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Abstract

Combinatorial objects can be represented by strings, such as 21534 for the permu-

tation (1 2) (3 5 4), or 110100 for the binary tree corresponding to the balanced

parentheses (()()). Given a string s = s1s2⋯sn, the right-shift operation
ÐÐ→
shift(s, i, j)

replaces the substring sisi+1⋯sj by si+1⋯sjsi. In other words, si is right-shifted into

position j by applying the permutation (j j−1 ⋯ i) to the indices of s. Right-shifts

include prefix-shifts (i = 1) and adjacent-transpositions (j = i + 1). A fixed-content

language is a set of strings that contain the same multiset of symbols. Given a fixed-

content language, a shift Gray code is a list of its strings where consecutive strings

differ by a shift. This thesis asks if shift Gray codes exist for a variety of combinatorial

objects. This abstract question leads to a number of practical answers.

The first prefix-shift Gray code for multiset permutations is discovered, and it

provides the first algorithm for generating multiset permutations in O(1)-time while

using O(1) additional variables. Applications of these results include more efficient

exhaustive solutions to stacker-crane problems, which are natural NP-complete trav-

eling salesman variants. This thesis also produces the fastest algorithm for generating

balanced parenthesis in an array, and the first minimal-change order for fixed-content

necklaces and Lyndon words.

These results are consequences of the following theorem: Every bubble language

has a right-shift Gray code. Bubble languages are fixed-content languages that are

closed under certain adjacent-transpositions. These languages generalize classic com-

binatorial objects — k-ary trees, ordered trees with fixed branching sequences, unit

interval graphs, restricted Schröder and Motzkin paths, linear-extensions of B-posets

— and their unions, intersections, and quotients. Each Gray code is circular and is

obtained from a new variation of lexicographic order known as cool-lex order.

Gray codes using only
ÐÐ→
shift(s,1, n) and

ÐÐ→
shift(s,1, n−1) are also found for multiset
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permutations. A universal cycle that omits the last (redundant) symbol from each

permutation is obtained by recording the first symbol of each permutation in this

Gray code. As a special case, these shorthand universal cycles provide a new fixed-

density analogue to de Bruijn cycles, and the first universal cycle for the “middle

levels” (binary strings of length 2k + 1 with sum k or k + 1).
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Chapter 1

Combinatorial Generation

“It is really quite simple. We have been compiling a list which shall contain all the
possible names of God.”

“I beg your pardon?”
“We have reason to believe,” continued the Lama imperturbably, “that all such names

can be written with not more than nine letters in an alphabet we have devised.”
“And you have been doing this for three centuries?”
“Yes. We expected it would take us about 15,000 years to complete the task.”
“Oh.” Dr. Wagner looked a little dazed. “Now I see why you wanted to hire one of

our machines.”
- The Lama and Dr. Wagner in The Nine Billion Names of God

Within Arthur C. Clarke’s classic 1953 short story [10], the Lama is confronted

with a monumental task. In his belief system, the possible names of God can be

written using at most nine letters from a special alphabet. His goal is to write

out each of the nine billion possible names, thereby bringing a satisfactory end to

existence. With this sole purpose, and three centuries of work, the inhabitants of his

lamasery in Tibet have written only 2% of the possibilities. To fast-track the process,

the Lama has traveled to New York to enlist the services of Dr. Wagner, and the

Mark V automatic sequence computer. By turning over his faith to this machine —

capable of thousands of calculations per second — the Lama estimates that his task

can be completed within one hundred days.

Despite its fictional nature, Arthur C. Clarke’s short story accurately predicted

the research area that provides the topic of this thesis. Combinatorial generation

uses discrete mathematics and theoretical computer science to achieve its goal of

“efficiently creating all possibilities”. To illustrate the type of result contained in this

thesis, consider the following operation.
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Reordering a binary string using right-shifts

Shift the first bit to the right until it passes over a 01 or the last bit.
(i)

For example, operation (i) transforms 100100100 into 001100100 since the first bit is

shifted to the right until its passes over the first 01. This transformation is illustrated

by
ÐÐ→
100100100 = 001100100. More generally, right-shifts are illustrated using right-

arrows (i.e., a
ÐÐ→
bcdef = acdebf). As another example, operation (i) produces

ÐÐÐÐ→
110000 =

100001 since the first bit of 110000 is shifted past the last bit without every passing

over a 01. Despite its simplicity, operation (i) has the property that it eventually

reorders the bits of any binary string in all possible ways. For example, the binary

strings with three 0s and three 1s are shown below, and each string is obtained by

applying the operation to the previous string

ÐÐÐÐ→
111000,

ÐÐÐÐ→
110001,

ÐÐÐ→
100011,

ÐÐ→
000111,

Ð→
001011,

ÐÐÐ→
010011,

ÐÐ→
100101,

Ð→
001101,

ÐÐ→
010101,

Ð→
101001,

ÐÐÐÐ→
011001,

ÐÐÐ→
110010,

ÐÐ→
100110,

Ð→
001110,

ÐÐ→
010110,

Ð→
101010,

ÐÐÐ→
011010,

ÐÐ→
110100,

Ð→
101100,

ÐÐÐÐ→
011100. (1.1)

The order of strings in (1.1) is known as a right-shift Gray code since successive strings

differ by a right-shift. Furthermore, the Gray code is circular since one additional

application of operation (i) transforms the last string into the first (
ÐÐÐÐ→
011100 = 111000).

The strings in (1.1) are known as the (3,3)-combinations, and in general the binary

strings with s 0s and t 1s are known as the (s, t)-combinations. The fact that (s, t)-
combinations are generated by operation (i) is the most basic corollary of a general

theory on shift Gray codes that is developed in this thesis.

While operation (i) has mathematical intrigue, results in combinatorial genera-

tion must also be seen through the screen of a computer scientist. To continue our

illustration, it is helpful to state the operation that is inverse to operation (i).

Reordering a binary string using left-shifts

Shift the bit following the first 01 (or the last bit) into the first position.
(ii)

In general, left-shifts are illustrated using left-arrows (i.e., a
←ÐÐ
bcdef = aebcdf). Op-

erations (i) and (ii) are also known as prefix-shifts. This is because operation (i)

right-shifts the first symbol in a string, whereas (ii) left-shifts a symbol into the first

position of a string. Notice that the prefix-shift performed by operation (ii) has the

effect of simply “undoing” the prefix-shift performed by operation (i). One advantage

of operation (ii) is that no scanning is required to perform successive applications.

This is because the operation depends only on the position of the first 01, and be-

cause the operation changes this position in a predictable pattern. To see this pattern
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11011001

-

11010011

00000110

000

000

000

000

11111

11111

11111

11111

head

head

temp

temp

Figure 1.1: Clockwise from bottom-left: Operation (ii) can be implemented quickly
in a linked-list (by pointer manipulations), or in an array (by complementing at most
four values), or in a computer word (by shifts, masks, and arithmetic), or by hand.

Each illustration shows
←ÐÐÐ
10011011 = 11001011. The computer word illustration is on

the reverse of the string to match one of the steps in Algorithms 4 and 5.

more clearly, consider the order of (3,3)-combinations that is generated by operation

(ii). For each string, the position of the first 01 is underlined. Notice that in each

subsequent string, the underlined substring either moves one position to the right, or

is reset to the beginning of the string if this string starts with 01.

←Ð
011100,

←ÐÐ
101100,

←ÐÐÐ
110100,

←Ð
011010,

←ÐÐ
101010,

←Ð
010110,

←ÐÐ
001110,

←ÐÐÐ
100110,

←ÐÐÐÐ
110010,

←Ð
011001,

←ÐÐ
101001,

←Ð
010101,

←ÐÐ
001101,

←ÐÐÐ
100101,

←Ð
010011,

←ÐÐ
001011,

←ÐÐÐ
000111,

←ÐÐÐÐ
100011,

←ÐÐÐÐ
110001.

←ÐÐÐÐ
111000. (1.2)

For this reason, successive applications of operation (ii) can be applied extremely

quickly. Another advantage of (ii) is its versatility. In particular, operation (ii) can be

efficiently implemented using a wide variety of standard data types including linked

lists, arrays, and computer words. Figure 1.1 illustrates this fact, and Chapter 4

includes implementations of the associated algorithms using these data types. Figure

1.1 also shows how operation (ii) can be implemented by hand. The benefit of this

manual interpretation is discussed later in this chapter in the context of The Nine

Billion Names of God.

Despite its fundamental nature, operation (ii) and its algorithmic consequences

were only discovered recently (see Ruskey-Williams [70, 73]). The associated cool-lex

order of (s, t)-combinations turns out to be a subtle variation of lexicographic order,
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as seen by Figure 1.2. Furthermore, cool-lex order hides additional properties that

may hold interest for discrete mathematicians and theoretical computer scientists. To

conclude our initial introduction to the results contained in this thesis, consider the

following string of length (6
3
) = 20

11001010110100111000. (1.3)

This string is known as a shorthand universal cycle for (3,3)-combinations. This is

because it contains every (3,3)-combination exactly once as a circular substring, with

the proviso that the last (redundant) symbol of is omitted. For example, the first five

symbols of (1.3) are 11001, and this substring is shorthand for the (3,3)-combination

110010. Alternatively, (1.3) encodes the following ordering of (3,3)-combinations,

where each string differs from the previous by shifting the first symbol into the last

or second-last position

ÐÐÐÐ→
110010,

ÐÐÐÐ→
100101,

ÐÐÐ→
001011,

ÐÐÐÐ→
010101,

ÐÐÐ→
101010,

ÐÐÐÐ→
010110,

ÐÐÐ→
101100,

ÐÐÐÐ→
011010,

ÐÐÐÐ→
110100,

ÐÐÐÐ→
101001,

ÐÐÐÐ→
010011,

ÐÐÐ→
100110,

ÐÐÐÐ→
001110,

ÐÐÐÐ→
011100,

ÐÐÐÐ→
111000,

ÐÐÐÐ→
110001,

ÐÐÐÐ→
100011,

ÐÐÐ→
000111,

ÐÐÐ→
001101,

ÐÐÐÐ→
011001. (1.4)

To interpret this pattern correctly, notice that (1.3) contains the first bit of each

successive strings in (1.4). Similarly, the second, third, fourth, and fifth bits in

(1.4) are simply rotations of (1.3). This fascinating pattern can be derived quite

prestidigitally from the cool-lex order found in (1.1). The string in (1.3) is also

known as a universal cycle for the middle levels. For any given value of k, the middle

levels are the binary strings of length 2k + 1 containing k or k + 1 copies of 1. Prior

to this thesis, there was no explicit construction known for these universal cycles.

For thorough coverage of combinatorial generation, the reader is directed to the

upcoming volume of The Art of Computer Programming by Don Knuth. Named by

American Scientist as one of the best twelve physical-science monographs of the 20th

century, along with other notables such as Albert Einstein’s The Meaning of Relativity

and Richard Feynman’s QED, The Art of Computer Programming is considered by

many as the preeminent textbook in computer science. Several fascicles of this new

volume have been printed [45, 46, 47] and include over 400 pages on the subject

of combinatorial generation. In particular, the Generating all Combinations fascicle

includes cool-lex order for (4,4)-combinations under the name “suffix-rotated” as well

as Knuth’s own mmix computer word implementation that is “incredibly efficient”.

Another resource that will greatly expand the research area upon its release is the
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aptly named Combinatorial Generation textbook by Ruskey [62].

The remainder of this chapter is organized into three sections. Section 1.1 de-

scribes four historical foundations of modern combinatorial generation. Section 1.2

then discusses contemporary results in combinatorial generation. Section 1.3 com-

pletes the chapter by outlining the new results contained in this thesis. To help

motivate the reader, each section relates its material to The Nine Billion Names of

God.

1.1 Historical Foundations

Judging from the title of Clarke’s story, it is likely that the special alphabet used by

the Lama contains 13 distinct symbols.1 However, one question that is left unanswered

is the order in which the names are generated by the Mark V. Two engineers, George

and Chuck, are sent to Tibet with the task of assembling and then programming

the Mark V. The simplest and most obvious choice — but unlikely the most efficient

— would have been to program the computer to output the names in lexicographic

order. Three other possibilities are also outlined in the upcoming subsections, and

collectively they form a historical foundation for combinatorial generation.

1.1.1 Lexicographic Order

“I see. You’ve been starting at aaaaaaaaa and working up to zzzzzzzzz.”
“Exactly — though we use a special alphabet of our own.”

- The Lama in response to Dr. Wagner in The Nine Billion Names of God

Humanity’s most established order is lexicographic order. In lexicographic order,

the letters in an alphabet are given a relative order. Then, the relative order of any

two words is determined by the relative order of their leftmost differing letters. For

example, aardvark comes before aardwolf in the English dictionary because when

comparing the leftmost differing symbols v comes before w in the English alphabet.

Likewise, sloth comes before sloths because the absence of a letter is assumed to

have the lowest order. In a similar manner, lexicographic order is used to compare

the relative value of numbers in the Hindu-Arabic number system, except that in

this case leading zeros need to be prefixed to ensure that the numbers have the same

length. For example, 13 has a lower value than 14. Likewise, 0999 has lower value than

1There are 10.6-billion tridenary (base-13) strings of length nine, but not all require consideration
according to the Lama’s belief system.
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Figure 1.2: An artistic representation of co-lexicographic (above) and cool-lex (below)
order for (5,5)-combinations (see [6]). White and black regions represent 0 and
1 respectively. Individual strings are read along a line segment originating from
the center, and the first and last strings are at either side of 12 o’clock. Cool-
lex proceeds leftwards (counterclockwise) and involves left-shifts, while reverse cool-
lex proceeds rightwards (clockwise) and involves right-shifts. Co-lexicographic order
proceeds counterclockwise, while reverse co-lexicographic order proceeds clockwise.
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1000. (Alternatively, one can consider numbers to be right-justified with the absence

of a symbol having the lowest order, and so 999 is less than 1000.) Furthermore, the

same principles have been applied to other objects for thousands of years. Historical

examples include Shao Yung’s ordering of binary hexagrams in I Ching :

. . .

and Yang Hsuing’s ordering of ternary tetragrams:

. . . .

Notice that the two philosophers had differing opinions on whether the flat “yang”

should have the highest or lowest order, and whether the symbols should be read

from top-to-bottom or bottom-to-top. These historical examples were brought to the

author’s attention by [62] and [47].

Although lexicographic order is a natural choice for man, it is not necessarily a nat-

ural choice for machine. The primary difficulty comes from the problem of roll-over.

For example, driving one additional kilometer in a vehicle will cause its odometer

to roll-over from 299999 to 300000, thereby changing the value of every digit in the

process. Similarly, using nine letter words over the Lama’s 13-letter language there

would be roll-over from ammmmmmmm to baaaaaaaa. This worst-case behavior

can be the limiting factor in many situations. For example, the Mark series of com-

puters were known for their peculiar timing idiosyncracies, where certain operations

could only be performed during certain clock cycles (see Wikipedia [98]). Accord-

ingly, if programmed in lexicographic order, then the Mark V may have been forced

to wait for the longest possible update time before outputting each successive name.

Depending on its parallelization capabilities, updating each letter could have taken

nine times as long as updating a single letter. Furthermore, the frequency of roll-overs

could also lead to undue electrical consumption and mechanical wear on the Mark V’s

electromatic typewriter2 (both of these considerations are significant when running

a multi-month generator-powered project on a remote Tibetan mountaintop). For

this reason, the Manhattan-based engineers may have asked their colleagues at Bell

Laboratories for suggestions before embarking on their long voyage to the lamasery.

2The Harvard Mark IV was used by the U.S. Air Force in 1952, but the Mark V was never
officially built. Otherwise, its output could have been on an early daisy-wheel printer, where each
letter change requires a daisy-wheel to spin.
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1.1.2 The Binary Reflected Gray Code

“Once it has been programmed properly it will permute each letter in turn and print
the result. What would have taken us fifteen thousand years it will be able to
do in a hundred days.”

- The Lama in The Nine Billion Names of God

While working with Bell Laboratories, Frank Gray filed U.S. patent 2,632,058 in

1947 based on the binary reflected code [29]. Gray’s result shows how binary strings

of length n can be ordered so that successive strings differ in exactly one bit. For

example, Gray’s ordered list for the binary strings of length n = 2 is denoted G2 and

appears below. Notice that it contains every possible binary string of length two

exactly once, and that a single overlined bit is changed to obtain each successive

string. For example, 00 is succeeded by 01.

G2 = 00,01,11,10 reverse(G2) = 10,11,01,00

G3 = 000,001,011,010
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

0 ⋅ G2

,110,111,101,100
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1 ⋅ reverse(G2)

The term reflected in binary reflected code comes from the operation of reversing the

order that each string appears in a list. For example, reverse(G2) starts with the last

string in G2, namely 10, and ends with the first string in G2, namely 00. Since each

successive string in reverse(G2) must also differ in the value of a single bit, this simple

operation allows Gray to extend the pattern to binary strings with one more bit. In

particular, the ordered list Gn+1 is constructed by prefixing 0 to every string in Gn,

followed by prefixing 1 to every string in reverse(Gn). This construction is illustrated

above for n = 2. In general, G0 = ε (the empty string) and then for n > 0,

Gn+1 = 0 ⋅ Gn, 1 ⋅ reverse(Gn).

This type of construction is recursive since it describes the overall structure of the

ordered list in terms of smaller ordered lists of the same type. Dr. Wagner may have

also been aware that the binary reflected code can be described by a highly efficient

iterative operation which describes how to change any string in the list into the next

string in the list (see Bitner-Ehrlich-Reingold [4]). Iteration is often more desirable

than recursion due to its low overhead; this is especially true in this case since the

available memory is limited to a small number of ferrite magnetic registers. Before

discussing how the binary reflected code relates to the nine billion names of God, it is
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useful to point out that if the second sublist in the above expression is not reflected,

then the result is a recursive construction for binary strings in lexicographic order.

In other words, the binary reflected Gray code is a subtle variation of lexicographic

order.

If George and Chuck were aware of the binary reflected code, then they may have

wondered if the same principle could be extended to n-tuples in general. Given an

alphabet, the term n-tuple refers to the set of all possible strings of length n over

that alphabet. For this application, George and Chuck would have been primar-

ily interested in 9-tuples over a 13-letter alphabet. With some back-of-the-envelope

reckoning, they may have realized that reversing every second sublist, that is,

Gn+1 = a ⋅ Gn, b ⋅ reverse(Gn), c ⋅ Gn, d ⋅ reverse(Gn), . . . , m ⋅ Gn,

ensures that successive strings differ by the increment, or decrement, of a single

letter. For example, ammmmmmmm is followed by bmmmmmmmm in this tridenary

reflected Gray code, and in general all roll-overs are avoided. Furthermore, a similarly

efficient iterative operation also exists for this generalized notion of a reflected Gray

code [46]. The two Americans could have used this iterative operation as a basis

for programming the Mark V, and this approach would lead to significantly faster

generation of each successive name (and a faster return home).

Despite its simplicity, or perhaps because of it, the binary reflected code, or binary

reflected Gray code as it is now known, has become an extremely versatile piece of

mathematics. Within information and communication technology its uses are wide

and varied, with applications including analog-to-digital conversion, error correction,

and decreased power consumption in hand-held devices (see Wikipedia [97]). Fur-

thermore, the same order was used in telegraphy by Émile Baudot as early as 1878.

It has also been used for other diverse purposes, including the CODACON spectrom-

eter, and appears in research titles ranging from measurement and instrumentation

to quantum chemistry (see Betta-Pietrosanto-Scaglione [3] and Sawae-Sakata-Tei-

Takarabe-Manmoto [78]). To honor Gray’s popularization of this ubiquitous pattern,

the term Gray code is now synonymous with the concept of minimal-change order. In

other words, a Gray code is an ordering of objects such that successive objects differ

in some small prescribed manner.
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1.1.3 de Bruijn Cycles

“The second matter is so trivial that I hesitate to mention it - but it’s surprising how
often the obvious gets overlooked.”

- Dr. Wagner in The Nine Billion Names of God

If Dr. Wagner’s PhD was in mathematics, then he may have been aware of de

Bruijn cycles. Published just one year before Frank Gray’s patent, Nicolaas Govert

de Bruijn proved that the binary strings of length n can be packed into one string of

length 2n (see de Bruijn [13]). For example,

0000100110101111 (1.5)

is a string of length 24 = 16, and it contains each of the 16 binary strings of length

n = 4 exactly once as a substring. For the sake of clarification, the substrings appear

in the following order

0000,0001,0010,0100,1001,0011,0110,1101,

1010,0101,1011,0111,1111,1110,1100,1000. (1.6)

Notice that each substring overlaps the previous substring in three bits, and the final

three substrings wrap-around from the end of (1.5) to the beginning. Alternatively,

each successive binary string in (1.6) is obtained by removing the leftmost bit and

inserting a new rightmost bit. Therefore, de Bruijn cycles also produce a type of

minimal-change order. Similar de Bruijn cycles also exist for n-tuples over any alpha-

bet, including 9-tuples over a 13-letter alphabet. Depending upon the exact details

of the Lama’s belief system, the overlapping of potential names may have been ac-

ceptable. For example,

aaaaaaaaaba⋯

may have been an acceptable encoding of the names aaaaaaaaa, aaaaaaaab,

aaaaaaaaba, and so on. Allowing this overlap could have drastically reduced the

time taken to complete the project. This is especially true considering that the bot-

tleneck in creating lists is often the output of strings, as opposed to the creation of

the strings within the computer’s memory. By using a de Bruijn cycle, the engi-

neers would have reduced the amount of output by a factor of nine, not to mention

the reduction in downtime required for replacing worn-out parts of the electromatic

typewriter.

“All we need to do is to find something that wants replacing during one of the overhaul
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periods — something that will hold up the works for a couple of days. We’ll
fix it, of course, but not too quickly.”

- Chuck in The Nine Billion Names of God

If George and Chuck wanted to use this approach, then they would have needed

to be able to efficiently create a suitable de Bruijn cycle. Although it was not part of

de Bruijn’s original research, it is possible to induce a de Bruijn cycle for the n-tuples

over an alphabet by a reduction from lexicographic order of the same words. For the

sake of illustration, consider the lexicographic order of binary strings of length four

0000,0001,0010,0011,0100,0101,0110,0111,

1000,1001,1010,1011,1100,1101,1110,1111. (1.7)

The de Bruijn cycle in (1.5) is obtained by concatenating the underlined portions of

the strings in (1.7). The underlined portions represent the non-repeating or aperiodic

prefix of the corresponding string. For example, the 01 is underlined in 0101 since

0101 can be formed by repeating 01 twice. Likewise, 0000 since 0000 can be formed

by repeating 0 four times. Furthermore, a string only has an underlined portion if it

is the lexicographically smallest in its rotation set. The rotation set of a string s is

denoted by ⟲ (s) and is a set containing every rotation of the string. For example,

⟲ (0010) = {0010,0100,1000,0001}.

Within this set, 0001 is the lexicographically smallest. Thus, 0010 does not have

an underlined portion in (1.7), but 0001 does. Similarly, 0101 and 1111 also have

underlined portions. A very interesting theoretical result discussed in [46] that dates

back to the 1930s (see Martin [55]) is the fact that this technique always creates the

lexicographically smallest possible de Bruijn cycle. More recent research has shown

that this de Bruijn cycle can be generated efficiently (see Fredericksen-Maiorana [21],

Fredericksen-Kessler [20], and Ruskey-Savage-Wang [66]). This construction is known

as the FKM algorithm.

“A rather more interesting problem is that of devising suitable circuits to eliminate
ridiculous combinations. For example, no letter must occur more than three
times in succession.”

- The Lama in The Nine Billion Names of God

Roughly speaking, backtracking involves the avoidance of unnecessary work. As

mentioned by the Lama in his initial meeting with Dr. Wagner, certain tuples need
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not be generated, including those that contain three identical letters in succession.

Although fewer than a half-billion possibilities have three identical letters in succes-

sion, George and Chuck surely would have preferred to spend an extra half-week back

in Manhattan than waiting for the Mark V to output these “ridiculous combinations”.

While backtracking to avoid these possibilities would be relatively easy using lexico-

graphic order or the tridenary reflected Gray code, it would be significantly more

challenging using de Bruijn cycles.

Similar to the binary reflected code, de Bruijn cycles have also proven to have a

wide variety of applications, and have been the subject of a number of generalizations

referred to as universal cycles as initiated by Chung-Diaconis-Graham [9].

1.1.4 Johnson-Trotter-Steinhaus Order

This, thought George, was the craziest thing that had ever happened to him. Project
Shangri-La, some wit back at the labs had christened it.

- in The Nine Billion Names of God

The Shangri-La reference is to a 1937 movie entitled Lost Horizon in which a

group of westerners find themselves “trapped” by a High Lama (played by Sam Jaffe)

at an idyllic Himalayan Shangri-La. As is the case in the movie, the westerners in this

story have concerns about staying too long in the mountaintop paradise. With the

Mark V’s job quickly coming to an end, and their transport not arriving for another

week, Chuck is worried about the monks’ reaction when the last name is printed and

the world does not end. On the other hand, George fears that the monks will re-

examine their centuries-old calculations and conclude that the search for His names

is not complete.

Just what obscure calculations had convinced the monks that they needn’t bother
to go on to words of ten, twenty, or a hundred letters, George didn’t know.
One of his recurring nightmares was that there would be some change of plan
and that the High Lama (whom they’d naturally called Sam Jaffe, though he
didn’t look a bit like him) would suddenly announce that the project would
be extended to approximately A.D. 2060.

- George in The Nine Billion Names of God

Although the prospect of generating longer words was daunting to George, the

good news was that the Mark V was already programmed to output n-tuples. Thus,

assuming he could teach the junior monks to run the scheduled maintenance and

repairs, he could then, in theory, make a small change to the program and return

home. However, this would not be true if he needed to reprogram the automatic
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sequence computer to generate a different type of list. Judging from the Lama’s

instructions on avoiding consecutive identical letters, George could have wondered if

the next task would involve writing out the six billion permutations of the special 13-

letter alphabet. The permutations of a set, or alphabet, include every rearrangement

of its symbols. For example, the permutations of {1,2,3,4} are

1234,1243,1324,1342,1423,1432,2134,2143,2314,2341,2413,2431,

3124,3142,3214,3241,3412,3421,4123,4132,4213,4231,4312,4321.

Of course, the Mark V could be programmed to output the permutations in lexico-

graphic order, as illustrated above. However, similar timing issues would still exist,

with amlkjihgfedcb rolling-over to bacdefghijklm in this alternate list of names.

Adding to his concern would be the realization that the minimal-change operation

used in the reflected Gray code simply cannot work for permutations. For instance,

given the permutation abcdefghijklm, consider what happens when a single letter,

say b, is changed to another letter, say l. The resulting string, alcdefghijklm is not

a permutation since it is missing the letter b and contains two copies of l. However,

if the original copy of l is changed to b, then the resulting string, alcdefghijkbm

is again a permutation. The net result is that the b and l have been transposed.

In general, transpositions are illustrated using line-segments (i.e., abcdezÐxf = aecdbf).

Ten years after Clarke’s short story was published, the Johnson-Trotter-Steinhaus

minimal-change order for permutation was published [42, 90, 87]. Within this order,

each successive permutation differs by an adjacent-transposition, meaning that the

transposed symbols are next to each other. For example, the order for n = 4 appears

below

1234zx,124zx3,14zx23,4123zx,41zx32,143zx2,1342zx,13zx24,3124zx,314zx2,34zx12,4312zx,

43zx21,342zx1,3241zx,32zx14,2314zx,234zx1,24zx31,4231zx,42zx13,241zx3,2143zx,2134.

Within the above list3, notice that the largest symbol, 4, sweeps back and forth, with a

single pause when it reaches the extreme left and right positions. This idea drives the

entire order since there are n permutations of {1,2, . . . , n} that can be obtained by in-

serting the symbol n into a fixed permutation of {1,2, . . . , n−1}. The sweeping motion

exhausts all n of these possibilities for a permutation of {1,2, . . . , n − 1}, and is fol-

3This list was obtained from Frank Ruskey’s The Combinatorial Object Server [81] where one
can find many orders including others from this thesis.



14

lowed by the single transposition that creates the next permutation of {1,2, . . . , n−1}.

Historically, the Johnson-Trotter-Steinhaus order was influential to the development

of combinatorial generation in academia, and by the 1970s there were several sur-

vey papers discussing the merits of various methods for generating permutations (see

Ord-Smith [56, 57], Sedgewick [79], and Roy [61]). Generating permutations by trans-

positions was also important to the private sector by this time, as evidenced by an

internal memorandum by Goldstein-Graham [27] from Bell Laboratories in 1964.

Although George could not look into the future for help, he could ask for divine

intervention. Such a request may have reminded George of Sunday morning, and

the wonderfully intricate patterns of music played in many churches. The art, and

science, of method ringing was developed in English church towers during the 17th

century (see Wikipedia [100]). The oversized tuned bells in these towers were not

particularly adept at creating melodies. For this reason, the ringers would focus on

sounding all of the bells in some order, one after another. Such orders are called

rounds, and are essentially permutations of {1,2, . . . , n}, where n is the total number

of bells and ringers. If the ringers wished to play two rounds in succession, then the

second round would have to be played in a similar order to the first. For example,

the succession of the following two rounds would not be feasible


1 
2 
3 
4 
5 
6 
7 
8


1 
6 
3 
4 
5 
2 
7 
8.

This is due to the fact that in the second round, 
6 would still be completing its

ringing cycle from the first round. For this reason, the study of change ringing focuses

on playing successive rounds such that a small number of adjacent-transpositions

occur. (The adjacent-transposition operation also ensures that each ringer maintains

a relatively consistent cadence.) For example, the succession of the following two

rounds would be possible in change ringing.


1 
2 
3 
4 
5 
6 
7 
8


1 
3 
2 
4 
5 
7 
6 
8

One of the biggest goals in change ringing is to avoid repeated rounds, and method

ringing is focused on using mathematical patterns for this purpose. If every possible

round is played exactly once, then the performance is called an extent. Extents

with n = 7 are called peals, and the 7! = 5040 distinct rounds are played thousands

of times per year. For this reason, George’s prayers could have been answered one

Sunday morning in New York at a holy “bell lab”. In particular, the Johnson-Trotter-

Steinhaus order may have been played as a send-off for George’s Tibetan adventure.
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A verbose description of plain change order and its variations appear in the 1668 text

Tintinnalogia by Duckworth-Stedman [15] subtitled Wherein is laid down plain and

easie Rules for Ringing all sorts of Plain Changes.

1.2 Contemporary Results

The historical foundations of combinatorial generation were surveyed in the previous

section. To motivate these foundations, The Nine Billion Names of God was used to

demonstrate the utility of the reflected Gray code and de Bruijn cycles for n-tuples,

as well as the Johnson-Trotter-Steinhaus order for permutations. Implicit in the

discussions of these minimal-change orders was a particular sequence of three steps

designed to achieve the goal of “efficiently creating all possibilities”. This sequence

of steps includes:

1. Model the possibilities by a suitable combinatorial object.

2. Find a minimal-change order for the instances of the combinatorial object.

3. Implement an efficient algorithm that generates the minimal-change order.

(Within the last two steps, a universal cycle is included in the possible minima-change

orders.) The primary purpose of this section is to survey contemporary results in

combinatorial generation, and it does so by following the three steps listed above.

Section 1.2.1 introduces several additional combinatorial objects including necklaces

and trees, as well as the concept of a fixed-content language. Sections 1.2.2 and 1.2.3

present contemporary transposition Gray codes and shift Gray codes for fixed-content

languages, as well as the new concept of a shorthand universal cycles for fixed-content

languages. Section 1.2.4 then completes the sequence of steps by discussing known

algorithms, and the measures of efficiency that are used in this thesis.

The secondary purpose of this section is to illustrate that optimization problems

can also be solved by following the same sequence of three steps. In an optimization

problem, each instance of a combinatorial object has an associated value, and the goal

is to find an instance with the greatest value. One way to solve an optimization prob-

lem is to generate each possibility and evaluate it. This approach is often (derisively)

referred to as a brute force solution within computer science. Despite this fact, there

are many real-world situations when this approach is either necessary or desirable.

For example, brute force is often employed when the underlying problem is extremely

difficult. Section 1.2.5 returns to the lamasery to introduce a notoriously difficult

problem known as the stacker-crane problem. Discussions from Sections 1.2.1-1.2.4
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contribute to an understanding of how to implement a highly-optimized brute force

solution to the stacker-crane problem. In particular, this optimized brute force solu-

tion provides a concrete real-world application of the shift Gray codes and efficient

algorithms developed in this thesis.

1.2.1 Combinatorial Objects

“What source of electrical energy have you?”
“A diesel generator providing 50 kilowatts at 110 volts. It was installed about five

years ago and is quite reliable. It’s made life at the lamasery much more
comfortable, but of course it was really installed to provide power for the
motors driving the prayer wheels.”

- Dr. Wagner and the Lama in The Nine Billion Names of God

To model the possible solutions of a given problem, it is helpful to first have

an understanding of several basic combinatorial objects. Thus far, the reader has

been introduced to n-tuples and permutations. This section expands this list of

combinatorial objects by introducing necklaces and trees. This section also discusses

the value of a combinatorial object based on its pairs of adjacent symbols. Before

beginning this discussion, it is useful to note that the term combinatorial object is

often used to refer to a specific instance of a combinatorial object (i.e., a specific

permutation of {1,2, . . . , n}) or to the set of all such instances (i.e., the set of all

permutations of {1,2, . . . , n}). In other words, “combinatorial object” is a figure

of speech known as a synecdoche. More precisely, s synecdoche occurs whenever a

specific term is used to refer to a more general term, or a general term is used to refer

to a more specific term (see dictionary.com [36]).

In his initial meeting with Dr. Wagner, the Lama mentions that a diesel generator

was installed at the lamasery to provide power for the motors that automatically

turn their prayer wheels. Although prayer wheels are most often adorned with the

mantra Om Mani Padme Hum, it is also common to inscribe their outer surface with

the Eight Auspicious Signs (see Wikipedia [101]). Although the precise order can

differ around the world, in Tibet the Ashtamangala typically refers to the following

order of these symbols: endless knot, lotus flower, victory banner, wheel of Dharma,

treasure vase, golden fish pair, parasol, and conch shell. To provide additional karma

in advance of the Lama’s trip to New York, it would not have been surprising if

the lamasery dedicated a prayer wheel to each of the possible circular orderings of
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the Eight Auspicious Signs.4 More abstractly, this section describes these possible

inscriptions on the lamasery’s prayer wheels as the necklaces containing eight beads

of different colours.

To formalize the definition, recall the notion of string rotations from Section 1.1.3.

A necklace is an equivalence class of strings under rotation. By convention, the sym-

bols in a necklace are known as coloured beads. For example, the necklaces containing

two black beads, two grey beads, and two white beads are illustrated in Figure 1.3.

Each necklace in Figure 1.3 can be represented by a string of symbols by mapping

Figure 1.3: Necklaces containing two black, two grey, and two white beads.

↔ 1, ↔ 2, ↔ 3, and then by recording one of its clockwise rotations. In

particular, it is customary to use the lexicographically largest or smallest clockwise

rotation. For example, the lexicographically largest representation of the necklace in

the top-left corner of Figure 1.3 is 332211.

While necklaces can be used to encapsulate circular orders, it can also be desirable

to encapsulate hierarchical orders. For example, the High Lama would have tutored

several students at the lamasery over the years, and then these students would have

themselves tutored additional students, and so on. The resulting student-teacher

relationship would form a type of family tree. This thesis will focus on ordered trees

with a fixed-branching sequence in Chapter 2. For the sake of illustration, Figure 1.4

depicts the ordered trees containing a single node with three children, two nodes with

a single child, and three leaves (in black). Each tree in Figure 1.4 can be represented

by a string of symbols by mapping each node to its number of children, and then by

recording its pre-order traversal. For example, the leftmost tree in Figure 1.4 can be

represented by 311000.

Although the combinatorial objects in these two figures are quite different, they

are similar in at least one respect. To formalize this connection, say that a multiset is a

4There are 5040 such possibilities since the endless knot can be followed by any of the 7! permu-
tations of the remaining symbols.
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Figure 1.4: Ordered trees with branching sequence {0,0,0,1,1,3}.

set that allows repetition, and a multiset permutation is a permutation of a multiset.

Notice that each necklace in Figure 1.3 can be encoded as a permutation of the

multiset {1,1,2,2,3,3}, and each tree in Figure 1.4 can be encoded as a permutation

of the multiset {0,0,0,1,1,3}. As a third example, the set of all 4!
1!⋅2!⋅1! = 12 multiset

permutations over {1,2,2,3} appears below

{1223,1232,1322,2123,2132,2213,2231,2312,2321,3122,3212,3221}. (1.8)

Multiset permutations generalize both permutations and (s, t)-combinations. In par-

ticular, permutations are the multiset permutations of the set {1,2, . . . , n}, and (s, t)-
combinations are the permutations of the multiset containing s copies of 0 and t copies

of 1. More generally, a fixed-content language is any set of strings that contain the

same multiset of symbols. In particular, fixed-content languages can be used to rep-

resent the necklaces in Figure 1.3, the trees in Figure 1.4, and the set of multiset

permutations found in (1.8). On the other hand, {122,112} is a simple example if a

language that does not have fixed-content.

A fixed-content language whose strings contain only 0s and 1s is known as a

fixed-density language with density referring to the number of 1s. In other words,

fixed-density languages are subsets of (s, t)-combinations.

As previously mentioned, each instance of a combinatorial object can have an

associated value. (This is not the case in The Nine Billion Names of God since

each n-tuple has equal importance as a possible name of God.) For example, if

a combinatorial object is represented by a string, then its associated value could

depend on its pairs of adjacent symbols. Given a string s1s2⋯sn, the ordered pairs of

adjacent symbols and unordered pairs of adjacent symbols of s are respectively

s1s2, s2s3, . . . , sn−1sn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ordered pairs of adjacent symbols

and {s1, s2}, {s2, s3}, . . . , {sn−1, sn}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ordered pairs of adjacent symbols

. (1.9)

For simplicity, these terms are henceforth abbreviated to ordered pairs and unordered

pairs.
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Another important consideration is the representations of a combinatorial object.

A representation of a combinatorial object is a data type that can be used to store

the object, together with a convention for how to store the object in this data type.

For example, this section section discussed how certain necklaces and trees can be

represented by fixed-content languages using the convention of a lexicographically

largest rotation and a pre-order traversal, respectively. As another example, Figure

1.1 showed that there are simple conventions for representing (s, t)-combinations in

an array, linked list, or computer word. In some situations, the representation is fixed

by the application at hand.

Before concluding this section, an important point involving fixed-content lan-

guages must be raised. Many combinatorial objects are naturally represented by sets

of strings that do not have fixed-content. On the other hand, many of these combina-

torial objects have subsets that are naturally represented by fixed-content languages.

At first it may seem to be more useful to have a minimal-change order for the unre-

stricted language that does not have fixed-content. However, minimal-change orders

for the restricted fixed-content languages are often more useful. This is due to the

fact that minimal-change orders for the fixed-content subsets can often be combined

into minimal-change orders for the superset. Conversely, it is much less likely that

a minimal-change order for the superset can be divided into minimal-change orders

for the fixed-content subsets. This point is not discussed again until Chapter 5, but

it should be considered a primary motivation for exploring the existence of minimal-

change orders for fixed-content languages.

1.2.2 Minimal-Change Orders

“Your Mark V computer can carry out any routine mathematical operation involv-
ing up to ten digits. However, for our work we are interested in letters, not
numbers. As we wish you to modify the output circuits, the machine will be
printing words, not columns of figures.”

- The Lama speaking to Dr. Wagner in The Nine Billion Names of God

This thesis focuses on combinatorial objects that can be represented by fixed-

content languages. Minimal-change orders for fixed-content languages are most com-

monly based on transpositions or shifts. Besides their mathematical simplicity, these

two operations are of practical importance to computer scientists. In particular,

transpositions are basic operations in arrays, and shifts are basic operations in linked

lists and binary computer words. This section compares these two operations with

respect to their effect on adjacent symbols, and then provides a technical discussion
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on specific transposition Gray codes and shift Gray codes that are known to exist.

No discussion of minimal-change orders is complete without mention of a general

result by Sekanina [80]. The result states that the cube of any connected graph has a

Hamiltonian path. (A Hamiltonian path is a path that travels through each vertex of

a graph exactly once, and the cube of a graph is obtained by adding an arc from node

u to node v so long as the shortest path from u to v is at most three.) Therefore, if

σ is some operation on strings, and if L is a set of strings in which any string can be

transformed into any other string by repeated applications of σ, then there exists an

ordering of the strings in L such that at most three applications of σ are necessary to

transform any string into the next string. In general, a minimal-change order using

at most k applications of σ between successive objects is known as a k −σ Gray code

for L. (When k = 1 the term is shortened to a σ Gray code.) The aforementioned

3 − σ Gray code due to Sekanina can be obtained by a prepostorder traversal of any

spanning tree in the initial graph (see [47] for further details).

Operations

Before he could finish the sentence, the Lama had produced a small slip of paper.
“This is my certified credit balance at the Asiatic Bank.”
“Thank you. It appears to be–ah–adequate.”

- The Lama and Dr. Wagner in The Nine Billion Names of God

The most important measures of a minimal-change order are the type of operation

it uses, and its number of applications required to create successive instances of the

underlying combinatorial object within the minimal-change order. In general, no

single operation is more useful than another. The reason for this fact has to do with

the different representations of a combinatorial object. For example, if an application

forces the combinatorial object to be stored in an array, then a minimal-change order

involving transpositions will likely result in a faster algorithm than a minimal-change

order involving shifts. On the other hand, an algorithm based on linked-lists may be

more efficient if it is based on a minimal-change order involving shifts. In general, the

relative expense of an operation is dependent on the representation of the underlying

combinatorial object. On the other hand, it is almost always desirable to reduce the

number of application required to create successive instances.

A second expense for an operation arises when the instances of a combinatorial

object have an associated value. To illustrate this point, let us compare the expense of

transpositions and shifts with respect to the ordered and unordered pairs described

in (1.9). To aid in the comparison, another natural operation on strings is briefly
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considered. A substring-reversal, or simply reversal, replaces a substring with its re-

versal. This operation is illustrated using bi-directional arrows (i.e., a
←Ð→
bcdef = aedcbf).

Notice that an adjacent-transposition is a special case of a left-shift, right-shift, and

substring-reversal, as illustrated below

1234zx56 = 12
←Ð
3456 = 12

Ð→
3456 = 12

←→
3456 = 124356.

(Substring-reversal Gray codes are not covered in detail in this thesis, although it

is mentioned that combinatorial generation using this operation has applications to

computational biology [83], and an elegant result for generating permutations by

substring-reversals was discovered by Zaks [104].)

When applying transpositions and shifts to a string, only a small number of

ordered and unordered pairs can change. For example, an adjacent-transposition

⋯sisi+1zÐÐx
⋯ will change at most three ordered pairs, and at most two unordered pairs.

(In particular, the ordered pairs si−1si, sisi+1, and si+1si+2 are replaced by the ordered

pairs si−1si+1, si+1si, and sisi+2.) Similarly, a prefix-shift ←ÐÐÐs1⋯si⋯ will change at most

two pairs, regardless of whether the pairs are ordered or unordered. (In particular,

the ordered pairs si−1si and sisi+1 are replaced by the ordered pairs sis1 and si−1si+1.)

A substring-reversal ⋯←ÐÐ→si⋯sj⋯ can change at most two unordered pairs. (In particu-

lar, the unordered pairs {si−1, si} and {sj, sj+1} are replaced by the unordered pairs

{si−1, sj} and {si, sj+1}.) On the other hand, the number of ordered pairs that are

changed by a substring-reversal is bounded only by the length of the string. (In par-

ticular, ←ÐÐ→s1⋯sn changes all n − 1 ordered pairs.) These bounds are presented in Table

1.1, along with similar bounds for general shifts and transpositions. Table 1.1 is dis-

adjacent-transposition transposition prefix-shift shift reversal
unordered 2 4 2 3 2
ordered 3 4 2 3 n-1

Table 1.1: The maximum number of ordered and unordered pairs that are changed
after applying various operations to a string of length n.

cussed again in Section 1.2.4. In general, this type of analysis provides an important

motivation for developing different types of Gray codes for the same combinatorial

object.

Before concluding this section it is mentioned that many of the shift Gray codes

presented in this thesis can also be viewed as transposition Gray codes. For example,

the left-shift Gray code of (3,3)-combinations given in (1.2) is expressed below using
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transpositions

01zx1100,101zx100,110zx10zx0,01zx1010,10zx10zx10,010zx110,001zx110,1001zx10,110zx010zx,01zx1001,

10zx10zx01,010zx101,001zx101,10zx010zx1,010zx011,0010zx11,0001zÐx11,10001zÐx1,110001zÐx,1110zÐx00.

Notice that the above strings are in a 2-transposition Gray code. For this reason,

(1.2) is both a left-shift Gray code and a 2-transposition Gray code. More generally,

operations (i) and (ii) can always be described by transposing one or two pairs of bits.

Furthermore, this is true for the general result on shift Gray codes for fixed-density

languages developed in this thesis.

Transposition Gray Codes

Given the Johnson-Trotter-Steinhaus order, it becomes natural to ask which other

fixed-content languages can be generated by single adjacent-transpositions. There

are some very basic obstructions to this goal, so the question was later expanded to

single transpositions, and then to a constant number of transpositions. For example,

it is not possible to generate (2,2)-combinations using single adjacent-transpositions.

As with many results in combinatorial generation, it is helpful to frame the argument

in terms of graph theory. Consider the adjacent-transposition graph in Figure 1.5

which contains a vertex for every (2,2)-combination and an edge for every pair of

vertices whose strings differ by an adjacent-transposition. Since there is no Hamilton

path in the graph there is no adjacent-transposition Gray code for (2,2)-combinations.

0011 0101

1001

0110

1010 1100

Figure 1.5: Adjacent-transposition graph for (2,2)-combinations.

More generally, a parity argument by Ruskey [64] shows that (s,t)-combinations

have an adjacent-transposition Gray code if and only if s and t are both odd. On

the other hand, it is possible to relax the adjacent-transposition operation and create

a transposition Gray code for combinations. For example, the relative order of the

(s,t)-combinations within the binary reflected code on n = s+ t bits is a transposition

Gray code (see Liu-Tang [54]) that can be generated by an efficient algorithm (see

Ehrlich [4]). This order is illustrated below for s = 2 and t = 2, where strings are
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crossed out if they are not (2,2)-combinations

G4 = 0000//////, 1000//////, 1100, 0100//////, 0110, 1110//////, 1010, 0010//////,

0011, 1011//////, 1111//////, 0111//////, 0101, 1101//////, 1001, 0001//////.

In general, the transposed symbols in this Gray code are arbitrarily far apart. How-

ever, it is possible to create a two-close transposition Gray code for (s,t)-combinations,

in which each transposition involves symbols that are separated by at most one other

symbol (see Ruskey [63] and Chase [8]). More generally, efficient algorithms and

two-close transposition Gray codes exist for k-ary Dyck words (see Vajnovszki-Walsh

[94]). Further results along this line are contained in the Generating All Trees fascicle

of The Art of Computer Programming [47].

Transposition Gray codes also exist for multiset permutations. These Gray codes

are the basis of efficient algorithms (see Ko-Ruskey [48], Takaoka [89], Vajnovszki [92],

and Korsh-LaFollette [52]). Multiset permutations and balanced parentheses can be

simultaneously generalized to linear-extensions of partially ordered sets, which are

discussed in Section 2.3. In this case transposition Gray codes exist in some cases

(see Pruesse-Ruskey [58], [64], and Stachowiak [85]), but not all cases (see Pruesse-

Ruskey [60]). In all cases, Canfield-Williamson [7] showed that a constant number

of transpositions can be used to create efficient algorithms for generating them. Fur-

ther generalizations have been considered including basic words of anti-matroids in

which 2-transposition Gray codes (using one or two transpositions between successive

objects) are known to exist by Pruesse-Ruskey [59].

Although there are no known Gray codes for multiset necklaces, an efficient lex-

icographic algorithm is known (see Sawada [75]). Furthermore, when the multiset is

restricted to contain only 0s and 1s then transposition Gray codes (see Wang-Savage

[96] and Ueda [91]) and efficient generating algorithms (see Ruskey-Sawada [67, 68])

are known to exist, although the representatives used in this case are not always

lexicographically smallest or largest. (Multiset necklace languages are also known

as fixed-content necklace languages, and fixed-density necklace languages refer to the

binary case.) Efficient algorithms for generating unlabeled necklaces (which allow the

symbols to be permuted) exist (see Ruskey-Sawada [69]), binary necklaces (which

have no density restriction) do not have a Gray code changing a single bit [96] but

do have a Gray code changing at most two bits (see Vajnovszki [93]), and Gray codes

changing at most three symbols also exist for unrestricted necklaces over arbitrary

bases (see Weston-Vajnovszki [95]).
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Shift Gray Codes

In general, shift Gray codes have received much less attention from the academic com-

munity. Excluding the aforementioned results involving adjacent-transpositions, shift

Gray codes were previously known for multiset permutations (see Korsh-Lipschutz

[53]) and linear extensions of partially ordered sets (see Korsh-LaFollette [51]). These

Gray codes have efficient algorithms, although the implementations span several pages

with multiple instructions on each line. Prefix-shift Gray codes for permutations were

also known to exist (see Langdon [25, 26] and Corbett [12] and [40]).

1.2.3 Universal Cycles

To understand the relationship between fixed-content languages and universal cycles,

consider the problem of constructing a universal cycle for the six permutations of

{1,2,3}. Since the universal cycle must contain 321, then it is safe to assume that

the alleged universal cycle is of the form 321xyz where x, y, z ∈ {1,2,3}. Within this

alleged universal cycle, 21x is a substring, and therefore 21x must be a permutation

of {1,2,3}. Thus, x = 3. Similarly, 1xy = 13y is a substring of the universal cycle

and so y = 2. Likewise, z = 1. However, 321321 is certainly not a universal cycle for

the permutations of {1,2,3} since it contains two copies of 321 and no copies of 123.

In general, universal cycles for fixed-content languages rarely exist. (More precisely,

they exist if and only if the language is comprised of every rotation of a single string.)

To get around this limitation, one can use an alternate representation for each

permutation. For example, the six-digit string below on the left is an order-isomorphic

universal cycle for the permutations of {1,2,3}. A string is order-isomorphic to a

permutation of {1,2, . . . , n} if the string contains n distinct integers whose relative

orders are the same as in the permutation.

321341
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

order-isomorphic univeral cycle

321,213,134,341,413,132
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

substrings

321,213,123,231,312,132
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

permutations

In particular, the substrings of the order-isomorphic universal cycle appear above in

the middle, and the corresponding permutations appear above on the right. In the

above example, one additional symbol was required since the symbols in {1,2,3,4}
were used for the permutations of {1,2,3}. Johnson [41] recently confirmed a long-

standing and difficult conjecture [9] by showing that one additional symbol is sufficient

for making order-isomorphic universal cycles for the permutations of {1,2, . . . , n}.
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One drawback of using order-isomorphism is that the resulting permutations can

vary significantly from one to the next.

This thesis introduces the idea of using shorthand isomorphism. The shorthand

representation of a permutation is simply the permutation with its last symbol re-

moved. For example, the shorthand representation of 12345 is 1234. An example of a

shorthand universal cycle for the permutations of {1,2,3} appears below, along with

its substrings of length two and the permutations that result from suffixing the last

“missing” symbol

321312
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

shorthand universal cycle

32,21,13,31,12,23
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

substrings

321,213,132,312,123,231
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

permutations

.

Notice that the resulting permutations differ from one another in a very predictable

fashion. In particular, each successive permutation differs by shifting the first symbol

to the right past all of the other symbols, or past all of the other symbols except

one. For example, if 12345 is a substring of a shorthand universal cycle for the

permutations of {1,2,3,4,6} then the next symbol must either be 1 or 6. These two

possibilities, along with their substrings of length five and the result permutations

appear below

123456 . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

shorthand universal cycle

12345,23456, . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

substrings

ÐÐÐÐ→
123456,234561, . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

permutations

123451 . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

shorthand universal cycle

12345,23451, . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

substrings

ÐÐÐ→
123456,234516, . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

permutations

.

Notice that 123456 is followed either by 234561 or 234516. In general, shorthand

universal cycles always provide prefix-shift Gray codes that shift the first symbol

into the last or second-last position. The former case provides a slight improvement

over general prefix-shifts with respect to the number of ordered and unordered pairs

that change. In particular, the prefix-shift ÐÐÐ→s1⋯sn replaces the ordered pair s1s2 by

the ordered pair sns1. For this reason, shorthand universal cycles provide a slight

advantage, on average, to prefix-shift Gray codes with respect to the total number of

ordered and unordered pairs that change.

Shorthand isomorphism can be applied to any fixed-content language, including

multiset permutations. Furthermore, the same observations involving prefix-shifts

still hold. Despite these advantages, the idea of shorthand isomorphism is somewhat

new to the academic community. Under a different name, Jackson [39] proved that
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shorthand universal cycles exist for the permutations of {1,2, . . . , n}. (In particular,

he proved that a universal cycle for the k-permutations of {1,2, . . . , n} exist for all

n and 1 ≤ k ≤ n − 1, and the k = n − 1 case is equivalent to a shorthand universal

cycle for permutations.) However, like de Bruijn’s pioneering work, the proof relies on

graph theoretic arguments and does not provide a reasonable construction method for

large values of n. Knuth asked for an efficient construction within the Generating all

Permutations fascicle [46] of the new volume of The Art of Computer Programming.

An answer to this question was provided Ruskey-Williams [71] and is due to appear in

the final printing of the volume. An alternative answer was known to the bell-ringing

community and is discussed in Section 4.2.1.

1.2.4 Efficient Algorithms

Patiently, inexorably, the computer had been rearranging letters in all their possible
combinations, exhausting each class before going on to the next. As the sheets
had emerged from the electromagnetic typewriters, the monks had carefully
cut them up and pasted them into enormous books.

- in The Nine Billion Names of God

Section 1.1 used The Nine Billion Names of God to discuss the advantages of

minimal-change orders over lexicographic order. In particular, minimal-change orders

were of interest to George and Chuck since they could reduce the amount of time and

effort expended by the Mark V printer. On the other hand, the engineers may have

tried to convince the Lama that no amount of printing was necessary. To justify this

possibility, suppose the Lama’s belief system did not explicitly state that the possible

names of God had to be written, but instead could be spoken or thought. If this were

the case, then the engineers may have suggested that the Mark V simply generate

each possible name within its internal memory. In this scenario, the bottleneck in

completing the project would no longer be printing each name once. Instead the

bottleneck would be representing each name once within the contents of the Mark

V’s memory.

In fact, the aforementioned scenario arises quite frequently in modern-day com-

puter science. More specifically, it is often desirable to create each combinatorial ob-

ject once in computer memory and to bypass storing or printing each object. Knuth

makes note of this fact on the first page of his Generating all Combinations fascicle

[45] when stating that the goal “is to study methods for running through all possi-

bilities”. In particular, this situation arises when solving optimization problems by

brute force. To measure the efficiency of these types of algorithms it is necessary
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to introduce several technical terms. When “running through all possibilities” the

possibilities are best generated in-place using a single shared object. This means that

a single combinatorial object is stored in the computer memory, and then it is repeat-

edly modified to create every possibility. The speed of a combinatorial generation

algorithm can then be measured in terms of how quickly it can make each successive

modification. In particular, the time required for each modification can be lower than

the size of the possibility. This is especially true if the combinatorial objects are gen-

erated in a minimal-change order. For example, the reflected Gray code for n-tuples

and the Johnson-Trotter-Steinhaus order for the permutations of {1,2, . . . , n} can be

generated by algorithms that require a constant amount of time to create each succes-

sive possibility, irrespective of the value of n [46]. More generally, the term loopless is

due to Ehrlich [18] and refers to an algorithm that creates each successive possibility

in worst-case O(1)-time, where the hidden constant does not depend on the size of the

possibilities being created. A number of the efficient algorithms discussed in Section

1.2.2 are loopless algorithms including [4], [94], [89], [92], [52], [7], [53], and [51].

In practice, many of the fastest algorithms are not loopless, but run in constant

amortized time (CAT). This means that individual modifications may take more than

O(1)-time, but the modifications take a constant amount of time on average. Lexi-

cographic orders are frequently used to create CAT algorithms, although clever op-

timization and analysis is often required to prove the result. See [62] for the best

resource on CAT algorithms using lexicographic order. CAT algorithms mentioned

in Section 1.2.2 include [48] and [75]. Also see [66] for analysis on the construction of

the lexicographically smallest de Bruijn cycle.

In terms of memory consumption, an in-place combinatorial generation algorithm

can be measured by how much additional memory it uses. Additional memory does

not include the storage used for the single shared object, and in some cases may be

lower than this quantity. In particular, algorithms with this property may use a con-

stant number of additional variables, where each additional variable is a single integer

or pointer requiring O(logn) bits. In the case of optimization problems, additional

memory also does not include memory necessary for specifying the associated values.

(The table in Figure 1.6 provides an example of this uncounted expense.)

Before concluding this discussion on efficient algorithms, it is important to recall

that many problems associate a value with each instance of a combinatorial object.

In these cases, the bottleneck of solving the problem may involve computing the

value of each object as opposed to generating each object. On the other hand, in

some situations it is possible to update the associated value of successive objects in
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the same way that the single shared object is modified. For example, recall that

Table 1.1 summarizes the number of ordered and unordered pairs that are changed

by applying various operations. In particular, at most two pairs are changed when

applying the prefix-shift operation. Therefore, if a prefix-shift Gray code is used in

an application whose value depends solely on these pairs, then it will be possible to

update the associated value of each successive object in worst-case O(1)-time. In

other words, the evaluation loopless. For optimization problems, simultaneous worst-

case O(1)-time generation and worst-case O(1)-time evaluation is the ultimate goal

with respect to combinatorial generation.

1.2.5 Stacker-Crane Problem

The High Lama and his assistants would be sitting in their silk robes, inspecting the
sheets as the junior monks carried them away from the typewriters and pasted
them into the great volumes.

- in The Nine Billion Names of God

For three centuries, the inhabitants of the Tibetan lamasery had been filling mas-

sive volumes with the potential names of God. To ensure that none of the names

were overlooked, the Lamas must have had rigorous checks and balances built into

their daily routine. Once a volume was completed, it would have to be inspected

by several other Lamas before being deposited into the library. Empty books would

then make their way to the Lamas who were ready to start writing anew, and from

time-to-time it would have been necessary to remove books from the library to do

additional “bookkeeping” on the progress of the overall list.

Great care also would have been taken to ensure that no book was lost or misplaced

during its transportation between the myriad of rooms and buildings in the lamasery.

For this reason, the High Lama of a previous generation may have decreed that a single

courier be in charge of all book deliveries on a given day. To avoid confusion (and

limit back strain) the courier would be limited to carrying at most one giant volume

at a time. Furthermore, the High Lama may have forbidden the courier from leaving

books at an intermediate location. Finally, to provide a consistent environment free

of disruptions, the courier may have been instructed to pick up and deliver all of the

books while the remaining Lamas were joined in morning prayer. For this reason, the

courier’s goal is to minimize the amount of elapsed time between the beginning of his

first pick up and the end of his last delivery.

Such a system may have been in place by 1661 when Austrian explorer and profes-

sor of mathematics Johann Grueber traveled overland from Peking to Lhasa. Grue-
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ber’s sketch5 of the Potala palace is reproduced in Figure 1.6, and could have resem-

bled the lamasery due to Clarke’s description of its adequate balance at the Asiatic

Bank. Figure 1.6 also formulates a sample problem for the courier at the lamasery

involving six books and five rooms.

A

B
C

E

D

F
21 5 4

3

�
0 1 8 6 5
1 0 7 5 5
3 2 0 3 4
6 5 8 0 1
5 5 9 1 0

Figure 1.6: An instance of the courier’s stacker-crane problem at the lamasery. There
are five rooms, - and six books, - . The books need to be delivered between
the rooms along their specified route. The table provides minimum room-to-room
distances measured in walking minutes.

Now let us consider the possible solutions to the courier’s problem outlined in

Figure 1.6.6 Due to the aforementioned constraints and goals, the courier must re-

peatedly pick up a book, deliver the book to its destination along the quickest route,

and then move to the room where the next book is located. Therefore, the courier’s

entire route can be modeled by the order of the books that he delivers. More formally,

his delivery order in this case is simply a permutation of

{ , , , , , }. (1.10)

Now consider the amount of time required for the courier to complete the following

delivery order

. (1.11)

The total duration can be divided into two partial durations depending on whether

the courier is carrying a book or not. More precisely, the first duration includes the

times required to deliver each book once it has been picked up. Since each of the

5The complete sketch appears in Athanasius Kircher’s China Illustrata from 1667 [43].
6The mountainous terrain explains the lack of symmetry in room-to-room distances in Figure

1.6.
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books is delivered once, then this first duration is

�(
¬

)+�(
¬

)+�(
¬

)+�(
¬

)+�(
¬

)+�(
¬

) = 1+2+3+1+1+5 = 13.

(1.12)

The second duration includes the intermediate times consumed between deliveries,

when the courier is walking from one room to the next without carrying a book. For

example, given the delivery order in (1.11) then this second duration is

�(
¬

)+�(
¬

)+�(
¬

)+�(
¬

)+�(
¬

) = 7 + 7 + 1 + 0 + 5 = 20. (1.13)

Therefore, the courier’s total duration for the delivery order in (1.11) is 13 + 20 = 33,

by (1.12) and (1.13).

Given this description, it is clear that the first duration does not depend on the

delivery order, and the second duration depends solely on the ordered pairs in the

delivery order. For this reason, Table 1.1 implies that the duration of a delivery order

can be updated in O(1)-time whenever the delivery order is modified by a shift or a

transposition. In particular, only two additions and two subtractions from the table

in Figure 1.6 need to be applied to update the duration of a delivery order once if it

is modified by a prefix-shift. For example, given the following delivery order

←ÐÐÐ
= ,

its duration can be computed from (1.12) and (1.13) as follows

33 −�(
¬

)−�(
¬

)+�(
¬

)+�(
¬

) = 33 − 7 − 1 + 6 + 5 = 36. (1.14)

Now that the basic elements of the courier’s problem are understood, it is important

to point out that there is a simplifying assumption made in the sample problem given

in Figure 1.6. In particular, there is at most one book that needs to be transported

between any ordered pair of rooms. For example, book is the single book that

needs to be transported from room to room . Now suppose that the courier’s

problem is modified to include the transport of a second book from room to room

. Since the restrictions of the problem forbid the courier from carrying two books at

once, the solutions can still be specified by the order of the books that are delivered.
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In particular, the solutions to this problem could be modeled by the permutations of

{ , , , , , , }

where represents the additional book. However, this model has the disadvantage

that it contains twice as many possibilities as distinct solutions. In particular, trans-

posing and in any permutation will not actually change the courier’s route. The

courier can avoid this redundancy by modeling the solutions on the permutations of

the following multiset

{ , , , , , , }.

In general, the courier is faced with an optimization problem on multiset permuta-

tions, where the associated value depends solely on the ordered pairs. The courier’s

problem is known in theoretical computer science and combinatorial optimization as

a stacker-crane problem (scp). In general, the stacker-crane problem arises when ob-

jects need to be quickly transported directly between locations by a single vehicle that

can carry at most one object at a time. SCP is extremely difficult to solve in practice,

and Frederickson-Hecht-Kim [23] have shown that the associated decision problem is

NP-complete. (For an introduction to NP-completeness see Garey-Johnson [24].) In

particular, scp generalizes one of the most important NP-complete problems known

as the traveling salesman problem (tsp). Informally, tsp is the special case of scp

where the objects need to be picked up but not delivered. For thorough coverage of

tsp and its variations see Applegate-Bixby-Chvátal-Cook [1] and Gutin-Punnen [30].

The results of this thesis are applicable to scp for several reasons. Chapter 3

provides the first prefix-shift Gray code for multiset permutations. (The operation

that generates this Gray code is similar to operation (ii), and appears in a more formal

setting in (4.3a) on page 149.) Prefix-shifts provide the best results with respect

to changing ordered pairs in Table 1.1. Furthermore, this advantage is even more

pronounced given the fact that adjacent-transposition Gray codes do not always exist

for multiset permutations, as illustrated by Figure 1.5. Chapter 4 provides a loopless

algorithm for generating this prefix-shift Gray code. In particular, Algorithm 7 is

the first loopless algorithm for generating multiset permutations that uses a constant

number of additional variables. (The algorithm has the surprising property that

it does not store any information regarding the contents of the multiset.) Besides

being more efficient, Algorithm 7 is also considerably simpler than any previously

known algorithms for generating shift Gray codes. Collectively, these results provide

a simple brute force solution to scp featuring worst-case O(1)-time generation, worst-
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case O(1)-time evaluation, and the use of O(1) additional variables.7

Interestingly, there is also a sense in which the courier could generate and eval-

uate his possible routes by a loopless manual algorithm. Recall the bottom-right

illustration in Figure 1.1. By using marbles of various shades, a Lama could easily

implement Algorithm 7 using one hand. (In particular, the Lama needs only to keep

his eye on the leftmost pair of lighter-darker marbles in order to apply successive

applications of (4.3a).) With his free hand, the same Lama could use an abacus to

update the duration of each successive possibility using the type of calculations shown

in (1.14). Alternatively, given the 300 year history of the project at the lamasery,

it is also possible that the Lamas would have computed shorthand universal cycles

for the permutations of all small multisets. By using the resulting prefix-shift Gray

codes, a Lama could reduce his total amount of abacus work. (In particular, recall

the observation from Section 1.2.3 that each prefix-shift of the form ÐÐÐ→s1⋯sn changes

only one ordered pair.)

Finally, the results of this thesis are also robust enough to handle changes in

the underlying problem. Suppose the courier was falling behind on his name-writing

assignments. For this reason, he wished to minimize not only the delivery time, but

also the amount of time he spent walking from his room to pick up the first book, and

the amount of time he spent returning to his room after completing the last delivery.

With some additional provisions, the courier could model his route based on multiset

necklaces instead of multiset permutations. Unfortunately, prior to this thesis there

were no known Gray code for multiset necklaces. However, the same general theory

that produced operations (i) and (ii) also produces similar rules for generating a shift

Gray code for these objects.

Before concluding the discussion of this problem, it is mentioned that [23] provides

a 9
5 -approximation algorithm for scp and proves that scp is NP-complete by reducing

tsp to scp. In their version of the problem there is a specified initial vertex v0 ∈ V.

Their reduction also proves the NP-completeness of scp without an initial vertex

by replacing tsp by the minimum weight Hamiltonian path problem. Stacker-crane

problems also remain NP-hard when the underlying mixed-graph is a tree, although

stronger approximation algorithms exist by Frederickson-Guan [22] that almost al-

ways provide exact solutions as shown by Coja-Oghlan-Krumke-Nierhoff [11]. Gener-

alizations including k cranes have also been considered [23] and also have real-world

applications (see Burkard-Fruhwirth-Rote [5]). Stacker-crane problems can also be

described as single vehicle pickup and delivery problems (or single vehicle dial-a-ride

7This brute force solution could be described as using cute force.
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problems) that forbid multiple pickups between deliveries.

1.3 New Results

The purpose of the previous two sections was to survey historical and contemporary

results in combinatorial generation, and to motivate the theoretical and practical

value of studying shift Gray codes. The remainder of this thesis focuses on the

abstract goals of constructing shift Gray codes and shorthand universal cycles, and

for developing efficient algorithms for generating them. This section outlines the basic

results.

Chapter 2 builds a framework that generalizes the fixed-content languages men-

tioned in this section together with fixed-content languages that represent balanced

parentheses, k-ary Dyck words, unit interval graphs, Schroöder and Motzkin paths,

linear-extensions of posets, and additional variations of necklaces including Lyndon

words (see Table 2.1 on page 38). The term bubble was chosen since the definition is

related to bubble sort (see Knuth [44]). In particular, any string in a bubble language

can be sorted into non-increasing order by a series of left-shifts that “bubble” larger

symbols to the left.

Chapter 3 takes advantage of this new framework by proving that every bubble

language has a simple left-shift Gray code. All of these Gray codes can be expressed

using the cool-lex variation of lexicographic order. Co-lexicographic order is lexico-

graphic order applied to strings read from right-to-left instead of left-to-right. This

name is often abbreviated to co-lex, and this explains the cool-lex moniker. Table

1.2 compares the recursive structure of co-lex and cool-lex for the permutations of

{1,2,3,4}. Co-lex order is typically defined by the value of the rightmost symbol.

This last symbol of each string is underlined and rewritten on the right side of the first

column. Notice that each suffix in question appears contiguously and in increasing

order: 1, 2, 3, 4. Furthermore, the same pattern holds recursively.

The second column again contains co-lex order on the left side, however in this case

a different suffix is underlined and copied on the right side of the column. To describe

the suffixes, notice that the first string, 4321, has its symbols in non-increasing order.

Furthermore, it does not have an underlined suffix. This is because the underlined

suffixes are the shortest suffixes that are not also suffixes of this special string 4321.

These suffixes are known as scuts, which is an English word meaning “short stubby

tail” (see dictionary.com [34]). For example, the scut of 4231 is 31 because it is

not a suffix of 4321 and the next shortest suffix, 1, is a suffix of 4321. Notice that
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Co-lex last Co-lex scut Cool-lex scut
4321 1 4321 1432 2
3421 1 3421 421 4132 2
4231 1 4231 31 3412 2
2431 1 2431 31 1342 2
3241 1 3241 41 3142 2
2341 1 2341 41 4312 2
4312 2 4312 2 2431 31
3412 2 3412 2 4231 31
4132 2 4132 2 1423 3
1432 2 1432 2 4123 3
3142 2 3142 2 2413 3
1342 2 1342 2 1243 3
4213 3 4213 3 2143 3
2413 3 2413 3 4213 3
4123 3 4123 3 3421 421
1423 3 1423 3 2341 41
2143 3 2143 3 3241 41
1243 3 1243 3 1324 4
3214 4 3214 4 3124 4
2314 4 2314 4 2314 4
3124 4 3124 4 1234 4
1324 4 1324 4 2134 4
2134 4 2134 4 3214 4
1234 4 1234 4 4321

Table 1.2: Two recursive views of co-lex order, together with the recursive view of
cool-lex order for permutations of {1,2,3,4}.

each scut appears contiguously and in the following order: 421, 31, 41, 2, 3, 4. Put

another way, the scuts are ordered by decreasing length and then by increasing first

symbol. Furthermore, the same pattern holds recursively.

With this second recursive interpretation of co-lex in mind, cool-lex order can be

summarized succinctly as a reordering of the scuts and the string in non-increasing

order. In particular, the non-increasing string 4321 appears last (instead of first)

and the scuts are ordered by increasing first symbol and then by decreasing length

(instead of by decreasing length and then by increasing first symbol). For example,

the left side of the third column contains the cool-lex order for the permutations of

{1,2,3,4}. The scuts are again underlined and copied on the right side of the column.

This time the scuts appear contiguously and in the following order: 2, 31, 3, 4, 41,

421. Furthermore, the same pattern holds recursively. Figure 1.7 illustrates co-lex

and cool-lex order for the permutations of {1,2,3,4,5,6,7}. When comparing pages 6
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and 36, notice that Figure 1.2 emphasizes the reordering of the non-increasing string,

while Figure 1.7 emphasizes the reordering of the scuts.

Cool-lex order for bubble languages has at least two important applications. The

first application involves efficient algorithms. In general, any bubble language can

be generated in cool-lex order by a simple algorithm found on page 128. Further-

more, this generic algorithm can be highly optimized for specific bubble languages as

seen in the first half of Chapter 4. The second application discussed in this thesis in-

volves shorthand universal cycles. Interestingly, reverse cool-lex can be used to create

shorthand universal cycles for multiset permutations in much the same way that de

Bruijn cycles can be created from lexicographic order. In other words, cool-lex order

provides a multiset permutation analogue to lexicographic order with respect to the

FKM algorithm. For an illustration, consider again the right-shift Gray code for (3,3)-

combinations given in (1.1), except cross off the strings that are not lexicographically

largest in their rotation set

110001//////////,100011//////////,000111//////////,001011//////////,010011//////////,100101//////////,001101//////////,010101//////////,101001//////////,011001//////////,

110010,100110//////////,001110//////////,010110//////////,101010,011010//////////,110100,101100//////////,011100//////////,111000.

For example, 101100 is crossed off because 110010 is a lexicographically larger rota-

tion. Appending the underlined aperiodic prefix of each remaining string yields

11001010110100111000,

which is the shorthand universal cycle previously seen in (1.3). These results are

investigated in the second half of Chapter 4 and rely on an interesting shorthand

rotation property that is hidden in the cool-lex order of every bubble language.

1.3.1 Summary

This thesis introduces the concept of a bubble language in Chapter 2 and a new

variation of lexicographic order called cool-lex order in Chapter 3. Whenever bubble

languages are expressed in cool-lex order the result is a left-shift Gray code. Fur-

thermore, these left-shift Gray codes can be used to create the efficient generation

algorithms and shorthand universal cycles found in Chapter 4. Specific results in-

clude:

� the first prefix-shift Gray code for multiset permutations,
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Figure 1.7: An artistic representation of co-lexicographic (above) and cool-lex (below)
order for permutations of {1,2,3,4,5,6,7}. The lightest and darkest regions represent
1 and 7 respectively. Individual strings are read along a line segment originating
from the center, and the first and last strings are at either side of 12 o’clock. Cool-
lex proceeds leftwards (counterclockwise) and involves left-shifts, while reverse cool-
lex proceeds rightwards (clockwise) and involves right-shifts. Co-lexicographic order
proceeds counterclockwise, while reverse co-lexicographic order proceeds clockwise.
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� the first shift Gray code for linear-extensions of B-posets, ordered trees with

fixed branching sequence, restricted Schröder and Motzkin paths,

� the first minimal-change order for multiset necklaces, pre-necklaces, and Lyndon

words,

� the first loopless algorithm using a constant number of additional variables for

generating multiset permutations,

� the most efficient array-based algorithm for balanced parentheses in practice

(see Arndt [2]),

� the first universal cycle for the middle levels (fixed-density de Bruijn cycle), and

� the first shorthand universal cycles of multiset permutations.

The interested reader will also find additional results and open problems in Chapter 5.
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Chapter 2

Bubble Languages

“Mathematics is the art of giving the same name to different things.”
- Jules Henri Poincaré

This chapter introduces the concept of a bubble language. Bubble languages

provide a new abstraction that encapsulates a number of previously studied combi-

natorial objects. In particular, this chapter proves that bubble languages can be used

to represent all of the combinatorial objects listed in Table 2.1. This general frame-

work allows interesting results for all of these objects to be proven simultaneously in

Chapter 3. Prior to bubble languages, the objects listed in Table 2.1 were known to

be interrelated in several isolated ways. For example, binary trees, Catalan paths,

and balanced parentheses can all be represented by the same language, while a subset

of this language can be used to represent connected unit interval graphs. Similarly,

linear-extensions of B-posets include k-ary Dyck words and balanced parentheses as

special cases.

Permutations Trees Grid Paths Linear-Extensions Necklaces
multiset ordered trees restricted linear-extensions multiset

permutations with branching Motzkin and of B-posets necklaces
sequence Schröder paths

permutations k-ary multiset
k-ary trees Dyck paths Dyck words pre-necklaces

(s, t)-combinations
binary trees Catalan paths balanced multiset

parentheses Lyndon
connected unit words
interval graphs

Graphs

Table 2.1: Bubble languages include representations of many combinatorial objects.
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It is important to note that a small concession is made in the representation

of several combinatorial objects found in Table 2.1. This concession is rooted in

differing historical conventions used for representing differing combinatorial objects.

For example, 0004 is the standard representation for the only necklace over {0,0,0,4}.

On the other hand, 4000 is the standard representation for the only ordered tree

with a root and four leaves. This thesis chooses to follow conventions that are more

closely related to ordered trees instead of necklaces. When discussing individual

combinatorial objects it is a relatively simple matter to convert between these two

conventions1. In particular, concessions are made on the representations of linear-

extensions, and necklace variations including Lyndon words and pre-necklaces.

Preliminary concepts and conventions necessary to define bubble languages are

given in Section 2.1. Bubble languages are then formally defined in Section 2.2, and

this section also includes a simplified definition for fixed-density bubble languages.

Section 2.3 discusses the majority of entries found in Table 2.1. Several important

properties of bubble languages are provided in Section 2.4 including closure under

various operations, shift identities, and a structural characterization.

2.1 Preliminaries

This section introduces concepts and conventions that are used throughout the thesis.

These concepts include fixed-content languages and the special case of fixed-density

languages, the quotient operation on languages, non-increasing strings, the frozen

prefix of a string within a language, and shift operations including bubble left-shifts.

The reader is advised that Appendix A on page 186 provides a quick reference and

index for all notation and conventions used in this thesis. This appendix also include

a basic interrelated example.

2.1.1 Fixed-Content Languages

This section defines a fixed-content language as a set of strings containing the same

multiset of symbols. Towards this definition it is necessary to introduce sets and

multisets, strings, and languages. Although each concept is simple, collectively they

can lead to cumbersome and repetitive notation. For this reason, a number of default

1To follow the historical convention for necklaces, the reader would need to change comparisons
involving individual symbols. For example, sh ≤ sh+1 would replace sh ≥ sh+1 in Definition 2.1.4 to
convert non-increasing prefixes into non-decreasing prefixes. As a second example, sk > sk+2 would
replace sk < sk+2 in Definition 3.1.3.
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conventions will be followed throughout this thesis, as summarized at the end of

this section. Typography is also used to aid in the presentation of this thesis, with

symbols, sets and multisets, strings, and languages respectively given in regular, sans-

serif, bold, and blackboard typeface.

A set is a collection of distinct symbols. By convention, the set Σ contains m

distinct symbols and

Σ = {d1, d2, . . . , dm}.

The symbols in a set are assumed to be totally ordered by <. By convention, the

symbols in Σ are ordered as follows

d1 < d2 < ⋯ < dm.

The examples in this thesis involve sets whose symbols are single digit non-negative

integers, and the order < is given by numerical order. For example, if Σ = {0,1,3,8}
then m = 4 and

d1, d2, . . . , dm = 0,1,3,8.

(Due to the nature of the results in this thesis, the simplifying assumption di = i

cannot be used.) By similar convention, the set Σ′ contains the m′ distinct symbols

satisfying d′1 < d′2 < ⋯ < d′m′ .

A multiset is a set together with a function that maps each symbol in the set to a

positive integer. The value of this function denotes the number of copies or multiplicity

of each symbol within the multiset. In other words, a multiset generalizes a set by

allowing its symbols to be repeated any positive number of times. The underlying

set of a multiset M is denoted by set(M). By convention, set(M) = Σ. Furthermore,

the multiplicity of di within multiset M is ni. It is also assumed that M contains n

symbols in total. Thus,

n = n1 + n2 +⋯ + nm.

In particular, the n symbols in M are denoted by ei where

e1 ≤ e2 ≤ ⋯ ≤ en.
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Therefore, by convention the multiset M can be expressed in the following ways

M = {e1, e2, . . . , en} = {d1, . . . , d1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n1 copies

, d2, . . . , d2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n2 copies

, . . . , dm, . . . , dm
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

nm copies

}.

The sum of M is denoted by Σ(M) and is the sum of its symbols. To illustrate these

conventions, suppose M = {0,1,1,1,3,8,8}. Then, n = 7, m = 4, Σ = {0,1,3,8} and

Σ(M) = 22. Furthermore,

e1, e2, . . . , en = 0,1,1,1,3,8,8

d1, d2, . . . , dm = 0,1,3,8.

Since M contains one copy of d1 = 0, three copies of d2 = 1, one copy of d3 = 3, and

two copies of d4 = 8 the multiplicities are as follows

n1, n2, . . . , nm = 1,3,1,2.

Besides the individual multiplicities given above, it is also useful to be able to refer

to cumulative multiplicities within M. Let ni represent the number of symbols less

than or equal to di in M. That is,

ni = n1 + n2 +⋯ + ni.

Similarly, let ni represent the number of symbols greater than or equal to di in M.

That is,

ni = ni + ni+1 +⋯ + nm.

For example, given M = {0,1,1,1,3,8,8}, then n2 = 4 since the symbols 0,1,1,1 are

less than or equal to d2 = 1. Similarly, n3 = 3 since the symbols 3,8,8 are greater than

or equal to d2 = 3. By similar convention, n′, m′, e′i, d
′
i, n

′
i, n

′
i, and n′i refer to the

corresponding values in multiset M′ instead of M.

Multiset M′ is a subset of multiset M, and this is written M′ ⊆ M if each distinct

symbol appears at least as many times in M as in M′. That is, M′ ⊆ M if and only if

Σ′ ⊆ Σ and there do not exist i and i′ such that d′i′ = di and n′i′ > ni. The multisets M
and M′ are equal if M′ ⊆ M and M ⊆ M′, and this is denoted by M = M′. If M′ ⊆ M
then M/M′ represents the multiset that remains when each symbol in M′ is removed
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from M. For example, if M′ = {0,1,8,8} and M = {0,1,1,1,3,8,8} then M′ ⊆ M and

M/M′ = {0,1,1,1,3,8,8}/{0,1,8,8} = {1,1,3}.

A string is a finite sequence of symbols. The sum of a string s is denoted by Σ(s)
and is the sum of its symbols. The length of a string s is the number of symbols

in the sequence and is denoted ∣s∣. The empty string is denoted ε and is the unique

string satisfying ∣ε∣ = 0. The content of s is denoted content(s) and is the multiset of

symbols it contains. The symbols within a string are separated by ⋅. By convention,

the individual symbols within a string can be referred to using subscripts beginning

with 1. That is, if s is a string, then its ith symbol is denoted by si. To illustrate

these definitions, if s = 7 ⋅ 2 ⋅ 6 ⋅ 9 ⋅ 9 ⋅ 5 ⋅ 4 then

Σ(s) = 38 ∣s∣ = 7 content(s) = {2,4,5,6,7,9,9} s4 = s5 = 9.

The concatenation of strings s and t is denoted by s ⋅t and is the sequence of symbols

in s followed by the sequence of symbols in t. When a string or symbol is concatenated

to the end of a string then it is also known as suffixing. Repeated concatenations of

the same string or symbol are represented by exponentiation. For example, if a = 1 ⋅3
and b = 3 ⋅ 1 and c = ε then

a ⋅ b ⋅ c = 1 ⋅ 3 ⋅ 3 ⋅ 1 a2 ⋅ 12 ⋅ 32⋅ = 1 ⋅ 3 ⋅ 1 ⋅ 3 ⋅ 1 ⋅ 1 ⋅ 3 ⋅ 3.

Throughout this thesis, ⋅ will only be used to highlight certain concatenations. That

is, a ⋅ b = ab and s1 ⋅ s2 ⋅ s3 = s1s2s3. This convention does not cause ambiguity within

the examples since each symbol is assumed to be a single digit non-negative integer.

Thus, 13 will always be interpreted as 1 ⋅ 3 within the examples.

If s = abc then a is a prefix of s, b is a substring of s, and c is a suffix of s.

Furthermore, a is a strict prefix if bc ≠ ε, b is a strict substring if ac ≠ ε, c is a strict

suffix if ab ≠ ε,
A language is a set of strings. The size of a language L is denoted by ∣L∣ and equals

the number of strings it contains. The empty language is denoted by ∅ and is the

unique language satisfying ∣∅∣ = 0. A language L is trivial if ∣L∣ = 1, and otherwise is

non-trivial. Since languages are sets, s ∈ L means that the string s is in the language

L. Now the main definition in this section can be given.

Definition 2.1.1 (Fixed-Content Language). A fixed-content language L is a lan-
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guage in which s, t ∈ L implies

content(s) = content(t).

In other words, a fixed-content language is a set of strings where every string contains

the same multiset of symbols.

The content of a fixed-content language L is denoted content(L) and is the multiset

of symbols contained in any one of its strings. That is, if L is a fixed-content language

with s ∈ L then

content(L) = content(s).

By convention, L is assumed to be a fixed-content language with content M. For

example, if L = {2110,2101,2011,1201,1210} then ∣L∣ = 5, and

content(L) = M = {0,1,1,2}.

By similar convention, L′ is assumed to be a fixed-content language with content M′.

To further strengthen these conventions, strings such as r′, s′, and t′ will only be

discussed in conjunction with L′.

The results in this thesis are simplified when considering fixed-density languages,

which are defined below.

Definition 2.1.2 (Fixed-Density Language). A fixed-density language L is a fixed-

content language with

content(L) = {0,0, . . . ,0,1,1, . . . ,1}.

In other words, a fixed-density language is a set of strings where every string contains

the same number of 0s, the same number of 1s, and no other symbols.

Before concluding this section, the default conventions are collected into the fol-

lowing list.

� The language L is a fixed-content language.

� The content of L is the multiset of symbols M. That is,

content(L) = M.
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� The multiset M contains n total symbols. In particular,

M = {e1, e2, . . . , en}.

� The symbols within M are ordered as follows

e1 ≤ e2 ≤ ⋯ ≤ en.

� The underlying set of symbols within M is Σ.

� The set Σ contains m symbols. In particular,

Σ = {d1, d2, . . . , dm}.

� The symbols within Σ are ordered as follows

d1 < d2 < ⋯ < dm.

� Within M, the multiplicity of di is ni.

� Within M, the cumulative multiplicity of the symbols less than or equal to di

is ni.

� Within M, the cumulative multiplicity of the symbols greater than or equal to

di is ni.

� The ith symbol in string s is denoted si. That is, s = s1s2⋯.

Analogous conventions hold for L′. For example, the content of L′ is M′, and Σ′

contains m′ symbols that are ordered by d′1 < d′2 < . . . < d′m.

Collectively, the above conventions allow certain values to be expressed succinctly.

For example, di is a function of M, but its value can also be inferred from a single

string. For example, if s ∈ L and s = 545130321 then by convention L is a fixed-

content language with content M = {0,1,1,2,3,3,4,5,5}. Therefore, d3 = 2 since 2

is the 3rd-smallest symbol in M. Furthermore, n3 = 6 since 2,3,3,4,5,5 are the six

symbols that are greater than or equal to 2 in M.

2.1.2 Quotient Operation

An important operation in this thesis is the quotient operation.
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Definition 2.1.3 (Quotient (/)). Given a language L and a string z, the quotient

operation results in the following language

L/z = {p ∣ p ⋅ z ∈ L}.

In other words, L/z is the language that results from removing the suffix z from every

string in L that has z as a suffix, and from discarding every string in L that does not

have z as a suffix.

To illustrate this operation, suppose

L = {332211,332121,332112,331221,323211,323121,322311,322131,321321,321312,321231}.

Then,

L/2 = {33211,32131} L/312 = {321} L/3 = ∅.

Every language of the form L/z is known as a quotient of L. Notice that L/z will

always be a fixed-content language since L is assumed to be a fixed-content language.

In particular,

content(L/z) = M/content(z).

If content(z) is not a subset of M then L/z is empty. Finally,

L/ε = L

since every string has the empty string ε as a suffix. In particular, this fact is used

as the base case for the recursive definition of cool-lex order in Definition 3.2.2.

2.1.3 Non-Increasing Strings

An increase in string s is a pair of consecutive symbols si ⋅ si+1 such that si < si+1.

A string is non-increasing if it does not contain an increase. This section defines the

non-increasing prefix of a string, as well as the non-increasing string that arises from

a multiset of symbols. This section also describes a helpful notational convention

with respect to these related concepts.

A prefix that contains no increases is known as a non-increasing prefix, and the

longest such prefix of a string is known as its non-increasing prefix. This concept is

formally defined below, and is followed by several simple examples.
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Definition 2.1.4 (Non-Increasing Prefix). The non-increasing prefix of s is

!(s) = s1s2 . . . sk

where k is the maximum value such that sh ≥ sh+1 for all h within 1 ≤ h < k. In

other words, the non-increasing prefix is the longest prefix that does not contain an

increasing pair of consecutive symbols.

The notation in Definition 2.1.4 reflects the notion that s1s2⋯sk is proceeds like

a downward “staircase”. This concept is illustrated below on several strings with

content M = {1,2,2,3,4}

!(43221) = 43221 !(32214) = 3221 !(12234) = 1 !(22341) = 22.

Given a multiset of symbols M, there is a unique non-increasing string s with

content(s) = M. This string is denoted by !(M) and can be referred to as the

non-increasing string with content M. For example,

!({0,0,2,3,3,4,}) = 433200 and !(M) = en ⋅ en−1⋯e1

where the second equality follows from the conventions on M. Before proceeding, it

is worth clarifying that !(s) denotes the non-increasing prefix of a string s, while

!(M) denotes the non-increasing string with content M. To reinforce the distinction,

notice that !(s) = !(content(s)) if and only if s is non-increasing.

In this thesis, we will often discuss strings that have content M that also have a

specific suffix such as z. In particular, it will often be the case that the remaining

symbols are arranged in non-increasing order. Formally, this string can be specified

by

!(M/content(s)) ⋅ z.

For notational convenience, the above string can also be expressed as follows

! ⋅ z.

In other words, when ! appears without any arguments, then it will denote the prefix

that is non-increasing and allows the resulting string to have content M. That is,

! ⋅ z = p ⋅ z where content(p ⋅ z) = M and !(p) = p.
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For example, if M = {1,2,2,3,3,4} then

! = 433221 ! ⋅ 21 = 4332 ⋅ 21 ! ⋅ 321 = 432 ⋅ 321 ! ⋅ 34 ⋅ 221 = 334221.

Notice that ! ⋅ z is only valid when content(z) ⊂ M. Thus, using the above example,

! ⋅ 11 would be undefined.

2.1.4 Frozen Prefixes

While the non-increasing prefix of string depends only on the string itself, the frozen

prefix of a string also depends on a language which contains the string.

Definition 2.1.5 (Frozen Prefix). The frozen prefix of s ∈ L is

�L(s) = s1s2⋯sf

where f is the maximum value such that

L/sf+1sf+2⋯sn = {s1s2⋯sf}.

In other words, the frozen prefix of s is the longest prefix that cannot be rearranged

to create another string within L.

The symbol in Definition 2.1.5 reflects the notion that L “freezes” the prefix

s1s2⋯sf within s. Within the definition, notice that the value of f is well-defined. In

particular,

L/s2s3⋯sn = {s1}

and so f ≥ 1. (In particular, s ∈ L, and there cannot be two strings with suffix

s2s3⋯sn since L has fixed-content.) By convention,

� (s) = �L(s).

To illustrate Definition 2.1.5, suppose

L = {1234,1243,1324,1342,1423,2134,2314,2341,2413,3124,3412,4123}.

Notice that L is the language with content {1,2,3,4} and the property that each

string has at least two increases. For example, 1342 ∈ L since it has increases 13 and

34. On the other hand, 3142 ∉ L since its only increase is 14. The frozen prefixes for
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several strings in L are given below

� (2341) = 234 � (1243) = 12 � (1234) = 1.

For example, ∣� (1243)∣ ≥ 2 because rearranging its first two symbols results in 2143,

and 2143 ∉ L since its only increase is 14. On the other hand, ∣� (1243)∣ ≤ 3 because

its first three symbols can be rearranged to create 1243, and 1243 ∈ L since it has

the increases 12 and 24. Therefore, ∣� (1243)∣ = 2, and so � (1243) = 12 as given

above. When discussing an individual string s ∈ L, the ith position in s is said to

be frozen if i ≤ ∣�L(s)∣ and is otherwise unfrozen. For example, the second and third

positions of 1243 are respectively frozen and unfrozen since ∣� (1243)∣ = 2, as shown in

the middle column above. Informally, it is often convenient to use this nomenclature

when referring to a symbol instead of a position. For example, there is no confusion

in stating that the 2 is frozen within 1243

To conclude this section it is useful to consider what happens to frozen prefixes

when a string is added to a language. For the sake of illustration, consider again the

language L given above. If L′ = L ∪ {3241} then notice that

∣�L′(2341)∣ = ∣2∣ < ∣234∣ = ∣�L(2341)∣.

Notice that the length of the frozen prefix of 2341 has decreased. This is due to the

fact that the added string, 3241, allows a shorter prefix of 2341 to be rearranged to

create another string in the resulting language. In general, the following remark holds

and is used in Section 2.4.1.

Remark 2.1.6 (Frozen prefixes in language subsets). Suppose L ⊆ L′. Then, for any

s ∈ L,

∣�L′(s)∣ ≤ ∣�L(s)∣.

In other words, adding strings to a language can only decrease the length of a frozen

prefix.

2.1.5 Shifts

This section defines several types of shifts including left-shifts, right-shifts, and bubble

left-shifts. In the case of the first two definitions, the notation shift(s, i, j) will refer to

shifting the ith symbol into the jth position, with
←ÐÐ
shift(s, i, j) being used when i ≥ j

(since the ith symbol is shifted to the left into the jth position), and
ÐÐ→
shift(s, i, j) being
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used when i ≤ j (since the ith symbol is shifted to the right into the jth position).

Definition 2.1.7 (Left-shift). The left-shift of the ith symbol in s = s1s2⋯sn into the

jth position with i ≥ j is

←ÐÐ
shift(s, i, j) = s1s2⋯si−1sjsisi+1⋯sj−1sj+1sj+2⋯sn.

In other words,
←ÐÐ
shift(s, i, j) is the string that results from moving si to the left into

position j, and moving the intermediate symbols, sisi+1⋯sj−1, one position to the right.

That is, the substring sjsj+1⋯si is replaced by sisjsj+1⋯si+1.

Definition 2.1.8 (Right-shift). The right-shift of the ith symbol in s = s1s2⋯sn into

the jth position with i ≤ j is

ÐÐ→
shift(s, i, j) = s1s2⋯si−1si+1si+2⋯sjsisj+1sj+2⋯sn.

In other words,
ÐÐ→
shift(s, i, j) is the string that results from moving si to the right into

position j, and moving the intermediate symbols, si+1si+2⋯sj, one position to the left.

That is, the substring sisi+1⋯sj is replaced by si+1si+2⋯sjsi.

The left-shift
←ÐÐ
shift(s, i, j) is equivalent to applying the permutation (i i + 1 ⋯ j)

to the positions of s. Similarly, the right-shift
ÐÐ→
shift(s, i, j) is equivalent to applying

the permutation (j j + 1 ⋯ i) to the positions of s. If
←ÐÐ
shift(s, i, j) is written then by

assumption i ≥ j, and if
ÐÐ→
shift(s, i, j) is written then by assumption i ≤ j. A shift is

trivial if the resulting string is the same as the original, and otherwise the shift is

non-trivial. (Notice that i = j is sufficient, but not necessary, for ensuring that a shift

is trivial.) The following three examples illustrate these shifts, with the shift in the

middle being trivial

=
←ÐÐ
shift(3858487,5,3)

←ÐÐ
shift(7269954,5,4) =

ÐÐ→
shift(5330971,1,7)

= 38
←Ð
58487 = 726

←Ð
9954 = ÐÐÐÐ→5330971

= 3845887 = 7269954 = 3309715.

A bubble left-shift is a left-shift that moves a symbol past exactly one symbol

that is different than the symbol being shifted.

Definition 2.1.9 (Bubble Left-shift). The bubble left-shift of the ith symbol in s =
s1s2⋯sn is

←ÐÐÐ
bubble(s, i) =

←ÐÐ
shift(s, i, h)
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where h is the maximum value such that sh ≠ si and h < i. In other words, a bubble

left-shift moves a symbol to the left past one differing symbol.

Notice that
←ÐÐÐ
bubble(s, i) is undefined when the first i symbols of s contain only one

symbol. That is,
←ÐÐÐ
bubble(s, i) is undefined when s1s2⋯si = si

1. The bubble right-shift
ÐÐÐ→
bubble(s, i) is analogously defined. These definitions are illustrated below

←ÐÐÐ
bubble(332211,6)

←ÐÐÐ
bubble(3309715,2)

ÐÐÐ→
bubble(7269954,4)

= 332
←Ð
211 = undefined = 726

Ð→
9954

= 332121 = 7269594.

In the leftmost example, notice that the non-increasing string 332211 is the lexico-

graphically largest permutation of {1,1,2,2,3,3} and 332121 is the lexicographically

second-largest permutation of {1,1,2,2,3,3}. (The definition of lexicographic order

is formalized in Section 2.3.7.) This simple observation is generalized by the following

remark, which provides insight to the definition of bubble languages found in the next

section.

Remark 2.1.10 (Lexicographically largest and second-largest strings). The non-

increasing string ! is the lexicographically largest string with content M. The lexico-

graphically second-largest string with content M is

←ÐÐÐ
bubble(!, n).

In other words, the lexicographically second-largest string is obtained by bubble left-

shifting the last symbol in the lexicographically largest string.

2.2 Bubble Language Definition

Given the preliminary results in Chapter 2.1, the concept of a bubble language can

now be discussed. Section 2.2.1 gives the formal definition of a bubble language for

fixed-content languages, and then Section 2.2.2 specializes the definition to fixed-

density languages. Several basic properties of bubble languages are also discussed in

Section 2.2.1.
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2.2.1 Fixed-Content

The definition of a bubble language appears below. This is followed by a discussion

of several key properties and an illustration of the definition.

Definition 2.2.1 (Bubble language (fixed-content)). A fixed-content language L is

a bubble language if for every s ∈ L with s ≠ !

←ÐÐÐ
bubble(s, ∣!(s)∣ + 1) ∈ L, (2.1)

and for every s ∈ L

←ÐÐÐ
bubble(s, i) ∈ L for all i within ∣� (s)∣ < i ≤ ∣!(s)∣. (2.2)

In other words, bubble languages are closed under bubble left-shifting every unfrozen

symbol in the non-increasing prefix, as well as the symbol following the non-increasing

prefix (if it exists).

To illustrate Definition 2.2.1, suppose that L is a bubble language and that

4332114213 ∈ L. (2.3)

The two conditions in Definition 2.2.1 will be discussed in turn. First, condition (2.1)

implies that the symbol following the non-increasing prefix can always be bubble

left-shifted to create an additional string in the language. This bubble left-shiftable

symbol is illustrated below in bold

433211
!

4213.

Thus, (2.1) implies that 43321
←Ð
14213 = 4332141213 ∈ L. In general, (2.1) implies that

the frozen prefix of any string is non-increasing. That is, if L is a bubble language

and s ∈ L then

∣� (s)∣ ≤ ∣!(s)∣. (2.4)

This important fact justifies the inequality given in (2.2) and will be used implicitly

throughout this thesis. By repeated applications of condition (2.1), the symbol fol-

lowing the non-increasing prefix can be bubble left-shifted until it merges into the

non-increasing prefix. This is illustrated below

43321
←Ð
14213,4332

←Ð
141213,433

←Ð
2411213,43

←Ð
34211213,4

←Ð
343211213,4433211213 ∈ L
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where the arrows represent the shift that moves the bolded 4 toward the non-increasing

prefix. Once the symbol following the non-increasing prefix is left-shifted into the non-

increasing prefix then the process can be repeated on the resulting string, so long as it

is not non-increasing. This fact is illustrated below by continuing from the rightmost

string above

44332
←Ð
1213,443322113 ∈ L.

The process can again be repeated to give the following

4433221
←Ð
13,443322

←Ð
131,44332

←Ð
2311,4433

←Ð
23211,443332211 ∈ L.

Now the process cannot be repeated since the resulting string, 443332211, is itself non-

increasing. In general, given a string in a bubble language, the symbols in any prefix

can rearranged into non-increasing order and the resulting string is guaranteed to be

in the language. This simple non-increasing prefix property is a direct consequence

of condition (2.1) and so it is a necessary condition for being a bubble language.

(On the other hand, L = {321,213} shows that it is possible to satisfy the non-

increasing prefix property without satisfying (2.1); in particular, (2.1) would imply

that
←ÐÐÐ
bubble(213,3) = 231 ∈ L.)

Remark 2.2.2 (Non-increasing prefix property in bubble languages). Suppose L is

a bubble language. Then,

p ⋅ z ∈ L implies ! ⋅ z ∈ L. (2.5)

In other words, any prefix of any string in a bubble language can be rearranged into

non-increasing order and the result is also in the language.

In particular, Remark 2.2.2 implies that every non-empty bubble language con-

tains the non-increasing string !. In other words, every non-empty bubble language

contains the lexicographically largest string with the language’s content. The fol-

lowing lemma shows that non-trivial bubble languages contain the lexicographically

second-largest string. (The bubble language

{332211,332121,323211}

shows that bubble languages can contain three strings without containing the lexi-

cographically third-largest string.) Lemma 2.2.3 is especially useful when combined

with the closure of bubble languages under quotients found in Lemma 2.4.1.
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Lemma 2.2.3 (Non-Empty and Non-Trivial Bubble Languages). Suppose L is a

bubble language. Then,

∣L∣ ≥ 1 implies ! ∈ L. (2.6)

Furthermore,

∣L∣ ≥ 2 implies
←ÐÐÐ
bubble(!, n) ∈ L. (2.7)

In other words, non-empty bubble languages contain the lexicographically largest string,

and non-trivial bubble languages contain the lexicographically second-largest string.

Proof. The proof of (2.6) follows from Remark 2.2.2 by z = ε. To prove (2.7) suppose

that L is a bubble language and ∣L∣ ≥ 2. Therefore, (2.6) implies that ! ∈ L. Further-

more, � (!) ≠ ! since there is some other string in L. Therefore, from (2.2) it must

be that
←ÐÐÐ
bubble(!, n) ∈ L.

It is noted that condition (2.1) is not sufficient for ensuring a shift Gray code. For

example,

{654321,564321,653421,654312}

satisfies (2.1) because

654321 = ←Ð564321 = 65
←Ð
3421 = 6543

←Ð
12.

However, it does not have a shift Gray code since the corresponding directed graph

in Figure 2.1 does not have a directed Hamiltonian path.

654321564321

653421

654312

Figure 2.1: Left-shift adjacency graph for L = {654321,564321,653421,654312}.

Now let us consider the previously discussed string in (2.3) with respect to the

second condition (2.2). Recall that the frozen prefix must be non-increasing by (2.4),

but its exact length depends on specific bubble language under consideration. For

the sake of argument, suppose that the length of the frozen prefix in (2.3) is 3. This

is illustrated below
�

433211
!

4213.
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Condition (2.2) then states that remaining symbols in the non-increasing prefix can

be bubble left-shifted to create additional strings in the language. These bubble

left-shiftable symbols are illustrated below in bold

�
433211
!

4213.

Thus, (2.2) implies 43
←Ð
32114213 = 4323114213 ∈ L and 433

←Ð
2114213 = 433

←Ð
2114213 =

4331214213 ∈ L. Before concluding this section, it is noted that condition (2.2) is also

not sufficient for ensuring a shift Gray code. For example,

L = {43215,43521,53214,53421}

vacuously satisfies (2.2) since every non-increasing prefix is frozen. On the other hand,

L does not have a shift Gray code since no shift transforms 43215 or 43521 into 53214

or 53421. In other words, the underlying shift adjacency graph is not connected.

2.2.2 Fixed-Density

“There are 10 types of people in the world — those who understand binary and those
who don’t.”

- Anonymous

This section focuses on bubble languages that have fixed-density. When a language

has fixed-density then the two conditions found in Definition 2.2.1 can be replaced

by a single condition. To illustrate this unifying condition, suppose that L is a fixed-

density bubble language and that

11110001100 ∈ L.

From condition (2.1) in Definition 2.2.1, another string in L can be created by bubble

left-shifting the symbol following the non-increasing prefix. That is,

11110010100 ∈ L.

Notice that this second string in L can be obtained from the first string in L by

swapping the symbols in its leftmost 01 substring. Furthermore, this is always true

since the only increasing pair of symbols in a fixed-density language is 01. In other

words, condition (2.1) is equivalent to the following condition: For any binary string
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z and all i, j ≥ 0

1i0j ⋅ 01 ⋅ z ∈ L implies 1i0j ⋅ 10 ⋅ z ∈ L.

Notice that the symbols in the leftmost 01 have been swapped within the above

implicant. Since the above condition is identical to (2.1) in Definition 2.2.1, then it

is a necessary condition for a fixed-density language to be a bubble language. On the

other hand, a small argument also shows that this new condition is also sufficient. In

other words, a fixed-density language is a bubble language if and only if it satisfies

the above condition.

Theorem 2.2.4 (Bubble Language (Fixed-Density)). A fixed-density language L is

a bubble language if and only if for any binary string z and all i, j ≥ 0

1i0j ⋅ 01 ⋅ z ∈ L implies 1i0j ⋅ 10 ⋅ z ∈ L. (2.8)

In other words, a fixed-density language is a bubble language if the language is closed

under the operation of swapping the symbols in the leftmost 01 substring, which is

equivalent to bubble left-shifting the symbol following the non-increasing prefix.

As previously discussed, (2.8) is equivalent to (2.1) within the definition of a

bubble language. Therefore, if a language violates (2.8) then it is not a bubble

language. Similarly, if a language satisfies (2.8) then it satisfies (2.1). Therefore,

to complete the proof of Theorem 2.2.4, it remains only to prove that fixed-density

languages satisfying (2.8) also satisfy condition (2.2) within the definition of a bubble

language.

Proof. Suppose that L is a fixed-density language that satisfies (2.8). It will be proven

that L satisfies (2.2). In order to do this, suppose that s = 1x0y ⋅z ∈ L and!(s) = 1x0y.

If � (s) = !(s) then (2.2) is (vacuously) true. Otherwise, the non-increasing prefix

of s is not frozen. Therefore, the non-increasing prefix must contain both 1s and 0s,

and only the 1s are frozen. That is, � (s) = 1x and x, y > 0. Therefore, in order to

prove that (2.2) holds, it must be shown that

←ÐÐÐ
bubble(s, x + 1) =

←ÐÐÐ
bubble(1x0y ⋅ z, x + 1) = 1x−1010y−1z ∈ L.

Since the non-increasing prefix of s is not frozen, then it can be rearranged to create

another string in L. That is, there exists p ⋅ z ∈ L with p ≠ 1x0y. Since p ≠ 1x0y then

it contains a rightmost 01. Therefore, p can be expressed as

p = q ⋅ 0a ⋅ 01 ⋅ 0b
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where q contains x − 1 copies of 1, and y − a − b − 1 copies of 0. By Remark 2.2.2, q

can be rearranged into non-increasing order to produce another string in L. (Remark

2.2.2 can be applied because L satisfies (2.8), which is equivalent to (2.1), and s =∈ L.)

That is,

1x−1 ⋅ 0y−a−b−1 ⋅ 0a ⋅ 01 ⋅ 0bz = 1x−1 ⋅ 0y−b ⋅ 1 ⋅ 0bz ∈ L.

Therefore, by y − b − 1 applications of (2.8) it is also true that

1x−1010y−1z ∈ L,

which completes the proof.

2.3 Examples

“There are lists of mathematical objects that have a historical interest, or maybe I
should say that there are lists of historical objects that have a mathematical
interest. - Frank Ruskey

This section proves that a number of specific languages are bubble languages.

The specific languages are important because they can be used to represent famil-

iar and well-studied combinatorial objects such as multiset permutations (Section

2.3.1), balanced parentheses and k-ary Dyck words (Section 2.3.2), linear-extensions

of B-posets (Section 2.3.3), unit interval graphs (Section 2.3.4), ordered trees with

fixed branching sequence (Section 2.3.5), and multiset necklaces and multiset Lyndon

words (Section 2.3.7). (Additional bubble languages are discussed in Section 2.4.1.)

Although these results help to motivate the definition of bubble languages, they are

not explicitly used elsewhere in this thesis. For this reason, the specific languages

are formally defined, but the combinatorial objects they represent are discussed in-

formally. This section also provides several languages that are not bubble languages.

In particular, these languages include natural representations for linear-extensions of

posets (Section 2.3.3) and multiset bracelets (Section 2.3.7).

To prove a language is a bubble language, it is necessary to verify that it satisfies

the two shift conditions given in Definition 2.2.1. On the other hand, to prove a

language is not a bubble language, a single counterexample suffices. Due to the

nature of the conditions in (2.2) and (2.1), such counterexamples simply involve a

string inside of the given language and a string outside of the given language. For

this reason, it can be said that non-bubble languages have small certificates that

verify their non-membership in the bubble language hierarchy.
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2.3.1 Multiset Permutations

The language containing all strings over M is referred to as the language of multiset

permutations of M. This definition is formalized below, together with the remark that

all fixed-content languages are subsets of some language of multiset permutations.

Definition 2.3.1 (Multiset permutations). Π(M) denotes the language of multiset

permutations of M defined by

Π(M) = {s ∣ content(s) = M}

In other words, Π(M) contains every permutation of the symbols within the multiset

M.

Notice that every language with fixed-content M is a subset of the multiset permu-

tations over M. Similarly, all fixed-density languages are a subset of some combination

language.

Definition 2.3.2 (Combinations). C(j, k) denotes the language of combinations de-

fined by

C(j, k) = {s1s2⋯sn ∣ {s1, s2,⋯, sn} = {
j copies

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
0,0, . . . ,0,

k copies
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
1,1, . . . ,1}}

In other words, C(j, k) contains every string with j copies of 0 and k copies of 1.

Examples of these languages are given below

Π({1,2,3}) = {123,213,132,312,231,321} and C(2,1) = Π({0,0,1}) = {001,010,100}.

Since every possible string over M is contained within Π(M) then both conditions in

Definition 2.2.1 are satisfied. Therefore, multiset permutations languages (and the

special case of combinations) are bubble languages.

2.3.2 Balanced Parentheses and k-ary Dyck Words

One language that is particularly important to computer scientists and discrete math-

ematicians is the language of balanced parentheses with fixed length. A string is a

balanced parentheses string if it contains an equal number of open parentheses as

closed parentheses, and the property that every prefix contains at least as many open

parentheses as closed parentheses. For example, (()()) is a balanced parentheses

string, while ())(() is not a balanced parentheses string due to its prefix of length
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three. The number of balanced parentheses strings of length 2k is equal to the kth

Catalan number
1

k + 1
(2k

k
).

This number counts a many additional combinatorial objects, in fact a 27-page text-

book excerpt [86] includes 66 combinatorial interpretations. In particular, the bal-

anced parentheses strings of length 2i are in bijective-correspondence with binary

trees that contain i internal nodes. This fact is illustrated for i = 3 in Figure 2.2.

( ( ( ) ) ) ( ( ) ( ) ) ( ( ) ) ( ) ( ) ( ( ) ) ( ) ( ) ( )

Figure 2.2: Binary trees with 3 internal nodes are in one-to-one correspondence with
balanced parentheses strings of length 6.

Balanced parentheses strings are often represented with binary strings, where 1

and 0 represent an open and closed parenthesis, respectively.

Definition 2.3.3 (Balanced parentheses). P(i) denotes the language of balanced

parentheses of length 2i defined by

P(i) = {s ∈ C(i, i) ∣ if s = pz then 2 ⋅Σ(p) ≥ ∣p∣}.

In other words, P(i) is the fixed-density language representing the balanced parenthe-

ses strings of length 2i, where 1 represents ‘(’ and 0 represents ‘)’.

Examples of this language are given below

P(1) = {10}

P(2) = {1100,1010}

P(3) = {111000,110100,110010,101100,101010}

P(4) = {11110000,11101000,11100100,11100010,11011000,11010100,11010010,

11001100,11001010,10111000,10110100,10110010,10101100,10101010}.

More generally, k-ary Dyck words ensure that every prefix contains at least k − 1

times as many 0s as 1s. Similarly, k-ary Dyck words of length ki are in bijective

correspondence with k-ary trees containing i internal nodes [86].
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Definition 2.3.4 (k-ary Dyck Words). D(k, i) denotes the language of k-ary Dyck

words of length ki defined by

D(k, i) = {s ∈ C((k − 1) ⋅ i, i) ∣ if s = pz then k ⋅Σ(p) ≥ ∣p∣}.

In other words, D(k, i) is the fixed-density language representing k-ary Dyck words.

For example,

D(3,1) = {100}

D(3,2) = {110000,101000,100100}

D(3,3) = {111000000,110100000,110010000,110001000,110000100,101100000,

101010000,101001000,101000100,100110000,100101000,100100100}.

Balanced parentheses and k-ary Dyck words are special cases of the bubble lan-

guages discussed in Section 2.3.3. Balanced parentheses can also be viewed as walks

in a grid, and variations of these walks are discussed in Section 2.4.1. Chapter 5

discusses a further restriction of balanced parentheses.

2.3.3 Linear-Extensions

Linear-extensions of B-posets generalize combinations, balanced parentheses, and k-

ary Dyck words. Linear-extensions of B-posets are a specialization of linear-extensions

of posets, which are discussed informally at the end of this section along with Hasse

diagrams. To begin the discussion of these languages, notice that strings within P(k)
(balanced parentheses) must satisfy the condition that the ith-leftmost 1 must occur

within the first 2i − 1 symbols. For example,

11000110 ∉ P(4)

because the (underlined) 3rd-leftmost 1 is not contained within the first five symbols.

More generally, a subset of C(j, k) can be defined by the values

1 ≤ b1 < b2 < b3 < . . . < bk ≤ j + k

and the property that the ith 1 must occur within the first bi symbols. In other words,

the density of the first bi symbols must be at least i. In this thesis, languages of this

type are referred to as linear extensions of B-posets. These languages are formally
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defined below, followed by examples, remarks, and a general discussion of the terms

poset and linear-extensions.

Definition 2.3.5 (Linear-Extensions of B-posets (B)). Suppose that 1 ≤ b1 < b2 <
b3 < . . . < bh ≤ n and n ≥ h. Then, the language of linear extensions of B-posets with

respect to these values is

Bn(b1, b2, . . . , bh) = {s ∈ C(n − h,h) ∣ Σ(s1s2 . . . sbg) ≥ g for all 1 ≤ g ≤ h}.

In other words, the gth 1 must occur within the first bg symbols. Equivalently, the

density of the first bg symbols must be at least g.

For example,

B6(3,5) = {110000,101000,011000,1001000,0101000,001100,100010,010010,001010}

since the above strings are exactly the binary strings of length six where the leftmost

1 is in the first three positions, and the second-leftmost 1 is in the first five posi-

tions. The next three remarks note that linear-extensions of B-posets can be used to

represent combinations, balanced parentheses, and k-ary Dyck words.

Remark 2.3.6 (Combinations and linear-extensions of B-posets). Let n = j + k.

Then,

C(j, k) = Bn(j + 1, j + 2, . . . , n).

In other words, combinations are a special case of linear-extensions of B-posets.

Remark 2.3.7 (Balanced parentheses and linear-extensions of B-posets). Let n = 2i.

Then,

P(i) = Bn(1,3,5, . . . , n − 1).

In other words, balanced parentheses are a special case of linear-extensions of B-posets.

Remark 2.3.8 (k-ary Dyck words and linear-extensions of B-posets). Let n = k ⋅ i.
Then,

D(k, i) = Bn(1, k + 1,2k + 1, . . . , (i − 1) ⋅ k + 1).

In other words, k-ary Dyck words are a special case of linear-extensions of B-posets.

Now it is proven that the linear-extensions of B-posets are a bubble language.

Theorem 2.3.9 (Linear-extensions of B-posets are bubble languages). Suppose 1 ≤
b1 < b2 < b3 < . . . < bh ≤ n and n ≥ h. Then, Bn(b1, b2, . . . , bh) is a bubble language
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Proof. Let L = Bn(b1, b2, . . . , bh). By Theorem 2.2.4, it needs only to be shown that

1i0j ⋅ 01 ⋅ z ∈ L implies 1i0j ⋅ 10 ⋅ z ∈ L.

However, this follows directly from Definition 2.3.5 since the sum of every prefix in

1i0j ⋅ 10 ⋅ z is at least as large as the sum of every prefix in 1i0j ⋅ 01 ⋅ z.

B-posets were introduced by Pruesse-Ruskey [60] and are special cases of partially

ordered sets. A partially ordered set P is a reflexive, transitive, and anti-symmetric

relation R(P) on a set S(P). If (a, b) is in the relation R(P) then a ⪰ b is written.

(The reader is reminded that partially ordered sets are usually defined with ⪯.) If

a ⪰ b and a ≠ b, then a ≻ b is written. For example, the following defines a relation

R(P) over S(P) = {1,2,3,4,5,6}:

6 ≻ 5 5 ≻ 4 6 ≻ 4 3 ≻ 2 2 ≻ 1 3 ≻ 1 6 ≻ 3 6 ≻ 2 6 ≻ 1 5 ≻ 2 5 ≻ 1 4 ≻ 1.

(2.9)

This relation is visualized in Figure 2.3.

A linear-extension of P is a permutation of S(P) that satisfies the property that

if a ⪰ b then a appears to the left of b. For example, 632541 is not a linear-extension

of the poset specified in (2.9) because 5 ≻ 2 and 5 appears to the right of 2. The

linear-extensions of the poset specified in (2.9) are given below

{654321,635421,653421,635241,653241}. (2.10)

Notice that this is not a bubble language. In particular, s = 654321 ∈ L and � (s) = 654.

However,
←ÐÐÐ
bubble(654321,5) = 654231 ∉ L

and so the above language does not satisfy condition (2.2). In general, the linear-

extensions of partially ordered sets do not form bubble languages.

Within the poset specified in (2.9), notice that 6 ≻ 5 ≻ 4. That is, 6 ≻ 5 and 5 ≻ 4.

In general, x1 ≻ x2 ≻ ⋯ ≻ xa is known as a chain. Two chains x1 ≻ x2 ≻ ⋯ ≻ xa

and y1 ≻ y2 ≻ ⋯ ≻ yb are disjoint unless xi = yj for some 1 ≤ i ≤ a and 1 ≤ j ≤ b. A

set of chains is disjoint if they are pairwise disjoint. A set of chains cover P if they

collectively contain all of the symbols in S(P). (B-posets were originally defined as

posets that have two disjoint chains x1 ≻ x2 ≻ ⋯ ≻ xa and y1 ≻ y2 ≻ ⋯ ≻ yb in which

yj ⊁ xi for all 1 ≤ i ≤ a and 1 ≤ j ≤ b [60].)
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1

2

3

4

5

6

Figure 2.3: Hasse diagram for the poset in (2.9).

Given a linear-extension of P that has chain x1 ≻ x2 ≻ ⋯ ≻ xa, notice that xi must

appear to the left of xj for all i < j. For example, the poset specified in (2.9) has

the chain 6 ≻ 5 ≻ 4, and so the relative order of these symbols is fixed within each

of the linear-extensions found in (2.10). Therefore, if these symbols are replaced by

a symbol that doesn’t otherwise appear within S(P), then the original symbols can

be recovered from any linear-extension based on their order within the chain. Such a

substitution is called a chain substitution. For example, by substituting the symbols

in the disjoint and covering chains 6 ≻ 5 ≻ 4 and 3 ≻ 2 ≻ 1 with ‘(’ and ‘)’ respectively,

then the linear-extensions in (2.10) become

{( ( ( ) ) ), ( ) ( ( ) ), ( ( ) ( ) ), ( ) ( ) ( ), ( ( ) ) ( ) }.

Notice that above language contains exactly the balanced parentheses of length six

and so it is a bubble language. Figure 2.4 shows how similar chain substitutions can

be used to create bubble languages for k-ary Dyck words, restricted Motzkin paths,

and multiset permutations.

Before concluding this section it is mentioned that posets can be visualized by

directed acyclic graphs known as Hasse Diagrams. Hasse Diagrams contain one node

for each symbol and every non-transitive arc. More precisely, if the partially-ordered

set P is defined using ⪯, then the Hasse Diagram contains an arc from the node for

x ∈ S(P) to the node for y ∈ S(P) if and only if x ≺ y and there does not exist

z ∈ S(P) such that x ≺ z ≺ y. Furthermore, it is customary for the nodes to be

arranged so that every arc is directed upwards. Since the partially ordered sets in

this thesis are defined using ⪰ then these conventions are followed with the exception

that larger symbols appear below smaller symbols. For example, Figure 2.3 contains

the Hasse diagram for partially ordered set defined in (2.9) with linear-extensions

given in (2.10). Within a Hasse diagram, a chain substitution corresponds to the

nodes on a directed path being given the same label. Figure 2.4 contains examples of

these modified Hasse diagrams for balanced parentheses, k-ary Dyck words, restricted
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Figure 2.4: Hasse diagrams for P(3) (balanced parentheses), D(3,3) (k-ary Dyck
words), M4(5) (restricted Motzkin paths), and Π({1,1,2,3,3,3}) (multiset permuta-
tions) using chain substitutions.

Motzkin paths, and multiset permutations. Finally, it is mentioned that the linear-

extensions of the partially-ordered set P are in one-to-one correspondence with the

topological orderings of its Hasse diagram [86].

2.3.4 Unit Interval Graphs

The interval [a, b] is the set of real numbers between a and b inclusively. That is,

[a, b] = {x ∈ R ∣ a ≤ x ≤ b}.

An interval [a, b] is a unit interval if b = a+1. Suppose I = {[a1, b1], [a2, b2], . . . , [an, bn]}
is a set of intervals. Then I is a set of unit intervals if each of its intervals is a unit

interval, and is proper unless [aj, bj] = [ak, bk] for some 1 ≤ j < k ≤ n. I can be

visualized by n parallel line segments. For example,

0 1 2 3

represents the following set of connected proper unit intervals

I = {[0,1], [0.75,1.75], [1.25,2.25], [1.5,2.5], [2,3]}. (2.11)

Note that [aj, bj] and [ak, bk] have non-empty intersection if aj ≤ ak ≤ bj or aj ≤ bk ≤
bj. In this case the intervals are said to intersect. I is connected unless I can be

partitioned into non-empty I1 and I2 such that [aj, bj] and [ak, bk] do not intersect

for all [aj, bj] ∈ I1 and all [ak, bk] ∈ I2.

The parenthetical representation of a set of proper unit intervals I is denoted by

� (I) and is obtained by sweeping across the real-line from left to right and recording
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1 at the beginning of each interval, and 0 at the end of each interval. For example,

the parenthetical representation of I in (2.11) is

� (I) = 1101101000. (2.12)

Notice 1101101000 is a balanced parentheses string. In general, if I is a set of n proper

unit intervals then � (I) ∈ P(n) because each of the n intervals begins before it ends.

Similarly, if s ∈ P(n) then there exists a set of n proper unit intervals I such that

� (I) = s. Furthermore, I is connected if and only if no strict non-empty prefix of

� (I) contains the same number of 1s and 0s. Equivalently, I is connected if and only

if � (I) = 1 ⋅ t ⋅ 0 for some t ∈ P(n − 1).
Parenthetical representations encapsulate which intervals intersect. In particular,

suppose that I = {[a1, b1], [a2, b2], . . . , [an, bn]} is a set of proper unit intervals with

aj < aj+1 for all 1 ≤ j < n. Then, for all 1 ≤ j < k ≤ n, [aj, bj] intersects [ak, bk] if and

only if the jth 0 appears to the right of the kth 1 within � (I). For example, the

second 0 appears to the right of the fourth 1 in (2.12), and so [0.75,1.75] intersects

[1.5,2.5] within (2.11).

Intersecting intervals can also be represented using a graph. Formally, a graph

G = (V,E) is a set of vertices V = {v1, v2, . . . , vn} together with a set of edges E =
{e1, e2, . . . , em}, where each edge is an unordered subset of two distinct vertices. An

edge is represented by the two vertices it contains. That is, if e = {vj, vk} then e = vjvk

(or equivalently, e = vkvj) is written. A graph G = (V,E) is an interval graph if it has

an interval representation, which is a set of intervals I = {[a1, b1], [a2, b2], . . . , [an, bn]}
such that for all 1 ≤ j ≤ n and 1 ≤ k ≤ n

vjvk ∈ E ⇐⇒ [aj, bj] intersects [ak, bk].

Interval graphs have a number of applications including assembling contiguous sub-

sequences in DNA mapping and in resource allocation problems (see Wikipedia [99]).

Basic results on interval graphs can be found in Golumbic [28].) A graph is a unit

interval graph if it has a unit interval representation. Graphs can be visualized by

drawing a circle for each vertex and a line between every pair of vertices that comprise

an edge. For example, the graph G = (V,E) with

V = {v1, v2, v3, v4, v5} and E = {v1v2, v2v3, v2v4, v3v4, v3v5, v4v5} (2.13)

is visualized in Figure 2.5. Furthermore, the graph specified in (2.13) is a unit interval
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Figure 2.5: A unit interval graph for the unit intervals in (2.11) (or (2.14)).

graph since (2.11) provides a suitable unit interval representation. For example, the

interval [0,1] corresponds to the leftmost vertex in Figure 2.5.

Notice that the graph in Figure 2.5 has been drawn without any vertex or edge

labels. Two graphs G = (V,E) and G′ = (V′,E′) are isomorphic if there exists a

bijection α ∶ V→ V′ such that

vjvk ∈ E ⇐⇒ α(vj)α(vk) ∈ E′.

A graph G = (V,E) is connected unless V can be partitioned into non-empty V1 and

V2 such that vjvk ∉ E for all vj ∈ V1 and vk ∈ V2. An interval graph is connected if

and only if it has a connected interval representation. Figure 2.6 contains the ten

connected unit interval graphs with five vertices.

Figure 2.6: Connected unit interval graphs with five vertices.

Two sets of connected proper unit intervals can have isomorphic interval graphs,

even if they have different parenthetical representations. For example, consider the

following line segments

0 1 2 3

that represent the following set of proper unit intervals

I′ = {[0,1], [0.50,1.50], [0.75,1.75], [1.25,2.25], [2,3]}. (2.14)
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The intervals in I′ from (2.14) are a reflection of the intervals in I from (2.11). More

precisely, if [a, b] ∈ I then [3 − b,3 − a] ∈ I′. Since this reflection does not change the

pairs of intervals that intersect, then I and I′ are both interval representation for the

graph in Figure 2.5. On the other hand, � (I) ≠� (I′) since

� (I′) = 1110100100. (2.15)

Since the reflection causes the leftmost interval to become the rightmost interval, and

causes the beginning and ending of each interval to change, then � (I′) in (2.15)

can be obtained by reflecting � (I) in (2.12) and interchanging the 0s and 1s. To

formalize this operation, suppose s is a binary string of length n. Then, s is defined

to be

s = sn ⋅ sn−1 ⋅ ⋯ ⋅ s1.

The previous discussion has shown that if I and I′ contain n proper unit intervals,

then they will have isomorphic interval graphs whenever

� (I) ∈ {� (I′),� (I′)}. (2.16)

On the other hand, it is also true that if (2.16) does not hold then I and I′ will

have non-isomorphic interval graphs. This leads to the following language definition.

Within the definition, the canonical parenthetical representation of each I is chosen

to be lexicographically larger of � (I) and � (I).

Definition 2.3.10 (Unit Interval Graphs).

I(n) = {1t0 ∣ t ∈ P(n − 1) and t ≥ t}.

In other words, the above language contains the canonical parenthetical representation

for every connected unit interval graph on n vertices.

Now it is proven that this language is a bubble language.

Theorem 2.3.11 (Bubble Language for Proper Interval Graphs). The language I(n)
is a bubble language.

Proof. Let L = I(n
2 ) for even n. Suppose s ∈ L and k = ∣!(s)∣ < n. Let r =

←ÐÐ
shift(s, k +

1, k). By Theorem 2.2.4, the proof of this theorem is completed by showing that

r ∈ L. Since P(n
2 ) is a bubble language by Theorem 2.3.9 and Remark 2.3.7, then r

is also a balanced parentheses string. That is, r ∈ P(n
2 ). Therefore, from Definition
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2.3.10 the proof of this theorem is completed by showing that r ≥ r. There are two

cases to consider, depending on whether there are two or more 10 substrings within

s.

In the first case, s contains two 10 substrings. Therefore, s = 1a0b1c0d with

a, b, c, d > 0. Then,

r = 1a0b−1101c−10d.

Since s ∈ L then s ≥ s, and so a ≥ d. There are four subcases to consider depending

on the relationship between a and d, and the value of b. In the first subcase a = d.

Therefore, b = c. (This is because a + c = b + d = n.) In this subcase

r = 1a0b−1101b−10a

= r

and so r ≥ r as desired. In the second and third subcases a = d+1. Therefore, b = c+1.

In the third subcase b = 2. In this subcase

r = 1a0b−1101b−20a−1

= 1a010a

= r

and so r ≥ r as desired. In the third subcase b > 2. In this subcase

r = 1a0b−1101b−20a−1

> 1a−10b−2101b−10a

= r

and so r ≥ r as desired. In the fourth subcase a ≥ d + 2. In this subcase

r = 1a0b−1101c−10d

> 1d0c−1101b−10a

= r

and so r ≥ r as desired.

In the second case, s contains at least three 10 substrings. Therefore, s =
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1a0b1z01c0d with a, b, c, d > 0 and z being a binary string. Then,

r = 1a0b−110z01c0d

> 1d0c1z101b−10a

= r

where the underlined prefix and suffix imply the inequality, and so r ≥ r as desired.

(To explain the inequality, notice that since s ∈ L then s ≥ s. Therefore, a ≥ d, and if

a = d then b ≤ c.)

2.3.5 Ordered Trees with Fixed Branching Sequence

A tree is an acyclic graph. Rooted trees are trees in which one of the nodes is specified

as the root. In every pair of adjacent nodes in a rooted tree, the parent is the node

closest to the root, and the child is the node furthest from the root. Every node has

a unique parent except for the root which has no parent. The out-degree of a node

is its number of children. An ordered tree is a rooted tree in which the children of

each node are ordered. When drawing rooted trees the root appears at the top and

the parents are drawn above their children. When drawing ordered trees the children

of each node appear from left to right based on their order. Typically, the branching

sequence of an ordered tree is defined as a non-increasing sequence containing the out-

degree of every node. In this thesis the branching sequence is viewed as the multiset

of out-degrees of every node.

A fixed-content language can be formed by considering all possible trees that have

a given branching sequence. In particular, each tree is differentiated by its unique

pre-order branching traversal, which is a string containing the out-degree of every

node as encountered within a pre-order traversal, with the caveat that the last out-

degree is omitted. (Since the last visited node in a pre-order traversal of a tree must

be a leaf, the omitted out-degree is always 0.) For example,

{31100,31010,31001,30110,30101,30011,13100,13010,13001,11300} (2.17)

contains every pre-order branching traversal over the multiset {0,0,1,1,3}. From the

previous discussion, the strings in this language are in one-to-one correspondence with

the ordered trees containing one node with out-degree 3, two nodes with out-degree

1, and three leaf nodes with out-degree 0. These ordered trees were given in Figure

1.4 on page 18.
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In general, a string s of non-negative integers is the pre-order branching traversal

of an ordered tree if and only if the following condition holds (see Ruskey [62]):

Σ(s) = ∣s∣ and s = p ⋅ z implies Σ(p) ≥ ∣p∣.

Essentially this condition ensures that the tree has the correct number of leaves.

(More generally, Havel [32], Erdös and Gallai [19], and Hakimi [31] characterized the

existence of graphs with a given degree sequence. Within a rooted tree, the degree

of the root equals its number of children and the degree of every other node is one

less than its number of children. Alternate representations of ordered trees have

also been considered. For example, Korsh-LaFollette [50] omit the 0s from the pre-

order branching traversal and then use an auxiliary zero sequence to differentiate the

ordered trees. Wu-Chang-Wang [103] also omit the 0s from the pre-order branching

traversal, and additionally fix the order of the non-zero entries. Thus, the trees

represented in (2.17) would be split into three different sets depending on the relative

order of 1,1,3. An auxiliary right-distance sequence is then used to differentiate the

ordered trees in this finer set.)

Definition 2.3.12 (Ordered trees with fixed branching sequence). The language of

ordered trees with branching sequence M with Σ(M) =m is

T(M) = {s ∈ Π(M) ∣ if s = p ⋅ z then Σ(p) ≥ ∣p∣}.

In other words, T(M) contains every permutation of M in which no prefix has a

smaller sum than length. Equivalently, T(M) contains every pre-order branching

traversal over M.

Theorem 2.3.13 (Ordered trees with fixed branching sequences are a bubble lan-

guage). Suppose M is a multiset of non-negative integers with Σ(M) = n. Then,

T(M) is a bubble language.

Proof. Suppose s ∈ T(M) and s ≠ !(s). Let

r =
←ÐÐÐ
bubble(s, ∣!(s)∣ + 1).

Notice that r is obtained from s by shifting a symbol to the left of a single smaller

symbol. Therefore, the sum of every prefix of r is at least as large as the sum of the

same length prefix of s. Since the sum of every prefix of s is at least as large as its

length, then the same property holds for r. These two facts explain the following
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inequalities for all j within 1 ≤ j ≤ ∣s∣:

Σ(r1r2⋯rj) ≥ Σ(s1s2⋯sj) ≥ j.

Therefore, r ∈ T(M), proving (2.1).

To prove the other condition within Definition 2.2.1 suppose s ∈ T(M) and i is

within

∣� (s)∣ < i ≤ ∣!(s)∣.

Let

r =
←ÐÐÐ
bubble(s, i) =

←ÐÐ
shift(s, i, h). (2.18)

This time r is formed from s by shifting a symbol to the left of a single larger

symbol. In particular, the sum of every prefix of r is equal to the sum of the same

length prefix of s, except for the prefix of length h. Therefore, for all j within 1 ≤ j < h
and h + 1 ≤ j ≤ ∣s∣

Σ(r1r2⋯rj) = Σ(s1s2⋯sj) ≥ j.

Therefore, in order to show that r ∈ T(M) it remains only to show that

Σ(r1r2⋯rh) ≥ h. (2.19)

Before proving this result it is useful to point out that (2.18) implies

r1r2⋯rh = s1s2⋯sh−1si

and in particular rh = si.

In order to prove (2.19) it is necessary to collect a number of small facts:

� r1r2⋯rh is non-increasing,

� if rh = 0 then h ≥ 2,

� if rh = 0 then r1 ≥ 2, and

� if h ≥ 2 then rh−1 > rh.

To see how these facts prove (2.19), first notice that if r1r2⋯rh is non-increasing and

rh > 0 then r1r2⋯rh contains only positive integers and so (2.19) must be true. On
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the other hand, if rh = 0 then the above facts imply that

Σ(r1r2⋯rh) = r1 +Σ(r2r3⋯rh−1) + rh

≥ 2 +Σ(r2r3⋯rh−1) + 0

≥ 2 + h − 2 + 0

= h

which again proves (2.19). Therefore, in order to complete the proof it remains

only to prove the above facts. First, since i ≤ ∣!(s)∣ then s1s2⋯si is non-increasing.

Therefore, r1r2⋯rh is also non-increasing.

Second, it cannot be the case that rh = 0 and h = 1. To see why, notice that s1 > 0

since s ∈ T(M). Therefore, if rh = 0 and h = 1 then it would have to be the case that

i = 2. In other words, r would have been formed from s by bubble left-shifting its

second symbol (equal to 0) past its first symbol (not equal to 0). That is,

s1 ⋅ s2 = s1 ⋅ si = s1 ⋅ 0.

However, this is not possible since i > ∣� (s)∣ and certainly the above prefix is frozen.

Third, it cannot be the case that rh = 0 and r1 ≤ 1. Otherwise r would have a

non-increasing prefix containing only 1s and at least one 0. Due to (2.19) this would

imply that s also has a non-increasing prefix containing only 1s and at least one 0.

However, this is not possible since s ∈ T(M) and such a prefix would have a smaller

sum than length.

Fourth, it cannot be the case that h ≥ 2 and rh−1 ≤ rh. This is due to the fact that

r1r2⋯rh is non-increasing (which implies rh−1 ≥ rh) and the fact that rh was bubble

left-shifted within a non-increasing prefix (which implies rh−1 ≠ rh).

Further extensions of T(M) are discussed in Chapter 5.

2.3.6 Schröder and Motzkin Paths

Balanced parentheses can also be viewed as paths inside an h by h grid. If ‘(’ is

considered to be up and ‘)’ is considered to be right, then the balanced parentheses

of length 2h are precisely the Catalan paths that travel from co-ordinate (0,0) to

co-ordinate (h,h) with the property that the path never goes below the diagonal line

between these two co-ordinates. Figure 2.7 contains the Catalan paths for h = 3. Two

natural variations of Catalan paths include Schröder paths and Motzkin paths. Each
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Figure 2.7: Catalan paths from (0,0) to (3,3).

type of path allows for a particular non-Catalan move. The difference between the

two is that the non-Catalan move in Schröder paths covers twice as much distance as

the non-Catalan move in Motzkin paths.

Formally, a Schröder path is a Catalan path that also allows for diagonal moves

that proceed up one position and to the right one position. Schröder paths have at

least 19 different combinatorial interpretations [86]. There are 22 Schröder paths for

h = 3 (including the five Catalan paths in Figure 2.7) and Figure 2.8 contains those

with at least one diagonal move. By instead considering ‘(’ to be north-east and ‘)’

Figure 2.8: Schröder paths from (0,0) to (3,3) with at least one diagonal move.

to be south-east then balanced parentheses can be viewed as rotated Catalan paths

from (0,0) to (2h,0) with the property that the path never goes below the horizontal

line between these two co-ordinates. Figure 2.9 contains the rotated paths for h = 3.

A Motzkin path is a rotated Catalan path that also allows for an even number of east

Figure 2.9: Rotated Catalan paths from (0,0) to (6,0).

moves. Motzkin paths have at least 13 different combinatorial interpretations [86]2.

There are 9 Motzkin paths for h = 4 as seen in Figure 2.10. The paths in Figures 2.8

and 2.10 are grouped by their number of non-Catalan moves. In general, Schröder

2Coincidentally, ’S’ and ’M’ are respectively the 22nd and 13th letter in English.
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Figure 2.10: Motzkin paths from (0,0) to (4,0).

paths and Motzkin paths with a fixed length and a fixed number of non-Catalan

moves are respectively restricted Schröder paths and restricted Motzkin paths.

To represent Schroöder and Motzkin paths as strings, the symbol 2 is used for the

Catalan move up (northeast), the symbol 1 is used for the non-Catalan move diagonal

(east), and the symbol 0 is used for the Catalan right (southeast). For example, the

Schröder paths in Figure 2.8 are respectively

S(3) = {222000,220200,220020,202200,202020,12200,12020,21200,21020,22100,

20120,20210,22010,22001,20201,2011,2101,2110,1201,1210,1120,111}.

Similarly, the Motzkin paths in Figure 2.8 are respectively

M(2) = {2200,2020,2011,2101,2110,1201,1210,1120,1111}.

In both cases, notice that the 1 symbols are free to move anywhere within a given

string (see Figure 2.4). To formalize the definition of these languages, let #i(s) be

the number of copies of symbol i within string s.

Definition 2.3.14 (Schröder and Motzkin paths). The language of Schröder paths

from (0,0) to (h,h) is

S(h) = {s ∣ s ∈ Π(content(2i1k0i)) where 2i+k = h and if s = pz then #2(p) ≥ #0(p)}.

The language of Motizkin paths from (0,0) to (2h,0) is

M(h) = {s ∣ s ∈ Π(content(2i12k0i)) where 2i+2k = h and if s = pz then #2(p) ≥ #0(p)}.

The restricted forms of these languages are obtained by fixing the number of

non-Catalan moves. In particular, let Sk(h) be the set of strings representing the

restricted Schroöder paths from (0,0) to (h,h) using precisely k diagonal moves.

That is, Sk(h) is the fixed-content subset of Sk(h) containing strings with precisely



74

k copies of 1. Similarly, let M2k(h) be the set of strings representing the restricted

Motzkin paths from (0,0) to (2h,0) using precisely 2k east moves. That is, M2k(h)
is the fixed-content subset of M2k(h) containing strings with precisely 2k copies of

1. Interestingly, these restricted languages are essentially the same. For example, the

expressions earlier in this section show that

S2(3) = M2(2) = {2011,2101,2110,1201,1210,1120}.

(The only difference between the restricted languages is that Sk(h) allows for an

odd number of 1s.) Furthermore, the above language is identical to the language

T({0,1,1,2}) (ordered trees). In general, the following equalities follow directly from

Definition 2.3.12 and the restricted forms of Definition 2.3.14

Sk(h) = T(content(2h−k1k0h−k)) M2k(h) = T(content(2h−k12k0h−k))

S(h) = S0(h) ∪ S1(h) ∪⋯ ∪ Sh(h) M(h) = M0(h) ∪M2(h) ∪⋯ ∪M2h(h).

The top lines respectively prove that restricted Schröder and Motzkin paths are bub-

ble languages, as stated by the following theorem. (Furthermore, T(content(2h0h)) is

identical to P(h) after interchanging 2s and 1s. Therefore, restricted Schroöder and

Motzkin paths generalize balanced parentheses by setting k = 0.)

Theorem 2.3.15 (Restricted Schröder and Motzkin paths are a bubble languages).

Sk(h) is a bubble language whenever 0 ≤ k ≤ h. Similarly, Mk(h) is a bubble language

whenever 0 ≤ 2k ≤ h.

2.3.7 Necklaces, Lyndon Words, and Bracelets

It is often useful to consider strings in equivalence classes based on their rotations.

This section discusses several variations on this idea including necklaces, Lyndon

words, and bracelets. A number of basic string concepts will be introduced includ-

ing lexicographic comparisons and rotations. After necklaces and Lyndon words are

defined, two basic properties will be discussed. Then, it will then be shown that neck-

laces and Lyndon words are bubble languages. To prove these two results a simple

necessary condition for necklaces is given in Remark 2.3.16, and a simple sufficient

condition for Lyndon words is given in Remark 2.3.17. These necessary and sufficient

conditions involve partitioning strings into substrings known as peaks. Bracelets in

general are not bubble languages, and this fact is proven by counterexample. Section
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2.4.1 discusses pre-necklaces, and closure properties of bubble languages are used to

prove that pre-necklaces are bubble languages.

Given two strings, s = s1s2⋯sn and t = t1t2⋯th, of possibly unequal length, say

that s is lexicographically larger than t and denote this by s > t if one of following

mutually exclusive conditions hold

1. there exists j such that sj > tj and si = ti for all 1 ≤ i < j

2. n < h and si = ti for all 1 ≤ i ≤ n.

Within the first condition, sj and tj are known as the leftmost differing symbols

between s and t, and s > t because the leftmost differing symbol is larger in s. On

the other hand, the second condition states that s > t when s is a strict prefix of t.

The second condition is somewhat non-standard, but its merits will become apparent

later in this section when strings are partitioned into substrings known as peaks. If

s is lexicographically larger than t, or s is equal to t, then s ≥ t is written.

Given a string s = s1s2⋯sn, the rotation of s beginning at its ith symbol is denoted

by ⟲i (s). That is,

⟲i (s) = sisi+1⋯sns1s2⋯si−1.

It is also helpful to adopt the convention that ⟲0 (s) =⟲n (s) when ∣s∣ = n, since

this simplifies the results in Section 4.2.3. The rotation set of a string s is denoted by

⟲ (s) and is a set containing every rotation of the string. For example, if s = 221313

and t = 213213 then

⟲ (s) = {223131,231312,313122,131223,312231,122313} (2.20)

⟲ (t) = {213213,132132,321321}. (2.21)

Any s ∈⟲ (s) is known as a representative of ⟲ (s). (Notice that rotation set

membership is an equivalence relation because s ∈⟲ (t) Ô⇒ t ∈⟲ (s), and (r ∈⟲
(s) and s ∈⟲ (t)) Ô⇒ r ∈⟲ (t)).) In particular, a necklace is a string that is

lexicographically largest within its rotation set. With regards to (2.20) and (2.21),

only 313122 and 321321 are necklaces. More thoroughly,

332211,332121,332112,331221,331212,331122,323211,323121,

323112,322311,322131,321321,321312,321231,313122,312312

are the necklaces over {1,1,2,2,3,3}. With respect to Figure 1.3 on page 17, the

above strings are lexicographically largest with respect to clockwise ordering and the
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mapping ↔ 1, ↔ 2, ↔ 3. (The literature most often examines necklaces and

their variations using lexicographically smallest strings.)

A string s is aperiodic if ∣ ⟲ (s)∣ = ∣s∣. (Notice that ∣ ⟲ (s)∣ ≤ ∣s∣ always holds,

and that ∣ ⟲ (s)∣ < ∣s∣ only when s is periodic in the sense that it can be expressed

as s = ri for some i > 1.) A Lyndon word is an aperiodic necklace. With regards

to (2.20) and (2.21), only 313122 is a Lyndon word. More thoroughly, 312312 and

321321 are the only necklaces over {1,1,2,2,3,3} that are not Lyndon words.

The reverse of s is denoted reverse(s). That is, reverse(s1s2⋯sn) = snsn−1⋯s1. A

bracelet is a string s that is largest in⟲ (s)∪⟲ (reverse(s)). With regards to (2.20)

and (2.21), only 321321 is a bracelet. More thoroughly,

332211,332121,332112,331221,323211,323121,322311,322131,321321,321312,321231

are the bracelets over {1,1,2,2,3,3} arising from Figure 1.3.

Fixed-content languages can be formed using these three concepts by considering

all possible strings containing a given multiset of symbols M. In particular, the

necklace language is denoted by N(M), the Lyndon language is denoted by N−(M),
and the bracelet language is denoted by R(M). For example, when M = {1,1,1,0,0,0}
then

N(M) = {111000,110100,110010,101010}

N−(M) = {111000,110100,110010}

R(M) = {111000,110100,101010}.

Notice that the above bracelet language is not a bubble language. In particular,

1010 ⋅ 10 is a bracelet but 1100 ⋅ 10 is not. Therefore, bracelets in general do not

satisfy the increasing prefix property, which is necessary for being a bubble language.

To further illustrate the necklace and Lyndon languages, when M = {3,3,2,2,1,1},

note that

N(M) = {312312,313122,321231,321312,321321,322131,322311,323112,

323121,323211,331122,331212,331221,332112,332121,332211}, and

N−(M) = N(M)/{312312,321321}.

Notice that in both of these last two examples N−(M) is a strict subset of N(M).
This is due to the fact that the symbol multiplicities in {3,3,2,2,1,1} have a common



77

factor larger than one. When there is no such common factor then N−(M) and N(M)
are identical.

When determining whether or not a string is a necklace or Lyndon word, a can-

didate string s must have its largest symbol in its first position. That is, s1 = dm.

Assuming this fact holds, then s can be partitioned uniquely into peaks. A peak is a

substring beginning with consecutive symbols equal to dm, and terminating immedi-

ately prior to the next symbol equal to dm. More formally, a peak of s is a substring

sisi+1⋯sj that satisfies the following conditions

� si = dm,

� i = 1 or si−1 < dm,

� j = ∣s∣ or sj+1 = dm, and

� if sh = dm and i < h ≤ j then sh−1 = dm.

The following example shows how a string is partitioned into its peaks

s = 442231
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
�(s,1)

⋅ 44311
²
�(s,2)

⋅ 4422
±
�(s,3)

⋅ 413
°

�(s,4)
. (2.22)

As above, the ith peak from the left in s is denoted by �(s, i) and is referred to as

the ith peak of s.

By using peaks and >, a simple necessary condition for a string to be a necklace

can be stated: If s is a necklace, then no peak can be lexicographically larger than

its first peak. To illustrate this condition, notice that the string in (2.22) is not a

necklace because of its rotation beginning at position 7

⟲7 (s) = 443114422413442231 > 442231443114422413 = s.

This inequality is due to the fact that ⟲7 (s) begins with the second peak of s, and

the fact that the second peak of s is lexicographically larger than the first peak in s.

That is,

�(s,2) = 44311 > 442231 = �(s,1).

Notice that the above inequality follows from the first condition given for >. In

particular, 3 > 2 and these two symbols are the leftmost differing symbol between

44311 and 442231 (as underlined). Therefore, ⟲7 (s) > s because their leftmost
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differing symbols equal the leftmost differing symbols in �(s,2) and �(s,1). The

string in (2.22) is also not a necklace because of its rotation beginning at position 12

⟲12 (s) = 442241344223144311 > 442231443114422413 = s.

This inequality is due to the fact that ⟲12 (s) begins with the third peak of s, and

the fact that the third peak of s is lexicographically larger than the first peak in s.

That is,

�(s,3) = 4422 > 442231 = �(s,1).

Notice that the above inequality follows from the second condition given for >. In

particular, 4422 is a strict prefix of 442231. Therefore, ⟲12 (s) > s because the

leftmost differing symbol between these two strings is guaranteed to be larger within

⟲12 (s). (In particular, the symbol following any peak must equal the largest symbol

dm.) This necessary condition for necklaces is stated in the following remark.

Remark 2.3.16 (Necessary condition for necklaces). Suppose s ∈ N(M). Then, for

all i

�(s,1) ≥ �(s, i).

In other words, if s is a necklace then none of its peaks are lexicographically larger

than its first peak.

Notice that the condition in Remark 2.3.16 is not sufficient for a string to be a

necklace. For example, no peak in 11010011010 is lexicographically larger than its

first, but it is not a necklace due to its rotation starting at position 7.

By using peaks and >, a simple sufficient condition for a string to be a Lyndon

word can be stated: If the first peak in s is lexicographically larger than all of its other

peaks, then s is a Lyndon word. To illustrate this condition, consider the following

Lyndon word and its partition into peaks

s = 442231
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
�(s,1)

⋅ 44113
²
�(s,2)

⋅4422313
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
�(s,3)

. (2.23)

In particular, s is lexicographically larger than its rotation beginning at position 7

due to the first condition given for >. Similarly, s is lexicographically larger than

its rotation beginning at position 12 due to the second condition given for >. This

sufficient condition for Lyndon words is stated in the following remark.
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Remark 2.3.17 (Sufficient condition for Lyndon words). Suppose that for all i

�(s,1) > �(s, i).

Then, s ∈ N−(M).

Notice that the condition in Remark 2.3.17 is not necessary for a string to be a

Lyndon word. For example, the first peak in 11011010 is not lexicographically larger

than its second peak, but it is a Lyndon word.

By using Remarks 2.3.16 and 2.3.17 it is possible to prove that N(M) and N−(M)
are bubble languages by way of two lemmas. Since these results involve proving that

necklaces and Lyndon words are closed under certain bubble left-shifts, it is instructive

to point out that necklaces and Lyndon words are not closed under arbitrary bubble

left-shifts. For example, notice that 210202011 is a Lyndon word but

←ÐÐÐ
bubble(210202011,6) = 2102

←Ð
02011 = 210220011

is not a necklace since it fails Remark 2.3.16 due to its second peak, 220011, being

lexicographically larger than its first peak, 210. Therefore, necklaces and Lyndon

words are not closed under bubble left-shifts, even if the bubble left-shift moves a

larger symbol past a smaller symbol.

Lemma 2.3.18 will prove that bubble left-shifting the symbol following the non-

increasing prefix of a necklace always results in a Lyndon word. (Since N−(M) ⊆
N(M) this proves that necklaces and Lyndon words satisfy the closure property stated

in (2.1).) The proof involves five simple cases which are listed below using k = ∣!(s)∣.
Each case is accompanied by an example where s ∈ N(M) and r =

←ÐÐÐ
bubble(s, k + 1) ∈

N−(M) with M = {1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4}. Within s and r the peaks are

separated by ⋅ to emphasize how peaks are modified by the bubble left-shift.

Case One: sk+1 < dm. For example,

s = 44311322⋅44311232

r = 44313122⋅44311232.

Case Two: sk+1 = dm and sk+2 = dm and sk−1 < dm. For example,

s = 44332211⋅44332211

r = 4433221⋅41⋅4332211.



80

Case Three: sk+1 = dm and sk+2 = dm and sk−1 = dm. For example,

s = 442⋅4423333221111

r = 4442⋅423333221111.

Case Four: sk+1 = dm and sk+2 < dm and sk−1 < dm. For example,

s = 422⋅4213⋅413⋅421331

r = 42⋅42213⋅413⋅421331.

Case Five: sk+1 = dm and sk+2 < dm and sk−1 = dm. For example,

s = 42⋅4233332⋅42⋅41111

r = 442233332⋅42⋅41111.

(Notice that k = 1 is not possible within a necklace since the first symbol cannot be

smaller than the second.)

Lemma 2.3.18 (Necklaces and Lyndon words satisfy (2.1)). Suppose s ∈ N(M) with

s ≠ ! and k = ∣!(s)∣. Then,

←ÐÐÐ
bubble(s, k + 1) ∈ N−(M).

In other words, a Lyndon word results from bubble left-shifting the symbol following

the non-increasing prefix of a necklace.

Proof. Let r =
←ÐÐÐ
bubble(s, k + 1). For the first case, suppose that sk+1 < dm. Then,

�(r,1) > �(s,1)

and �(r, h) = �(s, h) for all h ≥ 2. Therefore, Remark 2.3.16 implies that �(r,1)
is lexicographically larger than each of its peaks. Therefore, r is a Lyndon word by

Remark 2.3.17. Therefore, for the remainder of the proof it can be assumed that

sk+1 = dm. This implies that �(s,1) is non-increasing. Furthermore, k + 2 ≤ n since

�(s,2) must contain at least two symbols. It is also true that sk < dm. The proof is

now divided into four remaining cases depending on the values of sk+2 and sk−1.
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Case Two: Suppose sk+2 = dm and sk−1 < dm. Then,

�(r,1) ⋅ sk = �(s,1), �(r,2) = dmsk, dm ⋅�(r,3) = �(s,2)

and �(r, h + 1) = �(s, h) for all h ≥ 3. Therefore, Remark 2.3.16 implies that �(r,1)
is lexicographically larger than each of its peaks, except possibly its second peak

�(r,2) = dmsk. However, �(r,1) must begin with at least two copies of dm, which

implies �(r,1) > dmsk. (In particular, sk+2 = dm and Remark 2.3.16 imply that �(s,1)
begins with at least two copies of dm, and sk−1 < dm implies that �(s,1) ends with

at least two symbols that are less than dm. Thus, �(r,1) begins with at least two

copies of dm.) Therefore, r is a Lyndon word by Remark 2.3.17.

Case Three: Suppose sk+2 = dm and sk−1 = dm. Then,

�(r,1) = dm ⋅�(s,1), dm ⋅�(r,2) = �(s,1)

and �(r, h) = �(s, h) for all h ≥ 3. Therefore, Remark 2.3.16 implies that �(r,1)
is lexicographically larger than each of its peaks. Therefore, r is a Lyndon word by

Remark 2.3.17.

Case Four: Suppose sk+2 < dm and sk−1 < dm. Let �(s,2) = dm ⋅ z and �(r,2) =
dm ⋅ y. Then,

�(r,1) ⋅ sk = �(s,1), dm ⋅ sk ⋅ y = dm ⋅ z

and �(r, h) = �(s, h) for all h ≥ 3. Therefore, Remark 2.3.16 implies that �(r,1) is

lexicographically larger than each of its peaks, except possibly its second peak �(r,2).
Note that �(r,1) begins dms2 and �(r,2) begins dm ⋅ sksk+2. Since �(s,1) is non-

increasing then s2 ≥ sk. If s2 > sk then �(r,1) > �(r,2) as desired. Otherwise, s2 = sk.

Since �(s,1) is non-increasing and sk−1 < dm, then it must be that �(s,1) = dm ⋅sh
k for

some h ≥ 2. Since s is a necklace then Remark 2.3.16 implies that �(s,1) ≥ �(s,2).
Therefore, sh

k ≥ z. Therefore, sh−1
k > sk ⋅ z. Therefore, �(r,1) = dm ⋅ sh−1

k > dm ⋅ sk ⋅ z =
�(r,2). Therefore, r is a Lyndon word by Remark 2.3.17.

Case Five: Suppose sk+2 < dm and sk−1 = dm. Then,

�(r,1) =
←ÐÐ
shift(�(s,1) ⋅�(s,2), k + 1, k)

and �(r, h + 1) = �(s, h) for all h ≥ 1. Therefore, Remark 2.3.16 implies that �(r,1)
is lexicographically larger than each of its peaks. Therefore, r is a Lyndon word by
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Remark 2.3.17.

Now it must be shown that necklaces and Lyndon words are closed under bubble

left-shifting unfrozen symbols within the non-increasing prefix. To illustrate this

result, consider the following string

s = 44321 ⋅ 43 ⋅ 421.

When s is treated as a necklace � (s) = 44 since its first three symbols can be rear-

ranged to give a necklace 4342143421 = (43421)2 but the first two symbols cannot.

When s is treated as a Lyndon word � (s) = 443 since the first four symbols can be

rearranged to give a Lyndon word 4423143421 but the first three symbols cannot.

Since ∣!(s)∣ = 5 this means that bubble left-shifting the ith symbol of s should create

a new necklace for i = 3,4,5 and should create a new Lyndon word for i = 4,5 accord-

ing to (2.2). This can be verified below, where the result of each bubble left-shift is

partitioned into peaks

←ÐÐÐ
bubble(s,3) = 43 ⋅ 421 ⋅ 43 ⋅ 421,

←ÐÐÐ
bubble(s,4) = 44231 ⋅ 43 ⋅ 421,

←ÐÐÐ
bubble(s,5) = 44312 ⋅ 43 ⋅ 421.

Notice that the first bubble left-shift divides the first peak of s into two peaks, whereas

the remaining bubble left-shifts simply rearrange the symbols in the first peak. These

two cases illustrate the two cases found within the formal proof of the following lemma.

Lemma 2.3.19 (Necklaces and Lyndon words satisfy (2.2)). Suppose L = N(M) or

L = N−(M), and s ∈ L and i is within ∣� (s)∣ < i ≤ ∣!(s)∣. Then,

←ÐÐÐ
bubble(s, i) ∈ L.

In other words, necklaces and Lyndon words are closed under bubble left-shifting any

unfrozen symbol in the non-increasing prefix.

Proof. Since i ≤ ∣!(s)∣ then s1s2⋯si is non-increasing. Let M′ = {s1, s2, . . . , si}.

There are two cases depending on the value of m′, which denotes the number of

distinct symbols in M′. Since i > ∣� (s)∣, then s1s2⋯si can be rearranged within s

to create t ∈ L with t ≠ s. Notice that the existence of t ∈ L implies that there are

at least two distinct symbols in M′. That is, m′ ≥ 2. The proof now divides into

two cases depending on whether or not m′ = 2. Each case is completed by proving

r =
←ÐÐÐ
bubble(s, i) ∈ L. Thus, it is assumed that t ≠ r since t ∈ L.
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Suppose m′ = 2. Therefore, M′ contains only the distinct symbols d′2 > d′1. To

simplify the following discussion, let x = d′1 and y = d′2 for the remainder of this case.

Notice that s and r can be expressed as follows

s = yh−1yxxi−h−1z

r = yh−1xyxi−h−1z

where z = si+1si+2⋯sn and h satisfies 1 < h < i. Notice that

�(r,1) = yh−1x

since y = dm follows from the fact that necklaces and Lyndon words begin with the

largest possible symbol. The proof of this case depends on the following

�(r,1) > �(t,1).

To see why this is true, notice that �(t,1) ≠ �(s,1) since equality would imply t = s.

Also, �(t,1) ≠ �(r,1) since equality would imply t = r. Therefore, �(t,1) must

either contain fewer than h − 1 copies of y or more than one copy of x. Therefore,

�(r,1) > �(t,1) as claimed. Since t ∈ L and �(r,1) > �(t,1), then Remarks 2.3.16

and 2.3.17 imply that r ∈ L.

Suppose m′ > 2. Since s1s2⋯si is non-increasing, Remark 2.1.10 implies that

s1s2⋯si and r1r2⋯ri are the two lexicographically largest strings over M′. Therefore,

r1r2⋯ri > t1t2⋯ti.

To see why this is true, notice that t1t2⋯ti ≠ r1r2⋯ri since equality would imply t = r.

Also, t1t2⋯ti ≠ s1s2⋯si since equality would imply t = s. Therefore, t1t2⋯ti is a string

over M′ but it is not equal to either of the two lexicographically largest strings over

M′. Therefore,

�(r,1) > �(t,1)

sincem′ > 2 implies that �(r,1) begins with r1r2⋯ri. Since t ∈ L and �(r,1) > �(t,1),
then Remarks 2.3.16 and 2.3.17 imply that r ∈ L.

The previous two lemmas prove the following theorem.

Theorem 2.3.20 (Necklaces and Lyndon words are bubble languages). The lan-

guages N(M) and N−(M) are bubble languages.
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2.4 Properties of Bubble Languages

This section discusses several properties of bubble languages. Section 2.4.1 shows that

bubble languages are closed under the operations of union, intersection, and quotients.

The first two of these operations are useful for considering the overall breadth of

languages contained in the bubble language hierarchy, but the results are otherwise

unused throughout the thesis. The third operation is used in several places in the

remainder of the thesis, including Section 2.4.3 in this Chapter. Furthermore, this

operation is used to prove that pre-necklaces can be represented by bubble languages.

Section 2.4.2 informally discusses two different notions of a maximal left-shift, and

shows that these two concepts coincide when shifting certain symbols within bubble

languages. This discussion prepares the reader for the formal definition of a greedy

left-shift found in Section 3.1.1, and also gives intuition behind the existence of left-

shift Gray codes for bubble languages. The main result in Section 2.4.2 also aids in

the formal proof of the reverse cool-lex order found in Section 3.4.1 that is required

for the results on shorthand universal cycles in Section 4.2.

Section 2.4.3 defines the concepts of scuts and tails, and proves that these concepts

have special properties in bubble languages. In particular, these properties are essen-

tial to the left-shift Gray code for bubble languages presented in Chapter 3. Section

2.4.4 then uses these properties, along with the non-increasing prefix property and

closure under quotients, to provide an alternate characterization of bubble languages.

2.4.1 Closure

This section gives a sample of operations that can be used to create new bubble

languages from previously existing bubble languages.

Union and Intersection

The following theorem proves that bubble languages are closed under union and inter-

section. The theorem assumes that the multisets of symbols used in the constituent

languages are identical since otherwise the union would not be a fixed-content lan-

guage, and the intersection would be empty.

Theorem 2.4.1 (Bubble languages are closed under union and intersection). Suppose

L and L′ are bubble languages, and M = M′. Then, L ∪L′ and L ∩L′ are also bubble

languages.
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Proof. Consider L∪L′. Notice that L∪L′ is a fixed-content language with content(L∪
L′) = M since M = M′. For the sake of contradiction suppose that L∪L′ is not a bubble

language since it violates (2.1). (The case where L ∪ L′ violates (2.2) is considered

in the next paragraph.) Therefore, there exists s ∈ L ∪ L′ such that k = ∣!(s)∣ < n
and

←ÐÐÐ
bubble(s, k + 1) ∉ L ∪ L′. Since s ∈ L ∪ L′ then without loss of generality s ∈ L.

Furthermore, since
←ÐÐÐ
bubble(s, k+1) ∉ L∪L′ then it must also be that

←ÐÐÐ
bubble(s, k+1) ∉ L.

Therefore, L violates (2.1) and this contradicts the assumption that L is a bubble

language.

For the sake of contradiction suppose that L ∪ L′ is not a bubble language since

it violates (2.2). Therefore, there exists s ∈ L ∪ L′ and an i within ∣�L∪L′(s)∣ < i ≤
∣!(s)∣ such that

←ÐÐÐ
bubble(s, i) ∉ L ∪ L′. Due to the bound on i there must exist some

rearrangement of the first i symbols of s that results in another string in L ∪ L′.

Call this string r. Without loss of generality r ∈ L. Since L is a bubble language,

then by the non-increasing prefix property in Remark 2.2.2 the first i symbols of r

can be rearranged back into non-increasing order to result in another string in L. In

other words, s ∈ L as well. Since r ∈ L and s ∈ L then the following bound holds

∣� (s)∣ < i ≤ ∣!(s)∣. Furthermore, since
←ÐÐÐ
bubble(s, i) ∉ L ∪ L′ then

←ÐÐÐ
bubble(s, i) ∉ L.

Therefore, L violates (2.2) and this contradicts the assumption that L is a bubble

language. Since L ∪ L′ has fixed-content and does not fail (2.1) or (2.2) then it is a

bubble language.

Consider L∩L′. Notice that L∩L′ is a fixed-content language with content(L∩L′) =
M since M = M′. For the sake of contradiction suppose that L ∩ L′ is not a bubble

language since it violates (2.1). (The case where L∩L′ violates (2.2) is considered in

the next paragraph.) Therefore, there exists s ∈ L ∩ L′ such that k = ∣!(s)∣ < n and
←ÐÐÐ
bubble(s, k + 1) ∉ L ∩ L′. Since s ∈ L ∩ L′ then s ∈ L and s ∈ L′. Furthermore, since
←ÐÐÐ
bubble(s, k+1) ∉ L∩L′ then without loss of generality

←ÐÐÐ
bubble(s, k+1) ∉ L. Therefore,

L violates (2.1) and this contradicts the assumption that L is a bubble language.

For the sake of contradiction suppose that L∩L′ is not a bubble language since it

violates (2.2). Therefore, there exists s ∈ L∩L′ and an i within ∣�L∩L′(s)∣ < i ≤ ∣!(s)∣
such that

←ÐÐÐ
bubble(s, i) ∉ L ∩ L′. Since s ∈ L ∩ L′ then s ∈ L and s ∈ L′. Furthermore,

since
←ÐÐÐ
bubble(s, i) ∉ L ∩ L′ then without loss of generality

←ÐÐÐ
bubble(s, i) ∉ L. Finally,

Remark 2.1.6 implies that i is within the bound ∣� (s)∣ < i ≤ ∣!(s)∣ since L∩L′ ⊆ L and

so ∣� (s)∣ ≤ ∣�L∩L′(s)∣. Therefore, L violates (2.2) and this contradicts the assumption

that L is a bubble language. Since L∩L′ has fixed-content and does not fail (2.1) or

(2.2) then it is a bubble language.
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Quotients

This section proves that bubble languages are closed under the quotient operation,

and uses this result to prove that pre-necklaces are represented by a bubble language.

Theorem 2.4.2 (Bubble languages are closed under quotients). If L is a bubble

language and z is any string, then the language L/z is a bubble language.

Proof. Let L′ = L/z where L is a bubble language. For the sake of contradiction,

suppose that L′ is not a bubble language since it violates (2.1). (The case where L′

violates (2.2) is considered in the next paragraph.) Therefore, there exists s′ ∈ L′

such that k = ∣!(s′)∣ < n′ and
←ÐÐÐ
bubble(s′, k) ∉ L′. Let s = s′ ⋅ z. Since s′ is not non-

increasing then !(s) = !(s′) and so ∣!(s)∣ = k. Furthermore, s ∈ L since s′ ∈ L, and
←ÐÐÐ
bubble(s, k) ∉ L since

←ÐÐÐ
bubble(s′, k) ∉ L′. Therefore, L violates (2.1) which contradicts

the assumption that L is a bubble language.

Similarly, for the sake of contradiction suppose that L′ is not a bubble language

since it violates (2.2). Therefore, there exists s′ ∈ L′ and i within ∣�L′(s′)∣ < i ≤ ∣!(s′)∣
such that

←ÐÐÐ
bubble(s′, i) ∉ L′. Let s = s′ ⋅z. By these choices, s ∈ L and

←ÐÐÐ
bubble(s, i) ∉ L.

Therefore, it remains only to show that i is within the range ∣�L(s)∣ < i ≤ ∣!(s)∣. To

prove this fact, it will be shown that ∣!(s′)∣ ≤ ∣!(s)∣ and ∣�L(s)∣ < i. The first of

these two inequalities is certainly true. To see why the second is true, notice that

since ∣�L′(s′)∣ < i then the first i symbols of s′ can be rearranged to create another

string in L′. Call this string r′. Therefore, r′ ⋅ z ∈ L. Since the first i symbols of s

can be rearranged to create r′ ⋅z ∈ L then ∣�L(s)∣ < i as claimed. Therefore, L violates

(2.2) which contradicts the assumption that L is a bubble language. Since L′ has

fixed-content and does not fail (2.1) or (2.2) then it is a bubble language.

A pre-necklace is a string p in which p ⋅ z is a necklace for some z. Given a

multiset of symbols M, the pre-necklace language is denoted by N+(M) and contains

every pre-necklace with content M. For example, when M = {1,1,1,0,0,0} then

N+(M) = {111000,110100,110010,101010,110001,101001}.

In particular, notice that the last two strings, 110001 and 101001, are not necklaces.

On the other hand, necklaces can be obtained by suffixing 000 to the end of each

string. That is, 110001 ⋅ 000 and 101001 ⋅ 000. The following remark generalizes this

observation.
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Remark 2.4.3 (Pre-necklaces and Necklaces). Suppose content(p) = M, z = dn1
1 , and

M′/content(z) = M. Then,

p ∈ N+(M) ⇐⇒ pz ∈ N(M′)

In other words, pre-necklaces over M are in one-to-one correspondence with necklaces

over M ∪ {d1, . . . , d1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n1 copies

} that end in dn1
1 .

Theorem 2.4.4 (Pre-necklaces are bubble languages). The language N+(M) is a

bubble language.

Proof. Let z = dn1
1 and M′/content(z) = M. Also, let L′ = N(M′) and L = N+(M). By

Theorem 2.3.20, L′ is a bubble language. Therefore, Theorem 2.4.2 implies that L′/z
is also a bubble language. However, Remark 2.4.3 implies that L = L′/z. Therefore,

L is also a bubble language.

2.4.2 Maximum and Maximal Shifts

The results in Chapter 3 involve shifting symbols “as far to the left as possible” within

strings inside of bubble languages. This section discusses two interpretations of this

concept, and shows that the two interpretations are often equivalent within bubble

languages.

Given a string s ∈ L and a position i in the string, the maximum left-shift of the

ith symbol in s is shift(s, i, j) where j is the minimum value such that shift(s, i, j) ∈ L.

On the other hand, the maximal left-shift of the ith symbol in s adds the condition

that each intermediate shift must also produce a string in the language. That is,

the result is shift(s, i, j) where j is the minimum value such that shift(s, i, h) ∈ L for

all h satisfying j ≤ h ≤ i. These concepts are not equivalent as illustrated below for

43124213 ∈ N({1,1,2,2,3,3,4,4}) (multiset necklaces) and the index i = 8

4
←ÐÐÐÐ
3124213 = 43312421 versus 431242

←Ð
13 = 43124231.

The left-shift on the left is maximum since 43312421 is a necklace and since shifting

the symbol one more position would produce the non-necklace
←ÐÐÐÐÐ
43124213 = 34312421.

On the other hand, the left-shift on the right is maximal since a further left-shift

would produce the non-necklace 43124
←Ð
213 = 43124321. On the other hand, these two

concepts are often identical in bubble languages. For example. if the index is changed
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to i = 4 in the above example, then both a maximum and maximal left-shift produce

the following

4
←Ð
3124213 = 42314213.

To demonstrate the result, it will be shown that certain maximal left-shifts continue

until the shifted symbol joins the frozen prefix of the resulting string. Hence, the

maximal left-shift is also a maximum left-shift. For example, � (42314213) = 42,

and so the shifted symbol has joined the frozen prefix in the above example. The

necessary condition presented in Lemma 2.4.5 is the ability to maximally left-shift

the symbol until it becomes part of the non-decreasing prefix. In the above example,

43
←Ð
124213 = 43214213 is a necklace, and so the shifted symbol can be maximally left-

shifted until it becomes part of the resultant non-increasing prefix. (On the other

hand, in the previous example the shifted symbol did not reach the non-increasing

prefix and so the equivalence was not guaranteed by Lemma 2.4.5.)

Lemma 2.4.5 (Maximal and Maximum Left-Shifts). Suppose L is a bubble language,

s ∈ L, and r =
←ÐÐ
shift(s, i, j) where j is the smallest value such that

←ÐÐ
shift(s, i, h) ∈ L for

all j ≤ h ≤ i. Furthermore, suppose that ∣!(r)∣ ≥ j and s ≠ r and f = ∣� (r)∣. Then,

←ÐÐ
shift(s, i, j) =

←ÐÐ
shift(s, i, f).

In other words, if a symbol can be maximally and non-trivially left-shifted to join

the non-increasing prefix of a string in a bubble language, then the left-shift can be

reexpressed as a left-shift ending at the last symbol in the frozen prefix of the resulting

string. Thus, maximal and maximum left-shifts are equivalent in these situations.

Proof. Since r =
←ÐÐ
shift(s, i, j) then the shifted symbol is si = rj. Notice that rj is part

of the non-increasing prefix of r by the supposition ∣!(r)∣ ≥ j. Therefore, if f < j then

(2.2) would imply that
←ÐÐÐ
bubble(r, j) ∈ L. However, this would contradict the choice of

j. Thus, ∣� (r)∣ ≥ j and so the frozen prefix of r includes r1r2⋯rj. Furthermore, since

s ≠ r then it must be that
ÐÐÐ→
bubble(r, j) ∈ L. Therefore,

rj = rj+1 = ⋯ = rf

since otherwise
ÐÐÐ→
bubble(r, j) ∈ L would contradict the fact that r1r2⋯rf is frozen.

Therefore,
←ÐÐ
shift(s, i, j) =

←ÐÐ
shift(s, i, f) as claimed.

In Section 3.1.1 these left-shifts will be formally defined as greedy left-shifts, and

are used in the left-shift Gray code for all bubble languages.
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2.4.3 Scuts and Tails

In English, a scut is a short and wide tail found on animals such as deer or rabbits.

The difference between a tail and a scut is illustrated below.

In this thesis, the scut is a special type of suffix that is present in every string that

is not non-increasing. On the other hand, a tail is a string that is comprised of a

non-increasing prefix followed by a scut. This section shows that the scuts and tails

in bubble languages must obey several properties, and these properties are the keys

to proving the shift Gray code found in Chapter 3. Scuts are discussed in Section

2.4.3, tails are discussed in Section 2.4.3, and their relationship to bubble languages

is presented in Section 2.4.3.

Scuts

This section discusses scuts and their relationship to strings, multisets, and languages.

The scut of a string is its shortest suffix that is not also a suffix of the non-increasing

arrangement of its symbols. To illustrate this notion, consider the following examples

of scuts for various strings over M = {1,1,1,2,2,3}

scut(121213) = 3, scut(211231) = 31, scut(212311) = 311, scut(223111) = 3111,

scut(232111) = 32111, scut(312112) = 2, scut(231121) = 21, scut(312211) = 211.

(Within the examples, the non-increasing arrangement of M is 322111 and so the scuts

are shortest suffixes that are not also suffixes of 322111.) Definition 2.4.6 formalizes

this concept using the conventions for multiset M discussed in Section 2.1.1.

Definition 2.4.6 (Scut of a string (scut)). Suppose s = s1s2⋯sn ∈ L and t = ! and

!(s) ≠ s. Then,

scut(s) = sjsj+1⋯sn

where j is the minimum value such that sj+1sj+2⋯sn = tj+1tj+2⋯tn. In other words,

scut gives the shortest suffix of a string that is not also a suffix of !(s).

Several examples of scuts over M = {1,1,1,2,2,3} were given prior to Definition

2.4.6. In fact, these examples include every possible scut when M = {1,1,1,2,2,3}.

In particular, given this choice of M, the first symbol of a scut cannot be 1 since it
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is simply not possible for a scut to begin with the smallest symbol. Furthermore, the

scuts beginning with 2 must follow with a strict suffix of 111 (the symbols smaller

than 2), and the scuts beginning with 3 must follow with a strict suffix of 22111

(the symbols smaller than 3). In general, when working with a given multiset of

symbols, the possible scuts can be specified by their first symbol and their length.

Equivalently, the possible scuts can be specified by their first symbol and the number

of smaller symbols that are excluded from the scut. For technical reasons, this second

method of specification proves to be more useful throughout this thesis, and so it

will be followed. (In particular, Remark 2.4.13 nicely relates shifts, scuts, and the

non-increasing string using this specification, while scuts excluding a single symbol

are of the utmost importance by Lemma 2.4.19.) Informally, scutM(j, i) refers to

the scut beginning with the jth smallest distinct symbol in M, and which does not

contain i smaller symbols. As was the case with languages, multisets that appear

as subscripts in this thesis are optional and the default value is M. For example,

scut(j, i) = scutM(j, i). The scuts from above are now expressed using this notation

scut(3,5) = 3, scut(3,4) = 31, scut(3,3) = 311, scut(3,2) = 3111,

scut(3,1) = 32111, scut(2,3) = 2, scut(2,2) = 21, scut(2,1) = 211.

Notice that scut(j, i) will be well-defined if and only if j is within 2 ≤ j ≤ m and i is

within 1 ≤ i ≤ nj−1. (This is because every scut must begin with a symbol larger than

the smallest, and must exclude at least one smaller symbol and no more than the total

number of symbols smaller than its first symbol.) This leads to the following formal

definition of scut. For the remainder of the thesis, whenever scut(j, i) is written it

will be assumed that the bounds given for i and j in Definition 2.4.7 are satisfied.

Definition 2.4.7 (Scut creation (scut)). Suppose j is within 2 ≤ j ≤ m, and i is

within 1 ≤ i ≤ nj−1. Then,

scutM(j, i) = djenj−1−ienj−1−i−1 . . . e1.

In other words, scutM(j, i) is the scut that has dj as its first symbol and excludes the

largest i symbols that are smaller than dj.

Given a language L, the set of all scuts is represented by scuts(L). After this

concept is formalized and illustrated, two important values involving this set will be

introduced.
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Definition 2.4.8 (Scuts of a language (scuts)). Suppose L is a language. Then,

scuts(L) = {scut(s) ∣ s ∈ L}.

In other words, scuts(L) is the set of all scuts that appear within some string in L.

For example, if

L = {43211,43121,43112,42311,42131,41321}

then

scuts(L) = {21,2,311,31} = {scut(2,1), scut(2,2), scut(3,1), scut(3,2)}. (2.24)

In particular, 3 ∉ scuts(L) since there is no string within L that has 3 as a suffix.

Given scuts(L), there are two types of maximum values that we consider. The first

is the maximum value of j for which some scut(j, i) is in the set. This value will

be denoted by �L. Given a particular value of j, the second is the maximum value

of i for which scut(j, i) is in the set. This value will be denoted by �L(j). (The

radioactive symbol is chosen to represent the fact that any higher values come with

the danger of having no associated string in the given language.) These values are

illustrated below for the previous example

� = 3 � (2) = 2 � (3) = 2

where the three values respectively follow from scut(3,1) (or scut(3,2)), scut(2,2),
and scut(3,2). These maximum values are now formally defined, and are featured in

Section 2.4.3 where they help characterize the possible values contained in scuts(L)
for bubble languages.

Definition 2.4.9 (Maximum excluded from a scut (�)). Within fixed-content lan-

guage L, maximum number of symbols that can be excluded from a scut beginning

with the jth smallest symbol is

�L(j) = max
i

{scut(j, i) ∈ scuts(L)}.

In other words, scut(j,�L(j)) is the shortest scut that begins with dj for some string

in L. If scut(j, i) ∉ scuts(L) for all i then define �L(j) = 0.
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Definition 2.4.10 (Maximum first symbol in scut (� )). Within fixed-content lan-

guage L, the maximum first symbol of a scut is

�L = max
j

{∃ i such that scut(j, i) ∈ scuts(L)}.

If scuts(L) = ∅ then define �L = 1.

Tails

In bubble languages, it is a simple task to determine whether or not a given scut

appears in the language. In particular, Remark 2.2.2 implies that a scut will appear

in scuts(L) if and only if the string comprised of a non-increasing prefix followed by

the scut is in the language. That is, if L is a bubble language then

scut(j, i) ∈ scuts(L) ⇐⇒ ! ⋅ scut(j, i) ∈ L. (2.25)

For example, if L is a bubble language over M = {1,1,2,2,3,3} then determining if

31 ∈ scuts(L) is equivalent to determining if 3221 ⋅ 31 ∈ L. When scuts are elongated

by non-increasing prefixes in this way, then the resulting string will be known as a

tail. (This terminology is also helpful in Chapter 3 where tails are the last strings

within various sublists of cool-lex order.) A formal definition of tails appears below,

followed by a restatement of (2.25).

Definition 2.4.11 (Tails). The tail with scut scut(j, i) is

tailM(j, i) = ! ⋅ scut(j, i).

In other words, tails are strings comprised of a non-increasing prefix followed by a

scut.

Remark 2.4.12 (Tail and scut inclusion in bubble languages). Suppose L is a bubble

language. Then,

scut(j, i) ∈ scuts(L) ⇐⇒ tail(j, i) ∈ L.

In other words, a given scut appears within a bubble language if and only if its tail

string is in the language.

One interpretation of tail(j, i) is that it is the lexicographically largest string over

M with a copy of dj in position nj + i. Equivalently, tail(j, i) can be interpreted

in terms of its relationship to the non-increasing string. In particular, tail(j, i) is
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the string that is obtained from ! by shifting the rightmost copy of dj a total of i

positions to the right. This second interpretation proves to be extremely useful within

this thesis. To illustrate this relationship, consider the following two examples over

M = {1,1,1,2,2,3,}

ÐÐÐ→
322111 = 221131 32

ÐÐ→
2111 = 321112

= 2211 ⋅ 31 = 32111 ⋅ 2

= ! ⋅ scut(3,4) = ! ⋅ scut(2,3)

= tail(3,4) = tail(2,3).

In both cases the non-increasing string 322111 is modified by a right-shift and the

result is a tail. For instance, in the second column the rightmost copy of d2 = 2 is

right-shifted past 3 smaller symbols to create tail(2,3). This relationship is formalized

by the following remark.

Remark 2.4.13 (Tails and non-increasing strings). Suppose h = nj with j ≥ 2 and i

within 1 ≤ i ≤ nj−1. Then,

ÐÐ→
shift(!, h, h + i) = tail(j, i).

In other words, tail(j, i) is obtained from ! by right-shifting the rightmost copy of dj

a total of i positions.

The relationship between tails and the non-increasing string allows for a number of

simple observations to be made. First of all, the non-increasing prefix of tail(j, i) has

length nj−1+i. (Whenever tail(j, i) is written, it is assumed that the bounds on i and

j given in Definition 2.4.7 are satisfied.) For example, if M = {1,1,2,2,3,3,4,4,5,5}
then

∣!(tail(4,5))∣ = ∣!(5543322141)∣ = ∣55433221∣ = ∣554∣ + ∣33221∣ = 3 + 5 = 8

since the non-increasing prefix is comprised of the n4 − 1 = 3 symbols which are at

least as large as 4 together with the 5 excluded smaller symbols. The reader should

also note that tail(j, i) can be partitioned into its non-increasing prefix and its suffix

scut(j, i), (In other words, the non-increasing prefix of tail(j, i) ends immediately

before its scut.) Second, if s = tail(j, i) and k = ∣!(s)∣ then several inequalities

involving the symbols in the substring sk ⋅ sk+1 ⋅ sk+2 can be noted. First, sk < sk+1

since the last symbol in the non-increasing prefix is always smaller than the next
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symbol. Furthermore, sk ≥ sk+2 since sk ⋅ sk+2 is a substring of the non-increasing

string. To illustrate these inequalities, suppose that M is unchanged from above and

s = tail(4,4) = 5543322411. Then, sk ⋅ sk+1 ⋅ sk+2 = 241 and inequality sk+1 > sk ≥ sk+2

is easily verified. (The tail(4,5) example above provides a situation where the second

inequality is not strict.) One consequence of these inequalities is that sk+1 is strictly

greater than both the symbol to its left and its right. For this reason, bubble shifts

amongst these symbols can be expressed as shifts of length one. These simple facts

are recorded by the following two remarks.

Remark 2.4.14 (Non-increasing prefix length in tails).

∣!(tail(j, i))∣ = nj − 1 + i

Remark 2.4.15 (Symbol inequalities in tails). Suppose s = tail(j, i) and k = ∣!(s)∣.
Then,

sk+1 > sk ≥ sk+2.

The relationship between tails and the non-increasing string given in Remark

2.4.13 also allows for a number of simple equalities involving shifts to be stated. For

example, if the first symbol in the scut of a tail is shifted one position to the left or

right, then this will increase or decrease the number of excluded symbols respectively.

Furthermore, if a symbol in the non-increasing prefix is bubble right-shifted then this

will create a tail whose scut begins with this bubbled symbol and which excludes

one smaller symbol. To illustrate these ideas in more detail, consider the following

examples over M = {1,1,2,2,3,3,4,4,5,5}. The initial strings in the first two columns

are identical and k = 6 is the length of its non-increasing prefix. Finally, each equality

is represented using left-shifts. (In order for this to be possible, notice that right-

shifting one symbol past another can also be accomplished by a left-shift. That is,
ÐÐ→
shift(s, x, x + 1) =

←ÐÐ
shift(s, x + 1, x).)

←ÐÐÐ
bubble(tail(4,3), k + 1)

←ÐÐÐ
bubble(tail(4,3), k + 2)

←ÐÐÐ
bubble(!,7)

=
←ÐÐÐ
bubble(5543324211, k + 1) =

←ÐÐÐ
bubble(5543324211, k + 2) =

←ÐÐÐ
bubble(5544332211,7)

= 55433
←Ð
24211 = 554332

←Ð
4211 = 55443

←Ð
32211

= 5543342211 = 5543322411 = 5544323211

= 55433 ⋅ 42211 = 5543322 ⋅ 411 = 554432 ⋅ 3211

= tail(4,2) = tail(4,4) = tail(3,1)
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In the first column, sk ≠ sk+1 (by Remark 2.4.15) so the bubble left-shift amounts

to a shift of one position. This left-shift causes the shifted 4 to exclude one fewer

symbol from its scut, thereby transforming tail(4,3) into tail(4,2). In general, bubble

left-shifting the (k+1)st symbol will exclude one fewer symbol from the tail’s scut (so

long as there is another smaller symbol in the non-increasing prefix to exclude). In

the second column, the second symbol in the scut is bubble left-shifted. This bubble

left-shift is equivalent to bubble right-shifting the first symbol in the scut by Remark

2.4.15 since sk+1 ≠ sk+2. This left-shift causes the shifted 2 to move from the scut

into the non-increasing prefix, thereby increasing the number of excluded symbols in

the scut and transforming tail(4,3) into tail(4,4). In general, bubble left-shifting the

(k + 2)nd symbol will exclude an additional symbol from the tail’s scut (so long as

there is another smaller symbol in the scut to exclude). In the third column a symbol

in the non-increasing prefix is bubble left-shifted. This left-shift causes the shifted

2 to pass over a single 3, thereby creating a non-increasing prefix followed by a scut

that begins with 3 and excludes one smaller symbol. That is, ! is transformed into

tail(3,1). In general, bubble left-shifting dj in ! will create tail(dj+1,1) (so long as

dj+1 is a symbol). The following lemmas formalize these simple results.

Lemma 2.4.16 (Bubble left-shift (k+1)st symbol in tail). Suppose k = ∣!(tail(j, i))∣
and i > 1. Then,

←ÐÐÐ
bubble(tail(j, i), k + 1) = tail(j, i − 1).

In other words, bubble left-shifting the first symbol in the scut of tail(j, i) results in

tail(j, i − 1), so long as tail(j, i − 1) is well-defined.

Proof. Let h = nj (in the non-increasing string h is the index of the rightmost copy

of dj). The proof is a result of the following derivation:

←ÐÐÐ
bubble(tail(j, i), k + 1)

=
←ÐÐ
shift(tail(j, i), k + 1, k) by Remark 2.4.15

=
←ÐÐ
shift(tail(j, i), h + i, h + i − 1) by Remark 2.4.14

=
←ÐÐ
shift(

ÐÐ→
shift(!, h, h + i), h + i, h + i − 1) by Remark 2.4.13

=
ÐÐ→
shift(!, h, h + i − 1)

= tail(j, i − 1) by Remark 2.4.13.
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Lemma 2.4.17 (Bubble left-shift (k+2)nd symbol in tail). Suppose k = ∣!(tail(j, i))∣
and i < nj−1. Then,

←ÐÐÐ
bubble(tail(j, i), k + 2) = tail(j, i + 1)

In other words, bubble left-shifting the second symbol in the scut of tail(j, i) results in

tail(j, i + 1), so long as tail(j, i + 1) is well-defined.

Proof. Let h = nj (in the non-increasing string h is the index of the rightmost copy

of dj). The proof is a result of the following derivation:

←ÐÐÐ
bubble(tail(j, i), k + 2)

=
←ÐÐ
shift(tail(j, i), k + 2, k + 1) by Remark 2.4.15

=
←ÐÐ
shift(tail(j, i), h + i + 1, h + i) by Remark 2.4.14

=
←ÐÐ
shift(

ÐÐ→
shift(!, h, h + i), h + i + 1, h + i) by Remark 2.4.13

=
ÐÐ→
shift(!, h, h + i + 1)

= tail(j, i + 1) by Remark 2.4.13.

Lemma 2.4.18 (Bubble left-shift in non-increasing string). Suppose h is within nj+1+
1 ≤ h ≤ nj and j <m. Then,

←ÐÐÐ
bubble(!, h) = tail(j + 1,1).

In other words, bubble left-shifting a copy of dj in the non-increasing string results in

tail(j + 1,1) so long as dj is not the maximum symbol.

Proof. Before starting the proof notice that within ! all of the symbols between

positions nj+1 + 1 and nj are equal to dj, and the symbol in position nj+1 is equal to

dj+1. The proof is a result of the following derivation

←ÐÐÐ
bubble(!, h)

=
←ÐÐÐ
bubble(!, nj+1 + 1) from above

=
←ÐÐ
shift(!, nj+1 + 1, nj+1) from above

=
ÐÐ→
shift(!, nj+1, nj+1 + 1)

= tail(j + 1,1) by Remark 2.4.13.
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Scuts in Bubble Languages

While Remark 2.4.12 showed that it is easy to determine whether or not an individual

scut is contained in a bubble language, the two lemmas in this section show that the set

of all scuts is well-organized within bubble languages. Since bubble languages satisfy

the non-increasing prefix property given in Remark 2.2.2, then these two lemmas

imply that tails are also well-organized within bubble languages.

The first lemma shows that if scut(j, i) is the suffix of some string in a bubble

language, then scut(j, i − 1) will also be the suffix of some string in the language (so

long as i > 1). In other words, if L is a bubble language then scut(j, i) ∈ scuts(L) for

every i within 1 ≤ i ≤ � (j) (note that this range might be empty). This result follows

from the fact that if a scut is present in a bubble language then its associated tail

must be within the language, and the fact that these tails differ by bubble left-shifts

that produce additional strings within bubble languages.

Lemma 2.4.19 (Longer scuts in bubble languages). Suppose L is a bubble language.

Then,

scut(j, i) ∈ scuts(L) implies scut(j, i − 1) ∈ scuts(L) whenever i > 1. (2.26)

In other words, if a scut appears in a bubble language then so do scuts with the same

first symbol that are longer (i.e. exclude fewer symbols).

Proof. Let k = ∣!(tail(j, i))∣. The proof is a result of the following series of implica-

tions

scut(j, i) ∈ scuts(L)

Ô⇒ tail(j, i) ∈ L by Remark 2.4.12

Ô⇒
←ÐÐÐ
bubble(tail(j, i), k + 1) ∈ L by (2.1) in Definition 2.2.1

Ô⇒ tail(j, i − 1) ∈ L by Lemma 2.4.16

Ô⇒ scut(j, i − 1) ∈ scuts(L).

The second lemma shows that if scut(j,1) is the suffix of some string in a bubble

language, then scut(j − 1,1) will also be the suffix of some string in the language (so
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long as j > 2). In other words, if L is a bubble language then scut(j,1) ∈ scuts(L) for

every j within 2 ≤ j ≤ � (note that this range might be empty). This result follows

from the fact that if such a scut is present in a bubble language then its associated

tail must be within the language, and the fact that these tails differ from the non-

increasing string by a bubble left-shift. This limits the possible length of the frozen

prefix within the non-increasing string, and allows for other bubble left-shifts to give

strings in the language, and these strings are the tails of the desired scuts.

Lemma 2.4.20 (Smaller first symbol scuts in bubble languages). Suppose L is a

bubble language.

scut(j,1) ∈ scuts(L) implies scut(j − 1,1) ∈ scuts(L) whenever j > 2. (2.27)

In other words, if a scut is the suffix of some string in a bubble language then there

is a string in the language whose scut has a smaller first symbol.

Proof. Let h = nj and g = nj−1. The proof is now a result of the following series of

implications

scut(j,1) ∈ scuts(L)

Ô⇒ tail(j,1) ∈ L by Remark 2.4.12

Ô⇒
←ÐÐÐ
bubble(!, h + 1) ∈ L by Lemma 2.4.18

Ô⇒ ∣� (!)∣ ≤ h

Ô⇒
←ÐÐÐ
bubble(!, g + 1) ∈ L by (2.2) in Definition 2.2.1

Ô⇒ tail(j − 1,1) ∈ L by Lemma 2.4.18

Ô⇒ scut(j − 1,1) ∈ scuts(L).

Before concluding this section, it is mentioned that the previous two lemmas also

hold for certain non-bubble languages. For example, if L = R(M) (multiset bracelets)

with M = {1,1,2,2,3,3,4,4} then

scuts(L) = {21,2,3211,311,31,3,432211,42211,4211,411,41}.

However, even if these lemmas hold for a particular non-bubble language, it cannot

be guaranteed that the same lemmas will hold after the quotient operation is applied



99

to the language. For example, if L′ = L/3 then

scuts(L′) = {2,21,4211,411,41}.

In this case notice that there is no scut of the form scutM′(3,1) = 3211, which violates

Lemma 2.4.20 due to the presence of scutM′(4,1). Furthermore, the scut scutM′(4,2)
is present but scutM′(4,1) is not, and this violates Lemma 2.4.19. On the other hand,

bubble languages are closed under quotients, as proven by Theorem 2.4.2. Therefore,

Lemmas 2.4.19 and 2.4.20 apply to every bubble language and every language formed

from the quotient operation of the language. As a counterpoint, the next section

proves that non-bubble languages always have a quotient that fails Lemma 2.4.19 or

Lemma 2.4.20 or Remark 2.2.2.

2.4.4 Structure

In this chapter we have shown that non-empty bubble languages have the non-

increasing prefix property, and that their scuts are well-organized. It has also been

shown that the quotients of bubble languages are also bubble languages. This sec-

tion proves that these derived properties fully characterize bubble languages. That

is, if every non-empty quotient of L contains the non-increasing string and has well-

organized scuts, then L is a bubble language. This result is formalized in Theorem

2.4.21 and completes our investigation of bubble languages. Although the result

provides a structural definition for bubble languages, it is otherwise unused in this

thesis.

The proof of the theorem is relatively straight-forward. If L is not a bubble

language then there exists a string s and an index h that prove this fact. More

specifically, there exists s ∈ L and h satisfying ∣� (s)∣ < h ≤ ∣!(s)∣ + 1 such that
←ÐÐÐ
bubble(s, h) ∉ L. Given these choices of s and h, the quotient L′ = L/sh+1sh+2⋯sn

can be shown to fail one of the derived properties. That is, when
←ÐÐÐ
bubble(s, h) proves

that L is not a bubble language, then the quotient obtained by removing the symbols

following this shift will either fail the non-increasing prefix property, or its scuts

will not be well-organized. To illustrate three situations that can arise within this

argument, consider the following fixed-content language that is not a bubble language

L = {44332211,43234112,44332121,44323121,43324121,44321213,43421213}.
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The language violates (2.1) because ∣!(43234112)∣ + 1 = 4 but

←ÐÐÐ
bubble(43234112,4) = 43

←Ð
234112 = 43324112 ∉ L.

Alternatively, the symbols following the above shift are 4112 and L′ = L/4112 = {4323}
fails Remark 2.2.2 since !(M′) = 4332 ∉ L′. Similarly, L also violates (2.1) because

∣!(43324121)∣ + 1 = 5 but

←ÐÐÐ
bubble(43324121,5) = 433

←Ð
24121 = 43342121 ∉ L.

Alternatively, the symbols following the above shift are 121 and L′ = L/121 = {44332,44323,43324}
fails Lemma 2.4.19 because scutM′(3,3) = 4 ∈ scuts(L′) and scutM′(3,2) = 42 ∉
scuts(L′). Finally, L violates (2.2) because ∣� (44321213)∣ < 4 ≤ ∣!(44321213)∣ but

←ÐÐÐ
bubble(44321213,4) = 44

←Ð
321213 = 44231213 ∉ L.

Alternatively, the symbols following the above shift are 1213 and L′ = L/1213 =
{4432,4342} fails Lemma 2.4.19 because scutM′(3,1) = 42 ∈ scuts(L′) and scutM′(2,1) =
3 ∉ scuts(L′).

Theorem 2.4.21 (Structure). A fixed-content language L is a bubble language if and

only if the following three conditions hold for every string z such that L′ = L/z is

non-empty:

!(M′) ∈ L′ (2.28)

and

scut(j, i) ∈ scuts(L′) implies scut(j, i − 1) ∈ scuts(L′) whenever i > 1 (2.29)

and

scut(j,1) ∈ scuts(L′) implies scut(j − 1,1) ∈ scuts(L′) whenever j > 2. (2.30)

In other words, bubble languages can be characterized as fixed-content languages whose

quotients include the non-increasing string (Remark 2.2.2) and whose scuts satisfy the

properties in Lemmas 2.4.19 and 2.4.20.

Proof. If L is a bubble language then L′ is also a bubble language by Theorem 2.4.2.

Therefore, L′ satisfies the given conditions by Remark 2.2.2 and Lemmas 2.4.19 and

2.4.20. The contrapositive of the remaining direction is now proven. Suppose that L
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is not a bubble language. Therefore, there exists s ∈ L that violates (2.1) or (2.2).

These two cases are handled separately, and in both cases let k = ∣!(s)∣.
In the first case suppose that s does not satisfy (2.1). Thus, k < n and t =

←ÐÐÐ
bubble(s, k + 1) ∉ L. Let L′ = L/sk+2sk+3⋯sn (and so n′ = k + 1), s′ = s1s2⋯sk+1, and

t′ = t1t2⋯tk+1. Since s ∈ L and t ∉ L, then s′ ∈ L′ and t′ ∉ L′. Notice that the first k

symbols of s′ are non-increasing, and that s′ and t′ differ by an adjacent-transposition

of their last two symbols. There are two cases to consider, depending on whether or

not t′ = !(M′). If t′ = !(M′) then L′ does not satisfy (2.28) since L′ is non-empty.

Otherwise, s′ and t′ can be expressed as follows

s′ = tailM′(j, i) and t′ =
←ÐÐÐ
bubble(s′, n′) = tailM′(j, i − 1)

for some j ≥ 2 and i = nj−1 ≥ 2, where the last equality above follows from Lemma

2.4.16. Since s′ ∈ L′ then scutM′(j, i) ∈ scuts(L′). Since t′ ∉ L′ then either scutM′(j, i−
1) ∉ scuts(L′) or L′/scutM′(j, i − 1) does not satisfy (2.28). Therefore, the first case

concludes by noting that if s does not satisfy (2.1) then a quotient of L violates (2.28)

or (2.29).

In the second case suppose that s ∈ L does not satisfy (2.2). Therefore, there

exists an h satisfying ∣� (s)∣ < h ≤ ∣!(s)∣ such that t =
←ÐÐÐ
bubble(s, h) ∉ L. Let L′ =

L/sh+1sh+2⋯sn (and so n′ = h), s′ = s1s2⋯sh, and t′ = t1t2⋯th. Notice that

s′ = !(M′) and t′ =
←ÐÐÐ
bubble(s′, n′) = tailM′(2,1)

where the last equality above follows from Lemma 2.4.18. Since t ∉ L, then t′ ∉ L′.

Therefore, if L′/scutM′(2,1) is assumed to satisfy (2.28), then scutM′(2,1) ∉ scuts(L′).
However, ∣L′∣ ≥ 2 due to the bound on h and so scuts(L′) ≠ ∅. Therefore, L′ must

violate either (2.29) or (2.30) since otherwise the existence of any scut in scuts(L′)
would imply scutM′(2,1) ∉ scuts(L′). Therefore, the second case is concluded by

noting that if s does not satisfy (2.2) then a quotient of L violates (2.28) or (2.29) or

(2.30).
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Chapter 3

Cool-lex Order

“A list is only as strong as its weakest link.”
- Don Knuth

This chapter introduces a new variation of lexicographic order named cool-lex

order. Recursively, cool-lex order is similar to co-lex order with one key difference.

Instead of ordering strings based on their last symbol, cool-lex instead orders strings

based on their suffix known as a scut. This change in focus allows greater flexibility

in arranging the strings in a given language. When a bubble language is expressed in

cool-lex order then the resulting list is a left-shift Gray code. Furthermore, these left-

shift Gray codes can be described one string at a time by a simple iterative operation

known as a cool left-shift. Besides being relatively easy to generate, these left-shift

Gray codes also have interesting properties related to universal cycles.

Section 3.1 begins this chapter by focusing on the cool left-shift operation. This

operation is based on the concept of a greedy left-shift. Section 3.2 then provides

the recursive definition of cool-lex order. In Section 3.3 it is proven that the cool-

left shift operation circularly generates the cool-lex order of any bubble language.

In other words, Sections 3.1 and 3.2 use different approaches to describe the same

left-shift Gray code for bubble languages. Section 3.4 discusses properties of these

left-shift Gray codes, including the reverse cool-lex order for bubble languages, and

its surprising shorthand rotation property. The reader is reminded that Appendix A

provides a reference for notation.

3.1 Iterative Order

While bubble languages are defined in terms of left-shifting a symbol past one differing

symbol, the Gray code given in this chapter relies on greedily left-shifting a symbol
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past as many symbols as possible. Greedy left-shifts are defined in Section 3.1.1 and

cool left-shifts are defined in Section 3.1.2. Section 3.1.3 then provides invariants for

these two types of shifts. These invariants are useful for motivating the recursive

definition found in Section 3.2 and for proving the equivalence found in Section 3.3.

3.1.1 Greedy Left-Shifts

While a bubble left-shift was defined solely using a string, the greedy left-shift is

defined on a string that is within a given language. This definition appears below

and is followed by several examples. The section concludes with a remark involving

tails.

Definition 3.1.1 (Greedy left-shift (
←ÐÐÐ
greedy)). Given s ∈ L and an index j, the greedy

left-shift of the jth symbol in s is

←ÐÐÐ
greedyL(s, j) =

←ÐÐ
shift(s, j, i)

where i satisfies

�
←ÐÐ
shift(s, j, h) ∈ L for all h within i ≤ h ≤ j

� i = 1 or
←ÐÐ
shift(s, j, i − 1) ∉ L.

In other words,
←ÐÐÐ
greedy left-shifts a symbol in a string as far as possible while maintain-

ing the property that every intermediate shift is in the given language. By convention
←ÐÐÐ
greedy(s, j) =

←ÐÐÐ
greedyL(s, j) so the language is assumed to be L unless otherwise stated.

The definition is now illustrated by three simple examples using the language

L = T(M) (ordered trees with fixed branching sequence) with M = {0,0,0,0,1,2,2,3},

the string s = 32100020, and three different indices

←ÐÐÐ
greedy(32100020,6)

←ÐÐÐ
greedy(32100020,7)

←ÐÐÐ
greedy(32100020,8)

= 3
←ÐÐÐ
2100020 = ←ÐÐÐÐ32100020 = 3210002

←Ð
0

= 30210020 = 23210000 = 32100020.

In the first example, no further left-shift of the 0 is possible since 0 is an invalid

prefix in the language due to the fact that its sum is less than its length. In the

second example, the 2 can be greedily left-shifted all the way into the first position.

In the third example, the 0 cannot be greedily left-shifted beyond its current location
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because 321000
←Ð
20 = 32100002 ∉ L due to the fact that the prefix 3210000 has a smaller

sum than length.

As a counterpoint to the previous examples, the next three examples consider

the same string s = 412321411232, the same index 6, and three different languages.

From left-to-right the languages are multiset necklaces (L = N(M)), Lyndon words

(L = N−(M)), and permutations (Π(M)), all where M = {0,0,0,0,1,2,2,3}

←ÐÐÐ
greedy(412321411232,6)

←ÐÐÐ
greedy(412321411232,6)

←ÐÐÐ
greedy(412321411232,6)

= 4
←ÐÐÐ
12321411232 = 412

←Ð
321411232 = ←ÐÐÐÐ412321411232

= 411232411232 = 412132411232 = 141232411232.

In the first example, no further left-shift of the 1 is possible since necklaces must

begin with the largest symbol. In the second example, no further left-shift of the 1 is

possible since 41
←ÐÐ
2321411232 = 411232411232 is not aperiodic. In the third example,

the 1 can be greedily left-shifted into the first position since multiset permutations

contain all arrangements of the given multiset of symbols. The difference between the

above results help explain how the cool left-shift given in Section 3.1.2 can generate

Gray codes for many different languages.

This section concludes with a small observation about tails. As previously dis-

cussed in Chapter 2, the symbol following the non-increasing prefix of a string in a

bubble language can be left-shifted until it joins the non-increasing prefix. Not only

is the resulting string in the language, but so is the result of each intermediate shift.

For example, when L is a bubble language and M = {1,1,2,2,3,3,4,4,5,5} then

←ÐÐÐ
greedy(tail(3,3), k + 1) =

←ÐÐÐ
greedy(5544322131,9)

=
←ÐÐÐ
greedy(5544

←ÐÐÐ
322131,5)

=
←ÐÐÐ
greedy(5544332211,4)

where k represents the length of the non-increasing prefix in the initial string tail(3,3).
Notice that the greedy left-shift can be reexpressed to as a greedy left-shift within the

non-increasing string, and this fact is independent of the particular bubble language

being considered. This fact is formalized by the following remark.

Remark 3.1.2 (Greedy left-shifting the (k + 1)st symbol in tails). Suppose L is a

bubble language, tail(j, i) ∈ L, k = ∣!(tail(j, i))∣, and h = nj+1. Then,

←ÐÐÐ
greedy(tail(j, i), k + 1) =

←ÐÐÐ
greedy(!, h + 1)
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In other words, a greedy left-shift of the first symbol in the scut of a tail can be

reexpressed as a greedy left-shift within the non-increasing string.

3.1.2 Cool Left-Shifts

The cool left-shift is defined below for any string within a bubble language. Essentially

it is a greedy left-shift applied to one of the two symbols that follow the non-increasing

prefix of the given string. Determining which symbol is shifted depends only on the

relative values of the last symbol in the non-increasing prefix and the second symbol

following the non-increasing prefix. (Special cases arise when the non-increasing prefix

includes the entire string, or the entire string except the last symbol.) Remarkably,

Theorem 3.3.5 on page 126 will prove that this simple operation generates any bubble

language. The reader is also pointed to the pseudocode on page 128 to see how the

operation can be used to create a simple program to generate any bubble language.

Definition 3.1.3 (Cool Left-Shift). Given s ∈ L where L is a bubble language and

k = ∣!(s)∣, the cool-left shift denoted
←ÐÐ
coolL(s) is

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

←ÐÐÐ
greedy(s, n) if k = n or k = n − 1 (3.1a)
←ÐÐÐ
greedy(s, k + 1) if k ≤ n − 2 and (sk < sk+2 or

←ÐÐÐ
greedy(s, k + 2) = s) (3.1b)

←ÐÐÐ
greedy(s, k + 2) otherwise ( (3.1a) and (3.1b) do not hold). (3.1c)

In other words,
←ÐÐ
cool greedily left-shifts the second symbol in the scut unless that symbol

doesn’t exist (k = n or k = n− 1) or it is larger than some symbol to its left (sk < sk+2)

or the shift would be trivial (
←ÐÐÐ
greedy(s, k + 2) = s). Otherwise,

←ÐÐ
cool greedy left-shifts

the first symbol in the scut or the last symbol if the string is entirely non-increasing

(k = n).

The definition is now illustrated by way of five examples using the language L =
N(M) (multiset necklaces) with M = {1,1,2,2,3,3,4,4}. As per the definition, the

value of k will be used to represent ∣!(s)∣, and this value changes depending upon

the example being discussed. The first two examples illustrate special cases when

the non-increasing prefix covers the entire string or every symbol in the string except

the last. That is, sn is shifted when k = n or k = n − 1. In both situations a greedy
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left-shift of the last symbol in the string is performed

←ÐÐ
cool(44332211) note k = n

←ÐÐ
cool(44322113) note k = n − 1

=
←ÐÐÐ
greedy(44332211,8) by (3.1a) =

←ÐÐÐ
greedy(44322113,8) by (3.1b)

= 44
←ÐÐÐÐ
332211 = 4

←ÐÐÐÐ
4322113

= 44133221 = 43432211.

The next example illustrates when the symbol following the non-increasing prefix

is greedily left-shifted due to the last symbol in the non-increasing prefix being less

than the second symbol following the non-increasing prefix. That is, sk+1 is shifted

when sk < sk+2. (Since sk is the smallest symbol within the first k + 1 symbols of s,

this case is equivalent to stating that there is some smaller symbol to the left of sk+2

within s.) In particular, the example below has sk = 1 and sk+2 = 2 since the first

k + 2 are 4432132

←ÐÐ
cool(44321321) note sk < sk+2

=
←ÐÐÐ
greedy(44321321,6) by (3.1b)

= 4
←ÐÐÐ
4321321

= 43432121.

The symbol following the non-increasing prefix is also greedily left-shifted when the

second symbol following the non-increasing prefix cannot be greedily left-shifted to

create a new string in the language. That is, sk+1 is shifted when
←ÐÐÐ
greedy(s, k +2) = s.

(This case is equivalent to stating that
←ÐÐÐ
bubble(s, k) ∉ L.)

←ÐÐ
cool(42314231) note

←ÐÐÐ
greedy(s, k + 2) = s

=
←ÐÐÐ
greedy(42314231,3) by (3.1b)

= 4
←Ð
2314231

= 43214231.

In the example above, the first k + 2 symbols are 4231 and so sk+2 = 1. The symbol

cannot be greedily left-shifted to create another string in the language because the

shortest such shift produces 42
←Ð
314231 = 42134231 ∉ L.

The final example illustrates when the second symbol following the non-increasing

prefix is greedily left-shifted. In order for this to happen, the symbol must exist, there
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must be no smaller symbol to its left within the string, and greedily left-shifting the

symbol must produce a different string in the language. That is, sk+2 is shifted when

k + 2 ≤ n, sk ≥ sk+2, and
←ÐÐÐ
greedy(s, k + 2) ≠ s

←ÐÐ
cool(43214123) note k + 2 ≤ n, sk ≥ sk+2, and

←ÐÐÐ
greedy(s, k + 2) ≠ s

=
←ÐÐÐ
greedy(43214123,3) by (3.1c)

= 43
←ÐÐ
214123

= 43121423.

When
←ÐÐ
cool is applied to specific languages it can often be simplified. The same

is also true when
←ÐÐ
cool is applied to bubble languages that have fixed-density. These

simplifications are necessary when trying to optimize the efficiency of the associated

generation algorithms.

To conclude this section, the following lists illustrate that the strings in N(M)
(multiset necklaces) and N−(M) (Lyndon words) with M = {1,1,2,2,3,3} are circu-

larly generated by the
←ÐÐ
cool operation. In each table, the left column contains a string

s ∈ L, the middle column contains the condition that s satisfies with respect to Defini-

tion 3.1.3 and the given language L, and the right column contains the corresponding

equation number from Definition 3.1.3. The string in each row is transformed into

the string in the row below it by applying
←ÐÐ
cool, with the arrow representing the actual

left-shift. The string in the last row is transformed into the string in the first row

in the same manner. Of particular interest are the strings 323121 and 323112, which

produce different successors due to the difference between the necklaces and Lyndon

words.

3.1.3 Invariants

This section provides an invariant for greedy left-shifts, and then extends it to an

invariant for cool left-shifts applied to bubble languages. To illustrate the idea, con-

sider the following two greedy left-shifts involving the language L = N(M) (multiset

necklaces) with M = {0,0,1,1,2,2,3,3} and L′ = L/z with z = 301.

←ÐÐÐ
greedyL(31220301,5) = 31

←Ð
220301

←ÐÐÐ
greedyL′(31220,5) ⋅ 301 = 31

←Ð
220 ⋅ 301

= 31022301 = 31022301.
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L = N({1,1,2,2,3,3}) L = N−({1,1,2,2,3,3})
s condition

←ÐÐ
cool s condition

←ÐÐ
cool

3
←Ð
31221 sk < sk+2 (3.1b) 3

←Ð
31221 sk < sk+2 (3.1b)

32
←Ð
3121 (3.1c)

←Ð
323121

←ÐÐÐ
greedy(s, k + 2) = s (3.1b)

←ÐÐ
321321 sk < sk+2 (3.1b)

33
←ÐÐ
2121 (3.1c) 33

←ÐÐ
2121 (3.1c)

3
←ÐÐ
31212 (3.1c) 3

←ÐÐ
31212 (3.1c)

←Ð
313122

←ÐÐÐ
greedy(s, k + 2) = s (3.1b)

←Ð
313122

←ÐÐÐ
greedy(s, k + 2) = s (3.1b)

3
←ÐÐ
31122 sk < sk+2 (3.1b) 3

←ÐÐ
31122 sk < sk+2 (3.1b)

3
←Ð
23112 (3.1c) 32

←Ð
3112 (3.1c)

3
←Ð
12312 sk < sk+2 (3.1b)
←ÐÐ
321312

←ÐÐÐ
greedy(s, k + 2) = s (3.1b)

←ÐÐ
321312

←ÐÐÐ
greedy(s, k + 2) = s (3.1b)

3
←ÐÐÐ
32112 k = n − 1 (3.1a) 3

←ÐÐÐ
32112 k = n − 1 (3.1a)

3
←Ð
23211 (3.1c) 3

←Ð
23211 (3.1c)

32
←Ð
2311 (3.1c) 32

←Ð
2311 (3.1c)

3
←Ð
21231 sk < sk+2 (3.1b) 3

←Ð
21231 sk < sk+2 (3.1b)

←ÐÐÐ
322131

←ÐÐÐ
greedy(s, k + 2) = s (3.1b)

←ÐÐÐ
322131

←ÐÐÐ
greedy(s, k + 2) = s (3.1b)

33
←ÐÐ
2211 k = n (3.1a) 33

←ÐÐ
2211 k = n (3.1a)

Table 3.1: Necklaces (left) and Lyndon words (right) over {1,1,2,2,3,3} in cool-lex
order.



109

In the first case, the greedy left-shift is applied to 31220301 ∈ L. In the second case,

the greedy left-shift is applied to the portion of that string that is within L′, and

then z is suffixed to the result. In the two cases the resulting strings are equal. In

general, this will always be true when greedily left-shifting a symbol that is to the

left of the suffix z. This is because any such left-shift will preserve the suffix z, and

since s′ ⋅ z ∈ L if and only if s′ ∈ L/z. The following remark states the precise result.

Remark 3.1.4 (Greedy left-shift invariant). Suppose L′ = L/z, s′ ∈ L′, and j is

within 1 ≤ j ≤ n′. Then,

←ÐÐÐ
greedyL(s′ ⋅ z, j) =

←ÐÐÐ
greedyL′(s′, j) ⋅ z.

In other words, greedy left-shifts can be applied within language quotients.

Given the result in Remark 3.1.4 it is now possible to develop a similar invariant

for the cool left-shift. To illustrate the invariant, consider the following cool left-

shifts applied to the bubble language L = T(M) (ordered trees with fixed branching

sequence) with M = {0,0,0,0,1,1,2,2,3}, and L′ = L/z with z = scut(3,4) = 200

←ÐÐ
coolL(311200200)

←ÐÐ
coolL(321001200)

←ÐÐ
coolL(321100200)

= 3
←ÐÐ
11200200 = ←ÐÐÐÐ321001200 = 3

←ÐÐÐÐ
21100200

= 301120200 = 132100200 = 302110020
←ÐÐ
coolL′(311200) ⋅ 200

←ÐÐ
coolL′(321001) ⋅ 200

←ÐÐ
coolL′(321100) ⋅ 200

= 3
←ÐÐ
11200 ⋅ 200 = ←ÐÐÐÐ321001 ⋅ 200 = 3

←ÐÐÐ
21100 ⋅ 200

= 301120200 = 132100200 = 302110200.

In each column
←ÐÐ
cool is applied to a string in L, and then to the corresponding string

in L′ with the suffix z appended to the result. Notice that in the first two columns

the resulting strings are identical. In the last column, the string is of the form

tail(3,4) and the resulting strings are not equal. In general, the following lemma

shows that non-increasing prefixes are the only obstacle to the invariant. That is,

adding or removing a scut does not alter the behaviour of
←ÐÐ
cool, except when the

portion without the scut is non-increasing. The proof relies on Remark 3.1.4 and

the fact that special circumstances must apply when
←ÐÐ
cool shifts a symbol that is two

symbols beyond the non-increasing prefix. Since bubble languages are closed under

taking language quotients, the proven invariant is actually much stronger.
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Lemma 3.1.5 (Cool left-shift invariant). Suppose L is a bubble language, L′ =
L/scut(j, i), s′ ∈ L′, and s′ ≠ !(M′). Then,

←ÐÐ
coolL(s′ ⋅ scut(j, i)) =

←ÐÐ
coolL′(s′) ⋅ scut(j, i).

In other words, the cool left-shift is invariant upon suffixing a scut unless the remain-

ing symbols before the scut are arranged in non-increasing order.

Proof. To simplify the proof, and the left-side of the claimed equality, let s = s′ ⋅
scut(j, i). Notice that s ∈ L because s′ ∈ L′ and L′ = L/scut(j, i). Let k′ = ∣!(s′)∣ and

k = ∣!(s)∣. Since s′ is not non-increasing then k = k′, and in particular k < n′. There

are two cases to consider.

Case One: k ≤ n′ − 2. In this case, the relevant symbols are within s′. That is,

s′k = sk and s′k+2 = sk+2. Therefore, the relevant greedy left-shifts are identical,. That

is,
←ÐÐÐ
greedyL′(s′, h) ⋅ scut(j, i) =

←ÐÐÐ
greedyL(s, h) for h ∈ {k + 1, k + 2} by Remark 3.1.4.

In particular, both of these greedy left-shifts will be trivial or neither will be trivial.

Therefore, the conditions used to determine which symbol is left-shifted by
←ÐÐ
cool will

also be identical. More precisely, if sk < sk+2 or
←ÐÐÐ
greedyL(s, k + 2) = s then

←ÐÐ
coolL′(s′) ⋅ scut(j, i) =

←ÐÐÐ
greedyL′(s′, k + 1) ⋅ scut(j, i) =

←ÐÐÐ
greedyL(s, k + 1) =

←ÐÐ
coolL(s)

and otherwise

←ÐÐ
coolL′(s′) ⋅ scut(j, i) =

←ÐÐÐ
greedyL′(s′, k + 2) ⋅ scut(j, i) =

←ÐÐÐ
greedyL(s, k + 2) =

←ÐÐ
coolL(s).

Case Two: k′ = n′−1. Since sk+2 is not contained in s′ then the previous argument

does not work. In this case, the proof relies on the following claim

sk < sk+2. (3.2)

This inequality follows from two facts. First, k′ = n′ − 1 implies that s′ is non-

increasing until its second-last symbol. Therefore, s′k = sk is the smallest symbol

within s′. Second, sk+2 = dj because it is the first symbol within scut(j, i). Since

scut(j, i) must exclude at least one smaller symbol then it must be that sk < sk+2

since sk is the smallest symbol within s′. The proof is now a result of the following
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derivation

←ÐÐ
coolL′(s′) ⋅ scut(j, i)

=
←ÐÐÐ
greedyL′(s′, n′) ⋅ scut(j, i) by k = n′ − 1 and (3.1a)

=
←ÐÐÐ
greedyL(s′ ⋅ scut(j, i), n′) by Remark 3.1.4

=
←ÐÐÐ
greedyL(s, n′) by s = s′ ⋅ scut(j, i)

=
←ÐÐÐ
greedyL(s, k′ + 1) by k′ = n′ − 1

=
←ÐÐÐ
greedyL(s, k + 1) by k = k′

=
←ÐÐ
coolL(s) by sk < sk+2 and (3.1b).

3.2 Recursive Order

This section recursively defines the cool-lex order for bubble languages. The cool-lex

order is created by specifying a list of scuts in Section 3.2.1, and then extending this

to a list of strings in Section 3.2.2. Section 3.2.3 characterizes the first and last strings

in these lists. Section 3.2.4 extends the results on first and last strings to sublists.

The first two subsections also offer asides that explain how cool-lex order differs from

co-lexicographic order.

As a preliminary step, the terms order and list should be clarified. In this thesis

a list is a comma-separated sequence of distinct strings, and an order or list of

a language is a list containing each string of the language. For example, if L =
{1110,1101,1011} then the following list is an order of L

T = 1011,1110,1101.

As above, lists are represented using calligraphic typeface. Two strings r and s are

consecutive in T if r is followed by s, or it r is the last string in T and s is the first

string in T . While this thesis is focused on lists of fixed-content languages, the lists

of scuts given in Section 3.2.1 involve sets of strings that do not have fixed-content.
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3.2.1 Scut Order

The cool-lex scut order of a language is an order of the language’s scuts. More

specifically, Z(L) is an order of scuts(L) in which the first symbol of each scut appears

in increasing order, and subject to this constraint the number of excluded symbols

of each scut appears in increasing order. For example, the cool-lex scut order for

L = Π(M) (multiset permutations) with M = {1,1,2,2,3,3,4,4} appears below

Z(L) = 21,2,3211,311,31,3,432211,42211,4211,411,41,4 (3.3)

and can be reexpressed as follows

Z(L) = scut(2,1), scut(2,2), scut(3,1), scut(3,2), scut(3,3), scut(3,4),

scut(4,1), scut(4,2), scut(4,3), scut(4,4), scut(4,5), scut(4,6).

Within this order notice that the scut(j, i) values appear with increasing values of j,

and then for each particular value of j the values of i appear in increasing order.

As a brief aside, it is interesting to point out that the cool-lex scut order is a slight

variation of the scut order found in co-lexicographic order (or simply co-lex order). In

co-lex order, strings appear in increasing lexicographic order when they are read from

right-to-left. For example, the following list contains co-lex order for P(4) (balanced

parentheses)

11110000,11101000,11011000,10111000,11100100,11010100,10110100,

11001100,10101100,11100010,11010010,10110010,11001010,10101010.

Notice that each string is in P(4) and that the strings are ordered lexicographically

when read from right-to-left. (Also notice that consecutive strings can vary quite

substantially such as 10111000 followed by 11100100.) As another example, the first

string in the order for L = Π(M) (multiset permutations) with M = {1,1,2,2,3,3,4,4}
is 44332211, while the last string is 11223344. In co-lex order, the scuts are ordered

by decreasing length followed by increasing first symbol. For example, the scuts in

Π(M) appear as follows in co-lex order as compared to the cool-lex order in (3.3)

432211,42211,3211,4211,311,411,21,31,41,2,3,4.

One reason that cool-lex order has not been previously discovered is that co-lex order
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is more commonly understood as an order based on the rightmost symbol instead of

the scut. For example, in the co-lex order of the previously mentioned language L

the rightmost symbols appear in the order 1,2,3,4.

Now the cool-lex scut order is formalized. In the definition, the ,O is used to

create a list from individual strings, and is illustrated after the definition.

Definition 3.2.1 (Cool-lex scut order (Z)). The cool-lex scut order for the scuts of

a bubble language L is

Z(L) = ,O
j=2,3,...,�

,O
i=1,2,...,� (j)

scut(j, i).

In other words, the cool-lex scut order lists a bubble language’s scuts by increasing

first symbol and then by increasing number of excluded smaller symbols.

To illustrate the use of ,O within the definition, the previous list of Z(L) in (3.3)

is reexpressed as follows

Z(L) = ,O
j=2,3,...,�

,O
i=1,2,...,� (j)

scut(j, i)

= ,O
i=1,2

scut(2, i), ,O
i=1,2,3,4

scut(3, i), ,O
i=1,2,3,4,5,6

scut(4, i)

= scut(2,1), scut(2,2), scut(3,1), scut(3,2), scut(3,3), scut(3,4),

scut(4,1), scut(4,2), scut(4,3), scut(4,4), scut(4,5), scut(4,6).

In particular, the first scut in Z(L) will always be scut(2,1) and the last scut within

Z(L) will always be scut(j, i) with j = � and i = � (j).
Before extending the cool-lex order from scuts to strings in Section 3.2.2, one

aspect of Definition 3.2.1 should be clarified. Within the definition it is claimed that

Z(L) is a list of scuts(L) when L is a bubble language. From the definitions of � and

� (j) it is clear that Z(L) contains every scut within scuts(L). Furthermore, when L

is a bubble language then Lemmas 2.4.19 and 2.4.20 imply that for every value of i

and j within the given ranges there is a string in L that has scut scut(j, i). Therefore,

when L is a bubble language then Z(L) is in fact a list of scuts(L) as claimed.

3.2.2 String Order

In this section the scut order in Section 3.2.1 is extended to strings. This is done

recursively by ordering the strings based on the order of their scuts within the cool-lex
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scut order. The unique string that does not have a scut, namely !, is chosen to be

the last string in cool-lex order. To formalize cool-lex notion, two pieces of notation

need to be generalized. First, the ⋅ operation is generalized so that it can concatenate

a given string to the end of every string in a list. This operation is also known as

suffixing. For example, suffixing 12 to the end of every string in T = 1110,1101,1011

is accomplished by the following

T ⋅ 12 = 1110 ⋅ 12,1101 ⋅ 12,1011 ⋅ 12

= 111012,110112,101112.

Second, when a list appears underneath ,O then the strings in the list will be consid-

ered in sequence. This convention is illustrated after the definition of cool-lex order

below.

Definition 3.2.2 (Cool-lex order (
←Ð
C )). The cool-lex order for non-empty bubble

language L is
←Ð
C (L) = ,O

z∈Z(L)

←Ð
C (L/z) ⋅ z, !.

In other words, cool-lex order has strings with the same scut ordered contiguously, the

order of the scuts is by cool-lex scut order, and the non-increasing string is last.

For example, when L = Π(M) (multiset permutations) with M = {1,1,2,2,3,3,4,4}
then

←Ð
C (L) = ,O

z∈Z(L)

←Ð
C (L/z) ⋅ z, !

=
←Ð
C (L/21) ⋅ 21,

←Ð
C (L/2) ⋅ 2,

←Ð
C (L/3211) ⋅ 3211,

←Ð
C (L/311) ⋅ 311,

←Ð
C (L/31) ⋅ 31,

←Ð
C (L/3) ⋅ 3,

←Ð
C (L/432211) ⋅ 432211,

←Ð
C (L/42211) ⋅ 42211,

←Ð
C (L/4211) ⋅ 4211,

←Ð
C (L/411) ⋅ 411,

←Ð
C (L/41) ⋅ 41,

←Ð
C (L/4) ⋅ 4, 44332211.

since

Z(L) = 21,2,3211,311,31,3,432211,42211,4211,411,41,4.

Notice that the strings are grouped according to their scut, and within each of these

groups the strings are recursively ordered in cool-lex order. The base case of this

recursion occurs when ∣L∣ = 1; in this case the non-increasing string is the only string

in the language and the only string in the cool-lex list. (Recursively, co-lex order

and cool-lex order are identical except for the order of the scuts, and the fact that
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the non-increasing string appears first within co-lex and last within cool-lex.) This

section concludes with the observation that
←Ð
C (L) is in fact a list of L whenever L is

a bubble language1 This follows inductively from the fact that Z(L) contains every

possible scut in scuts(L) and the fact that ! ∈ L by Remark 2.2.2.

3.2.3 First and Last

This section focuses on the first and last strings within each cool-lex list. Given a

non-empty list T , let first(T ) and last(T ) respectively represent the first and last

strings in T . The last string in cool-lex order is always the non-increasing string due

to the placement of ! within Definition 3.2.2. To understand the nature of the first

string in cool-lex order, it is useful to consider an example language such as L = N(M)
(multiset necklaces) with M = {1,1,1,2,3,3,3}. Within Definition 3.2.2 notice that

there are two options for the first string. Either the first string has the scut scut(2,1)
or the language contains only one string and so the first string is equal to the last

string which is non-increasing. In the current example, L contains more than one

string, and so

first(
←Ð
C (L)) = first(

←Ð
C (L′)) ⋅ scutM(2,1)

= first(
←Ð
C (L′)) ⋅ 211

where L′ = L/scutM(2,1). Again, L′ contains more than one string and so the same

argument can be repeated

first(
←Ð
C (L′)) = first(

←Ð
C (L′′)) ⋅ scutM′(2,1)

= first(
←Ð
C (L′′)) ⋅ 3

where L′′ = L′/scutM′(2,1). This process would be continued again except for the fact

that L′′ contains only the non-increasing string 331. Therefore,

first(
←Ð
C (L′′)) = 331.

1Chapter 5 discusses the cool-lex list of any fixed-content language.
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By using the previous steps, the conclusion is that

first(
←Ð
C (L)) = first(

←Ð
C (L′′)) ⋅ scutM′(2,1) ⋅ scutM(2,1)

= 331 ⋅ 3 ⋅ 211

= 3313211.

One way to interpret the above string is that it was obtained by greedily left-shifting

the smallest symbol in the non-increasing string. That is,

first(
←Ð
C (L)) =

←ÐÐÐ
greedy(!, n)

=
←ÐÐÐ
greedy(332211,6)

= 33
←ÐÐÐ
32111

= 3313211.

To prove this fact in general, it is useful to introduce the following lemma.

Lemma 3.2.3 (Greedy left-shift). Suppose L is a bubble language, ∣L∣ > 1, and L′ =
L/scut(2,1). Then,

←ÐÐÐ
greedy(!, n) =

←ÐÐÐ
greedy(tail(2,1), n′).

In other words, when a bubble language contains more than one string, then a greedy

left-shift of the last symbol in the non-increasing prefix of the tali with scut scut(2,1).

Proof. Since L is a bubble language and ∣L∣ > 0 then ! ∈ L by Remark 2.2.2. Further-

more, since ∣L∣ > 1 then ∣� (!)∣ < n since otherwise no rearrangements of the symbols

could produce another string in the language. Therefore, by (2.2) in Definition 2.2.1

it must be that
←ÐÐÐ
bubble(!, n) ∈ L.

However, n = n1 so the above bubble-left shift produces tail(2,1) by Lemma 2.4.18.

Furthermore, the shifted symbol is moved into position n′ which is the last position

of the non-increasing prefix of this tail. Therefore,

←ÐÐÐ
greedy(!, n) =

←ÐÐÐ
greedy(tail(2,1), n′).

Now the main result of this section is proven.
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Lemma 3.2.4 (First and last strings). Suppose L is a non-empty bubble language.

Then,

last(
←Ð
C (L)) = ! first(

←Ð
C (L)) =

←ÐÐÐ
greedy(!, n).

In other words, in the cool-lex order for any bubble language, the last string is non-

increasing, and the first string is obtained by greedily left-shifting the last symbol in

the non-increasing string.

Proof. Let T =
←Ð
C (L). The first equality comes directly from Definition 3.2.2. The

second equality is proven by induction on ∣L∣. If ∣L∣ = 1 then Definition 3.2.2 implies

that

first(T ) = !.

Furthermore,
←ÐÐÐ
greedy(!,=)! in this case since ! is the only string in the language by

Remark 2.2.2. Therefore, the base case of ∣L∣ = 1 is true. Therefore, assume the result

is true when ∣L∣ ≤ h. If ∣L∣ = h + 1 then let L′ = L/scut(2,1) and T ′ =
←Ð
C (L). This

language is well-defined since if L contains more than one string then there must be

at least two distinct symbols within M. Furthermore, L′ must be non-empty since

if L contains more than one string, then it must contain a string with a scut, and

by Lemmas 2.4.19 and Lemmas 2.4.20 it must that scut(2,1) ∈ scuts(L). Finally,

∣L′∣ < ∣L∣ since ! ∈ L by Remark 2.2.2 and ! does not have scut(2,1) as a suffix.

Therefore, the inductive assumption can be applied to T ′ to give the following result

first(T ′) =
←ÐÐÐ
greedy(!(M′), n′)

Therefore, by Definition 3.2.2

first(T ) =
←ÐÐÐ
greedy(!(M′), n′) ⋅ scut(2,1) =

←ÐÐÐ
greedy(tail(2,1), n′) =

←ÐÐÐ
greedy(!, n)

where the last equality follows from Lemma 3.2.3.

Chapter 5 points out that the similarity between the first and last strings allows

circular cool-lex Gray codes to be combined in various ways to create Gray codes for

certain non-fixed-content languages.
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3.2.4 Heads and Tails

The previous subsection formalized the first and last strings in cool-lex lists for bubble

languages, and this section focuses on the first and last strings in each cool-lex sublist.

The term sublist will be used to refer to lists of the form
←Ð
C (L/scut(j, i))⋅scut(j, i) (as

seen in Definition 3.2.2) for bubble languages L. Since bubble languages are closed

under quotients by Theorem 2.4.2, the first and last strings in these sublists follow

immediately from Lemma 3.2.4. The first and last strings in these sublists will be

called heads and tails respectively. Tails were first seen in Section 2.4.3 and are simply

non-increasing prefixes followed by scuts, while heads are introduced here. The only

result requiring proof in this section is Lemma 3.2.8, which formalizes which greedy

left-shift is used when applying the cool-left shift to a tail.

Definition 3.2.5 (Heads). The head with scut scut(j, i) is

headL(j, i) =
←ÐÐÐ
greedy(tail(j, i), k)

where k = ∣!(tail(j, i))∣. In other words, the head with scut scut(j, i) is obtained from

the tail with scut scut(j, i) by greedily left-shifting the last symbol in its non-increasing

prefix.

Remark 3.2.6 (First in sublists are heads). Suppose L is a bubble language and

L′ = L/scut(j, i). Then,

first(
←Ð
C (L′) ⋅ scut(j, i)) = head(j, i).

In other words, when L is a bubble language then the last string with scut scut(j, i)
in its cool-lex order is head(j, i).

Remark 3.2.7 (Last in sublists are tails). Suppose L is a bubble language and L′ =
L/scut(j, i). Then,

last(
←Ð
C (L′) ⋅ scut(j, i)) = tail(j, i).

In other words, when L is a bubble language then the last string with scut scut(j, i)
in its cool-lex order is tail(j, i).

The following lemma specializes the cool left-shift to tails. To illustrate the lemma,
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consider the language L = N(M) (multiset necklaces) with M = {1,1,2,2,3,3,4,4}

←ÐÐ
cool(tail(3,� (3)))

←ÐÐ
cool(tail(4,� (4)))

←ÐÐ
cool(tail(4,� (4) − 1))

=
←ÐÐ
cool(tail(3,4))

←ÐÐ
cool(tail(4,5))

←ÐÐ
cool(tail(4,4))

=
←ÐÐ
cool(44322113) =

←ÐÐ
cool(43322141) =

←ÐÐ
cool(43322411)

=
←ÐÐÐ
greedy(44322113,8) =

←ÐÐÐ
greedy(43322141,7) =

←ÐÐÐ
greedy(43322411,7)

=
←ÐÐÐ
greedy(44322113, k + 1) =

←ÐÐÐ
greedy(43322141, k + 1) =

←ÐÐÐ
greedy(43322411, k + 2)

In each of the columns, the value of k represents the length of the non-increasing

prefix in the given example. (For instance k = ∣!(44322113)∣ = 7 in the first column.)

The first two columns illustrate cases when the (k+1)st symbol is greedily left-shifted

by the cool left-shift. In the first column, k = n − 1 and so the (k + 1)st symbol is

shifted due to (3.1a) in Definition 3.1.3. In the second column, the (k + 2)nd symbol

cannot be shifted to the left to result in another string in the language. That is,
←ÐÐÐ
greedy(43322141, k + 2) is a trivial shift. Therefore, the (k + 1)st symbol is shifted

due to (3.1b) in Definition 3.1.3. These two examples represent the two situations

in which the cool left-shift will greedily left-shift the first symbol in the scut when

applied to a tail. (The remaining condition in (3.1b) is not possible to satisfy within

a tail.) In both examples, notice that the string is equal to tail(j, i) where i = � (j).
In the third column the string is equal to tail(j, i) where i < � (j) and the (k + 2)nd

symbol is greedily left-shifted by the cool left-shift. This result is now formalized by

the following lemma.

Lemma 3.2.8 (Cool left-shift on tails). Suppose L is a bubble language, tail(j, i) ∈ L,

and k = ∣!(tail(j, i))∣. Then,

←ÐÐ
cool(tail(j, i)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

←ÐÐÐ
greedy(tail(j, i), k + 1) if i = � (j)
←ÐÐÐ
greedy(tail(j, i), k + 2) otherwise (i < � (j)).

In other words, when the cool left-shift is applied to tail(j, i), it greedily left-shifts the

symbol after the non-increasing prefix if i = � (j) and otherwise greedily left-shifts the

second symbol in the scut if i < � (j).

Proof. Let s = tail(j, i) and k = ∣!(s)∣. When i = � (j) then either k = n − 1 or
←ÐÐ
shift(s, k + 2, k + 1) ∉ L. (Otherwise, tail(j, i + 1) ∈ L by Lemma 2.4.17 which would

contradict the fact that i = � (j).) Therefore,
←ÐÐ
cool(s) =

←ÐÐÐ
greedy(s, k + 1) by (3.1b) in
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Definition 3.1.3. On the other hand, when i < � (j) then
←ÐÐ
shift(s, k+2, k+1) = tail(j, i+

1) ∈ L and sk ≥ sk+2 (since removing sk+1 from s would result in a non-increasing

string). Therefore,
←ÐÐ
cool(s) =

←ÐÐÐ
greedy(s, k + 1) by (3.1c) in Definition 3.1.3.

3.3 Gray code

This section proves that the cool left-shift circularly generates the cool-lex order for

any bubble language. This means that if L is a bubble language and s ∈ L, then
←ÐÐ
cool(s) is the string after s in

←Ð
C (L). Furthermore, if s is the last string in

←Ð
C (L)

then
←ÐÐ
cool(s) is the first string in

←Ð
C (L). Thus,

←Ð
C (L) =

←ÐÐ
cool(s),

←ÐÐ
cool2(s),

←ÐÐ
cool3(s),⋯,

←ÐÐ
cool∣L∣−1(s),s (3.4)

where s = ! and
←ÐÐ
cool∣L∣(s) = s. This result is stated as Theorem 3.3.5 in Section

3.3.2. Since
←ÐÐ
cool always performs a left-shift, and since

←Ð
C (L) contains every string

in L, then Theorem 3.3.5 proves that
←Ð
C (L) is a circular left-shift Gray code that is

generated by the
←ÐÐ
cool operation.

To give an overview of the proof, consider the following expression for
←Ð
C (L) with

L = Π(M) (multiset permutations) and M = {1,1,2,2,3,3}

←Ð
C (L/21) ⋅ 21,

transition type j
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ←Ð
C (L/2) ⋅ 2,

←Ð
C (L/3211) ⋅ 3211,
←Ð
C (L/311) ⋅ 311,

←Ð
C (L/31) ⋅ 31

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
transition type i

,
←Ð
C (L/3) ⋅ 3, 332211
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

transition to !

.

Within this list there are essentially four distinct types of transitions, three of which

are illustrated above. Transitions of type i are from a sublist with scut scut(j, i)
to a sublist with scut scut(j, i + 1). Transitions of type j are from a sublist with

scut scut(j, i) to a sublist with scut scut(j + 1,1). Finally there are two individual

transitions involving the non-increasing string. The transition to ! results in the last

string in the list, while the from ! results in the first string in the list. In each case it

must be proven that the cool left-shift makes the proper modification to bridge these

transitions. These results are contained in Section 3.3.1. It must also be shown that

the cool left-shift makes the proper modifications within each sublist. This result

follows from the cool left-shift invariant, and is discussed in the final proof of Section

3.3.2.
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3.3.1 Transitions

This section shows how greedy left-shifts can transform certain tails into certain

heads, certain tails into the non-increasing prefix, and the non-increasing prefix into

a certain head. The results are then extended to the cool left-shift. Each of the four

types of transitions are handled in a similar manner with the following conventions.

Within the examples, the value of k will represent the length of the non-increasing

prefix for each column. For example, if 3221000200 appears in the first column of an

example then k = 7 within the first column. Also, within each transition the choices

of i and j will imply that tail(j, i) ∈ L due to Remark 2.4.12, and Lemmas 2.4.19 and

2.4.20. Furthermore, the fact that ! ∈ L follows from Remark 2.2.2 and is used in the

last two transitions. These simple observations are necessary when discussing greedy

left-shifts and cool left-shifts, and are not repeated for each separate case.

Transition Type i

The first type of transition takes tail(j, i) to head(j, i + 1). This transition involves

greedily left-shifting the second symbol in the scut, and requires the additional con-

dition that this shift is non-trivial. To illustrate the transition consider the following

examples with the language L = T(M) (ordered trees with fixed branching sequence)

with M = {0,0,0,0,0,1,2,2,2,3}

←ÐÐÐ
greedy(tail(3,4), k + 2)

←ÐÐÐ
greedy(tail(4,3), k + 2)

=
←ÐÐÐ
greedy(3221000200,9) =

←ÐÐÐ
greedy(2223100000,5)

=
←ÐÐÐ
greedy(3221000

←Ð
200,8) =

←ÐÐÐ
greedy(222

←Ð
3100000,4)

=
←ÐÐÐ
greedy(3221000020,8) =

←ÐÐÐ
greedy(2221300000,4)

=
←ÐÐÐ
greedy(tail(3,5),8) =

←ÐÐÐ
greedy(tail(4,4),4)

= head(3,5) = head(4,4)

In both cases notice that the symbol being greedily left-shifted is the second symbol

in the scut. Since the greedy left-shift is non-trivial the symbol can be left-shifted

at least one position to create an additional string in the language. (In particular,

3221000020 ∈ L and 2221300000 ∈ L.) Therefore, the original greedy left-shift can be

reexpressed as a second greedy left-shift. The initial left-shift also has two important

effects. The first effect is that an additional symbol is excluded from the scut, which

explains the change from i to i + 1 in the transition. The second effect is that the
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shifted symbol becomes the last symbol in the non-increasing prefix, which makes the

reexpressed greedy left-shift equal to a head. When translating this result to the cool

left-shift, recall from Lemma 3.2.8 that the (k + 2)nd symbol is greedily left-shifted

in tail(j, i) whenever i < � (j) as above. Therefore, the above greedy left-shifts are

examples of cool left-shifts.

Lemma 3.3.1 (Transition i). Suppose L is a bubble language, j ≤ � , i < � (j). Then,

←ÐÐ
cool(tail(j, i)) = head(j, i + 1).

In other words, the cool left-shift transforms tail(j, i) into head(j, i + 1) as long as

i < � (j).

Proof. Let k = ∣!(tail(j, i))∣. First notice the following equality which follows from

Remark 2.4.14

k + 1 = ∣!(tail(j, i + 1))∣. (3.5)

The proof is now a result of the following derivation

←ÐÐ
cool(tail(j, i))

=
←ÐÐÐ
greedy(tail(j, i), k + 2) by Lemma 3.2.8

=
←ÐÐÐ
greedy(

←ÐÐ
shift(tail(j, i), k + 2, k + 1), k + 1) by non-trivial shift and Remark 2.4.15

=
←ÐÐÐ
greedy(tail(j, i + 1), k + 1) by Lemma 2.4.17

= head(j, i + 1) by (3.5).

Transition Type j

The second type of transition takes tail(j, i) to head(j+1,1). This transition involves

greedily left-shifting the first symbol in the scut, and requires the additional condition

that j < � . To illustrate the transition consider the following examples with the
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language L = N−(M) (multiset Lyndon words) with M = {1,1,2,2,3,3,4,4,5,5}

←ÐÐÐ
greedy(tail(3,4), k + 1)

←ÐÐÐ
greedy(tail(4,6), k + 1)

=
←ÐÐÐ
greedy(5544322113,10) =

←ÐÐÐ
greedy(5543322114,10)

=
←ÐÐÐ
greedy(5544

←ÐÐÐÐ
322113,5) =

←ÐÐÐ
greedy(55

←ÐÐÐÐÐ
43322114,3)

=
←ÐÐÐ
greedy(554

←Ð
4332211,4) =

←ÐÐÐ
greedy(5←Ð544332211,2)

=
←ÐÐÐ
greedy(5543432211,4) =

←ÐÐÐ
greedy(5454332211,2)

=
←ÐÐÐ
greedy(tail(4,1),4) =

←ÐÐÐ
greedy(tail(5,1),2)

= head(4,1) = head(5,1)

Notice that the symbol being greedily left-shifted is the first symbol in the scut and

that the symbol is less than � . (In particular, � = 5 since d5 = 5 is the largest symbol

that is the first symbol of a scut in this language.) Since the symbol is the first symbol

in the scut then it can be greedily left-shifted past every symbol that is less than or

equal to itself. After this first intermediate shift the resulting string is entirely non-

increasing. However, since the shifted symbol is less than � then it can additionally

be left-shifted past another symbol. This second intermediate shift produces the

stated tail, and the shifted symbol is the smallest symbol in its non-increasing prefix.

Therefore, the reexpressed greedy left-shift is equal to a head. When translating

this result to the cool left-shift, recall from Lemma 3.2.8 that the (k + 1)st symbol

is greedily left-shifted in tail(j, i) when i = � (j) as above. (This transition assumes

that j < � ; the case when j = � is handled by the next transition.) Therefore, the

above greedy left-shifts are examples of cool left-shifts.

Lemma 3.3.2 (Transition j). Suppose L is a bubble language, j < � , and i = � (j).

Then,
←ÐÐ
cool(tail(j, i)) = head(j + 1,1).

In other words, the cool left-shift transforms tail(j,� (j)) into head(j + 1,1) as long

as j < � .

Proof. Let k = ∣!(tail(j, i))∣ and h = nj+1. First notice the following equality, which

follows from Remark 2.4.14

∣!(tail(j + 1,1))∣ = h − 1 + 1 = h. (3.6)



124

The proof is now a result of the following derivation

←ÐÐ
cool(tail(j, i))

=
←ÐÐÐ
greedy(tail(j, i), k + 1) by Lemma 3.2.8

=
←ÐÐÐ
greedy(!, h + 1) by Remark 3.1.2

=
←ÐÐÐ
greedy(

←ÐÐ
shift(!, h + 1, h), h) by j < � and (2.2)

=
←ÐÐÐ
greedy(tail(j + 1,1), h) by (3.6) and Lemma 2.4.18

= head(j + 1,1).

Transition to non-increasing

The third type of transition takes tail(j, i) to !. This transition involves greedily

left-shifting the first symbol in the scut, and requires the additional condition that

j = � . To illustrate the transition consider the following examples with the language

L = N(M) (multiset necklaces) with M = {1,1,1,1,2,2,2,3,3,4}

←ÐÐÐ
greedy(tail(3,7), k + 1)

=
←ÐÐÐ
greedy(4322211113,10)

=
←ÐÐÐ
greedy(4←ÐÐÐÐÐÐ322211113,2)

=
←ÐÐÐ
greedy(4332221111,2)

= 4332221111

= !.

Notice that the symbol being greedily left-shifted is the first symbol in the scut and

that the symbol is equal to � . (In particular, � = 3 since d3 = 3 is the largest symbol

that is the first symbol of a scut in this language.) Since the symbol is the first

symbol in the scut then it can be greedily left-shifted past every symbol that is less

than or equal to itself. After this intermediate shift the resulting string is entirely

non-increasing. Any further shift is not possible due to the relationship between �

and the frozen prefix of the non-increasing string found in Lemma 2.4.18. Therefore,

the resulting string is the non-increasing string. The transition is now formalized

below. When translating this result to the cool left-shift, recall from Lemma 3.2.8

that the (k + 1)st symbol is greedily left-shifted in tail(j, i) when i = � (j) as above.
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(This transition assumes that j = � ; the case when j < � was handled by the previous

transition.) Therefore, the above greedy left-shift is an example of a cool left-shifts.

Lemma 3.3.3 (Transition to !). Suppose L is a bubble language, j = � and i = � (j).

Then,
←ÐÐ
cool(tail(j, i))k + 1 = !.

In other words, the cool left-shift transforms tail(j, i) into the non-increasing string

when j = � and i = � (j).

Proof. Let k = ∣!(tail(j, i))∣ and h = nj+1. Then,

←ÐÐ
cool(tail(j, i))

=
←ÐÐÐ
greedy(tail(j, i), k + 1) by Lemma 3.2.8

=
←ÐÐÐ
greedy(!, h + 1) by Remark 3.1.2

= ! by j = � and Lemma 2.4.18.

Transition from non-increasing

The fourth type of transition takes ! to head(2,1). This transition involves greedily

left-shifting the nth symbol in the non-increasing string, and requires the additional

condition that there are at least two strings in the language. To illustrate the tran-

sition consider the following example with L = Π(M) (multiset permutations) with

M/{1,1,2,2,3,3,4,4,5,5}

←ÐÐÐ
greedy(!, n)

=
←ÐÐÐ
greedy(5544332211,10)

=
←ÐÐÐ
greedy(5544332

←Ð
211,8)

=
←ÐÐÐ
greedy(5544332121,8)

=
←ÐÐÐ
greedy(tail(2,1),8)

= head(2,1).

Notice that the symbol being greedily left-shifted is the last symbol. Since there are

at least two strings in the language then ! ∈ L and it cannot be entirely frozen.

Therefore, its last symbol can be bubble left-shifted to create another string in the
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language. The string that is created is tail(2,1). Moreover, this intermediate shift

causes the shifted symbol becomes the last symbol in the non-increasing prefix of

this string. Therefore, the reexpressed greedy left-shift is equal to head(2,1). When

translating this result to the cool left-shift, recall from Definition 3.1.3 that the nth

symbol is greedily left-shifted in the non-increasing string as above. Therefore, the

above greedy left-shift is an example of a cool left-shift.

Lemma 3.3.4 (Transition from !). Suppose L is a non-trivial bubble language.

Then,
←ÐÐ
cool(!) = head(2,1).

In other words, the cool left-shift transforms the non-increasing string into head(2,1).

Proof. Since L is non-trivial

∣� (!)∣ < n (3.7)

since otherwise L could contain at most one string. Let k = ∣!(tail(2,1))∣ and notice

that k = n2 by Remark 2.4.14. Therefore,

←ÐÐÐ
bubble(!, n) =

←ÐÐ
shift(!, n, k). (3.8)

The proof is now a result of the following derivation

←ÐÐ
cool(!)

=
←ÐÐÐ
greedy(!, n) by (3.1a) in Definition 3.1.3

=
←ÐÐÐ
greedy(

←ÐÐ
shift(!, n, k), k) by (3.7) and (2.2), and (3.8)

=
←ÐÐÐ
greedy(tail(2,1), k) by (3.8) and Lemma 2.4.18

= head(2,1).

3.3.2 Proof of Generation

This section proves the main result of this chapter.

Theorem 3.3.5 (Left-Shift Gray code for bubble languages). The cool left-shift cir-

cularly generates the cool-lex order for any bubble language. In other words,
←Ð
C (L) is

a circular left-shift Gray code for any bubble language L, and if s ∈ L then the next

string in the Gray code is always equal to
←ÐÐ
cool(s).
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Proof. The proof is by induction on ∣L∣. When ∣L∣ = 1 then L = {!} and
←ÐÐ
cool(!) = !.

Therefore the base case holds when ∣L∣ = 1. Now suppose that ∣L∣ > 1 and the

theorem holds for every bubble language that has fewer strings than L. Let L′ =
L/scut(j, i) for some scut(j, i) ∈ scuts(L). Since bubble languages are closed under

quotients by Theorem 2.4.2, then L′ is a bubble language. Furthermore, ∣L′∣ < ∣L∣.
(In particular, ! ∈ L by Remark 2.2.2 but ! does not have a scut, and so it does not

contribute a string to L′.) Therefore, the inductive assumption can be applied to L′

and so
←ÐÐ
cool circularly generates

←Ð
C (L′). The cool left-shift invariant in Lemma 3.1.5

then implies that
←ÐÐ
cool generates

←Ð
C (L′) ⋅ scut(j, i). (In particular, the last string in

←Ð
C (L′) ⋅ scut(j, i) is tail(j, i) by Remark 3.2.7, and the cool left-shift invariant applies

to all strings that are not tails.) Therefore, when considering whether or not
←ÐÐ
cool

circularly generates
←Ð
C (L) only the transitions between the various sublists and the

non-increasing strings needs to be considered. In particular, Definition 3.2.2 there

are four types of transitions to consider.

The first type of transition is between the last string in
←Ð
C (L/scut(j, i)) ⋅ scut(j, i)

and the first string in
←Ð
C (L/scut(j, i+1))⋅scut(j, i+1). In this case Lemma 3.3.1 implies

that
←ÐÐ
cool makes the correct transformation. (Recall from Remark 3.2.7 and 3.2.6 that

the last string in each sublist is a tail, and that the first string in each sublist is a head.)

The second type of transition is between the last string in
←Ð
C (L/scut(j, i)) ⋅ scut(j, i)

and the first string in
←Ð
C (L/scut(j + 1,1)) ⋅ scut(j + 1,1). In this case Lemma 3.3.2

implies that
←ÐÐ
cool makes the correct transformation. The third transition is between

the last string in
←Ð
C (L/scut(j, i)) ⋅ scut(j, i) and !. In this case Lemma 3.3.3 implies

that
←ÐÐ
cool makes the correct transformation. The fourth transition is between ! and

the first string in
←Ð
C (L/scut(2,1)) ⋅ scut(2,1). In this case Lemma 3.3.4 implies that

←ÐÐ
cool makes the correct transformation. Therefore,

←ÐÐ
cool circularly generates

←Ð
C (L) and

so the theorem is true by induction.

A simple corollary of Theorem 3.3.5 is that cool-lex order provides an (m + 2)-

assignment Gray code for any bubble language L. (Recall that m is the number of

distinct symbols in the strings within L.) To illustrate why this is true, consider the

difference between the following two strings

s = 44433322211145

t = 54443332221114.

Notice that t can be obtained from s by left-shifting the last symbol into the first

position. Alternatively, t can be obtained from s by six assignments. (In particular,
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ti ≠ si for i ∈ {1,4,7,10,13,14}.) In general, each cool left-shift involves moving

a symbol past at most k + 1 differing symbols, where k is the number of distinct

symbols in the non-increasing prefix. Since the number of distinct symbols in the

non-increasing prefix is at most m, then bubble languages have (m + 2)-assignment

Gray codes. When m = 2 the result is a 4-assignment Gray code. However, when

m = 2 then every pair of assignments can be accomplished by a single transposition,

and so the 4-assignment Gray code is also a 2-transposition Gray code. These results

are summarized by Corollary 3.3.6.

Corollary 3.3.6 (Assignment and Transposition Gray code for bubble languages).

Every bubble language has a circular (m+2)-assignment Gray code when expressed in

cool-lex order, where m is the number of distinct symbols in the language’s content.

When m = 2 this result is also a 2-transposition Gray code.

Another corollary of Theorem 3.3.5 is that there is a simple algorithm for gener-

ating the strings in any bubble language. The following pseudocode (and Corollary

3.3.6) provide a starting point for the efficient algorithms developed in Chapter 4.

Require: L is a bubble language with strings of length n
Require: s is initially the non-increasing string !
k ← n − 1
while k < n do

if k = n − 1
s←

←ÐÐÐ
greedy(s, n)

else
if sk ≥ sk+2 and

←ÐÐ
shift(s, k + 2, k + 1) ∈ L

s←
←ÐÐÐ
greedy(s, k + 2)

else
s←

←ÐÐÐ
greedy(s, k + 1)

end
end
visit(s)
k ← ∣!(s)∣

end

Algorithm 1: Iterative algorithm for generating the strings of any bubble language

L using
←ÐÐ
shift and

←ÐÐÐ
greedy.
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3.4 Properties

This section presents several properties of cool-lex order. Section 3.4.2 proves that

concatenating strings in cool-lex order produces a circular string containing the first

n − 1 symbols of every rotation of the strings in the original bubble language. This

result will be the primary result needed to prove the shorthand universal cycle result

in Section 4.2. Central to the results in Section 3.4.2 is the cool right-shift, which

generates cool-lex order for bubble languages in reverse order. This operation is

presented in Section 3.4.1.

3.4.1 Reverse Order

This section formalizes reverse cool-lex order and the operation that generates this

order. The reverse cool-lex order for a non-empty bubble language L is

Ð→
C (L) = s,

ÐÐ→
cool(s),

ÐÐ→
cool2(s),

ÐÐ→
cool3(s), . . . ,

ÐÐ→
cool∣L∣−1(s) (3.9)

where s = !,
ÐÐ→
cool is the cool right-shift operation that is defined in this section and

then will be proven to be inverse to
←ÐÐ
cool (and so

ÐÐ→
cool∣L∣(s) = s). Notice that (3.9)

provides the reverse order given in (3.4). The definition of
ÐÐ→
cool is based on a slightly

modified notion of the non-increasing prefix given by the following definition.

Definition 3.4.1 (Weakly Non-Increasing Prefix). The weakly non-increasing prefix

of s with ∣s∣ = n and ∣!(s)∣ = k is

!!(s) = s1s2 . . . sh

where h = k if k = n or sk−1 < sk+1, and otherwise h = ∣!(s1s2⋯sk−1sk+1sk+2⋯sn)∣+1. In

other words, the weakly non-increasing prefix is the longest non-increasing prefix with

the proviso that the value of the last symbol in the non-increasing prefix is ignored.

The following examples illustrate the weakly non-increasing prefix

!!(43211234) = 43211 !!(43132214) = 4313221.

In the first case above notice that “ignoring” the last symbol in the non-increasing

prefix does not result in a longer non-increasing prefix. That is, the non-increasing

prefix of 43211234 is the same as the non-increasing prefix of 43211/234 except for the
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ignored symbol. Therefore, in this case the non-increasing prefix and the weakly non-

increasing prefix are identical. On the other hand, in the second case above notice

that ignoring the last symbol in the non-increasing prefix does result in a longer non-

increasing prefix. That is, the non-increasing prefix of 43132214 is not the same as the

non-increasing prefix of 431/32214. Therefore, in this case the non-increasing prefix

and the weakly non-increasing prefix are not identical.

The other concept required in definition of
ÐÐ→
cool is that of a bounded right-shift.

This shift is the same as a maximal left-shift except that a) the shift is to the right,

and b) the distance of the shift is bounded by a maximum position. The concept is

formalized and then illustrated below.

Definition 3.4.2 (Bounded Right-Shift). Given s ∈ L and indices i and j with 1 ≤
i ≤ j ≤ n, the bounded right-shift in s is

ÐÐ→maxL(s, i, j) =
ÐÐ→
shift(s, i, h)

where h satisfies

�
ÐÐ→
shift(s, i, g) ∈ L for all g within i ≤ g ≤ h

� h = j or
ÐÐ→
shift(s, i, h + 1) ∉ L.

In other words, ÐÐ→max right-shifts a symbol in a string as far as possible while main-

taining the property that every intermediate shift is in the given language and that

the shift does not pass the maximum specified position.

By convention, ÐÐ→max(s, i, j) = ÐÐ→maxL(s, i, j) so the language is assumed to be L

unless otherwise stated. To illustrate the definition, consider the following examples

for L = P(6)6 (balanced parentheses)

ÐÐ→max(110110100010,2,10) = 1
ÐÐÐÐÐ→
10110100010 ÐÐ→max(110110100010,3,10) = 11

ÐÐÐÐÐ→
0110100010

= 101101001010 = 111101000010.

In the first case above, the right-shift is limited by the fact that any further shift

would produce a string that is outside of the language. On the other hand, in the

second case the right-shift is limited by the provided bound. Now the cool right-shift

can be formally defined.
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Definition 3.4.3 (Cool Right-Shift). Given r ∈ L where L is a non-trivial bubble

language and f = ∣� (r)∣ and h = ∣!(r)∣ and g = ∣!!(r)∣, the cool right shift is

ÐÐ→
coolL(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ÐÐ→max(r, f, h) if f < h (3.10a)

ÐÐ→max(r, f, g) if f = h, h < g, and rh > rg (3.10b)
ÐÐ→
shift(r, f, g + 1) if f = h, (h = g or rh ≤ rg), and g < n (3.10c)
ÐÐ→
shift(r, f, n) otherwise (if f = h and g = n) (3.10d)

The following theorem proves that
ÐÐ→
cool and

←ÐÐ
cool are inverse operations.

Theorem 3.4.4 (Inverse). Suppose L is a non-trivial bubble language and s ∈ L.

Then,
ÐÐ→
cool(

←ÐÐ
cool(s)) = s.

In other words,
ÐÐ→
cool is the inverse of

←ÐÐ
cool when applied to strings in bubble languages.

Proof. Let r =
←ÐÐ
cool(s). It needs to be proven that

ÐÐ→
cool(r) = s. Towards this goal,

let f = ∣� (r)∣, h = ∣!(r), g = ∣!!(r)∣, and k = ∣!(s)∣. By Definition 3.1.3 and Lemma

2.4.5,

r =
←ÐÐ
shift(s, x, f) (3.11)

for some x ∈ {k + 1, k + 2, n}. The proof now divides into several cases. In each case,

s ≠ r holds due to Theorem 3.3.5 and the fact that L is a non-trivial bubble language.

In the first case suppose k = n. That is, s is the non-increasing string. Therefore,

by (3.11) and (3.1a)

r =
←ÐÐ
shift(s, n, f).

Therefore, f = h and g = n. Therefore, by (3.10d)

ÐÐ→
cool(r) =

ÐÐ→
shift(r, f, n).

Therefore, the result is true in this case.

In the second case suppose k = n − 1. Therefore, by (3.11) and (3.1b)

r =
←ÐÐ
shift(s, n, f).

There are two subcases to consider. In the first subcase, !(r) = r. In this subcase

f < h and h = n. Therefore, by (3.10a)

ÐÐ→
cool(r) = ÐÐ→max(r, f, h).
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However, ÐÐ→max(r, f, h) =
ÐÐ→
shift(r, f, n) because

←ÐÐ
cool(s) =

←ÐÐ
shift(s, n, f). Therefore, the

result is true in this subcase. In the second subcase, !(r) ≠ r. In this subcase f = h
and g = n. Therefore,

ÐÐ→
cool(r) =

ÐÐ→
shift(r, f, n).

Therefore, the result is true in this subcase. Therefore, the result is true in this case

and for the remaining cases it is implicitly assumed that k ≤ n − 2.

In the third case suppose that sk < sk+2. Therefore, by (3.11) and (3.1b)

r =
←ÐÐ
shift(s, k + 1, f).

There are two subcases to consider. In the first subcase h = k + 1. In this subcase

f < h. Therefore, by (3.10a)

ÐÐ→
cool(r) = ÐÐ→max(r, f, h).

However, ÐÐ→max(r, f, h) =
ÐÐ→
shift(r, f, k+1) because h = k+1 and

←ÐÐ
cool(s) =

←ÐÐ
shift(s, k+1, f).

Therefore, the result is true in this subcase. In the second subcase h < k + 1. In this

subcase g = k + 1. Furthermore, f = h, h < g, and rh > rg. Therefore, by (3.10b)

ÐÐ→
cool(r) = ÐÐ→max(r, f, g).

However, ÐÐ→max(r, f, g) =
ÐÐ→
shift(r, f, k+1) because g = k+1 and

←ÐÐ
cool(s) =

←ÐÐ
shift(s, k+1, f).

Therefore, the result is true in this subcase. Therefore, the result is true in this case.

In the fourth case suppose that sk ≥ sk+2 and
←ÐÐÐ
greedy(s, k + 2) = s. Therefore, by

(3.1b)

r =
←ÐÐ
shift(s, k + 1, f).

Also notice that
←ÐÐÐ
greedy(s, k + 2) = s implies that w =

ÐÐ→
shift(s, k + 1, k + 2) ∉ L. (In

particular, sk+1 ≠ sk+2 since otherwise
←ÐÐÐ
bubble(s, k + 2) =

←ÐÐÐ
bubble(s, k + 1) ∈ L by (2.1).)

There are two subcases to consider. In the first subcase h ≥ k + 2. In this subcase

f < h. Therefore, by (3.10a)

ÐÐ→
cool(r) = ÐÐ→max(r, f, h).

However, ÐÐ→max(r, f, h) =
ÐÐ→
shift(r, f, k+1) because h ≥ k+2 and

←ÐÐ
cool(s) =

←ÐÐ
shift(s, k+1, f)

and w ∉ L. Therefore, the result is true in this subcase. In the second subcase h < k+1.

In this subcase g ≥ k + 2. Furthermore, f = h and rh > rg. (The last inequality follows
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from rh = sk+1 > sk ≥ sk+2 ≥ rg.) Therefore, by (3.10b)

ÐÐ→
cool(r) = ÐÐ→max(r, f, g).

However, ÐÐ→max(r, f, g) =
ÐÐ→
shift(r, f, k+1) because g ≥ k+2 and

←ÐÐ
cool(s) =

←ÐÐ
shift(s, k+1, f)

and w ∉ L. Therefore, the result is true in this subcase. Therefore, the result is true

in this case.

In the fifth case suppose that sk ≥ sk+2 and
←ÐÐÐ
greedy(s, k + 2) ≠ s. Therefore, by

(3.1c)

r =
←ÐÐ
shift(s, k + 2, f).

There are two subcases to consider. In the first subcase h = k + 1. In this subcase

f = h and h = g. Therefore, by (3.10c)

ÐÐ→
cool(r) =

ÐÐ→
shift(r, f, g + 1).

However,
ÐÐ→
shift(r, f, g + 1) =

ÐÐ→
shift(r, f, k + 2) since g = h = k + 1. Therefore, the result

is true in this subcase. In the second subcase h < k + 1. In this subcase g = k + 1.

Furthermore, f = h and rh ≤ rg. Therefore, by (3.10c)

ÐÐ→
cool(r) =

ÐÐ→
shift(r, f, g + 1)

However,
ÐÐ→
shift(r, f, g + 1) =

ÐÐ→
shift(r, f, k + 2) since g = k + 1. Therefore, the result is

true in this subcase. Therefore, the result is true in this case.

3.4.2 Shorthand Rotations

shorthand [noun]
- a simplified or makeshift manner or system of communication.[35]

-

This section proves an interesting property involving shorthand rotations within

the reverse cool-lex order of any bubble language. Recall from Section 2.3.7 that

⟲i (s) is the rotation of s starting at position i, and that ⟲ (s) is the set of all

rotations of s. Also recall from Section 1.2.3 that the shorthand representation of a

string simply removes its last symbol, as formalized below.

Definition 3.4.5 (Shorthand). The shorthand of a string s = s1s2⋯sn is

short(s) = s1s2⋯sn−1.
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Moreover, given a set of strings L, let short(L) be the set of strings containing the

shorthand of each string in L.

The shorthand rotation property holds for a list T if for every s in T and i satis-

fying 1 ≤ i ≤ ∣s∣, there exist consecutive strings r and t in T such that short(⟲i (s))
is a substring of r ⋅ t. In other words, if the strings in T are concatenated together,

then its substrings include the set short(⟲ (s)) for each string s in T . Although

this property may at first seem esoteric, it turns out to be the key towards the inter-

esting results found in Section 4.2. This section proves that the shorthand rotation

property holds for the reverse cool-lex order of any bubble language. Before dis-

cussing the proof, the property is illustrated for two different strings within
Ð→
C (L)

of L = T({3,3,1,1,0,0,0,0}) (ordered trees with fixed branching sequence). First

consider one of its strings

s = 30030101.

The shorthand rotations of this string are listed below

short(⟲ (s)) = {3003010,0030101,0301013,3010130,

0101300,1013003,0130030,1300301}.

In this case, these desired substrings simply appear within
←ÐÐ
cool(s) ⋅ s and s ⋅

ÐÐ→
cool(s)

as illustrated below

←ÐÐ
cool(s) ⋅ s ⋅

ÐÐ→
cool(s) = ←ÐÐ30030101 ⋅ 30030101 ⋅ 30

Ð→
030101

= 33000101 ⋅ 30030101 ⋅ 30300101

= 330001013003010130300101.

In particular, the non-circular substrings of length n − 1 = 7 in the above underlined

substring are

0101300,1013003,0130030,1300301,3003010,0030101,0301013,3010130.

Since the above strings are identical to those in short(⟲ (s)), then the shorthand

rotation property has been demonstrated for s = 30030101 in
Ð→
C (L). Before continuing

with a second example, the reader is reminded that last(T ) and first(T ) are considered

consecutive within T (see page 111) and so
←ÐÐ
cool(s) and s are consecutive in

Ð→
C (L),

as are s and
ÐÐ→
cool(s) by Theorems 3.3.5 and 3.4.4.

In other cases, it is more difficult to find all of the shorthand rotations for a given
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string in reverse cool-lex order, and the desired substrings may be spread across the

concatenation of up to m additional pairs of consecutive strings in the list. For

example, consider

s = 31103000

as another string in the same language of ordered trees with fixed branching sequence.

In this case the concatenation of
←ÐÐ
cool(s) ⋅s and s ⋅

ÐÐ→
cool(s) does not contain all of the

shorthand rotations as illustrated below

←ÐÐ
cool(s) ⋅ s ⋅

ÐÐ→
cool(s) = 3

←ÐÐÐ
1103000 ⋅ 31103000 ⋅ Ð→31103000

= 30110300 ⋅ 31103000 ⋅ 11303000

= 301103003110300011303000.

Notice that the underlined substring contains only four shorthand rotations of s. To

find the remaining four shorthand rotations, consider the concatenations beginning at

strings obtained by greedily left-shifting the unfrozen symbols in the non-increasing

prefix of s, as well as the symbol following the non-increasing prefix of s. These

strings are given below

←ÐÐÐ
greedy(s,2) = ←Ð31103000

←ÐÐÐ
greedy(s,4) = 3

←Ð
1103000

←ÐÐÐ
greedy(s,5) = ←ÐÐÐ31103000

= 13103000 = 30113000 = 33110000.

Concatenating these strings with their successors in reverse cool-lex gives

13103000 ⋅
ÐÐ→
cool(13103000) 30113000 ⋅

ÐÐ→
cool(30113000) 33110000 ⋅

ÐÐ→
cool(33110000)

= 13103000 ⋅ ÐÐ→13103000 = 30113000 ⋅ 3ÐÐ→0113000 = 33110000 ⋅ ÐÐÐÐ→33110000

= 13103000 ⋅ 31013000 = 30113000 ⋅ 31130000 = 33110000 ⋅ 31100300

= 1310300031013000 = 3011300031130000 = 3311000031100300.

Collectively, the underlined substrings contain the remaining four shorthand rotations

of s. To understand why this is the case, consider the middle column above. Notice

that the two strings involved in the concatenation can be reexpressed as left- and

right-shifts of the fourth symbol within s = 31103000. That is,

30113000 ⋅ 31130000 = 3
←Ð
1103000 ⋅ 311

Ð→
03000.

In other words, a single copy of 0 is swept back and forth with respect to s in the
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above concatenation. This ensures that a suffix of s and a prefix of s are respectively

undisturbed within the concatenated strings, thereby allowing for the inclusion of the

shorthand rotation of s that omits this copy of 0, namely short(⟲5 (s)) = 3000 ⋅ 311.

Formally, these arguments require the results of Section 2.4.5. Towards the results

of Section 4.2, it is also worth noting that the shorthand rotation short(⟲i (s)) will

always appear at the ith position of two concatenated strings in reverse cool-lex order.

For example, in the middle column above, short(⟲5 (s)) = 3000311 begins at the fifth

position of 30113000 ⋅ 31130000. This point holds in general for all of the shorthand

rotations. The proof of the shorthand rotation property is divided into four lemmas.

Within the lemmas, the expression ⋅OT refers to the concatenation of all of the

strings in list T . For example, the following expression shows how this operation

is applied to the reverse cool-lex order of T({3,2,0,0,0}) (ordered trees with fixed

branching sequence).

⋅O
Ð→
C (T({3,2,0,0,0})) = 32000,20300,23000,30020,30200

= 32000 ⋅ 20300 ⋅ 23000 ⋅ 30020 ⋅ 30200

= 3200020300230003002030200.

Using this notation, the shorthand rotation property holds for a list T if the substrings

of ⋅OT include short(⟲ (s)) for all s in T .

Lemma 3.4.6 (Rotations 1 to ∣� (s)∣ + 1). Given a bubble language L, and s ∈ L with

f = ∣� (s)∣, then short(⟲i (s)) is a substring of ⋅O
Ð→
C (L) for all 1 ≤ i ≤ f + 1. In

particular, short(⟲i (s)) begins at the ith position of s ⋅
ÐÐ→
cool(s).

Proof. Let t =
ÐÐ→
cool(s). By Definition 3.4.3,

t =
ÐÐ→
shift(s, f, j)

for some value of j ≥ f . Therefore,

t1t2⋯tf−1 = s1s2⋯sf−1.

Therefore, short(⟲i (s)) begins at the ith position of s ⋅ t for all i within 1 ≤ i ≤
f + 1.

Lemma 3.4.7 (Rotations ∣� (s)∣ + 2 to ∣!(s)∣ + 1). Given a bubble language L, and

s ∈ L with k = ∣!(s)∣, then short(⟲i (s)) is a substring of ⋅O
Ð→
C (L) for all ∣� (s)∣+2 ≤
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i ≤ k + 1. In particular, short(⟲i (s)) begins at the ith position of r ⋅
ÐÐ→
cool(r) where

r =
←ÐÐÐ
greedy(s, i − 1).

Proof. Let t =
ÐÐ→
cool(r). Also, let f = ∣� (r)∣ and h = ∣!(r)∣ and g = ∣!!(r)∣, to align

with Definition 3.4.3. Since r =
←ÐÐÐ
greedy(s, i − 1) then

riri+1⋯rn = sisi+1⋯sn.

Furthermore, since si−1 is in the non-increasing prefix of s (by i ≤ k + 1)), and since

rneqs (by ∣� (s)∣ + 2 ≤ i ≤ k + 1 and (2.2)) then Lemma 2.4.5 implies that

r =
←ÐÐ
shift(s, i − 1, f).

Moreover, the same reasoning implies that f = h and h < g and g = k. Since f = h,

then Definition 3.4.3 implies that

t ∈ {ÐÐ→max(r, f, g),
ÐÐ→
shift(r, f, g + 1),

ÐÐ→
shift(r, f, n)}.

Therefore,

t =
ÐÐ→
shift(r, f, j)

for j ≥ i − 1. (The bound on j follows from the facts that i − 1 ≤ n, i − 1 ≤ g (by

i ≤ k + 1 and g = k), and
←ÐÐÐ
greedy(s, i − 1) =

←ÐÐ
shift(s, i − 1, f).) Since r =

←ÐÐ
shift(s, i − 1, f)

and t =
ÐÐ→
shift(r, f, j) for j ≥ i − 1, then t =

ÐÐ→
shift(s, i − 1, j). Therefore,

t1t2⋯ti−2 = s1s2⋯si−2.

Therefore, short(⟲i (s)) begins at the ith position of r ⋅ t for all i within ∣� (s)∣ + 2 ≤
i ≤ k + 1.

Lemma 3.4.8 (Rotation k+2). Given a bubble language L, and s ∈ L with k = ∣!(s)∣,
then short(⟲i (s)) is a substring of ⋅O

Ð→
C (L) for i = k + 2. In particular, short(⟲i

(s)) begins at the ith position of r ⋅
ÐÐ→
cool(r) where r =

←ÐÐÐ
greedy(s, k + 1).

Proof. Let t =
ÐÐ→
cool(r). Also, let f = ∣� (r)∣ and h = ∣!(r)∣ and g = ∣!!(r)∣, to align

with Definition 3.4.3. By (2.1) and Lemma 2.4.5,

r =
←ÐÐ
shift(s, k + 1, f).

Therefore,

rk+2rk+3⋯rn = sk+2sk+3⋯sn.
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There are now two cases to consider depending on how far sk+1 is left-shifted when

creating r. In the first case, sk+1 is left-shifted past all smaller symbols but not past

any symbols larger than sk+1. In this case, f < k and k < h. Therefore, f < h and so

by Definition 3.4.3,

t = ÐÐ→max(r, f, h).

Since h ≥ k + 1 and
←ÐÐÐ
greedy(s, k + 1) =

←ÐÐ
shift(s, k + 1, f), then

t =
ÐÐ→
shift(f, j,

) for j ≥ k + 1. Since r =
←ÐÐ
shift(s, k + 1, f) and t =

ÐÐ→
shift(f, j,) for j ≥ k + 1, then

t =
ÐÐ→
shift(s, k + 1, j). Therefore,

t1t2⋯tk = s1s1⋯sk.

Therefore, short(⟲k+2 (s)) begins at the (k + 2)nd position of r ⋅ t.
In the second case, sk+1 is left-shifted past all smaller symbols and past at least

one symbol larger than sk+1. In this case, f = h and h < g and rh > rg. Therefore, by

Definition 3.4.3,

t = ÐÐ→max(r, f, g).

However, it is also true that g ≥ k + 1. Since r =
←ÐÐ
shift(s, k + 1, f) and t =

ÐÐ→
shift(f, g,)

for g ≥ k + 1, then t =
ÐÐ→
shift(s, k + 1, g). Therefore,

t1t2⋯tk = s1s1⋯sk.

Therefore, short(⟲k+2 (s)) begins at the (k + 2)nd position of r ⋅ t.

Lemma 3.4.9 (Rotations ∣!(s)∣ + 3 to n). Given a bubble language L, and s ∈ L

with k = ∣!(s)∣, then short(⟲i (s)) is a substring of ⋅O
Ð→
C (L) for all k + 3 ≤ i ≤ n. In

particular, short(⟲i (s)) begins at the ith position of r ⋅
ÐÐ→
cool(r) where r =

←ÐÐ
cool(s).

Proof. By r =
←ÐÐ
cool(s) and Definition 3.1.3,

rk+3rk+4⋯rn = sk+3sk+4⋯sn.

Since
ÐÐ→
cool(r) =

ÐÐ→
cool(

←ÐÐ
cool(s)) = s by Theorem 3.4.4, then short(⟲i (s)) begins at the

ith position of r ⋅
ÐÐ→
cool(r) for all i within k + 3 ≤ i ≤ n.

Theorem 3.4.10 (Shorthand Rotation Property). If L is a bubble language and

s ∈ L, then there exists t ∈ L such that the substring of length n−1 in t ⋅
ÐÐ→
cool(t) equals
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short(⟲) (s)i. In other words, ⋅O
Ð→
C (L) contains every shorthand rotation of every

string in L as a substring.

Proof. The proof follows immediately from Lemmas 3.4.6-3.4.9.
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Chapter 4

Applications

“There is a deeply satisfying feeling that one obtains by watching a well ordered list
of combinatorial objects marching down the computer screen.”

- Frank Ruskey

This chapter investigates two types of applications for the results in this thesis.

The first application is in creating efficient algorithms for generating combinatorial

objects. The second application involves the creation of shorthand universal cycles.

4.1 Algorithms

“Algorithms existed for at least five thousand years, but people did not know that
they were algorithmizing.”

- Doron Zeilberger

By Theorem 3.3.5 any bubble language can be generated by the cool left-shift

operation. Furthermore, the pseudocode on page 128 provides a simple algorithm

that works for all bubble languages. This pseudocode can be optimized in different

ways depending on the specific bubble language. (The only optimization made in the

pseudocode involves an erroneous value for k on the first iteration.) This section will

discuss three generation algorithms that have already appeared in print: combinations

[73] in Section 4.1.1, balanced parentheses [72] in Section 4.1.2, and multiset permu-

tations [102] in Section 4.1.3. The efficiency of these cool-lex generation algorithms is

briefly discussed before presenting the individual algorithms.

Since cool left-shifts are greedy left-shifts involving the first or second symbol

following the non-increasing prefix of each string, the efficiency of these generation

algorithms depends upon the efficiency of performing these greedy left-shifts. In the
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case of combinations and multiset permutations the greedy left-shifts are greatly sim-

plified since every shift produces a string in the language. That is, the corresponding

algorithms always shift symbols into the first position. The greedy left-shifts are also

simplified in the case of generating balanced parentheses. In particular, left-shifting

the last symbol in a prefix of the form 1i0j10 is not possible when i = j. When i > j
then the last symbol in the prefix 1i0j10 can be greedily left-shifted until it reaches

the second position, thereby replacing the prefix 1i0j10 by 101i−10j1. On the other

hand, a greedy left-shift of the last symbol in a prefix of the form 1i0j1 will always

produce 1i+10j.

The above discussion on balanced parentheses also points out an important sim-

plification involving the generation of fixed-density bubble languages. Notice that a

greedy left-shift of the last symbol in a prefix of the form 1i0j1 will always cause the

prefix to be replaced by some 1i0h10j−h. Although this thesis describes the operation

as a left-shift, the change between 1i0j1 and 1i0h10j−h can also be described as a

single transposition. In particular, the two prefixes differ by a transposition of the

symbols in position i + j + 1 and i + h + 1. Similarly, a greedy left-shift of the last

symbol in a prefix of the form 1i0j10 can always be described using either one or

two transpositions. Therefore, the left-shift Gray codes presented in this thesis for

fixed-density bubble languages are also 2-transposition Gray codes, meaning that each

pair of successive strings differ by either one or two transpositions. Algorithmically,

this means that the fixed-density bubble languages can be generated using operations

that are basic to arrays instead of linked lists. For this reason, the algorithms pre-

sented in Sections 4.1.1 and 4.1.2 utilizes an array, whereas the algorithm presented

in Section 4.1.3 utilizes a linked list. The formal definition of a transposition appears

below. (In general, the cool-lex left-shift Gray codes presented in this thesis are also

(m + 2)-transposition Gray codes, where m is the number of distinct symbols in the

multiset of symbols. When m = 2 only half of these m + 2 = 4 transpositions are

required.)

Definition 4.1.1 (Transpositions). The transposition of the ith and jth symbols

within s = s1s2⋯sn where 1 ≤ i ≤ j ≤ n is

transpose(s, i, j) = s1s2⋯si−1sjsi+1si+2⋯sj−1sisj+1sj+2⋯sn.

In other words, the transposition puts the value sj into position i and the value si into

position j.

Each of the algorithms presented in this chapter is loopless and uses a constant
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number of additional variables. As mentioned in Section 1.2, the algorithms generate

the strings in-place using a single shared object. This means that a single array or

linked list stores the current string in cool-lex order, and then the string is modified

(using transpositions or shifts) to create the next string in the cool-lex order. After

each modification the visit informs the user of the algorithm that the next string is

ready for consideration. In this context the term loopless means that each successive

visit is called in worst-case O(1)-time, where the hidden constant does not depend

on the parameters of the particular language being considered. Similarly, the term

constant number of additional variables means that the algorithms can only use O(1)

simple variables, not including the single shared object storing the current string. (In

this thesis the simple variables include only individual pointers and single integers

that can range in value from 1 up to n.) In the presented implementations the

visit call passes the array or linked list to the user of the algorithm. However, in

some applications it may provide greater efficiency to instead pass the modification

that produced the new string. For example, if each string has an associated value,

then passing the modification may allow the user of the algorithm to update the

value of each successive string in a manner that is also loopless and uses a constant

number of additional variables. Chapter 5 discusses loopless algorithms for additional

combinatorial objects.

4.1.1 Combinations

“There are many ways to make a combination, it isn’t such a very sticky chore.”
- Jiminy Cricket singing on Adding Combinations [16]

In this section it will be assumed that L = C(s, t). That is, the language being

generated is the set of all binary strings containing s copies of 0 and t copies of 1. As

previously mentioned, languages of this type are also known as (s, t)-combinations (or

simply combinations) since each string in C(s, t) can be used to represent a different

choice of t elements from a set of size s+t. Within the presented algorithm y represents

the position of the leftmost 0 in the current string, and x represents the position of

the leftmost 1 in the current string such that x > y. The following remarks reexpress

the greedy left-shifts found in Definition 3.1.3 given these assumptions.

Remark 4.1.2 (
←ÐÐÐ
greedy(s, k+1) for combinations). Suppose s = 1y−10x−y11z ∈ C(s, t)

with 0 < y < x and k = ∣!(s)∣ = x − 1. Then,

←ÐÐÐ
greedy(s, k + 1) =

←ÐÐ
shift(s, x,1) = 1y0x−y1z = transpose(s, y, x).
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In other words, greedy left-shifting the symbol following the non-increasing prefix is

equivalent to transposing the xth and yth symbol.

Remark 4.1.3 (
←ÐÐÐ
greedy(s, k+2) for combinations). Suppose s = 1y−10x−y10z ∈ C(s, t)

with 0 < y < x and k = ∣!(s)∣ = x − 1. Then,

←ÐÐÐ
greedy(s, k+2) =

←ÐÐ
shift(s, x+1,1) = 01y−10x−y1z = transpose(transpose(s, y, x),1, x+1).

In other words, greedy left-shifting 0 when it is the second symbol following the non-

increasing prefix is equivalent to transposing the xth and yth symbol followed by trans-

posing the first and (x + 1)st symbols in the result.

To further simplify the cool left-shift operation in the case of combinations, con-

sider the condition

sk < sk+2 or
←ÐÐÐ
greedy(s, k + 2) = s

found in (3.1b) of Definition 3.1.3. Notice that
←ÐÐÐ
greedy(s, k+2) ≠ s whenever k = ∣!(s)∣

and k + 2 ≤ n. Furthermore, the non-increasing prefix of every string in a non-trivial

fixed-density bubble languages must end in 0. Therefore, sk = 0. For these reasons

the above condition is simplified to sk+2 = 1. This observation together with x = k + 1

and the previous two remarks allows the cool left-shift operation for combinations to

be simplified as follows

←ÐÐ
cool(s) = {

transpose(s, y, x) if sx+1 = 1 (4.1a)

transpose(transpose(s, y, x),1, x + 1) otherwise. (4.1b)

(The above expression assumes that the non-increasing prefix ends at least two sym-

bols before the end of s. The two strings that do not satisfy this assumption are

discussed after the algorithms are presented.)

In both of the following algorithms — CoolCombo(s, t) and BranchlessCombo(s, t)

— the current string is stored in array b and b[i] refers to the ith symbol in b. Both

algorithms produce the same output, but BranchlessCombo(s, t) is a branchless

algorithm since it uses standard techniques to remove the two if-statements found in

CoolCombo(s, t). (Within this algorithm it is also necessary to always perform two

transpositions, even when one is sufficient.)

The algorithm CoolCombo(s, t) is now explained in more detail. Remarks 4.1.2

and 4.1.3 show how each successive string can be efficiently modified into the next

string by using the values of x and y. In particular, lines 6 and 7 in CoolCombo(s, t)

perform the transposition of the xth and yth symbols, while lines 11 and 12 perform
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the transposition of the first and (x + 1)st symbol whenever the latter is 0. (Notice

that the x+1 = k+2 and that the value of x is incremented between the two previously

mentioned pairs of lines.) Remarks 4.1.2 and 4.1.3 also show how the values of x and

y can be efficiently updated to reflect these modifications. When the (x+1)st symbol

is 1 then Remark 4.1.2 shows that the updates simply involve incrementing the two

values as performed on lines 8 and 9. On the other hand, when the (x + 1)st symbol

is 0 then Remark 4.1.3 shows that the updates have two cases depending on whether

or not 1y−1 = ε in the resulting string 01y−10x−y1z. The algorithm tests if the (x+1)st
symbol is 0 on line 10. Within the if-block the value of y is set to 1 on line 16 to

reflect the fact that the resulting string begins with 0. The value of x either remains

incremented or is reset to 2 depending on whether or not 1y−1 = ε. (Again notice that

the value of y is incremented before reaching the if-statement on line 13.)

Require: t > 0
1: b← array(1t0s)
2: x← t
3: y ← t
4: visit(b)
5: while x < s + t do
6: b[x] ← 0
7: b[y] ← 1
8: x← x + 1
9: y ← y + 1

10: if b[x] = 0
11: b[x] ← 1
12: b[1] ← 0
13: if y > 2
14: x← 2
15: end
16: y ← 1
17: end
18: visit(b)
19: end

Algorithm 2: CoolCombo(s, t) is a loopless algorithm that generates (s,t)-
combinations in array b using the additional variables x and y.

In Algorithms 2 and 3 the last string in cool-lex order

last(
←Ð
C (L)) = ! = 1t0s

is generated first instead of last for consistency with the published versions [70, 73].
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Require: t > 0
1: b← array(1t0s)
2: x← t
3: y ← t
4: visit(b)
5: while x < s + t do
6: b[x] ← 0
7: b[y] ← 1
8: b[1] ← b[x + 1]
9: b[x + 1] ← 1

10: x← x + 1 − (x − 1) ⋅ b[2] ⋅ (1 − b[1])
11: y ← b[1] ⋅ y + 1
12: visit(b)
13: end

Algorithm 3: BranchlessCombo(s, t) is a loopless and branchless algorithm that
generates (s,t)-combinations in array b using the additional variables x and y.

The initializations on lines 2 and 3 allow this string to be changed into the first string

in cool-lex order

first(
←Ð
C (L)) =

←ÐÐÐ
greedy(1t0s, s + t) = 01t0s−1

after the first iteration. The last string generated by the algorithms is then

last(
←Ð
C (L/1)) ⋅ 1 = 1t−10s1

which is the unique string where x = s + t and explains the terminating condition on

line 5. (Expressions for the first and last strings in cool-lex order can be found in

Lemma 3.2.4.)

Before concluding this section it is mentioned that Knuth [45] has created a loop-

less and branchless implementation of CoolCombo(s, t) for the mmix architecture.

This implementation is presented below with a C implementation to its right. The ⊖
on line 9 refers to the special saturating substraction operation (also known as monus

or dot minus) found in mmix and is used to avoid the simple if-statement found in

the C implementation.

4.1.2 Balanced Parentheses

In this section it will be assumed that L = P(t). That is, the language being generated

is the set of all balanced parentheses containing t copies of 1 and t copies of 0, where

each 1 represents an open parenthesis and each 0 represents a closed parenthesis.
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Require: t > 0
1: R2 ← (1 ≪ s + t)
2: R3 ← (1 ≪ t) − 1
3: while R3 ∧R2 = 0 do
4: visit(R3)
5: R0 ← R3 ∧ (R3 + 1)
6: R1 ← R0 ⊕ (R0 − 1)
7: R0 ← R1 + 1
8: R1 ← R1 ∧R3

9: R0 ← (R0 ∧R3) ⊖ 1
10: R3 ← R3 +R1 −R0

11: end

Algorithm 4: WordCombo(s, t) is a loopless and branchless algorithm for the
mmix architecture that generates computer words with s zeros and t ones stored in
register R3 using the additional registers R0, R1, and R2.

void WordCombo(int s, int t) {

unsigned int R0, R1, R2, R3;

R2 = (1 << s+t);

R3 = (1 << t) - 1;

while ((R3 & R2) == 0) {

visit(R3);

R0 = R3 & (R3+1);

R1 = R0 ^ (R0-1);

R0 = R1 + 1;

R1 = R1 & R3;

R0 = ((R0 & R3) >= 1) ? (R0 & R3) - 1 : 0;

R3 = R3 + R1 - R0;

}}

Algorithm 5: C implementation of Algorithm 4.
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The presented CoolCat(t) algorithm is remarkably similar to CoolCombo(t,t) and

uses the same conventions for the values of x and y and b. (The term CoolCat pays

homage to the fact that ∣P(t)∣ is the tth Catalan number.) The similarity between the

algorithms is largely due to the following remark that shows the operation of greedy

left-shifting the symbol following the non-increasing prefix is identical in combinations

and balanced parentheses.

Remark 4.1.4 (
←ÐÐÐ
greedy(s, k+1) for balanced parentheses). Suppose s = 1y−10x−y11z ∈

P(t) with 1 < y < x and k = ∣!(s)∣ = x − 1. Then,

←ÐÐÐ
greedy(s, k + 1) =

←ÐÐ
shift(s, x,1) = 1y0x−y1z = transpose(s, y, x).

In other words, greedy left-shifting the symbol following the non-increasing prefix is

equivalent to transposing the xth and yth symbol.

On the other hand, there are two differences between combinations and balanced

parentheses when greedy left-shifting a 0 that is the second symbol following the non-

increasing prefix. First, the greedy left-shift is trivial if the non-increasing prefix is

itself balanced (contains the same number of 0s and 1s). That is, the greedy left-shift

does not change the string if and only if x − 1 = 2(y − 1). (Recall that y represents

the position of the first 0 in the current string and x represents the position of the

first 1 in the current string with x > y.) On the other hand, when the non-increasing

prefix contains more 0s than 1s, then the greedy left-shift can shift the 0 as far as the

second position. These results are formalized in the following remark.

Remark 4.1.5 (
←ÐÐÐ
greedy(s, k+2) for balanced parentheses). Suppose s = 1y−10x−y10z ∈

P(t) with 1 < y < x and k = ∣!(s)∣ = x−1. Then,
←ÐÐÐ
greedy(s, k+2) = s if x−1 = 2(y−1)

and otherwise

←ÐÐÐ
greedy(s, k+2) =

←ÐÐ
shift(s, x+1,2) = 101y−20x−y1z = transpose(transpose(s, y, x),2, x+1).

In other words, greedy left-shifting a 0 when it is the second symbol following the non-

increasing prefix is trivial when the non-increasing prefix contains the same number of

0s and 1s, and is otherwise equivalent to transposing the xth and yth symbol followed

by transposing the second and (x + 1)st symbols in the result.

These remarks allow the cool left-shift operation (
←ÐÐ
cool(s)) for balanced parenthe-
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ses to be simplified as follows

= {
transpose(s, y, x) if sx+1 = 1 or x − 1 = 2(y − 1) (4.2a)

transpose(transpose(s, y, x),2, x + 1) otherwise. (4.2b)

(The above expression assumes that the non-increasing prefix ends at least two sym-

bols before the end of s. The only string that does not satisfy this assumption is

the non-increasing string, since 1t−10t1 ∉ P(t), and this string is discussed after the

algorithm is presented.)

Require: t > 0
1: b← array(1t0t)
2: x← t
3: y ← t
4: visit(b)
5: while x < 2t − 1 do
6: b[x] ← 0
7: b[y] ← 1
8: x← x + 1
9: y ← y + 1

10: if b[x] = 0
11: if x = 2y − 2
12: x← x + 1
13: else
14: b[x] ← 1
15: b[2] ← 0
16: x← 3
17: y ← 2
18: end
19: end
20: visit(b)
21: end

Algorithm 6: CoolCat(t) generates balanced parentheses of length 2t (P(t)) in
array b using the additional variables x and y

When comparing CoolCat(t) and CoolCombo(s,t), notice that the lines be-

tween 14 and 17 account for the difference in non-trivial shifts found in Remark

4.1.3 and 4.1.5. Again the CoolCat(t) algorithm begins by visiting 1t0t for consis-

tency with the published version [72], although this time the termination condition

is x < 2t − 1 instead of x < 2t due to the fact that 1t−10t1 ∈ C(t, t) and 1t−10t1 ∈ P(t).
Finally, the additional increment of x in line 12 is explained by the following obser-

vation: If 1i0i10z ∈ P(t) then the first symbol in z is equal to 1. This allows the new
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value of x to be computed without scanning the resulting string.

It is mentioned that the algorithm presented in [72] is slightly more general than

CoolCat(t) since it generates any P(t)/0t−s. See [2] for an implementation and

practical run-time analysis. Chapter 5 discusses how cool-lex order can be used to

generate binary trees directly.

4.1.3 Multiset Permutations

In this section it will be assumed that L = Π(M). That is, the language being gen-

erated is the set of all permutations of the multiset M. The presented algorithm is

remarkable for the fact that it stores no information about this multiset. In particu-

lar, the algorithm does not store its number of total symbols, its number of distinct

symbols, or the relative frequencies of any of its symbols. The cool left-shift is simpli-

fied below. In the case of multiset permutations, the greedy left-shifts are non-trivial

and result in the symbol being shifted into the first position. Again, k is the length

of the non-increasing prefix of string s with length n. That is, k = ∣!(s)∣ and n = ∣s∣.

←ÐÐ
cool(s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

←ÐÐ
shift(s, n,1) if k = n or k = n − 1 (4.3a)
←ÐÐ
shift(s, k + 1,1) if k ≤ n − 2 and sk < sk+2 (4.3b)
←ÐÐ
shift(s, k + 2,1) otherwise. (4.3c)

The algorithm stores the current string in a singly-linked list pointed to by its head

pointer h. Each node in the linked list has a value field named val (storing the

symbol) and a next field named next. The omitted init(M) call creates a singly-

linked list storing the symbols of M in non-increasing order with h, i, and j pointing

to its first, second-last, and last nodes, respectively. The i and j pointers are used

for keeping track of the location of the non-increasing prefix and are again discussed

after the algorithm. The two other pointers used in the algorithm, s and t, are used

for performing each shift. (The algorithm can also be implemented using two pointers

instead of four, although the resulting program is slightly more complicated.) It is

assumed that M contains at least two distinct symbols. The first three iterations of

MultiCool({1,1,2,4}) are illustrated in Figure 4.1.

The last string in cool-lex order, the non-increasing string !, is again visited

first instead of last. The algorithm then continues until this string is encountered

again. For this reason, the first iteration is a special case since init(E) initializes i

to be “off-by-one”. After the first iteration, i points to the last node in the multiset

permutation’s non-increasing prefix and j points to the next node.
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[h,i,j] ← init(M)
visit(h)
while j.next ≠ φ or j.val < h.val do

if j.next ≠ φ and i.val ≥ j.next.val
s← j

else
s← i

end
t← s.next
s.next← t.next
t.next← h

if t.val < h.val
i← t

end
j← i.next
h← t

visit(h)
end

Algorithm 7: MultiCool(M) is a loopless algorithm that generates the permuta-
tions of multiset M in singly linked list with head h using additional pointers i, j, s,
and t.

jjj iii

hhh

111 111 222 444 φφφ , , , . . .

Figure 4.1: The first three visit calls in MultiCool({1,1,2,4}) will produce the
configurations given above, where left and right boxes of each node refer to its value
(.val) and next (.next) fields.

Chapter 5 discusses the efficiency of implementing MultiCool(M) using an array

instead of a linked list.

4.2 Shorthand Universal Cycles

“Only the old people write
me in longhand!”

- Brett Somers

“I am told that I talk in short-
hand and then smudge it.”

- J. R. R. Tolkien

The second discussed type of application involves the construction of shorthand

universal cycles. These combinatorial objects are intimately related to shift Gray
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codes, and this section begins by outlining several of these connections. Recall from

Section 1.2.3 that universal cycles generalize the concept of de Bruijn cycles by pack-

ing every string of a language exactly once into a single circular string. Also recall

that universal cycles for fixed-content languages require an alternate representation

of each string (except in trivial cases). For instance, the shorthand representation

removes the last symbol from a string (see Definition 3.4.5) and a shorthand universal

cycle is a universal cycle containing the shorthand of every string in a language. For

example, the following string

321131123121 (4.4)

is a shorthand universal cycle for L = Π({1,1,2,3}) (multiset permutations) since its

substrings of length n − 1 = 3 are

321,211,113,131,311,112,123,231,312,121,213,132 (4.5)

and comprise the shorthand representation of every string in L. Shorthand represen-

tation is particularly useful for fixed-content languages since the removed last symbol

is redundant and is uniquely determined by the remaining symbols. In the above case,

given any three symbols in {1,1,2,3} then the fourth symbol is uniquely determined.

Thus, the substrings in (4.5) can be extended to strings in L by simply suffixing the

missing symbol

3211,2113,1132,1312,3112,1123,1231,2311,3121,1213,2131,1321. (4.6)

As mentioned in Section 1.2.3 shorthand universal cycles for fixed-content languages

are also interesting due to their associated circular right-shift Gray codes in which

each s is followed by either
ÐÐ→
shift(s,1, n) or

ÐÐ→
shift(s,1, n−1). Since there are two choices

for each transition, then the Gray code can also be represented by a binary string of

length ∣L∣. For example, the permutations in (4.6) can be generated by the following

binary string

001100010010 (4.7)

where the ith bit is 0 or 1 if the ith permutation can be transformed into the (i +
1)st permutation by a right-shift of length n or n − 1, respectively. That is, the

permutations begin
ÐÐ→
3211,

ÐÐ→
2113,

Ð→
1132, . . . and so the binary string begins 001⋯. (The

seventh and twelfth bits in (4.7) could be 0 or 1 since
ÐÐ→
1231 = Ð→1231 and

ÐÐ→
1321 = Ð→1321.)

Given a cyclic right-shift Gray code for L using only
ÐÐ→
shift(s,1, n) and

ÐÐ→
shift(s,1, n −

1), then an associated shorthand universal cycle can be obtained by concatenating
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the first symbol of each string. For example, the shorthand universal cycle in (4.4)

simply contains the first symbol of each permutation in (4.6). These observations are

summarized below.

Remark 4.2.1 (Shorthand Universal Cycles and Shift Gray Codes). If L is a fixed-

content language, then L has a shorthand universal cycle if and only if it has a cyclic

Gray code where successive strings are obtained by right-shifting the first symbol into

the last or second-last position.

Since right-shifts are transformed into left-shifts by reversing the order of strings

(or by reversing each individual string) then shorthand universal cycles also provide

special cases of left-shift Gray codes. Shorthand universal cycles are also related

to shift Gray codes in another important way. Suppose s and t are consecutive

non-overlapping substrings of length n in a shorthand universal for a fixed-content

language L

⋯s1s2⋯snt1t2⋯tn⋯.

To ensure that the substrings in the universal cycle have the correct content, notice

that the ith occurrence of symbol j within t cannot occur more than one position

to the left of the ith occurrence of symbol j within s. To make this observation

more concrete, consider a shorthand universal cycle for the permutations of {1,1,2,3}
containing the following substring

⋯11231321⋯.

Notice that the first occurrence of 3 in s = 1123 appears at position 4, while the first

occurrence of 3 in t = 1321 appears in position 2. Therefore, the underlined substring

above contains too many copies of 3. One way to ensure that shorthand universal

cycles have substrings with the correct content is to ensure that successive substrings

of length n form a right-shift Gray code. This observation suggests that reverse

cool-lex order could be of use in the construction of shorthand universal cycles. For

example, the shorthand universal cycle given in (4.4) is simply the concatenation of

N({1,1,2,3}) (multiset necklaces) in reverse cool-lex order

Ð→
C (N({1,1,2,3})) = 3

Ð→
211,31

Ð→
12,3

Ð→
121.

On the other hand, arbitrary right-shift Gray codes of necklaces do not have this

property. For example, the concatenation of the following circular right-shift Gray
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for N({0,0,0,0,1,1,1}) is not a shorthand universal cycle

000
Ð→
0111,00

Ð→
01101,0010

Ð→
101,00

Ð→
10011,000

Ð→
1011

since the underlined substring 010010 appears twice.

This section proves that shorthand universal cycles exist for multiset permuta-

tions. Furthermore, the proof is constructive and uses reverse cool-lex order in much

the same way as lexicographic order is used to construct de Bruijn cycles in the FKM

algorithm. The main theorem is contained in Section 4.2.3. Sections 4.2.1 and 4.2.2

discuss the interesting special cases of permutations and binary strings, and intro-

duce notation and intermediate results. The end of Section 4.2.3 also briefly discusses

the efficient generation of shorthand universal cycles and the creation of shorthand

universal cycles that avoid periodic strings.

4.2.1 Permutations

Prior to this thesis, the only explicitly constructed shorthand universal cycles were for

permutations. Historically, the first construction arose from the bell-ringing commu-

nity [33], while the first published construction appeared quite recently [71]. Although

their associated algorithms are not discussed in this thesis, both constructions allow

the shorthand universal cycles to be generated in O(1)-time per symbol. A similar

algorithmic result may also hold for the construction provided in this thesis (see the

note at the end of this chapter). Shorthand universal cycles for permutations are also

of particular interest due to their one-to-one correspondence with Hamiltonian cycles

in directed Cayley graphs on the symmetric group generated by σn and σn−1 where

σk is the rotation (1 2 ⋯ k) (see [71] for more details). The three constructions are

now discussed in more detail.

Bell-Ringer’s Construction

The bell-ringer’s construction can be succinctly described in terms of the associated

Gray code for permutations, and relies on two values. Given p1p2⋯pn ∈ Π({1,2, . . . , n})
let j represent the maximum value of p1 and pn, and let k represent the maximum

value such that n n − 1 ⋯k appears in the permutation as a circular substring. For

example, if the permutation is 431265 then j = 5 (since 5 is the maximum of 4 and 5)

and k = 3 (since 6543 appears as a circular substring). Given these values, the next
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permutation is obtained by a prefix shift of length n − 1 if

k − 1 ≤ j ≤ n − 1 (4.8)

and otherwise the next permutation is obtained by a prefix shift of length n. For

example, given the aforementioned permutation 431265 then the next permutation is

312645 since (4.8) is satisfied and so a prefix shift of length n − 1 is performed. As

a more complete example, the permutations of {1,2,3,4} appear below along with

each permutation’s associated value of k and j (above as (k, j)) and the prefix shift

used to obtain the next permutation (below)

(1,4)
4321

0

(1,4)
3214

0

(1,3)
2143

1

(4,3)
1423

1

(4,4)
4213

0

(4,4)
2134

0

(4,2)
1342

0

(4,3)
3421

1

(4,4)
4231

0

(4,4)
2314

0

(4,3)
3142

1

(1,2)
1432

1

(3,4)
4312

0

(3,4)
3124

0

(4,3)
1243

1

(4,3)
2413

1

(4,4)
4123

0

(4,4)
1234

0

(4,2)
2341

0

(4,3)
3412

1

(4,4)
4132

0

(4,4)
1324

0

(4,3)
3241

1

(3,2)
2431

1
.

This order has been described as a variation of the Johnson-Trotter-Steinhaus order

for permutations [33], which is known to bell-ringers as plain changes and dates back

at least to 1668 [15]. The associated shorthand universal cycle is

432142134231431241234132

while the associated binary string is restated below

001100010011001100010011. (4.9)

Contemporary Construction

The recently published construction can be succinctly formalized using the binary

string interpretation. The base case occurs with 00 giving the permutations 21,12

when n = 2. If x1x2⋯xn! is the binary string representation for generating Π(n) by

prefix-shifts then

001n−2 x1 001n−2 x2 ⋯ 001n−2 xn! (4.10)

is the binary string representation for generating Π(n + 1) by prefix-shifts, where

xi = 1 − xi and recall that 1n−2 represents n − 2 copies of 1. For example, the binary

string for n = 3 is

00 0̄ 00 0̄ = 001001. (4.11)
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Thus, the associated circular right-shift Gray code for n = 3 is

Ð→
321,

Ð→
213,

Ð→
132,

Ð→
312,

Ð→
123,

Ð→
231 (4.12)

and the associated shorthand universal cycle is

321312.

Continuing the pattern given by (4.10), the binary string for n = 4 is obtained from

(4.11) as follows

001 0̄ 001 0̄ 001 1̄ 001 0̄ 001 0̄ 001 1̄ = 001100110010001100110010. (4.13)

The associated circular right-shift Gray code for n = 4 is

4321,3214,2143,1423,4213,2134,1342,3412,4132,1324,3241,2431,

4312,3124,1243,2413,4123,1234,2341,3421,4231,2314,3142,1432

and the associated shorthand universal cycle is

432142134132431241234231. (4.14)

Interestingly, the universal cycle for n = 4 given in (4.14) can be obtained by prefixing

4 to the front of each permutation in the right-shift Gray code for n = 3 given in

(4.12). That is,

432142134132431241234231 = ⋅O4321,4213,4132,4312,4123,4231.

This relationship holds in general, and provides an alternate method for constructing

these shorthand universal cycles.

Cool-lex Construction

The shorthand universal cycle for Π({1,2,3,4}) arising from this thesis is

432142134123423143124132 (4.15)
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and the associated permutations of {1,2,3,4} are

4321,3214,2143,1423,4213,2134,1342,3412,4123,1234,2341,3421,

4231,2314,3142,1432,4312,3124,1243,2413,4132,1324,3241,2431.

To illustrate the origins of the shorthand universal cycle in (4.15), consider the cool-

lex order for multiset necklaces over {1,2,3,4}

←Ð
C (N({1,2,3,4})) = 4132,4312,4231,4123,4213,4321. (4.16)

Notice that a shorthand universal cycle is not created by concatenating the strings in

(4.16) since 242 would be an invalid substring within 4312 ⋅ 4231. On the other hand,

reverse cool-lex order gives

Ð→
C (N({1,2,3,4})) = 4321,4213,4123,4231,4312,4132 (4.17)

and the shorthand universal cycle in (4.15) is the concatenation of these strings. The

following definition provides notation for succinctly expressing concatenations of this

type.

Definition 4.2.2 (Cool-lex Shorthand Universal Cycle with Periodic Permutation

Repetitions). Given a multiset of symbols M, the cool-lex shorthand universal cycle

with periodic permutation repetitions is

U+(M) = ⋅O
Ð→
C (N(M)).

In other words, U+(M) is the concatenation of multiset necklaces in reverse cool-lex

order.

For example,

U+({1,2,3,4}) = 4321 ⋅ 4213 ⋅ 4123 ⋅ 4231 ⋅ 4312 ⋅ 4132

is the concatenation of the strings in (4.17), and provides the shorthand universal

cycle in (4.15). The name and symbology used in Definition 4.2.2 is due to the fact

that U+(M) can contain duplicated substrings, as illustrated in Section 4.2.2. On

the other hand, U+(M) is a shorthand universal cycle whenever M is a set. (In fact,

Theorem 4.2.4 implies that U+(M) is a shorthand universal cycle for Π(M) if and

only if the greatest common divisor of the multiplicities of the symbols in M is 1.)
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The binary string associated with the cool-lex shorthand universal cycle in (4.15)

is

001100100011001100100011. (4.18)

While the binary strings in (4.9), (4.13), and (4.18) are identical up to rotation and

reflection, the three constructions produce different shorthand universal cycles for

larger values of n. Chapter 5 discusses the goal of minimizing and maximizing the

sum of these binary strings.

4.2.2 Fixed-Density de Bruijn Cycles

While shorthand universal cycles for permutations have previously been constructed,

shorthand universal cycles for fixed-density binary strings are also interesting. In

particular, a shorthand universal cycle for C(k, k) is a universal cycle for the middle

levels. That is,

short(C(k, k)) = C(k − 1, k) ∪C(k, k − 1)

where the middle levels are the strings in C(k − 1, k) ∪C(k, k − 1). For example, the

following string

11100011001010110100 (4.19)

is a universal cycle for the middle levels with k = 3 since its substrings are those in

C(2,3) ∪C(3,2)

11100,11000,10001,00011,00110,01100,11001,10010,00101,01010,

10101,01011,10110,01101,11010,10100,01001,10011,00111,01110.

On the other hand, the strings in C(3,3) can be obtained from those above by suffixing

0 and 1 to those in C(2,3) and C(3,2) respectively

111000,110001,100011,000111,001101,011001,110010,100101,001011,010101,

101010,010110,101100,011010,110100,101001,010011,100110,001110,011100.

For this reason, the string in (4.19) can also be considered a fixed-density de Bruijn

cycles. In particular, the above strings are ordered by prefix right-shifts of length five

and six that can easily be determined from (4.19). Due to the number of applications

for binary de Bruijn cycles, it is also possible that fixed-density de Bruijn cycles could

have significant value in the real-world. Hurlbert and Isaac [37] note that it is possible
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to prove that fixed-density de Bruijn cycles exist by modifying de Bruijn’s original

arguments [13]. On the other hand, this proof does not lead to an efficient construc-

tion. Furthermore, the construction using reverse cool-lex order in Section 4.2.1 only

works when the number of 0s and 1s are relatively prime (see Theorem 4.2.4). To

illustrate the problem that occurs when the number of 0s and 1s share a common

factor, consider the reverse cool-lex order for multiset necklaces over {0,0,0,1,1,1}

Ð→
C (N({0,0,0,1,1,1})) = 111000,110010,101010,110100. (4.20)

In this case, the cool-lex shorthand universal cycle with periodic permutation repeti-

tions is

U+({0,0,0,1,1,1}) = 111000110010101010110100. (4.21)

However, this is not a shorthand universal cycle since the underlined substring con-

tains three copies of 01010 and three copies of 10101. Fortunately, the problem of

repeated substrings can be fixed by including only the non-repeating or aperiodic

prefix of each string in the concatenation.

Definition 4.2.3 (Aperiodic prefix). The aperiodic prefix of s = s1s2⋯sn is

aperiodic(s) = s1s2⋯sp

where p is the smallest divisor of n such that

s =
n/p copies of s1s2⋯sp

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
s1s2⋯sp ⋅ s1s2⋯sp ⋅ ⋯ ⋅ s1s2⋯sp . (4.22)

In other words, aperiodic(s) is the shortest prefix of s that can be concatenated an

integral number of times to produce s. Moreover, given a list T , let aperiodic(T ) be

the list containing the aperiodic prefix of each string in T and in the same relative

order.

A string is periodic if aperiodic(s) ≠ s and is otherwise aperiodic. Within (4.20) the

only periodic necklace is 101010 and aperiodic(101010) = 10. Therefore, the modified

concatenation using aperiodic prefixes is

111000 ⋅ 110010 ⋅ 10 ⋅ 110100 (4.23)

which is the shorthand universal cycle previously seen in (4.19). A consequence of

the results in Section 4.2.3 is that same general construction always produces fixed-
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density de Bruijn cycles. In this upcoming section, the modified U+({0,0,0,1,1,1})
will be denoted by U({0,0,0,1,1,1}). Figure 4.2 shows the strings in C(4,5)∪C(5,4)
and in C(5,5) that result from U({0,0,0,0,0,1,1,1,1,1}). More generally, the next

section proves that U(M) produces a shorthand universal cycle for the permutations

of any multiset M.

This section concludes with an intermediate theorem involving U+(M). The result

formalizes the repeated shorthand rotations within U+(M), as well as the number of

times they are repeated. To illustrate the result, notice that the periodic strings

in C(3,3) are 010101 and 101010, and the shorthand versions of these strings —

01010 and 10101 — are precisely the substrings that were repeated within (4.21).

Furthermore, they each appeared ∣s∣
∣aperiodic(s)∣ =

6
2 = 3 times.

Theorem 4.2.4 (Cool-lex Shorthand Universal Cycles for Multiset Permutations

with Periodic Permutation Repetitions). U+(M) includes ∣s∣
∣aperiodic(s)∣ copies of

short(s) for each s ∈ Π(M). In other words, U+(M) is a shorthand universal cy-

cle for the permutations of M except that the shorthand of periodic permutations are

repeated.

Proof. Consider an individual permutation s ∈ Π(M). Let g = ∣aperiodic(s)∣ and

j = n
g . Let r be the necklace representation (i.e., lexicographically largest rotation)

of s. Notice that g = ∣aperiodic(r)∣ since aperiodic prefix lengths are closed under

rotations. Finally, let h be the minimum positive integer such that s =⟲h (r). Since

r repeats every g symbols then

s =⟲h (r) =⟲h+g (r) =⟲h+2⋅g (r) = ⋯ =⟲h+(j−1)⋅g (r).

Thus, there are j rotations of r that equal s. (Notice h + (j − 1) ⋅ g ≤ n since h ≤ g.)

Therefore, Lemmas 3.4.6-3.4.9 imply that short(s) appears as a substring of U+(M)
at least j times.

4.2.3 Multiset Permutations

This section proves that reverse cool-lex order can be used to create shorthand univer-

sal cycles for the permutations of any multiset. In particular, the shorthand universal

cycle is denoted U(M) and is defined below. The proof involves several small steps.

The section finishes with brief discussions of efficient generation and shorthand uni-

versal cycles that avoid periodic multiset permutations.
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Figure 4.2: An artistic representation of the cool-lex shorthand universal cycle for
(5,5)-combinations. Each ring is identical up to rotation (except for the outermost
bottom ring) and can either be interpreted as a universal cycle for the middle levels or
a fixed-density de Bruijn cycle. White and black regions represent 0 and 1 respectively.
Individual strings are read along a line segment originating from the center, and the
first and last strings are at either side of 12 o’clock. The top figure includes the
strings comprising the middle levels: (4,5)- and (5,4)-combinations. The bottom
figure suffixes the last (redundant) bits to create (5,5)-combinations.
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Definition 4.2.5 (Cool-lex Shorthand Universal Cycle). Given a multiset of symbols

M, the cool-lex universal cycle with periodic repetitions is

U(M) = ⋅O aperiodic(
Ð→
C (N(M))).

In other words, U(M) is the concatenation of the aperiodic prefixes of multiset neck-

laces in reverse cool-lex order.

For example, U({1,1,2,2,3,3}) can be constructed with the aid of Table 3.1 as

follows

U({1,1,2,2,3,3}) = 332211 ⋅ 322131 ⋅ 321231 ⋅ 322311 ⋅ 323211 ⋅ 332112 ⋅ 321312 ⋅ 312⋅

323112 ⋅ 331122 ⋅ 313122 ⋅ 331212 ⋅ 332121 ⋅ 321 ⋅ 323121 ⋅ 331221.

In order to prove that U(M) is a shorthand universal cycle for the permutations of

M it is necessary to prove several small results. The first lemma involves the length

of U(M).

Lemma 4.2.6 (Cool-lex Shorthand Universal Cycle Length). Given any multiset M,

∣U(M)∣ = ∣Π(M)∣.

In other words, cool-lex shorthand universal cycles have the correct length.

Proof. Notice that the rotation set ⟲ (s) contributes ∣aperiodic(s)∣ to both sides of

the stated equality for each necklace s ∈ N(M).

The second lemma examines the role of periodic necklaces in cool-lex order. To

illustrate the results of the lemma, consider the strings before and after the periodic

necklace 312312 in cool-lex order

ÐÐ→
cool(312312) = 3

Ð→
12312

←ÐÐ
cool(312312) = 3

←Ð
12312

= 323112 = 321312.

In particular, the strings before and after 312312 are aperiodic, and adjacent sym-

bols (s2 and s3) in s are respectively right-shifted and left-shifted when creating
ÐÐ→
cool(312312) and

←ÐÐ
cool(312312).
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Lemma 4.2.7 (Periodic Necklaces). Suppose L = N(M) and s ∈ L and ∣L∣ ≥ 2 and

aperiodic(s) ≠ s and let ∣!(s)∣ = k. Then, there exist values x > k and y ≤ k such that

aperiodic(
ÐÐ→
cool(s)) =

ÐÐ→
cool(s) and

ÐÐ→
cool(s) =

ÐÐ→
shift(s, k, x)

and

aperiodic(
←ÐÐ
cool(s)) =

←ÐÐ
cool(s) and

←ÐÐ
cool(s) =

←ÐÐ
shift(s, k + 1, y)

In other words, two periodic necklaces cannot be consecutive in cool-lex order. Further-

more, adjacent symbols (sk and sk + 1) are right-shifted and left-shifted, respectively,

when applying
ÐÐ→
cool and

←ÐÐ
cool to a periodic necklace.

Proof. Before starting the main part of the proof, it is useful to point out that

∣aperiodic(s)∣ ≥ 2 and !(s) is a prefix of aperiodic(s). Therefore, k ≤ n − 2.

Let t =
ÐÐ→
cool(s). It is claimed that ∣� (s)∣ = k. This is because ∣� (s)∣ < k would

imply
←ÐÐÐ
bubble(s, k) ∈ L by (2.2). However, this is not possible since the first k sym-

bols of
←ÐÐÐ
bubble(s, k) are lexicographically smaller than !(s), and since

←ÐÐÐ
bubble(s, k)

must contain at least one copy of aperiodic(s) and hence at least one copy of !(s).
Therefore, by t ≠ s and Definition 3.4.3, there exists x > k such that t =

ÐÐ→
shift(s, k, x).

To complete the discussion of t, it must be shown that aperiodic(t) = t. This follows

from the fact that the first k symbols of t are lexicographically larger than any other

k consecutive symbols in t.

Let r =
←ÐÐ
cool(s). It is claimed that either sk < sk+2 or

←ÐÐÐ
bubble(s, k + 2) ∉ L. This is

because sk ≥ sk+2 would imply that the first k + 1 symbols of
←ÐÐÐ
bubble(s, k + 2) would

be lexicographically smaller than another substring of length k+1 in
←ÐÐÐ
bubble(s, k+2).

(Precisely, if s = !(s)2 then the lexicographically larger substring of length k + 1

in
←ÐÐÐ
bubble(s, k + 2) would begin at position k + 2. Otherwise,

←ÐÐÐ
bubble(s, k + 2) would

necessarily contain a substring equal to aperiodic(s), and the substring of length k+1

beginning at this substring would be lexicographically larger.) Therefore, by r ≠ s

and Definition 3.1.3, there exists y ≤ k such that r =
←ÐÐ
shift(s, k+1, y). To complete the

discussion of r, it must be shown that aperiodic(r) = r. This follows from the fact

that the first k symbols of r are lexicographically larger than any other k consecutive

symbols in r.

To understand the consequences of Lemma 4.2.7, consider the cool-lex shorthand

universal cycle with periodic permutation repetitions for {1,1,2,2,3,3} given below.

Since the periodic necklaces over {1,1,2,2,3,3} are 312312 and 321321, then the

periodic permutations over {1,1,2,2,3,3} are contained in⟲ (312312)∪⟲ (321321),
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and Theorem 4.2.4 implies that the shorthand of each of these permutations will be

repeated twice within U+({1,1,2,2,3,3}). One consequence of Lemma 4.2.7 is that

all of these repeated substrings will appear in close proximity to their corresponding

periodic necklace

U+({1,1,2,2,3,3}) = 332211⋅322131⋅321231⋅322311⋅323211⋅332112⋅321312⋅312312⋅

323112 ⋅ 331122 ⋅ 313122 ⋅ 331212 ⋅ 332121 ⋅ 321321 ⋅ 323121 ⋅ 331221.

The two periodic necklaces — 312312 and 321321 — are underlined together with

the suffixes and prefixes they share their respective predecessor and successor. For

the sake of illustration, let us focus on 312312, and let n = 6 and k = ∣!(312312)∣ = 2.

Lemma 4.2.7 implies that 312312 shares a suffix of length n−(k+1) = 3 with 321312,

and a prefix of length k − 1 = 1 with 323112. Because of these facts, the underlined

concatenation

312 ⋅ 312312 ⋅ 3

has length 2n − 2 = 10, and therefore contains a total of n = 6 non-circular substrings

of length n−1 = 5. Furthermore, all of these substrings will be shorthand rotations of

312312. (In other words, 312312 represents one of the easy cases of Theorem 3.4.10, in

which all of the shorthand rotations of s are contained within the
←ÐÐ
cool(s) ⋅s ⋅

ÐÐ→
cool(s).)

Moreover, if 312312 is replaced by its aperiodic prefix 312 then the concatenation

312 ⋅ 312 ⋅ 3

has length n − 2 + ∣aperiodic(312312)∣ = 7, and so a total of ∣aperiodic(312312)∣ = 3

(non-redundant) shorthand rotations remain. Moreover, the substrings using a prefix

or suffix of this modified concatenation are unchanged. The same trick can be applied

independently to the remaining periodic necklace 321321 since Lemma 4.2.7 implies

that the two are not consecutive in cool-lex order. Now the intuition behind the main

theorem of this section is complete. The formal proof is slightly generalized in order

to accommodate the discussion following the theorem.

Theorem 4.2.8 (Cool-lex Shorthand Universal Cycles for Multiset Permutations).

If M is a multiset, then U(M) is a shorthand universal cycle for the permutations

of M. In other words, concatenating the aperiodic prefix of each necklace in reverse

cool-lex order creates a shorthand universal cycle for the permutations of the multiset.

Proof. By Lemma 4.2.6, ∣U(M)∣ = ∣Π(M)∣. Therefore, the theorem can be proven by
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showing that short(s) is a substring of U(M) for each s ∈ Π(M). From Theorem

4.2.4, s is a substring of U+(M). Therefore, short(s) is a substring of consecutive

necklaces r ⋅ t with r, t ∈ L = N(M) and t =
ÐÐ→
cool(r). In particular, suppose that

short(s) = rxrx+1⋯rnt1t2⋯tx−2

for x satisfying 1 ≤ x ≤ n. (When x = 1, short(s) = r1r2⋯rn−1.) Thus,

s1s2⋯sn−x+1 = rxrx+1⋯rn (4.24)

and

sn−x+2sn−x+3⋯sn−1 = t1t2⋯tx−2. (4.25)

The proof is divided into cases depending on which of r, s, and t are periodic. By

Lemma 4.2.7 it cannot be that both r and t are periodic.

In the first case suppose that r and s and t are aperiodic. Therefore, r ⋅ t is a

substring of U(M). Therefore, short(s) is a substring U(M) by (4.24) and (4.25).

In the second case suppose that r and s are aperiodic, and t is periodic. Let

k = ∣!(t)∣. From Lemma 4.2.7, rk+2rk+3⋯rn = tk+2tk+3⋯tn. Therefore, x ≤ k + 1.

(Otherwise, short(s) = short(⟲x (t)), which contradicts that s is aperiodic.) Notice

that short(s) is a non-circular substring of

r ⋅ aperiodic(t)h ⋅
ÐÐ→
cool(t)

beginning at position x for all values of h ≥ 0. This is due to (4.24), as well as (4.25)

and because the first x − 2 ≤ k − 1 symbols of aperiodic(t)h ⋅
ÐÐ→
cool(t) are t1t2⋯tk−1 by

Lemma 4.2.7. This case is completed by noting that r ⋅ aperiodic(t)h ⋅
ÐÐ→
cool(t) is a

substring of U(M) for h = 1.

In the third case suppose that r is periodic, and s and t are aperiodic. Let k =
∣!(r)∣. From Lemma 4.2.7, t1t2⋯tk−1 = r1r2⋯rk−1. Therefore, x ≥ k + 2. (Otherwise,

short(s) = short(⟲x (r)), which contradicts that s is aperiodic.) Notice that short(s)
is a non-circular substring of

←ÐÐ
cool(r) ⋅ aperiodic(r)h ⋅ t

beginning at position x + ∣aperiodic(r)h∣ for all values of h ≥ 0. This is due to (4.24)

and because the last n − x + 1 ≤ n − (k + 1) symbols of
←ÐÐ
cool(r) ⋅ aperiodic(r)h are

rxrx+1⋯rn by Lemma 4.2.7, as well as (4.25). This case is completed by noting that
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←ÐÐ
cool(r) ⋅ aperiodic(r)h ⋅ t is a substring of U(M) for h = 1.

In the fourth case suppose that s is periodic. Let u be the necklace representation

(i.e., lexicographically largest rotation) of s. Notice that u must also be periodic since

u ∈⟲ (s) and all rotations of s are periodic. Moreover, ∣aperiodic(s)∣ = ∣aperiodic(u)∣.
Let k = ∣!(u)∣. By Lemma 4.2.7,

←ÐÐ
cool(u) and u share a suffix of length n − (k + 1),

and
ÐÐ→
cool(u) and u share a prefix of length k − 1. Let p and z respectively denote

these suffixes and prefixes. Notice that every shorthand rotation of u appears as a

non-circular substring of

z ⋅ aperiodic(u)h ⋅ p

exactly h times for all values of h ≥ 0. This is because the concatenation has length

n − 2 + h ⋅ ∣aperiodic(u)∣, and because z and p are respectively suffixes and prefixes

of repeated concatenations of aperiodic(u). This case is completed by noting that

z ⋅ aperiodic(u)h ⋅p is a substring of U(M) for h = 1, and that short(s) is a shorthand

rotation of u.

Within the proof of Theorem 4.2.8, the value of h = 1 denotes the number of

times that aperiodic(w) is repeated within U(M) whenever w is a periodic necklace

. Changing the value of h for aperiodic(w) simply changes the number of times

that each shorthand rotation of w appears within the universal cycle. (In particular,

short(s) appears once as a substring regardless of the value of h in the first three

cases, while short(s) appears h times as a substring in the fourth case.) Thus, if

h = 1 is replaced by h = 0 then the shorthand rotations of w will be removed from

the universal cycle. Since periodic permutations are rotations of periodic necklaces,

and since aperiodic necklaces are Lyndon words, then this discussion leads to the

following definition.

Definition 4.2.9 (Cool-lex Shorthand Universal Cycle avoiding Periodic Permuta-

tions). Given a multiset of symbols M, the cool-lex universal cycle avoiding periodic

permutations is

U−(M) = ⋅O
Ð→
C (N−(M)).

In other words, U−(M) is the concatenation of Lyndon words in reverse cool-lex order.

For example,

U−({1,1,2,2,3,3}) = 332211 ⋅ 322131 ⋅ 321231 ⋅ 322311 ⋅ 323211 ⋅ 332112 ⋅ 321312⋅

323112 ⋅ 331122 ⋅ 313122 ⋅ 331212 ⋅ 332121 ⋅ 323121 ⋅ 331221.
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The reader may notice that this shorthand universal cycle avoids the substrings 31231,

23123, 12312, 32132, 21321, and 13213, which are shorthand for the periodic permuta-

tions over {1,1,2,2,3,3}. The idea of considering universal cycles that avoid periodic

strings was suggested by Shallit [82]. Chapter 5 discusses U−(M), as well as an

analogous modification for the the FKM algorithm on n-tuples.
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Chapter 5

Conclusions and Final Thoughts

“Every solution breeds
new problems.”

- Arthur Bloch

“A conclusion is the place where you
got tired of thinking.”

- Arthur Bloch

This thesis was motivated by the following question:

Do shift Gray codes exist for a variety of combinatorial objects?

At the conclusion of this thesis, the answer is clearly ‘yes’. In addition, there are shift

Gray codes that can be generated by simple and efficient algorithms that operate

on data structures including arrays, computer words, and linked lists. Furthermore,

shift Gray codes exist for multiset permutations when the allowable set of shifts is

heavily restricted. Applications for these restrictive shift Gray codes include efficient

exhaustive solutions to stacker-crane problems, and the explicit construction of short-

hand universal cycles for multiset permutations. All of these results are based on the

introduction of a new concept known as a bubble language, and a new variation of

lexicographic order known as cool-lex order.

This chapter briefly summarizes the main results found within this thesis. Fur-

thermore, this chapter includes a number of interesting observations that were not

necessary for achieving the main results. Finally, a handful of open problems are

provided for the interested reader. These topics are discussed in turn for bubble lan-

guages in Section 5.1, cool-lex order in Section 5.2, algorithms in Section 5.3, and

shorthand universal cycles in Section 5.4.
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5.1 Bubble Languages

Chapter 2 introduced the concept of a bubble language. Section 2.2 defines a bubble

language as a set of fixed-content strings L that is closed under adjacent-transpositions

between the frozen prefix � (s) and the non-decreasing prefix !(s) of each string

s ∈ L. A number of previously studied combinatorial objects are shown to have

natural representations as bubble languages in Section 2.3 (see Table 2.1 on page 38

for a summary). Properties involving bubble languages are investigated in Section

2.4. In particular, Section 2.4.1 shows that bubble languages are closed under union,

intersection, and quotients. Furthermore, the equivalence of maximal and maximum

left-shifts seen Section 2.4.2 is important for understanding the results of Chapters 3

and 4. Finally, Section 2.4.4 provides a structural characterization of bubble languages

involving suffixes of strings known as scuts.

5.1.1 Additional Results for Bubble Languages

This section discusses additional methods for creating new bubble languages, and

the interesting question of determining the total number of fixed-density bubble lan-

guages. One previously undiscussed technique for creating bubble languages is to

base the inclusion of strings on the value of a well-chosen function. To illustrate this

idea, say that an inversion in string s = s1s2⋯sn is any pair of indices (i, j) satisfying

1 ≤ i < j ≤ n and si < sj. (It is more customary to define an inversion with si > sj; this

concession is analogous to those discussed on page 39.) Table 5.1 provides the number

of inversions for each permutation of {1,1,2,2,3,3}. The problem of efficiently gen-

erating permutations with a fixed number of inversions was solved by Effler-Ruskey

[17].

The language of multiset permutations with at most i inversions over M is

V(M, i) = {s ∈ Π(M) ∣ s has at most i inversions}.

Although a formal proof is left as an exercise for the reader, it is relatively easy

to see that V(M, i) is a bubble language since adjacent-transpositions can change

the number of inversions by at most ±1. Furthermore, the fact that V(M, i) is a

bubble language has additional consequences due to the closure properties of bubble

languages. In particular, if L is a bubble language with content M then L ∩V(M, i)
is a bubble language containing the strings in L with at most i inversions.

The previous discussion showed that bubble language can be refined based on
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i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 i = 11 i = 12
332211 323211 233211 232311 133221 132321 123321 123231 113322 113232 112332 112323 112233

332121 322311 233121 223311 133212 132231 123312 122331 121332 113223 121233
323121 313221 231321 213321 132312 131322 123132 122313 121323
331221 321321 232131 223131 133122 132132 123213 123123 122133
332112 322131 233112 231231 213231 132213 131232 131223 211233

323112 312321 231312 213312 212331 132123 211323
331212 313212 232113 221331 213132 211332 212133

321231 312231 223113 213213 212313
321312 312312 231132 221313 213123
322113 313122 231213 231123 221133
331122 321132 311322 311232 311223

321213 312132 312123
312213
321123

Table 5.1: Multiset permutations of {1,1,2,2,3,3} with i inversions. Bubble lan-
guages are obtained by providing an upper-bound on the number of inversions.

the number of inversions. To further illustrate this type of approach, say that a

prefix is balanced if it contains the same number of 1s and 0s. Table 5.2 provides the

number of balanced prefixes for the balanced parentheses of length ten. In general,

it is not possible to refine a fixed-density bubble language using an upper-bound

on the number of balanced prefixes since this value can increase when replacing the

leftmost 01 with 10. More specifically, (2.8) leads to an increase in the number of

balanced prefixes precisely when a prefix of the form 1i0i01 with i > 0 is replaced by

1i0i10. However, prefixes of the form 1i0i01 with i > 0 are not present in balanced

parentheses. Therefore, bubble languages include balanced parentheses of length 2i

with at most b balanced prefixes

Pb(i) = {s ∈ P(i) ∣ s has at most b balanced parentheses}.

The cardinality of these languages is described by A009766 in Sloane’s Online Ency-

clopedia of Integer Sequences [84].

Another way to expand the collection of known bubble languages is to introduce

additional closure properties. Towards this goal, the structural characterization of

bubble languages in Theorem 2.4.21 can be used. This theorem immediately implies

that bubble languages are closed under removing every string with certain scuts.

In particular, every string with suffix scut(j, i) can be removed whenever it is the

shortest but not only scut with a given first symbol dj (i = � (j) and i > 1) or when

it is the only scut with the largest possible first symbol (j = � and i = � (j) = 1).
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b = 1 b = 2 b = 3 b = 4 b = 5
1101010100 1011010100 1010110100 1010101100 1010101010
1101011000 1011011000 1010111000 1010110010
1101100100 1011100100 1011001100 1011001010
1101101000 1011101000 1011010010 1100101010
1101110000 1011110000 1011100010
1110010100 1100110100 1100101100
1110011000 1100111000 1100110010
1110100100 1101001100 1101001010
1110101000 1101010010 1110001010
1110110000 1101100010
1111000100 1110001100
1111001000 1110010010
1111010000 1110100010
1111100000 1111000010

Table 5.2: Balanced parentheses of length ten with b balanced prefixes. Bubble
languages are obtained by providing an upper-bound on the number of balanced
prefixes.

Another closure operation to consider is the left-quotient operation. The left-

quotient operation is analogous to the quotient operation of Section 2.1.2 except that

a prefix is used instead of a suffix. Formally,

L/p = {z ∣ p ⋅ z ∈ L}.

In general, bubble languages are not closed under left-quotients. For example, the

following left-quotient of fixed-density necklaces provides a simple counter-example

N({1,1,1,0,0,0})/10 = {111000,110100,110010,101010}/10

= {1010}.

On the other hand, if L is a non-empty bubble language then L/dm is also a bubble

language. In other words, bubble languages are closed under left-quotients using a

single copy of the largest symbol. A formal proof can be obtained by using Definition

2.2.1 and is left as an exercise for the reader. The importance of this small result is

enhanced by additional results discussed in Section 5.2.1 and 5.4.1.

Given the various methods of constructing bubble languages, one may wonder if

it is possible to count the total number of bubble languages over the multiset M. In

the case of fixed-density bubble languages, there is an elegant solution due to Ruskey
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[65]. Recall that (2.8) in Theorem 2.2.4 states that if a string is in a fixed-density

bubble language L, then replacing its leftmost 01 with 10 results in another string

in L. This implication can be modeled using a partially ordered set, where s ≺ t if

s is the result of replacing the leftmost 01 in t by 10. Figure 5.1 provides the Hasse

diagram for this fixed-density bubble language poset for C(3,3) (the binary strings

with three 0s and three 1s) using the standard convention that s appears below t

when s ≺ t.

000111

001011

010011

100011

100101

101001

110001

110010

110100

111000

001110

010110

100110

101010

011010

001101

010101

011001

011100

101100

Figure 5.1: The fixed-density bubble language poset for C(3,3).

Using this framework suggested by Sawada [76], a fixed-density bubble language

is simply an ideal of its bubble language poset. An ideal of a poset P is a subset of

S(P) with the property that a is in the subset whenever b is in the subset and a ≺ b.
In particular, the non-empty ideals in Figure 5.1 correspond to the non-empty bubble

languages containing three copies of 0 and three copies of 1. In general, the number

of non-empty ideals for the bubble poset over C(j, k) is counted by the following

recurrence

R(j, k) = R(j − 1, k) +R(0, k − 1) ⋅R(1, k − 1) ⋅ ⋯ ⋅R(j, k − 1).

In particular, R(0,0) = 0 and otherwise R(j,0) = 1 and R(0, k) = 1 since there is

respectively one non-empty bubble languages of the form {0j} and {1k}. Table 5.3
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gives the number of non-empty fixed-density bubble languages for small values of j

and k.

R(j,k) 0 1 2 3 4 5
0 0 1 1 1 1 1
1 1 2 3 4 5 6
2 1 3 9 33 153 873
3 1 4 31 922 137245 119147224
4 1 5 129 114457 15691060817 1869532716417965457
5 1 6 651 73825416 1158388877489558421 > 2.1656456 × 1036

Table 5.3: The number of fixed-density bubble languages over C(j, k) for 0 ≤ j, k ≤ 5.

Since a bubble language poset is a tree, its ideals can be generated in Gray code

order by a loopless algorithm. In other words, the bubble languages with a fixed

number of 1s and a fixed number of 0s can be generated in worst-case O(1)-time,

where successive bubble languages differ by the addition or deletion of a single string.

This result is due to Koda-Ruskey [49] and applies to any poset whose Hasse diagram

is a forest.

5.1.2 Open Problems for Bubble Languages

Theorem 2.3.13 proves that T(M) (ordered trees with fixed branching sequence) is

a bubble language. However, it appears that the result could be generalized. The

interested reader may wish to find necessary and sufficient conditions for M that make

the following language a bubble language

{s ∈ Π(M) ∣ if s = p ⋅ z then Σ(p) ≥ ∣p∣}.

It may also be useful to explore alternate representations for combinatorial objects

that do not otherwise yield bubble bubble languages. Specific examples worth inves-

tigating include bracelets, and linear-extensions of additional posets.

Besides finding additional examples of bubble languages, it may also be useful

to consider additional Gray codes for bubble languages. Since the defining closure

properties of bubble languages involve adjacent-transpositions, it would not be un-

reasonable for bubble languages to have natural Gray codes involving transpositions.

It may also be fruitful to consider modifying (2.1) and (2.2) to encapsulate a different

set of fixed-content languages. Furthermore, generalizing the concept of a bubble lan-

guage to include languages that do not have fixed-content should also be investigated.

This possibility is further discussed in Section 5.2.2.
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During the writing of this thesis, the concept of a bubble language arose from the

desire to classify the fixed-content languages that appear in shift Gray code order

when expressed in cool-lex order. This methodology could certainly be applied to

other well-known Gray code orders. For example, is there a general class of languages

whose successive strings differ by one (or two) bit changes when expressed in the

binary reflected Gray code seen in Section 1.1.2? Similarly, is there a general class of

languages whose successive strings differ by (adjacent-)transpositions in the Johnson-

Trotter-Steinhaus order seen in Section 1.1.4? More generally, one could ask when

order x has a Gray code using operation y.

In retrospect, (2.1) and (2.2) in Definition 2.2.1 are natural conditions for creating

Gray codes. Although this iterative definition of bubble languages was discovered

after the recursive characterization presented in Theorem 2.4.21, this investigation

could have proceeded in reverse. In other words, interesting new languages could be

obtained by starting with a small set of closure properties that seem related to the

creation of Gray codes. This approach differs from the prevailing methodology of

starting with a previously studied language and attempting to create a Gray code for

it.

Additional open problems include counting the number of fixed-content bubble

languages, and the selection of a random string in a bubble language.

5.2 Cool-lex Order

Cool-lex order was introduced in Chapter 3 and is a new variation of lexicographic

order. Section 3.2 describes how this variation is based on an alternate view of co-

lexicographic order that partitions strings by their scut as opposed to their rightmost

symbol. When a bubble language is expressed in cool-lex order, then its strings

appear in a left-shift Gray code as proven in Section 3.3. Furthermore, there is a

simple iterative rule that generates these cool-lex orders one string at a time. The

shift is known as the cool left-shift, and is denoted by
←ÐÐ
cool starting in Section 3.1.

In particular, this iterative rule uses the greedy left-shift
←ÐÐÐ
greedy, which is a language-

dependent operation introduced in Section 3.1.1. In the case of multiset permutations,

the result is the first prefix-shift Gray code. In the case of fixed-content necklaces

and Lyndon words, the result is the first minimal-change order. Besides these Gray

code results, Section 2.4 points out that cool-lex orders of bubble languages have

interesting properties. In particular, the rotation properties given in Section 3.4.2 are

central to the shorthand universal cycle results given in Chapter 4.
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5.2.1 Additional Results for Cool-lex Order

A basic property of cool-lex order is that subsets of strings appear as sublists. That

is,

L′ ⊆ L implies
←Ð
C (L′) ⊏

←Ð
C (L)

where
←Ð
C (L′) ⊏

←Ð
C (L) denotes that

←Ð
C (L′) is a sublist of

←Ð
C (L), meaning that any

two strings in
←Ð
C (L′) appears in the same relative order that they appear in

←Ð
C (L).

This basic property follows from the definition of cool-lex order, and allows any fixed-

content language to be listed in cool-lex order by using the appropriate sublist of
←Ð
C (Π(M)). Interestingly, this property was not (explicitly) required anywhere in the

thesis. Another area for additional results involves list-quotients. A list-quotient is

a list operation that is analogous to the quotient operation on languages found in

Section 2.1.2, except that the resulting strings are listed in the same relative order

they appeared in the original list. Again, / and / are respectively used for list-quotients

involving suffixes and prefixes. For example, Table 5.4 shows the four single symbol

quotients for a cool-lex listing of combinations. Within the table, notice that both of

the quotients involving suffixes produce the cool-lex order of the resulting strings. In

general, the identity
←Ð
C (L/di) =

←Ð
C (L)/di

follows immediately from Definition 3.2.2 for all 1 ≤ i ≤ m. More interesting are the

quotients involving prefixes. Notice that the list-quotient involving a single copy of

the largest symbol in Table 5.4 also produces the cool-lex list of the remaining strings.

In general, the identity
←Ð
C (L/dm) =

←Ð
C (L)/dm (5.1)

appears to hold. Finally, the list-quotient of a prefix containing a single copy of the

smallest symbol in Table 5.4 produces co-lexicographic order of the resulting strings.

Although this result does not hold for general fixed-content bubble languages, the

interested reader can explore whether it holds for fixed-density bubble languages.

While the results of this thesis are focused on fixed-content languages, it may also

be useful to examine how
←ÐÐ
cool and

ÐÐ→
cool alter the underlying combinatorial object

itself. For example, in [72] it is shown that cool-lex order can also be used to create a

loopless algorithm for generating binary trees in their standard representation using

left-child and right-child pointers. Figure 5.2 contains an example of the binary trees

with three internal nodes in cool-lex order. More generally, it would be interesting

to study how
←ÐÐ
cool and

ÐÐ→
cool alter k-ary trees and ordered trees with fixed branching
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←Ð
C (C(3,3))/1

←Ð
C (C(3,3))/0

←Ð
C (C(3,3))

←Ð
C (C(3,3))/0

←Ð
C (C(3,3))/1

11100 011100 01110
01100 101100 10110
10100 110100 11010

11010 011010 01101
01010 101010 10101

10110 010110 01011
01110 001110 00111

00110 100110 10011
10010 110010 11001

11001 011001 01100
01001 101001 10100

10101 010101 01010
01101 001101 00110

00101 100101 10010
10011 010011 01001
01011 001011 00101
00111 000111 00011

00011 100011 10001
10001 110001 11000
11000 111000 11100

cool-lex co-lex cool-lex cool-lex

Table 5.4: List-quotients involving prefixes (leftmost two columns) and suffixes (right-
most two columns) for the cool-lex order of combinations with three 0s and three 1s.
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1
←−−−
110001

←−−
10100

←−−−
110010

←−
101100

←−
101010

Figure 5.2: Binary trees differ by O(1) pointer manipulations in cool-lex order [72].

sequence.

In terms of strings, it is also possible that there are natural generalizations of cool-

lex order for languages that do not have fixed-content. For example, it is possible to

generate all binary strings of length n by slightly modifying the iterative right-shift

rule for generating combinations first seen on page 2. In particular, the following rule

simply modifies the resulting string when the first bit does not pass over 01.

Generating binary strings of length n

Shift the first bit to the right until it passes over 01, and if it passes over the

last bit without passing over 01 then change its value.
(iii)

For example, the above rule changes 0111000 into 1110001. This is because the

first bit, 0, is shifted to the right but never passes over 01. Therefore, it’s value

is changed to 1 when it passes over the last bit. This transformation is denoted

by
ÐÐÐÐ→
0111000 = 1110000, where the underline represents that the shifted bit’s value is

changed. This rule is illustrated below for the binary strings of length 4

ÐÐ→
1111,

ÐÐ→
1110,

ÐÐ→
1100,

ÐÐ→
1000,

ÐÐ→
0000,

ÐÐ→
0001,

Ð→
0010,

ÐÐ→
0100,

ÐÐ→
1001,

Ð→
0011,

ÐÐ→
0101,

Ð→
1010,

ÐÐ→
0110,

ÐÐ→
1101,

Ð→
1011,

ÐÐ→
0111. (5.2)

To see why the rule generates all binary strings of length n, notice that the binary

strings of the form 1n−j0j will be generated by the rule in sequence for j = 0,1,2, . . . , n.

The rule then generates the reverse cool-lex order of C(n − j, j)/{1n−j0j} for j =
1,2, . . . , n − 1. This is due to the fact the rule does not change the value of any bit

until 01j0n−j−1 (the last string in
Ð→
C (C(n − j, j))), and since the rule transforms this

string into 1j0n−j−11 (the second string in
Ð→
C (C(n− j −1, j +1))). More generally, the

rule can be generalized to generate the binary strings of length n with any continuous

range of densities. These results were noticed during a collaboration with Stevens

[88].

Given these rules for generating binary strings, one may ask if there is a similar rule

for generating n-tuples over an m-letter alphabet. More specifically, one may ask if
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such a rule can be derived from the cool-lex rule for generating multiset permutations

by modifying the resulting string when the first symbol does not pass over consecutive

didj with i < j. A potential answer to this question appears in Section 5.3, although

this potential answer also raises the question of whether it provides the “correct”

generalization of cool-lex order.

5.2.2 Open Problems for Cool-lex Order

Besides formally proving (5.1), the interested reader may also wish to examine ad-

ditional properties of cool-lex order for bubble languages. One avenue for research

centers on the total distance that symbols must be shifted when circularly gener-

ating cool-lex order. In particular, the following list provides the cool-lex order of

permutations over {1,2,3,4}

←Ð
1432,

←Ð
4132,

←Ð
3412,

←Ð
1342,

←Ð
3142,

←ÐÐ
4312,

←Ð
2431,

←ÐÐ
4231,

←Ð
1423,

←Ð
4123,

←Ð
2413,

←Ð
1243,

←Ð
2143,

←ÐÐ
4213,

←Ð
3421,

←Ð
2341,

←ÐÐ
3241,

←Ð
1324,

←Ð
3124,

←Ð
2314,

←Ð
1234,

←Ð
2134,

←ÐÐ
3214,

←ÐÐ
4321.

Within this order, the total distance that the shifted symbols travel is

1 + 2 + 2 + 1 + 2 + 3 + 1 + 3 + 1 + 2 + 2 + 1 + 2 + 3 + 2 + 1 + 3 + 1 + 2 + 2 + 1 + 2 + 3 + 3 = 46.

In [102] it is shown that the average distance of shifted symbols is slightly less than

2 when generating the permutations of a set in cool-lex order. Is this the minimum

distance across all prefix-shift Gray codes for permutations? Furthermore, can sim-

ilar results be proven for the permutations of a multiset? The application of the

aforementioned result in [102] is that Algorithm 7 can be modified to create a CAT

algorithm for generating permutations of a set in an array. In particular, only three

array assignments are required to generate the next permutation in the average case.

Another area of open problems includes further extensions of
←ÐÐ
cool. While the

previously mentioned extensions allow the value of the shifted symbol to be changed,

it may also be beneficial to think of every shift as the deletion of a symbol followed

by the insertion of a symbol. By using these two operations individually, it may be

possible to further generalize the results of this thesis to languages whose strings do

not necessarily have the same length.

Another way to create Gray codes for languages that do not have fixed-content is

to simply layer the constituent cool-lex lists. For example, an ordering of the binary

necklaces of length n can be obtained by layering the fixed-density necklace languages
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in cool-lex order by decreasing density. This is illustrated below for n = 5 where Mi

is used to denote content(1i05−i) and 1 = 0

Ð→
C (M5),

Ð→
C (M4),

Ð→
C (M3),

Ð→
C (M2),

Ð→
C (M1),

Ð→
C (M0)

= 11111,11110,
ÐÐ→
11100,11010,

Ð→
11000,10100,10000,00000.

To prove that this always produces a type of Gray code, the interested reader needs

only to prove that the last string in one sublist is similar to the first string in the

next sublist. Furthermore, this task is quite simple since Lemma 3.2.4 on page 116

provides exact expressions for these boundary strings. For a more involved example,

the following list reverses successive cool-lex sublists for restricted Schröder paths to

obtain a list of all unrestricted Schröder paths of a given length

Ð→
C (S0(3)),

←Ð
C (S1(3)),

Ð→
C (S2(3)),

←Ð
C (S3(3))

= 22
Ð→
2000,2

Ð→
20020,2

ÐÐ→
02020,2

Ð→
20200,202200,

←Ð
20210,2

←ÐÐ
2010,

←Ð
20201,

←ÐÐÐ
22001,

←Ð
12200,2

←Ð
1200,

←Ð
20120,

←Ð
12020,

←ÐÐ
21020,22100,

Ð→
2110,1

Ð→
120,

ÐÐ→
1210,

Ð→
2101,

ÐÐ→
1201,2011,111

This approach ensures that successive Schröder paths with the same content differ by

a shift, while successive Schröder paths with different content differ by the deletion

of a 2 and a 0 and the insertion of a 1 (in bold). (In particular, successive strings of

different content will either be 2i1j0i followed by 2i−11j+10i−1, or 202i−11j0i−1 followed

by 202i−21j+10i−2.) In general, the interested reader may wish to examine different

ways of layering cool-lex lists for various languages that do not have fixed-content.

Finally, the recursive definition of cool-lex order shows that useful variations of

lexicographic order have not yet been exhausted. In particular, the cool-lex variation

is based on a somewhat non-standard view of co-lexicographic order for fixed-content

languages. For this reason, it may be useful to consider additional ways of reexpressing

standard lexicographic orders. More specifically, it may be possible to to create

interesting lists by simply reordering the scuts.

5.3 Algorithms

By using
←ÐÐ
cool it is possible to develop efficient iterative algorithms for generating

certain bubble languages. Specific loopless algorithms are presented for combinations,

balanced parentheses, and multiset permutations in Sections 4.1.1, 4.1.2, and 4.1.3,

respectively. The first two of these algorithms store the current string in an array,
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while the third algorithm stores the current string in a linked list. In all three cases

the provided algorithms use a constant number of additional variables. In particular,

the multiset permutation algorithm has the surprising property that it is both loopless

and does not explicitly store information on the underlying multiset of symbols that

it operates upon. Section 4.1.1 also includes an efficient branchless algorithm, and an

implementation using computer words.

5.3.1 Additional Results for Algorithms

One may wish to create loopless algorithms for additional fixed-density bubble lan-

guages by modifying the existing algorithms for combinations and balanced paren-

theses. However, a complication can arise when attempting to update the value of x

in O(1)-time. To illustrate the difficulty, consider the following transition that occurs

when generating k-ary Dyck words

←ÐÐÐÐ
10k−110z = 110kz.

Notice that !(110kz) ∈ {110k,110k+1,⋯,1102k−2} by Definition 2.3.4. In algorithmic

terms, this means that there are k − 1 possibilities for the next value of x. (In

the algorithm for balanced parentheses there is only one possibility since balanced

parentheses are 2-ary Dyck words.) A simple solution to this problem is to keep track

of each index where consecutive array entries are 01. By following this approach it

is relatively simple to create loopless algorithms for k-ary Dyck words and linear-

extensions of B-posets. Furthermore, by introducing a data structure that allows

successive comparisons between s and s in O(1)-time, it is also possible to generate

connected proper interval graphs with a loopless algorithm.

While the aforementioned results follow naturally from the general framework

developed in this thesis, Algorithm 8 is more substantial since it is conjectured to

generate the mn n-tuples of {1,2,⋯,m}. Although a formal proof of correctness is

beyond the scope of this section, its correctness can be easily verified for small values,
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including the following list of 4-tuples over {1,2,3,4} that it generates in reverse order

ÐÐ→
3333,

ÐÐ→
3330,

ÐÐ→
3300,

ÐÐ→
3000,

ÐÐ→
0002,

Ð→
0020,

ÐÐ→
0200,

Ð→
2003,

Ð→
0023,

ÐÐ→
0203,

Ð→
2030,

ÐÐ→
0230,

ÐÐ→
2300,

Ð→
3002,

Ð→
0032,

ÐÐ→
0302,

ÐÐ→
3020,

ÐÐ→
0320,

ÐÐ→
3203,

ÐÐ→
2033,

ÐÐ→
0233,

ÐÐ→
2303,

ÐÐ→
3023,

ÐÐ→
0323,

ÐÐ→
3230,

ÐÐ→
2330,

ÐÐ→
3302,

ÐÐ→
3032,

ÐÐ→
0332,

ÐÐ→
3323,

ÐÐ→
3233,

ÐÐ→
2333,

ÐÐ→
3332,

ÐÐ→
3320,

ÐÐ→
3200,

ÐÐ→
2002,

ÐÐ→
0022,

ÐÐ→
0202,

ÐÐ→
2020,

ÐÐ→
0220,

ÐÐ→
2203,

ÐÐ→
2023,

ÐÐ→
0223,

ÐÐ→
2230,

ÐÐ→
2320,

ÐÐ→
3202,

ÐÐ→
2032,

ÐÐ→
0232,

ÐÐ→
2302,

ÐÐ→
3022,

ÐÐ→
0322,

ÐÐ→
3223,

ÐÐ→
2233,

ÐÐ→
2323,

ÐÐ→
3232,

ÐÐ→
2332,

ÐÐ→
3322,

ÐÐ→
3220,

ÐÐ→
2202,

ÐÐ→
2022,

ÐÐ→
0222,

ÐÐ→
2223,

ÐÐ→
2232,

ÐÐ→
2322,

ÐÐ→
3222,

ÐÐ→
2222,

ÐÐ→
2220,

ÐÐ→
2200,

ÐÐ→
2000,

ÐÐ→
0001,

ÐÐ→
0010,

ÐÐ→
0100,

ÐÐ→
1003,

ÐÐ→
0013,

ÐÐ→
0103,

ÐÐ→
1030,

ÐÐ→
0130,

ÐÐ→
1300,

ÐÐ→
3001,

ÐÐ→
0031,

ÐÐ→
0301,

ÐÐ→
3010,

ÐÐ→
0310,

ÐÐ→
3103,

ÐÐ→
1033,

ÐÐ→
0133,

ÐÐ→
1303,

ÐÐ→
3013,

ÐÐ→
0313,

ÐÐ→
3130,

ÐÐ→
1330,

ÐÐ→
3301,

ÐÐ→
3031,

ÐÐ→
0331,

ÐÐ→
3313,

ÐÐ→
3133,

ÐÐ→
1333,

ÐÐ→
3331,

ÐÐ→
3310,

ÐÐ→
3100,

ÐÐ→
1002,

ÐÐ→
0012,

ÐÐ→
0102,

ÐÐ→
1020,

ÐÐ→
0120,

ÐÐ→
1200,

ÐÐ→
2001,

ÐÐ→
0021,

ÐÐ→
0201,

ÐÐ→
2010,

ÐÐ→
0210,

ÐÐ→
2103,

ÐÐ→
1023,

ÐÐ→
0123,

ÐÐ→
1203,

ÐÐ→
2013,

ÐÐ→
0213,

ÐÐ→
2130,

ÐÐ→
1230,

ÐÐ→
2310,

ÐÐ→
3102,

ÐÐ→
1032,

ÐÐ→
0132,

ÐÐ→
1302,

ÐÐ→
3012,

ÐÐ→
0312,

ÐÐ→
3120,

ÐÐ→
1320,

ÐÐ→
3201,

ÐÐ→
2031,

ÐÐ→
0231,

ÐÐ→
2301,

ÐÐ→
3021,

ÐÐ→
0321,

ÐÐ→
3213,

ÐÐ→
2133,

ÐÐ→
1233,

ÐÐ→
2313,

ÐÐ→
3123,

ÐÐ→
1323,

ÐÐ→
3231,

ÐÐ→
2331,

ÐÐ→
3312,

ÐÐ→
3132,

ÐÐ→
1332,

ÐÐ→
3321,

ÐÐ→
3210,

ÐÐ→
2102,

ÐÐ→
1022,

ÐÐ→
0122,

ÐÐ→
1202,

ÐÐ→
2012,

ÐÐ→
0212,

ÐÐ→
2120,

ÐÐ→
1220,

ÐÐ→
2201,

ÐÐ→
2021,

ÐÐ→
0221,

ÐÐ→
2213,

ÐÐ→
2123,

ÐÐ→
1223,

ÐÐ→
2231,

ÐÐ→
2321,

ÐÐ→
3212,

ÐÐ→
2132,

ÐÐ→
1232,

ÐÐ→
2312,

ÐÐ→
3122,

ÐÐ→
1322,

ÐÐ→
3221,

ÐÐ→
2212,

ÐÐ→
2122,

ÐÐ→
1222,

ÐÐ→
2221,

ÐÐ→
2210,

ÐÐ→
2100,

ÐÐ→
1001,

ÐÐ→
0011,

ÐÐ→
0101,

ÐÐ→
1010,

ÐÐ→
0110,

ÐÐ→
1103,

ÐÐ→
1013,

ÐÐ→
0113,

ÐÐ→
1130,

ÐÐ→
1310,

ÐÐ→
3101,

ÐÐ→
1031,

ÐÐ→
0131,

ÐÐ→
1301,

ÐÐ→
3011,

ÐÐ→
0311,

ÐÐ→
3113,

ÐÐ→
1133,

ÐÐ→
1313,

ÐÐ→
3131,

ÐÐ→
1331,

ÐÐ→
3311,

ÐÐ→
3110,

ÐÐ→
1102,

ÐÐ→
1012,

ÐÐ→
0112,

ÐÐ→
1120,

ÐÐ→
1210,

ÐÐ→
2101,

ÐÐ→
1021,

ÐÐ→
0121,

ÐÐ→
1201,

ÐÐ→
2011,

ÐÐ→
0211,

ÐÐ→
2113,

ÐÐ→
1123,

ÐÐ→
1213,

ÐÐ→
2131,

ÐÐ→
1231,

ÐÐ→
2311,

ÐÐ→
3112,

ÐÐ→
1132,

ÐÐ→
1312,

ÐÐ→
3121,

ÐÐ→
1321,

ÐÐ→
3211,

ÐÐ→
2112,

ÐÐ→
1122,

ÐÐ→
1212,

ÐÐ→
2121,

ÐÐ→
1221,

ÐÐ→
2211,

ÐÐ→
2110,

ÐÐ→
1101,

ÐÐ→
1011,

ÐÐ→
0111,

ÐÐ→
1113,

ÐÐ→
1131,

ÐÐ→
1311,

ÐÐ→
3111,

ÐÐ→
1112,

ÐÐ→
1121,

ÐÐ→
1211,

ÐÐ→
2111,

ÐÐ→
1111,

ÐÐ→
1110,

ÐÐ→
1100,

ÐÐ→
1000,

ÐÐ→
0000,

ÐÐ→
0003,

ÐÐ→
0030,

ÐÐ→
0300,

ÐÐ→
3003,

ÐÐ→
0033,

ÐÐ→
0303,

ÐÐ→
3030,

ÐÐ→
0330,

ÐÐ→
3303,

ÐÐ→
3033,

ÐÐ→
0333.

Recursively, the above list is similar to the list of binary strings in (5.2) since it can be

partitioned into sublists of the form !(M) and
Ð→
C (Π(!(M)))/{!(M)}. Iteratively,

the list is generated by shifting the first symbol to the right, and allowing the value of

this shifted symbol to change if it does not pass over an increasing pair of symbols didj

with i < j. The algorithm stores the n-tuple in a doubly-linked list, and uses only two

additional pointers. The call to init(n,m) returns a doubly-linked list containing

one node with value 1 followed by n − 1 nodes with value m. During each iteration,

the pointers h, k, and t respectively point to the head of the tuple, the last node in

the non-increasing prefix of the tuple, and the node that is left-shifted into the first

position of the tuple.

While recursive algorithms were not explicitly discussed in this thesis, significant

work has been done by Sawada-Tsang to develop recursive CAT algorithms for fixed-

density necklaces and Lyndon words using cool-lex order [77].
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h← init(n,m)
visit(h)
k← h

while k.next ≠ φ or k.val <m do
if k.next = φ
t← k

k← k.prev
else if k.next.next = φ or k.val < k.next.next.val
t← k.next

else
t← k.next.next

end
if k.next = φ or k.next.next = φ

if t.val =m
t.val ← 1

else if t.val ≥ h.val
t.val ← t.val + 1

else if t.val = 1
t.val ← h.val

end
end
t.prev.next← t.next
if t.next ≠ φ
t.next.prev ← t.prev

end
h.prev ← t

t.next← h

t.prev ← φ
h← t

if h.val > h.next.val
k← h

end
visit(h)

end

Algorithm 8: CoolTuple(n, m) is a loopless algorithm that is conjectured to gen-
erate the n-tuples of {1,2, . . . ,m} in a doubly linked list with head h using additional
pointers k and t.
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5.3.2 Open Problems for Algorithms

The interested reader may wish to pursue loopless algorithms for additional fixed-

content bubble languages by modifying the provided algorithm for multiset permu-

tations. Natural candidates include ordered trees with fixed branching sequence, and

multiset permutations with a maximum number of inversions. At first glace, the

former problem appears to be substantially simpler than the latter. Even more chal-

lenging would be the creation of loopless algorithms that generate fixed-density or

fixed-content necklaces and Lyndon words.

Ranking is an important topic in combinatorial generation that was not considered

in this thesis. Given a string s in list T , the rank of s in T is the position that s

appears in T and is this value is denoted rankT (s). (It is customary for the first

string in the list to be assigned rank 0.) The rank of combinations and balanced

parentheses in cool-lex order can be computed using O(n) arithmetic operations [73,

72]. Besides these two results, the amount of research into ranking cool-lex order

has not been commensurate with its potential. In particular, cool-lex order has a

fairly simple recursive structure, and so it may be possible to develop useful general

results. Applications of ranking and unranking can include efficient parallelization of

generation algorithms, efficient random selection of strings in the underlying language,

and alternate proof techniques for previously discovered results.

Of equal importance to developing new algorithms is the realization of new appli-

cations for existing algorithms. The stacker-crane problem in Section 1.2.5 provides a

real-world application for the loopless algorithm for generating multiset permutations

in cool-lex order. An interesting open problem is to determine additional applications

for the algorithms in this thesis. Towards the goal of increasing the applicability of

these algorithms, it would be useful to further analyze the amount of work performed

when cool-lex order is generated using arrays (see the note at the end of Section

4.1.3).

5.4 Shorthand Universal Cycles

Universal cycles are circular strings whose substrings include exactly one copy of each

string in a given language. This thesis recounts the simple observation that univer-

sal cycles do not exist for fixed-content languages (except in trivial cases). On the

other hand, the last symbol of each string in a fixed-content language is redundant.

For this reason, this thesis suggests the investigation of shorthand universal cycles.
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A shorthand universal cycle for language L has the property that its substrings in-

clude exactly one copy of the first n − 1 symbols of each string in L. Due to the

aforementioned redundancy, this single omitted symbol does significantly impact the

difficulty of obtaining the strings in L from a shorthand universal cycle. Furthermore,

in Section 4.2 it is shown that shorthand universal cycles are intimately related to

the main topic of this thesis. In particular, if L is a fixed-content language then it

has a shorthand universal cycle if and only if it has a circular right-shift Gray code

in which the first symbol is always shifted into the last or second-last position.

Section 4.2.1 points out that shorthand universal cycles for permutation were

previously shown to exist under another name, and that their efficient generation

dates back to an anonymous bell-ringer. Section 4.2.2 points out that shorthand

universal cycles for combinations include universal cycles for the middle levels. Section

4.2.3 goes on to prove that shorthand universal cycles for multiset permutations can

be explicitly constructed using reverse cool-lex order. Interestingly this construction is

a direct analogue of the FKM algorithm for constructing universal cycles for n-tuples

using lexicographic order. Finally, a modification of the construction is discussed for

shorthand universal cycles of aperiodic multiset permutations.

5.4.1 Additional Results for Shorthand Universal Cycle

While efficient generation of shorthand universal cycles is not discussed in the thesis,

there do appear to be at least two cases when they can be efficiently generated for the

permutations of a multiset. The first case occurs when nm = 1. That is, the underlying

multiset M contains a single copy of its largest symbol. In this case the necklaces

over M are aperiodic and consist of dm prefixed to every permutations of M with

dm removed. From (5.1) in Section 5.2.1, the (reverse) cool-lex list of the necklaces

can be obtained by prefixing dm to the (reverse) cool-lex list of the permutations.

Therefore, the construction reduces to prefixing dm to every permutation of M/{dm

in reverse cool-lex order. To make this discussion more concrete, notice that

U({1,1,2,2,3}) = 32211 ⋅ 32112 ⋅ 31122 ⋅ 31212 ⋅ 32121 ⋅ 31221

and
Ð→
C (Π({1,1,2,2})) = 2211,2112,1122,1212,2121,1221.

Thus, the shorthand universal cycle can be constructed from the loopless algorithm

for generating multiset permutations (although the order or the individual strings
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need to be reversed). The second case occurs when m = 2. That is, the underlying

multiset contains only two distinct symbols. In this case the CAT algorithms devel-

oped by Sawada-Tsang [77] also allow the shorthand universal cycle to be constructed

efficiently.

5.4.2 Open Problems for Shorthand Universal Cycles

In general, the study of shorthand universal cycles is completely open. As previously

mentioned, one important question is to determine efficient generation algorithms for

the shorthand universal cycles that are known to exist. Another important question

involves the existence of shorthand universal cycles for additional combinatorial ob-

jects. In particular, the end of Section 4.2.3 mentions the U−(M) modification for

avoiding periodic multiset permutations. Formally proving that U−(M) is always a

shorthand universal cycle for the aperiodic permutations over M would be an ideal

exercise. The reader may also wish to consider an analogous modification of the FKM

algorithm for n-tuples in which only the Lyndon words of length n are included in

the concatenation. For example, the following concatenation results from removing

the “short” Lyndon words (0, 01, and 1) from the underlined portions of (1.7)

000100110111.

Notice that this modified de Bruijn cycle avoids 0000, 1010, 0101, and 1111.

Given the existence of a (shorthand) universal cycle for a fixed-content language

L, one may wish to know the number of (shorthand) universal cycles that exist for L.

For example, it is known that there are 22n−1−n de Bruijn cycles for the binary strings

of length n [13] (also see de Bruijn [14] for an acknowledgement of priority on this

result dating back to Flye Sainte-Marie in 1894 [74]).

Besides counting the number of shorthand universal cycles, one may instead wish

to further refine their properties. For example, recall that successive strings in L

obtained from a shorthand universal cycle will differ by right-shifting the first symbol

into the last or second-last position. Given this observation, it may be natural to

attempt to maximize or minimize the number of times the first symbol is shifted

into the last position. In terms of the discussion in Section 4.2.1, these questions are

analogous to minimizing or maximizing the sum of the associated binary string. This

pursuit does have potential applications, since in the stacker-crane problem of Section

1.2.5, the operation shift(s,1, n) requires the addition and subtraction of only one

shortest path length. This concern was addressed for the shorthand universal cycle
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for permutations given in [71]. Another question addressed in [71] is whether strings

can be efficiently ranked and unranked within a given shorthand universal cycle. It

may also be possible to generalize shorthand universal cycles for certain L to higher

dimensions (see Hurlbert-Isaac [38] for a discussion of de Bruijn tori).

While the discussion of universal cycles in this thesis has focused on shorthand

universal cycle, the examples constructed in this thesis can also be considered as

universal cycles on different sets of strings. In particular, the shorthand universal

cycles for C(j, k) are simply universal cycles for C(j − 1, k) ∪C(j, k − 1). Given this

interpretation it becomes natural to ask for constructions of density-range de Bruijn

cycles. A density-range de Bruijn cycle is a universal cycle for the binary strings

of length n subject to a minimum and maximum number of 1s. For example, the

following universal cycle contains the 26 binary strings of length 5 with at least 0 and

at most 3 copies of 1

111000 ⋅ 100000 ⋅ 110010 ⋅ 10 ⋅ 110100 = 11100010000011001010110100.

Existence of these density-range de Bruijn cycles is not difficult to verify [37], however

their construction and efficient generation is open.
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Appendix A

Notation

“Any inaccuracies in this index may be explained by the fact that it has been sorted
with the help of a computer.”

- Don Knuth

The tables in this appendix summarize the notation in this thesis. Within the

tables there are a number of examples. Unless otherwise specified the examples refer

to the following values

L = {5440,5404,5044,4540,4450}

T = 5440,4450,4540,5404,5044.

The language L is an example of a bubble language, while T is the reverse cool-lex

order of the strings in L. For simplicity, several conventions are specified in Chapter

2. These conventions set additional values depending on the chosen fixed-content

language L. In particular, the content of the strings in L is denoted by M. Given the

above choice of L, this value is

M = {0,4,4,5}.

Similarly, n, m, ni, n1, and n1 denote symbol multiplicities in M according to Table

A.13. Unless otherwise specified, these values will also be used in examples contained

in the tables.
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Object Description Typography Example Page
symbol indivisible unit regular 3 40
set set of symbols uppercase blackboard Σ 40
multiset multiset of symbols uppercase blackboard M 40
string sequence of symbols lowercase bold s 42
language set of strings uppercase bold L 42
list sequence of strings uppercase calligraphic T 111

Table A.1: Typography for symbols, sets, multisets, strings, languages, and lists.

Language Description Page
combinations C(2,1) = {001,010,100} 57

P(h) balanced parentheses P(2) = {1100,1010} 58
Pb(h) P(h) with ≤ b balanced prefixes P1(2) = {1100} 169
D(k, i) k-ary Dyck words D(3,2) = {110000,101000,100100} 58
Bn(b1, . . .) linear-extensions of B-posets B6(1,2,5) = {111000,110100,110010} 60
I(h) connected unit interval graphs I(3) = {111000,110100} 66

Table A.2: Combinatorial objects represented by fixed-density languages.

Language Description Page
Π(M) multiset permutations Π(M) = {0445,0454,0544,4045, . . .} 57
T(M) ordered trees w/ branching seq. T({0,0,1,3}) = {3100,3010,3001,1300} 69
Mw(h) restricted Motzkin paths M1(2) = {12200,21200,22100,22010,22001, . . . 74
Sw(h) restricted Schröder paths . . . ,12020,21020,20120,20210,20201} = S1(2) 73
⟲ (s) rotation set ⟲ (1123) = {1123,1231,2311,3112} 75
N(M) necklaces N({0,0,2,2}) = {2200,2020} 76
N−
(M) Lyndon words N−

({0,0,2,2}) = {2020} 76
N+
(M) pre-necklaces N+

({0,0,2,2}) = {2200,2020,2002} 86
R(M) bracelets R({0,0,2,2}) = {2200,2020} 76
V(M, i) Π(M) with ≤ i inversions V(M,2) = {5440,5404,5044,4540,4504,4450} 168

Table A.3: Combinatorial objects represented by fixed-content languages.

Shift Assumption Description Example Page
⋯
←ÐÐÐsi⋯sj⋯ 1 ≤ i ≤ j ≤ ∣s∣ left-shift si into the jth index 5

←Ð
440 = 5044 2

⋯
ÐÐÐ→si⋯sj⋯ 1 ≤ i ≤ j ≤ ∣s∣ right-shift si into the jth index 5

Ð→
044 = 5440 2

←ÐÐ

shift(s, i, j) 1 ≤ j ≤ i ≤ ∣s∣ left-shift si into the jth index
←ÐÐ

shift(4450,3,1) =
←Ð
4450 48

ÐÐ→

shift(s, i, j) 1 ≤ i ≤ j ≤ ∣s∣ right-shift si into the jth index
ÐÐ→

shift(5440,1,3) =
Ð→
5440 48

←ÐÐÐ

bubble(s, i) ∃j < i, si ≠ sj left-shift si past one ≠ si
←ÐÐÐ

bubble(5440,3) =
←Ð
5440 49

ÐÐÐ→

bubble(s, i) ∃j > i, si ≠ sj right-shift si past one ≠ si
ÐÐÐ→

bubble(5440,2) = 5
Ð→
440 50

←ÐÐÐ

greedyL(s, i) s ∈ L left-shift si while in L
←ÐÐÐ

greedyL(5440,4) = 5
←Ð
440 103

ÐÐ→maxL(s, i, j) s ∈ L and i ≤ j . . . while in si⋯sj and L ÐÐ→maxL(4450,1,4) =
Ð→
4450 130

←ÐÐ

coolL(s) s ∈ L cool-lex left-shift
←ÐÐ

coolL(4540) =
←Ð
4540 105

ÐÐ→

coolL(s) s ∈ L cool-lex right-shift
ÐÐ→

coolL(4540) = 5
Ð→
404 129

Table A.4: Shifts.
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Operation Assumption Description Example Page
⋯si⋯sj
zÐÐx

⋯ 1 ≤ i ≤ j ≤ ∣s∣ transpose si and sj 5044
zÐx

= 4045 13

transpose(s, i, j) 1 ≤ i ≤ j ≤ ∣s∣ transpose si and sj transpose(5044,1,4) = 4045 141
⋯
←ÐÐ→si⋯sj⋯ 1 ≤ i ≤ j ≤ ∣s∣ reverse si⋯sj

←Ð→
5044 = 4405 21

Table A.5: Transpositions and substring reversals.

Operation Description Examples Page
r ⋅ t concatenate strings r and t r = 4 and t = 450 implies r ⋅ t = 4450 42
si i concatenations of s s3

= s ⋅ s ⋅ s 42
T ⋅ z concatenate z to list T T ⋅ 5 = 54405,44505,45405,54045,50445 114
⋅OT concatenate list T ⋅OT = 54404450454054045044 136

Table A.6: Concatenations.

Operation Description Examples Page
!(s) non-increasing prefix of s !(4405) = 440 45
!!(s) weakly non-increasing prefix of s !!(3212133121313) = 32121 129
�L(s) frozen prefix of s in L �L(5404) = 54 47
short(s) shorthand of s short(5404) = 540 133
aperiodic(s) aperiodic prefix of s aperiodic(1101011010) = 11010 158

Table A.7: Prefixes.

Operation Description Examples Page
content(s) content of string s content(4540) = {0,4,4,5} 42
#i(s) occurrences of i in s #4(4540) = 2 73
Σ(s) sum of symbols in s Σ(4405) = 13 41
⟲i (s) rotation of s starting at si ⟲3 (4405) = 0544 75
�(s, i) ith peak of s �(3212133121313,2) = 33121 77

� room-to-room times �( ) = 1 ??

Table A.8: Miscellaneous string operations.
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Operation Description Examples Page
content(L) content of fixed-content L content(L) = {0,4,4,5} 43
reverse(T ) reverse list T reverse(T ) = 5044,5404,4540,4450,5440 8
first(T ) first string in list T first(T ) = 5440 115
last(T ) last string in list T last(T ) = 5044 115
,O creates list (integer index) ,O

j=1,2,3
0j1j

= 01,0011,000111 113

,O creates list (list index) ,O
z∈123,213,321

z1 ⋅ z = 1123,2213,3321 114

L/z quotient of L using z L/40 = {54,45} 44
L/p left-quotient of L using p L/5 = {440,404,044} 170
short(L) shorthand of L short(L) = {544,540,504,454,445} 133
aperiodic(T ) aperiodic prefix of T aperiodic(1010,1100) = 10,1100 158
rankT (s) rank of s in T rankT (4540) = 2 182

Table A.9: Language and list operations.

Operation Description Examples Page
!(M) the non-increasing string over M !({0,4,4,5}) = 5440 46
set(M) underlying set of symbols in multiset M set(M) = {0,4,5} 40
⊆ multiset subset {4,4,5} ⊆ {0,4,4,5} 41
= multiset equality {0,4,4,5} ≠ {0,4,5} 41
/ multiset difference {0,4,4,5}/{0,4,5} = {4} 41

Table A.10: Multiset operations and relations.

Scut / Tail Assumption Description Example Page
scut(s) s ≠ ! scut of s scut(4450) = 50 89
scuts(L) set of scut(s) for s ∈ L scuts(L) = {540,50,4} 90
scutM(j, i) ⎫

⎪⎪⎪
⎬
⎪⎪⎪
⎭

2 ≤ j ≤ m
and

1 ≤ i ≤ nj

scut dj⋯ excluding i symbols scutM(3,2) = 50 90
tailM(j, i) non-increasing ⋅ scutM(j, i) tailM(2,1) = 5404 92
headM(j, i) greedy left-shift in tailM(j, i) headM(2,1) = 5

←Ð
404 118

�L max j with scutL(j, i) ∈ scuts(L) �L = 3 91
�L(j) max i with scutL(j, i) ∈ scuts(L) �L(3) = 2 91

Table A.11: Scuts, heads, and tails.

List Description Example Page
Z(L) cool-lex order of scuts(L) Z(M) = 4,50,540 112
←Ð

C (L) cool-lex order of L
←Ð

C (L) = 5
←Ð
044,

←ÐÐ
5404,

←Ð
4540,

←Ð
4450,5

←Ð
440 113

Ð→

C (L) reverse cool-lex order of L
Ð→

C (L) =
Ð→
5440,4

Ð→
450,

ÐÐ→
4540,5

Ð→
404,5

Ð→
044 129

U+(M) ucycle for Π(M) with repetitions U+({0,0,1,1}) = 11001010 156
U(M) ucycle for Π(M) U({0,0,1,1}) = 110010 159
U−(M) ucycle for Π(M) for aperiodic U−({0,0,1,1}) = 1100 165

Table A.12: Cool-lex orders and shorthand universal cycles (ucycles).
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Convention Description Examples Page
content(L) = M content of L is M M = {0,4,4,5} 43
set(M) = Σ underlying set of M is Σ Σ = {0,4,5} 40
Σ = {d1, d2,⋯, dm} set Σ contains m symbols m = 3 40
M = {e1, e2,⋯, en} multiset M contains n symbols n = 4 40
d1 < d2 < ⋯ < dm strictly increasing order of di d1 = 0, d2 = 4, d3 = 5 40
e1 ≤ e2 ≤ ⋯ ≤ em non-decreasing order of ei e1 = 0, e2 = e3 = 4, e4 = 5 40
ni multiplicity of di in M n1 = 1, n2 = 2, n3 = 1 40
ni = n1 + n2 +⋯ + ni number of symbols ≤ di in M n1 = 1, n2 = 3, n3 = 4 41
ni = nm + nm−1.5 +⋯ + ni number of symbols ≥ di in M n1 = 4, n2 = 3, n3 = 1 41
s = s1s2⋯ ith symbol in a string s = 4045 implies s2 = 0 42
! = enen−1.5⋯e1 short for !(M) ! = 5440 46
! ⋅ z short for !(M/content(z)) ⋅ z ! ⋅ 04 = 54 ⋅ 04 46

Table A.13: Conventions.
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