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Abstract

This paper addresses the problem of path planning for a free-flying object in a (three-
dimensional) environment that contains both obstacles and so-called dangerzones. The path
should (obviously) avoid collisions with the obstacles. The path is allowed to intersect with the
dangerzones but this should be avoided as much as possible. We show that, under some mild
conditions, a path always exists in which the moving object never completely penetrates the dan-
gerzones. Based on this result we present a probabilistically complete roadmap method that finds
such paths. The methods has been implemented and some experimental results are given.

1 Introduction

Motion planning has been extensively studied over the past two decades. Besides the traditional
application in robotics, motion planning has become increasingly important in areas such as computer
animation, computer aided design, and medical applications. In its basic form the motion planning
problem asks for planning the path for a moving body from a given start to a given goal position in
a workspace W containing a set B = {Bji,...,B,} of obstacles. Different strategies for motion
planning have been proposed. (See Latombe’s book[9] for the situation up to 1991.) In recent years
many people have concentrated on probabilistic roadmap methods (PRM), developed originally in
Utrecht[11, 12] and Stanford[6, 5]. These methods use a local and a global planner. The global
planner takes samples in the configuration space of the moving body and tries to connect samples
using a local planner, in this way creating a roadmap of possible motions. Next the roadmap is
searched for a path from start to goal configuration, which is then further improved using smoothing
techniques. PRM’s have been applied for many different types of motion planning (free-flying, car-
like, robot arms, flexible, etc.) and many techniques have been suggested to improve the performance
(e.g. visibility roadmaps, Gaussian sampling, and lazy PRM’s). See [1, 2, 3, 4, 8, 7, 10, 13] for some
of the many important results obtained recently.

Besides hard constraints on the resulting paths (no intersection with the obstacles and feasible for
the moving body), in many applications there are also soft constraints, e.g. to preferably stay away
from certain obstacles and to avoid certain areas in the workspace as much as possible. In this paper
we give a possible approach to deal with such constraints. To this end we introduce the notion of
a dangerzone that should be avoided as much as possible by the moving body. See Figure 1 for an
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Figure 1: Two dangerzones (grey) and two obstacles (black) that the moving square should try to
avoid.

example. The square body must move from the given start to the given goal position. It must avoid
the black obstacles and should preferably avoid the grey dangerzones. This is not completely possible
but the robot should try to stay as much as possible in the free space.

This paper is organized as follows. In Section 2 we formally define the notion of a dangerzone
and the properties of the paths we want to compute. This leads to the notion of two new spaces: the
undesirable space where the moving body lies completely in a dangerzone, and the semi-desirable
space where the body partially lies in a dangerzone (besides the usual free and forbidden space). We
next show that, under some mild conditions, whenever there exists a path, there also exists a path that
completely avoids the undesirable space, so the body will always have at least one point in the free
workspace. In Section 3 we show how we can use a probabilistic roadmap planner to find such paths,
by giving an appropriate local planner and sampling method. We prove that the planner we obtain is
probabilistically complete. In Section 4 we discuss some experiments with the developed planner that
shows that the method indeed works and leads to the required paths. Finally, in Section 5 we state
some conclusions and give some suggestions for further research.

2 Path planning

The problem we study in this paper is an extension of the traditional problem of motion planning. The
workspace W not only contains a set of obstacles B = {Bs, ..., By}, but also a set of dangerzones
Z = {Zi,...,Zny}. Dangerzones are explicitly modelled in the environment (so they are e.g. not
implicitly defined by an area around an obstacle). We assume that obstacles and dangerzones do not
intersect each other (although most results carry through if a dangerzone can contain at most one
obstacle). We consider obstacles and dangerzones to be open, that is, the robot is allowed to touch
them.

Let R be the moving body, which we call the robot from here on. We assume that R is holonomic
and can at least translate freely in the workspace W. (It can also have further rotational degrees of
freedom.) A path 7 for R is valid if it is feasible for the robot (satisfies constraints on the possible
motions for the robot) and if the robot does not collide with any obstacle. We prefer the robot also to



avoid the dangerzones as much as possible. This is difficult to define formally. But, as we will see
below, we can at least avoid that the robot completely penetrates a dangerzone.

2.1 The configuration space

It is usual in motion planning to consider the configuration space C of the robot. This space can be
subdivided in a number of subspaces:

e The free configuration space C',. that consists of those configurations in which the robot R
does not intersect any obstacle or dangerzone.

o The forbidden configuration space C's,, that consists of those configurations in which the robot
R does intersect an obstacle.

e The undesirable configuration space C,q4es that consists of those configurations in which the
robot R completely lies in a dangerzone.

e The semi-desirable configuration space C'emi—des that consists of those configurations in which
the robot R does not intersect an obstacle and at least one point of the robot lies in a dangerzone
and at least one point does not.

It is easy to see that these four subspaces are disjoint and that their union is the full configuration
space C.

2.2 Paths among dangerzones and obstacles

A path is a connected curve 7 in the configuration space between a start configuration s and a goal
configuration g. We assume that both s and g lie in Cfe.. We will now show that we never need
to completely penetrate a dangerzone, or more precisely, we will show that when the problem has a
solution, there always exists a path that completely lies in C'ree U Cyemi—des. The idea of the proof
is as follows: Let 7 be a path from s to g that lies in Ctree U Csemi—des U Cundes- This path consists
of pieces that lie in Cfree U Cyemi—des and pieces that lie in Cyy,q405. NOw consider a maximal piece
7! of the path that lies in C,,,4.;. Because the dangerzones do not intersect, while traversing 7’ the
robot lies completely within one danger zone Z;. We will show that we can replace the piece 7/ by
another path 7" in which the robot will always touch the boundary of Z;. 7" then lies in Csemi—des-
Repeating this for all pieces that lie in C;,qes We obtain a path in C'tyee U Cyemi—des aS required.

Lemmal Let 7 be a path from a semi-desirable configuration s to a semi-desirable configuration g
such that during the motion from s to g the robot is always contained in a dangerzone Z;. Then there
exists a path 7’ from s to g for which the robot always touches the boundary of Z;.

Proof: We will first show that there exists a possibly forbidden path 7; from s to g that always
intersects the boundary of Z;. Let p, be a point of the robot that lies in the start configuration on the
the boundary of Z; and let p, be a similar point for the goal configuration (such points must exist
because the start and goal configuration are semi-desirable). Let p be the point on the boundary of Z;
at which pj lies in the start configuration and p’ the point at which p, lies in the goal configuration.
Now take a curve connecting ps and p, inside the robot R. We first translate the robot such that p
always lies on the curve. This results in a new configuration m in which p,, lies on p. Next take a curve
on the boundary of Z; connecting p and p’. Translate the robot such that p, always lies on the curve.



Finally, if required, rotate the robot while keeping p, on p’ to configuration g. The resulting motion
is feasible and will always intersect the boundary of Z;. It might though intersect other dangerzones
and even obstacles.

So we now have two paths from s to g. The original path 7 that lies completely inside Z; and
the new path 7; that always intersects the boundary of Z;. Let C'Z; be the part of the configuration
space that consists of all configuration in which the robot lies completely inside Z;. s and g lie on
the boundary of CZ;. The original path 7 lies inside C'Z; and the new path 7; lies outside or on the
boundary of C'Z;. From this it follows that s and g must lie on the same connected component of the
boundary of C'Z;. Hence, there is a path 7/ from s to g that lies completely on the boundary of CZ;.
This path will not intersect obstacles and the robot will always touch the boundary of Z,. O

Up to now we considered a path intersecting just one dangerzone. We need to extend this to a path
among multiple dangerzones with arbitrary start and goal configurations. This result is stated to the
following theorem.

Theorem 1 If there exists a path 7 between two free configurations s and g, that possibly intersects
one or more dangerzones Z, than there exists a path 7’ that lies completely in C'¢yce U Csemi—des-

Proof: As indicated above we split 7 in maximal pieces that alternatingly lie in C'ree U Csemi—des
and in Cypqes- During a maximal piece of the path that lies in Cy;,4e5 the robot lies completely within
one danger zone Z;. From Lemma 1 it follows that we can replace these pieces by semi-desirable
pieces. The resulting path will lie completely in C'tyee U Cyepni—des @S required. O

Now we know that it suffices to look for paths from start to goal, where the robot will never be
completely in the dangerzone. It will always have at least one point at the border of the zone. We will
use this fact in our planner, in particular in the sampling approach used.

3 Theplanner

In this section we will show how to use the PRM approach to motion planning to obtain a proba-
bilistically complete planner that can deal with both obstacles and dangerzones. Globally speaking,
PRM works as follows: We sample the configuration space, throwing away forbidden and unwanted
configurations. Each sample we keep we try to connect to samples found earlier. For this we use
a simple local planner that should be fast for easy cases but is allowed to fail for more complicated
situations. In this way we created a roadmap (a graph) in which the nodes correspond to the samples
and the paths correspond to successful runs of the local planner. Once the roadmap is large enough
(containing enough information about the possible paths), the start and goal configuration are added to
it (again using the local planner), and a path is found in the graph, which can be turned into a motion
from start to goal. Smoothing is often applied afterwards to improve the quality of the path.

To apply PRM in our environments with dangerzones we need two important ingredients: a sam-
pling approach that samples C'tyce U Csemi—des: and a local planner that tries to stay out of danger-
zones.

3.1 Sampling

Obviously, it is useful to first only sample C',.. If a path between start and goal can be found there
than the dangerzones can be avoided altogether. But if such a path does not exist we also need to



sample Cyemi—des- Let US assume that obstacles and dangerzones do not touch (see the conclusions
for some ideas on how to lift this restriction).

An easy approach would be to simply generate a random configuration and then test whether
the robot at this configuration intersects an obstacle or lies completely within a dangerzone. Un-
fortunately, testing whether the robot lies completely within a dangerzone is a relatively expensive
operation. We can avoid this as follows: We select a point pyy in the free part of the workspace (e.g.
by selecting a random point and checking that it does not lie in an obstacle or dangerzone). Next we
select a point pg in the robot. Now we create a configuration as follows. If there are rotational degrees
of freedom we pick them randomly. In the resulting orientation we place the robot R with point p g
on position py,. Next we test whether the robot intersects any obstacles. Because pyy lies in the free
part of the workspace and pg lies inside the robot, the resulting configuration cannot lie completely
inside a dangerzone.

It can easily be shown that in this way C'¢ree U Csemi—des 1S cOmpletely sampled. The sampling
though is not uniform. Cy,.. is sampled uniformly but the chance that a semi-desirable position is
chosen is inversely proportional to the area of overlap between the robot and the dangerzone(s). We
consider this a useful property of the sampling approach because it favors configurations that have
little overlap with dangerzones.

Clearly this sampling approach can be combined with other sampling techniques like Gaussian
sampling[3] or visibility sampling[10]. We did not study such combinations yet.

3.2 Local Planner

The goal of the local planner is to efficiently connect two samples that are close together with a feasible
path. Often a simple interpolation between the two samples is used (that is, we move along a straight
line in configuration space). In our situation we want the path to lie completely in C tyce U Cyemi—des-
The simple interpolation does not guarantee this. For example, when two samples lie on opposite
sides of a dangerzone, the simple local planner will generate a path that goes through the dangerzone.

Instead we use the following approach. Remember that a sample was created by choosing a point
in the robot and a point in the free part of the workspace. We have such a pair (pw, pr) for the first
sample and a second pair (p},,p’;) for the second sample. We first check whether the line segment
pwpyy, lies completely in the free workspace and whether m lies completely inside the robot. If
not the local planner fails. Otherwise, we interpolate a point in the robot between p  and p’, and move
this interpolated point over pyypy,,. At the same time we interpolate the remaining rotational degrees
of freedom. This path we check for collisions with the obstacles in the usual way. It is easy to see that
the resulting path lies in C'tree U Csemi—des-

In the PRM approach one also has to decide which nodes to select for possible connection using
the local planner. Many different methods have been proposed. We decided to use the most standard
one, namely the nearest-k method, which means that we only choose the & nearest neighbors of a
sample, given by a distance metric (using the Euclidean distance) on the configuration space.

3.3 Probabilistic completeness

The PRM method is probabilistically complete for many different types of motion planning problems.
This means that, assuming a solution exists, when time goes to infinity the change that a valid path is
found tends to 1. This is a desirable property of motion planners (see e.g. the thesis of Svestka[12]).
Unfortunately, with the local planner described above there are situations in which a solution is never
found. Consider the situation depicted in Figure 2. The rectangular robot must either move along



Figure 2: A scene with black obstacles and a grey dangerzone. With the standard local planner no
path will be found for the translating robot.

the top or along the bottom triangle. This is obviously possible, but the problem is that there is no
path through the free part of the workspace that can be followed by an interpolated point in the robot.
Hence, it is impossible with the local planner described above to connect the left with the right.

To obtain a probabilistically complete planner we use a different local planner. We simply interpo-
late between the two configurations and check whether the robot remains in C'rree U Cemi—des- (We
do not use this local planner in our implementation because it is much slower.) To prove probabilis-
tical completeness we can adapt a theorem from the thesis of Svestka[12] that states that a planner is
probabilistically complete if the robot satisfies certain properties.

Theorem 2 The PRM method described above for environments with obstacles and dangerzones is
probabilistically complete.

Proof: We will only sketch the proof. Assume a path exists between the start and goal that satisfies
our criteria. This path will correspond to some curve in the configuration space. Because of the
properties of the space, this curve will have some positive clearance e. We cover the path with small,
partially overlapping balls with their center on the path. By choosing the size of the balls appropriately
(depending on €) we can guarantee that configuration in the same ball and in neighboring balls will be
connected by the local planner. When time goes to infinity, the chance that every ball contains at least
one sample goes to 1. As a result all these samples will get connected in the graph and a path from
start to goal is found. O

4 Experimental results

We implemented the planner described within the SAMPLE motion planning environment developed
at Utrecht University. We tested it in a number of different environment. Here we report on two
such experiments. In both cases we consider a robot with three translational degrees of freedom only.
Realize that this actually complicates the problems because the robot has much less manouverability.



Figure 3: The workspace containing three obstacles and five dangerzone. The cube robot has to travel
from bottom left to top right. The right figure shows the samples taken by the planner.

Figure 4: The path before and after smoothing.

4.1 A simple example

The first scene consists of three obstacles and five dangerzones (see the left picture in Figure 3). The
workspace is ten by ten by one meter. The robot is a cube of one by one by one meter. Note that,
even though the pictures seem two-dimensional because we look from above, this is actually a three-
dimensional problem. There is no way the robot can move from start to goal without intersecting some
dangerzones. As can be seen in the right picture in Figure 3 samples are created along the boundary
of the dangerzones. The resulting path (before and after smoothing) is shown in Figure 4. As can be
seen it does (and has to) intersect the dangerzones, but it tries to stay out of them as much as possible.

The following table shows some information about the number of samples and collision checks.
These are rounded values, averaging over a number of runs. The running times are on a 500 MHz
Pentium XEON processor.



Figure 5: The workspace containing a block with a corridor with two dangerzones. The robot has to
travel through the corridor, avoiding the dangerzones as much as possible. The bottom picture shows
the samples taken by the planner.

Total time: 20s
Number of graph nodes: 750
Number of collision checks: 20000
Number of local planner calls: 4000
Time for smoothing: 4s

The number of failed samples is rather high. So is the amount of collision checks and local planner
calls. This can be improved by using more sophisticated sampling techniques.

4.2 A narrow corridor

In the second experiment, a real three-dimensional scene has been used. The workspace has a big
obstacle with a narrow corridor through it. The only way to move the robot from left to right is
through the corridor. In this corridor two dangerzones are situated. The two dangerzones do not touch
each other, nor the obstacle. See Figure 5 for a partially transparent view of the workspace with the
red obstacles and blue dangerzones.

The implementation had no problem at all finding a path. The sampling method creates enough
samples in the corridor and between the dangerzones. Rather a lot of samples were taken in the free
space just in front of and behind the passage. This is due to the fact that the free space is sampled
uniformly. This can though easily be avoided by using techniques like Gaussian sampling [3] or
visibility sampling[10]. Figure 6 shows a path and a smoothed path for the robot.

The following table summerizes the performance of the planner.

Total time: 10s
Number of nodes: 1000
Number of collision checks: 10000
Number of local planner calls: 2000
Time for smoothing: 2s




Figure 6: The path before and after smoothing.

5 Conclusions and futureresearch

As can be seen from the experiments, the planner is able to find paths between dangerzones and
obstacles. During the motion the robot always has at least one point in the free space. We have proven
that there always exists such a path when dangerzones do not touch each other and do not touch any
obstacles. We are currently working on methods to drop these assumptions. Dangerzones that overlap
or intersect obstacles might be retracted to dangerzones that only touch. Touching dangerzones can
be dealt with by explicitly sampling on the boundary of the dangerzones. And most of the results still
hold when a dangerzone is allowed to contain one obstacle. (But not more than one, as can easily be
verified.)

In our current implementation, the number of samples required, and hence, the number of collision
checks and local planner calls, is rather high. The reason for this is that we sample the whole free con-
figuration space without choosing ”good” areas to take samples in. Combination of our approach with
existing techniques to reduce the number of samples and computation time required should remedy
this problem.

Dealing with dangerzones is just one aspect of improving the quality of the paths. Many other
“soft” constraints exist on paths, like staying away from obstacles, using as little degrees of freedom
as possible, and avoiding sharp turns. We plan to study such quality issues further in the near future.

References

[1] N. Amato, O. Bayazit, L. Dale, C. Jones, D. Vallejo, OBPRM: An obstacle-based PRM for
3D workspaces, in: Proceedings of the International Workshop on Algorithmic Foundations of
Robotics (WAFR), 1998, pp. 155-168.

[2] R. Bohlin, L.E. Kavraki, Path Planning Using Lazy PRM, in: Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, 2000, pp. 521-528.

[3] V. Boor, M.H. Overmars, A.F. van der Stappen, The Gaussian Sampling Strategy for Probabilis-
tic Roadmap Planners, in: Proceedings of the 1999 IEEE International Conference on Robotics
and Automation, Detroit, Michigan, 1999, pp. 1018-1023.



[4]

[5]

[6]

[7]

[8]

9]

[10]

[11]

[12]

[13]

C. Holleman, L.E. Kavraki, J. Warren, Planning Paths for a Flexible Surface Path, in: Proceed-
ings of the IEEE International Conference on Robotics and Automation, 1998, pp. 21-26.

L.E. Kavraki, Random networks in configuration space for fast path planning, PhD thesis, Stan-
ford University, 1995.

L.E. Kavraki, J.-C. Latombe, Randomized Preprocessing of Configuration Space for Fast Path
Planning, in Proceedings of the IEEE International Conference on Robotics and Automation,
San Diego, 1994, pp. 2138-2139.

J.J. Kuffner, S.M. LaValle, RRT-Connect: An Efficient Approach to Single-Query Path Planning,
in: IEEE International Conference on Robotics and Automation, 2000, pp. 995-1001.

F. Lamiraux, L.E. Kavraki, Path Planning for Elastic Plates Under Manipulation Constraints in:
Proceedings of the IEEE International Conference on Robotics and Automation, 1999.

J.-C. Latombe, Robot motion planning, Kluwer Academic Publishers, Boston, 1991.

C. Nissoux, T. Siméon, J.-P. Laumond, Visibility Based Probabilistic Roadmaps, in: Proceedings
of the IEEE International Conference on Intelligent Robots and Systems, Kyongjy, Korea, 1999,
pp. 1316-1321.

M.H. Overmars, A random approach to motion planning, Technical Report RUU-CS-92-32,
Department of Computer Science, Utrecht University, The Netherlands, 1992.

P. Svestka, Robot motion planning using probabilistic road maps, Ph.D thesis, Utrecht Univer-
sity, 1997.

S.A. Wilmarth, N.M. Amato, P.F. Stiller, MAPRM: A Probabilistic Roadmap Planner with Sam-
pling on the Medial Axis of the Free Space, in: Proceedings of the IEEE International Confer-
ence on Robotics and Automation, 1999, pp. 1024-1031.

10



