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Distributed learning of deep neural network over multiple agents

Otkrist Guptaa,∗, Ramesh Raskara
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Abstract

In domains such as health care and finance, shortage of labeled data and computational resources is

a critical issue while developing machine learning algorithms. To address the issue of labeled data

scarcity in training and deployment of neural network-based systems, we propose a new technique to

train deep neural networks over several data sources. Our method allows for deep neural networks to

be trained using data from multiple entities in a distributed fashion. We evaluate our algorithm on

existing datasets and show that it obtains performance which is similar to a regular neural network

trained on a single machine. We further extend it to incorporate semi-supervised learning when

training with few labeled samples, and analyze any security concerns that may arise. Our algorithm

paves the way for distributed training of deep neural networks in data sensitive applications when

raw data may not be shared directly.

Keywords: Multi Party Computation, Deep Learning, Distributed Systems

1. Introduction

Deep neural networks have become the new state of the art in classification and prediction of

high dimensional data such as images, videos and bio-sensors. Emerging technologies in domains

such as biomedicine and health stand to benefit from building deep neural networks for prediction

and inference by automating the human involvement and reducing the cost of operation. However,

training of deep neural nets can be extremely data intensive requiring preparation of large scale

datasets collected from multiple entities [1, 2]. A deep neural network typically contains millions of

parameters and requires tremendous computing power for training, making it difficult for individual

data repositories to train them.
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Sufficiently deep neural architectures needing large supercomputing resources and engineering

oversight may be required for optimal accuracy in real world applications. Furthermore, application

of deep learning to such domains can sometimes be challenging because of privacy and ethical issues

associated with sharing of de-anonymized data. While a lot of such data entities have vested interest

in developing new deep learning algorithms, they might also be obligated to keep their user data

private, making it even more challenging to use this data while building machine learning pipelines.

In this paper, we attempt to solve these problems by proposing methods that enable training of

neural networks using multiple data sources and a single supercomputing resource.

2. Related Work

Deep neural networks have proven to be an effective tool to classify and segment high dimensional

data such as images[3], audio and videos[4]. Deep models can be several hundreds of layers deep[5],

and can have millions of parameters requiring large amounts of computational resources, creating the

need for research in distributed training methodologies[6]. Interesting techniques include distributed

gradient optimization[7, 8], online learning with delayed updates[9] and hashing and simplification of

kernels[10]. Such techniques can be utilized to train very large scale deep neural networks spanning

several machines[11] or to efficiently utilize several GPUs on a single machine[12]. In this paper we

propose a technique for distributed computing combining data from several different sources.

Secure computation continues to be a challenging problem in computer science [13]. One cat-

egory of solutions to this problem involve adopting oblivious transfer protocols to perform secure

dot product over multiple entities in polynomial time [14]. While this method is secure, it is some-

what impractical when considering large scale datasets because of resource requirements. A more

practical approach proposed in [14] involves sharing only SIFT and HOG features instead of the

actual raw data. However, as shown in [15], such feature vectors can be inverted very accurately

using prior knowledge of the methods used to create them. Neural networks have been shown to

be extremely robust to addition of noise and their denoising and reconstruction properties make it

difficult to compute them securely [16]. Neural networks have also been shown to be able to recover

an entire image from only a partial input [17], rendering simple obfuscation methods inert.

Widespread application of neural networks in sensitive areas such as finance and health, has

created a need to develop methods for both distributed and secure training [18, 19, 20] and classi-

fication in neural networks. Under distributed and secure processing paradigms, the owner of the
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(a) Centralized distributed neural network training.
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(b) Peer-to-peer training for distributed learning.

Figure 1: Two modalities of our algorithm: centralized mode (1a) and peer-to-peer mode (1b).

neural network doesn’t have access to the actual raw data used to train the neural network [21].

This also includes secure paradigms in cloud computing [22, 23], virtualization [24] and service

oriented architectures [25]. The secure paradigms may also extend to the neural activations and

(hyper)parameters. Such algorithms form a subset inside the broader realm of multi-party protocol

problems involving secure computation over several parties [26, 27]. Some interesting solutions

include using Ada-boost to jointly train classifier ensembles [28], using random rotation perturba-

tions for homomorphic pseudo-encryption [29] and applying homomorphic cryptosystem to perform

secure computation [30].

3. Theory

In this paper we propose new techniques that can be used to train deep neural networks over

multiple data sources while mitigating the need to share raw labeled data directly. Specifically

we address the problem of training a deep neural network over several data entities (Alice(s)) and

one supercomputing resource (Bob). We aim at solving this problem while satisfying the following

requirements :

1. A single data entity (Alice) doesn’t need to share the data with Bob or other data resources.
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2. The supercomputing resource (Bob) wants control over the architecture of the Neural Net-

work(s)

3. Bob also keeps a part of network parameters required for inference.

In upcoming sections we will show how to train neural networks between multiple data entities

(Alice(s)) and a supercomputing resource (Bob). Techniques will include methods which encode

data into a different space and transmit it to train a deep neural network. We will further explore

how a third-party can use this neural network to classify and perform inference. Our algorithm

can be run using one or multiple data entities, and can be run in peer-to-peer or centralized mode.

Please see Figure 1 for the schematic depiction of algorithm modalities.

3.1. Distributed training over single entity

We will start by describing the algorithm in its simplest form which considers training a neural

network using data from a single entity and supercomputing resource. Let us define a deep neural

network as a function F , topologically describable using a sequence of layers {L0, L1, ...LN}. For a

given input (data), the output of this function is given by F (data) which is computed by sequential

application of layers F (data)← LN (LN−1...(L0(data))).

Let Gloss(output, label) denote the customized loss function used for computing gradients for the

final layer. Gradients can be backpropagated over each layer to generate gradients of previous layers

and to update the current layer. We will use LT
i (gradient) to denote the process of backpropagation

over one layer and FT (gradient) to denote backpropagation over the entire Neural Network. Similar

to forward propagation, backpropagation on the entire neural network is comprised of sequential

backward passes FT (gradient)← LT
1 (LT

2 ...(L
T
N (gradient))). Please note that the backward passes

will require activations after the forward pass on individual perceptrons.

Finally, Send(X,Y ) represents the process of sending data X over the network to entity Y .

In the beginning, Alice and Bob initialize their parameters randomly. Alice then iterates over its

dataset and transmits encoded representations to Bob. Bob then computes losses and gradients

and sends the gradients back to Alice. Algorithm 1 describes how to train a deep neural classifier

using a single data source.

3.1.1. Correctness

Here we analyze if training using our distributed algorithm produces the same results as a

normal training procedure. Under a normal training procedure we would first compute forward
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Algorithm 1 Distributed Neural Network training over 2 agents.

1: Initialize:

φ← Random Initializer (Xavier/Gaussian)

Fa ← {L0, L1, ...Ln}

Fb ← {Ln+1, Ln+2, ...LN}
2: Alice randomly initializes the weights of Fa using φ

3: Bob randomly initializes the weights of Fb using φ

4: while Alice has new data to train on do

5: Alice uses standard forward propagation on data

. X ← Fa(data)

6: Alice sends nth layer output X and label to Bob

. Send((X, label), Bob).

7: Bob propagates incoming features on its network

. output← Fb(X)

8: Bob generates gradients for its final layer

. gradient← G′(output, label)

9: Bob backpropagates the error in Fb until Ln+1

. F ′b, gradient
′ ← FT

b (gradient)

10: Bob sends gradient of Ln to Alice

. Send(gradient′, Alice)

11: Alice backpropagates gradients received

. F ′a, ← FT
a (gradient′)

12: end while

pass output ← F (data) followed by computation of loss gradients gradients ← G(output, label).

These gradients will be backpropagated to refresh weights F ′ ← FT (gradients).

Since forward propagation involves sequential application of individual layers we concur that

F (data) is same as Fb(Fa(data)). Therefore the process of sequential computation and transmission

followed by computation of remaining layers is functionally identical to application of all layers at

once. Similarly because of the chain rule in differentiation, backpropagating FT (gradients) is

functionally identical to sequential application of FT
a (FT

b (gradients)). Therefore, we can conclude

that our algorithm will produce identical results to a normal training procedure.
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Algorithm 2 Distributed Neural Network over N+1 agents.

1: Initialize:

φ← Random Initializer (Xavier/Gaussian)

Fa,1 ← {L0, L1, ...Ln}

Fb ← {Ln+1, Ln+2, ...LN}
2: Alice1 randomly initializes the weights of Fa,1 using φ

3: Bob randomly initializes the weights of Fb using φ

4: Bob sets Alice1 as last trained

5: while Bob waits for next Alicej to send data do

6: Alicej requests Bob for last Aliceo that trained

7: Alicej updates its weights

. Fa,j ← Fa,o

8: Alicej uses standard forward propagation on data

. X ← Fa,j(data)

9: Alicej sends nth layer output and label to Bob

. Send((X, label), Bob).

10: Bob propagates incoming features on its network

. output← Fb(X)

11: Bob generates gradients for its final layer

. gradient← G′(output, label)

12: Bob backpropagates the error in Fb until Ln+1

. F ′b, gradient
′ ← FT

b (gradient)

13: Bob sends gradient of Ln to Alicej

. Send(gradient′, Alicej)

14: Alicej backpropagates the gradients it received

. F ′a,j , ← FT
a,j(gradient

′)

15: Bob sets Alicej as last trained

16: end while

3.2. Distributed training over multiple entities

Here we demonstrate how to extend the algorithm described in 3.1 to train using multiple data

entities. We will use the same mathematical notations as used in 3.1 when defining neural network

forward and backward propagation. In algorithm 2 we demonstrate how to extend our algorithm

when there are N data entities, each of them is denoted by Alicei.
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In algorithm 2 at the first initialization step, Bob sends Alice1 topological description of first

N layers. Alice and Bob use standard system level libraries for random initialization of their

parameters. Bob then sets Alice1 as the last agent used for training and begins training using

data from Alice1. We modify 1 and add a step which uses data from multiple entities in a round

robin fashion, allowing for a distributed learning framework. However, for consistency, Alicej may

be required to update weights before they begin their training. We solve this by providing two

separate methodologies involving peer-to-peer and centralized configurations. In the centralized

mode, Alice uploads an encrypted weights file to either Bob or a third-party server. When a new

Alice wishes to train, it downloads and decrypts these weights. In peer-to-peer mode, Bob sends

the last trained Alice’s address to the current training party and Alice uses this to connect and

download the encrypted weights. The implementation details for both methods can be seen in

supplementary material. Once the weights are updated, Alicej continues its training. Since the

same weights are initialized in both centralized and peer-to-peer mode, the final result of training

is identical in both modalities.

3.2.1. Correctness

We analyze if training using our algorithm produces results which are identical when training

with all the data combined on a single machine (under the assumption that the data arriving at

multiple entities preserves the order and random weights use same initialization). The algorithm

correctness stems from the fact that Bob and at least one of Aliceo have identical neural network

parameters to regular training at iterationk. We use inductive techniques to prove that this is

indeed the case.

Lemma 1. The neural network being trained at iterationk is identical to the neural network if it

was trained by just one entity.

Base Case: One of Alice1...N has the correct weights at beginning of first iteration.

Proof: Alice1 randomly initialized weights and Bob used these weights during first iteration.

We assume that this initialization is consistent when training with single entity. In case another

Alicej attempts to train, it will refresh the weights to correct value.

Recursive Case: Assertion: If Alicej has correct weights at beginning of iterationi it will have

correct weights at beginning of iteration i+ 1.
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Proof: Alicej performs backpropagation as the final step in iteration i. Since this backpropa-

gation is functionally equivalent to backpropagation applied over the entire neural network at once,

Alicej continues to have correct parameters at the end of one training iteration. (FT (gradient) is

functionally identical to sequential application of FT
a,j(F

T
b (data)), as discussed in 3.1.1).

3.3. Semi-supervised application

In this section we describe how to modify the distributed neural network algorithm to incor-

porate semi-supervised learning and generative losses when training with fewer data points. In

situations with fewer labeled data-samples, a reasonable approach includes learning hierarchical

representations using unsupervised learning [31]. Compressed representations generated using un-

supervised learning and autoencoders can be used directly for classification [32]. Additionally, we

can combine the losses of generative and predictive segments to perform semi supervised learning,

adding a regularization component while training on fewer samples [33].

Over here we demonstrate how we can train autoencoders and semi-supervised learners using

a modified version of algorithm 1. Such unsupervised learning methods can be extremely helpful

when training with small amounts of labeled data. We assume that out of n layers for Alice, the

first m layers are encoder and the remaining n −m layers belong to its decoder. Fe,i denotes the

forward propagation over encoder (computed by sequential application Lm(Lm−1...(L0(data)))).

Fd,i denotes application of decoder layers. During forward propagation Alice propagates data

through all n layers and sends output from mth layer to Bob. Bob propagates the output tensor

from Alice through Ln...N and computes the classifier loss (logistic regression).

Let loss define the logistic regression loss in the predictive segment of the neural network

(last N − n layers owned by Bob), and let lossenc define the contrastive loss in autoencoder

(completely owned by Alice(s)). Bob can compute loss using its softmax layer and can back-

propagate gradients computed using this loss to layer Ln+1 giving gradients from classifier network

[gradient′ ← FT
b (gradient)]. Alicei can compute the autoencoder gradients and can backpropagate

it through its decoder network [FT
d,i(gradientenc)]. We can facilitate semi-supervised learning by

combining a weighted sum of two losses. The weight α is an added hyperparameter which can be

tuned during training.

η ← FT
b (gradient) + α ∗ FT

d,i(gradientenc) (1)
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Algorithm 3 Distributed Neural Network with an Autoencoder over N+1 agents.

1: Initialize:

φ← Random Initializer (Xavier/Gaussian)

Fe,1 ← {L0, L1, ...Lm}

Fd,1 ← {Lm, Lm+1, ...Ln}

Fb ← {Ln+1, Ln+2, ...}
2: Alice1 randomly initializes the weights of Fa,1 using φ

3: Bob randomly initializes the weights of Fb using φ

4: Alice1 transmits weights of Fa,1 to Alice2...N

5: while Bob waits for next feature vector from Alicej do

6: Alicej requests Bob for last Aliceo that trained

7: Alicej updates its weights

. Fa,j ← Fa,o

8: Alicej uses standard forward propagation on data

. Xm ← Fe,j(data)

. X ← Fd,j(Xm)

9: Alicej sends mth layer output and label to Bob

. Send((Xm, label), Bob).

10: Bob propagates incoming features on its network Fb

. output← Fb(Xm).

11: Bob generates gradient for its final layer

. gradient← G′(output, label)

12: Bob backpropagates the error in Fb until Ln+1

. F ′b, gradient
′ ← FT

b (gradient)

13: Bob sends gradient for Ln to Alicej

. Send(gradient′, Alicej)

14: Alicej generates autoencoder gradient for its decoder

. F ′d,j , gradient
′
enc = FT

d,j(X)

15: Alicej backpropagates combined gradients

. Fa, ← FT
a (η(gradient′, gradient′enc))

16: Bob sets Alicej as last trained

17: end while

9



After the initialization steps, Alice propagates its data through its network and sends output

from the encoder part to Bob. Bob does a complete forward and backward to send gradients to

Alice. Alice then combines losses from its decoder network with gradients received from Bob and

uses them to perform backpropagation (please see algorithm 3 for detailed description).

3.4. Online learning

An additional advantage of using our algorithm is that the training can be performed in an

online fashion by providing Bob output of forward propagation whenever there is new annotated

data. In the beginning instead of transmitting the entire neural net, Alicei can initialize the weights

randomly using a seed and just send the seed to Alice1...N preventing further network overhead.

When Alice is requested for weights in peer-to-peer mode, it can simply share the weight updates,

which it adds to its parameters during the course of training. The combined value of weight updates

can be computed by subtracting weights at beginning of training from current weights. For security,

Alice can also upload the encrypted weight updates to a centralized weight server, making it harder

to reverse engineer actual weights when using man-in-middle attack. Weights can be refreshed

by Alice by combining its initial weights with subsequent weight updates downloaded from the

centralized weight server (or Alice(s) depending on mode). To facilitate centralized modality, we

can modify step 6 of algorithm 2, replacing it with a request to download encrypted weights from

weight server. Once training is over Alicej can upload the new encrypted weights to the weight

server (please refer to step 15 in algorithm 2).

3.5. Analyzing Security Concerns

While a rigorous information theoretical analysis of security is beyond the scope of this paper,

over here we sketch out a simple explanation of why reconstructing the data sent by Alice is

extremely challenging. The algorithm security lies in whether Bob can invert parameters (Fa)

used by Alice during the forward propagation. Bob can indeed build a decoder for compressed

representations transmitted by Alice, but it requires Alice revealing the current parameters of its

section of neural network [15].

In this section we make an argument that Bob cannot discover the parameters used by Alice as

long as its layers (denoted by Fa) contain at least one fully connected layer. We will use the word

“configuration” to denote an isomorphic change in network topology which leads to functionally

identical neural network.
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(b) Training without label sharing

Figure 2: Figure (2a) shows the normal training procedure while figure (2b) demonstrates how to train without

transmitting labels, by wrapping the network around at its last layers.

Lemma 2. Let layer M be a fully connected layer containing N outputs then layer M has at least

N! functionally equivalent “configurations”.

Proof: We construct a layer M and transpose N output neurons. The output of neurons is reordered

without changing weights or affecting learning in any way. Since there are N ! possible orderings

of these neurons at least N ! unique configurations are possible depending on how the weights were

initialized.

Bob will have to go through at least N ! possible configurations to invert the transformation

applied by Alice. Since N ! > (N/2)N > eN this will require an exponential amount of time in a

layer of size N . For example if the fully connected layer has 4096 neurons and each configuration

could be tested in a second, it would take Bob more than the current age of the universe to figure

out parameters used by Alice.

3.6. Training without label propagation

While the algorithm we just described doesn’t require sharing raw data, it still does involve

sharing labels. We can mitigate this problem by presenting a simple adjustment to the training

framework. In this topological modification, we wrap the network around at its end layers and send

those back to Alice (see figure 2). While Bob still retains majority of its layers, it lets Alice generate

the gradients from the end layers and uses them for backpropagation over its own network. We can

use a similar argument as one used in lemma 1 to prove that this method will still work after the

layers have been wrapped around. Please see figure 2 for a schematic description of our training

methodology without label sharing.
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4. Datasets and Implementation

We use standard json communication libraries for asynchronous RPC for implementation. On

top of those, we implement a custom protocol for training once a secure connection is established

using SSL. Our protocol defines several network primitives (implemented as remote functions) which

we broadly divide in 3 parts (1) Training request, (2) Tensor transmission and (3) Weight update.

Please refer to appendix for a complete list of network primitives. We describe these three network

primitives categories in our supplementary material.

4.1. Mixed NIST

Mixed NIST (MNIST) database [34] contains handwritten digits sampled from postal codes and

is a subset of a much larger dataset available from the National Institute Science and Technology.

MNIST comprises of a total of 70,000 samples divided into 60,000 training samples and 10,000

testing samples. Original binary images were reformatted and spatially normalized to fit in a

20 × 20 bounding box. Anti-aliasing techniques were used to convert black and white (bilevel)

images to grey scale images. Finally the digits were placed in a 28 × 28 grid, by computing the

center of mass of the pixels and shifting and superimposing images in the center of a 28×28 image.

4.2. Canadian Institute For Advanced Research

The Canadian Institute For Advanced Research (CIFAR-10) dataset is a labeled subset of tiny

images dataset (containing 80 million images). It is composed of 60,000, 32 × 32 color images

distributed over 10 different class labels. The dataset consists of 50,000 training samples and 10,000

testing images. Images are uniformly distributed over 10 classes with training batches containing

exactly 6000 images for each class. The classes are mutually exclusive and there are no semantic

overlaps between the images coming from different labels. We normalized the images using GCA

whitening and applied global mean subtraction before training. The same dataset also includes a

100 class variation referred to as CIFAR-100.

4.3. ILSVRC (ImageNet) 2012

This dataset includes approximately 1.2 million images labeled with the presence or absence of

1000 object categories. It also includes 150,000 images for validation and testing purposes. The

1000 object categories are a subset of a larger dataset (ImageNet), which includes 10 million images

12



Dataset Topology Accuracy (Single Agent) Accuracy using our method Epochs

MNIST LeNet [34] 99.18 % 99.20 % 50

CIFAR 10 VGG [36] 92.45 % 92.43 % 200

CIFAR 100 VGG [36] 66.47 % 66.59 % 200

ILSVRC 12 AlexNet [3] 57.1 % 57.1 % 100

Table 1: Accuracies when training using multi-agent algorithm vs when training on a single machine.

spanning 10,000 object categories. The object categories may be internal or leaf nodes but do not

overlap. The dataset comprises images with varying sizes which are resized to 256× 256 and mean

subtracted before training.

5. Experiments and Applications

We implement our algorithm and protocol using python bindings for caffe[35]. We test our

implementation on datasets of various sizes (50K - 1M) and classes (10, 100 or 1000 classes). We

demonstrate that our method works across a range of different topologies and experimentally verify

identical results when training over multiple agents. All datasets were trained for an equal number

of epochs for fair evaluation.

In 3.2.1 we show why our algorithm should give results identical to a normal training procedure.

We experimentally verify our method’s correctness by implementing it and training it on a wide

array of datasets and topologies including MNIST, ILSVRC 12 and CIFAR 10. Table 1 lists datasets

and topologies combined with their test accuracies. Test accuracies are computed by comparing

the number of correctly labeled samples to the total number of test data points.. As shown in table

1, the network converges to similar accuracies when training over several agents in a distributed

fashion.

5.1. Comparison with existing methods

We compare our method against the modern state-of-the-art methods including large-batch

global SGD [37] and federated averaging approaches [38]. We perform several different comparisons

using the best hyperparameter selections for federated averaging and federated SGD. We compare

client side computational costs when using deep models and demonstrate significantly lower com-

putational burden on clients when training using our algorithm (see figure 3). We also analyze the

13
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training 500 clients (Resnet-50 and CIFAR 100).

Figure 3: Comparison of client side computational cost of our method against existing state of the art methods.

transmission cost of state-of-the-art deep networks including ResNet and VGG on CIFAR-10 and

CIFAR-100. We demonstrate higher validation accuracy and faster convergence when considering

a large number of clients.

We demonstrate significant reductions in computation and communication bandwidth when

comparing against federated SGD and federated averaging [38]. Reduced computational require-

ments can be explained by the fact that while federated averaging requires forward pass and gradient

computation for the entire neural network on the client, our method requires these computations

for only the first few layers, significantly reducing the computational requirements (as shown in

figure 3). Even though federated averaging requires a lot fewer iterations than large-scale SGD, it

is still outperformed by our method requiring only a fraction of computations on the client.

Reduction in communication bandwidth can be attributed to the fact that federated averaging

involves transmitting the gradient updates for the entire neural network from all clients to a central

server, accompanied by transmission of updated weights to every single client (please refer to figure

4). While the federated averaging algorithm is able to converge in fewer transmission cycles, each

transmission cycle requires huge amounts of data download and upload to the client and server.

The split neural network algorithm reduces data transmitted by restricting the size of the client
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(b) Validation accuracy with transmitted data when

training 500 clients using Resnet-50 over CIFAR-100.

Figure 4: Comparison of data transmission cost of our method against existing state of the art methods.

neural network to only the first few layers, thereby greatly reducing the total amount of data

transmitted during training. Additionally, federated averaging fails to achieve optimal accuracy

for higher numbers of clients since general non-convex optimization averaging models in parameter

space could produce an arbitrarily bad model (phenomenon described in [39]).

5.2. Impact of amount of data on final accuracy

An important benefit of our method lies in its ability to combine multiple data-sources. When

using deep neural networks, larger datasets have been shown to perform significantly better than

smaller datasets. We experimentally demonstrate the benefits of pooling several agents by uniformly

dividing dataset over 10 agents and training topologies using 1, 5 or 10 agents. We observe that

adding more agents causes accuracy to improve significantly. Please see table 2 for analysis on how

accuracy will improve as we add more data sources in real world scenarios.

6. Conclusions and Future Work

In this paper we present new methods to train deep neural networks over several data reposito-

ries. We also present algorithms on how to train neural networks without revealing actual raw data
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Dataset Accuracy using 1 agent

(10 %)

Accuracy using 5 agents

(50 % of data)

Accuracy using all agents

MNIST 97.54 98.93 99.20

CIFAR 10 72.53 89.05 92.45

CIFAR 100 36.03 59.51 66.59

ILSVRC 12 27.1 56.3* 57.1

Table 2: Comparison on how accuracy improves as more data is added when training.

while reducing computational requirements on individual data sources. We describe how to modify

this algorithm to work in semi-supervised modalities, greatly reducing number of labeled samples

required for training. We provide mathematical guarantees for correctness of our algorithm.

We devise a new protocol for easy implementation of our distributed training algorithm. We

use popular computer vision datasets such as CIFAR-10 and ILSVRC12 for performance validation

and show that our algorithm produces identical results to standard training procedures. We also

show how this algorithm can be beneficial in low data scenarios by combining data from several

resources. Such a method can be beneficial in training using proprietary data sources when data

sharing is not possible. It can also be of value in areas such as biomedical imaging, when training

deep neural network without revealing personal details of patients and minimizing the computation

resources required on devices.

In this paper we describe a method to train a single network topology over several data repos-

itories and a computational resource. A reasonable extension to this approach can be to train

an ensemble of classifiers by transmitting forward and backward tensors for all classifiers every

iteration. A deep neural network classifier ensemble can comprise several individual deep neural

network topologies which perform classification. The network topologies are trained individually by

computing forward and backward functions for each neural network, and during the testing phase

the results are combined using majority vote to produce classification. We can train such an en-

semble by generating separate forward and backward propagation tensors for each neural network

and transmitting them during each training iteration. This is equivalent to training individual net-

works one by one, but it saves time by combining iterations of various networks together. Ensemble

classifiers have also been shown to be more secure against network copy attacks and have also been
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shown to perform better in real world applications [40].

In future work, a learned neural network could be shared using student-teacher methods for

transferring information learned by neural network [41]. After the training phases are over, Alice and

Bob can use any publicly available dataset to train secondary (student) neural network using outputs

from the primary (teacher) neural network. Alice can propagate the same training sample from the

public dataset through the layers from the previously trained network and Bob can propagate them

through its network. Bob can use the output of its layers to train the student network by doing

forward-backward for the same data sample. This way, knowledge from the distributed trained

network can be transferred to another network which can be shared for public use. Such algorithms

can help in introducing deep learning in several areas such as health, products and finance where

user data is an expensive commodity and needs to remain anonymized.

Tor like layer-by-layer computation could allow for training this network over multiple nodes with

each node carrying only a few layers. Such a method could help protect not just the data but the

identity of the person sharing the data and performing classification. In Tor like setup, additional

entities Eve0...M are added which do not have access to data or complete network topology. Each

Eve is provided with a few network layers F eve
k ← Lq, Lq+1...Lr. During forward propagation Alice

computes Fa and passes it to Eve0, which then passes it to Eve1 and so on until it reaches EveM .

EveM is analogous to the exit node in Tor network and it passes the tensor to Bob. Similarly, when

backpropagating, Bob computes loss and sends it to EveM , which sends it to EveM−1 and so on

until it reaches Eve0 and then Alice. The onion like organization of network layers can be used to

keep the identity of Alice confidential.

We can also apply our algorithm on not just classification tasks but also on regression and

segmentation tasks. We can also use this over LSTMs and Recurrent Neural Networks. Such

neural networks can be easily tackled by using a different loss function (euclidean) on Bob’s side

when generating gradients.
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