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Abstract

The field of wireless communications has been experiencing tremendous growth

with the ever-increasing dependence on wireless services. In the operation of a com-

munication network, the network coverage and node placement are of profound im-

portance. The network performance metrics can be modeled as nonlinear functions

of inter-node distances. Therefore, a geometric abstraction of the distance between

wireless devices becomes a prerequisite for accurate system modeling and analysis.

A geometrical probability approach is presented in this dissertation to characterize

the probabilistic distance properties, for analyzing the location-critical performance

metrics through various spatial distance distributions.

Ideally, the research in geometrical probability shall give results for the distance

distributions 1) over elementary geometries such as a straight line, squares and rect-

angles, and 2) over complex geometries such as rhombuses and hexagons. Both 1) and

2) are the representative topological shapes for communication networks. The cur-

rent probability and statistics literature has explicit results for 1), whereas the results
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for 2) are not in existence. In particular, the absence of the distance distributions

for rhombuses and hexagons has posed challenges towards the analytical modeling

of location-critical performance metrics in complex geometries. This dissertation is

dedicated to the application of existing results in 1) elementary geometries to the

networking area, and the development of a new approach to deriving the distance

distributions for complex geometries in 2), bridging the gap between the geometrical

probability and networking research.

The contribution of this dissertation is twofold. First, the one-dimensional Pois-

son point process in 1) is applied to the message dissemination in vehicular ad-hoc

networks, where the network geometry is constrained by highways and city blocks.

Second, a new approach is developed to derive the closed-form distributions of inter-

node distances associated with rhombuses and hexagons in 2), which are obtained

for the first time in the literature. Analytical models can be constructed for char-

acterizing the location-critical network performance metrics, such as connectivity,

nearest/farthest neighbor, transmission power, and path loss in wireless networks.

Through both analytical and simulation results, this dissertation demonstrates that

this geometrical probability approach provides accurate information essential to suc-

cessful network protocol and system design, and goes beyond the approximations or

Monte Carlo simulations by gracefully eliminating the empirical errors.
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Chapter 1

Introduction

1.1 Wireless Communication Networks

Recent years have seen the impressive penetration of wireless communication tech-

nologies, growing availability of wireless data access opportunities, and wide prolif-

eration of wireless devices. The ever-increasing dependence on wireless services has

also triggered a high demand for novel and exciting applications. With the wide de-

ployment and convenient accessibility to communication network infrastructures, the

emerging technologies are capable of providing ubiquitous network access to users, as

well as high quality of services. Consequently, numerous research opportunities have

appeared, as a result of the increased attention from the research community.

The wireless communication systems are primarily designed to provide cost-efficient

wide-area coverage for users, with or without the assistance of an infrastructure.

Infrastructure-based networks are the communication networks that have dedicated

access points or base stations coordinating over their networking domains. Any com-

munication is established between a fixed point and an arbitrary user, and thus the

operation of the systems relies on centrally deployed devices. Typical examples are

wireless local area networks (WLANs) and cellular systems. In contrast, the networks

where wireless devices connect with one another either directly or via multi-hop are

known as infrastructure-less networks, or ad-hoc networks. In an ad-hoc network,

devices are usually limited in transmission and processing power. However, they can

be autonomously deployed and relay information on behalf of other neighbors in the

vicinity, acting as both terminals and relays simultaneously. Wireless sensor networks

and vehicular ad-hoc networks are two important examples.
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Both the infrastructure-based and infrastructure-less networks are major compo-

nents of the current communication arena. As both of these communication technolo-

gies developing to their maturity, people’s daily lives have become more connected

than ever. Wireless communication networks have brought much convenience to to-

day’s world. But how to model and analyze these networks by combining the emerging

wireless communication and networking technologies with a realistic mathematical

model is still an open issue and a demanding task.

1.1.1 Background

Wireless transceivers use the radio channel as the medium for communications. Com-

pared with the traditional wired Ethernet, wirelessly transmitted electromagnetic

waves are not guided along any solid medium. Such an over-the-air transmission that

is subject to noisy channel conditions is the primary reason for the severe attenuation

or path loss of transmitted signals. The transmission between a pair of transceivers is

also subject to unintended signals, or interference, transmitted simultaneously in the

vicinity. The obstacles that cause reflection, diffraction or scattering of the signals

make the wireless communication environment even more complicated. Therefore,

the transmission of signal in the open air is significantly more complex than that in a

guided medium. Such complexity poses challenges towards the modeling and analysis

of wireless communication networks.

Among all the above physical phenomena, however, the locations and distances

among transceivers, interferers and scatterers are the essential factors with the most

significant impact on the transmitted wireless signals. A realistic mathematical model

that captures the distance between randomly distributed wireless devices is therefore

highly desired. As an example, the strength of a transmitted radio signal attenuates

with the distance between the transmitter and receiver. The existence of interferers

and scatterers, and the resultant inter-node distances affect the overall interference

and multi-path fading. As another example, when wireless devices have a fixed trans-

mission range, the inter-node distance determines the existence of a communication

link, or the wireless connectivity. In this dissertation, the distance-related metrics,

e.g., signal attenuation and connectivity, are referred to as location-critical perfor-

mance metrics. They determine the ultimate performance of a wireless communica-

tion system.
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1.1.2 Motivation

The above location-critical performance metrics are essentially nonlinear functions of

inter-node distances. As transceivers are typically distributed over an area or volume,

following a certain distribution, the distance between these nodes are determined

by the network topology and node locations. In Geometrical Probability [67], such

distance is captured by a probabilistic density function. Therefore, given a network

coverage and the distribution of random nodes within the network, characterizing the

distances among these nodes becomes a prerequisite for accurate system modeling

and analysis.

In this respect, there are two major challenges to be tackled:

1. How to capture the distances and the spatial relationships among various wire-

less devices from a geometrical point of view; and

2. How to model and analyze the location-critical performance metrics, such as

wireless connectivity, signal attenuation, etc., given such a characterization of

spatial distances.

These two questions are particularly important for service providers and network

operators, as they are critical to the proper planning and dimensioning of service

infrastructure, and the provisioning of a consistent user experience.

1.2 Challenges

In a wireless communication network, the system performance metrics are highly

dependent on the inter-node distances and network geometry. This dissertation aims

at resolving the above two major challenges, from both the theory and application

perspectives.

1.2.1 Theory

Relating to the first challenge, we refer to theory as the research in geometrical prob-

ability, from a mathematical and statistical aspect. Geometrical Probability [67] is an

area of probability and statistics that studies the fundamental properties of geomet-

rical objects, such as points, lines, planes and spheres. The distribution of distances

between random points is an important aspect of this theory. With a certain node
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distribution, the inter-node distances can be treated as random variables, which are

best described by a statistical distribution. For instance, if nodes are uniformly dis-

tributed in the network coverage, the difference between the X and Y-coordinates,

denoted by X and Y , both follow a triangular distribution [34]. The Euclidean

distance between these nodes is D =
√

X2 + Y 2, whose distribution are typically

complicated [67, 104–106, 108]. The study of the random distances associated with

different geometric shapes, one of the fundamental probability measures in geomet-

rical probability, has been a research topic with a rich mathematical history and

background.

In this dissertation, straight lines, rectangles and squares are categorized as the el-

ementary geometries, while rhombuses, parallelograms and hexagons are the complex

geometries. In complex geometries, point coordinates are interdependent. Although

in the existing literature, the closed-form results for elementary geometries have been

obtained a long time ago, e.g., the distance distributions for rectangles [37, 38], the

same problem for complex geometries remains unsolved.

1.2.2 Application

Aiming to address the second challenge, application is referred to as the probabilistic

modeling and analysis for the location-critical performance metrics utilizing the geo-

metrical probability theory. Given the random distance captured through a statistical

distribution, probabilistic models can be constructed for analyzing the aforementioned

performance metrics that are location-critical, e.g., connectivity, path loss, interfer-

ence, etc. Such models are defined via a spatial distance density function. Since the

distribution of random distances is an important aspect of the geometrical probabil-

ity research, the approach used in this dissertation is thus a geometrical probability

approach.

The traditional probabilistic methods providing statistical moments, particularly

mean and variance, have been long existing in the literature. Other methods are

based upon the empirical approximations and Monte Carlo simulations. Using mo-

ments or approximations, analytical models are able to provide a rough estimation

of the system performance metrics, such as an upper or lower bound [100]. Using

the statistical moments, empirical approximations or simulations, the complexity of

analytical models has been maintained at a tractable level. However, a nonlinear

relationship between the location-critical performance metrics and random distances
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makes such performance evaluation much less accurate.

By the first example in Section 1.1.1, given D as the random variable denoting

the distance between an arbitrary pair of transceivers, if the path loss exponent is α,

then the signal attenuates as D−α. If the transmission power is Pt, then after being

transmitted over distance D, the received signal strength at the receiver is propor-

tional to PtD
−α. PtD

−α is a nonlinear function of D, so are other location-critical

performance metrics in wireless communication networks. From Jensen’s inequality,

(E[D])−α ≤ E [D−α], where E[·] denotes the expectation and α ∈ [2, 6]. As a result,

the deviation increases drastically with the nonlinear path loss exponent α [107]. In

the second example, for wireless devices that have a certain transmission range, the

random variable D also determines the connectivity between devices. If the statisti-

cal distance distribution of D is given, then important insights into the transmitted

signal and the properties of network connectivity can be obtained [110].

Henceforth, the terminology “point” is used in the context of theory, and “node”

is used in the context of application. Similarly, “geometry” is used as a concept in

mathematics and probability, and “topology” is used in the networking research.

1.3 Contributions of Dissertation

The contributions of this dissertation are twofold, addressing the above two challenges

from both the theory and application perspectives. First, one-dimensional random

distances are utilized for analyzing the connectivity properties in a vehicular ad-hoc

network scenario, where the network topology is a highway or city blocks. Second, the

closed-form distributions of inter-node distances associated with complex geometries

are obtained for the first time in the literature. Previously, conducting analytical

modeling in complex geometries was impossible.

1.3.1 Application of One-Dimensional Random Distances

The simplest network topology is a one-dimensional highway in vehicular ad-hoc

networks (VANETs). VANETs are emerging paradigms in sensor networks, which

use different sensing devices available in vehicles to gather environment information

and provide intelligent traffic information services. Vehicles equipped with wireless

transceivers communicate with each other through vehicle-to-vehicle communications,
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where the location of each vehicle is constrained by the road structure. The commu-

nication among vehicles has a plethora of applications such as safety and emergency

information dissemination for drivers, traffic monitoring, data collection and com-

munication for road and traffic managers, advertisement for hotels and restaurants,

entertainment and business services content distribution for passengers, etc.

Message dissemination is one of the most important applications in VANETs,

which depends on the location-critical connectivity among vehicles. Given a trans-

mission range, the underlying vehicle connectivity is determined by the inter-vehicle

distance distribution. Such geometrical probability approach makes possible an in-

depth study on the fundamental connectivity properties in a highway scenario, as well

as other location-critical performance metrics. The high accuracy of this geometri-

cal probabilistic approach is also demonstrated by the extension of this model to a

two-dimensional Manhattan-like city. Compared with the state-of-the-art which uses

mathematical simplification [75] and average analysis [100] in the analytical models,

the research in this dissertation is a considerable further effort.

On the other hand, the opportunistic access to the roadside infrastructures from

traveling vehicles, i.e., vehicle-to-infrastructure communications, also appeared as

IEEE 802.11 access points and base stations opening up services to mobile clients [62,

63, 111, 112]. However, due to the random location and mobility of vehicles, and the

limited roadside resources, the connectivity among vehicles and base stations are not

naturally guaranteed. The deployment of base stations will also cost network opera-

tors and service providers more at up-front investments and maintenance. Hence, in

this dissertation, the ad-hoc communication is proposed as the first-step solution for

increasing the opportunity for connectivity and accessibility.

(1) One-Dimensional Highway

This is the application of geometrical probability along a line to a highway VANET

scenario. By statistically analyzing different sets of empirical data, the authors of [13,

84, 86, 94, 100, 102] etc. found that the exponential distribution is a good match for

inter-vehicle distances. Equivalently, the vehicle arrivals can be modeled as a Poisson

point process. In probability theory and statistics, the Poisson distribution describes

the probability of a given number of events occurring in a fixed interval of time or

space [7]. Its application can be found in every field related to counting, such as the

arrivals of phone calls in a telephony system, customers at a counter, and vehicles
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passing a road observation point. Poisson point process is therefore widely used in

traffic engineering and flow theory [41], and has been verified by statistical analysis

and measurement [13,84,86,94,100,102].

A time/location-critical (TLC) framework is proposed for emergency message dis-

semination, where vehicles at different distances to an accident site can receive infor-

mation with different levels of details. Based on the memory-less property of Pois-

son distribution, in [110] we studied the message propagation in a highway scenario

through the derivation of vehicle cluster size distribution. A vehicle cluster is defined

as a finite number of vehicles that are connected sequentially with each other via

multiple hops. Its size is the distance between the first and last vehicles in the same

cluster. In contrast to the previous work in the literature [75, 100], no mathematical

simplification or approximation is used in [110]. By observing a non-negligible prob-

ability that the message delivery cannot be guaranteed when propagating within the

same vehicle cluster, reverse traffic is incorporated for further extending the vehicle

connectivity to far-away clusters. The distribution of cluster size and the distance

between clusters are critical to the characterization of network performance, such as

the message propagation delay, and the likelihood of missing an emergency message.

(2) Two-Dimensional Manhattan-Like City

A more complicated topology is a square lattice, or the street blocks in a Manhattan-

like city, where vehicles can disseminate messages to each other in perpendicular

directions. Following the same Poisson distribution of vehicles in one dimension,

and given the message propagation properties along a straight line, our work [109]

extended the model in [110] to a two-dimensional city block scenario. Both the the-

oretical analysis in a ladder topology and the simulation in a lattice topology show

that, the connectivity properties are significantly different from those in a highway

scenario. Furthermore, the network connectivity is investigated by two different mes-

sage forwarding schemes, with and without geographic constraints, respectively. The

results are surprisingly similar to the percolation phenomenon [25], where there ex-

ists a critical threshold above which the entire network is connected with a high

probability.

The problem of deriving the connectivity probabilities with an arbitrary location

is a central problem of directed percolation [42] in Physics and Stochastic Processes.

Although the authors in [25] derived the results in a very specific setting, the general
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problem studied in [109] still remains a major challenge after many years of efforts.

1.3.2 Random Distances Associated with Complex Geome-

tries

From highway to Manhattan grid, vehicles have the location constraints along straight

lines. As the contribution from the theory perspective, the research in this dissertation

extends the network topology to a two-dimensional space. Different from the previous

vehicular network scenarios, the resultant geometrical probability models have much

less constraint on the locations of wireless devices.

For the first time in literature, a geometrical probability approach is presented for

obtaining the distance distributions associated with complex geometries: rhombuses

and hexagons. The results provide a mathematical foundation for an accurate eval-

uation of the location-critical performance metrics. Based on the derived distance

distributions, the geometrical probability model gives invaluable insights to the pro-

tocol design, as being a powerful, versatile tool that is built upon the elegant theory

of geometric probability [93].

(1) Geometrical Probability in Two Dimensions

The distributions of random distances over elementary geometries such as squares,

rectangles and circles, have well-established results in the geometrical probability

literature [37,38,66–68]. In two-dimensional geometries, the derivation approaches in

these works have one common assumption that, the coordinates of a point have to be

independent. For instance, when using the Cartesian system, the distribution of X -

coordinate of a point in a rectangle is not affected by its Y-coordinate; in a circle where

the polar coordinate system is used, the distribution of radial coordinate and angular

coordinate of a point are also independent. The approaches for these elementary

geometries are not applicable to complex geometries, where the coordinates of a point

are interdependent, such as in rhombuses and hexagons.

However, hexagons are one of the topological shapes most suitable for cellular sys-

tems [40], and rhombuses are for sectorized cells with directional antennas. Both of

them have important applications in wireless communications, and other fields includ-

ing city planning and transportation [28], forestry and chemistry [66], etc. Despite

the recent deployment of picocells and femtocells [31] that are designed for indoor,

small-scale cellular coverage, the hexagonal tessellation is the classic topology for out-
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door, large-scale network coverage. From the perspective of network operators, such

topology is critical to guaranteeing satisfactory and profitable service coverage while

minimizing the deployment and maintenance costs. In the literature of geometri-

cal probability, however, the problem for complex geometries remains unsolved. The

development of new models for the random distances associated with complex geome-

tries thus has become the critical factor between the theory of geometrical probability

and the performance analysis for networks with complex topologies.

Our work [105,106] and [107] developed a new, unified approach through a quadratic

product that tackled the above problem by presenting the explicit distance distribu-

tions for rhombuses and hexagons. Via an affine transformation in plane geometry [1],

this product formulation not only handles the geometries where node coordinates are

interdependent, its degenerated form also gives the exact same results for squares and

rectangles as those in the classic geometrical probability research.

The novelty of this approach is twofold. First, from a mathematical point of view,

there is no fixed reference point required, which makes the problem significantly

more challenging and distinguishes the contribution of this dissertation from [15, 89,

103]. The results derived enable analytical models in a wider spectrum with less

location constraint. Second, the coordinates of a node can be interdependent. The

results are not only suitable for convex topologies, but also applicable to the networks

with concave geometric shapes. Previously, conducting accurate analysis on network

performance metrics has been intractable for complex network geometries. In this

dissertation, this gap in the literature has been filled. The rigorousness and accuracy

of the derived distributions have been verified through both mathematical validation

and simulations. [105] and [106] also illustrate the use of our probabilistic distance

models in a computation-effective manner with polynomial fitting.

(2) Application of Random Distances in Two Dimensions

As stated in Section 1.2.2, the major challenges in communication networks are the

non-deterministic nature of wireless communication, and the nonlinear relationship

between random distances and location-critical performance metrics. They make

pertinent a rigorous characterization of network performance metrics by means of the

closed-form distance distributions.

It is shown in our work [107] that, in both sparse and dense network scenarios,

the state-of-the-art approximations are not accurate when analyzing the nonlinear,
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location-critical network performance metrics. Examples are given for the analysis

of the nearest neighbor distribution in a sparse network for improving energy ef-

ficiency, and the farthest neighbor distribution in a dense network for minimizing

routing overhead. A further study on transmission power control shows that, while

the current approximation methods contain errors and deviations that are inevitable,

the geometrical probabilistic approach provides accurate results for network perfor-

mance metrics. Therefore, the explicit distributions for rhombuses and hexagons

in [105] and [106] not only solve an open problem in the geometrical literature, but

also gracefully eliminate the errors in empirical and approximation methods. The

probabilistic distance models hence bridge the gap between the network performance

metrics, and the explicit distribution of random distances in complex geometries.

The analytical results are critical to the fine tuning of protocol parameters, and the

accurate modeling of performance metrics.

To sum up, the contributions of this dissertation have profound impact on the

location-critical system performance metrics, from the perspective of an individual

user, as well as the service providers and network operators. The aforementioned sig-

nal attenuation, connectivity probability, etc., are critical performance metrics and

important service requirements that directly affect users experiences and satisfaction

levels in data transmission. More importantly, the insightful results from the geomet-

rical probability methods, which utilize the knowledge of network topology and user

distribution, enable network engineers and service providers to effectively improve

service quality, network planning, deployment and resource management.

1.4 Outline of Dissertation

The rest of this dissertation is organized as follows:

Chapter 2: Random distances associated with different geometric shapes, where

node locations follow a certain distribution, have been research problems with a

long mathematical history. In this chapter the classic work with the main focus

in the field of mathematics and statistics, and the application of these results

in communication networks are reviewed.

Chapter 3: Based on an exponential distribution of inter-vehicle distances, or Pois-

son point process, this chapter studies the fundamental limits of message prop-

agation in a vehicular ad-hoc network scenario. On a one-dimensional highway,
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the message propagation is always limited to a certain distance from the message

source. Therefore, the reverse traffic is incorporated into the framework, further

extending the vehicle connectivity among disconnected network components.

Chapter 4: This chapter extends the model in Chapter 3 from a one-dimensional

highway to a two-dimensional Manhattan-like city, with the same Poisson ve-

hicle distribution. Different from the highway scenario, there exists a critical

threshold above which the entire network is connected with a high probability.

This result is surprisingly similar to the percolation phenomenon.

Chapter 5: A unified approach is developed for the complex geometry, rhombuses,

by the formulation through a quadratic product and an affine transformation

in the plane geometry. The results are applicable to both convex and concave

geometric shapes. The proposed approach is able to handle interdependent

point coordinates, by separating the geometric shape and the characteristics of

the random coordinates inside the shape.

Chapter 6: A regular hexagon can be divided into three congruent rhombuses. In

this chapter, the derivation of distance distributions associated with hexagons

is presented, through a probabilistic sum of various geometrical rhombus com-

binations. By analytical and simulation comparison, in both sparse and dense

network scenarios, the state-of-the-art approximations of hexagon distributions

are determined to be not accurate.

Chapter 7: This chapter concludes the dissertation with further work. Future re-

search plans beyond this dissertation, revolve around the probabilistic distance

distributions under the impact of human and vehicle mobility, and the stochastic

models of network performance metrics. The conditional distance distributions

also have a profound impact on the wireless channel models and cooperative

communications. It is anticipated that the applications of this research will be

numerous and diverse.
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Chapter 2

Background and Related Work

Random distances associated with different geometrical shapes, where node locations

follow a certain distribution, have been research problems with a long mathematical

history. Starting with a simple but important geometry, the distance distributions

along a one-dimensional straight line allows an investigation on the location-critical

performance metrics in a basic scenario. With a Poisson point process, the distance

between the randomly and independently distributed points can be characterized by

an exponential distribution.

In more practical scenarios, i.e., two-dimensional networks with finite sizes, the

random distance distributions are more complicated. However, these network topolo-

gies are the most frequently encountered in practice. Looking back into the study

on geometrical random distances over the past 60 years, considerable research efforts

have been made to obtain the closed-form distributions in two dimensions. However,

all the existing results for the random distances only have explicit forms in elementary

geometries, such as rectangles [9, 68] and circles [69], or for the distance from a fixed

reference point [66,69].

This chapter presents the theoretical background of geometrical probability and

the applications in the networking research. First, the classic works in geometrical

probability are reviewed. These results include the closed-form distributions in simple

geometries, and the empirical approximations in complex geometries. This chapter

also introduces the application of these results in the existing literature. However,

these applications in communication networks are still preliminary.
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2.1 Geometrical Distributions

2.1.1 One-Dimensional Random Distances

In a one-dimensional network where nodes are distributed along a straight line, com-

munication occurs if the distance between consecutive nodes is less than the trans-

mission range. Albeit simple, the analytical results in the one-dimensional space are

highly important, as they can provide bounds on the connectivity problem in higher

dimensions by approximations [30,32,85].

One-dimensional networks have been studied in the context of cellular networks [54]

and circuit-switched networks [35, 55, 113]. In a one-dimensional geometry, the most

widely-used point distribution model is the Poisson point process. This can be seen

as a special case for the birth-death process, or the branching process introduced by

Gilbert [39]. Such a process is also the basic point distribution model in the field of

continuum percolation [42].

As stated in Section 1.3.1, one-dimensional Poisson model is important since it

represents a meaningful model for many applications. In particular, it is well-suited

for vehicular ad-hoc networks, where the mobility of vehicles is constrained by the

road structure. Through the statistical analysis of empirical data collected from real

scenarios, the authors of [13, 84, 86, 94, 100, 102] etc., discovered that such a model

is a good fit for highway vehicle traffic in terms of inter-vehicle distance and time

distribution. Given a single parameter, the vehicle density λ, this model is able to

describe the characteristics and variation of highway traffic.

The analysis provides insight into more complex or even two-dimensional networks.

For example, the one-dimensional Poisson model on a highway can be extended to

cover the cases of multiple lanes with different vehicle densities, where multiple lanes

can be treated as a single lane with a higher traffic density. When the different lanes

on the same road segment diverge, the traffic on a diverging lane can be modeled as

a thinning Poisson process.

2.1.2 Two-Dimensional Random Distances

The study of the distribution of random distances in two-dimensional geometries dates

back to the late 1940’s [37, 38]. The problem of deriving the expected distance be-

tween random points was listed as problem number 75-12 of the Society for Industrial

and Applied Mathematics Review [76]. While this problem has drawn considerable
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attention from the literature (please refer to [36, 43, 92] and the references therein),

obtaining the distribution of random distances, which leads to all statistical moments,

turns out to be very challenging yet highly useful when analyzing the location-critical

performance metrics in communication networks. Some research focused on the ran-

dom distances when one of the endpoints of a link is fixed [66], whereas the problem

becomes especially difficult when both the endpoints are random. Nevertheless, given

the distribution of random distances in a two-dimensional space, more problems can

be tackled in addition to the connectivity problems in one dimension.

(1) Two-Dimensional Geometrical Distributions Associated with Elemen-

tary Geometries

[9] is among the first efforts towards the derivation of distance distributions with

random endpoints. In this work, the classical Crofton technique and its extensions

were used for obtaining the geometrical distributions of random distances associated

with circles and squares, both of which are elementary geometries. Later, [66, 68,

87] showed a few simple geometrical cases where their distance distributions can

be derived analytically. [67] in particular, is a collection of methods for distance

distributions in different elementary geometric shapes.

These methods either use local or global perturbations, differential equations or

standard statistical techniques. By means of a geometrical probability approach, the

resultant spatial distance distributions provide key insights into the understanding of

the probabilistic nature of wireless communication networks, including our previous

work [108]. However, many of these efforts either studied random distances from

a fixed reference point, or the chord length where both endpoints are limited to

the boundary of the geometry [9]. Another limitation of these works is that the

employed technique only yields explicit distribution for a specific elementary network

geometry [67]. Their inflexibility in handling interdependent point coordinates has

limited these distance models to a certain number of geometries [37,38,108].

In elementary geometries, our previous work [108] proposed an energy consump-

tion model in sensor networks, based on the probabilistic distance distribution when

a sensing field is partitioned into a number of square grids. This model utilizes the

probabilistic distribution functions of inter-node distances associated with squares,

which are much more accurate than the work prior to [108]. In Chapter 5, a new

model based on a quadratic product is presented to derive the distance distributions
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in two-dimensional spaces. The new model is applicable to the scenarios when the

coordinates of points are independent (elementary) and interdependent (complex).

(2) Two-Dimensional Complex Geometries and Empirical Approximations

Spatial reuse is a fundamental enabling tool to achieve a higher network capacity for

the ever-increasing demand of wireless services. A wireless communication network

is usually divided into congruent polygons, or cells. Examples exist for equilateral

triangles, squares, and regular hexagons. Hexagons are typical in cellular systems

as they provide the most economic coverage of the network, without leaving gaps

or creating overlapping between cells. Moreover, any given point inside a hexagon

is closer to the center of the hexagon than any point in an equal-area square or

triangle [4]. However, the results of distance distributions associated with hexagons

are lacking in the geometrical probability literature, which poses significant challenge

to the networking research.

Hexagonal tessellation is the network topology applicable to both infrastructured

and ad-hoc networks. In cellular systems, for example, the base station is usually

located at the center or at one vertex of a hexagonal cell, whereas the subscribed

users are located inside the cell with a certain distribution. If the base station uses

directional antenna, then each of the sectorized cells is a rhombus. If the distance

distributions associated with hexagons are given, analytical model can also be con-

structed for ad-hoc networks where no base station exists. In an ad-hoc network that

is partitioned into a honeycomb, each hexagon is an autonomous entity in which nodes

communicate directly with one another, e.g., the wireless sensor network partitioned

into hexagonal clusters as in [29].

The hexagon topology is important for service providers for the proper planning

and dimensioning of network coverage and service infrastructure. However, in all

the existing works, no analytical models have been proposed for the applications of

geometrical probability associated with hexagons in closed form. The state-of-the-

art models are limited to the distribution with one fixed point in a hexagon [15, 17,

103], or similar circular approximations as those shown in Figure 6.1(b) and (c) [33,

60]. More recently, empirical approximations [14, 16] have been used to obtain the

distance distributions in non-overlapping geometries. However, these methods do not

provide much insight into the geometrical problem itself. Approximation errors are

also inevitable, especially when the distance distributions are applied to the analysis
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of complex, nonlinear performance metrics. The development of new models and

approaches for the derivation of random distances associated with hexagons thus has

become an imminent research problem.

2.1.3 Summary

Using the distance distribution functions derived for both elementary and complex

geometries, further analysis can be conducted on the location-critical performance

metrics in various network topologies. Such a geometrical probability approach has

a wide range of applications in wireless communication networks, as will be shown in

the following section. When compared with the models using explicit distributions,

traditional methods based on moments and approximations are less accurate or even

not applicable.

2.2 Geometrical Probability Approach and Location-

Critical Performance Metrics

In a two-dimensional space, elementary or complex, the locations of different transceivers

and interferers, and the Euclidean distances between them, have a profound impact

on the operation of more general wireless communication networks. Initial efforts have

appeared in the literature analyzing certain performance metrics that are distance-

related, utilizing the random distances that are associated with geometries in two

dimensions.

2.2.1 Connectivity, Position-Based Routing and Hidden Ter-

minals

In the Boolean connectivity model [11, 12], two nodes are connected when their dis-

tance is smaller than the transmission range R. Based on this model, [73] derived the

distribution of link distances, or hop distances, between two random radio transceivers

in a wireless network covering a rectangular area. Given the transmission range R, [74]

studied the joint distribution of link distances, i.e., two-hop connectivity, in a square

area, which was based on the results in [73]. [18] investigated the discrete probabil-

ity distribution of the minimum number of wireless hops, or hop count, between a

random source and destination.
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There are also ad-hoc routing protocols which make forwarding decisions based

on the geographical location of a packet’s destination [71]. For example, [96] derived

the connection probability of the best path and the probability of having at least

one alternate path. Furthermore, the k-th nearest neighbor distance is also crucial

for relay and routing protocols [18]. [90] found that in a network where nodes are

distributed according to a binomial point process (BPP), the distance from the source

node to the k-th nearest neighbor follows a beta distribution.

Furthermore, hidden terminal occurs when two nodes that are more than R apart

transmit simultaneously, while their transmissions collide at a third node that is

less than R away from both. In contrast, if this third node is cooperating, it can

serve as a relay, improving network throughput by exploiting spatial diversity. The

joint distribution of the pairwise distances between any three random nodes, thus

determines the impact of hidden terminals or the efficacy of a relay node.

The above metric, node connectivity, is critical to the reliability of message de-

livery, as well as the minimization of multi-hop energy consumption in our previous

work [108]. Nodes are typically stationary, and a sequence of data forwarding results

in different covered distances at each hop towards the destination. These performance

statistics, determined by the pairwise distance between intermediate nodes, are crucial

to the applications with energy constraints, yet requiring high message delivery ratio.

However, the above works have tackled problems in elementary geometries, such as

rectangular and circular networks. The analytical models in complex geometries are

lacking.

2.2.2 Path Loss, Fading and Shadowing

In the Boolean connectivity model, the inter-node distance determines the existence

of a communication link. However, when path loss, fading and shadowing are taken

into account, the radio propagation model becomes more complicated than a disk

with a fixed radius R.

In a wireless communication channel, the strength of transmitted signals falls off

with the distance between transceivers at rate α, the path loss exponent. When there

are no obstacles between a pair of transceivers, or when a line-of-sight (LOS) path

exists, the attenuation of radio signals is proportional to the square of the distance,

i.e., the free-space propagation when α = 2. In a more realistic environment, the

surface of the earth or obstacles cause a reflection, diffraction or scattering of the
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signals, each of which leads to an extra loss of power over the distance between

obstacles and transceivers. In [15], the analytical and approximated expressions for

the path loss statistics are derived, although with the random distance distribution

from the center of a hexagonal cell.

Power control schemes are needed to determine the required transmission power to

overcome path loss. Moreover, if any of the transceivers are moving, the Doppler shift

results in an even more complicated communication channel. After being reflected

or diffracted, the area where the communication can happen successfully is no longer

a disk with a fixed radius, but rather an irregular shape that is dependent on the

node locations and network geometry. Meanwhile, the energy required to successfully

deliver a packet increases nonlinearly with the distance between transceivers. The

energy consumption (or received power) thus can be expressed as the (reciprocal)

power-α of the node distance, such as in [15] and our previous work [108].

[46] presented a model for predicting the site-specific radio propagation charac-

teristics, based on the geometrical probability of the layout in an indoor environment.

The key parameters of the power/delay profile are directly related to the floor lay-

out. However, the complicated ray-tracing in [46] has rather high computational cost.

In [44], an analytical model of the frequency-selective indoor radio channel was pre-

sented, including the computation of the first and second moments of the received

power, and a log-normal approximation of the received power distribution. [45] fur-

ther derived the bounds for the moments of the received power, which depend on the

volume and the surface area of a convex body. The above work, however, has only

tackled the moments of the distances (means and variances) [44, 45], characterized

the performance metrics for simple and very specific network topologies [46], or the

distribution with a fixed point [15,89,90,103].

2.2.3 Interference, SINR and Channel Capacity

The received signal at a receiver, albeit being attenuated or reflected, is superim-

posed with other unintended signals transmitted in the vicinity [89]. This leads to

the mutual interference between wireless links that are active at the same time. It is

possible that a set of nodes, even outside the interference range of the receiver, simul-

taneously transmit and their cumulative interference causes packet corruption at the

receiver. Knowing the statistical distribution of node distances, the cumulative inter-

ference at the receiver can be modeled as an additive random variable. Co-channel
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interference (CCI) in hexagonal cells is approximated in [17], where interference orig-

inates from neighboring cell centers. Similar distance model is used in the analysis

of the interference factor in [21]. In [80], the outage probability, a measure that links

the aggregate interference to the quality of service, is analyzed for Ultra-Wideband

(UWB) systems. The network topology is only limited to the square-shaped cells,

and the link distances are from a fixed point in a square. The outage probabilities

in circular, square, and hexagonal cell geometries are compared in [79], where link

distances are also from the cell center. Even the most recent works [10,51,78] model

the locations of access points in a cellular system as a two-dimensional Poisson point

process, due to the complexity of the problem. However, two-dimensional Poisson

point process is only applicable to a network of an infinite size, and the cannot cap-

ture the hexagonal geometry of cells. In a general network where no reference point

exists, approximations are used [89,98].

The received signal strength and the interference by concurrent transmissions

eventually determine the capacity of a system. A successful decoding of the received

symbols is a random event with probability dependent on the ratio between the

desired signal strength from an intended transmitter, and the unintended interference

plus thermal noise, i.e., the signal-to-interference-and-noise ratio (SINR). Given an

acceptable bit error rate (BER), the packet reception is successful if the SINR is

greater than a certain threshold.

2.2.4 Stochastic Properties of Random Mobility Models

In a mobile network, if a device is allowed to move randomly along straight lines

inside a certain region, its trajectory is formed by a set of polylines between random

points [47]. By describing this mobility model as a discrete-time stochastic process,

many of its fundamental stochastic properties can be investigated, with respect to

the transition length of a mobile node between random points [19]. By also knowing

the speed characteristics of the device, one can obtain the travel time and transition

process. Similarly, the tour length of the traveling salesman problem (TSP) in a region

with uniform demand density can be reduced to the same problem [81]. The resultant

travel time is important to many time-sensitive applications where a minimal service

latency is desired.

In the above work, approximation or theoretical bounds were given for certain

network scenarios [14,16,44–46], or a reference point is needed in order to obtain an
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explicit distance distribution, such as the work in [15,17,79,80,89,90,103]. In this dis-

sertation, a new approach is proposed to derive the distance distributions when both

endpoints of a link are random, and when the point coordinates are interdependent.

As a result, more challenging problems can be solved. As mentioned above, only

the interference and outage properties from base stations were analyzed in wireless

communication systems in the current literature.

2.2.5 Summary

All the metrics listed in this chapter are related to the node location and distance,

which are in close relation to the network deployment (i.e., the distribution of network

devices) and geometry (network topology and size). They are particularly important

at the network planning and dimensioning stage. Even though the knowledge of

random distances is crucial in the networking research area, relatively little relevant

work has been done to give a general, unified formulation, and no explicit results are

available in the literature for complex topologies.

In this dissertation, the results of the existing geometrical probability give us the

statistical distance distributions over elementary geometries, which are applied to the

evaluation of location-critical performance metrics in one-dimensional network topolo-

gies. Meanwhile, the new models for deriving geometrical distributions for complex

geometries are able to deal with both elementary and complex network topologies,

and convex and concave communication regions, through a simple but elegant formu-

lation.

In the next chapter, a time and location-critical message dissemination framework

is proposed for vehicular communications in a highway scenario. Utilizing the Poisson

distribution in one dimension, the location-critical performance metrics are analyzed

in details.
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Chapter 3

The Poisson Point Process and

Vehicular Ad-Hoc Networks on

Highways

Vehicular ad-hoc networks (VANETs) are emerging paradigms in sensor networks,

which use different sensing devices available in vehicles, to gather environment infor-

mation and provide intelligent traffic information services. VANET promises to en-

hance the road safety and travel comfort significantly in both highway and city scenar-

ios. Message propagation, either for emergency or infotainment, constitutes a major

category of VANET applications. It is particularly challenging in infrastructure-less

vehicle-to-vehicle communication scenarios.

Early research on vehicle traffic theory has found that the inter-vehicle distances

follow an exponential distribution [13,84,86,94,100,102]. In this chapter, this traffic

model is used for the study of network connectivity in a one-dimensional network

topology. A time and location-critical framework is proposed for the emergency mes-

sage dissemination among vehicles in a highway scenario, where vehicles at different

distances to an accident site can receive information with different levels of details.

This framework is achieved through the previously proposed scalable modulation and

coding (SMC) scheme, which allows messages of different importance to be broad-

cast to different distances simultaneously. Such a unique feature fits well with the

requirement of instant collision avoidance and advance travel planning in VANET.

The geometrical probability approach in this chapter gives accurate analysis of

location-critical performance metrics that are crucial for message dissemination in
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vehicular ad-hoc networks. Although the data dissemination in VANET and MANET

has been studied extensively in the literature, to the best of our knowledge, this is

the first time that multiple deadlines at different locations are taken into account at

the same time. The performance metrics are analyzed through simpler approaches

than the current literature [75, 100], yet with higher accuracy. In the next chapter,

the extension of this model is applied to a two-dimensional Manhattan-like city. The

term vehicles and nodes are used interchangeably, when it is obvious from the context.

3.1 Spatio-Temporal Vehicular Traffic Models

3.1.1 The Poisson Point Process

As a major component of the future intelligent transportation systems (ITS) [22],

VANET brings huge economic and social impacts to the more connected lifestyles and

activities, by enabling inter-vehicle communications with or without the assistance

of roadside infrastructures. Vehicles equipped with different onboard sensing devices

are used for gathering environmental information and providing intelligent traffic

information services. With the allocation of a 75 MHz licensed band at 5.9 GHz for

the Dedicated Short Range Communications (DSRC) [3] around the world, VANET

has become increasingly popular and attracted considerable attention from both the

academia and industry.

Many vehicle mobility models have been proposed in early research studies, in-

cluding the car following model and other variants. More recently, through the sta-

tistical analysis of empirical data collected from real world scenarios, the authors

of [13, 84, 86, 94, 100, 102] have arrived at a surprisingly similar conclusion that an

exponential model is a good fit for highway vehicle traffic, in terms of inter-vehicle

distance and inter-contact time distribution. Equivalently, the vehicle arrival process

is modeled as a Poisson point process. As described in Section 1.3.1, Poisson dis-

tribution describes the probability of a given number of events occurring in a fixed

interval. It is widely used in modeling the arrival process of vehicles, such as the

models in traffic flow theory [41].

Message dissemination, either for emergency or infotainment, constitutes a ma-

jor category of VANET applications. In a highway scenario, emergency message

(EM) dissemination is the most important application for the safety of drivers and

passengers. In VANET, message dissemination depends on the underlying location-
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critical connectivity among vehicles, which is determined by the transmission range

of equipped wireless devices and inter-vehicle distances. The transmission range of

DSRC is typically 200 m up to 1 km, such as that in IEEE 802.11p [52]. On the

other hand, given the vehicle arrivals as a Poisson distribution, the characteristics and

variation of highway traffic can be captured with a single parameter: vehicle density

λ, in the number of vehicles per meter.

3.1.2 One-Dimensional Connectivity

As in Section 3.1.1, the fundamental connectivity property of VANET depends on

a given transmission range R, and inter-vehicle distances. Two consecutive vehicles

on a road are directly connected when their distance is less than R. Therefore, the

distance between two vehicles determines the existence of a communication link, i.e.,

the Boolean connectivity model [11,12].

(1) Boolean Model and Network Connectivity

Existing studies show that the network connectivity in one-dimensional space is al-

ways limited. In practical situations, both R and λ < ∞. Therefore, for any two

consecutive vehicles that are separated by distance d, the probability of a disconnec-

tion, Pr{d ≥ R} = e−λd, is strictly positive for all d ≥ 0. As a result, the disconnection

happens almost surely (a.s.) 1 [2]. Between these disconnections, a finite number of

vehicles are connected sequentially with each other in a group via multiple hops. Such

connected groups of vehicles are defined as clusters .

In contrast, in a two-dimensional space such as the city blocks in Manhattan,

network connectivity can be guaranteed if the density among nearby vehicles is above

a certain threshold. This is the so-called percolation phenomenon [25, 42, 57] where

the entire network is connected almost surely. When a giant cluster with infinite size

appears in a network, the network is said to be percolating. This case will be studied

in the next chapter.

(2) Vehicle Clusters and One-Dimensional VANET

Consider a sequence of vehicles distributed along a one-dimensional highway or street

segment. To analyze the network connectivity in such a one-dimensional space, the

1Let (Ω, F, P ) be a probability space. An event E in F happens almost surely if Pr(E) = 1.
Equivalently, an event E happens almost surely if the probability of E not occurring is zero.
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size of a vehicle cluster is particularly important, where the size is defined as the

distance between the first and last vehicles in the same cluster. From the argument

in above, the cluster size is finite with high probability (w.h.p.). Because all the

vehicles in a cluster are connected to one another by single or multiple hops, the size

of a cluster determines how far a message can be disseminated from one end of a

cluster to the other end with a low delay.

When vehicles travel with relatively constant speed, messages cannot be prop-

agated beyond a cluster, i.e., no communication happens between clusters in the

same direction. However, the traffic in the reverse direction can be utilized to ex-

tend the connectivity between clusters, and carry-and-forward messages to vehicles

that belong to different clusters. By taking the advantage of the reverse traffic, the

one-dimensional connectivity becomes more dynamic and opportunistic, although the

resulting message dissemination incurs a higher propagation delay. The carry-and-

forward delay between clusters is dominated by the distance between forward and

backward clusters in opposite directions, because the vehicle speed is much slower

than the electromagnetic wave propagation within the same cluster.

(3) Related Work

Some of the existing work in the literature has studied the one-dimensional connec-

tivity problem. In [30], nodes are assumed uniformly distributed in [0, z] forming a

one-dimensional ad-hoc, multi-hop radio network. By using Laplace Transforms, the

authors derived the probability of network connectivity as a function of transmis-

sion range. However, an (n-1)-fold convolution is needed to obtain the probability

of connectivity in a one-dimensional network with n nodes. A lower bound in a two-

dimensional network is given by approximation.

In [26], a recursive formula giving the average number of hops between two con-

nected nodes is derived, and the probability that a given number of nodes on a

finite interval are all connected is computed in [85]. These performance metrics are

evaluated with respect to the number of nodes. In vehicular ad-hoc networks, the

location is critical to the network performance, especially for applications that are

safety-related. Therefore we focus on the connectivity properties with respect to the

distance between vehicles.

By using an equivalent GI|D|∞ queuing model, the authors of [75] derived the

connectivity probability in one-dimensional networks. In [75], node positions were
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equivalent to customer arrivals, and the service process has a fixed duration R. The

occurrence of a vacant space in a one-dimensional network is equivalent to a visit

to the idle state of the queue. Because λ < ∞, the idle state will be visited almost

surely within a finite time. The results were obtained by Laplace-Stieltjes Transforms

(LST), and simplifications were made to obtain an approximated expression.

In this chapter, a time and location-critical (TLC) framework is proposed for

the message dissemination among vehicles in a highway scenario. A new approach

that is based on the memory-less exponential distribution is developed to analyze the

fundamental connectivity problem, but without simplification or approximation. The

derivation and simulation show that this new approach is simpler, and the results are

much more accurate.

3.2 Time and Location-Critical Framework for Ve-

hicular Ad-Hoc Networks

Among the vast array of potential ITS applications, emergency message (EM) dis-

semination is considered critical to all safety-related applications. When an accident

occurs or a certain road condition is observed, referred to as a point-of-interest (POI),

vehicles at different distances away need different levels of information in the propa-

gated message. The vehicles close to the POI need detailed information immediately

to react properly, e.g., slowing down or changing lanes, due to the short reaction

distance and the resultant short reaction time. Meanwhile, the propagated message

needs to be disseminated further to allow following vehicles to make location-aware

decisions, e.g., detour at a highway exit or reroute whenever possible. It is crucial that

the time and location criticality of EM dissemination should be taken into account

at the same time.

Through an in-depth analysis on the one-dimensional VANET connectivity prop-

erty, the location-critical performance metrics such as message propagation delay, and

the likelihood of missing an emergency message, etc., are investigated.

3.2.1 Scalable Modulation and Coding (SMC)

This section first presents a TLC framework for EM dissemination, using the scalable

modulation and coding (SMC) scheme proposed in [24]. The purpose is to allow



26

s1 s2

s8

s4s3

s6s5

s7

1 11

1 00

0 110 10

0 010 00

1 01

1 10

Figure 3.1: Scalable Modulation and Coding using the 64-QAM Constellation.

vehicles at different distances to the transmitter receive different levels of information

in a single message transmission. By redefining the bit-to-symbol mapping in the

modulation constellation, SMC [24] allows a transmitter to encode information of

different importance simultaneously. In a nutshell, the receivers that are close to the

transmitter and with a high SINR can decode more information bits of both high and

low importance, i.e., the message is decoded with more detailed information. The

receivers further away or with a lower SINR decode less information from the same

broadcast transmission.

Rather than utilizing different modulation schemes to broadcast a single message

at multiple times, allowing transceivers to encode/decode different information bits

at the same time significantly reduces the non-deterministic medium access delay.

Therefore, the SMC scheme fits well with the TLC framework for EM broadcast,

where a low propagation delay is highly desired. The vehicles close to the POI need

guaranteed, detailed information for quick maneuvering, e.g., cruise control or even

autopilot, while further-away vehicles first receive an early warning and then obtain

more detailed information as they approach the POI.

SDMD and LDLD Messages

With SMC, a message can be delivered over short distances with more detail (SDMD)

and over long distances with less detail (LDLD) simultaneously. Refer to the bits of
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information to be transmitted over a longer transmission distance as the layer-1 bits

(L1), i.e., the basic information in both SDMD and LDLD messages. Further, the bits

of information over a short transmission distance, i.e., the extra information provided

in SDMD only, are referred to as the layer-2 bits (L2). Figure 3.1 illustrates an SMC

design using the 64-QAM constellation. Specifically, 8.5 dB and 25.5 dB are the

SINR threshold required for L1 and L2 bits to achieve the 10−5 BER requirement.

This SINR translates into an 879 m and 206 m transmission distance for L1 and L2

bits [110], which meets the standard requirement of IEEE 802.11p DSRC transmission

range from 200 m to 1, 000 m [3]. More importantly, this is achieved by a single

transmission to send one L1 bit and two L2 bits to different distances at the same

time. For the details of the SMC scheme design, please refer to [24].

3.2.2 TLC-based Emergency Message Dissemination

Assuming that all vehicles are equipped with GPS devices. Figure 3.2 depicts the

scenario for the TLC message dissemination framework. The x-axis shows the dis-

tance from the POI at location 0. For example, vehicle a has an accident at time

0 and broadcasts an emergency message with SMC, which allows the message to be

delivered by both SDMD and LDLD at the same time. We denote the short and long

transmission distance as d1 and d2, i.e., 206 m and 879 m [110].
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(1) SDMD Message and Reaction Deadline

For the SDMD message dissemination, the transmission distance d1 has to be greater

than a distance threshold—the reaction deadline D1. This distance threshold depends

on the vehicle stopping distance, given the human/vehicle reaction time and travel

speed. That is, any vehicles within D1 from the POI must be notified immediately to

avoid a pileup accident. The y-axis shows the time deadline at different locations, and

the slope of “reaction deadline” is equal to 1/vmax, where vmax is the speed limit. To

ensure that all vehicles receive the SDMD message before the time-location dependent

deadline, the POI rebroadcasts the SDMD message periodically every τ seconds, with

the constraint that d1 ≥ D1+τvmax in order to accommodate the rebroadcast interval.

(2) LDLD Message and Detour Deadline

On the other hand, the LDLD message should be rebroadcast further to reach as

many vehicles as possible. In Figure 3.2, vehicle b receives both the SDMD and

LDLD messages, and c receives only the LDLD message from the POI. Ideally, c will

rebroadcast the LDLD message after a very small delay [56] compared with the POI’s

rebroadcast interval τ , assuming that all vehicles know their location and all messages

contain location information. The same process repeats at vehicle d. However, when

d rebroadcasts, the following vehicle g in the same direction is not close enough, i.e.,

the inter-vehicle distance is beyond d2. But e in the opposite direction is in the

transmission range of d. Therefore, e will rebroadcast the message to reach f . The

opportunistic use of reverse traffic effectively extends the range of LDLD messages to

reach more vehicles in the forward direction, when necessary and possible.

As demonstrated analytically later, even relaying by reverse traffic cannot guar-

antee to reach a vehicle arbitrarily far away from the POI. For example, in Figure 3.2,

there is no vehicle in either forward or reverse direction which is close enough to f

to further propagate the LDLD message. Thus the message has to be carried by f

in the opposite direction while being periodically rebroadcast every τ seconds. Since

the vehicle speed is much lower than the speed of electromagnetic waves, the LDLD

message incurs a much higher propagation delay, which is dominated by the gap

between forward and backward clusters and the vehicle speed. Relative to forward

traffic, however, the message travels at the doubled vehicle speed, which is shown

by the “LDLD progress” staircase curve in Figure 3.2. The purpose of the LDLD

message dissemination is to reach another distance threshold D2, where a detour exit
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is available. Therefore, the warning message is received early enough to minimize

the probability that vehicles miss the detour deadline. In Figure 3.2, once the LDLD

staircase progress curve intersects with the detour deadline curve, any vehicles before

the projection of this intersection on the x-axis and after D2 will miss their detour

deadline (e.g., g), since the LDLD message cannot reach these vehicles in time. In

this example, the LDLD message reaches vehicle h before its detour deadline, so h

will have the choice to take the detour exit, or travel along the same route and receive

the SDMD message with more details later. In this chapter, we let D2 ∈ [1, 10] km,

motivated by the real highway exit distribution [6] for the purpose of performance

evaluation.

(3) Possible Extensions

There are other variants of the TLC framework. For example, in addition to LDLD,

SDMD messages can also be relayed by both forward and reverse traffic when possible,

conceivably with more intermediate vehicles. Further, more types of messages can be

introduced and propagated to different distances away from the POI. For simplicity,

we only use SDMD and LDLD in this section to illustrate the TLC framework.

In VANET, contention-based MAC protocols are utilized to resolve media access

collisions, which result in random access delay. Since the MAC delay is much smaller

than τ and the travel delay, it can be ignored within the same cluster, as shown in

Figure 3.2. Many previous research efforts have addressed how to design effective

MAC protocols for reliable EM dissemination in a cluster and how to quantify their

performance, e.g., [20] etc. These efforts are orthogonal to the work in this chapter,

and their delay bounds can be incorporated into our analysis as well.

3.2.3 Forward Direction: Cluster Size Characterization

A cluster is a connected group of vehicles on a one-dimensional highway, in which

either SDMD or LDLD can be relayed directly or by multi-hop radio transmissions.

The distance between the first and the last vehicles in the same cluster, or cluster

size, is of great importance in SDMD and LDLD dissemination for collision avoidance

and look-ahead decision making. It is also the foundation of other location-critical

performance metrics that will be introduced shortly in this section. In the following,

the expectation and distribution of cluster size are derived.
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(1) Moments of Cluster Size

As in Section 3.1.2, the authors of [75] obtained the expected cluster size with an

equivalent GI|D|∞ queuing model, by means of the Laplace-Stieltjes Transforms

(LST) and mathematical simplification, which are in turn based on the derivation

in [61]:

E[B] = R +

∫ R

0
xfX(x)dx

1 − FX(R)
, (3.1)

where E[B] is the expected cluster size, R is the transmission range, and FX(x) =
∫ x

−∞ fX(x)dx is the cumulative distribution function (CDF) of the inter-node distance.

Assuming a Poisson point process with parameter λ, or an exponential inter-arrival

distribution with mean 1/λ, then fX(x) = λxe−λx for x > 0. Therefore (3.1) gives

E[B] = R +

∫ R

0
λxe−λxdx

e−λR
=

1 − e−λR

λe−λR
. (3.2)

Different from this approximated result, the approach in this section obtains the

exact average cluster size without any simplification or approximation. By simply

using the independent and identically distribution (i.i.d.) property of the inter-vehicle

distance confirmed in [13] etc., this geometrical probability approach is also much

more accurate2. Denote the random variable (RV) for cluster size by C, the following

recursion provides the expectation of C:

E[C] = E[C|X1 < R] × Pr{X1 < R} + 0 × Pr{X1 ≥ R}
= (E[X1|X1 < R] + E[C ′]) × Pr{X1 < R}, (3.3)

where X1 is the distance between the first and second vehicles in the same connected

cluster. For the second equality in (3.3), given the i.i.d. distribution of the inter-vehicle

distance, the cluster size starting from any vehicle, recursively treated as the cluster

head, is the same. This means that a sequence of k vehicles are connected to each

other, only if the k − 1 vehicles are also connected by taking away the first vehicle

that is within distance R of the second vehicle in the sequence. Also, E[C|X1 <

R] = E[X1|X1 < R] + E[C ′], where E[X1|X1 < R] is the average distance between

the first and the second vehicles in the cluster; and E[C ′], which is equal to E[C]

asymptotically, is the average cluster size if the second vehicle is chosen as the cluster

2As the width of the street is negligible when compared with the street length, all vehicles in a
two-way street are assumed along a line, no matter which lane they actually occupy.
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head.

This above recursion is applicable to i.i.d. inter-vehicle distance distributions and

is simpler than [75] and [100]. With an exponential distribution, Pr{X1 < R} =

1 − e−λR. Given the conditional expectation X ′
1 = E[X1|X1 < R] =

∫ R

0
λxe−λx

1−e−λR dx,

E[C] is

E[C] =
1 − e−λR

e−λR
X ′

1 =
1 − e−λR(λR + 1)

λe−λR
. (3.4)

This simple approach gives the exact average cluster size without any simplifica-

tion. Figure 3.3 compares the results from (3.2) with (3.4), and the simulation in

Matlab, given the traffic density and transmission range. By distributing vehicles

along a straight line according to the exponential inter-vehicle distances, whenever

two consecutive vehicles are separated by a distance that is more than R apart, they

are in different clusters. The average cluster size can thus be measured. In Figure 3.3,

λ is 0.01 (number of vehicles per meter), and the y-axis is the expected cluster size

in log scale. From the figure, when λR is sufficiently large, both approaches match

the simulation well; but for small R and λ, the results given by (3.4) are much more

accurate. For example, at R = 206 m, E[B] = 685 m and E[C] = 479 m, while the



32

simulation gives 478 m. The authors in [100] also obtained the average cluster size,

or cluster length in their terminology. Their result was obtained via average analysis,

which is based on the product of the average inter-vehicle distance and the average

number of vehicles in a cluster. Although this approach gives correct result for the

first moment, or expectation, it does not apply to higher-order moments.

In contrast, the approach in (3.3) is both simple and direct, and the higher-order

moments of C can be obtained in a similar way. For instance, the second-order

moment of C is

E[C2] = Pr{X1 < R} × E[(C + X1)
2|X1 < R]

=
1 − e−λR

e−λR
×
(

2E[C]X ′
1 + X ′2

1

)

, (3.5)

where X ′2
1 = E[X2

1 |X1 < R] =
∫ R

0
λx2e−λxdx. Higher-order moments, however, are

not discussed in [100].

(2) Cluster Size Distribution

Let the sequence {Xi} denote the random variables of the inter-vehicle distance be-

tween the i-th and the (i + 1)-th vehicles, which are i.i.d. with fXi
(x) = λe−λx for

x > 0. FXi
(R) =

∫ R

0
fXi

(x)dx = 1− e−λR is the probability that consecutive vehicles

are within the transmission range of each other. Let {X ′
i} be the the sequence of ran-

dom variables of the inter-vehicle distance, given that the i-th and (i + 1)-th vehicles

are in the same cluster, then

fX′

i
(x) = fXi|0≤Xi≤R(x|0 ≤ x ≤ R) =

λe−λx

1 − e−λR
, (3.6)

for 0 ≤ x ≤ R. Suppose that there are k vehicles in a cluster, the Laplace Transform

of the cluster size distribution is

f ∗
C|k(s) = f ∗

X′

1+X′

2+...X′

k
(s) =

[

λ

1 − e−λR
× 1 − e−(s+λ)R

s + λ

]k

. (3.7)

If fC|k can be obtained by taking the inverse-Laplace Transform on (3.7), then the

distribution function of cluster size C is

fC(x) =
∞
∑

k=1

fC|k Pr{k}, (3.8)
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Figure 3.4: Gamma Approximation of the Cluster Size Distribution (Solid Curve—
Analysis, Dashed Curve—Simulation).

where Pr{k} = (1 − e−λR)k−1e−λR is the probability that there are k vehicles in a

cluster, a geometric distribution with p = e−λR. Unfortunately, (3.7) does not yield

closed-form results by inverse-Laplace Transform. Thus it is very difficult to give

the exact formula of the distribution function. In fact, C is the sum of k truncated

exponential random variables given that they are smaller than the threshold R, and

k itself follows a geometric distribution, which further complicates the derivation.

Although the closed-form distribution of the cluster size cannot be derived, we

obtain its statistical moments without any simplification. Using these moments, the

Gamma distribution is used for the approximation of cluster size distribution, since

the Gamma distribution has been widely used to model the sum of a fixed number of

exponentially distributed random variables but without the truncation. Similar to the

average cluster size in Figure 3.3, the cluster size distribution, or the complementary

cumulative distribution function (CCDF), can be obtained according to the first and

second-order cluster size moments with different values of R and λ. In Figure 3.4, the

dashed lines are from simulation results, and the solid lines are the CCDFs calculated
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from the following Gamma approximation,

fC(x) = xk−1 e−x/θ

θkΓ(k)
, for x > 0, (3.9)

where k = (E[C2]/E[C]2 − 1)−1 and θ = E[C]/k ensure that the first and second-

order moments of the Gamma approximated random variable are the same as E[C]

and E[C2] in (3.4) and (3.5). Gamma distribution clearly is a good fit for the cluster

size distribution, according to the simulation results shown in the figure.

Once we have the cluster size distribution or approximation, the probability that

a message can reach a location at distance d away from the source, is the probability

that the cluster size is larger than d, i.e.,
∫∞

d
fC(x)dx. From fC(x), it is clear that

no matter how large the traffic density is, there is always a non-negligible probability

that the gap between two adjacent vehicles is beyond the radio transmission range R.

Once a vehicle is disconnected from a cluster, the remainder of the one-dimensional

network is also disconnected. Moreover, the probability that a further-away location

can be reached decays very quickly in the same direction as the message disseminates,

suggested by the Gamma approximation of C. Thus, the message propagation in

different directions should be explored.

3.2.4 Backward Direction: Using the Reverse Traffic

By observing the cluster size distribution, it can be found that the vehicle cluster is

likely to be small and thus a large number of following vehicles are unable to receive

the LDLD message. When the propagation of LDLD reaches the end of a cluster,

it cannot be forwarded any further unless certain vehicles in the opposite direction

pick up the message, and carry it towards the vehicles that are far behind so that the

message is delivered between clusters. Although such message delivery incurs a large

delay when compared with that inside a cluster (due to the much lower vehicle speed

than that of electromagnetic waves), the reverse traffic can significantly extend the

distance that can be covered by LDLD messages, e.g., [8, 100]. [100] gives the upper

and lower bounds of the average delay caused by reverse traffic, or the “re-healing”

time for messages to propagate cross clusters via average analysis and approximations.

In this section, however, the “carry-and-forward” delay distribution is obtained. The

vehicles in the reverse direction can also form clusters to relay the message, which

further complicates the analysis.
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Figure 3.5: Three Cases to Extend the Forward Cluster by Reverse Traffic.

(1) Carry-and-Forward Delay

Denote Xi,j as the distance between vehicle i and j at time 0, and Xi,0 as the distance

between i and the POI. Without loss of generality, let vehicle d be the last vehicle

in a cluster in the forward direction, g be the first vehicle of the following cluster in

the same direction, and e be a vehicle in the reverse direction that can help relay or

deliver the message to g, as shown in Figure 3.5. We consider the following three

different cases to derive the distribution of the distance traveled by vehicles in the

reverse direction to relay a message between consecutive clusters, which dominates

the “carry-and-forward” delay when using the reverse traffic.

Case 1:

As shown in Figure 3.5(a), there is no vehicle located between d and g in the reverse

direction and within the transmission range of d at the same time (i.e., Xd,f > R).

The message needs to be relayed by e in the reverse direction, and Xe,0 < Xd,0. The
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probability for this case to occur is

P1 = Pr{Xd,f > R} = e−λR. (3.10)

In this case, the message must be propagated from e to g when e travels close to

g. The distance between e and d, Xe,d, follows the exponential distribution, and the

distance distribution between d and g is fXd,g
(x) = λe−λx

e−λR for x ≥ R. Let Y1 be this

travel distance by vehicle e, then Y1 = Xe,d + Xd,g has the following distribution

fY1
(y) =

∫

fXe,d
(x)fXd,g

(y − x)dx = λ2(y − R)e−λ(y−R), (3.11)

for y ≥ R.

Case 2:

As shown in Figure 3.5(b), e is within the communication range of the forward

cluster, and it is closer to g than d is. The vehicle following e in the reverse direction,

f , is outside both e and d’s transmission ranges, therefore f cannot relay the message

to g. Thus, Xe,0 ≥ Xd,0, Xe,d ≤ R, and Xe,f ≥ R. The probability of this case is

P2 = Pr{Xe,d ≤ R}Pr{Xe,f ≥ R} = (1 − e−λR)e−λR. (3.12)

In this case, the gap Y2 = Xd,g −Xe,d. Since fXe,d
(x) = λe−λx

1−e−λR for 0 ≤ x ≤ R, and

fXd,g
(x) = λe−λx

e−λR for x ≥ R, the distribution of Y2 is

fY2
(y) =

∫

fXe,d
(x)fXd,g

(x + y)dx

=
λ

2

{

(eλy − e−λy)/(eλR − 1), 0 ≤ y ≤ R,

(eλR + 1)e−λy, y ≥ R.
(3.13)

Case 3:

As shown in Figure 3.5(c), both d and f are within the transmission range of

e, although in different directions. Thus f , and possibly other vehicles in the same

cluster as e and f in the reverse direction, can relay the message further, in order to
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reach g faster. In this case, Xe,0 ≥ Xd,0, Xe,d ≤ R, and Xe,f ≤ R. Therefore,

P3 = Pr{Xe,d ≤ R}Pr{Xe,f ≤ R} = (1 − e−λR)2. (3.14)

Let Y3 = max{0, Xe,g−C ′}, where C ′ is the distance that a message can be relayed

within the cluster in the reverse direction, which has the same distribution as cluster

size C. The density function of Xe,g is derived in Case 2 as fY2
(y), so fY3

(y) can

be obtained by fY3
(y) =

∫

fXe,g
(x)fC′(x − y)dx. To simplify the calculation, C ′ is

assumed to be a constant with value E[C]. Let δ be the Dirac delta function, and

thus the distribution of Y3 is approximated by

fY3
(y) ≈

{

fY2
(y + E[C]), y ≥ 0,

δ
∫ E[C]

0
fY2

(x)dx, y = 0.
(3.15)

Based on the above three cases, the density function of the travel distance is

fY (y) =
∑3

i=1 Pi × fYi
(y). Since messages can be directly transmitted between two

vehicles that are within the transmission range of each other, the actual distance that

will lead to the message propagation delay is max{0, Y −R}, and the delay D for the

reverse traffic to deliver the message to the next forward cluster has the CDF

FD(x) = FY (2xv + R) for x ≥ 0, (3.16)

where v is the speed of the vehicles in both directions. In [100], the upper bound of

travel delay, or the best-case “re-healing” time, is essentially case 3 in Figure 3.5(c);

and the lower bound (worst case) corresponds to case 1 and 2 in Figure 3.5(a) and

(b). However, [100] only derived the first moment and the approach does not apply

to higher-order moments.

Note that although the derivation of (3.16) is based on constant vehicle speed,

according to the invariance of the Poisson distribution under random shifts [72], if

the density of the original Poisson point process is λ, after an i.i.d. shift, the resultant

point process after the shift is still Poisson with rate λ.

Analytical and Simulation Results

Figure 3.6(a) shows the comparison between the analytical result given in (3.16),

and the simulation results by CCDF FD(x) = 1−FD(x). In the simulation, the travel

time is calculated according to the distance between clusters and the given vehicle
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speed, 120 km/h in this case. Traffic density λ is measured by the number of vehicles

per meter. Although we simplify the cluster size by its expectation E[C] in (3.15), the

analysis and simulation match quite well. Compared with the results in [100] on the

upper and lower bounds of the average “re-healing” time in Figure 3.6(b), the work

in this section obtaining the “carry-and-forward” delay distribution is a considerable

further effort. The analytical results, shown by the Analysis curve in the figure, are

more accurate at low traffic density. Note that this delay, in the order of seconds, is

much larger than the message propagation and MAC access delay within a cluster.

(2) Probability of Missing LDLD Deadlines

In addition to the carry-and-forward delay, the probability of missing an emergency

message is another performance metric that is location-critical. We assume that the

location of highway exits, i.e., D2 in Figure 3.2, is known by using either digital map

or GPS devices. For a tagged vehicle g in Figure 3.2, which is Xg,D2
away from

the exit D2 at time 0, the deadline to receive the LDLD message before g passes by

the detour exit is tD = (Xg,D2
)/v. Let C1 be the size of the cluster containing the

POI, and Ck be the size of the k-th cluster in the forward direction. Ck’s are the

i.i.d. random variables with the distribution given in (3.8). Let Gk be the distance

gap between Ck and Ck+1, the distribution of Gk is fGk
(x) = λe−λ(x−R) for x ≥ R.

The probability that g is in the first cluster, i.e., k = 1, is Pr{g ∈ C1} = 1 −
FC(Xg,0). For k > 1, g is in the k-th cluster when Xg,0 is larger than the sum of the

cluster sizes plus the inter-cluster gaps
∑k−1

i=1 (Ci + Gi), but smaller than
∑k−1

i=1 (Ci +

Gi) + Ck, i.e.,

Pr{g ∈ Ck} = Pr

{

k−1
∑

i=1

(Ci + Gi) < Xg,0 &
k−1
∑

i=1

(Ci + Gi) + Ck ≥ Xg,0

}

=

Xg,0
∑

x=0

Pr

{

k−1
∑

i=1

(Ci + Gi) = x & Ck ≥ Xg,0 − x

}

=

Xg,0
∑

x=0

Pr

{

k−1
∑

i=1

(Ci + Gi) = x

}

Pr {Ck ≥ Xg,0 − x} . (3.17)

Because x is a continuous random variable, the probability that g is in Ck is

Pr{g ∈ Ck} =

∫ Xg,0

0

fPk−1
i=1

(Ci+Gi)
(x)[1 − FCk

(Xg,0 − x)]dx. (3.18)
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The delay for the reverse traffic to carry the message from Ck to Ck+1 is Dk, which

has the i.i.d. distribution given in (3.16). The probability that g misses the LDLD

message before its deadline is

Pr{g miss LDLD} =
∞
∑

k=2

Pr{g ∈ Ck}
[

1 − FPk−1
i=1

Di
(tD)

]

. (3.19)

When k is large enough, we can use Gaussian random variables to approximate
∑k−1

i=1 (Ci + Gi) and
∑k−1

i=1 Di in order to simplify the calculation.

Analytical and Simulation Results

Figure 3.7(a) and (b) show the analytical and simulation results for the probability

to miss LDLD deadlines, versus the distance between a vehicle and a highway exit. In

both figures, the location of the exit is 5 km from the POI. When traffic density λ is

higher, it is more likely that the reverse traffic can help disseminate LDLD messages

and extend the cluster size in the forward direction, therefore the probability to miss

LDLD deadline is much lower. Note that the y-axis is in log scale and the gap in the

lower portion of the figure is actually smaller. Radio transmission range, on the other

hand, also affects the cluster size. Thus using a larger R to cover longer distances

can also reduce the risk of a vehicle missing LDLD messages before passing an exit,

which substantiates the choice of using the SMC scheme.

The simulation results match the analysis well. This demonstrates the high ac-

curacy of the results given in (3.16), (3.18) and (3.19), which use the probabilistic

distance distributions for the modeling and analysis of location-critical performance

metrics in a one-dimensional ad-hoc network.

3.3 Summary

In this chapter, a time/location-critical (TLC) framework for emergency message

(EM) dissemination is proposed in vehicular ad-hoc networks, which is achieved

through the scalable modulation and coding (SMC) scheme. The exact average clus-

ter size, as well as a close approximation to its distribution, is obtained through a

simple approach than the current literature [75, 100]. The research in this chapter

also conducted a rigorous analysis on the benefit of utilizing reverse traffic to extend

the cluster size, by an investigation on the delay distribution. Extensive simulation
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results have shown the efficacy of the TLC framework and the accurate analysis of

the location-critical performance metrics.

In the next chapter, the existing model is extended from a one-dimensional high-

way to a two-dimensional Manhattan-like city, which is a more challenging problem.

3.4 Discussions and Future Work

Ad-hoc communication is proposed in this chapter as a solution for increasing the

opportunity for network connectivity for emergency message dissemination. However,

in certain extreme cases with very low vehicle density or short transmission range,

the connectivity among vehicles cannot be guaranteed. Under such a circumstance, it

is challenging for an arbitrary pair of vehicles to communicate, either directly or via

multiple hops. Therefore, a hybrid structure supporting both vehicle-to-vehicle and

vehicle-to-infrastructure communications needs to be introduced by service providers.

Most existing work only studies the last-hop communication between vehicles and a

single base station, i.e., vehicle-to-infrastructure communication as in [62,63,111,112].

In a hybrid scenario, the authors of recent work [77] studied two-hop connectivity

and access probabilities between vehicles and different base stations. [101] extended

the work in [77] to a multi-hop scenario. However, important performance metrics,

such as message dissemination delay and the tradeoff between reduced delay and

increased system cost, are not discussed in either [77] or [101]. The future work of

this chapter is to further investigate such location-critical performance metrics in a

hybrid structure, regarding the connectivity, delay, throughput for both individual

vehicle and base stations.
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Chapter 4

Vehicular Message Dissemination

in Two-Dimensional City Blocks

The connectivity properties of vehicles randomly located in a large city area is more

complicated than the problem along a highway. Each vehicle connects only locally to

the vehicles within a fixed communication range. The connections among the vehicles

across the city area rely on intermediate vehicles as relays, in both the current and

perpendicular streets.

Compared with the one-dimensional networks in Chapter 3, however, the two-

dimensional topologies such as city blocks, exhibit a very interesting property. The

network connectivity can be guaranteed if the probability of connectivity among ve-

hicles along the same street segment is above a certain threshold [88]. In other words,

a giant cluster of connected vehicles appears, within which vehicles connect with each

other via multiple hops. This phenomenon is known as percolation. The connectivity

probability among vehicles is affected by both the vehicle density and the transmis-

sion range of onboard sensing devices. Compared with percolation which studies the

macroscopic behavior of a network, this chapter studies the connectivity property at

a more microscopic level, which differentiates the work in this chapter from existing

work such as [23,88].

In this chapter, the connectivity probability is derived for a ladder topology and

formulated for a lattice topology. The latter has been an unsolved problem in directed

percolation [42], where the most recent work [25] is only able to derive the results

under a very specific setting. Therefore, extensive simulations are conducted using

two message forwarding strategies, with and without geographic constraints. The
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results also show the intrinsic tradeoff between different message forwarding schemes.

4.1 Percolation Theory and Two-Dimensional Con-

nectivity

The vehicle connectivity in city blocks exhibits a close similarity to the percolation

phenomenon. This section reviews the classic concepts and results in percolation the-

ory. Although the problem investigated in this chapter is not identical to percolation,

the difference between them is described in this section.

4.1.1 Percolation Theory

In classic percolation theory [42], a stochastic percolating process is modeled as the

process of liquid seeping through a porous object. The object is usually modeled as

a d-dimensional square lattice. Declare each edge in the lattice open with probability

p, and closed otherwise, the percolation is related to the existence of an infinitely

connected component (or cluster) of open edges. All components have finite sizes

when p < pc, but when p ≥ pc, the size of the connected component becomes in-

finite. Here pc is the critical probability, or percolation threshold, above which the

network percolates. The state corresponding to the existence (non-existence) of an

infinite component is the super-critical (sub-critical) state. Compared with the one-

dimensional network which is always disconnected, this is a fundamental difference

in the network connectivity.

In contrast to the liquid penetration where edges can be open to all directions,

another percolation process called directed percolation [25] has edges only open to

certain directions. According to the prediction on directed percolation [57], if p < p′c,

the network connectivity probability will steadily decrease and eventually reach 0 with

respect to the distance to the information source; if p ≥ p′c, the network connectivity

probability will decrease gradually and eventually scatter around an asymptotic value.

In directed percolation, the state corresponds to p < p′c (p ≥ p′c) is also called super-

critical (sub-critical) state. These percolation processes are similar to the message

propagation in two-dimensional VANET: we are interested in whether there exists

a critical threshold that all the vehicles in a two-dimensional city are almost surely

connected in a large component.
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The problem of deriving the connectivity probabilities with arbitrary location is

a central problem of directed percolation [42] in Physics and Stochastic Processes. In

the most recent work, the authors in [25] derived the results for a directed percolation

process on an M ×N rectangular lattice whose vertical edges are open upward with a

probability y, and horizontal edges are open toward the right with probabilities x and

1 in alternate rows. However, the general problem studied in [109] remains unsolved.

4.1.2 Connectivity in Two-Dimensional Vehicular Ad-Hoc

Networks

In Chapter 3, the Poisson traffic model or the exponential inter-vehicle distance is

applied to the network topology on a highway. In urban scenarios, vehicular traffic is

much more complicated due to road grids, traffic lights and stop signs. However, the

exponential distribution is widely used in the literature at a snapshot of the network.

Although traffic lights make the vehicle arrival pattern more bursty, once the traffic

becomes stable, a snapshot of the network flow still can be analyzed as a Poisson

distribution. For example, [88] assumed the exponential distribution in a lattice-

shaped road network, and studied the network connectivity as a percolation process,

which is equivalent to the study at a snapshot of the network in this chapter. When

the traffic is unstable, the model becomes complicated, which we leave as future work.

Given a transmission range and the exponential inter-vehicle distance distribution,

the connectivity properties and message dissemination in a two-dimensional VANET

are investigated through a geometrical probability approach in this chapter.

In the existing work, [83] studied emergency message propagation with time con-

straints, and derived lower bounds on the probability that a vehicle at a certain

distance can receive the messages on time. The derived lower bounds depend on

channel reliability and message dissemination strategy. However, the inter-vehicle

distance distribution is based on a group of n equally spaced vehicles, which is not

a realistic distribution model in vehicular networks. In [53], the fraction of the ve-

hicles that belong to the largest connected component in a two-dimensional graph is

analyzed. Furthermore, it is proved in [88] that the Poisson distribution allows the

existence of a finite critical vehicle density, and with non-Poisson distribution, there

still exists a critical vehicle density, but at a larger value. [23] proved that the critical

density exists for a hexagon model, and the connectivity probability increases sharply

within a short interval around the density.
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The above works in the literature either applied percolation theory in a scenario

other than the traditional physics and biology systems, or proved the existence of a

critical threshold. These existing works, which are based on the asymptotic properties

of infinite networks, did not consider the likelihood that a message can propagate to

a certain location in the network. Although the percolation process is closely related

to the connectivity properties in a two-dimensional network, in practical VANET,

the distance that a message can propagate throughout the network and the proba-

bility to reach such a distance, are crucial for both safety-related and infotainment

applications.

The main focus in this chapter is the inter-vehicle connectivity, the location-

critical performance metrics in a VANET. This is achieved through determining the

probability that a message is delivered to a certain distance away from the source,

through multi-hop connections between vehicles. Therefore, there is a difference with

percolation. Percolation theory focuses on a coverage process, where an infinitely

connected cluster does not guarantee messages are always reliably delivered: there

may be a number of isolated nodes that are not connected to the giant cluster. The

research in this chapter is more microscopic compared to the percolation process.

4.2 Two-Dimensional Manhattan-Like City

It has been proved that in a one-dimensional network, the network is almost surely dis-

connected [32]. Given the message propagation properties on a highway in Section 3.2,

in a very similar scenario that is along a main street in city blocks, the probability that

two nearby intersections are connected can be further obtained. This probability is the

starting point for an investigation on the connectivity properties in two-dimensional

city blocks, as shown in Figure 4.1. In this figure, point O is the source of informa-

tion. The connectivity of message propagation for the two-dimensional ladder case is

derived first for covering main-side streets, and the problem for the two-dimensional

lattice case is formulated for the message propagation among city blocks, respectively.

As discussed in Section 4.1, the connectivity properties in a two-dimensional net-

work are very similar to the percolation phenomenon. In this section, the connectivity

properties of a Manhattan-like city are investigated, as the main performance metric

that is location-critical. Based on traffic density λ, radio transmission range R, and

street segment length d, the connectivity probability of two adjacent intersections
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p is derived. To derive p, this chapter assumes a homogeneous Poisson point pro-

cess with arrival rate λ. However, regardless of how p is derived mathematically or

obtained empirically, the approach to deriving the connectivity probability for the

two-dimensional ladder case still applies.

4.2.1 Bond Probability

As defined above, p is equivalent to the bond probability in percolation theory. If wire-

less transmissions to other perpendicular streets are heavily shadowed, e.g., in cities

with high-rise buildings along the street, p can be simplified as the probability that

the one-dimensional cluster size is larger than the distance between two intersections,

using the Gamma approximation of C in Section 3.2. In such a scenario, p can be

calculated directly using the cluster size distribution in (3.9). This corresponds to

the case when messages propagation cannot continue in a new street segment in a di-

rection that is perpendicular to the current street. For more realistic situations when

wireless transmissions can reach perpendicular streets, p can be derived as follows.

As shown in Figure 4.2, Ve, Vs, Vw and Vn represent the vehicles (if existing) closest

to the right intersection on the east, south, west, and north streets, respectively. Their
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distance to the right intersection are de, ds, dw and dn. Vehicle Vo is on the street

between the two intersections and is closest to the left intersection. Vo is connected to

the message source, and its distance to the left intersection is do. The distribution of do

is a truncated exponential function λe−λt

1−e−λR , for 0 ≤ t ≤ R. We consider the following

two disjoint cases where at least one of the vehicles Ve, Vs or Vn is connected to Vo via

multi-hop. Therefore, the message propagation can continue in a new street segment,

regardless of its direction, and the two intersections in Figure 4.2 are connected.

Case 1:

The cluster originating from Vo has a size larger than d − do, where d is the distance

between two adjacent intersections. By considering the location of Vo and the cluster

size distribution fC(x), the probability for this case is

p(1) =

∫ R

0

∫ ∞

d−t

fC(x)dx
λe−λt

1 − e−λR
dt. (4.1)

In this case, Ve is connected to Vo in the same cluster, therefore the message is

propagated along a straight line. Vs is also connected to the cluster, either because

it is within the transmission range of Vw or Ve, or it is within the transmission range

of Vn, and Vn is within the transmission range of Vw or Ve.
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Figure 4.3: Bond Probability Validation.

Case 2:

In this case, the cluster size originating from Vo is smaller than d−do; the last vehicle

connected to Vo is Vw, and de + dw > R. In addition, one of Vn and Vs is within the

transmission range of Vw. In this case, Ve is outside the direct transmission range of

Vw, but at least one vehicle on the south or north street can receive the message and

continue the propagation.

Denote the cluster size originating from Vo as x and let d0 = t. To be connected

to Vw, the minimum of ds and dn must be no greater than
√

(ηR)2 − (d − x − t)2,

where η ∈ (0, 1] is the coefficient of the shadowing effect for signal transmissions to

other perpendicular streets. Thus, given x and t, the conditional probability that at

least one vehicle on the north or south street is within the transmission range of Vw

is 1 − e−2λ
√

(ηR)2−(d−x−t)2 . The probability of this case is

p(2) =

∫ R

0

∫ d−t

d−t−ηR

(1 − e−2λ
√

(ηR)2−(d−x−t)2)fC(x)dx
λe−λt

1 − e−λR
dt. (4.2)
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Figure 4.4: Ladder Connectivity Illustration.

Considering the above two disjoint cases, p is given by

p = p(1) + p(2). (4.3)

As shown in Figure 4.3, the analytical results given in (4.3) match well with the

simulation, where the distance between two adjacent intersections is d = 500 m and

η = 1. The simulation is done by distributing vehicles randomly on a two-dimensional

square lattice, according to the exponential inter-vehicle distance distribution.

4.2.2 Ladder Connectivity

In this subsection the two-dimensional ladder connectivity is investigated through the

bond probability derived in Section 4.2.1. The two-dimensional ladder refers to the

two side streets, Z–X and Z′–X′, along the main street W–E in Figure 4.1. Events such

as congestion detour messages are of interest to the main street and its immediate

side streets. The connectivity probability between an arbitrary pair of intersections
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in such a ladder topology is derived, with the constraint that the message can only

be propagated further away from the source O, i.e., the geo-constrained forwarding

which corresponds to the directed percolation.

In a ladder topology, as shown in Figure 4.4, the source is at O(0, 0) and the

destination is at (x, y) where y = ±1. Here we use y = 1 for illustration. Looking at

the first row in Figure 4.4, where (1, 1) is the destination, there are two paths to reach

(1, 1): path A1 where (0, 0) and (1, 1) are connected by the intermediate point (0, 1),

and path B1 where the intermediate point is (1, 0). Given that each edge is connected

with probability p, by the principle of inclusion-exclusion (PIE), the following is the

connectivity probability for (1, 1)

P (1, 1) = P (A1 + B1) = P (A1) + P (B1) − P (A1B1)

= P (A1) + P (B1) − P (B1|A1)P (A1)

= p2 + p2 − p2 × p2 = 2p2 − p4. (4.4)

When x ≥ 1, recursion is needed to derive the connectivity probability. For

example, in the second row of Figure 4.4, where (2, 1) is the destination, it has paths

A2 and B2, where B2 is dependent on A2. As shown in the B|A column, event

(B2|A2) can be degenerated to a horizontal segment plus a triangle (i.e., (1, 1) and

(2, 1) merge to a single point), given the segments in A2 are already connected. That

is, P (B2|A2) = p ∗ (p + p2 − p3), since the two paths from (1, 0) to (2, 1) in the

degenerated triangle are independent, as illustrated in the second sub-row of the

second row. On the other hand, P (B2) is simply p ∗ P (1, 1), where P (1, 1) is given

in (4.4). Using this recursive method, the connectivity probability for (2, 1) can be

derived as

P (2, 1) = p3 + p × P (1, 1) − P (B2|A2)P (A2)

= 3p3 − 2p5 − p6 + p7. (4.5)

Similar recursion can be done when x = 3. In the third row of Figure 4.4, we

notice that P (A3) is simply p4, P (B3) is related to P (2, 1), and the triangle in B3|A3

can be decomposed into two sub-cases, one is simply p and the other is related to

B2|A2. Applying the same recursion for squares and degenerated triangles iteratively
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Figure 4.5: Ladder Connectivity Validation.

for all x’s, the following for general P (x, 1) is obtained:

P (x, 1) = p [px + P (x − 1, 1) − pxθ(x)] , x ≥ 1 (4.6)

with P (0, 1) = p, and

θ(x) = p [p + θ(x − 1) − pθ(x − 1)] , x ≥ 1 (4.7)

with θ(0) = 0, and x can be any integer. The derivation is symmetric for the ladder

connectivity in the other three quadrants for the main-side street scenarios.

Figure 4.5 shows the results from recursion (4.6) and (4.7), and compares them

with simulation results. The vehicle transmission range is 200 m and the distance

between two adjacent intersections is 500 m. The x-axis is the west-east coordinate

of side street Z–X, which is 500 m away from the parallel main street. The message

source O is on the main street with x-coordinate equal to 0. As shown in the figure,

the recursive analysis and the simulation match well with each other. Similar results

in the literature have not yet been found.

The results show that the connectivity probability decays fast with respect to the



53

distance, for all traffic densities. However, when compared with the results from the

one-dimensional case, the connectivity probability at the same x-coordinate offset

with the same traffic density is much higher. For example, with λ = 0.02, the

connectivity probability at x = 4 km offset for the two-dimensional ladder case is

above 0.5, whereas the connectivity for the one-dimensional case is only around 0.2

according to Figure 3.4. The reason is that there are more paths available from the

source in the two-dimensional ladder case, whereas the one-dimensional case only has

one path.

Extensions

Note that with a simple extension, (4.6) and (4.7) can be used to derive the connec-

tivity probability where the bond probability of horizontal street segments is different

from that of vertical street segments. For instance, if the intersections on the hori-

zontal and vertical street segments are connected with different probabilities, p1 and

p2, respectively, then we have P ′(1, 1) = 2p1p2 − p2
1p

2
2 in (4.4), and (4.5) becomes

P ′(2, 1) = p2
1p2 + p1 × P (1, 1) − P (B2|A2)P (A2)

= p2
1p2 + p1 ×

(

2p1p2 − p2
1p

2
2

)

− p2
1p2 × p1 ×

(

p2 + p1p2 − p1p
2
2

)

= 3p2
1p2 − 2p3

1p
2
2 − p4

1p
2
2 + p4

1p
3
2. (4.8)

Similarly, the extension of (4.6) and (4.7) are

P ′(x, 1) = px
1p2 + p1P

′(x − 1, 1) − px
1p2θ

′(x), x ≥ 1, (4.9)

and

θ′(x) = p1 [p2 + θ′(x − 1) − p2θ
′(x − 1)] , x ≥ 1. (4.10)

with P ′(0, 1) = p1, and θ′(0) = 0.

In addition to the above, this approach can be used to deal with dynamic traffic

shifting. When the vehicles in the main street are no longer connected (e.g., due to

detour), the two side streets can form new ladders themselves, and the above recur-

sive method can be applied to recalculate the connectivity probability accordingly.

Figure 4.6 shows an example when a main street is disconnected (dashed line) and

two side streets become the new ladder. In this case, the horizontal intersections are
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Figure 4.6: Two Side Streets Form New Ladders (Solid Lines—Connected Street
Segments, Dashed Line—Disconnected Main Street).

still connected with probability p1, but the vertical intersections are connected with

probability p2
2.

4.2.3 Lattice Connectivity

As mentioned in Section 4.1, the most recent work [25] in the literature derived

the results for connectivity under a specific directed percolation process, where the

horizontal edges in a lattice grid are open with alternating probabilities x and 1. The

generalized connectivity problem is unsolved. For the general two-dimensional lattice

case with each edge open with probability p, e.g., the origin-destination pair O–D

in Figure 4.1, we have the following numerical formulation to derive the end-to-end

connectivity probability. First, enumerate all the possible paths from (0, 0) to (x, y),

and then still by the principle of inclusion-exclusion (PIE), P (x, y) can be obtained

by calculating the probabilities of different combinations of paths and crosschecking

their overlapping street segments. As an example, we assume the destination point

is (2, 1), and then all the possible paths starting from (0, 0) are

A : (0, 0) → (1, 0) → (2, 0) → (2, 1)

B : (0, 0) → (1, 0) → (1, 1) → (2, 1)

C : (0, 0) → (0, 1) → (1, 1) → (2, 1)

By PIE,

P (2, 1) = P (A + B + C)

= P (A) + P (B) + P (C) − P (AB) − P (BC) − P (AC) + P (ABC)

= p3 + p3 + p3 − p5 − p5 − p6 + p7,
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which has the same result as (4.5). P (AB) = P (BC) = p5 and P (AC) = p6 since

paths A and B together have 5 non-overlapping street segments, while paths A and

C have 6 non-overlapping ones.

Extensions

When the bond probability of horizontal and vertical street segments are p1 and p2,

respectively, then the above probability becomes

P ′(2, 1) = P (A) + P (B) + P (C) − P (AB) − P (BC) − P (AC) + P (ABC)

= p2
1p2 + p2

1p2 + p2
1p2 − p3

1p
2
2 − p3

1p
2
2 − p4

1p
2
2 + p4

1p
3
2,

which has the same result as (4.8), according to the recursive formulation in (4.9)

and (4.10).

Ideally, any P (x, y) can be computed by this enumeration-combination method.

Unfortunately, this approach suffers from the combinatorial explosion and does not

scale. As a result, the computation becomes intractable when x + y becomes larger.

For instance, when x = 5, y = 3, the number of different paths is
(

x+y
y

)

= 56, and the

number of different combinations of these 56 paths can be as many as
(

56
28

)

= 7.6487×
1015, each of which has |x|+ |y| = 8 street segments. If we store these street segments

in a bit map, which requires 38 bits per path since there are (x + 1)y + x(y + 1) = 38

unique street segments, then the memory required will be 38× 7.6487× 1015/8 bytes

≈ 3.63 × 107 GB. The problem of deriving connectivity probabilities with arbitrary

x and y is a central problem of directed percolation [25] in Physics and Stochastic

Processes, which still remains unsolved after many years of efforts.

4.2.4 Network Connectivity

In Sections 4.2.2 and 4.2.3, we derived the connectivity probability for the two-

dimensional ladder case, whereas the two-dimensional lattice case is not yet analyti-

cally solvable. In this section, we go further and evaluate the static connectivity [97] of

these cases by simulation. This is an investigation of the location-critical performance

metric at a snapshot of the network.

In vehicular ad-hoc networks, there are different ways for vehicles to forward the

messages they have received. Geo-constrained forwarding (GF), the message for-

warding scheme used in Section 4.2.2 and 4.2.3 for illustration, is commonly used to



56

avoid message redundancy, link contention, hidden terminals, and broadcast storm

problems. Unconstrained forwarding (UF), on the other hand, is an extension of the

former in the sense that vehicles can forward messages to neighbors in all directions,

so messages may potentially go backwards, as shown by both the solid and dashed

arrows in Figure 4.1. Unconstrained forwarding improves network connectivity, but

may also increase the overhead, such as the broadcast cost in terms of the num-

ber of transmissions of each message. It is interesting to quantify and compare the

performance and cost of these two message forwarding strategies, with or without ge-

ographic constraints. Unconstrained forwarding is equivalent to percolation process,

whereas geo-constrained forwarding corresponds to directed percolation in [25].

In both message forwarding strategies, whenever a vehicle overhears the same mes-

sage from the neighbors in the direction opposite to the source, it will not rebroadcast

that message again, in order to reduce overhead and possible collisions; otherwise, the

vehicle rebroadcasts the message periodically up to a retransmission limit. We use

simulation to compare these two forwarding strategies, with and without geographic

constraints, respectively, and reveal the tradeoff between them.

All simulation is done in Matlab. By using an exponential random variable gen-

erator and a square lattice map, vehicle locations are constrained to the vertical and

horizontal streets. Streets are 500 m apart, and all vehicles have the same transmis-

sion range R, varying from 150 to 300 m with η = 1. Vehicles that are less than

R apart are connected with one another, regardless they are located along the same

street or perpendicular streets. All the results presented are averaged over 1, 000

simulation runs.

(1) Geo-Constrained Forwarding

In geo-constrained forwarding, similar to directed percolation [25], the probability of

each street segment to be open is determined by p in (4.3). We first plot the network

connectivity that measures the percentage of the vehicles connected to the message

source in a 3×3 km2 grid map. Figure 4.7 shows the change of network connectivity,

from 0 to 1, with different vehicle densities. Such transitions are similar to the results

in [23]. Combining Figures 4.3 and 4.7, we note that the critical threshold pc, above

which the network connectivity is close to 1, is much larger than 0.5, the critical

threshold of the bond percolation in a lattice grid with no direction constraints [88].

In Figure 4.8, different sub-figures show the connectivity probability for the vehi-
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Figure 4.7: Network Connectivity with Geo-Constrained Forwarding (GF).

cles on different parallel streets in the lattice network, and the x-axis represents the

coordinates along each street. The coordinate of the message source is (0, 0), and the

transmission range R is 200 m. Different sub-figures show the results with different

vehicle densities λ, varying from 0.01 to 0.015 vehicles per meter. The values of λ

are carefully chosen according to Figure 4.7, so that the bond probability p is below,

close, or above the critical threshold for the directed bond percolation.

Typically, the farther away a street is from the message source, the lower the

connectivity probability is for the vehicles on that street, and thus the message prop-

agation within a few blocks away from the source (e.g., the bold curves in this fig-

ure) is of major concern. In Figure 4.8 we plot the connectivity probability up to

30 km, in order to give a big picture of the entire network, e.g., how the connectivity

probability decays or converges. Figures 4.8(a)–(d) show the simulation results for

geo-constrained forwarding: around the critical point with λ from 0.012 to 0.015,

even with a slight change in traffic density, the connectivity probabilities change sig-

nificantly; once the critical point is reached, the peak of the connectivity probability

for each street converges to an asymptotic value, as shown in Figure 4.8(d), but the

connectivity decays eventually over the distance.

Another interesting observation is that, except the main street, the connectivity
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Figure 4.8: Connectivity Probability: Geo-Constrained Forwarding (GF) vs. Uncon-
strained Forwarding (UF).
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Figure 4.9: Network Connectivity with Unconstrained Forwarding (UF).

probability on all the other streets is not monotonic with respect to x. The dashed,

Λ-shaped curves in Figures 4.8(a)–(d) are for the main street; the bold curves are

for the side streets that are 3 blocks away; the solid curves in the zoom-in window

show the results for the two-dimensional ladder case, i.e., one block away. All curves,

except the ones for the main street, have an M-shape, which means being closer to the

message source does not necessarily lead to a higher connectivity probability. This

is because, the closer an intersection is to the source, the smaller number of paths

exist between this intersection and the source, although each path is shorter. If an

intersection is on either of the streets where the source is located, for example along

W–E in Figure 4.1, vehicles can only forward data in one direction: as a result, the

connectivity for them is the same as that in the one-dimensional case.

(2) Unconstrained Forwarding

Observing the cluster size distribution in the one-dimensional case and the limited

connectivity probability in a two-dimensional lattice with geo-constrained forwarding,

we find that clusters are likely to be small and a large number of vehicles are unable

to receive the message. By allowing the message to go through other directions,
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as indicated by the dashed arrows in Figure 4.1, clusters can be extended in these

directions, i.e., including more neighbors for message delivery.

As shown in Figure 4.9, the transitional behavior in unconstrained forwarding is

similar to that in geo-constrained forwarding, except that the critical threshold is

much smaller, and thus the transitions are also sharper. p can be found in Figure 4.3,

e.g., when R = 200 m and λ is slightly larger than 0.01, the corresponding p is ex-

actly 0.5. From Figure 4.8, we can see another difference between these two forwarding

schemes. At super-critical stage, the connectivity probability in geo-constrained for-

warding converges to a value that is much smaller than 1, whereas in unconstrained

forwarding, the connectivity probability is almost 1 as p approaches the critical value,

given the same vehicle density. The Λ-shaped curves in Figures 4.8(e)–(h) still corre-

spond to the main street, where the street farthest away from the source has a much

lower connectivity probability due to the edge effect.

In contrast to geo-constrained forwarding, the connectivity probability here is ei-

ther monotonically deceasing with distance or scattering around an asymptotic value.

Taking a closer observation, the results in Figure 4.8(e) with λ = 0.01 for uncon-

strained forwarding is similar to Figure 4.8(b) with λ = 0.012 for geo-constrained

forwarding, because the latter has relatively limited choices of path selection. As

shown in Figures 4.8(e) and (f), when λ is only increased by 0.002, i.e., adding one

vehicle every 500 m, the connectivity probability for vehicles increases drastically

from below 20% to higher than 85%. When λ is further increased to 0.0135, as shown

in Figure 4.8(g), the connectivity probability for most vehicles exceeds 95%. After

this point, further increasing λ does not change the connectivity probability signif-

icantly, as shown in Figure 4.8(h). This tells us that when p is above the critical

threshold 0.5, there is no more significant increase in the network connectivity. The

above results can help the application to decide whether it is necessary to increase p,

e.g., by using a larger transmission power, or use unconstrained forwarding to improve

connectivity.

(3) Broadcast Cost

The high connectivity achieved by unconstrained forwarding is at the expense of

a higher broadcast cost than geo-constrained forwarding. Higher broadcast cost will

lead to severe collisions that negatively affect the throughput, as in our work [111,112].

Figures 4.10(a) and (b) show the average number of transmissions for each message
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Figure 4.10: Broadcast Overhead: Average Number of Transmissions.
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with these two forwarding schemes, using the same parameter settings for comparison.

It is assumed that there is no transmission error for each broadcast. The vehicle within

the transmission range and farthest away from the transmitter will rebroadcast the

message. Geo-constrained forwarding apparently has a much lower broadcast cost,

although the network connectivity in this case is limited. Therefore it reduces the

amount of network resources required, such as the communication bandwidth and

buffer space.

The decision whether to use geo-constrained or unconstrained forwarding, thus

also depends on the application. If messages need to be propagated as far as possible,

e.g., hotel, dining, or parking lot information, then using unconstrained forwarding,

probably at a lower message frequency, can allow the information traverse the network

without a high demand on vehicle density. Road hazard or traffic congestion, on the

other hand, only has high impact on nearby streets. Therefore the messages need

to be propagated within a few street blocks as soon as possible. In this case, geo-

constrained forwarding is preferable due to its low broadcast cost and potentially

fewer collisions.

4.3 Summary

The research in this chapter considers the fundamental limits of message propagation

in VANET, and explored the vehicle and message dissemination characteristics in

two-dimensional city scenarios. Starting from a one-dimensional street segment, the

results are extended to the analysis of the network connectivity in the two-dimensional

ladder and lattice cases. Through the simulation studies under two different message

forwarding schemes with and without geographic constraints, the connectivity prop-

erties are surprisingly similar to the percolation phenomenon.

The tradeoff between vehicle density, transmission range, and the insightful knowl-

edge obtained in this chapter thus enable vehicular network engineers and operators

to effectively achieve high user satisfaction and good service coverage, with necessary

implementation of different message forwarding schemes according to traffic density,

user requirements and application categories.
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4.4 Discussions and Future Work

4.4.1 Connectivity, Collisions and Throughput

Practical factors, such as packet loss due to wireless channel impairments or collisions

and how the physical, link, and network layers react to them, can be further consid-

ered in deriving the bond probability, so the work can be extended to include these

realistic wireless channel characteristics and the implementation details of the MAC

and routing protocols. Results also can be used to study the tradeoff between con-

nectivity and throughput: if each vehicle uses a lower data rate for transmission, then

the transmission range can be larger, but each message transmission will occupy the

channel longer, and more wireless resources will be consumed. Incorporating through-

put, collision and scheduling analysis is critical in modeling vehicular networks, and

it is open for further research. Nevertheless, the physical connectivity in this study

is a necessary condition for the connectivity at the network and higher layers.

4.4.2 Vehicle Mobility

Thus far, the model in this chapter has been limited to analyzing a snapshot of

the network, and has not considered vehicle mobility, or vehicles traveling at different

speed on different road segments. As the snapshot may become time variant, one pos-

sible extension to the existing work is to use mobility trace in the existing simulation

to estimate the distribution of the velocity of the vehicles, as well as the probability

of making turns at each intersection, and study the characteristics of network connec-

tivity under certain mobility models. Also, “carry-and-forward” messages between

vehicles traveling in opposite directions can be applied for delay-tolerant applications.

Different from unconstrained forwarding, carry-and-forward utilizes vehicle mobility,

instead of forwarding directions, to opportunistically extend the cluster size. In two-

dimensional networks, this problem is much more difficult since vehicles may turn to

the other directions at different intersections. Furthermore, road grids, traffic lights

and stop signs change the traffic arrival process, which we leave for our future work.

The contributions in Chapter 3 and Chapter 4 are from the application aspect.

While the connectivity problem in these two chapters is nontrivial, it is more mean-

ingful to extend these models to two dimensions with fewer location constraints than

vehicular networks. Such two-dimensional networks occur most frequently in various
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scenarios, such as wireless sensor networks, mobile ad-hoc networks, and cellular sys-

tems. Because the geometry is very different, there will be fundamental changes in

both the mathematical models and applications. Next chapter will present a mathe-

matical model from the geometrical probability theory aspect. For the first time in

literature, the explicit forms of distance distributions for the complex geometries are

obtained. These results enable the analytical models in a wider spectrum with fewer

location constraints.
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Chapter 5

Random Distances Associated with

Rhombuses: the Complex

Geometry

In this dissertation, straight lines, rectangles and squares are categorized as the ele-

mentary geometries, while rhombuses, parallelograms and hexagons are the complex

geometries. In the literature of geometrical probability, the random distance associ-

ated with squares and rectangles have been studied with various approaches, and the

results have been in existence for several decades [37, 38, 66–68]. From a geometric

perspective, parallelograms and rhombuses are the squeezed rectangles and squares,

respectively. Also, a regular hexagon can be divided into three congruent rhombuses.

However, different from rectangles and squares, the coordinates of a random point

in a complex geometry are no longer independent. We present in this chapter that

through a quadratic product formulation, random distances associated with rhom-

buses can be obtained. The next chapter will extend these results and obtain the

random distances associated with hexagons.

Challenging as they are to the geometrical probability research, rhombuses and

hexagons are one of the basic building blocks in two-dimensional tiling. They have

important applications in a wide variety of science and engineering fields, not only

in wireless communication networks, but also in urban transportation, operations re-

search, etc. In this chapter, the explicit probability density functions of the random

Euclidean distances associated with rhombuses are derived, when both endpoints are

randomly distributed in 1) the same rhombus, 2) two parallel rhombuses sharing a
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side, and 3) two rhombuses having a common diagonal, respectively. By an affine

transformation on the plane geometry, the product formulation presented in this

chapter is able to handle the interdependency between point coordinates. The cor-

rectness of these distance distributions is validated by a recursion and a probabilistic

sum, and the accuracy is validated through simulation.

5.1 State of the Art

In our previous work [108], we used a standard approach to derive the distribution

of random distances between nodes within and between squares. Given two nodes on

a Cartesian plane with coordinates (X1, Y1) and (X2, Y2), the Euclidean distance is

D =
√

(X1 − X2)2 + (Y1 − Y2)2. Thus, the geometrical distribution of node distances,

P (D ≤ d), is determined by the distribution of these coordinates. The standard

approach was a four-step process, where the distributions of difference V = X1 − X2

(or Y1−Y2), square S = V 2, sum Z = SX +SY and square-root D =
√

Z were derived

respectively. The drawback of this approach is, the condition that Z = SX + SY can

be derived through convolution is based on the independence of SX and SY , which

requires the X and Y coordinates to be independent. Although this holds true for

squares and rectangles, such an assumption makes this approach not applicable to

other geometrical shapes.

[67, 68] used similar approaches and derived the distance distributions for rect-

angles. On the other hand, the derivation in [37, 38] are based on the joint dis-

tribution of X1 − X2 and Y1 − Y2, which leads to explicit results only when the

corresponding point coordinates are independent. Successful as they were, the ap-

proaches in [37, 38, 67, 68, 108] cannot be extended to other geometrical shapes, such

as parallelograms, rhombuses and hexagons, where the X and Y coordinates of each

point are no longer independent.

In this chapter a general, unified approach is presented. We show that using a

quadratic product formulation, the distributions of random distances associated with

rhombuses (this chapter) and hexagons (next chapter) [105, 106] can be obtained in

closed form through this approach which is much more simple and easy to visualize,

with the corresponding geometric interpretation. They serve as a clear demonstration

of the flexibility of the approach we are about to propose in this chapter. In the

following, we use the terminology “node” and “point” interchangeably, when it is

obvious from the context.



67

5.2 From Rectangles to Parallelograms

5.2.1 The Quadratic Product Formulation

The Euclidean distance between two points (X1, Y1) and (X2, Y2) on a Cartesian

plane, D =
√

(X1 − X2)2 + (Y1 − Y2)2, is a function of their coordinate differences.

Let random variable Z denote the squared Euclidean distance D2, and X = X1 −X2

and Y = Y1 − Y2, then Z = X2 + Y 2 is a function of X and Y . By going back

to the definition of distance distribution, this section gives a unified approach by

the quadratic product of the conditional probability function and the probability

density of random variables. Using geometric integral, this approach decomposes the

geometrical constraints and distributions of random points, i.e.,

The Probability Function Fω(Z|X, Y ), given in the form of a conditional proba-

bility that is a function of the coordinate differences X and Y with geometrical

constraints Ω on (X1, Y1) and (X2, Y2);

The Probability Density of the coordinate differences, fω(X,Y ), where general

distributions can be applied to (X1, Y1) and (X2, Y2).

By the definition of conditional probability, and Z as a function of X and Y as

mentioned above, the corresponding formulation is given as follows

PΩ(Z ≤ z) =

∫ ∫

ω

P (Z(X,Y ) ≤ z|X = x, Y = y) · fX,Y (x, y)dxdy. (5.1)

In (5.1), Fω(Z|X, Y ) = P (Z(X, Y ) ≤ z|X = x, Y = y) is the conditional probabil-

ity function, and fω(X, Y ) = fX,Y (x, y) is the probability density function. Therefore,

PΩ(Z ≤ z) can be obtained by the integration of Z projected onto the X -Y plane

according to ω, which is transformed from Ω. This integration thus gives the product

formulation in (5.1).

The intuition behind this formulation is the correspondence between a geometric

shape and the characteristics of the random coordinates inside the shape, which can

be separated if independent. In complex geometries, both X and Y in (5.1) can be a

function of other random variables, therefore, so is Z. In general, Fω and fω both can

be a function of multiple random variables, e.g., for hexagonal geometries. In such

complex cases, the integration of Z will go to higher dimensions.
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Figure 5.1: A Geometric Interpretation of Random Distances within a Rectangle.

Regardless of the shape of a geometry and how the points are distributed, the

product formulation is expressed in the same form as that in (5.1). Following this

general formulation, many cases of different geometric shapes and distance distribu-

tions can be tackled as shown below.

5.2.2 Rectangles: a Simple Illustration

Figure 5.1(a) shows a rectangle of size a × b, with two random points A(X1, Y1) and

B(X2, Y2). Let X = X1−X2 and Y = Y1−Y2, then Z = Z(X, Y ) = X2+Y 2. Because

X1, X2 ∈ [0, a] and Y1, Y2 ∈ [0, b], we have X ∈ [−a, a] and Y ∈ [−b, b]. Henceforth,

uppercase letters are used to denote random variables, and lowercase letters for the

sample values of the same random variable. Note that X2 + Y 2 = z is the equation

of a circle with radius
√

z for a given z, and FZ(z) is used to denote the cumulative

distribution function of Z. By the product formulation in (5.1), the distribution of

Z is

FZ(z) = PΩ(Z ≤ z) = P (X2 + Y 2 ≤ z) (5.2)

=
x

P (x2 + y2 ≤ z|X = x, Y = y)fX,Y (x, y)dxdy

where Fω = P (x2 + y2 ≤ z|X = x, Y = y) is the probability function, conditioned on

the sample values X = x and Y = y. In rectangles, we have fX,Y (x, y) = fX(x)fY (y),

where fX(x) and fY (y) are the (marginal) probability density functions of X and Y ,
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Figure 5.2: A Rectangle Squeezed into a Parallelogram.

since X = X1 −X2 and Y = Y1 − Y2 are stochastically independent in this case. The

distributions of X and Y are

fX(x) =
1

a2

{

a + x −a ≤ x ≤ 0

a − x 0 ≤ x ≤ a
and fY (y) =

1

b2

{

b + y −b ≤ y ≤ 0

b − y 0 ≤ y ≤ b
, (5.3)

both following a symmetric triangular distribution.

The geometric interpretation of (5.2) in three-dimensional space is shown in Fig-

ure 5.1(b): a bowl cut off by the boundaries of X and Y at X = ±a and Y = ±b.

Figure 5.1(b) also shows the contour lines of Z projected onto the X -Y plane, each of

which corresponds to a specific value of Z and together forms a series of concentric

circles centered at (0, 0), as expected from the equation of the circle X2 + Y 2 = z.

From Figure 5.1(b), the geometrical constraint Ω is the bowl with cutoffs, and ω is the

concentric circles transformed from Ω by projection. Moreover, ω is constrained by

[−a, a]× [−b, b] on the X -Y plane, therefore it determines the integral region in (5.2).

The function Z = X2 + Y 2 can be used for both rectangles and squares, whereas a

different function will be used for parallelograms and rhombuses.

5.2.3 Parallelograms: the Squeezed Rectangles

Compare Figure 5.1(a) with Figure 5.2(a), a parallelogram is obtained by squeezing

a rectangle. This is an affine transformation [1], which preserves straight lines (i.e.,
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all points lying on a line initially still lie on a line after the transformation) and

ratios of distances (e.g., the midpoint of a line segment remains the midpoint after

the transformation).

(1) The Affine Transformation

Suppose that initially, a point A(x, y) lies in the rectangle shown in Figure 5.2(a). This

point forms a right triangle OAO′ with the X -axis. Suppose 0 ≤ θ ≤ π
2
, then squeezing

the rectangle by π
2
− θ, the point A(x, y) becomes A′(x′, y′) in a parallelogram, which

forms an obtuse triangle OA′O′ with the X -axis. In Figure 5.2(a), from point A(x, y)

to A′(x′, y′), there is the following affine transformation:

[

x′

y′

]

=

[

1 cos θ

0 sin θ

]

·
[

x

y

]

, or

{

x′ = x + y cos θ

y′ = y sin θ
. (5.4)

From this relation, therefore, a rectangle is a degenerated case of a parallelogram

when θ = π
2
. In the following, (X1, Y1) and (X2, Y2) are used as the random vari-

ables denoting the coordinates before the transformation in (5.4), while (X ′
1, Y

′
1) and

(X ′
2, Y

′
2) as the random coordinates after this transformation. For the points within

the same parallelogram, the squared Euclidean distance, Z = D2, is

Z = D2 = (X ′)2 + (Y ′)2 = (X ′
1 − X ′

2)
2 + (Y ′

1 − Y ′
2)

2 (5.5)

= [(X1 − X2) + cos θ(Y1 − Y2)]
2 + [sin θ(Y1 − Y2)]

2

= (X1 − X2)
2 + 2 cos θ(X1 − X2)(Y1 − Y2) + (Y1 − Y2)

2,

where (X1, Y1) and (X2, Y2) are the corresponding coordinates in the original rectan-

gle. As the value of θ changes, only the coefficient 2 cos θ will change in (5.5). Still

let X = X1 − X2 and Y = Y1 − Y2 be the difference of X and Y-coordinates before

the transformation, then

Z = X2 + 2 cos θXY + Y 2.

where the distributions of X and Y are the same as in (5.3).

In analytic geometry, this equation satisfies the implicit equation of a non-degenerated

real ellipse [58] when θ 6= π
2
. The probability function therefore becomes Fω =

P (x2 + 2 cos θxy + y2 ≤ z|X = x, Y = y). When θ = π
2
, (5.5) degenerates to the
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formulation for a rectangle in (5.2).

(2) The Geometric Interpretation

Without loss of generality, for a parallelogram of side length of a and b, and with

uniformly distributed random points, then X1, X2 ∼ U [0, a] and Y1, Y2 ∼ U [0, b] in

the original rectangle. Therefore, the distributions of X and Y are in (5.3). The

geometric interpretation of Z = X2 +2 cos θXY +Y 2 in the three-dimensional space,

assuming a = 3, b = 2 and θ = π
3

as an example, is shown as the squeezed bowl in

Figure 5.2(b). The projections of Z on the X -Y plane are concentric ellipses centered

at (0, 0), with cutoffs at X = ±a and Y = ±b. This is expected from the equation

of the ellipse X2 + 2 cos θXY + Y 2 = z. When compared with Figure 5.1(b), it is

interesting to observe that, after a rectangle has been squeezed to a parallelogram,

the shape of Z = D2 has also been squeezed, and the projections on the X -Y plane

are squeezed from circles to ellipses. Moreover, the level of the squeeze from circles to

ellipses in the projected domain is determined by the same squeeze from rectangles

to parallelograms.

5.3 Distance Distributions Associated with Rhom-

buses

Rhombuses are the special case of parallelograms with a = b. Define a unit rhombus

as the rhombus with an acute angle of θ = π
3

and a side length of 1. The coordinates

of a point in such a unit rhombus are x′ = x + y
2

and y′ =
√

3
2

y according to (5.4).

Here x and y are the coordinates in the original unit square before being squeezed to

a rhombus, and both follow U [0, 1]. Thus,

Z = Z(X, Y ) = X2 + XY + Y 2, (5.6)

where the distributions of X and Y are (5.3) with a = b = 1. Note that this method

can be applied to any general parallelograms and rhombuses where θ ∈ [0, π
2
]. By Z

given in (5.6), the product formulation becomes

FZ(z) = PΩ(Z ≤ z) = P (X2 + XY + Y 2 ≤ z) (5.7)

=
x
[

P (x2 + xy + y2 ≤ z|X = x, Y = y) · fX,Y (x, y)
]

dxdy.
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Consequently, the elliptical projections of Z on the X -Y plane, are cut off by

X = ±1 and Y = ±1, the boundaries of fω that are defined by fX(x) and fY (y).

There are four cases of the geometric locations of two random points, when rhombuses

are adjacent and similarly oriented, as shown in Figure 5.3: i.e., A′B′ that are within

the same rhombus; R′S′ that are inside two parallel rhombuses sharing a side; P′Q′

and M′N′ that are inside two rhombuses sharing a common diagonal. Here P′Q′

and M′N′ are two different cases when a random node pair communicating across a

concave geometry. In the following, we refer to them as long diagonal (long-diag) and

short diagonal (short-diag), respectively.

Using the notation in (5.6), i.e., X and Y as the differences of X and Y coordinates

before the affine transformation in (5.4), and assuming X1, X2, Y1 and Y2 ∼ U [0, 1],

we have the following four different cases of random distances as described above, by

the displacement of rhombuses:

1. For A′ and B′, by the affine transformation, X ′ = X ′
1 − X ′

2 = (X1 − X2) +
1
2
(Y1 − Y2), Y ′ = Y ′

1 − Y ′
2 =

√
3

2
(Y1 − Y2). According to (5.5), we have X =

X1 − X2 and Y = Y1 − Y2 in (5.6);

2. For R′ and S′, we have X = X1 + X2 and Y = Y1 − Y2 in (5.6);

3. For P′ and Q′, we have X = X1 + X2 and Y = Y1 + Y2 in (5.6);

4. For M′ and N′, we have X = −X1 − X2 and Y = Y1 + Y2 in (5.6).
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5.3.1 Distance Distribution within a Rhombus

Take |A′B′| in Figure 5.3 as an example, i.e., the random distances within a unit

rhombus. The projections of Z on the X -Y plane are shown in Figure 5.4. Consider

an effective ellipse as the projection of Z within the effective region of fω, which is

determined by

fX(x) =

{

1 + x −1 ≤ x ≤ 0

1 − x 0 ≤ x ≤ 1
and fY (y) =

{

1 + y −1 ≤ y ≤ 0

1 − y 0 ≤ y ≤ 1
,

i.e., X ∈ [−1, 1] and Y ∈ [−1, 1]. This region is divided into four compartments by

X = 0 and Y = 0, the transitional values in fX(x) and fY (y) above. From Figure 5.4

we can observe that, the effective ellipse has different overlapping areas with the four

compartments, determined by a specific value of Z.

It is then natural to sub-divide the ellipse at certain transitional values of Z.

Although there are nine transitional points of fω at X = 0, X = ±1, Y = 0 and

Y = ±1, because of symmetry, there are only four transitional values of Z as the

ellipse expanding: z1 where the ellipse is a point at the origin, z2 where X = ±1 or

Y = ±1 become the tangent lines of the ellipse, z3 where the semimajor axis of the

ellipse is equal to
√

a2 + b2 =
√

2, and z4 where the semiminor axis of the ellipse is

equal to
√

2. The semimajor axis and semiminor axis of ellipse X2 + XY + Y 2 = z

are
√

2z and
√

2
3
z respectively, and thus we have z1 = 0, z2 = 3

4
, z3 = 1 and z4 = 3.
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The three effective ranges of z are hence
[

0, 3
4

]

,
[

3
4
, 1
]

and [1, 3], yielding the three

sub-cases as shown in Figure 5.4.

0 ≤ z ≤ 3
4
:

In this sub-case, the entire ellipse lies inside the effective region of fω. By looking

at the first quadrant where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, the density is fX,Y (x, y) =

(1−x)(1−y). Therefore, FZ(z) is
∫

√
z

0

∫ − y

2
+
√

z− 3

4
y2

0
(1−x)dx(1−y)dy. When 0 ≤ x ≤ 1

and −1 ≤ y ≤ 0, FZ(z) = 2
∫ 0

−√
z

∫ − y

2
+
√

z− 3

4
y2

−y
(1 − x)dx(1 + y)dy, by the symmetry

with respect to Y = −X . Because the ellipse is also symmetric with regard to Y = X ,

we have the distribution of the squared distance FZ(z) as the following

FZ(z) = 2





∫

√
z

0

∫ − y

2
+

q

z− 3

4
y2

0
(1 − x)dx(1 − y)dy + 2

∫ 0

−√
z

∫ − y

2
+

q

z− 3

4
y2

−y
(1 − x)dx(1 + y)dy





=

(

2

3
+

π

9
√

3

)

z2 − 32

9
z3/2 +

2π√
3
z.

The probability density function (PDF) is the derivative of FZ(z), i.e.,

fZ(z) = F ′
Z(z) =

(

4

3
+

2π

9
√

3

)

z − 16

3

√
z +

2π√
3
.

3
4
≤ z ≤ 1:

In this sub-case, the ellipse intersects with X = 1, and the intersection points are

(1,−1
2
±
√

z − 3
4
). Therefore, by symmetry, FZ(z) is

FZ(z) = 4





∫ 0

−√
z

∫ − y

2
+

q

z− 3

4
y2

−y
(1 − x)dx(1 + y)dy

−
∫ − 1

2
+

q

z− 3

4

− 1

2
−

q

z− 3

4

∫ − y

2
+

q

z− 3

4
y2

1
(1 − x)dx(1 + y)dy





+2

∫

√
z

0

∫ − y

2
+

q

z− 3

4
y2

0
(1 − x)dx(1 − y)dy

=
4√
3

(

2z +
z2

3

)

sin−1

√
3

2
√

z
+

(

2

3
− 5π

9
√

3

)

z2 − 32

9
z3/2 − 2π√

3
z +

14z + 3

6

√
4z − 3,
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and the PDF is

fZ(z) =
8√
3

(

1 +
z

3

)

sin−1

√
3

2
√

z
+

(

4

3
− 10π

9
√

3

)

z +
10

3

√
4z − 3 − 16

3

√
z − 2π√

3
.

1 ≤ z ≤ 3:

FZ(z) in this sub-case is

FZ(z) = 4





∫ − 1

2
+

q

z− 3

4

0

∫ 1
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and the PDF is

fZ(z) =
4√
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(

1 − z

3

)

sin−1

√
3

2
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z
−
(
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3
− 2π

9
√
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z +
√

4z − 3 − 2π

3
√

3
− 1.

With D =
√

Z, the distance distribution fD(d) is

fD(d) = F ′
Z(d2) = 2dfZ(d2). (5.8)

Combining the above three sub-cases and using (5.8), we have fDI
(d) for the

random distances inside a rhombus, as shown in (5.9).

Result 1 (Random distances within a unit rhombus). The probability density func-

tion of the random distances between two uniformly distributed points that are both
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Figure 5.5: Five Sub-cases for Z = |R′S ′|2.

inside the same unit rhombus, is

fDI
(d) = 2d


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(5.9)

It can be shown that at any transitional value of D between different sub-cases

in (5.9), which is equal to
√

Z, fDI
(d) has the same value in both adjacent sub-cases.

This indicates that fDI
(d) is a continuous function, as expected for the distribution

of a continuous random variable.

5.3.2 Distance Distribution between Parallel Rhombuses

We then consider points R′ and S′ as shown in Figure 5.3, where X = X1 + X2 and

Y = Y1 −Y2 are to be used in (5.6). For the two adjacent rhombuses that are parallel

to each other and share a side, the distributions of X and Y are

fX(x) =

{

x 0 ≤ x ≤ 1

2 − x 1 ≤ x ≤ 2
, and fY (y) =

{

1 + y −1 ≤ y ≤ 0

1 − y 0 ≤ y ≤ 1
. (5.10)

The elliptical contours of Z = X2 + XY + Y 2 on the X -Y plane now have to
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be in X ∈ [0, 2] and Y ∈ [−1, 1], which is divided into four compartments by X =

1 and Y = 0, the transitional values in (5.10). As the value of Z increases, we

have the effective ellipse expanding inside the region of fω, as shown in Figure 5.5,

corresponding to the following five sub-cases.

0 ≤ z ≤ 3
4
:

FZ(z) in this sub-case is

FZ(z) =

∫

q

4z
3
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∫ −
√
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and the PDF is

fZ(z) =
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9
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z.

3
4
≤ z ≤ 1:

The ellipse intersects with X = 1 and Y = −1, and the intersection points are

(1,−1
2
±
√

z − 3
4
) and (1

2
±
√

z − 3
4
,−1). FZ(z) in this sub-case is
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and the PDF is
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1 ≤ z ≤ 3:

In this sub-case, the ellipse intersects with X = 1, with the intersection point (1,−1
2
+

√

z − 3
4
). FZ(z) is

FZ(z) =
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and the PDF is
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3 ≤ z ≤ 4:

The ellipse intersects with the X -axis at (
√

z, 0). FZ(z) in this sub-case is
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4 ≤ z ≤ 7:

At X = 2, the intersection point with the ellipse is (2,−1 +
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Using (5.8), and combining the above five sub-cases, the result for the random

distances of two parallel adjacent unit rhombuses is
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Result 2 (Random distances between two parallel adjacent unit rhombuses sharing

a side). The probability density function of the random distances between two uni-

formly distributed points, one in each of the two adjacent unit rhombuses that are

parallel to each other, is
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(5.11)

5.3.3 Distance Distribution between Diagonal Rhombuses

(1) Long-Diag Adjacent Rhombuses

The distance distribution of two adjacent rhombuses when they have a common long

diagonal is given as follows. The projection of Z is shown in Figure A.1, and the

derivation is given in Appendix A.1.

Result 3 (Random distances between two diagonal adjacent unit rhombuses—the

long-diag case). The probability density function of the random distances between

two uniformly distributed points, one in each of the two adjacent unit rhombuses that
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have a common long diagonal, is
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(5.12)

(1) Short-Diag Adjacent Rhombuses

The distance distribution of two adjacent rhombuses when they have a common short

diagonal is given as follows. The projection of Z is shown in Figure A.2, and the

derivation is given in Appendix A.2.

Result 4 (Random distances between two diagonal adjacent unit rhombuses—the

short-diag case). The probability density function of the random distances between

two uniformly distributed points, one in each of the two adjacent unit rhombuses that

have a common short diagonal, is
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(5.13)

It can also be shown that at any transitional value of D between different sub-

cases, fDP
(d), as well as fDLD

(d) and fDSD
(d), always has the same value in both

adjacent sub-cases, indicating a continuous distance distribution as expected.
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Figure 5.6: Cumulative Distribution Functions and Simulation Results for Random
Distances Associated with Rhombuses.

Although unit rhombuses are assumed in (5.9)–(5.13), the distance distribution

can be easily scaled by an arbitrary nonzero scalar. Let the scalar be s > 0, then

FsD(d) = P (sD ≤ d) = P (D ≤ d

s
) = FD(

d

s
).

Therefore,

fsD(d) = F ′
D(

d

s
) =

1

s
fD(

d

s
). (5.14)

5.3.4 Distance Verification

(1) Verification by Simulation

Figure 5.6 shows the comparison between the cumulative distribution functions (CDFs)

of the random distances, and the simulation results by generating 1, 000 pairs of ran-

dom points with the corresponding geometric locations as shown in Figure 5.3. Fig-

ure 5.6 demonstrates that our distribution functions are very accurate when compared

with the simulation.



83

Table 5.1: Moments and Variances of Rhombus Distributions—Numerical vs Simu-
lation Results

Endpoint Geometry PDF/Sim M
(1)
D M

(2)
D V arD

Within a fDI
(d) 0.5123783359s 0.3333333333s 0.0708017742s2

Single Rhombus Sim 0.5137344650s 0.3356749448s 0.0717518443s2

Between two fDP
(d) 1.0750863337s 1.3331823503s 0.1773717254s2

Parallel Rhombuses Sim 1.0749140141s 1.3318514164s 0.1764112787s2

Between two Long-Diag fDLD
(d) 1.7570796617s 3.3330145688s 0.2456856311s2

Adjacent Rhombuses Sim 1.7575618714s 3.3319543736s 0.2429306419s2

Between two Short-Diag fDSD
(d) 1.1150961004s 1.3332064091s 0.0897670959s2

Adjacent Rhombuses Sim 1.1156689048s 1.3341275970s 0.0894104918s2

(2) Validation by Recursion

By looking at Figure 5.3, the four adjacent rhombuses recursively form a larger rhom-

bus, with side length of 2. According to (5.14), the distance distribution in this

large rhombus is f2DI
(d) = 1

2
fDI

(d
2
). On the other hand, if we look at any of the

random endpoints of a link inside the large rhombus, they will fall into one of the

four individual cases: both endpoints are inside the same small rhombus, with prob-

ability 1
4
; the two endpoints fall into two parallel rhombuses, with probability 1

2
;

the two endpoints fall into two diagonal rhombuses (either long or short-diag), both

with probability 1
8
. The resulting density function is given by a probabilistic sum,

f2DI
(d) = 1

4
fDI

(d)+ 1
2
fDP

(d)+ 1
8
fDLD

(d)+ 1
8
fDSD

(d), where fDI
(d), fDP

(d), fDLD
(d) and

fDSD
(d) are given in (5.9), (5.11), (5.12) and (5.13), respectively. To confirm that the

above two equalities of f2DI
(d) are equivalent, we have verified them mathematically

in Appendix B.

5.4 Practical Results

5.4.1 Statistical Moments of Random Distances

The distance distribution functions given in Section 5.3.1 to 5.3.3 can conveniently

lead to all the statistical moments of the random distances associated with rhombuses.

Given fDI
(d) in (5.9), for example, the first moment (mean) of d, i.e., the average
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distance within a single rhombus, is

M
(1)
DI

=

∫

√
3
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√
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8
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80

[

7 ln
(

2
√
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− 6 ln
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2
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)]

≈ 0.5123783359,

and the second raw moment is

M
(2)
DI

=

∫

√
3

0

x2fDI
(x)dx =

1

3
,

from which the variance (the second central moment) can be derived as

V arDI
= M

(2)
DI

−
[

M
(1)
DI

]2

≈ 0.0708017742.

When the side length of a rhombus is scaled by s, the corresponding first two

statistical moments given above then become

M
(1)
DI

= 0.5123783359s, M
(2)
DI

=
s

3
and V arDI

= 0.0708017742s2.

Table 5.1 lists the first two moments, and the variance of the random distances in

the four cases given in Section 5.3.1 to 5.3.3, and the corresponding simulation results

for verification purposes.

5.4.2 Polynomial Fits of Random Distances

Table 5.2 lists the coefficients of the degree-20 polynomial fits of the original PDFs

derived in this section, from d20 to d0, and the corresponding norm of residuals in

the least squares fitting. A residual is defined as the difference between the actual

value and the predicted value [5]. Figure 5.7 (a)–(d) plot the polynomials listed

in Table 5.2 with the original PDFs. From the figure, it can be seen that all the

polynomials match closely with the original PDFs. These high-order polynomials

facilitate further manipulations of the distance distribution functions, with a high

accuracy, such as the same polynomial fittings in [108].
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Table 5.2: Coefficients of the Polynomial Fit and the Norm of Residuals (NR) for
Rhombus Distributions

PDF Polynomial Coefficients NR

108 × [−0.000166 0.002955 − 0.024296 0.122501
−0.423700 1.065297 − 2.013141 2.916117 − 3.273038

fDI
(d) 2.858823 − 1.941184 1.018567 − 0.408430 0.123035 0.095901

−0.027166 0.004245 − 0.000446 0.000029 − 0.00000116
0.0000000892 − 0.0000000000648]

105 × [0.000019 − 0.000513 0.006194 − 0.045754
0.231329 − 0.847940 2.328313 − 4.879792 7.881444

fDP
(d) −9.836044 9.45481 − 6.93816 3.828928 − 1.553959 0.059485

0.4491195 − 0.088213 0.010963 − 0.000782 0.0000499
− 0.0000000863 − 0.0000000025988]

104 × [0.0000002 − 0.0000074 0.0001242 − 0.0012723
0.0089355 − 0.045576 0.174538 − 0.511656 1.160176

fDLD
(d) −2.042559 2.78728 − 2.927992 2.339236 − 1.395868 0.011340

0.606494 − 0.185173 0.037762 − 0.004740 0.0003293
−0.0000098938 0.0000000733372]

107 × [−0.000022 0.000493 − 0.005116 0.032591
−0.142436 0.452238 − 1.077816 1.965337 − 2.77016

fDSD
(d) 3.029748 − 2.567377 1.674771 − 0.831348 0.308601 0.147836

−0.083558 0.015932 − 0.002034 0.000161 − 0.00000698
0.00000013178 − 0.0000000006098]

5.5 Summary

This chapter developed a new approach by a quadratic product, separating the con-

straint of geometric shapes and the geometric distribution of random points within

or between these shapes. The closed-form probability density functions of random

distances associated with rhombuses are obtained for the first time in the literature.

The approach can be easily extended to parallelograms, either adjacent to or displaced

from each other. Furthermore, by decomposing a hexagon into congruent rhombuses,

this approach is promising in obtaining the distributions of random distances associ-

ated with hexagons.

5.6 Discussions and Future Work

The quadratic product in (5.1) is the multiplication of the probability function and

probability density, both of which can be extended to more general cases. The prob-
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Figure 5.7: Polynomial Fit of the Distance Distribution Functions Associated with
Rhombuses.

ability function determines a particular geometric shape, and the characteristics of

the random coordinates inside the shape is dependent on the probability density.

The product formulation in (5.1) is highly flexible by separating the geometrical con-

straints and the distributions of random points. Examples are shown in the following

as the extensions to the current approach.

5.6.1 Extension of Probability Function: From Rhombuses

to Hexagons

In a general case, random variable X or Y in (5.1) can be a function of other inde-

pendent random variables, e.g., X = f(X1, X2) and Y = f(Y1, Y2). Therefore, the



87

probability function Fω = P (Z(X, Y ) ≤ z|X = x, Y = y) and the probability den-

sity fω(X, Y ) = fX,Y (x, y) can both be complicated functions of multiple random

variables. E.g., for hexagonal geometries, Fω is a function of three random variables.

The next chapter is dedicated to the derivation of random distances associated with

regular hexagons, where the product formulation in (5.1) goes to higher dimensions.

5.6.2 Extension of Probability Density: Nonuniform Point

Distribution

Throughout this chapter, it is assumed that points are uniformly distributed in a

geometry. In (5.1), by separating the probability function Fω with the probability

density fω, the same approach can be extended to more general, nonuniform point

distribution patterns. Consequently, (5.2) and the derivation thereafter can be ap-

plied. Depending on the point distribution, however, the final result may not have

an explicit form.

For example, [70] gives the solution to the distribution of the squared Euclidean

distance between two bivariate normal vectors, where X and Y follow a bivariate

normal distribution with mean µ and covariance matrix Σ. However, the results are

in the form of infinite series expansions, which makes the application of these results

difficult. Nevertheless, the case when point distribution follows bivariate normal

or bivariate beta distribution has realistic applications in communication networks.

Developing models for these nonuniform point distribution is challenging, especially

in a network with a finite size. This problem deserves further investigation and thus

is left as the future work of this dissertation.
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Chapter 6

Random Distances Associated with

Hexagons

Hexagons are magnificent geometries that commonly appear in nature, such as in

the fields of biology, chemistry, astronomy, etc. The classic example is the honeycomb

created by bees, who genetically build their cells in a hexagonal shape. The tessellated

hexagons give the maximum amount of storage space per unit of wax that is around

the cell. In field planting, [64] discovered that hexagons also yield the most balanced

number of replications of plants under identical conditions of spatial competition

between different plant species. These natural appearances inspired communication

engineers the design of the honeycomb mesh networks, e.g., the one in [91] that is

also based on the hexagonal plane tessellation. The most successful example is the

currently deployed cellular communication networks.

In this chapter, a fundamental property of hexagons is investigated, i.e., the dis-

tributions of random distances between two endpoints, associated with a regular

hexagon and two adjacent hexagons sharing a side. The results are derived for the

challenging case when both endpoints are random. These results are presented for the

first time in the literature, which are different from the existing results of elementary

geometries that can be found in [67]. By dividing a hexagon into adjacent, congruent

rhombuses, the distance distributions in the complex geometries are obtained by an

extension of the approach in Chapter 5. Furthermore, the analytical models based on

hexagon distributions are applied to the analysis of the nearest neighbor distribution

in a sparse network for improving energy efficiency, and the farthest neighbor distri-

bution in a dense network for minimizing routing overhead. Both the analytical and
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(a) Hexagonal Cells. (b) Inscribed Circles. (c) Enclosing Circles.

Figure 6.1: Hexagonal Cell Layout and Circular Approximations.

simulation results demonstrate the high accuracy and promising potentials of this ap-

proach, whereas the current best approximations are not applicable in many scenarios.

By utilizing the geometrical probability approach in the analysis of location-critical

performance metrics, network protocols can benefit from the distance information

prior to deployment.

6.1 Cell Shapes and Location-Critical Performance

Metrics

From the geometrical probability point of view, a critical parameter of cellular net-

works is the shape of the cells. In practical networks, cells have irregular and com-

plicated shapes because of the natural or man-made terrain, and user population. In

analytical models, cells are represented as hexagons. In the early years of networking

research, the honeycomb mesh networks is based on the hexagonal plane tessellation,

inspired by the honeycomb created by bees. For bees, the tessellated hexagons give

the maximum amount of storage space per unit of wax that is around the cell. In

networking research, any given point inside a hexagon is closer to the center of the

hexagon than any given point in an equal-area square or triangle [4]. The hexagonal

representation, as shown in Figure 6.1(a), is frequently employed in the planning and

analysis of wireless systems because of its flexibility and full network coverage.

In the current literature, however, the circular cells are often used as the approx-

imations of hexagons, due to the reduced computational complexity. Examples are

the inscribed and enclosing circles, as shown in Figure 6.1(b) and (c) respectively.

However, the drawback of the circular cells is that, gaps must exist between cells
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in order to avoid overlapping, such as Figure 6.1(b); or cells must partially overlap

and include areas not belonging to the cell of interest, e.g., the enclosing circles in

Figure 6.1(c).

In a wireless communication network, consider the transmission power, or energy

consumption in cellular systems, the inscribed circles have a higher probability of as-

signing a low transmission power to the wireless devices. The initial network planning

using inscribed circles thus cannot meet the requirement of covering all users in the

cell area. In the other scenario where the enclosing circles are used, there is a higher

probability of having a higher transmission power, i.e., using extra power to cover

users in the overlapping area that does not belong to the cell of interest. Therefore,

the wireless network resources are not efficiently utilized and transmission power is

wasted, although with a lower computational complexity in the analytical model.

In all the existing works, no results exist for the random distances associated

with hexagons in closed form. The development of new models and approaches for

the derivation of random distances associated with hexagons thus has become an

imminent research problem.

6.2 Distance Distributions Associated with Regu-

lar Hexagons

The distance distributions associated with rhombuses derived in Section 5.3 cover the

basic cases when rhombuses are adjacent and similarly oriented. As mentioned at

the beginning of this chapter, rhombuses are also the building blocks for hexagons.

However, there are cases where the rhombuses in hexagons are having different ori-

entations, or not adjacent. Such geometrical challenges are solved in this section, by

another extension of the product formulation.

6.2.1 Distance Distribution within a Regular Hexagon

(1) Hexagon Decomposition

As shown in Figure 6.2(a), a regular hexagon can be decomposed into three congruent,

adjacent rhombuses. Because of symmetry, random points are equally likely to fall in

any one of these three rhombuses. Given the location of one endpoint of a random

link, then the second endpoint falls in the same rhombus as the first point with
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(a) Rhombus Decomposition
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(b) Triangle Decomposition

Figure 6.2: Relationship between a Hexagon and (a) Rhombuses (b) Triangles

probability 1
3

(such as A′B′), and with probability 2
3

falls in one of the two adjacent

rhombuses (such as E′F′). Note that rhombus is not the only way to decompose

a regular hexagon. As shown in Figure 6.2(b), a hexagon can be divided into six

congruent equilateral triangles. However, to recover a hexagon from six triangles are

more complicated than from three rhombuses. Four different cases need to be taken

into consideration as in Figure 6.2(b): within a triangle (A′B′), between adjacent

triangles sharing a side (C′D′), between two triangles 60 degrees apart (E′F′) and two

diagonal triangles (G′H′). Using rhombus decomposition, only two cases are needed

as shown in Figure 6.2(a).

All the three adjacent rhombuses inside a hexagon are equivalent, therefore we

only consider two cases as shown in Figure 6.2, i.e., i) point A′ and B′ that are

located in the same rhombus; ii) point E′ and F′ that are located in the two adjacent

rhombuses (parallel but flipped with respect to X -axis). The distribution of |A′B′| has

been derived in (5.9) in Section 5.3, by the observed relationship between the point

coordinates before and after the affine transformation according to Figure 5.2(a). In

this section, |E ′F ′| and other variants associated with rhombuses will be derived.

(2) The Extended Product Formulation

We need to derive the distribution of |E ′F ′| in order to get the result for the distance

distribution within a regular hexagon. Following the same technique as that in (5.4),

and denote the coordinates as E′(X ′
1, Y

′
1) and F′(X ′

2, Y
′
2), we have X ′

1 = X1 + Y1

2
,

Y ′
1 =

√
3

2
Y1, and X ′

2 = X2 + Y2

2
, Y ′

2 = −
√

3
2

Y2, where X1, Y1, X2 and Y2 ∼ U [0, 1], i.e.,

distributed uniformly in a unit square. Then we have the squared Euclidean distance
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Z = |E ′F ′|2 as

Z = (X ′
1 − X ′

2)
2 + (Y ′

1 − Y ′
2)

2

=

[

(X1 − X2) +
1

2
(Y1 − Y2)

]2

+

[√
3

2
(Y1 + Y2)

]2

= (X1 − X2)
2 + (X1 − X2)(Y1 − Y2) + Y 2

1 + Y1Y2 + Y 2
2 .

Let X = X1 − X2, we have

Z = Z(X, Y ) = X2 + X(Y1 − Y2) + Y 2
1 + Y1Y2 + Y 2

2 . (6.1)

Rewrite the RHS of (6.1), we get Y 2
1 +Y 2

2 +X2+Y1Y2+Y1X−Y2X, which satisfies

the general form of a non-degenerate quadratic surface [99]. However, (6.1) cannot

be solved as easily as |A′B′|2, because there are three independent random variables

instead of two as in (5.5). By the product formulated in (5.1), the distribution of Z

becomes a triple integral

FZ(z) = PΩ(Z ≤ z) = P
(

X2 + X(Y1 − Y2) + Y 2
1 + Y1Y2 + Y 2

2 ≤ z
)

=
y

P
(

x2 + x(y1 − y2) + y2
1 + y1y2 + y2

2 ≤ z|X = x, Y = y
)

fX,Y1,Y2
(x, y1, y2)dxdy1dy2, (6.2)

where the conditional probability function

Fω = P
(

x2 + x(y1 − y2) + y2
1 + y1y2 + y2

2 ≤ z|X = x, Y = y
)

determines a different constraint of the geometry. fω = fX,Y1,Y2
(x, y1, y2) is the joint

density of random variables X, Y1, Y2. Therefore, the integral of the joint density

function needs to go to the third dimension. Assuming that points are uniformly

distributed, then

fX(x) =

{

1 + x −1 ≤ x ≤ 0

1 − x 0 ≤ x ≤ 1
, and fY1

(y) = fY2
(y) =

{

1 0 ≤ y ≤ 1

0 otherwise
. (6.3)

Because these three random variables, X, Y1 and Y2, are all independent, we have

fω = fX,Y1,Y2
(x, y1, y2) = fX(x)fY1

(y)fY2
(y).
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Figure 6.3: Geometric Interpretation of Z = X2 + X(Y1 − Y2) + Y 2
1 + Y1Y2 + Y 2

2 .

(3) The Geometric Interpretation

The geometric interpretation of X2 + X(Y1 − Y2) + Y 2
1 + Y1Y2 + Y 2

2 with different

values, or the isosurfaces of Z in (6.1), are concentric cylinders as shown in Figure 6.3,

which is like a Swiss roll growing thicker as the value of Z increases. If the effective

regions of fω are considered, then the Swiss roll is cutoff at the boundaries of fX(x),

fY1
(y) and fY2

(y), because the density function fω is zero outside these boundaries.

Consider |E ′F ′| in Figure 6.2, we have X ∈ [−1, 1] and Y1,Y2 ∈ [0, 1] according

to (6.3). Therefore, in (6.2), the four-dimensional geometric shape of Z is projected

onto the effective region of fω on [0, 1] × [0, 1] × [−1, 1], in a similar way as the

three-dimensional bowl projected to the two-dimensional plane.

Consider an effective surface as the part of the concentric cylinder that is inside

the effective region of fω. As the value of Z increases, the isosurfaces of the Swiss roll

are only effective inside the volume of 1× 1× 2. These results in different cylindrical

surfaces and cut off facets as shown in Figure 6.4–6.7.

0 ≤ z ≤ 3
4
:

In this sub-case, the effective surface of the cylinder is inside the boundary of fω, as

shown in Figure 6.4. By symmetry, the distance distribution in this case is
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Figure 6.4: Sub-case when 0 ≤ z ≤ 3
4
.
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√
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Figure 6.5: Sub-case when 3
4
≤ z ≤ 1.

3
4
≤ z ≤ 1:

There are cutoffs on the cylinder at the boundaries, when Y1 = 1, Y2 = 1 and

X = 1, as shown in Figure 6.5. Because of symmetry, we look at the half plane when

0 ≤ X ≤ 1. When Y1 = 0 and Y2 = 1, the cutoffs on the X -axis are (0, 1, 1
2
±
√

z − 3
4
).

Meanwhile, when Y1 = Y2 = 0, there is also a cutoff on the X -axis at (0, 0,
√

z). Given

these cutoff points, the distribution function can be calculated as

F (z) = 2




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Figure 6.6: Sub-case when 1 ≤ z ≤ 3.

and the PDF is
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1 ≤ z ≤ 3:

When Y1 = 1 and Y2 = 0, the cutoff on the X -axis is at (1, 0,−1
2

+
√

z − 3
4
) when

0 ≤ X ≤ 1, as shown in Figure 6.6. Given this cutoff point, the distribution function

can be calculated by subtracting the part outside the boundaries, i.e.,
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Figure 6.7: Sub-case when 3 ≤ z ≤ 4.

3 ≤ z ≤ 4:

In this sub-case, it is easier to subtract the volume that is outside the cylinder but

inside the boundaries, as shown in Figure 6.7. The cutoff on the X -axis happens

when Y1 = Y2 = 1, at (1, 1,±
√

z − 3). The distribution function in this sub-case is

thus
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Combining the above four cases and using fD(d) = F ′
Z(d2) = 2dfZ(d2), we have

Result 5 (Random distance between two parallel unit rhombuses—flipped with re-

spect to X -axis). The probability density function of the random distances between

uniformly distributed points, each inside one of the two parallel unit rhombuses flipped
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with respect to X -axis, is
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(6.4)

Distance Distribution within a Regular Hexagon

The decomposition of a hexagon into three adjacent, congruent rhombuses is shown

in Figure 6.2 at the beginning of this section. The probability density function of the

distance between two random points inside a hexagon, is 1
3

of the density function

of random distances within the same rhombus in (5.9), and 2
3

of the density function

just derived in (6.4) (with probability 1
3
, two random points are located in any of

the two adjacent rhombuses. Because of symmetry, 2
3

is the probability for (6.4) to

occur). By defining a unit hexagon as the hexagon with the length of each side is 1,

this probability density function is presented in (6.5).

Result 6 (Random distance inside a regular unit hexagon). The probability density

function of the random distances between uniformly distributed points inside a regular

unit hexagon is
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(6.5)

It is interesting to see that the cases where 0 ≤ d ≤
√

3
2

and
√

3
2

≤ d ≤ 1 are exactly

the same after calculating the probabilistic sum of the two density functions, therefore
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Figure 6.8: Cumulative Distribution Functions and Simulation Results for Random
Distances within a Hexagon.

they are merged into one case. At any transitional value of D between different sub-

cases, fDHI
(d) has the same values in both adjacent sub-cases. Figure 6.8 shows the

CDFs of these three cases derived in (5.9), (6.4) and (6.5), and the verification through

simulation, by generating 1, 000 pairs of random points with the geometric locations

as shown in Figure 6.2. The results have demonstrated that our distribution functions

are very accurate compared to the simulation.

6.2.2 Distance Distribution between Adjacent Regular Hexagons

Given two unit hexagons that are adjacent to each other, as shown in Figure 6.9, they

can be decomposed into six congruent rhombuses in a similar way as that in Figure 6.2.

If the two endpoints of a random link fall into each one of the adjacent hexagons,

then each point is equally likely to fall in any one of the three adjacent rhombuses

in a single hexagon, resulting in nine (3 × 3) possible combinations. However, by

symmetry and distance invariance under rotation, many of these combinations are

equivalent. We use letters A through J to denote different rhombuses in Figure 6.9.

With a slight abuse of notation, we also use |AB|, etc, to denote the distance

between random points, one being located in rhombus A and the other inside B.
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Figure 6.9: Random Points between Two Adjacent Hexagons: Different Cases with
Rhombuses.

Thus we have the following six equivalent cases:

|AD| = |AI| |AC| = |IJ | |AB| = |DI|
|DE| = |AF | |JE| = |DF | |HE|

(6.6)

The first two cases, |AD| = |AI| and |AC| = |IJ | have been derived in previous

sections. Without loss of generality, we consider the upper right hexagon as the

one where the first endpoint is located, i.e., in rhombus A, E or I, and the second

endpoint can be in any one of rhombus D, H or J that is in the adjacent hexagon. Then

the distance distribution between an arbitrary pair of endpoints, one in each of the

adjacent hexagons, is 1
9
(|AD| + |HE| + |IJ |) + 2

9
(|DE| + |DI| + |JE|), a statistical

probabilistic sum among 3 × 3 different geometric locations.

Among the last four cases in (6.6), |DE| = |AF | is the case where two rhombuses

have the same orientation. Therefore by the same reasoning as in the rhombus ge-

ometry, the corresponding result should be obtained by a double integral of (5.5). In

the rest of the three cases, |AB| = |DI|, |JE| = |DF | and |HE|, the two rhombuses

have different orientations, either by flipping or rotation. In the following, we give

the derivation results of the four cases in (6.6) that have not yet been derived. At

the end we combine them by a probabilistic sum, in order to obtain the distribution

for the random distances between two adjacent hexagons sharing a side.
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(1) |DE| = |AF |

In this case, the two rhombuses, e.g., D and E, are shifted by distance
√

3 apart.
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(6.7)

(2) |AB| = |DI|

The two rhombuses in this case, e.g., A and B, are flipped with respect to the Y-axis.
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(3) |JE| = |DF |

In this case, the two rhombuses, e.g., D and F, are both flipped with respect to the

Y-axis, and shifted by
√

3 apart.
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(4) |HE|

The two rhombuses are both flipped with respect to the X -axis, and shifted by
√

3

apart.
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Distance Distribution between Adjacent Regular Hexagons

When the two endpoints of a given link fall into one of the two adjacent hexagons

sharing a side, the probability density function of the random distances between these

two endpoints is 1
9
[fDPX

(d) + fDLD
(d) + fD4

(d)] + 2
9
[fD1

(d) + fD2
(d) + fD3

(d)], using

the similar reasoning as that in Section 6.2.1. With this probabilistic sum, we thus

have the following:

Result 7 (Random distances between two unit hexagons). The probability density

function of the random Euclidean distances between two uniformly distributed points,
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one in each of the two adjacent unit hexagons sharing a side, is
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(6.11)

6.2.3 Distance Verification

(1) Verification by Simulation

Figure 6.10 shows the comparison between the CDFs of the random distances both

within the same hexagon and between adjacent hexagons, computed from (6.5) and

(6.11), and the simulation results by generating 2, 000 pairs of random points with

each of the corresponding geometric locations. Figure 6.10 demonstrates that our

distance distribution functions are very accurate when compared with the simulation

results.

(2) Validation by Recursion

As shown in Figure 6.11, a hexagon with a side length of 2 can be decomposed into

three unit hexagons, and three unit rhombuses A, J and K. With the scaling in (5.14),

the distance distribution in the large hexagon is f2DHI
(d) = 1

2
fDHI

(d
2
). On the other

hand, if we look at the two random endpoints of a given link inside the large hexagon,



105

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance − d

C
D

F

 

 

Within Hex CDF

Within Hex Sim

Between Hex CDF

Between Hex Sim

Figure 6.10: Cumulative Distribution Functions and Simulation Results for Random
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they will fall into one of the three following cases: i) both endpoints fall inside one of

the three small hexagons (BDF, ECG or HIL), with probability 3
4
× 3

4
; ii) one of the

endpoints falls into one of the small hexagons, and the other endpoint falls into one

of the three rhombuses A, J or K, with probability 2× 3
4
× 1

4
; iii) both endpoints fall

into one of the rhombuses, with probability 1
4
× 1

4
.

Each of these three cases includes several more detailed sub-cases as follows:

Case i) Given the location of the first endpoint of a particular link, the second endpoint

A B
C

D

E

H
I

G

F
J

K

L

Figure 6.11: Partial Recursion through Hexagons and Rhombuses.



106

will fall in the same hexagon as the first one with probability 1
3
, and in one of

the two adjacent hexagons with probability 2
3
. The unconditional probabilities

of these two sub-cases are 9
16

× 1
3

= 3
16

and 9
16

× 2
3

= 3
8
, respectively.

Case ii) Without loss of generality, suppose the first endpoint is located in A. By sym-

metry, the second endpoint falls into any one of the four rhombuses B, D, F and

H with probability 2
9
, and into L with probability 1

9
. Thus the unconditional

probabilities are 3
8
× 2

9
= 1

12
each for |AB|, |AD|, |AF | or |AH|, and 3

8
× 1

9
= 1

24

for |AL|.

Case iii) If the first endpoint is in A, then by symmetry, the second endpoint is still

located in A with probability 1
3
, and in either one of J or K with probability

2
3
. The unconditional probabilities of these two sub-cases are 1

16
× 1

3
= 1

48
and

1
16

× 2
3

= 1
24

, respectively.

In short, we have the probabilistic sum as

f2DHI
(d) =

3

16
fDHI

(d) +
3

8
fDHA

(d) +
1

12
[fDPX

(d) + fD2
(d) + fD1

(d) + fD3
(d)]

+
1

24
[fD4

(d) + fD5
(d)] +

1

48
fDI

(d), (6.12)

where fD5
(d) is the density function of |AL| in Figure 6.11, which is the only distance

distribution function that has not been given yet.

The result of fD5
(d) and the mathematical verification of all the distribution

functions derived in this section, through the above probabilistic sum in (6.12) and a

scaling in (5.14), is give in Appendix C.

6.3 Practical Results

6.3.1 Statistical Moments of Random Distances

The distance distribution functions given in Sections 6.2.1 and 6.2.2 can conveniently

lead to all the statistical moments of the random distances associated with hexagons.

Given fDHI
(d) in (6.5), for example, the first moment (mean) of d, or the average
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Table 6.1: Moments and Variances of Hexagon Distributions—Numerical vs Simula-
tion Results

Geometry PDF/Sim M
(1)
D M

(2)
D V arD

Within a fDHI
(d) 0.8262542775s 0.8333333333s 0.1506291100s2

Single Hexagon Sim 0.8263306317s 0.8335924725s 0.1507701596s2

Between two fDHA
(d) 1.8564318344s 3.832947195s 0.3866080394s2

Adjacent Hexagons Sim 1.8583366966s 3.8326819696s 0.3792666917s2

distance within a regular hexagon, is

M
(1)
DHI

=

∫ 2

0

xfDHI
(x)dx =

7
√

3

30
− 7

90
+

1

60

[

28 ln
(

2
√

3 + 3
)

+ 29 ln
(

2
√

3 − 3
)]

≈ 0.8262542775,

and the second raw moment is

M
(2)
DHI

=

∫ 2

0

x2fDHI
(x)dx =

5

6
,

from which the variance, or the second central moment, can be derived as

V arDHI
= M

(2)
DHI

−
[

M
(1)
DHI

]2

≈ 0.1506291100.

When the side length of a hexagon is scaled by s, the corresponding first two

statistical moments given above then become

M
(1)
DHI

= 0.8262542775s, M
(2)
DHI

=
5s

6
and V arDHI

= 0.1506291100s2.

Table 6.1 lists the first two moments, and the variance of the random distances

in the two cases given in Sections 6.2.1 and 6.2.2, and the corresponding simulation

results for verification purposes.

6.3.2 Polynomial Fits of Random Distances

Table 6.2 lists the coefficients of the high-order polynomial fits of the original PDFs

given in this section, from the highest degree (degree-10 for (6.5) and degree-20 for

(6.11)) to d0, together with the corresponding norm of residuals. Figure 6.12 (a)–(b)

plot the polynomials listed in Table 6.2 with the original PDFs. From the figure,
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Table 6.2: Coefficients of the Polynomial Fit and the Norm of Residuals (NR) for
Hexagon Distributions

PDF Degree Polynomial Coefficients NR

102 × [−0.0146710 0.136604 − 0.538052 1.167903
fDHI

(d) 10 −1.525478 1.230615 − 0.605940 0.175147 0.075608

−0.043772 0.025830 − 0.000025]
104 × [0.00000035 − 0.000013 0.000207 − 0.002094
0.014469 − 0.072522 0.272508 − 0.782682 1.736254

fDHA
(d) 20 −2.986406 3.976655 − 4.072372 3.169347 − 1.841066 0.191157

0.778001 − 0.230634 0.045522 − 0.005534 0.000394
−0.0000103 0.00000007092]
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Figure 6.12: Polynomial Fit.

it can be seen that both polynomials match closely with the original PDFs. These

high-order polynomials facilitate further manipulations of the distance distribution

functions, with a high accuracy.

6.4 Performance Study Using Distance Distribu-

tions

Using the distance distribution functions derived in this chapter, we are able to further

analyze the location-critical performance metrics in wireless communication networks.

Define neighbors as the nodes that are within the one-hop transmission range of a
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target node. The underlying routing schemes have the option to choose a particular

neighbor to forward a message. Starting from a challenging scenario where nodes

are sparsely deployed, we analyze the nearest neighbor of a node in a hexagonal

network. In a dense network, we analyze the farthest neighbor that a node can

reach through a single transmission. By choosing appropriate neighbors for packet

relay, the underlying routing protocols can benefit from the minimization of energy

consumption and routing overhead in these two scenarios, respectively.

As discussed in Section 2.1.2, the distance distributions of circles have been widely

used in the existing literature to approximate hexagonal topologies: the inscribed or

enclosing circles, and the circles with the same area as the hexagon [33, 60], due

to the reduced computational complexity. If the side length of a hexagon is s, the

radius of the circle having the same size as the hexagon is r =
√

3
√

3
2π

s. For the

inscribed and enclosing circle, r is
√

3
2

s and s, respectively. When the communication

involves adjacent hexagons, however, circular geometries must leave gaps, or partially

overlap and include areas not belonging to the cell of interest. Otherwise, gaps must

exist between cells in order to avoid overlappings. Therefore, we also show in this

section that when compared with the explicit hexagon distribution models, traditional

circular approximations are less accurate or even not applicable, in analyzing both

the statistical distribution and expected average of the system performance metrics.

6.4.1 Sparse Network Scenario: the Nearest Neighbor

In a sparse network where the network size is much larger than the communication

range of a node, an energy-efficient routing protocol will choose the nearest neighbor

as the packet forwarder in order to conserve energy at each node. This is particularly

important when the network device has very limited energy supply. Suppose there

are n nodes located in the same area, for a random node i, the minimum distance

from n − 1 nodes to i is

δ = min{d1, d2, · · · , dn−1}. (6.13)

The distribution function of δ is

F∆(δ) = 1 − P (di ≥ δ)n−1 = 1 − [1 − FD(δ)]n−1 ,

where FD(·) is any of the distance distribution CDFs derived in the last section. The
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Figure 6.13: Nearest Neighbor Distribution.

PDF of δ is thus

f∆(δ) = (n − 1)fD(δ) [1 − FD(δ)]n−2 . (6.14)

Similarly, the k-th nearest neighbor to node i can be derived by order statistics.

(1) Distribution of the Distance to the Nearest Neighbor

In the following we use the hexagonal topology since it is commonly used in commu-

nication networks. Figure 6.13(a)–(d) show the corresponding PDFs in (6.14) using

the hexagon distribution functions we derived. It also shows those three circular

approximations, of which the distance distribution functions are given in [69] for non-

overlapping circles. When circles overlap, results from Monte Carlo simulations are

used. No closed-form PDFs for overlapping circles are available in the literature, ex-

cept for the empirical approximations on CDFs [16], which cannot provide any result

for (6.14).
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Figure 6.13(a) and (b) plot the PDFs in (6.14) using the distance distribution

within a hexagon, when the side length of the hexagon is 100 m, and the total

number of nodes is n = 300 and 1, 000, respectively. When the network size is fixed,

the increased number of nodes makes the nearest neighbor closer to node i. Also note

that, the tails of the PDFs are truncated at 15 m in these two figures. Although

the longest distance between nodes can be as far as 200 m, it is very likely that the

nearest neighbor is only a few meters away. Figure 6.13(c) and (d) use the distribution

between two adjacent hexagons, with the same parameters as Figure 6.13(a) and (b),

and are truncated at 70 m. In these two figures, none of the circular approximations

give a good fit to the hexagon distributions. Intuitively, inscribed circles skew nodes

apart from the hexagon boundary, whereas same-area circles and enclosing circles

overlap and cause nodes to be physically closer.

(2) Expectation of the Distance to the Nearest Neighbor

The expectation of the distance to the nearest neighbor can be obtained by integrating

(6.14) over the hexagonal area. The results are given in Figure 6.14(a) and (b). In

both figures, the zoom-in subfigures are between adjacent hexagons. In Figure 6.14(a),

the hexagon size is fixed at 100 m, and Figure 6.14(b) fixes the number of nodes at

1, 000. From Figure 6.14(a), if the underlying routing protocol chooses the nearest

neighbor within a hexagon of size 100 m, the expected distance is less than 8 m with

more than 100 nodes, whereas an average distance of 82.6 m is needed to reach an

arbitrary node according to Table 6.1 in Section 6.3.1.

We may also observe that in a single hexagon, circles can approximate relatively

well; but when nodes communicating between hexagons, the error of circular approx-

imations grows nonlinearly. It is also interesting to see in Figure 6.14(b) that the

distance to the nearest neighbor increases linearly with the network size because of

the uniform distribution.

6.4.2 Dense Network Scenario: the Farthest Neighbor

In a sparse network, it is highly desirable to choose the nearest neighbor for improving

energy efficiency. In a small, densely deployed network, on the other hand, it is

common for a node to have several neighbors simultaneously. As a result, the number

of transmissions and routing overhead can be minimized by choosing the farthest node
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as relay. Suppose the total number of nodes is n, for node i define

γ = max{d1, d2, · · · , dn−1}. (6.15)

The distribution of γ has CDF

FΓ(γ) = P (di ≤ γ)n−1 = F n−1
D (γ),

and the corresponding PDF

fΓ(γ) = (n − 1)fD(γ)F n−2
D (γ). (6.16)

(1) Distribution of the Distance to the Farthest Neighbor

Figure 6.15(a) and (b) plot the PDFs in (6.16) using the distance distribution within

a hexagon, of which the side length is 20 m, and the total number of nodes is n = 300
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and 1, 000, respectively. The increased number of nodes brings the farthest neigh-

bor closer to the network boundary at 40 m. Thus the left tails of the PDFs are

truncated from 28 m. Figure 6.15(c) and (d) show the distribution between two

adjacent hexagons with the same parameters, and are truncated from 58 m. In

Figure 6.15(a)–(d), it is obvious that none of the circular topologies give a good ap-

proximation for hexagons. Therefore, when the communication happens between two

adjacent hexagons, the circular approximations become even less accurate. Thus, it

is important to capture the location-critical performance metrics with a geometrical

probability approach for hexagons.

(2) Expectation of the Distance to the Farthest Neighbor

Figure 6.16(a) shows the expected distance to the farthest neighbor, with an increas-

ing number of nodes, and the size of the hexagon is fixed at 20 m. The zoom-in

subfigure shows the results between two adjacent hexagons. Compared with the

nearest neighbor, the increase in the number of nodes does not increase the expected

distance much, since the farthest node is already around the network boundary. We

can anticipate that in a dense network, single hop communication is very likely to

cover the neighbors that are far-away. The underlying routing protocol thus can

achieve the minimal routing overhead. Figure 6.16(b) shows the expected distance

when the number of nodes is fixed at 1, 000 and the cell size changes from 20 m to

50 m. Similar to Figure 6.14(b), the distance to the farthest neighbor also increases

linearly with the network size, because of the uniform node distribution.

6.4.3 Transmission Power Control

Knowing the neighbor statistics, it is then possible to use transmission power control

to maintain the network connectivity while conserving the energy of each device. This

section uses the nearest neighbor as a case study. Given a receiver power threshold

Pr, below which the received signal cannot be successfully decoded, the minimum

transmission power to overcome the path loss between nearest neighbors is propor-

tional to Prδ
α [48], where δ is defined in (6.13). Without loss of generality, we assume

Pr is 1 power unit, and let H = δα. With the distribution in (6.14) we have

P (H ≤ h) = P (δ ≤ h
1

α ) = F∆(h
1

α ). (6.17)
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Therefore,

fH(h) = F ′
∆(h

1

α ) =
1

α
h

1

α
−1f∆(h

1

α ). (6.18)

Figure 6.17 shows the expected transmission power to reach the nearest neighbor,

by integrating (6.18). As the number of nodes and network size increase, the error

of circular approximations also increases. If one needs to analyze the power control

schemes which adjust the transmission power to reach an arbitrary neighbor, it is

sufficient to replace f∆(·) with fD(·) in (6.18). Furthermore, the distribution of path

loss can be obtained in a very similar way by replacing H with δ−α in (6.17) and

(6.18). The analysis on path loss, interference, etc, with a fixed reference point in

hexagonal networks is given in our previous work [103].

6.5 Summary

In Chapters 5 and 6, a unified approach is developed to deriving the distribution

of random distances, by a quadratic product of the probability function and the

probability density. The closed-form probability density functions of the random

distances associated with rhombuses and hexagons are derived for the first time in the

literature. These results are further utilized to investigate the nearest and farthest

neighbor statistics in both sparse and dense network scenarios, with transmission

power control as a case study. The analytical and simulation results show the high

accuracy and promising potentials of this approach.

6.6 Discussions and Future Work

The future work includes deriving the distance distributions under general point dis-

tributions, such as bivariate Gaussian distribution and Beta distribution, as discussed

in Section 5.6.2.

The conditional probability of the distance distributions associated with rhom-

buses and hexagons is useful, as it can be utilized to model the location-dependent

interference, wireless propagation channel, hidden terminals and cooperative com-

munications. The detailed discussions will be given in Section 7.2. We believe the

probabilistic models presented in this chapter and their future extensions will provide

important guidelines for a more accurate network dimensioning and a better protocol

design process.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The field of wireless communication has been experiencing tremendous growth. How-

ever, how to model and analyze these communication networks by combining the

emerging wireless communication and networking technologies with a realistic math-

ematical model, is still an open issue and a demanding task. Throughout this disser-

tation, the location-critical performance metrics in various wireless communication

networks are studied from a geometrical point of view, where the network coverage

and node locations are of profound importance for the operation of these networks.

Each of the location-critical performance metrics, such as transmission power and

path loss, the k-th nearest neighbor and traveling distances, etc., can be modeled

as a nonlinear function of random nodal distances in the relevant network topology.

Such random distances between network devices, characterized by geometrical prob-

ability, play a fundamental role in determining the crucial performance metrics in

communication networks.

7.1.1 Application of One-Dimensional Random Distances

In Chapter 3, the Poisson point process is applied to vehicular ad-hoc networks, where

the network geometry is constrained by highway and road structures. A time and

location-critical framework is proposed for a one-dimensional highway scenario, where

the message propagation is always limited to a certain distance from the message

source. Utilizing physical layer scalable modulation and coding scheme, vehicles at

different distances to an accident site can receive information with different levels of
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details. Based on the memory-less property of a Poisson process, the fundamental

limits of message propagation in a highway scenario is investigated, by deriving the

distribution of the vehicle cluster size.

The extension of this model is applied to a two-dimensional Manhattan-like city

in Chapter 4. Different from one dimension, there exists a critical threshold above

which the entire network is connected with a high probability, which is similar to

the percolation phenomenon. The network connectivity is further analyzed by two

different message forwarding schemes by showing the performance tradeoff.

Important location-critical performance metrics, such as the “carry-and-forward”

delay in one dimension, and connectivity probability in two dimensions, are obtained

through simple approaches than the current literature [75,100], without using math-

ematical approximation and average analysis. Extensive simulations also show that

the derived results are highly accurate. This is the contribution of this dissertation

from the application aspect, where the distance distribution along a line is applied to

a vehicular ad-hoc network scenario.

7.1.2 Random Distances Associated with Complex Geome-

tries

In Chapter 5 and 6, a unified approach to deriving the distribution of random dis-

tances by a quadratic product is proposed, which is applicable to both elementary

and complex geometries. This is the contribution of this dissertation from the the-

ory aspect, where the closed-form distributions of random distance are derived for for

hexagons and rhombuses, the topological shapes that are the most suitable for cellular

systems, and the sectorized cells with directional antennas. Previously, conducting

the distribution analysis on network performance metrics has been intractable for

complex network geometries.

The analytical models based on hexagon distributions are applied to the analysis of

the nearest neighbor distribution in a sparse network for improving energy efficiency,

and the farthest neighbor distribution in a dense network for minimizing routing

overhead. The corresponding analysis on transmission power control also show that

using the explicit distance distributions, the analytical models are highly accurate

when compared with the latest approximation methods. It is therefore believed that

the theory of geometrical probability is essential to the successful network protocol

and system design.
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7.2 Future Work

Extensions of the current work, including a study on hybrid vehicle-to-vehicle and

vehicle-to-infrastructure communication structure (Section 3.4), collisions, through-

put and vehicle mobility in vehicular ad-hoc networks (Section 4.4), nonuniform point

distribution (Section 5.6), and the conditional distribution of the distance distribu-

tions (Section 6.6) are our ongoing work. Furthermore, the future research plans

beyond this dissertation, revolve around the probabilistic distance distributions un-

der the impact of human and vehicle mobility, and the stochastic models of network

performance. The conditional distance distributions also have profound impact on

the wireless channel models and cooperative communications. Both measurement

studies and theoretical analysis are essential to the successful network protocol and

system design. We anticipate that the applications of this research will be numerous

and diverse.

7.2.1 Vehicular Ad Hoc Networks with Real-World Traces

(1) Inter-Vehicle Distance Models

The challenges in VANET are mainly due to the dynamic mobility and network topol-

ogy: high vehicle speed, short sessions of connectivity with frequent disruptions, etc.

The exponential inter-vehicle distances model in [13] etc., showed that such distribu-

tions are different with respect to geographical location, direction, lane number/type,

and time of the day. Implicit parameters in those findings which were not character-

ized are vehicle speeds in lanes, driving habits and vehicle types. Given real-world

vehicle traces provided by both academic and industry supporters, future extension of

this dissertation is to characterize the complicated relationship by the measured and

predicted vehicle trajectory, and develop distribution models of inter-vehicle distances

which capture the variable speed and vehicle behaviors on the road.

(2) Stochastic Models of Network Performance Metrics

Although vehicle mobility is highly dynamic, in many cases, it is also predictable

because of the road constraints and traffic conditions. Given the time/location-

criticality of safety applications and the popularity of infotainment applications, fu-

ture target of this dissertation also includes a probabilistic and stochastic understand-

ing of network topology and mobility, and the implication on upper-layer network
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performance. With the inter-vehicle distance in such a complicated environment, the

capacity of a drive-thru Internet can be analyzed, which depends on the stochastic

vehicle arrival and departure processes [111,112].

7.2.2 Wireless Channel Models

In a typical wireless radio propagation environment, the radio signals emitted from

the transmitters can be reflected and diffracted by scatterers in the surrounding en-

vironment before arriving at the receivers. Any object and obstacle between the

transceivers can cause such reflection, diffraction or scattering of signals, each of

which leading to a certain loss of power over the distance between the scatterers and

transceivers. Moreover, the Doppler shift takes effect if any transceivers are moving,

such as in a vehicular network, resulting in an even more complicated communication

channel.

Signal can go through multiple paths from the transmitter to the receiver, either by

a direct line-of-sight (LOS) path, or after being scattered through non-line-of-sight

(NLOS) paths. The signal observed by a receiver or a scatterer is the sum of the

signals arriving via all incoming paths. The scatterers sum up the incoming signals

and re-emit the sum-signal via the outgoing paths. The receivers are sinks with only

incoming paths. Whenever a signal propagates along a path, it experiences path loss,

propagation delay, and the resultant phase shift, all of which depend on the path

length, or the distance between different objects. In a LOS path, the distance can be

obtained given the distribution of objects and the geometry of the network. When the

path is NLOS, however, the length of incoming and outgoing paths through the same

scatterer is non-independent. This poses a mathematical challenge of deriving the

joint distance distribution given the common point of two links, in both elementary

and complex geometries. Note that this is also applicable to the relay systems for

cooperative communications, where the scatterer described above becomes a relay

station.

7.2.3 Inter-Disciplinary Research

Besides the application in the networking area, the geometrical probability research

can also be applied to a wide variety of science and engineering fields. Below are some

of the examples.
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(1) Vehicle Dispatching and Transportation

The travel time and cost in an urban area are substantially affected by the trav-

eled distance, which can be modeled by a continuous statistical distribution. For

instance, [28,95] considered the distance between two cities or zones. [49] in particu-

lar, considered different types of journeys, such as internal journeys and cross-cordon

journeys, etc.

(2) VLSI Design

In [59], the geometrical distance models characterize the wire length needed to connect

random terminals on a chip. This problem arises in VLSI layout, computing the

expected cost of minimum-cost Euclidean spanning trees, and the analysis of rectangle

heuristics for minimum weighted Euclidean matching [82].

(3) City Planning

The practical problems such as the optimal placement of depots in city planning [27],

the control of environmental hazards [65], such as vehicle emissions and noise pollu-

tion, and the road surface wear and tear, are all essentially reduced to the problem

of the distances between random points. Consequently, the calculation of pollution

intensities and optimal road patterns can be examined.

(4) Natural Sciences

Similar research challenges appear in natural sciences, such as the study of the density

of plants in forestry, the crystal growth in chemistry [66], and the investigation on

gamma-rays in a nuclear reactor [50].

The variety of results and approaches taken in this field illustrate the way in which

distance distributions and their moments can be applied to practical problems. We

believe that as the classic theories being extended to new scenarios, academic research

will eventually lead to successful applications in real life.
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Appendix A

Derivation of the Distance

Distribution between Two

Adjacent Rhombuses

A.1 Long-Diagonal Case

Section 5.3.3 gives the result for the distance distribution of two adjacent rhombuses

when they have a common long diagonal. The derivation of (5.12) is given as follows.
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Figure A.1: Five Sub-cases for Z = |P ′Q′|2.

When two adjacent rhombuses are sharing a common diagonal, we first consider

points P′ and Q′ as shown in Figure 5.3, i.e., the long-diag case. Thus X = X1 + X2
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and Y = Y1 + Y2 are to be used in (5.6), and their distributions are

fX(x) =

{

x 0 ≤ x ≤ 1

2 − x 1 ≤ x ≤ 2
, and fY (y) =

{

y 0 ≤ y ≤ 1

2 − y 1 ≤ y ≤ 2
. (A.1)

The effective ellipse Z = X2 + XY + Y 2 on the X -Y plane is now within the

boundaries X ∈ [0, 2] and Y ∈ [0, 2], symmetric with respect to Y = X , as shown in

Figure A.1. Different from the effective ellipses shown in Sections 5.3.1 and 5.3.2, the

transitional points when X = 1 and Y = 1 become the tangent lines of the ellipse, are

out of the boundary X ∈ [0, 2] and Y ∈ [0, 2]. Thus we have these transitional values

of Z: z1 = 0 where the ellipse is a point at the origin, z2 = 1 where the semimajor

axis of the ellipse is equal to
√

2, z3 = 3 where the semiminor axis of the ellipse is

equal to
√

2, z4 = 4 where the semimajor axis of the ellipse is equal to
√

8, z5 = 7

where the transitional point on the boundary of f(ω), either (2, 1) or (1, 2), becomes

one point on the ellipse, and z6 = 12 where the semiminor axis of the ellipse is equal

to
√

8. This leads to the five effective ranges of [0, 1], [1, 3], [3, 4], [4, 7] and [7, 12] as

shown in Figure A.1.
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7 ≤ z ≤ 12:
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The final result in (5.12) is then derived by (5.8).

A.2 Short-Diagonal Case

Section 5.3.3 also gives the result for the distance distribution of two adjacent rhom-

buses when they have a common short diagonal. The derivation of (5.13) is given as

follows.
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Figure A.2: Four Sub-cases for Z = |M ′N ′|2.

When two adjacent rhombuses are sharing a common diagonal, the second case is

points M′ and N′ as shown in Figure 5.3, i.e., the short-diag case. Thus X = −X1−X2
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and Y = Y1 + Y2 are to be used in (5.6), and

fX(x) =

{

2 + x −2 ≤ x ≤ −1

−x −1 ≤ x ≤ 0
, and fY (y) =

{

y 0 ≤ y ≤ 1

2 − y 1 ≤ y ≤ 2
. (A.2)

The effective ellipse on the X -Y plane, in this case, is in X ∈ [−2, 0] and Y ∈ [0, 2],

symmetric with respect to Y = −X . Similar to Section 5.3.2 but with one less sub-

case, there are z1 = 0 where the ellipse is a point at the origin, z2 = 3
4

where X = −1

and Y = 1 are the tangent lines of the ellipse, z3 = 1 where the semimajor axis of

the ellipse is equal to
√

2, z4 = 3 where the semiminor axis of the ellipse is equal to√
2, and z5 = 4 where the semimajor axis of the ellipse is equal to

√
8. Therefore

depending on the value of Z, we have four sub-cases as shown in Figure A.2.
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1 ≤ z ≤ 3:

FZ(z) =
1

4
+ 2

∫ 0

−1

∫ −x
2
+

q

z− 3

4
x2

1
(2 − y)dy(−x)dx + 2

∫ −1

−√
z

∫ −x
2
+

q

z− 3

4
x2

−x
(2 − y)dy(2 + x)dx

= −
(

2z2

3
√

3
+

8z√
3

)

sin−1

√
3

2
√

z
+

(

1

6
+

π

9
√

3

)

z2 +
16

9
z3/2 +

(

8π

3
√

3
+ 1

)

z

−74z + 21

36

√
4z − 3 +

1

4
,

and

fZ(z) = −
(

4z

3
√

3
+

8√
3

)

sin−1

√
3

2
√

z
+

(

1

3
+

2π

9
√

3

)

z +
8

3

√
z − 3

√
4z − 3 +

8π

3
√

3
+ 1.

3 ≤ z ≤ 4:

FZ(z) =
1

4
+ 2





∫ −1+
√

z−3

−1

∫ 2

1
(2 − y)dy(−x)dx +

∫ 0

−1+
√

z−3

∫ −x
2
+

q

z− 3

4
x2

1
(2 − y)dy(−x)dx





+2





∫ −1−
√

z−3

−√
z

∫ −x
2
+

q

z− 3

4
x2

−x
(2 − y)dy(2 + x)dx +

∫ −1

−1−
√

z−3

∫ 2

−x
(2 − y)dy(2 + x)dx





= − 8z√
3

sin−1

√
3

2

√
z − 3 + 1√

z
− z2

2
+

16

9
z3/2 +

(

8π

3
√

3
− 4

)

z +
16z + 24

9

√
z − 3 + 1,

and

fZ(z) = − 8√
3

sin−1

√
3

2

√
z − 3 + 1√

z
− z +

8

3

√
z +

8

3

√
z − 3 +

8π

3
√

3
− 4.

The final result in (5.13) is then derived by (5.8).
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Appendix B

Validation of Rhombus-Related

Distributions by Recursion

Here the purpose is to verify that 1
4
fDI

(d)+ 1
2
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(d)+ 1
8
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(d) = 1
2
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2
),

where fDI
(d), fDP

(d), fDLD
(d) and fDSD

(d) are given in (5.9), (5.11), (5.12) and (5.13)

for distances associated with rhombuses, respectively. To confirm that the above two

equalities of f2DI
(d) are equivalent, we have verified them mathematically as follows.
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d
+

(

1 − π

3
√

3

)

d2 − 7

3

√

4d2 − 3

+
2

3

√

d2 − 3 +
4π

3
√

3
+ 3

]

.

Therefore,

f2DI
(d) =

1

2
fDP

(d) +
1

8
fDLD

(d)

=
d

2





4√
3

(

1 − (d/2)2

3

)

sin−1

√
3

d
−
(

2

3
− 2π

9
√

3

)(

d

2

)2

+

√

4

(

d

2

)2

− 3 − 2π

3
√

3
− 1





=
1

2
fDI

(
d

2
).

√
7 ≤ d ≤ 2

√
3:

fDI
(d) = fDP

(d) = fDSD
(d) = 0,

f2DI
(d) =

1

8
fDLD

(d) =
d

4

[

2√
3

(

4 − d2

3

)

sin−1

√
3

d
+

(

π

9
√

3
− 1

3

)

d2 + 2
√

d2 − 3 − 4π

3
√

3
− 2

]

=
d

2





4√
3

(

1 − (d/2)2

3

)

sin−1

√
3

d
−
(

2

3
− 2π

9
√

3

)(

d

2

)2

+

√

4

(

d

2

)2

− 3 − 2π

3
√

3
− 1





=
1

2
fDI

(
d

2
).

In summary, we have f2DI
(d) = 1

2
fDI

(d
2
) by scaling, and the probabilistic sum

1
4
fDI

(d)+ 1
2
fDP

(d)+ 1
8
fDLD

(d)+ 1
8
fDSD

(d) is equal to 1
2
fDI

(d
2
) in all the cases discussed

above. The above results are a strong validation of the approach that we proposed,

and the correctness of the distance distributions that we derived for distances associ-
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ated with rhombuses.
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Appendix C

Validation of Hexagon-Related

Distributions by Recursion

In this appendix, the mathematical verification of all the distribution functions de-

rived in Chapter 6 is given, through the scaling f2D(d) = 1
2
fD(d

2
), and the recursive

probabilistic sum in (6.12):

f2DHI
(d) =

3

16
fDHI

(d) +
3

8
fDHA

(d) +
1

12
[fDPX

(d) + fD2
(d) + fD1

(d) + fD3
(d)]

+
1

24
[fD4

(d) + fD5
(d)] +

1

48
fDI

(d),

fD5
(d) is the distance density function of |AL| in Figure 6.11, which is the only

distance distribution function that has not been given yet. We will do so in the

immediate following and the result in give in (C.1). The rest of the above notations

for distance distributions, and the corresponding equation number in this dissertation,

are listed in Table C.1.

Table C.1: Distance Distributions and the Corresponding Equation Number
Distance Distribution fDHI

(d) fDHA
(d) fDPX

(d) fDI
(d)

Equation Number (6.5) (6.11) (6.4) (5.9)

Distance Distribution fD1
(d) fD2

(d) fD3
(d) fD4

(d)
Equation Number (6.7) (6.8) (6.9) (6.10)
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|AL|

fD5
(d) = 2d











































































































− 2√
3

(

d2

3
+ 4
)

sin−1
√

3
d

+
(

1
3

+ 2π
9
√

3

)

d2 − 10
3

√
d2 − 3

+ 8π
3
√

3
+ 2 2 ≤ d ≤

√
7

2√
3

(

d2

3
+ 8
)

sin−1
√

3
d

+ 4√
3

(

d2

3
+ 6
)

sin−1 3
√

3
2d

−
(

1 + 2π
3
√

3

)

d2 + 6
√

d2 − 3 + 11
3

√
4d2 − 27 − 40π

3
√

3
− 11

√
7 ≤ d ≤ 3

2√
3

(

d2

3
+ 8
)

sin−1
√

3
d
− 4√

3

(

d2

3
+ 12

)

sin−1 3
√

3
2d

+
(

1
3

+ 2π
9
√

3

)

d2 + 6
√

d2 − 3 − 19
3

√
4d2 − 27 + 32π

3
√

3
+ 7 3 ≤ d ≤ 2

√
3

− 4√
3

(

d2

3
+ 12

)

sin−1 3
√

3
2d

− 2√
3

(

d2

3
+ 8
)

sin−1 2
√

3
d

+
(

1 + 2π
3
√

3

)

d2 − 19
3

√
4d2 − 27 − 4

√
d2 − 12 + 64π

3
√

3
+ 17 2

√
3 ≤ d ≤

√
13

2√
3

(

d2

3
+ 16

)

sin−1 2
√

3
d

−
(

1
3

+ 2π
9
√

3

)

d2 + 20
3

√
d2 − 12

− 32π
3
√

3
− 8

√
13 ≤ d ≤ 4

0 otherwise

.

(C.1)

Validation

In order to confirm that the two definitions of f2DHI
(d) at the beginning of this section

are equivalent, i.e., 3
16

fDHI
(d) + 3

8
fDHA

(d) + 1
12

[fDPX
(d) + fD2

(d) + fD1
(d) + fD3

(d)] +
1
24

[fD4
(d) + fD5

(d)] + 1
48

fDI
(d) is equal to 1

2
fDHI

(d
2
), we verify them mathematically

as follows.

i) 0 ≤ d ≤
√

3
2

:

3

16
fDHI

(d) =
d

8

[(

2

3
− 2π

9
√

3

)

d2 − 8

3
d +

2π√
3

]

,
3

8
fDHA

(d) =
d

12

[(

π

9
√

3
− 1

3

)

d2 +
4

3
d

]

,

1

12
fDPX

(d) =
d

6

[

4

3
d −

(

1

3
+

2π

9
√

3

)

d2

]

,
1

12
fD2

(d) =
d

6

[(

2π

9
√

3
− 1

6

)

d2

]

,

1

48
fDI

(d) =
d

24

[(

4

3
+

2π

9
√

3

)

d2 − 16

3
d +

2π√
3

]

,
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while the probability density functions are 0 for all other cases. Thus,

f2DHI
(d) =

3

16
fDHI

(d) +
3

8
fDHA

(d) +
1

12
[fDPX

(d) + fD2
(d)] +

1

48
fDI

(d)

=
d

6

[(

1

6
− π

18
√

3

)

d2 − 4

3
d +

2π√
3

]

=
d

6

[

(

2

3
− 2π

9
√

3

)(

d

2

)2

− 8

3

(

d

2

)

+
2π√

3

]

=
1

2
fDHI

(
d

2
).

ii)
√

3
2

≤ d ≤ 1 :

3

16
fDHI

(d) =
d

8

[(

2

3
− 2π

9
√

3

)

d2 − 8

3
d +

2π√
3

]

,
3

8
fDHA

(d) =
d

12

[(

π

9
√

3
− 1

3

)

d2 +
4

3
d

]

,

1

12
fDPX

(d) =
d

6

[

− 4√
3

(

d2

3
+ 1

)

sin−1

√
3

2d
+

(

4π

9
√

3
− 1

3

)

d2 +
4

3
d − 5

3

√

4d2 − 3 +
2π√

3

]

,

1

12
fD2

(d) =
d

6

[

2√
3

(

2d2

3
+ 1

)

sin−1

√
3

2d
−
(

4π

9
√

3
+

1

6

)

d2 +
√

4d2 − 3 − π√
3

]

,

1

12
fD1

(d) =
d

6

[

− 2d2

3
√

3
sin−1

√
3

2d
+

π

3
√

3
d2 −

√
4d2 − 3

6

]

,

1

48
fDI

(d) =
d

24

[

8√
3

(

1 +
d2

3

)

sin−1

√
3

2d
+

(

4

3
− 10π

9
√

3

)

d2 − 16

3
d +

10

3

√

4d2 − 3 − 2π√
3

]

.

Thus,

f2DHI
(d) =

3

16
fDHI

(d) +
3

8
fDHA

(d) +
1

12
[fDPX

(d) + fD2
(d) + fD1

(d)] +
1

48
fDI

(d)

=
d

6

[

(

2

3
− 2π

9
√

3

)(

d

2

)2

− 8

3

(

d

2

)

+
2π√

3

]

=
1

2
fDHI

(
d

2
).
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iii) 1 ≤ d ≤
√

3 :

3

16
fDHI

(d) =
d

8

[

− 4√
3

(

2d2

3
+ 1

)

sin−1

√
3

2d
+

2π

3
√

3
d2 − 2

√

4d2 − 3 +
10π

3
√

3

]

,

3

8
fDHA

(d) =
d

12

[

2√
3
(d2 + 2) sin−1

√
3

2d
−
(

1

3
+

5π

9
√

3

)

d2 +
11

6

√

4d2 − 3 − 4π

3
√

3
− 1

2

]

,

1

12
fDPX

(d) =
d

6

[

− 2√
3

(

d2

3
+ 2

)

sin−1

√
3

2d
+

(

2π

9
√

3
+

1

3

)

d2 − 3

2

√

4d2 − 3 +
2π√

3
+

1

2

]

,

1

12
fD2

(d) =
d

6

[

1√
3

(

4d2

3
+ 1

)

sin−1

√
3

2d
+

(

1

3
− 4π

9
√

3

)

d2 +
2

3

√

4d2 − 3 − 2

3
d − 2π

3
√

3
+

1

2

]

,

1

12
fD1

(d) =
d

6

[

d2 + 4√
3

sin−1

√
3

2d
−
(

1

3
+

2π

9
√

3

)

d2 − 2

3
d +

19

12

√

4d2 − 3 − 4π

3
√

3
− 3

4

]

,

1

12
fD3

(d) =
d

6

[

−
(

d2

3
√

3
+

1√
3

)

sin−1

√
3

2d
+

(

1

6
+

π

9
√

3

)

d2 − 5

12

√

4d2 − 3 +
π

3
√

3
+

1

4

]

,

1

48
fDI

(d) =
d

24

[

4√
3

(

1 − d2

3

)

sin−1

√
3

2d
−
(

2

3
− 2π

9
√

3

)

d2 +
√

4d2 − 3 − 2π

3
√

3
− 1

]

.

Thus,

f2DHI
(d) =

3

16
fDHI

(d) +
3

8
fDHA

(d) +
1

12
[fDPX

(d) + fD2
(d) + fD1

(d) + fD3
(d)]

+
1

48
fDI

(d) =
d

6

[

(

2

3
− 2π

9
√

3

)(

d

2

)2

− 8

3

(

d

2

)

+
2π√

3

]

=
1

2
fDHI

(
d

2
).

iv)
√

3 ≤ d ≤ 2 :

3

16
fDHI

(d) =
d

8

[

4√
3

(

d2

3
+ 4

)

sin−1

√
3

d
−
(

4π

9
√

3
+

2

3

)

d2 +
20

3

√

d2 − 3 − 16π

3
√

3
− 4

]

,
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3

8
fDHA

(d) =
d

12

[

2√
3

(

d2

3
− 2

)

sin−1

√
3

2d
− 4√

3

(

d2

3
+ 4

)

sin−1

√
3

d

+

(

1 +
π

3
√

3

)

d2 − 7

6

√

4d2 − 3 − 20

3

√

d2 − 3 +
8π√

3
+

9

2

]

,

1

12
fDPX

(d) =
d

6

[

2√
3

(

d2

3
+ 4

)

sin−1

√
3

d
−
(

2π

9
√

3
+

1

3

)

d2 +
10

3

√

d2 − 3 − 8π

3
√

3
− 2

]

,

1

12
fD2

(d) =
d

6

[

5√
3

sin−1

√
3

2d
− 4√

3

(

d2

3
+ 2

)

sin−1

√
3

d
+

(

4π

9
√

3
− 1

3

)

d2

+
5

3

√

4d2 − 3 − 4
√

d2 − 3 − 2

3
d +

8π

3
√

3
− 1

2

]

,

1

12
fD1

(d) =
d

6

[

−
(

d2

3
√

3
+

10√
3

)

sin−1

√
3

d
−
(

2d2

3
√

3
+ 2

√
3

)

sin−1

√
3

2d

+

(

4

3
+

2π

9
√

3

)

d2 − 13

6

√

4d2 − 3 − 11

3

√

d2 − 3 − 2

3
d +

16π

3
√

3
+

11

2

]

,

1

12
fD3

(d) =
d

6

[

(

2d2

3
√

3
+

4√
3

)

sin−1

√
3

d
+

(

2√
3
− d2

3
√

3

)

sin−1

√
3

2d

−
(

1

3
+

2π

9
√

3

)

d2 +
7

12

√

4d2 − 3 + 2
√

d2 − 3 − 13π

6
√

3
− 5

4

]

,

1

24
fD4

(d) =
d

12

[

2√
3

(

2d2

3
+ 1

)

sin−1

√
3

2d
+

4√
3

sin−1

√
3

d
−
(

1

3
+

2π

9
√

3

)

d2

+
√

4d2 − 3 +
4

3

√

d2 − 3 − 7π

3
√

3
− 2

]

.

Thus,

f2DHI
(d) =

3

16
fDHI

(d) +
3

8
fDHA

(d) +
1

12
[fDPX

(d) + fD2
(d) + fD1

(d) + fD3
(d)]

+
1

24
fD4

(d) =
d

6

[

(

2

3
− 2π

9
√

3

)(

d

2

)2

− 8

3

(

d

2

)

+
2π√

3

]

=
1

2
fDHI

(
d

2
).
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v) 2 ≤ d ≤ 3
√

3
2

:

3

8
fDHA

(d) =
d

12

[

2√
3

(

d2

3
− 2

)

sin−1

√
3

2d
+

(

1

3
− π

9
√

3

)

d2 − 7

6

√

4d2 − 3 +
8π

3
√

3
+

1

2

]

,

1

12
fD2

(d) =
d

6

[

5√
3

sin−1

√
3

2d
− 2√

3

(

d2

3
+ 2

)

sin−1

√
3

d
+

(

2π

9
√

3
− 1

6

)

d2

+
5

3

√

4d2 − 3 − 2
√

d2 − 3 − 2d +
4π

3
√

3
− 1

2

]

,

1

12
fD1

(d) =
d

6

[

(

d2

3
√

3
+ 2

√
3

)

sin−1

√
3

d
−
(

2d2

3
√

3
+ 2

√
3

)

sin−1

√
3

2d

−13

6

√

4d2 − 3 +
7

3

√

d2 − 3 + 2d − 1

2

]

,

1

12
fD3

(d) =
d

6

[

d2

3
√

3
sin−1

√
3

d
+

(

2√
3
− d2

3
√

3

)

sin−1

√
3

2d
−
(

1

6
+

π

9
√

3

)

d2

+
7

12

√

4d2 − 3 +

√
d2 − 3

3
− 5π

6
√

3
− 1

4

]

,

1

24
fD4

(d) =
d

12

[

2√
3

(

2d2

3
+ 1

)

sin−1

√
3

2d
− 2√

3

(

d2

3
+ 2

)

sin−1

√
3

d

+
√

4d2 − 3 − 2
√

d2 − 3 +
π

3
√

3

]

,

1

24
fD5

(d) =
d

12

[

− 2√
3

(

d2

3
+ 4

)

sin−1

√
3

d
+

(

1

3
+

2π

9
√

3

)

d2 − 10

3

√

d2 − 3 +
8π

3
√

3
+ 2

]

.
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Thus,

f2DHI
(d) =

3

8
fDHA

(d) +
1

12
[fD2

(d) + fD1
(d) + fD3

(d)] +
1

24
[fD4

(d) + fD5
(d)]

=
d

6

[

− 2√
3

(

d2

3
+ 2

)

sin−1

√
3

d
+

π

6
√

3
d2 − 2

√

d2 − 3 +
10π

3
√

3

]

=
d

6



− 4√
3

(

2(d/2)2

3
+ 1

)

sin−1

√
3

2(d/2)
+

2π

3
√

3

(

d

2

)2

− 2

√

4

(

d

2

)2

− 3 +
10π

3
√

3





=
1

2
fDHI

(
d

2
).

vi) 3
√

3
2

≤ d ≤
√

7 :

3

8
fDHA

(d) =
d

12

[

2√
3

(

d2

3
− 2

)

sin−1

√
3

2d
+

(

1

3
− π

9
√

3

)

d2 − 7

6

√

4d2 − 3 +
8π

3
√

3
+

1

2

]

,

1

12
fD2

(d) =
d

6

[

5√
3

sin−1

√
3

2d
− 2√

3

(

d2

3
+ 2

)

sin−1

√
3

d
+

(

2π

9
√

3
− 1

6

)

d2

+
5

3

√

4d2 − 3 − 2
√

d2 − 3 − 2d +
4π

3
√

3
− 1

2

]

,

1

12
fD1

(d) =
d

6

[

(

2d2

3
√

3
+ 4

√
3

)

sin−1 3
√

3

2d
+

(

d2

3
√

3
+ 2

√
3

)

sin−1

√
3

d

−
(

2d2

3
√

3
+ 2

√
3

)

sin−1

√
3

2d
− π

3
√

3
d2 − 13

6

√

4d2 − 3 +
7

3

√

d2 − 3

+
11

6

√

4d2 − 27 + 2d − 2
√

3π − 1

2

]

,

1

12
fD3

(d) =
d

6

[

d2

3
√

3
sin−1

√
3

d
+

(

2√
3
− d2

3
√

3

)

sin−1

√
3

2d
−
(

2d2

3
√

3
+ 3

√
3

)

sin−1 3
√

3

2d

+

(

2π

9
√

3
− 1

6

)

d2 +
7

12

√

4d2 − 3 +

√
d2 − 3

3
− 3

2

√

4d2 − 27 +
11π

3
√

3
− 1

4

]

,
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1

24
fD4

(d) =
d

12

[

2√
3

(

2d2

3
+ 1

)

sin−1

√
3

2d
− 2√

3

(

d2

3
+ 2

)

sin−1

√
3

d
− 2

√
3 sin−1 3

√
3

2d

+
√

4d2 − 3 − 2
√

d2 − 3 − 2

3

√

4d2 − 27 +
10π

3
√

3

]

,

1

24
fD5

(d) =
d

12

[

− 2√
3

(

d2

3
+ 4

)

sin−1

√
3

d
+

(

1

3
+

2π

9
√

3

)

d2 − 10

3

√

d2 − 3 +
8π

3
√

3
+ 2

]

.

Thus,

f2DHI
(d) =

3

8
fDHA

(d) +
1

12
[fD2

(d) + fD1
(d) + fD3

(d)] +
1

24
[fD4

(d) + fD5
(d)]

=
d

6



− 4√
3

(

2(d/2)2

3
+ 1

)

sin−1

√
3

2(d/2)
+

2π

3
√

3

(

d

2

)2

− 2

√

4

(

d

2

)2

− 3 +
10π

3
√

3





=
1

2
fDHI

(
d

2
).

vii)
√

7 ≤ d ≤ 3 :

3

8
fDHA

(d) =
d

12

[

− 2√
3

(

d2

3
+ 6

)

sin−1 3
√

3

2d
− 4√

3

(

d2

3
+ 2

)

sin−1

√
3

d

+

(

1

3
+

5π

9
√

3

)

d2 − 4
√

d2 − 3 − 11

6

√

4d2 − 27 +
28π

3
√

3
+

9

2

]

,

1

12
fD2

(d) =
d

6

[

(

2d2

3
√

3
+ 3

√
3

)

sin−1 3
√

3

2d
+

(

1

6
− 2π

9
√

3

)

d2 +
3

2

√

4d2 − 27 − 2d −
√

3π

]

,

1

12
fD1

(d) =
d

6

[

− d2

3
√

3
sin−1 3

√
3

2d
+

(

π

9
√

3
− 1

3

)

d2 + 2d −
√

4d2 − 27

4
− 9

4

]

,
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1

12
fD3

(d) =
d

6

[

(

d2

3
√

3
− 4√

3

)

sin−1

√
3

d
−
(

d2

3
√

3
+

1

2
√

3

)

sin−1

√
3

2d

−
(

2d2

3
√

3
+

7
√

3

2

)

sin−1 3
√

3

2d
+

(

1

3
+

2π

9
√

3

)

d2 −
√

4d2 − 3

4
−
√

d2 − 3

−5

3

√

4d2 − 27 +
11π

2
√

3
+

13

4

]

,

1

24
fD4

(d) =
d

12

[

1√
3

(

2d2

3
+ 1

)

sin−1

√
3

2d
− 4√

3

(

d2

3
+ 2

)

sin−1

√
3

d
− 3

√
3 sin−1 3

√
3

2d

+

(

1

3
+

2π

9
√

3

)

d2 +

√
4d2 − 3

2
− 4
√

d2 − 3 −
√

4d2 − 27 +
17π

3
√

3
+

9

2

]

,

1

24
fD5

(d) =
d

12

[

2√
3

(

d2

3
+ 8

)

sin−1

√
3

d
+

4√
3

(

d2

3
+ 6

)

sin−1 3
√

3

2d
−
(

1 +
2π

3
√

3

)

d2

+6
√

d2 − 3 +
11

3

√

4d2 − 27 − 40π

3
√

3
− 11

]

.

Thus,

f2DHI
(d) =

3

8
fDHA

(d) +
1

12
[fD2

(d) + fD1
(d) + fD3

(d)] +
1

24
[fD4

(d) + fD5
(d)]

=
d

6



− 4√
3

(

2(d/2)2

3
+ 1

)

sin−1

√
3

2(d/2)
+

2π

3
√

3

(

d

2

)2

− 2

√

4

(

d

2

)2

− 3 +
10π

3
√

3





=
1

2
fDHI

(
d

2
).

viii) 3 ≤ d ≤ 2
√

3 :

3

8
fDHA

(d) =
d

12

[

2√
3

(

d2

3
+ 12

)

sin−1 3
√

3

2d
− 4√

3

(

d2

3
+ 2

)

sin−1

√
3

d

+

(

π

9
√

3
− 1

3

)

d2 − 4
√

d2 − 3 +
19

6

√

4d2 − 27 − 8π

3
√

3
− 9

2

]

,
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1

12
fD3

(d) =
d

6

[

(

d2

3
√

3
− 4√

3

)

sin−1

√
3

d
−
(

d2

3
√

3
+

1

2
√

3

)

sin−1

√
3

2d
+

5
√

3

2
sin−1 3

√
3

2d

−
√

4d2 − 3

4
−
√

d2 − 3 +
5

6

√

4d2 − 27 − π

2
√

3
− 5

4

]

,

1

24
fD4

(d) =
d

12

[

1√
3

(

2d2

3
+ 1

)

sin−1

√
3

2d
− 4√

3

(

d2

3
+ 2

)

sin−1

√
3

d

+

(

2d2

3
√

3
+ 3

√
3

)

sin−1 3
√

3

2d
+

√
4d2 − 3

2
− 4
√

d2 − 3 +
3

2

√

4d2 − 27 − π

3
√

3

]

,

1

24
fD5

(d) =
d

12

[

2√
3

(

d2

3
+ 8

)

sin−1

√
3

d
− 4√

3

(

d2

3
+ 12

)

sin−1 3
√

3

2d
+

(

1

3
+

2π

9
√

3

)

d2

+6
√

d2 − 3 − 19

3

√

4d2 − 27 +
32π

3
√

3
+ 7

]

.

Thus,

f2DHI
(d) =

3

8
fDHA

(d) +
1

12
fD3

(d) +
1

24
[fD4

(d) + fD5
(d)]

=
d

6



− 4√
3

(

2(d/2)2

3
+ 1

)

sin−1

√
3

2(d/2)
+

2π

3
√

3

(

d

2

)2

− 2

√

4

(

d

2

)2

− 3 +
10π

3
√

3





=
1

2
fDHI

(
d

2
).

ix) 2
√

3 ≤ d ≤
√

13 :

3

8
fDHA

(d) =
d

12

[

2√
3

(

d2

3
+ 12

)

(

sin−1 3
√

3

2d
+ sin−1 2

√
3

d

)

−
(

2

3
+

4π

9
√

3

)

d2

+
19

6

√

4d2 − 27 +
16

3

√

d2 − 12 − 16π√
3
− 25

2

]

,

1

12
fD3

(d) =
d

6

[

(

d2

3
√

3
+

8√
3

)

sin−1 2
√

3

d
−
(

d2

3
√

3
+

1

2
√

3

)

sin−1

√
3

2d
+

5
√

3

2
sin−1 3

√
3

2d

−
(

1

6
+

π

9
√

3

)

d2 −
√

4d2 − 3

4
+

5

6

√

4d2 − 27 + 2
√

d2 − 12 − 31π

6
√

3
− 9

4

]

,
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1

24
fD4

(d) =
d

12

[

1√
3

(

2d2

3
+ 1

)

sin−1

√
3

2d
+

(

2d2

3
√

3
+ 3

√
3

)

sin−1 3
√

3

2d
+

8√
3

sin−1 2
√

3

d

−
(

1

3
+

2π

9
√

3

)

d2 +

√
4d2 − 3

2
+

3

2

√

4d2 − 27 +
4

3

√

d2 − 12 − 17π

3
√

3
− 8

]

,

1

24
fD5

(d) =
d

12

[

− 4√
3

(

d2

3
+ 12

)

sin−1 3
√

3

2d
− 2√

3

(

d2

3
+ 8

)

sin−1 2
√

3

d

+

(

1 +
2π

3
√

3

)

d2 − 19

3

√

4d2 − 27 − 4
√

d2 − 12 +
64π

3
√

3
+ 17

]

.

Thus,

f2DHI
(d) =

3

8
fDHA

(d) +
1

12
fD3

(d) +
1

24
[fD4

(d) + fD5
(d)]

=
d

6

[

1√
3

(

d2

3
+ 16

)

sin−1 2
√

3

d
−
(

π

9
√

3
+

1

6

)

d2 +
10

3

√

d2 − 12 − 16π

3
√

3
− 4

]

=
d

6





4√
3

(

(d/2)2

3
+ 4

)

sin−1

√
3

d/2
−
(

4π

9
√

3
+

2

3

)(

d

2

)2

+
20

3

√

(

d

2

)2

− 3

− 16π

3
√

3
− 4

]

=
1

2
fDHI

(
d

2
).

x)
√

13 ≤ d ≤ 4 :

1

24
fD5

(d) =
d

12

[

2√
3

(

d2

3
+ 16

)

sin−1 2
√

3

d
−
(

1

3
+

2π

9
√

3

)

d2 +
20

3

√

d2 − 12 − 32π

3
√

3
− 8

]

.

Thus,

f2DHI
(d) =

1

24
fD5

(d)

=
d

6

[

1√
3

(

d2

3
+ 16

)

sin−1 2
√

3

d
−
(

π

9
√

3
+

1

6

)

d2 +
10

3

√

d2 − 12 − 16π

3
√

3
− 4

]

=
d

6





4√
3

(

(d/2)2

3
+ 4

)

sin−1

√
3

d/2
−
(

4π

9
√

3
+

2

3

)(

d

2

)2

+
20

3

√

(

d

2

)2

− 3

− 16π

3
√

3
− 4

]

=
1

2
fDHI

(
d

2
).
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In summary, we have f2DHI
(d) = 1

2
fDHI

(d
2
) by scaling, and the probabilistic sum

3
16

fDHI
(d)+ 3

8
fDHA

(d)+ 1
12

[fDPX
(d) + fD2

(d) + fD1
(d) + fD3

(d)]+ 1
24

[fD4
(d) + fD5

(d)]+
1
48

fDI
(d) is equal to 1

2
fDHI

(d
2
) in all the cases discussed above. The results are a

strong validation of the correctness of the distance distribution functions that we

have derived for distances associated with hexagons.


