture is less clear. On the one hand, the sequential joining and
creation of answers for sub-execution plans of the chosen query execution plan, as
presented in the thesis, results in smaller intermediate joins; we determine which
possible instances are real ones by performing consistency checks. On the other
hand, the reduction in the number of possible instances of query atom concepts or
roles that need to be checked, due to the fact that some of these possible instances
do not join with (known or possible) instances of next query atoms in the execution
plan, may lead to better execution times for some queries and ontologies. Let us
consider Example 10 from Section 4.5. On the one hand, using Algorithm 8, we
avoid performing a consistency check for the mapping {7z +— b,7y — e}, which
we would have checked if Algorithm 4 had been used and b was an instance of A.
On the other hand, if b was not an instance of A, then the evaluation of the first
atom, A(?z), would prune this (possible) mapping and, hence, this mapping would
not further be joined with the mappings for the next query atoms in the execution
plan, something which would have been done by Algorithm 8. Hence, it would be
interesting to study this trade-off between the increase in the number of joins needed
to evaluate a query that comes with a possible decrease in the number of possible
instances that need to be checked and the decrease in the number of performed joins
that may come with an increase in the number of possible instances that need to be

111

Chapter 9. Conclusions and Future Work

Algorithm 8 evaluatelntersecQans(O, q)
Input: O: the queried SROZQ ontology
q: a conjunctive instance query over O
Output: a set of solutions for evaluating ¢ over O
1: (Kilq], P[q]) := intersecQans(O, q)

2: Rans = {p | € Kilgl} U{p| p € Blql,0 = u(q)}
3: return R,

checked.

In this direction another technique can be explored that may further reduce
the possible instances in the evaluation of conjunctive instance queries. Although
this technique increases the number of performed joins between query atoms as it
adds additional atoms to the query, we generally expect that it will lead to better
execution times as it can significantly reduce the number of possible instances of
atoms. According to this technique, the initial query is extended, using the TBox,
with additional atoms that do not affect the answers to this query over any dataset,
and which may contain useful information for reducing the possible instances of
query concepts and roles. Note that this reduction is query specific, i.e., the reduced
sets of known and possible instances of query concepts and roles are valid only for
the given query. This optimization is useful not only for the actual query evaluation
but also for the creation of better estimates for query ordering. This is possible
since, using this technique, the results of joins of query atoms can, more accurately,
be taken into account. In more detail, assuming that an ontology O = (T, .A) and
a conjunctive instance query q is given, the steps that can be followed according to
this technique are the following;:

1. The variables in the initial query ¢ are replaced by fresh individual names
producing a corresponding query ABox.

2. Materialization is afterwards performed over the queried TBox and the (small)
query ABox constructed in Step 1 and the entailed concept and role name
assertions constitute the extended query ABox.

3. The individual names from the extended query ABox (that were used for
variable substitutions in Step 1) are then replaced with the corresponding
variables from ¢ and a new query ¢ is produced that is equivalent with ¢. This
means that, for any ABox A, the answers of ¢ over (T, .A) are the same as the
answers of ¢ over (7, A).

4. The additional query atoms in ¢ can then be used for reducing the sets of
possible instances to which query variables are mapped.

The performance of this and the previous approach should be experimentally
tested and compared or possibly interweaved with the approach developed in the
current thesis. A preliminary work on the above optimizations has already been
performed [35].

The absence of suitable benchmarks restricts the thorough evaluation and test-
ing of the techniques developed for query answering. In the thesis, the limited
number of existing benchmarks [45, 88] have been used for testing the query an-
swering techniques for conjunctive instance queries. Moreover, queries developed

112

Chapter 9. Conclusions and Future Work

for SPARQL-DL have been used over existing ontologies to test the efficiency of the
presented techniques. In order to test the effect of the proposed optimizations for
the case of queries with complex axiom templates, we have manually created queries
for two ontologies.

In order to give scientists working on query answering over ontologies the ability
to test the techniques they propose with a greater number and more interesting
benchmarks, an important future work is the generation of near-realistic ontologies
written in expressive Description Logics that can be used for testing a system’s
scalability. Several TBoxes in expressive DLs have been developed in the last couple
of years. However, these usually have very small ABoxes or none at all and no queries
are usually given for them. Hence, we are currently looking at techniques that, given
a TBox in an expressive Description Logic and (possibly) a small representative
ABox, they try to increase the size of the ABox in such a way that this ABox
expansion is done in an interesting way. We say “in an interesting way”, because,
for example, a simple multiplication of a given ABox would not be sufficient as tools
for query answering are likely to resort to partitioning techniques. In order to avoid
this, transformations need to be developed that modify the replicated ABoxes in such
a way that certain properties of the original ABox are preserved. For example, it is
reasonable to preserve the consistency of the original ABox or it may be interesting
to preserve non-empty answers to queries.

Apart from the above described more concrete future work it would also be
interesting to integrate the techniques presented in the thesis with more techniques
and optimizations from the area of databases, such as the use of magic sets [11] or the
use of indexes for the efficient retrieval of known and possible instances or answers.
Moreover, since the presented approach can be used to develop an approximate query
answering algorithm, it would be interesting to perform experiments and compare
the performance of this approach and other approximate query answering systems
proposed in the literature.

113

Chapter 9. Conclusions and Future Work

114

Bibliography

1]

[10]

OBO and OWL: Leveraging semantic web technologies for the life sciences. In
Proceedings of the 6th International and 2nd Asian Semantic Web Conference
(ISWC2007+ASWC2007), 2007.

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison Wesley, 1994.

Andrea Acciarri, Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,
Maurizio Lenzerini, Mattia Palmieri, and Riccardo Rosati. Quonto: Querying
ontologies. In Proceedings of the Twentieth National Conference on Artificial
Intelligence and the Seventeenth Innovative Applications of Artificial Intelli-
gence Conference, pages 1670-1671, 2005.

Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Za-
kharyaschev. The DL-lite family and relations. J. Artif. Int. Res., 36(1):1-69,
September 2009.

Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the £L£ enve-
lope. In Proceedings of the 19th International Joint Conference on Artificial
Intelligence (IJCAI'05), pages 364-369, 2005.

Franz Baader, Martin Buchheit, and Bernhard Hollunder. Cardinality restric-
tions on concepts. Artif. Intell., 88(1-2):195-213, 1996.

Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and
Peter Patel-Schneider, editors. The Description Logic Handbook: Theory, Im-
plementation, and Applications. Cambridge University Press, second edition,
2007.

Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-
Up Robust Features (SURF). Computer Vision and Image Understanding,
110(3):346-359, June 2008.

Sean Bechhofer and Carole Goble. Description logics and multimedia - apply-
ing lessons learnt from the galen project. In Proceedings of the workshop on
Knowledge Representation for Interactive Multimedia Systems (KRIMS’96),
at ECAI’96, 1996.

Dave Beckett, Tim Berners-Lee, Eric Prud’hommeaux, and Gavin Carothers,

editors. Turtle — Terse RDF Triple Language. W3C Working Draft, 10 July
2012. Available at http://www.w3.org/TR/turtle/.

115

[11]

[12]

[15]

[16]

[18]

[19]

[20]

[21]

22]

116

Bibliography

Catriel Beeri and Raghu Ramakrishnan. On the power of magic. In Proceedings
of the Sizth ACM SIGMOD Symposium on Principles of Database Systems
(PODS), pages 269-284. ACM, 1987.

Ch. Bekiari, Ch. Gritzapi, and D Kalomirakis. POLEMON : A Federated
Database Management System for the Documentation, Management and Pro-
motion of Cultural Heritage. In Proceedings of the 26th Conference on Com-
puter Applications in Archaeology, 1998.

Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Sci-
entific American, 284(5):34-43, May 2001.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006.

Ronald Brachman and Hector Levesque. Knowledge Representation and Rea-
soning. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

Dan Brickley and Ramanathan V. Guha, editors. RDF Vocabulary Descrip-
tion Language 1.0: RDF Schema. W3C Recommendation, 10 February 2004.
Available at http://www.w3.org/TR/rdf-schema/.

Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenz-
erini, and Riccardo Rosati. DL-Lite: Tractable description logics for on-
tologies. In Proceedings of the Twentieth National Conference on Artificial
Intelligence (AAAI 2005), pages 602-607, 2005.

Diego Calvanese, Guiseppe De Giacomo, Domenico Lembo, Maurizio Lenz-
erini, and Riccardo Rosati. Tractable reasoning and efficient query answering
in description logics: The DL-Lite family. Journal of Automated Reasoning,
39(3):385-429, 2007.

S. F. Chang, T. Sikora, and A. Puri. Overview of the MPEG-7 standard.
IEEE Trans. Circuits and Systems for Video Technology, 11(6):688-695, June
2001.

Surajit Chaudhuri. An Overview of Query Optimization in Relational Systems.
In Proceedings of the Seventeenth ACM SIGMOD Symposium on Principles
of Database Systems, pages 34—43. ACM Press, 1998.

Alexandros Chortaras, Despoina Trivela, and Giorgos Stamou. Optimized
query rewriting for OWL 2 QL. In Proceedings of the 25rd International Con-
ference on Automated Deduction, CADE’11, pages 192-206. Springer-Verlag,
2011.

Mike Dean and Guus Schreiber, editors. OWL Web Ontology Language
Reference. W3C Recommendation, 10 February 2004. Available at http:
//www.w3.org/TR/owl-ref/.

Bibliography

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

D.Kalomirakis and A.Alexandri. Deploying the POLEMON system for the
National Monuments Record of Greece: experience and outlook. In Com-
puter Applications and Quantitative Methods, Archaeology Conference. CEUR
Electronic Workshop Proceedings, 2002.

Julian Dolby, Achille Fokoue, Aditya Kalyanpur, Aaron Kershenbaum, Edith
Schonberg, Kavitha Srinivas, and Li Ma. Scalable semantic retrieval through

summarization and refinement. In Proceedings of the Twenty-Second AAAI
Conference on Artificial Intelligence, AAAI pages 299-304, 2007.

Julian Dolby, Achille Fokoue, Aditya Kalyanpur, Li Ma, Edith Schonberg,
Kavitha Srinivas, and Xingzhi Sun. Scalable Grounded Conjunctive Query
Evaluation over Large and Expressive Knowledge Bases. In Proceedings of the
7th International Semantic Web Conference, pages 403—418, 2008.

Julian Dolby, Achille Fokoue, Aditya Kalyanpur, Edith Schonberg, and
Kavitha Srinivas. Scalable highly expressive reasoner (SHER). Journal of
Web Semantics, 7(4):357-361, 2009.

Thomas Eiter, Magdalena Ortiz, Mantas Simkus, Trung-Kien Tran, and Guo-
hui Xiao. Query Rewriting for Horn-SHIQ Plus Rules. In Proceedings of the
Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.

Melvin Fitting. First-Order Logic and Automated Theorem Proving. Springer,
2nd edition, 1996.

Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database
Systems: The Complete Book. Prentice Hall Press, Upper Saddle River, NJ,
USA, 2 edition, 2008.

Birte Glimm. Querying Description Logic Knowledge Bases. Doctoral thesis,
University of Manchester, 2007.

Birte Glimm. Using SPARQL with RDFS and OWL Entailment. In Reasoning
Web, Semantic Technologies for the Web of Data - 7th International Summer
School, pages 137-201, 2011.

Birte Glimm, Ian Horrocks, Carsten Lutz, and Uli Sattler. Conjunctive query
answering for the description logic SHIQ. Journal of Artificial Intelligence
Research, 31:151-198, 2008.

Birte Glimm, Ian Horrocks, Boris Motik, Rob Shearer, and Giorgos Stoilos. A
novel approach to ontology classification. Journal of Web Semantics: Science,
Services and Agents on the World Wide Web, 14:84-101, 2012.

Birte Glimm, Ian Horrocks, and Ulrike Sattler. Unions of conjunctive queries
in SHOQ. In Proceedings of the 11th International Conference on Principles
of Knowledge Representation and Reasoning (KR’08), pages 252-262, 2008.

Birte Glimm, Yevgeny Kazakov, llianna Kollia, and Giorgos B. Stamou. Using
the TBox to Optimise SPARQL Queries. In Proceedings of the 25th Interna-
tional Workshop on Description Logics (DL-2013), CEUR Workshop Proceed-
ings, 2013.

117

[36]

37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

118

Bibliography

Birte Glimm and Markus Krotzsch. SPARQL beyond subgraph matching. In
Proceedings of the 9th International Semantic Web Conference (ISWC’10).
Springer, 2010.

Birte Glimm and Chimezie Ogbuji. SPARQL 1.1 entailment regimes. W3C
Recommendation, 21 March 2013. Available at http://www.w3.org/TR/
sparqglii-entailment/.

Christine Golbreich, Songmao Zhang, and Olivier Bodenreider. The founda-
tional model of anatomy in OWL: Experience and perspectives. Journal of
Web Semantics, 4(3):181-195, 2006.

Georg Gottlob, Giorgio Orsi, and Andreas Pieris. Ontological Queries: Rewrit-
ing and Optimization. In Proceedings of the 27th International Conference on
Data Engineering, ICDE 11, pages 2-13, 2011.

Georg Gottlob and Thomas Schwentick. Rewriting ontological queries into
small nonrecursive datalog programs. In Proceedings of the Thirteenth Interna-

tional Conference on Principles of Knowledge Representation and Reasoning,
KR 2012.

Anastasios Gounaris, Norman W. Paton, Alvaro A.A. Fernandes, and Ri-
zos Sakellariou. Adaptive query processing: A survey. In Advances in
Databases, 19th British National Conference on Databases, BNCOD, pages
11-25. Springer, 2002.

Bernardo Cuenca Grau, Ilan Horrocks, Boris Motik, Bijan Parsia, Peter F.
Patel-Schneider, and Ulrike Sattler. OWL 2: The next step for OWL. Journal
of Web Semantics, 6(4):309-322, 2008.

Bernardo Cuenca Grau, Boris Motik, Giorgos Stoilos, and Tan Horrocks. Com-
pleteness guarantees for incomplete ontology reasoners: Theory and practice.
Journal of Artificial Intelligence Research (JAIR), 43:419-476, 2012.

Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. De-
scription logic programs: combining logic programs with description logic.
In Proceedings of the 12th International Conference on World Wide Web
(WWW’03), pages 48-57. ACM, 2003.

Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for OWL
knowledge base systems. Journal of Web Semantics, 3(2-3):158-182, 2005.

V. Haarslev, R. Mdller, and A.Y. Turhan. Exploiting Pseudo Models for
TBox and ABox Reasoning in Expressive Description Logics. In Proceedings of
the 1st International Joint Conference on Automated Reasoning (IJCAR01),
pages 29-44, 2001.

Volker Haarslev and Ralf Moller. Racer system description. In Proceedings of
the 1st International Joint Conference on Automated Reasoning (IJCAR01),
pages 701-705, 2001.

Volker Haarslev and Ralf Méller. On the scalability of description logic in-
stance retrieval. Journal of Automated Reasoning, 41(2):99-142, 2008.

Bibliography

[49]

[50]

[62]

Volker Haarslev, Ralf Moller, and Michael Wessel. Querying the semantic web
with Racer + nRQL. In Proceedings of the KI-200/ International Workshop
on Applications of Description Logics, 2004.

Steve Harris and Andy Seaborne, editors. SPARQL 1.1 Query Language.
W3C Proposed Recommendation, 08 November 2012. Available at http:
//www.w3.org/TR/sparqllil-query/.

Patrick Hayes, editor. RDF Semantics. W3C Recommendation, 10 February
2004. Available at http://www.w3.org/TR/rdf-mt/.

Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2nd edition, 1998.

Pascal Hitzler, Markus Krotzsch, and Sebastian Rudolph. Foundations of
Semantic Web Technologies. Chapman & Hall/CRC, 2009.

Pascal Hitzler and Denny Vrandecic. Resolution-based approximate reasoning
for OWL DL. In Proceedings of the 4th International Semantic Web Confer-
ence (ISWC 2005), pages 383-397, 2005.

Matthew Horridge and Sean Bechhofer. The OWL API: A Java API for
working with OWL 2 ontologies. In Proceedings of the OWLED 2009 Workshop
on OWL: Experiences and Directions, 2009.

Matthew Horridge and Peter F. Patel-Schneider, editors. OWL 2 Web Ontol-
oqy Language: Manchester Syntax. W3C Working Group Note, 27 October
2009. Available at http://www.w3.org/TR/owl2-manchester-syntax/.

Ian Horrocks. Optimising tableaux decision procedures for description logics.
Doctoral thesis, University of Manchester, 1997.

lan Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible
SROZIQ. In Proceedings of the 10th International Conference on Principles
of Knowledge Representation and Reasoning (KR’06), pages 57-67.

Ian Horrocks and Ulrike Sattler. A description logic with transitive and inverse
roles and role hierarchies. Journal of Logic and Computation, 9(3):385-410,
1999.

Ian Horrocks and Ulrike Sattler. A tableaux decision procedure for SHOIQ.
In Proceedings of the 19th International Joint Conference on Artificial Intel-
ligence (IJCAI), pages 448-453, 2005.

Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for ex-
pressive description logics. In Proceedings of the 6th International Conference
on Logic Programming and Automated Reasoning, LPAR ’99, pages 161-180,
1999.

Ian Horrocks and Stephan Tobies. Reasoning with axioms: Theory and prac-
tice. In Proc. of the 7th International Conference on Principles of Knowledge
Representation and Reasoning (KR), pages 285-296, 2000.

119

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

120

Bibliography

Hai Huang and Chengfei Liu. Estimating selectivity for joined rdf triple pat-
terns. In Proceedings of the 20th ACM International Conference on Informa-
tion and Knowledge Management, CIKM ’11, pages 1435-1444, 2011.

Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reasoning in Description
Logics by a Reduction to Disjunctive Datalog. Journal of Automated Reason-
ing, 39(3):351-384, 2007.

Ulrich Hustadt, Boris Motik, and Ulrike Sattler. Reducing SHZ Q™ descrip-
tion logic to disjunctive datalog programs. In Proceedings of the 9th Interna-
tional Conference on Principles of Knowledge Representation and Reasoning
(KR’04), pages 152-162. AAAT Press, 2004.

Yannis loannidis. The history of histograms (abridged). In Proc. of VLDB
Conference, 2003.

Yannis E. Ioannidis. Query optimization. ACM Comput. Surv., 28(1):121-123,
March 1996.

Matthias Jarke and Jiirgen Koch. Query optimization in database systems.
ACM Computing Surveys, 16:111-152, 1984.

D. Kalomirakis and A. Kalatzopoulou. Polydefkis: A Terminology Thesauri
for Monuments. In Applications of Advanced Technology in Archaelogical Re-
search and Spilling of its Results, 2000.

Zoi Kaoudi, Kostis Kyzirakos, and Manolis Koubarakis. SPARQL Query Op-
timization on Top of DHTs. In Proceedings of the 9th International Semantic
Web Conference, pages 418-435, 2010.

Alissa Kaplunova, Ralf Mdller, Sebastian Wandelt, and Michael Wessel. To-
wards Scalable Instance Retrieval over Ontologies. In Proceedings of the 4th

International Conference on Knowledge Science, Engineering and Manage-
ment, KSEM 2010, pages 436448, 2010.

Yevgeny Kazakov. RZQ and SROZQ are harder than SHOZQ. In Proceed-
ings of the 11th International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR’08), pages 274-284. AAAT Press, 2008.

[lianna Kollia and Birte Glimm. Cost Based Query Ordering over OWL On-
tologies. In Proceedings of the 24th International Workshop on Description
Logics (DL-2012), CEUR Workshop Proceedings, 2012.

Ilianna Kollia and Birte Glimm. Cost Based Query Ordering over OWL On-
tologies. In Proceedings of the 11th International Semantic Web Conference,

volume 7649 of Lecture Notes in Computer Science, pages 231-246. Springer,
2012.

[lianna Kollia and Birte Glimm. Optimizing SPARQL Query Answering over
OWL Ontologies. J. Artif. Intell. Res. (JAIR), 48:253-303, 2013.

Bibliography

[76]

78]

[81]

[82]

Ilianna Kollia, Birte Glimm, and Ian Horrocks. Answering Queries over OWL
Ontologies with SPARQL. In Proceedings of the 8th International Workshop on
OWL: Ezperiences and Directions (OWLED), volume 796 of CEUR Workshop
Proceedings, 2011.

[lianna Kollia, Birte Glimm, and Ian Horrocks. Query Answering over SROIQ
knowledge bases with SPARQL. In Proceedings of the 24th International
Workshop on Description Logics (DL 2011), CEUR Workshop Proceedings,
2011.

[lianna Kollia, Birte Glimm, and Ian Horrocks. SPARQL Query Answering
over OWL Ontologies. In Proceedings of the S8th FExtended Semantic Web
Conference (ESWC’11), Lecture Notes in Computer Science, pages 382-396.
Springer, 2011.

[lianna Kollia, Yannis Kalantidis, Kostas Rapantzikos, and Andreas Stafy-
lopatis. Improving Semantic Search in Digital Libraries Using Multimedia
Analysis. Journal of Multimedia, 7(2):193-204, 2012.

Ilianna Kollia, Kostas Rapantzikos, Giorgos B. Stamou, and Andreas Stafy-
lopatis. Semantic Query Answering in Digital Libraries. In Proceedings of the
7th Hellenic Conference on Artificial Intelligence (SETN), Lecture Notes in
Computer Science, pages 17-24. Springer, 2012.

[lianna Kollia, Vassilis Tzouvaras, Nasos Drosopoulos, and Giorgos B. Stamou.
A Systemic Approach for Effective Semantic Access to Cultural Content. Se-
mantic Web Journal, 3(1):65-83, 2012.

Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and Michael
Zakharyaschev. The combined approach to query answering in DL-Lite. In

Proceedings of the 12th International Conference on Principles of Knowledge
Representation and Reasoning (KR’10). AAAI Press, 2010.

Petr Kremen. Building Ontology-Based Information Systems. Doctoral thesis,
Czech Technical University in Prague, 2012.

Petr Kremen and Evren Sirin. SPARQL-DL implementation experience. In
Proceedings of the 4th OWLED Workshop on OWL: Experiences and Direc-
tions, volume 496 of CEUR Workshop Proceedings, 2008.

Markus Krotzsch. Efficient inferencing for OWL EL. In Proceedings of the 12th
European Conference on Logics in Artificial Intelligence (JELIA’10), volume
6341 of LNAI pages 234-246. Springer, 2010.

Markus Krotzsch. OWL 2 Profiles: An Introduction to Lightweight Ontology
Languages. In Reasoning Web, Semantic Technologies for the Web of Data -
8th International Summer School, volume 7487 of Lecture Notes in Computer
Science, pages 112-183. Springer, 2012.

Carsten Lutz, David Toman, and Frank Wolter. Conjunctive Query Answering
in the Description Logic EL using a relational database system. In Proceedings
of the 21st International Joint Conference on Artificial Intelligence (IJCAI),
pages 2070-2075, 2009.

121

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

122

Bibliography

Li Ma, Yang Yang, Zhaoming Qiu, Guotong Xie, Yue Pan, and Shengping Liu.
Towards a complete OWL ontology benchmark. In The Semantic Web: Re-
search and Applications, Lecture Notes in Computer Science. Springer, 2006.

Michael V. Mannino, Paicheng Chu, and Thomas Sager. Statistical profile
estimation in database systems. ACM Comput. Surv., 20(3):191-221, 1988.

Frank Manola and Eric Miller, editors. Resource Description Framework

(RDF): Primer. W3C Recommendation, 10 February 2004. Available at
http://www.w3.org/TR/rdf-primer/.

Boris Motik. Reasoning in Description Logics using Resolution and Deduc-
tive Databases. PhD thesis, Univesitat Karlsruhe (TH), Karlsruhe, Germany,
January 2006.

Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue,
and Carsten Lutz, editors. OWL 2 Web Ontology Language: Profiles. W3C
Recommendation, 27 October 2009. Available at http://www.w3.org/TR/
owl2-profiles/.

Boris Motik, Peter F. Patel-Schneider, and Bernardo Cuenca Grau, ed-
itors. OWL 2 Web Ontology Language: Direct Semantics. W3C Rec-
ommendation, 27 October 2009. Available at http://www.w3.org/TR/
owl2-direct-semantics/.

Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia, editors. OWL 2
Web Ontology Language: Structural Specification and Functional-Style Syntaz.
W3C Recommendation, 27 October 2009. Available at http://www.w3.org/
TR/owl2-syntax/.

Boris Motik, Rob Shearer, and Ian Horrocks. Optimized reasoning in descrip-
tion logics using hypertableaux. In Proceedings of the 21st Conference on Au-
tomated Deduction (CADE’07), volume 4603 of LNAI, pages 67-83. Springer,
2007.

Boris Motik, Rob Shearer, and Ian Horrocks. Hypertableau reasoning for de-
scription logics. Journal of Artificial Intelligence Research, 36:165-228, 2009.

B. Neumann and R. Moller. On scene interpretation with description logics.
Technical Report FBI-B-257/04, Fachbereich Informatik, Universitit Ham-
burg, 2004.

Thomas Neumann and Guido Moerkotte. Characteristic sets: Accurate car-
dinality estimation for RDF queries with multiple joins. In Proceedings of the
27th International Conference on Data Engineering, ICDE "11, pages 984-994.
IEEE Computer Society, 2011.

Thomas Neumann and Gerhard Weikum. The RDF-3X engine for scalable
management of RDF data. The VLDB Journal, 19(1):91-113, February 2010.

Frank Olken and Doron Rotem. Simple random sampling from relational
databases. In Proceedings of VLDB’86 Twelfth International Conference on
Very Large Data Bases, pages 160-169. Morgan Kaufmann, 1986.

Bibliography

[101]

[102]

103]

[104]
[105]

[106]

107]

108

[109]

[110]

[111]

[112]

[113]

Magdalena Ortiz and Mantas Simkus. Reasoning and query answering in
description logics. In Reasoning Web, Semantic Technologies for Advanced
Query Answering - 8th International Summer School, pages 1-53, 2012.

Jeff Z. Pan and Edward Thomas. Approximating OWL-DL Ontologies. In
Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence,
pages 1434-1439. AAAIT Press, 2007.

Jeff Z. Pan, Edward Thomas, and Yuting Zhao. Completeness Guaranteed
Approximation for OWL DL Query Answering. In Proceedings of the 2009
International Workshop on Description Logics (DL’09), 2009.

Christos H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.

Peter F. Patel-Schneider and Boris Motik, editors. OWL 2 Web Ontology
Language: Mapping to RDF Graphs. W3C Recommendation, 27 October
2009. Available at http://www.w3.org/TR/owl2-mapping-to-rdf/.

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complex-
ity of SPARQL. ACM Transactions on Database Systems, 34(3):1-45, 20009.

Héctor Pérez-Urbina, lan Horrocks, and Boris Motik. Efficient Query An-
swering for OWL 2. In Proceedings of the 8th International Semantic Web
Conference, pages 489-504, 2009.

Héctor Pérez-Urbina, Boris Motik, and Tan Horrocks. Tractable query an-
swering and rewriting under description logic constraints. Journal of Applied

Logic, 8(2):186-209, 2010.

Kosmas Petridis, Stephan Bloehdorn, Carsten Saathoff, Nikos Simou, Stama-
tia Dasiopoulou, Vassilis Tzouvaras, Siegfried Handschuh, Yannis Avrithis,
Yiannis Kompatsiaris, and Steffen Staab. Knowledge representation and se-
mantic annotation of multimedia content. IEEE Proceedings on Vision, Image
and Signal Processing - Special issue on the Integration of Knowledge, Seman-

tics and Digital Media Technology, 153(3):255-262, 2006.

Eric Prud’hommeaux and Andy Seaborne, editors. SPARQL Query Language
for RDF. W3C Recommendation, 15 January 2008. Available at http://
www.w3.org/TR/rdf-sparql-query/.

Alan L. Rector and Ian R. Horrocks. Experience building a large, re-usable
medical ontology using a description logic with transitivity and concept inclu-
sions. In Proc. of the Workshop on Ontological Engineering, pages 414-418,
1997.

Mariano Rodriguez-Muro and Diego Calvanese. High performance query an-
swering over dl-lite ontologies. In Proceedings of the Thirteenth International
Conference on Principles of Knowledge Representation and Reasoning (KR).
AAAT Press, 2012.

Riccardo Rosati. On conjunctive query answering in EL. In Proceedings of the
2007 International Workshop on Description Logic (DL 2007). CEUR Elec-
tronic Workshop Proceedings, 2007.

123

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

124

Bibliography

Riccardo Rosati and Alessandro Almatelli. Improving Query Answering over
DL-Lite Ontologies. In Proceedings of the Twelfth International Conference
on Principles of Knowledge Representation and Reasoning (KR). AAAT Press,
2010.

S. S. Sahoo, O. Bodenreider, K. Zeng, and A. Sheth. An experiment in inte-
grating large biomedical knowledge resources with RDF: Application to asso-
ciating genotype and phenotype information. In Workshop on health care and
life sciences data integration for the semantic web at the 16th international

world wide web conference (WWW, 2007). Citeseer, 2007.

Michael Schneider, editor. OWL 2 Web Ontology Language: RDF-Based
Semantics. W3C Recommendation, 27 October 2009. Available at http:
//www.w3.org/TR/owl2-rdf-based-semantics/.

Bernhard Scholkopf and Alexander J. Smola. Learning with Kernels: Sup-
port Vector Machines, Regularization, Optimization, and Beyond. MIT Press,
Cambridge, MA, USA, 2001.

Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall. The Semantic Web Re-
visited. IEEFE Intelligent Systems, 21(3):96-101, May 2006.

Rob Shearer, Boris Motik, and Ian Horrocks. HermiT: A Highly-Efficient
OWL Reasoner. In Proc. of the 5th Int. Workshop on OWL: Experiences and
Directions (OWLED 2008 EU).

Eep S. Sidhu, Tharam S. Dillon, Elizabeth Chang, and Baldev S. Sidhu. Pro-
tein ontology development using OWL. In Proceedings of the First OWL
Experiences and Directions Workshop, page 188, 2005.

Abraham Silberschatz, Henry Korth, and S. Sudarshan. Database System
Concepts. McGraw-Hill, Inc., New York, NY, USA, 5 edition, 2006.

Nicholas Sioutos, Sherri de Coronado, Margaret W. Haber, Frank W. Hartel,
Wen-Ling Shaiu, and Lawrence W. Wright. NCI Thesaurus: A Semantic
Model Integrating Cancer-related Clinical and Molecular Information. J. of
Biomedical Informatics, 40(1):30-43, February 2007.

Evren Sirin, Bernardo Cuenca Grau, and Bijan Parsia. From wine to water:
Optimizing description logic reasoning for nominals. In Proceedings of the
10th International Conference on Principles of Knowledge Representation and
Reasoning (KR’06), pages 90-99. AAAI Press, 2006.

Evren Sirin and Bijan Parsia. Optimizations for answering conjunctive ABox
queries: First results. In Proceedings of the 2006 International Workshop
on Description Logics (DL’06), volume 189 of CEUR Workshop Proceedings,
2006.

Evren Sirin and Bijan Parsia. SPARQL-DL: SPARQL query for OWL-DL. In
Proceedings of the OWLED 2007 Workshop on OWL: Experiences and Direc-
tions, volume 258 of CEUR Workshop Proceedings, 2007.

Bibliography

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133)]

[134]

[135]

[136]

Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. Pellet: A practical OWL-DL reasoner. Journal of Web Seman-
tics, 5(2):51-53, 2007.

Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard, William
Bug, Werner Ceusters, Louis J. Goldberg, Karen Eilbeck, Amelia Ireland,
Christopher J. Mungall, The OBI Consortium, Neocles Leontis, Philippe
Rocca-Serra, Alan Ruttenberg, Susanna-Assunta Sansone, Richard H.
Scheuermann, Nigam Shah, Patricia L. Whetzeland, and Suzanna Lewis. The
OBO Foundry: coordinated evolution of ontologies to support biomedical data
integration. Nature Biotechnology, 25:1251-1255, 2007.

Kent A. Spackman, Ph. D, Keith E. Campbell, Ph. D, Roger A. Co6té, and
D. Sc. (hon). SNOMED RT: A reference terminology for health care. In J. of
the American Medical Informatics Association, pages 640-644, 1997.

Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. Heuristic and
randomized optimization for the join problem. VLDB Journal, 6:191-208,
1997.

Robert Stevens, Mikel Egana Aranguren, Katy Wolstencroft, Ulrike Sattler,
Nick Drummond, Matthew Horridge, and Alan Rector. Using OWL to model
biological knowledge. International Journal of Human-Computer Studies,
65(7):583 — 594, 2007.

Markus Stocker, Andy Seaborne, Abraham Bernstein, Christoph Kiefer, and
Dave Reynolds. SPARQL basic graph pattern optimization using selectivity

estimation. In Proceedings of the 17th International Conference on World
Wide Web (WWW’08), pages 595-604. ACM, 2008.

Giorgos Stoilos, Bernardo Cuenca Grau, Boris Motik, and Ian Horrocks. Re-
pairing ontologies for incomplete reasoners. In Proceedings of the 10th Inter-
national Semantic Web Conference (ISWC-11). Springer, 2011.

Herman J. ter Horst. Completeness, decidability and complexity of entailment
for RDF Schema and a semantic extension involving the OWL vocabulary.
Journal of Web Semantics, 3(2-3):79-115, 2005.

Edward Thomas, Jeff Z. Pan, and Yuan Ren. TrOWL: Tractable OWL 2
reasoning infrastructure. In Proceedings of the Fxtended Semantic Web Con-
ference (ESW(C’10), 2010.

Dmitry Tsarkov and Ian Horrocks. Efficient reasoning with range and domain
constraints. In Proc. of the 2004 Description Logic Workshop (DL 2004),
pages 41-50, 2004.

Dmitry Tsarkov and Ian Horrocks. FaCT++4 description logic reasoner: Sys-
tem description. In Proceedings of the 3rd International Joint Conference
on Automated Reasoning (IJCAR’06), volume 4130 of LNCS, pages 292-297.
Springer, 2006.

125

[137]

138

[139)]

[140]

[141]

[142]

[143]

144]

126

Bibliography

Dmitry Tsarkov, Ian Horrocks, and Peter F. Patel-Schneider. Optimizing ter-
minological reasoning for expressive description logics. Journal of Automated
Reasoning, 39(3):277-316, 2007.

Tuvshintur Tserendorj, Sebastian Rudolph, Markus Krotzsch, and Pascal Hit-
zler. Approximate OWL-Reasoning with Screech. In Proceedings of the Second
International Conference on Web Reasoning and Rule Systems, RR 2008, vol-
ume 5341 of Lecture Notes in Computer Science, pages 165—180. Springer,
2008.

Frank van Harmelen, Frank van Harmelen, Vladimir Lifschitz, and Bruce
Porter. Handbook of Knowledge Representation. Elsevier Science, San Diego,

USA, 2007.

Katy Wolstencroft, Andy Brass, lan Horrocks, Phillip W. Lord, Ulrike Sattler,
Daniele Turi, and Robert Stevens. A little semantic web goes a long way in
biology. In Proceedings of the 4th International Semantic Web Conference
(ISWC), volume 3729 of Lecture Notes in Computer Science, pages 786-800.
Springer, 2005.

C. Wroe, C. Goble, M. Greenwood, P. Lord, S. Miles, J. Papay, T. Payne, and
L. Moreau. Automating experiments using semantic data in a bioinformatics
grid. Intelligent Systems, IEEE, 19(1):48-55, 2004.

Christopher Wroe, James Cimino, and Alan Rector. Integrating Existing Drug
Formulation Terminologies Into an HL7 Standard Classification using Open-
GALEN. In Annual Fall Symposium of American Medical Informatics Asso-
ctation, Washington DC., November 2001.

Yujiao Zhou, Bernardo Cuenca Grau, lan Horrocks, Zhe Wu, and Jay Baner-
jee. Making the Most of your Triple Store: Query Answering in OWL 2 Using
an RL Reasoner. In Proceedings of the 22nd International World Wide Web
Conference (WWW), 2013.

Yujiao Zhou, Yavor Nenov, Bernardo Cuenca Grau, and Ian Horrocks. Com-
plete query answering over horn ontologies using a triple store. In Proc. of the
12th International Semantic Web Conference (ISWC). Springer LNCS, 2013.

ITepiindm

H amdvtnon epotnudtony mou tiievtar oe ovtoloyieg, Snhadr 1 edpeon anavTHoENY
AopfBdvovtag uTodn Oyl Yovo eNTd expEalONEVY) GAAS Xou EUUECT) TANPOQopla TOU
eldryeton Ye Bdon hoyixolg xavoveg ebvon o onuavTixy Teploy Y| €pEUVAS 0TO LNUooL-
ohoywo Iotéd. Xe authy v xatedduvor, n SPARQL, yA®ooa andvtnong spwtnudtwy,
mou tunontotfiinxe to 2008 and tov Opyavioud Hayxdouou Iotol (World Wide Web
Consortium, W3C) enexteiveton pe to Aeyoueva cuo thpata cuvenaywyhc. ‘Eva alotn-
Ho ouveTAY WY NS TEOcBLoE(LEL TOV TEOTO TOU AELOAOYOUVTUL TOL EPWTHUOTO Y ENOHLOTOLN-
VTOG TO EXPRACTIXT| onuactoloyio and Ty amhy| cuvenaywyy Tng SPARQL 7 onola
otnpileton ot TadpLaoua UTOYEAPLY.

Tnv tehevtoio dexaetio €yl yivel peydin mpoomdiewa yioo T Behtiotomolnon Twv
UTNEECLOY CUANOYIOTIXAC, OTWS elvol 0 EASYYOG CLVETEWS ULog ovTohoyiag xan 1
ToEVOUNON TV EVVOLOY Wiog ovtohoyiuc (n edpeon tng tepopyioc twv evvowdv). H
avamTUET BEATIOTOTOGE®Y YioL TNV ATAVINGCT EQWTNUATOV GE 0VTOAOYEC EyEl UOAIC
TEOGQUTA ATUCYOAACEL TNV ETOTNUOVIXT XOWOTNTA, 1) omolo €xel acyorndel xupiwe
ue ouleuxTixd epwTaTo Tou Thevton oe uTocivoha NS YAWooug oviohoyloug IoTol
(OWL). Méypt otryphic peyahitepn éugaon et 6odel oto OWL 2 QL mpogil.

Y1 ot outy| emixevtpnvouac e 6o SPARQL oo tnua cuvenaywyrnc OWL 2
dueong onuactoroyioc (SPARQL-OWL). To Baoixéd cuotatind ototyeio twv SPARQL
gpWTNUATWY elvan T Baotid potiBa ypdpou (BGPs), dnhodn teimiétec RDF ue petofin-
Té¢, Tic omoieg avtiototyiloupe ot yevixeuuéva OWL 2 a&idpota ue petaBAntéc oiupw-
Vo e o cUo T autd. Kdde tétolo allwua amotekel éva dtoyo Tou €0OTAUATOC.
To emitpenopeva SPARQL-OWL cpwthpata etvar mohd exgpactind xadoe mépo amd
Tic YeTaPAnTéc ot Véon aviixeluévwy emiTeénouy TN yenon UEToBAnTey ot Véon
OTOULXAY EVVOLMY 1| ATOUIXGY pOA®Y o€ GOVIETES évvoleg xan aliopato. M ardvnon
o€ VoL EpMOTNPA EIVOL Lol AVTIO TOLYIOT TV UETUPANTOY Tou eugoavilovion 6To EpOTNUA
o€ 6poug TNg untd eZétaom ovioloylag €tol WoTe N ovtoloyla va cuverdyeton (Ue Ypnon
e OWL 2 oyéone ouvenaywyhc dueone onuactohoyiog) to epdtnua (obvoho OWL
o€LOUATWY) TOL TEOXVTTEL OVTIXAUIIC TAVTOS TIC ueTaBANTES pe TYEC.

"Evag amhoixde olyoprduog yio TV amdvTnom EpOTNUATOY GOUPWYIL UE TO TRV
oUCTNUO GUVETOYWY NG EAEYYEL, Yo Xdde Eyxupn avTioTolylon dpwv TN ovioloylog
OTIC HETAUBANTES TOU EPWTHUATOC, oV 1) UTO €EETAOT) OVTOAOY(al GUVETEYETOL TO EPMTNUA
TOU TEOXUTTEL. AV 1) OVIOAOYId GUVETAYETAL TO EQWTNUN TOTE 1) CUYXEXPLEVT AmOO00T
TGOV 0TS PETUPANTEG amoTehel AMdVTNoT TOU EPWTAUNTOS UAALDS OYL.

Eneidr} o oxomdg yag etvan 1 avdmtuén teyvixoy BeATioTonolnong yio TNV andvinon
EPOTNUATOY XL OL TEYVIXES AUTES DEV EVOWUATOVOVTOL EUXOAN GTOV TURATAVE UTAOIXO
alyoprduo, apyixd ot Slatelr auTH TEpLYEdgoUlE evay 0pUd xou TAEN akyderiuo
Y10 TO TOEATAVEL GUC TN CUVETAY WY O OTOL0G EXPETAAAEVETOL TIC GUGYETIOELS TTOU
UTBEY 0LV UETAED TWV ATOUMY TOU EQOTANATOC, olohoyvTag éva-Eva To dtoua. Ilo

127

CUYXEXQUIEVOL 0EY XS TO GUVOAO UTOVTHOEWY TEPLEYEL TNV XEVH OVTIOTOLYLOT TIOU OEV
avTioTory(Cel xauid YetaBANnTY o xdmolo T, LTN CUVEYELL DIUAEYOUUE TO TRMTO
dTOHO TOU EPWTHUATOS, EMEXTEIVOUUE TNV XEVY| AVTIOTOYION OOTE Vo XUAOTTEL TIG
METOPBANTES TOU ETUASYUEVOU ATOUOU XU YENOULOTOLOVTUG L0l UMY AV CUANOYIO TIXHG
amo@ucilOUPE TOIES A6 TIC BUVATES AVTIOTOLYIGELS 001 YOV OF a&{tUd TOU GUVETEYETOL
am6 TNV oviohoyla. Metd molpvouue T0 emOUEVO dTOpO %ot OUoinG EMEXTEVOLUE TIC
avTioTotyloelc Tou mponyoluevou yUpou Yo Vo xaAUoupe OAeC T UETUBANTES TOU
VEOU OTOUOU o EAEYYOUUE TOIEC amd aUTEC TIC avTioTolyloelg odnyolv ot adlwya
TOL ouUVETAYETHL amd TNV ovioloyio. Me Tov (Blo TpdTo cuveyilouue TNV ebpeon
ATOVTHOEWY YOl TAL GTOUO TOU EQWTHUATOS.

A6 o mapamdve Yiveton cagéc 6Tl TPOXEWEVOL Vol EXTEAECTEL TO AmOBOTIXG 1)
Topomdvey dadtxactio etvon amapaltnTy 1) €0pEST) ULag ATOBOTIXNG GELRAS EXTEAECNC TOV
aTOUeY Tou epnTAuaToc. Ot Teyvnés g elpeone PEATICTOV 1 o)EdoY BEATIGTOVY
axohoL ey extéleone €xouv yenoulomoinlel eUPEwe oTIC PACELS BEBOUEVOY XL CTIC
amoVfxeg TprmAetmv. Ot teyvinég autég Tepthaufdvouy T dlatrenor evog GUVOAOL amd
OTATIOTXEG OYETIXEG UE TIC OYEOElC oL epgaviovtan og wa Bdon dedouévwy, Toug
OelxTeEC MOV YEnoylomowlvTa, Tov apiud GeAdwY xdmoou delxtn, Tov apriud TKV
OLUPOPETIXAY TGV TOU AdUBdveL uiar tBdTNTo plag oyéong Holl Ue POPUOVAES Yol TOV
UTOAOYIOUO TNG ETMAEXTIXOTNTUC XUATNYOPNUATOV Yo TOU x6GTouC enelepyaciac xou
€10600U-e£600U TNC eXTEAEOTC €VOC epwThAuatoc. Ou teyvixéc autég Bev ebvar, ouwe,
QuUeCH EQUPUOCIIES GTNY TERITTWOT Tou €youue ovtoloylec. Autd oupfalvel emeldn
UTO TNV TOROUGEN EXPRACTIXGY AELWUATWY OEV UTOPOUUE VoL GTNELYTOVUE GTO TOCES
popEc eupavilovTon GTLYUOTUTIO OYECE®Y 011 Bdon xou emTAEoV OEV UTOPOUUE Vo
Eépoupe amd TNV oY1) OAL TAL OYETXE CUUTEQIOUATA TN ovTOohoYiag amd Ta omola Vo
meoxOouv o otatioTixég pog. Emlong o otdyog uag oe éva tétoto mhaloto dev ebvon
HOVO 1 pelwon Tou TARUOUC TWV AMOTEAECUITWY TWV ATOUWY TOU EPWTHUNTOS AAAY
meémel eniong vor hofdveton LUTOYN TO ®XOGTOC TOU EAEYYOU 1) TOU UTOAOYIOUOU TGV
anoteAeoudTovY. Autd To x60TOC Elvan onuayTXd 6tay yenotonotolue OWL cuiio-
YO T Yo TNV €YY Y| CUUTEQUOUSTLY xou Tlong Aaufdvel €var ueYdho EVPOC TYGY
(o TOEABELY UL AOY® 1] VIETEPUIVIOUOU ot TN UPNATC TOAUTAOXOTNTOC YEWOTERNS
TepinTwong TUTXGY dtadixaotdy culhoytotxic). o owtd To Aéyo 1 oxe3ric extiunon
TOU XO0TOUG AUTO TPV TNV EXTEAECT) TOU EQOTAUATOS elvol BUOXOAT).

ITio cuyxexpiuéva, 1 EVEECT) EVOS TAGVOU EXTEAEOTG Yol EVOL EQOTNUAL APOEE GTNV
€0pEDT) UG UTOTEAEOUATIXAC OELRdS EXTEAEONG Ylol To dTOUo Tou gpwTidotog. Ta
mAdva xodoptlovton pe T Borleta plog cuvdETNoNE XOGTOUS 1) OTOLN UTOVEUEL XOO T
O TOL ATOUOL TWV EPWTNUATWY XL GTT) GUVEYELXL Ta ATOUO BLATAGCOVTOL GE GELRd ALEAVOUE-
vou xéotouc. o ouyxexpwéva, n cuvdptnon auth extud 800 cuviotdoeg, 1) o
%OGTOC TV AELTOVEYLMY GUANOYLO TIXTG TTOU AOLTOUYTOL YLl TOV UTOAOYIOUO TGV omav-
TAGEMY EVOC aTOUOL xou 2) To Thdog Twv arnotereoudtwy. Taxdotn avtd otnpilovto
o€ TANPOQORIa GYETIX UE TA CTLYUOTUTA EVVOLOY X POAWY TNG UTo e€ETUoT Ov-
Tohoylag 1 omolo e€dryetan and €va apyixd povtéro mou xatooxeudleton and o OWL
unyovy ovAloyiotixic. Ilo ouyxexpwéva, amd €vo TETOO HOVIEAO UTOROUUE Vo
e&dryoue TANPOPOpIa GYETIXH UE TO TToLoL (1) O TLYIGTUTIO EVVOLKY 1 pOAWY Efval EUXONO
VoL UToAOYIGTOUY (YVeoTd (un)otiymdtuna) xar ot evar o 6UGX0A0 VoL UTOAO-
yiwotoly (mdavd (un)otiypmdtuno) TV omolo GTr GUVEYELD YETOHLIOTOOUUE Yiol TOV
UTIOAOYIOUO TGV CUVAPTACEWY XOGTOUC.

[apouctdlovTon €vag GTaTINOS XAl EVAC SUVOIXOS kY ORLIOC TTOU YENCLLOTOLOVY
QUTE ToL XOOT (mou urohoyilovrar and ULOL OTOTIXT) @O [LOL OUVOLXY| CUVERTNOT oV -

128

otoya) Yl vo Beouv e BEATIOTN 1) oYeB6V BEATIO TN OElpd EXTEAEONC TWV UTOUWY
TOU EPOTAUATOC. LOUPOVOL UE TO oTaTnd oAYOptdUo To x0T (Xt 1 oELpd EXTERETNS
TV atdumy Tou Lo e&étaon cpwTAuaTog) unohoyilovton apyixd mev TV évapén
N¢ exteheong Tou epwThuatog. Ilpoxewévou va Peodue 10 x60T0¢ EXTEAEOTC TOU
enouevou mhoavol aTOpov, 1 CTUTIXY cuVdETNoN AouBdvel unddmn g Tov ToTo ToU
ATOPOL X TG METAPBANTEG TTOL EYOLY BECUEUTEL b TEONYOUUEVYL dTopa. 2ITT) SUVOULXN
Tep{nTwon T x66 TN uoAoyiCovTon TaEdAANAA UE TNV EXTEAECT) TOU EQWTANTOS Aof3d-
VoVTog UTOT TANEO@opiat GYETIXY UE TO AMOTEAEGUO TNG EXTEAEOTNC TWV ATOUWY TOU
€O TANATOS UEY L T Bedopévn oTiypr. 'Etol tpoxeyévou va Bpel To x6010¢ extéheong
TOL €MOPEVOL TdoVOU aTOUOU 1) SuvoUXY| cLVEETNCT Aopfdvel LTddN TNg Tov TUTO
TOU ATOUOU X0 TS TYWES Tou €youv anodovel oTIC BECUEVUEVES UETABANTES amtd Tpo-
NYOUPEVAL dTOUN GTO TAGVO EXTEAECTC. LTNV TEQIMTWOY TOL duvauLxoL alyopiiuou
EXUETAAAEUOUAOTE Lol TEYVIXT| CUC TAOOTOMOTG ATOUMY TOU ETMITEETEL TOV UTOAOYIGUO
TV GLYVAPNOEWY x6G ToUC AauPdvovTag UTOPN Eva Belyua avTixEEVou and xdde cuoTd-
oa.

211 CUVEYELL AVAUTTOGCOLUE TEYVIXES Yo T BEATIOTOTIOMNOT EpWTNUATWY UE GUVUE-
o dropor (dtoua mou €youv PeTafANTEC aTr VEGT UTOUIXMY EVVOLDY XL ATOUXOVY
eOhwv). O teyvixée autée expetoleloviar TIC LlEpapyiec EVvolY xat pOAWY TNg
umo e€étaor ovioloyiog (ﬁscopo()ps OTL OL EVVOLEC o Ol pOAOL TN ovTohoylog EYouy
To&vounldel mpwv v €vapln tng Sdaciog andvTnomg spco'mpduov) TEOXEWWEVOU
VoL HELWOOUY TO TANDOG TV EAEY YWY CUVETEWIS TIOU EXTEAODVTAL Yol TNV OmdVINoT
epTNUdTwY. T'a To oxond autd opilouye TV €vvola TNE TOMXOTNTAC PETUBANTOVY
EVVOLOY Xl POAWY GE GUVIETA ATOU X0 UTOBEXVVOUUE OTL UTOPOUUE Vo BLUTEEY OUUE
TIC Lepapyiec evvolmy xat pOAwY g ovioloyiag, oTNEllOUEVOL TNV TOAXOTNTA TOV
HETOPANTOY, UE TETOWO TEOTO, MOTE Vo XAAOEDOUUE Xdmoleg TWAVEG OMUVTACEL TE-
eropilovTog Pe auTdY ToV TPOTo To TARUOC TwV axEBKY EAEY YWY CUVETELNS TOU TEETEL
VOl EXTEAECTOUV.

H amoTteAeopatindTnTa TV TROTEWOUEVLY TEYVIXGY ACLOAOYELTAL YETOULOTOLOVTOC
TEOTUTIOL GUVOAA EAEYYOU. ATO TNV TEWUUATIXT AUTH UEAETY TEOXUTTEL OTL O OTATIXOC
alyoprduoc Tavounone cuvidong uneptepel Tou Buvaxol oTay eivon SlordécUES axpEl-
Belc otatioTinég and v apyr). Autd dev toylel, Tap” OAa qUTA, OTAV Ol CTATIC TIXES
elvor Aryotepo axpiBelc, yior mopdderypo e€ouTiag U VIETEQUVIC TIXWY BLABIXACLOY GUA-
hoywotxic. H andédoon tou cucthuatoc cuvitdng Pehtidveton 6Tay YENCLLOTOLOVUE
TEYVIXES UG TADOTIONONG XaTd TN SLdipxela eEXTEAEOTNC EpWTNUATWY. ot cUVIeTa EpwyTH-
wotar opatneolue wa Bedtiwon téddng yeyédoug Tplo dtay yenowonotodvTal oL Teo-
Tevopeves Pehtiotonotfoel. To uhonotnuévo oo TN OE GUVBUNCUO UE EVal GOOTNU
ETMAVEY YRUPYIS EPWTNUATWY YENOWOTOLELTOL G T1 GUVEYELY YL TNV ATV TNOT EQOTNUATODY
OE L0l TEAYHOTIXT| EQUEUOYT) OTO TEDIO TV TOMTIOTIXMY BEDOUEVWYV.

AéZeig xhewdid: SPARQL andvinon cpwtnudtwy, SPARQL-OWL, clotnuo cuve-
moaywyhs OWL 2 dueong onpactohoyiag, BertioTonolnon epwtnudtwmy

129

