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Abstract

A substantial challenge in signal processing is to devise estimation algorithms for 2-D ran-
dom fields that are both computationally efficient and statistically optimal. Typical ap-
proaches, such as those related to Markov random fields, are iterative, slow and do not
yield error covariance information. In contrast, we apply, refine and extend a recently de-
veloped statistical framework that overcomes these difficulties. Central to this framework is
a class of multiscale stochastic processes, indexed by the nodes of a pyramidal tree structure,
that evolve according to scale-recursive dynamics which are much like the time-recursive
dynamics of Gauss-Markov time-series models.

We develop a theory for multiscale stochastic realization that represents a generalization
of Akaike’s canonical correlations approach to stochastic realization of time series. Our
extension of the time-series ideas is non-trivial, because the multiscale process state must
act as an interface among three or more subsets of the process, not just two. We demonstrate
the utility of our realization theory by building multiscale models for random fields, and
subsequently applying these models to solve some challenging 2-D estimation problems that
are impractical to address with FFT-based estimation methods.

We treat an important problem in automatic target recognition with synthetic aperture
radar (SAR). From actual SAR imagery, we identify a pair of multiscale models that capture
the characteristically distinct scale-to-scale variations in speckle pattern for imagery of
man-made objects and of natural clutter, respectively. We incorporate these models into
a new algorithm for discriminating between imagery of man-made objects and of natural
clutter. Application of this algorithm to an extensive dataset of actual SAR imagery leads
to substantial and statistically significant improvement in receiver operating characteristics,
compared to a standard, established discriminator developed at MIT Lincoln Laboratory.

Finally, we extend the multiscale framework to allow for models in which distinct nodes
on a given level may correspond to overlapping portions of the image domain. We then
build so-called overlapping-tree models, using our established realization techniques. These
models lead to an elegant way to overcome the visually distracting blocky artifacts that are
typical of estimates produced by standard multiscale models. Although the simpler post-
processing technique of low-pass filtering can also eliminate this blockiness, such filtering
can destroy error covariance information provided by the estimation algorithm, and can
limit the resolution of fine-scale details. In contrast, our overlapping-tree approach allows
for efficient calculation of both error covariance information and nearly optimal, smooth
estimates, with fine-scale detail preserved.
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Notational Conventions

Unless stated explicitly otherwise, all vectors are assumed to be column vectors. We refer
to a matrix consisting entirely of zeros by 0. For any set A, we denote the cardinality of .4
by |.Al.

Letting = and y be random vectors (which, in accordance to our just established con-

ventions, are column vectors), we denote the expect value of z by F(z), and the covariance
of z by Py,

P, = E|(z- E())(s- E(m))T] :

In a slight departure from, traditional usage, we always use the notation E(z|y) to mean
the linear least-squares estimate of z given y; in the special case that = and y are jointly
Gaussian, this convention coincides with the more traditional meaning of E(z|y) as the
expected value of z conditioned on y. We use the notation z L y to mean that z and y are
uncorrelated,

v Ly <= E(z - E@) @y - Bw)"] = o

Finally, we will find utility in having special notation to describe algorithm complexity.
To develop this notation, we here suppose that f(-) and g(-) are functions from the positive
integers to the positive reals. Then, we write f(n) = O(g(n)) if there exists a constant ¢ > 0
such that, for large enough n, f(n) < cg(n). This convention makes precise, for instance,
the colloqulal statement that for a matrix of dimensions n x n, matrzz INVETSIOn Tequires
O(n?) floating point operations.

Other, more specialized notational conventions will be introduced as they are needed in
the body of the text.
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Chapter 1

Introduction

A longstanding and substantial challenge in signal processing has been to devise algorithms
for statistical inference that are not only optimal mathematically, but also efficient compu-
tationally. There are a variety of important tasks that call for such algorithms: (i) Bayesian
least-squares estimation, (ii) error covariance calculation, (iiil) spectral estimation, (iv) like-
lihood calculation, (v) system identification and (vi) Monte-Carlo simulation via sample
path generation. Indeed, the development of algorithms for all these tasks is fundamental
to both statistical processing of 1-D signals and also of 2-D signals and images. However,
in spite of this common importance to both 1-D and 2-D, there is a rather sharp disparity
in the availability of optimal, efficient algorithms for the two cases.

While in the 1-D context, there exists an extensive, well-understood body of literature,
documenting optimal, efficient algorithms for carrying out all of the aforementioned tasks, in
the 2-D context, the literature is not as coherent. Almost without exception, 2-D statistical
inference problems that are encountered in practice are substantially more challenging than
their 1-D counterparts. Even the seemingly most innocuous 2-D problem, such as estimating
a signal in noise, can require a tremendous computational burden for optimal solution, even
though the 1-D counterpart may be manageable, or even trivial, to solve optimally. This
greater challenge of 2-D is not due merely to the fact that 2-D problems involve more
variables or unknowns. The deeper reason, which actually poses a more surmountable,
concrete challenge, is that the signal processing community has had more success in devising
good mathematical models for 1-D signals than for 2-D ones. In particular, Gauss-Markov
time-series models and the associated Kalman filter have played central roles in the success
of 1-D signal processing. On the other hand, attempts to extend this success to 2-D have
traditionally been unsatisfactory. For instance, Markov random fields (MRFs) are suitable
for modeling a rich class of 2-D random phenomena, but do not generally lead to fast
estimation algorithms. This general absence of good 2-D statistical models has lead to
shortcomings in the design of good 2-D algorithms; frequently, there is a perceived need to
compromise statistical consistency and optimality in order to keep computational costs to
a reasonable level.

To be sure, the demand for good 2-D algorithms is not purely aesthetic, nor is it merely
an antidote for theorists’ desire for ever more general results. Rather, the demand is practi-
- cal, and in fact one does not have to search far to find 2-D problems, having a current, real
context, that could benefit substantially from such algorithms. For instance, there are many
remote sensing studies of the earth’s terrain and environment in which the key challenge is to
assimilate efficiently large amounts of measured data. The need for data assimilation tools

17



18 Chapter 1. Introduction

is actually quite acute with imagery produced, for example, by synthetic aperture radar
(SAR) systems [16, 51], especially as high-resolution SARs become increasingly common.
Operating in a so-called stripmap mode, airborn and spaceborn SAR sensors can gener-
ate (in a matter of minutes) imagery representing several square kilometers, at resolutions
sometimes finer than one meter squared. For applications including image compression,
terrain identification, image segmentation, and discrimination between targets and clutter,
the great amount of data calls for fundamental, systematic image analysis techniques.

In light of the genuine need for good 2-D statistical models and algorithms, it is both
satisfying and exciting to note that over the past five years, the gap between 1-D and 2-D
has narrowed. This progress is due in part to a new, powerful framework for statistical signal
processing that was first introduced in [13-15], and has been more recently applied, refined,
and extended by the work in this thesis and also in [22,23, 34, 35,43-46]. This framework
represents a genuinely successful extension of the Gauss-Markov/Kalman-filtering approach
from 1-D to 2-D, and has demonstrated utility in confronting data assimilation problems of
dauntingly large dimension; two such successes include calculation of optical flow [46] and
smoothing of ocean altimetric data [22]. In the latter work, for example, the authors were
able to estimate both ocean surface height and associated error statistics for a 512 x 512
grid, all in one minute on a current-generation single-processor workstation.!

1.1 A Representative Problem: Linear Least-squares Esti-
mation

To supply a heightened perspective regarding the role played by this new statistical frame-
work, let us consider a representative problem to which the framework is applicable. The
particular problem we consider is linear least-squares estimation with error covariance cal-
culation. Patterning our discussion after [22], we begin by examining the success of the
Gauss-Markov estimation framework for 1-D problems. Next, we examine MRFs, both
causal and non-causal, viewing them as an attempt to extend this success to 2-D. Finally,
having established an appropriate context, we introduce the new framework in which we
will be working throughout the rest of the thesis; we describe the structure of the class of
stochastic models around which the framework is built, and we comment on some of the
statistical inference algorithms these models admit.

1.1.1 Problem Formulation

Let us suppose we have a grid of points pi1,p2,...,pn~, indexing a discretization of either
space or time. Associated with each point p; is a random signal value z(p;), having dimen-
sion d, and a noise-corrupted measurement y(p;),

y(p:) = Clpdap)+o(p), i=12,... N

In this relation, C(p;) is a matrix of appropriate dimension,? while v(p;) represents the
measurement noise or error, assumed to be zero-mean, white and uncorrelated with the

!The specific workstation model used was a Sparc-10. _ ‘
*We can accommodate the case of no mieasurefent at point p; by setting C(p;) equal to a row vector
consisting of all zeros.
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signal:
E(v(p)) = 0, Vi (1.1)
R(p;) ifi=j
N L (. —
B (v(pz)v (pj)) B { 0  otherwise. . (1.2)
E (20 (p;)) = 0, V5, (1.3)
with R(p;) assumed to be positive definite, for i = 1,2,..., N. For convenience, we consol-

idate the quantities of interest in this problem into appropriate block-partitioned vectors
and matrices. In this more compact notation, z denotes the vector of signal values z(p;)
ordered sequentially

z = (2T(p) 2T(ps) - aT(pw) )T,

while y and v are defined analogously in terms of the observation and noise terms y(p;)
and v(p;), respectively. The covariance of x is denoted by P,, which is also assumed to be
positive definite. Finally, to be consistent with (1.1)-(1.3), the relation between z and vy is
given as

y = Cz+v, E@w) =0, Ew?) =R E@’) =0, (1.4)
with

C = diag(C(p1),C(p2),---,C(pn)),
R diag (R(p1), R(p2), ..., R(pn))-

Our objective is to determine the linear least-squares estimate of = given y. Assuming
that z is zero-mean,? this estimate has the form #(y) = Ly where L is chosen to minimize
the mean-square error E [(3: — &) (z - i(y))] To allow for reasonable assessment of
the accuracy of this estimate, we also seek the estimate’s error covariance P;,

P = Bl@-20) (-7,

or at least the diagonal block-components of P;.

1.1.2 Stationarity and the FFT

If = represents a stationary process or field having periodic boundary conditions (i.e., a
1-D process defined on a circle or a 2-D field defined on a toroid), and additionally, the
measurements in y are dense and of uniform quality (implying that both C and R are
multiples of the identity matrix), then P, and P; both have the same eigenvectors, which
happen to be closely related to the FFT. As detailed in Chapter 2, this close relationship
implies that the computational efficiencies of the FFT can be brought to bear to calculate
both #(y) and P;.

As one might expect, however, there are many practical problems, such as the oceano-
graphic application, containing exacerbating factors that destroy the symmetry and unifor-

. 3Otherwise, we can first subtract out its mean M, and simply add it back after estimation of (z — mg).
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mity needed for FFT techniques: (i) a non-stationary sensed phenomenon, (i1) occasional
data dropouts, (iii) non-uniform measurement quality, (iv) an ocean that is not toroidal.
Thus, a stationarity assumption does not always make sense, and the FFT does not com-
pletely mitigate the computational challenges of this problem.

1.1.3 Implicit Statistical Description of z

If z represents a non-stationary process or field, then for problems of practical size, there is
little sense or value in attempting to specify explicitly the full covariance matrix P, unless
this matrix is extremely sparse. While such sparse structure will certainly be present in
phenomena exhibiting only local correlations, where a banded covariance matrix is appro-
priate, there are many other phenomena, such as fractal phenomena, that exhibit important
long-range correlations.

A standard, compact way to describe both stationary and non-stationary phenomena,
possibly having important correlations at many scales, is to use an implicit model for the
statistical structure of z. The implicit models we consider have the general form

Gz = w, (1.5)

where G is a (generally sparse) matrix or model, z is the signal and w is the driving noise.
If G is invertible, then by letting P,, be the covariance of w, (1.5) can be recast as

P! = GTPRJG. (1.6)

As we will see, if certain additional structure is imposed on G and Pj!, then we obtain
a special class of implicit models that has long underpinned the success of 1-D estimation
methods. While attempts to extend this success to 2-D have traditionally been unsatis-
factory, we will ultimately see that implicit models of the form (1.5) and (1.6) can also
be specialized to yield the class of models fundamental to the new estimation framework
introduced in [13-15] and explored in this thesis. With these models, we can indeed manage
large, non-stationary 2-D estimation problems, involving possibly sparse measurements of
non-uniform quality. »

1.1.4 The Normal Equations

To see the kind of structure needed in G and Pyl (see (1.5) or (1.6)) to simplify the
calculation of the least-squares solution, let us examine closed-form, analytical expressions
for both #(y) and P;. Actually, there are many equivalent ways to express these two
quantities; the most useful and insightful one for our purposes is given implicitly by the
following so-called normal equations: '

Pila(y) = CTR™Yy, (1.7)
Pt = P71+ CTRIC = GTP;IG+CTRIC (1.8)

If these equations are solved without any attempt to discern and exploit special structure
they may have, then a general-purpose algorithm such as Gaussian elimination will be

- required, leading to a computational cost of O((INd)3) arithmetic operations. For large-
scale data assimilation problems, such as the oceanographic-application cited earlier where

N = 2.5 x 105, this general approach becomes absolutely prohibitive.
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A closer inspection of (1.7) and (1.8) reveals that the critical factor determining the
possibility of more specialized, efficient approach is the structure of the inverse of the prior
covariance or equivalently the structure of GTPJ 1@G. Specifically, since C and R are block-
diagonal, it immediately follows that CT R~1C is block-diagonal, and hence, thanks to (1.8),
any off-diagonal sparse and regular structure that is present in P, ! will be preserved in
Pzl; in turn, this structure can be exploited in the solution of (1.7), to yield 2(y).

1.1.5 Gauss-Markov Time-series Models

Let us now consider how we can structure G and P, ! so that we simultaneously achieve
two effects: (i) the resulting model class is rich statistically, and (ii) the solution to (1.7),
using (1.8), is computationally inexpensive. If both G and P, are constrained to be block
diagonal, then we certainly achieve (ii), but we fail to achieve (i). However, by just slightly
relaxing this rigid, block-diagonal structure, we are led to Gauss-Markov time-series models,
which constitute the most popular and powerful class of implicit models for 1-D applications.
These models achieve both of our desired effects by allowing G to be lower bidiagonal, while
continuing to constrain P, to be block diagonal. In particular, the dynamics of these
processes are governed by a specialization of (1.5) in which the sequence of components of
x, which we now denote by z(1),z(2),..., obey a white-noise driven difference equation,
evolving in discrete time:

z(n+1) = A(n)z(n)+ w(n) (1.9)
y(n) = Cn)z(n)+v(n). (1.10)
Here, A(7) represents a one-step transition matrix, and w(:) is the noise driving term,

assumed to be zero-mean, white and uncorrelated with both the signal and the observation
noise. By defining the vector w as

w = (wT(l) wT(1) w'(2) - wl(N-1) )T7

it becomes clear that (1.9) is a special case of (1.5) in which G has the following form:

I 0 0 0 0

~AQ1) I 0 0 0

0 -A(2 I 0 0

¢ = 0 0 —A(3) 0 0
: : : . I 0

0 0 0 - —AN-1) I

It turns out that for any WS stationary process having a rational spectrum, there is a
corresponding time-series model of the form (1.9), and for many non-stationary processes,
there is also a model of the form (1.9). Thus, Gauss-Markov time-series models represent a
specialization of (1.5) that is still rich enough to capture the statistical behavior of a wide
variety of phenomena. In fact, these models have been successfully used for statistical mod-
eling in many diverse fields, including economics, guidance control, and speech processing.
Equally importantly, these models admit efficient algorithms for many signal processing
tasks, including the calculation of both #(y) and the diagonal blocks of P;. Indeed, for
any given Gauss-Markov model, the justly celebrated Kalman filter [5] and the associated
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Rauch-Tung-Striebel smoother [58] can be used to recursively and efficiently obtain Z(y)
and the diagonal block elements of P;. The plausibility of this fact can be seen by noting
from (1.6) that P, ! is tridiagonal, and therefore, in light of (1.8), this tridiagonal structure
is preserved in P;. Systems of linear equations involving tridiagonal matrices are solvable in
O(Nd®) operations, or equivalently O(d®) per-pixel operations, which is exactly the com-
plexity of the Kalman filter. Since the per-pixel complexity does not grow with IV, this
complexity is quite attractive computationally.

 There are other attractive features of both Gauss-Markov models and the concomitant
Kalman filter. For one, the recursion in (1.9) is easily implemented on a computer, thus
providing an efficient method for sample-path generation of time series. Also, though not
obvious from our analysis and comments, the Kalman filter can be used to whiten efficiently
a sequence of measurements y(1),y(2),..., and the resulting whitened sequence can in
turn be used for efficient likelihood calculation, assuming that the random variables are
Gaussian. Since likelihood calculations are instrumental in parameter identification and
system identification, the Kalman filter leads to efficient techniques for confronting these
other statistical inference problems as well.

1.1.6 Markov random fields

Given the power and success of the 1-D Gauss-Markov modeling and estimation framework,
it is natural to hope this success can be extended to 2-D. Ideally, such an extension should
yield a model class that is rich statistically and for which efficient estimation algorithms
can be devised. These dual requirements pose a tall order, and in fact most approaches
documented in the literature fail to satisfy one or the other.

One immediate difficulty is that most 2-D processes and images lead to a sequence z(p1),
z(p2),- .., z(py) having no natural causal structure, regardless of the spatial arrangement
of the points pi,p2,...,pn in the Cartesian plane; consequently, there is a seeming mis-
match between the dynamical relation in (1.9) and 2-D processes. Nevertheless, there is no
intrinsic mathematical difficulty with developing classes of 2-D random fields having causal
structure, as exemplified by the theories of Markov mesh random fields [1, 18], and their
generalization, nonsymmetric half-plane Markov chains [18,37,66]. In the latter, for in-
stance, a léxicographic ordering is imposed on the random field; if this field has dimensions,
say, INxN, then a state vector of the form

x(m,n) = (m(m,n) z(m—-1,n) - z(l,n) z(N,n-1)
z(l,n—-1) -+ z(Nyn—K) --- z(m—-K,n—-K) )T,

can be defined, for some K, such that x(m,n) is related to its lexicographic predecessor by
a difference equation of the form (1.9). Since the required state dimension is proportional
to the width of the image, unduly high dimensions are required. Combining this difficulty
with undesirable anisotropies that result from the causal ordering, we conclude that the
causal MRF formalism is not very satisfactory for solving practical least-squares problems.

The problem of causality can be eliminated by considering another class of MRF's that
still have the form (1.5), but now with a neighborhood structure that is spatially symmetric.
Unlike their causal counterparts, these MRFs are well-suited to model a rich class of natural
'phenomena, and can capture-the spatial continuity that is charaeteristic of many images. A
detailed discussion of the some of the properties of these MRFs is contained in Chapter 2.
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Figure 1-1: Tllustration of the first three levels of a quadtree, which is useful for indexing multiscale

representations of random fields. The state at each node represents an aggregate description of a subset of
the finest-scale random field; this correspondence between nodes and field subsets is denoted in the figure
by the quadrantal boundaries. The parent of node s is denoted by s¥.

For our purposes here, there are two important facts that emerge from that discussion, which
together imply that these MRF's do not generally admit efficient procedures for calculating
#(y) and Pz. For one, when the matrix G is placed in (1.5), the resulting system of linear
equations is structurally identical to the equations resulting from discretization of an elliptic
partial differential equation (PDE), with G being symmetric, positive definite and extremely
sparse; for this reason, the matrix G is sometimes referred to as an elliptic operator. Second
is the somewhat surprising fact that P, ! = G. Now, in light of (1.8), the matrix P Lis
also an elliptic operator, and hence, solving (1.7) for #(y) is computationally equivalent
to solving an elliptic PDE, while inverting Py ! is equivalent to an inverting an elliptic
operator. While these elliptic PDEs can often be solved by efficient iterative procedures,
such as successive-overrelaxation or multigrid approaches, the a significant difficulty is that
error-covariance calculation (i.e., the calculation of the diagonal blocks of P;) must be
carried out in addition to solving the elliptic PDE. This additional computational cost is at
least as great as, and typically much greater than, the cost of solving the PDE. Adding to
these computational difficulties is that fact that MRFs do not admit efficient algorithms for
either likelihood calculation or sample-path generation. We conclude from these comments
that MRFs do not provide a completely satisfactory framework for statistical inference.

1.1.7 A New Approach via Multiscale Modeling

The 2-D extensions described so far have suffered either from being too artificial (i.e.,
causal MRFs) or from admission of only computationally complex algorithms (i.e., non-
causal MRFs). Now, finally, we describe an extension that succeeds in overcoming these
- deficiencies, thereby bringing to 2-D the full set of advantages of the Gauss-Markov 1-
D framework. The key to this newfound success is its broadening of scope to consider
stochastic processes not just at a single resolution scale, but at a whole sequence of resolution
scales. More specifically, this new estimation framework is built around a class of stochastic
processes that evolve in scale, where the scale-recursive dynamics underlying the process
evolution represent a clear intellectual descendant of the more traditional time-recursive

dynamics underlying the evolution of Gauss-Markov processes. Effectively, this framework.

expresses and exploits the time-like nature of scale.
Figure 1-1 illustrates a quadtree structure, which is often used to index multiscale repre-
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sentations of random fields. Each level of this tree corresponds to a particular scale m, with
larger m corresponding to finer resolution. The state z(s) at any given node s represents
an appropriate, aggregate description of the subset of the finest-scale process that descends
from the given node. Letting s7 denote the parent of a given node s, the dynamics underly-
ing the process evolution are described by the following first-order vector-valued difference
equation: '

z(s) = A(s)z(s¥) + B(s)w(s).

In analogy with (1.9), A(s) and B(s) are matrices of appropriate size; the recursion is
initialized at the root node, s = 0, with a state variable z(0), and the term w(s) represents
white driving noise, which is both zero mean and uncorrelated with the initial condition
z(0). A much more detailed discussion of these processes is contained in Chapter 2.

‘Why multiresolution?

There are at least three distinct ways in which multiresolution concepts may enter a 2-D
estimation problem, thereby providing a natural fit between the given problem and our
estimation framework. First, the phenomenon under investigation may display important
features at multiple resolutions. For example, in the context of remote sensing, the work
in [47,55] suggests that natural terrain imaged by a sensor may be fruitfully interpreted as
a superposition of fine resolution features on a more coarsely varying background.

Second, whether or not the underlying phenomenon is deemed to have important mul-
tiresolution features, the data may be of varying resolution. For example, a well-known
difficulty of SAR sensing is that high resolution requires high frequency while foliage pen-
etration requires lower frequency. Thus there is tradeoff between resolution and foliage
penetration capabilities, which is perhaps best confronted by using a suite SAR sensors,
each operating at a distinct frequency. If this strategy is employed, then a need arises for
systematic techniques for fusing high-resolution, high frequency data with lower resolution,
low-frequency data. :

Third, whether or not the phenomena or data are deemed to have important multires-
olution features, there are still good reasons for the algorithm to be multiresolution. There
is something particularly evocative about proceeding by the divide-and-conquer route that
a multiresolution algorithm affords, even if no other aspect of the given problem has salient
multiresolution features. In fact, much of the work in this thesis, is directed toward problems
that fall into this last category, wherein all attention focuses on the finest-scale, while the
multiresolution structure of both the model and processing is viewed merely as a convenient
computational vehicle.

Advantages of multiresolution framework

One of the primary reasons the framework is useful is that it leads to extremely efficient,
statistically optimal algorithms for signal and image processing. These algorithms exploit
the special statistical structure of our models in much the same way that the Kalman
filter exploits the structure of Gauss-Markov time-series models. In fact, a particularly
successful example of a multiscale-based estimation algorithm is a direct generalization of
both the Kalman filter and the related Rauch-Tung-Striebel smoother [13]. This algorithm
‘incorporatées noisy measurements of a given-multiscale process to calculate both smoothed
estimates and the associated error covariances. Another algorithm that has been developed
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is one to compute likelihoods [44]. Both of these algorithms have many attractive features,
including high parallelizability, constant computational complexity per finest-scale data
point, and completely natural handling of data at possibly several resolution scales. In
light of our earlier discussion, these features are particularly noteworthy for 2-D imaging
problems, as they represent rather significant advantages over other formalisms for modeling
of random fields. With other formalisms, such as the MRF formalism, the computation
of optimal estimates or likelihoods are quite complicated, having a per-pixel complexity
that grows with image size; furthermore, the incorporation of multiresolution data is not
particularly natural, and in fact exacerbates the problem with algorithmic complexity.

Complementary to the efficient algorithms that the framework admits, is the richness of
the class of phenomena that it captures. For instance, experimental results in [14] demon-
strate that these models can be used to capture the statistical self-similarity exhibited
by stochastic processes having generalized power spectra of the form 1/f#. Furthermore,
in [45], the authors demonstrate that that all 1-D wide-sense Markov random processes and
2-D wide-sense Markov random fields (WSMRFs) can in principle be represented within
the framework.

1.2 Thesis Contributions

The success that the multiscale framework has already enjoyed provides the motivation for
the deeper investigations that are carried out in this thesis. As summarized in the following
paragraphs, we explore both theory and applications.

1.2.1 A Theory for Multiscale Stochastic Realization

Just as Kalman filtering requires the prior specification of a state-space model, so do our
multiscale estimation algorithms require such a prior specification. In this sense, system-
atic model-building tools provide a needed, important link between the fast estimation
algorithms we have at our disposal and a host of practical applications. We build this
needed link by developing a theory of multiscale stochastic realization. Given the second-
order statistics of a zero-mean random process or field, our methods provide a systematic
way to realize the given statistics, to any desired degree of fidelity, as the finest scale of a
multiscale process. '

A central component of our development of this modeling approach is an analysis of the
nature of the information interface provided by multiscale process state. Just as the state
in a Gauss-Markov representation of a time series acts an interface between the past and
the future of the process, so the state in a multiscale process must act as an interface, only
now that interface is among multiple subsets of the process, not just two. Nevertheless,
the similarity between the time-series stochastic realization problem and the multiscale
realization problem is great enough that some of the tools used to analyze the former can
be used to analyze the latter: motivated by Akaike’s use of canonical correlation analysis
to develop both exact and reduced-order models for time series [2], we too harness this tool
from multivariate statistics to develop our multiscale models, both full and reduced-order.

In the course of our analysis, we uncover an interesting and non-trivial difference be-
tween time-series stochastic processes and multiscale stochastic processes. With regard to
the former, a well-known property is that under fairly general conditions, a vector-valued
random process y(t) evolving in time (either discrete or continuous) can be represented by
minimal state-space realization in which the random driving term w(t) is a linear function
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“of y(7), —oo < T < oo [41]. This type of realization is referred to as an internal stochas-
tic realization, because everything internal to the state-space model (i.e., z(¢) and w(t))
is obtainable directly from the observed process y(¢). A standard example of an internal
realization is the so-called innovations representation, in which the driving noise is the
innovations process produced by either a forward-running or backwards-running Kalman
filter associated with any state-space realization of the process [2,41,56]. In contrast to the
time-series case, there sometimes exists in the multiscale context a so-called ezternal real-
ization (i.e., a realization that is not internal) having a lower dimension than any internal
realization. Here we are generalizing the internal concept to the multiscale context to mean
a realization having state vectors and driving noises that are all obtainable as functions of
the observed finest-scale process.

While most of our efforts focus on the development of tools to build internal realizations,
we also briefly consider external realizations. We develop a method for building these
external realizations, and we compare and contrast the resulting models to our internal
ones. Ultimately, we find that both have their strengths and areas of application, with
neither being universally preferable.

1.2.2 A Multiresolution Approach to Dlscrlmlnatlng Targets from Clut-
ter in SAR Imagery

In most detection and estimation problems, there is no ready availability of a complete
statistical description of the quantities relevant to the problem, and thus, in these cases,
the model-building techniques just described are not directly applicable. Instead, we must
build an appropriate multiscale model from the observed data directly. We consider an
important problem in automatic target recognition (ATR), for which we must apply so-
called techniques of multiscale model identification.

We consider ATR for the case of a system whose inputs are synthetic-aperture radar
(SAR) images. Within this problem domain, we both develop and extensively test a new
algorithm for discriminating man-made objects from natural clutter. The novel feature of
our approach is its exploitation of the characteristically distinct variations in speckle pattern,
for imagery of natural clutter and of man-made objects, as image resolution is varied from
coarse to fine. The fact that speckle has multiresolution characteristics is also noted and
exploited in [61]. However, in contrast to that work, where the different characteristics of
natural clutter and man-made objects are used to analyze individual image pixels, in this
paper we use our multiscale framework to model and exploit these characterlsncs over entire
blocks of imagery.

Within our multiscale framework, we build a pair of models: one for SAR imagery of
natural clutter and another for imagery of man-made objects. We then use these models to
define a multiresolution discriminant as the likelihood ratio for distinguishing between the
two image types, given a multiresolution sequence of images of a region of interest (ROI).
As we will see, by using the multiresolution modeling framework, the calculation of the
likelihoods needed for our discriminant is extremely simple.

We incorporate this likelihood ratio into an existing, established discriminator that was
developed at Lincoln Laboratory as part of a complete ATR system [40,52]. To classify a
given ROI, we merge the information provided by our likelihood ratio with the measured
values of a small number of size and brightness features. We have applied the resulting,
new discriminator to-an extensive data set of 0.3-meter resolution, HH polarization imagery
gathered with the Lincoln Laboratory millimeter-wave SAR. The detection results are ex-
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tremely good. In particular, the new. discriminator achieves a significant improvement in
receiver operating characteristics, compared to an optimized version of the standard dis-
criminator that is traditionally used in the Lincoln Laboratory ATR system. This result
conclusively demonstrates that multiresolution methods have an effective and important
role to play in SAR ATR algorithms.

1.2.3 Overcoming the Problem of Blockiness

In spite of the success of the multiscale framework with regard to computational efficiency,
mean-square estimation error, and ability to supply error covariance information, the frame-
work, as developed up to this point in time, has a characteristic that would appear to limit
its utility in certain applications. Specifically, estimates based on the types of multiscale
models previously proposed may exhibit a visually distracting blockiness [46].

We eliminate this blockiness by discarding the standard assumption that distinct nodes
on a given level of the multiscale process must correspond to disjoint portions of the image
domain; instead, we allow a correspondence to overlapping portions of the image domain,
thereby eliminating the hard boundaries between pixels. We use these so-called overlapping-
tree models for both modeling and estimation. In particular, we develop an efficient multi-
scale algorithm for generating sample paths of a random field whose second-order statistics
match a prespecified covariance structure, to any desired degree of fidelity. Furthermore, we
demonstrate that under easily satisfied conditions, we can “lift” a random field estimation
problem to one defined on an overlapped tree, resulting in an estimation algorithm that is
computationally efficient, directly produces estimation error covariances, and eliminates any
blockiness in the reconstructed imagery without any sacrifice in the resolution of fine-scale
detail.

1.3 Thesis Orgahization

Chapter 2 lays the foundation for our later developments by reviewing a number of estab-
lished results in multiscale theory, Markov random field theory and canonical correlation
analysis.

Chapters 3, 4 and 5 represent the core of our development. Chapter 3 describes our work
in multiscale stochastic realization. In turn Chapter 4 describes our use of the multiscale
framework to aid in discriminating targets from clutter in SAR imagery. Finally, Chapter 5
describes our development of overlapping-tree models for eliminating blocky artifacts.

Chapter 6 provides another look at our contributions, with a hindsight perspective, and
contains some suggestions for future research directions. Finally, Appendices A-D augment
the content of Chapters 2-5 with more detailed material that has been offset to avoid
disruption of the main flow of ideas.
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Chapter 2

Preliminaries

Before we begin in earnest our detailed development, we introduce here certain preliminary
concepts and background material concerning stochastic processes and statistics. A signifi-
cant portion of this material is related to the multiscale framework per se, but also included
are elements of Markov random field theory and canonical correlation theory. Once this
background material has been reviewed, we will be much better equipped to understand
and explore the new developments of the subsequent chapters.

In outline, this review proceeds in the following way. We begin with a more formal
introduction to the multiscale framework, including a compilation of useful notation, a
description of the dynamics of these processes, and some insight into the information content
of process state. We highlight the Markov property of multiscale stochastic processes, and
describe the efficient algorithms to which this property leads.

Next we review the definition and properties of wide sense (WS) reciprocal processes
and Markov random fields (MRFs). We focus primarily on wide-sense MRFs (WSMRFs)
defined on discrete toroidal lattices, for which the computational efficiency of the FFT can
be brought to bear. Then, borrowing from multivariate statistics, we review the needed
elements of canonical correlation theory, including some computational issues.’

Finally, we return to a consideration of multiscale processes. Specifically, we exemplify
the richness of the multiscale model class by demonstrating that all WS Markov random
processes and fields, indexed on discrete lattices, have multiscale representations.

As a final remark, the material here has been compiled from various sources, and with
only a few exceptions, none of the results are new. The chapter’s intended purpose is to
assemble together in a single place the background material needed to make the overall
thesis document self-contained.

2.1 Introduction to the Multiscale Framework

2.1.1 State-Space Models Indexed on Trees

The models of interest to us, and originally introduced in [13, 46], describe multiscale
stochastic processes indexed by nodes on a tree. A qth-order tree is a pyramidal structure
of nodes connected such that each node has g offspring nodes. An example of a 2nd-order
tree or dyadic tree is depicted in Figure 2-1. Each horizontal level can be interpreted as a
distinct scale, with the scales progressing from coarse to fine as the tree is traversed from
top to bottom. We index these scales as 0,1, ..., with the top level being scale 0, the next
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Figure 2-1: The first four levels of a dyadic tree are shown. The parent of node s is denoted by s¥
and the two offspring are denoted by sa1 and saz. The random vectors £, and &;c contain, respectively, the
finest-scale state information that does and does not descend from the node s.

level being scale 1, and so forth.

We denote nodes on the tree with an abstract index s, and we associate with each node
a vector-valued state z(s). In general, the ¢™ state vectors at the m-th level of the tree
can be interpreted as “information” about the m-th scale of the process. To facilitate the
description of traversal operations on the tree, we introduce shift operators, which play
roles analogous to the forward and backward shift operators in discrete-time systems. In
particular, we define an upward (fine-to-coarse) shift operator 4 such that s7¥ is the parent
of node s. We also define a corresponding set of downward (coarse-to-fine) shift operators
@i, © =1,2,..., ¢ such that the ¢ offspring of node s are given by say, say..., saq. We let m(s)
denote the level of node s, so that, for example, m(s¥) = m(s) — 1 and m(sa;) = m(s) + 1.
Finally, we introduce the A operator, defined such that s A o is the ancestor of both s and
o that is closest to the finest scale. Figure 2-1 depicts an example of the relative locations
of 5,57, and saj, sas in a dyadic tree; also depicted are the relative locations of o7, o9 and
g1 N\oyp.

The dynamics that implicitly provide a statistical characterization of z(s) are given by

z(s) = A(s)z(s¥) + B(s)w(s). (2.1)

In this equation, A(s) and B(s) are matrices of appropriate size. The recursion is initialized
at the root node, s = 0, with a state variable z(0), which is assumed throughout this thesis
to be zero mean. The term w(s) represents white driving noise, which is both zero mean and
uncorrelated with the initial condition z(0). If we interpret each level as a representation
of one scale of the process, then we see that (2.1) describes the evolution of a process from
coarse to fine scales. The term A(s)z(s7) represents interpolation or prediction down to the
next level and B(s)w(s) represents new information or detail added as the process evolves
from one scale to the next.

We emphasize that our notion of z(s) representing scale “information” is deliberately
abstract. The specific details of what x(s) represents are dependent on a multitude of
‘considerations about the particular application at hand. Dominant among these consider-
ations is the statistical structure of the particular underlying stochastic phenomenon, but
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also important is the tradeoff between model simplicity and model accuracy. When all of
these considerations have been appropriately weighed, there are many possible outcomes
for what x(s) should represent. For instance, values of the process at level m may corre-
spond to averages of the offspring values at level m + 1; in this case, if ¢ = 2, then the
values z(s) can be interpreted as scaling coefficients in a Haar wavelet representation of
the finest scale process [14]. Alternatively, the values at different levels may correspond to
decimated versions of the finest scale process [45]. These are only two of many possibilities;
our stochastic realization theory in Chapter 3 and our SAR modeling work in Chapter 4
will provide others.

2.1.2 Characterization of First-order and Second-order Statistics

In a straightforward manner, we can determine the first-order and second-order statistics
of the process z(s). With regard to the first-order statistics, since both z(0) and w(s) are
zero mean, it follows trivially from (2.1) that z(s) is zero mean. Turning to second-order
statistics, we denote the covariance of x(s) by Py(,) and the cross-covariance between z(s)
and 33(0') by Pz(s):z:(a)v

Pyy = FE [:c(s):cT(s)] ,
Pz(s)z(a) = E [:E(S)J,‘T(O')] .
The covariance Py (,) evolves according to a Lyapunov equation on the tree:
Pysy = A(5)Pyen)AT(s) + B(s)B7(s). (2.2)

To relate the cross-covariance to the covariance, we introduce the state-transition matrix
®(s,0), defined via the following recursive relationship:

B I if s=0¢
o) = {A(s)é(sv,a) if m(s) > m(o).

Finally, we have that

P:r(s)a:(a) = (D(Sa s A U)Pm(s/\a)éT(ga s A J)'

2.1.3 Relation to Gauss-Markov Time Series Models

We can obtain further insight into the structure of the multiscale model class described
by (2.1) by relating it to a more traditional class of stochastic processes, namely Gauss-
Markov time series models. As discussed in Chapter 1, the dynamics of these time series
- are described by the state-space equation

z2(n+1) = A(n)z(n) + w(n)
y(n) = C(n)z(n),

where z(n) denotes the state of the process at time n, A(n) is the one-step transition matrix,
C(n) is the observation matrix, and w(n) is zero-mean, white noise driving term.

To bring out clearly the connection between Gauss-Markov time series models and our
multiscale models, we view the set of integers as a first order tree, in which n is connected
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to n — 1. In this sense, the multiscale model class is a clear intellectual descendant of the
Gauss-Markov model class, with the modifications that the dynamics are indexed by scale
rather time, and they progress on higher-order trees.

2.1.4 Markov Property of Multiscale Processes

Multiscale processes possess an important Markov property, stemming directly from the
whiteness of the driving term w(s) in the recursion in (2.1). This property is not only essen-
tial to the extremely efficient, highly parallelizable algorithms that the multiscale framework
admits, but will also be fundamental to our approach to stochastic realization (Chapter 3)
and to our analysis motivating the need for overlapping trees (Chapter 5).

The most obvious form of Markovianity possessed by (2.1) is the Markovianity in scale,
as scale progresses from coarse to fine. This property is readily discernible, and is actually
subsumed by a more general form of Markovianity. To see this more general Markov prop-
erty, we first note that any given node on a qth order tree can be viewed as a boundary
between g+1 subsets of nodes, where ¢ of these subsets correspond to paths leading towards
offspring and one corresponds to a path leading towards the parent.! With this boundary
notion in mind, the Markov property can be stated as follows: conditioned on the value of
the state at any node, the values of the states in the corresponding ¢ + 1 subsets of nodes
extendlng away from s are uncorrelated.

In much of our work, attention will be focused on the finest scale of multiscale processes.
To relate the Markov property to this finest scale, we introduce some special notation. We
associate with each tree node s a set Fy, where F, contains all of the finest-scale nodes that
descend from s:

Fs = {o; ois a descendant of s, and is at the finest scale},

We also associate with each node s the random vectors £; and £,c. These vectors contain,
respectively, the finest-scale state information that does and does not descend from s. More
specifically, £; contains the |F;| elements of the set {z(c); o € F;}, stacked into a vector,
while ;e contains the (|Fo| — |Fs|) elements of the set {z(c); o € Fy} that are not in the
set {z(0); o € F,}. These conventions are illustrated in F1gure 2-1; as a special case, we
note that &y comprises the entire finest-scale process.

For any given multiscale process, there is a very precise relationship between z(s) and
. To capture this relationship, we introduce the matrix Hy)s and the random vector fg|s.
The matrix Hy|, is implicitly defined by the relation

E(&lz(s)) = Hgpsz(s).

+ In turn, the random vector fd s is defined to be the residual in the least-squares estimate of
€ with z(s):

- E(&l=(s))
= & — Ha.|5$(8)-

a2}
S
™

Il

The Markov property, as it relates explicitly to the finest scale, can now be stated as

"The root node is an exception, having only q offspring-and-no parent. Also, the finest-scale nodes are
exceptions, each having a single parent, but no offspring.
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follows:

gsa.;|s 1 E(sa,-)°|s, 1=1,2,...q. (23)

The uncorrelatedness stipulated in (2.3) is extremely important, and as we will see in
Chapter 3, will be the guiding relation in our procedure for building multiscale models.
Since’

Elsa; | 2(s)] = Hsqsz(s) and El[&e | z(s)] = sesZ(8),

we can express (2.3) in the following equivalent way:

630{1 Hsoq]s é;sa.;ls
‘ssaz Hsazls gsazls
o = : =1 z(s) + | ¢ , (2.4)
&saq Hsaqls ésaq|s
€se Hs‘|s gsc|s
with
Zv(s), Esaﬂs, fsa2|s, e ,fsaqls, and £, uncorrelated.

This form is useful for discerning the relationship between the dimension of z(s) and the
correlation among the vectors &say, Esags- - -5 s, @and &se. In particular, (2.4), together
with the uncorrelatedness of the terms o, and s implies that for ¢ # 7,

E (oaibla;) = HucfsPaoHoy and B (£0L) = HogoPooHY,  (25)

By elementary linear algebra [60], the rank of this cross-covariance is upper-bounded by
the rank of P,), which in turn is upper-bounded by the dimension of z(s). We have thus
proved the following Proposition.

Proposition 1 Corresponding to any finest-scale correlation structure, there is a lower-
bound on the dimension required for each state z(s) in an ezact realization:

dimension(z(s)) > rg?jx {mnk [E (émifzajﬂ } ,
and

dimension(z(s)) > max {mnk [E (gsaigﬂ)] } .

‘This proposition provides some insight into the multiscale stochastic realization problem.
To see this fact, let us consider the problem of building a multiscale process indexed on a
dyadic tree, such that the finest-scale process has exactly the following covariance:

joon — P P
EK 50&2)(55“1 oo )] B (Pf; Pl;)_
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The structure of our multiscale stochastic processes is such that the root node is the only
location in the tree that we can inject information common to both £yo, and &pa,. Thus, we
would intuitively expect a close relationship between the dimension of the root node and the
correlation between £po, and £pq,. In fact, as shown by Proposition 1, an exact realization
of the desired covariance requires a root node state of dimension at least as large as the
rank of Pj;. This dimension constraint is a rather stringent, especially in the (rather likely)
case that Pjo will have full rank. There is thus a clear need for reduced-order, approximate
realizations, as we will discuss at length in Chapter 3.

2.1.5 ~Signal Processing in the Multiscale Framework

One of the primary reasons the multiscale framework is useful is that it admits extremely
efficient, highly parallelizable algorithms that allow one to incorporate noisy measurements
y(s) of a given multiscale process z(s) to calculate (i) the smoothed estimate of z(s) [13-15]
and (i) the likelihood of y(s) [43,44]. For the purposes of these algorithms, the noisy
measurements y(s) are modeled as

y(s) = C(s)z(s) + v(s).

In this equation, C(s) is a matrix specifying the nature of the process observations as a
function of both spatial location and scale. The term v(s) represents additive white noise
that corrupts the observations. In this manner, we can accommodate observations that are
arbitrarily distributed in space and scale.

The particular algorithm that will be of interest to us is the one that carries out
multiscale-based estimation. This algorithm allows us to compute the linear least-squares
estimate? 2(s),

#(s) = Efz(s) | y(o),0 € M|,

based on noisy observations {y(c); o € M}, where M is the arbitrary set of nodes for which
we have observations. The algorithm also computes the associated error covariance Py,

Pys = E[i(s):fT(s)],
Z(s) = z(s) — Z(s).

As discussed in detail in [13,46], this algorithm takes explicit advantage of the Markovian
structure of z(s) on the tree. Specifically, the algorithm incorporates the measurements into
the estimates via two recursive sweeps, with each sweep following the structure of the tree.
The first sweep proceeds from fine to coarse scales, calculating at each node s the best
estimate (and associated error covariance) of z(s) given data in the subtree below node s.
In turn, the second sweep proceeds from coarse to fine scales, calculating at each node s
the best estimate #(s) (and associated error covariance Pjy)) of z(s) given all of the data.

2If all of the random variables -are-jointly Gaussian, then Z(s) is the conditional mean of z(s) given
{y(o); o € M}.
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2.1.6 Computational Complexity of Multiscale Processing

Just as with the more traditional Gauss-Markov time-series models, there is a close relation
between the complexity of our multiscale models and the speed of the algorithms associated
with these models. To obtain insight into these relationships, we now develop explicit
expressions for the computational complexity of both our algorithm for multiscale-based
estimation and our algorithm for simulating the recursion in (2.1). These expressions will
highlight one of the great strengths of the multiscale framework, and will also point to some
of the challenges we must meet.

There are three multiscale model parameters of fundamental interest in our discussion:
(i) the number K of pixels in the image domain, (ii) the number N of finest-scale nodes
in the multiscale model, and (iii) the maximal dimension A of any state vector z(s) in the
multiscale model. The first two of these parameters are closely related; in fact, in previous
applications, IV has been identical to K. On the other hand, in anticipation of developments
in Chapter 5 of this thesis, where we develop estimation with overlapping trees, we also allow
for values of V that are greater than K; we relate the two by K = 7N, where 0 <r <1 s
a measure of the degree of overlap, with smaller r corresponding both to more overlap.

The two-sweep structure of our estimation algorithm implies that each node of the tree
is visited exactly twice, where the computations at each node involve a number of floating
point operations proportional to the cube of the state vector at the given node. Thus, since
the total number of nodes satisfies the bounds

N < total number of nodes < q_lN
we conclude that application of the estimation algorithm requires a total of O(A3N) floating
point operations. Similarly, the simulation of the coarse-to-fine recursion in (2.1) requires
a total of O(A2N) floating point operations.?

The foregoing complexity figures imply that a serial implementation requires a total
computational time per image pixel of O(\3/r) for estimation and (O(\?/r)) for simulation.
However, we are not constrained to use a serial implementation: any sweep over the tree
can be carried out with all calculations at each tree level being performed in parallel. If

maximal advantage is taken of this parallelism, then the computational time per image pixel
becomes

M log(K/T)
o ()

for estimation and

0 M log(K/r)
—
for simulation, both of which actually decrease as K increases. The point here is that we
can achieve dramatic computational benefit as long as the maximal dimension n of the state
model and the amount of overlap (as measured by 1/7) are not too large. We will see in
subtequent chapters that our procedures ailow us +o meat these criteria.

3The fact, that estimation is O(A?) while simulation is only O(A?) arises beca.use the former involves
matrix products, while the la.tter involves only matrix-vector products.
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2.2 Wide-Sense Markov Random Fields

Markov random fields (MRFs), which were discussed at a high level in Chapter 1, have
been used to guide decisionmaking in a wide variety of statistical signal processing contexts,
including image restoration, image segmentation and anomaly detection. Part of the appeal
of these models is that they are well suited for capturing the spatial continuity that is
characteristic of many images; they allow one to directly control the statistical relationship
between a pixel value and the values of a relatively small number of neighboring pixels. We
too will have occasion to use MRFs, and for this purpose we here summarize some of their

properties. This material has been assembled from a variety of sources, including [11,18]
and [65].

2.2.1 Definition

We are particularly interested in wide-sense reciprocal processes and Markov random fields,
defined on discrete lattices in 1-D and 2-D, respectively. A 1-D stochastic process z(7).
¢ € Z (where Z is the set of integers) is said to be a wide-sense reciprocal process if and only
if the linear least-squares estimate of z(1), given values of the process at all other points,
depends only on the values in some neighborhood of points around i. More precisely, z; is
a WS reciprocal process if and only if

E@@)2(i-7),5#0) = E(2()|2(i-j), je D), (2.6)

where D denotes the set of neighbor offsets, such that i — j is a neighbor of ¢ if and only
if j € D. We analogously define a 2-D stochastic process z(1,7), (1,7) € Z x Z to be a
wide-sense Markov random field if and only if

B(2(i,g) | 2(i ~ k.5 = D), (k) £ (0,0) = B(s6,) | 2(i - kj=1), (k1) € D)2.7)

where once again D denotes the set of neighbor offsets.

From these definitions, we see that an essential component of the specification of a
particular reciprocal process or MRF is the specification of its neighborhood system. For
1-D applications, the neighborhood has the following simple structure:

D = {~R~(R-1),...,-1,1,...,.R—1,R},

where we refer to R as the order of the neighborhood. For 2-D applications, there is
a standard hierarchical sequence of neighborhoods D (12]; this sequence is illustrated in
Figure 2-2 for neighborhoods up to order seven.

2.2.2  Autoregressive Representation

By combining (2.6) and (2.7) with the orthogonality principle of linear least-squares estima-
tion, it fullows that Loth WS reciprocal processes and MRFs must satisfy an autoregressive
difference equation. Focusing on the 2-D case, this difference equation has the form

2(i,5) = > r(kDz(e ~k,j—1) + w(i,5), (2.8)
(k,lYeD
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7 6 7
5 4 3 4 5
4 2 1 2 4 7
301 t 1 3
7 4 2 1 2 4 7
5 4 3 4 5
7 6 7

Figure 2-2:  The neighborhoods of lattice site ¢ for orders one through seven. For example, the first-order
neighborhood consists of just the two vertical and two horizontal nearest neighbors.

where the driving noise w(s, ) is correlated with the signal z(i — k,j — [) in the following
way:

fi (k1) =(0,0)

.o . . 0, s
B (w(i,j)zli kg~ 1) = { i (D=0 (29)

This autoregressive relation can be applied to a finite lattice (of dimension, say, N x N)
by treating the given finite lattice as toroidal, so that z(i,j) = z(i mod N,j mod N) and
similarly w(7,j) = w(z mod N, j mod N). So, for example, the first-order neighbors of the
lattice point (0,0) are the four lattice points (0,1), (1,0), (0, N — 1), and (N —1,0).

To be consistent with (2.8) and (2.9), the driving noise must be spatially colored, having
a correlation structure that is closely related to the autoregressive weights in (2.8):

o}, (k,1) = (0,0)
E(w(i,)wi —k,j-1) = —o?r(k,1) (k1) €D (2.10)
0 otherwise.

We assume throughout the rest of our development that o?; has a constant value, indepen-
dent of position (z, 7). Thus, to be consistent with (2.10), the autoregressive weights r(k,[)
must be symmetric, in the sense that r(k,[) = r(—k, —1). .
Interestingly, our original definition (2.7) is not only sufficient for (2.8) and (2.9) to
hold, it is also necessary. In other words, we can take (2.8) and (2.9) as the definition
of a WSMRF, where this alternative definition is equivalent with (2.7). We have already
considered the sufficiency of (2.8) and (2.9); necessity is easily established as follows:

E(Z(’L,]) [ 2(2 - ka] - l)v (k’l) 71'- (O') O))
E(Z(Z,]) I Z(Z - k:] - l),’LU(Z - k,] - l),(k,l) 7é (010))
= E(Z(Z,]) I 2(1’ - ki] - l),"LU(Z - mvj - 77,), (kal) € D:
(m,n) # (0,0))
In the first and third equalities, we have used (2.9), while in the second equality, we have
used (2.8).
~ We can obtain additional insight by recasting (2.8) and (2.10) ‘in matrix-vector form.
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We let z and w denote, respectively, the random field and driving noise stacked into lexico-
graphically ordered vectors:

e

= (20,00 2(1,0) . HAN-10) z01) ... :(N-1L,N-1 )",
w = (w(0,0) w(1,0) ... w(N-1,0) w(0,1) ... w(N—-1,N-1) )T(2.11)

We denote the covariance of z by P, and that of w by P,,. In keeping with (2.8), the vectors
z and w are linearly related,

Gz = w, (2.12)

where the N? x N? matrix G is symmetric, positive definite and block circulant, with
circulant blocks. In particular,

G = circulant(Gy, Gy,...,Gy—-1)

Go G1 -+ Gy
B Gno1 Go -+ Gnoa
G, Gy --- Gy

with G; = Gy_j, for j = 1,2,..., N — 1, and where each block-component G; is NV x N,
symmetric and circulant:*

G; = circulant(gig,gi1,--,9iN-1),
1 i=j=0
9ij = —r(i1,j1) (i1,51) € D, with W= Ei N %) mod %) ,
' ’ ’ ’ ji==F+ j+%)mod-12!)
0 ~ otherwise.

Not only does G serve to relate w and z, as in (2.12), but also, from (2.10) and (2.11),
we see that the covariance of w satisfies

P, = G,

and hence, applying (2.12), we arrive at the somewhat surprising result that the covariance
of z satisfies

Pl = G.

This relation highlights the close relationship between a model (i.e., the matrix G, which
captures the weights of an autoregressive representation of the field) and the inverse of the
field covariance.

*For simplicity, we assume here that N is even.
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2.2.3 The FFT and its Relation to WSMRF's Indexed on Toroidal Lattices

The eigenstructure of both G and its inverse P, is related to the FFT in such a way that we
can exploit the FFT’s computational efficiency to carry out a number of signal processing
tasks: (i) calculation of the correlation function R..(k,l) = E(z(4,7)z(i — k,7 = 1)), (ii)
generation of random field sample paths, (iii) least-squares estimation, (iv) spectral estima-
tion. In the course of this thesis, we will do all of these things, and so here we summarize
the role played by the FFT.

Eigenanalysis
To clarify the relation between the FFT and G, we define the complex scalar 8 via
8. = exp (\/—lz—wk) ,
N
which we use to define both the complex N-vector t;,
T
to= (69 oh - N,

and the complex N2-vector fik
_ 0,T pl;T N-1,7 \T
This vector f;j is relevant to our discussion for two reasons. First, the inner-product fﬁcz
is exactly the (7, k)-th discrete Fourier coefficient in the transform of the field:
N-1N-1
fhe = 3 60700 2. (2.13)
m=0 n=0

Second, and more importantly, f; is an eigenvector of any N? x N? symmetric, block
circulant matrix, having N circulant blocks, and so, f; x is an eigenvector of both P, and G,

fori,k=0,1,...,N —1. We thus consolidate all of the eigenvectors of H into the columns
of a matrix F,

F = (fo,o fio -+ fn-10 fo1 oo fN—l,N—1>,

so that F#z is the discrete Fourier transform of z and F~# is the inverse discrete Fourier
transform, with

FH = __F

Furthermore, we Lave tnat

F~HAFH ' (2.14)
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and
G = FATlF!
F~HA-IFH | (2.15)

where

A = diag(Xo0, A1,0,--- s AN=1,N=1),

Applications of the FFT

Calculation of eigenvalues of P, The eigenvalues of P, and G are reciprocals of one

another, and so if we can find the eigenvalues of either, then we can trivially obtain the
eigenvalues of the other. Since we directly have available G, we calculate its eigenvalues
first. This calculation can be carried out by simply taking the 2-D FFT of its first column.
To see this fact, we let e; and s be column vectors, having the same dimension as z, with

e, = (1 0 .- O)T

ss(ll---l)T

Also, we let 1 be a column vector defined as
p = Als, (2.16)

so that its i-th component is equal to the i-th diagonal entry in A~!. With these conventions
established, we come to the key result, which is that

FH(Ge;) = AT'Fe
= Als
= i,

where the first line follows from (2.15), the second line from the definitions of F' and s, and
the third line from (2.16).

Calculation of R,.(-,") Stationarity implies that there is a great deal of redundancy in
the covariance matrix P,, and in fact, we can extract the entire correlation structure R..(-, ")
from first column of P, alone. To see this fact, let us stack the values of the correlation
function R..(-,-) into a vector r, defined as follows:

7

Pzel .
( R.2(0,0) R..(1,0) --- R..(N—1,0) R..(0,1)
‘ RN —1,N —i)7. (2.17)

To calculate r, we first form A, defined to be the column vector

A = As (2.18)
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so that its i-th component is equal to the i-th diagonal entry in A. It then follows that

r = P,e
F-HAFHe,
= FHAs

= F~H),

Il

where the first line is a consequence of (2.14), the second line a consequence of the definitions
of F and s. and the third line a consequence of (2.18). Hence, we can calculate efficiently
the first column of P, by computing the 2-D inverse-FFT of A, which itself can be found by
taking the reciprocals of the components of the 2-D FFT of the first column of G.

Generation of field sample paths To generate a sample path of z, we first generate a
sample path of a zero-mean random vector w, having identity covariance, and then we let

z = le/zw
F~HAW2RpH

Thus, we can simulate z by the following four-step procedure: (i) generate a white field w,
(ii) apply a 2-D FFT to w, (iii) filter the transformed field with A/2, and (iv) apply an 2-D
inverse-FFT to the transformed, filtered field.

+

Least-squares estimation Let us consider now the calculation of the linear, least-squares
estimate of z, given y = z + v, where v is a zero-mean random vector having covariance
021, for some positive scalar o2. We have the following sequence of identities:

E(z|y) = PP +o2D)7Yy
= FUAFY [FH (A4 o2 FH] Ty
= FHA(A+021) 7 FHy,

where the first line is a standard result in linear least-squares estimation, the second line
follows from (2.14) and the third line follows by simple algebraic cancellation. Thus we can
estimate z by the following three-step procedure: (i) apply a 2-D FFT to y, (ii) filter the
transformed field with A(A+¢2I)~1, and (iii) apply a 2-D inverse-FFT to the transformed,
filtered field.

The estimation error covariance is

B((z - B(zly))(z ~ E(zly)T) = P.—P.(P.+0%1) P,

-1
= F <A —~ A? (A + 031) ) FL (2.19)
where the second line reveals that the eigenvalues of the error covariance are given as follows:
A2,
A » 4 =0,1,...,N-1
TN ral
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the least-squares estimator is also readily computed. To see this latter fact, we note that by
symmetry the diagonal elements of the error covariance all have the same value. But this
common value is obviously equal to the arithmetic mean of the trace of the error covariance,
which in turn is equal to the arithmetic mean of the eigenvalues of the error covariance.
Hence, we conclude that

mse = N 2. ij Ny 407

Let us consider now the use of Monte-Carlo simulation to estimate the mse of the
least-squares estimator. To carry out the simulation, we generate Nsamp sample paths
21,22, -4, ZN,qm, Of the random field, and Nyqmp sample paths vy, v, . .. y UN,amp Of the noise
field, which we combine to create Nsamp sample paths y1,92,...,YN,.m, Of the observed
field, with y; = z; + v;, for 7 = 1,2, «+++Nsamp. We then define e; to be the error field

e; = z; — E(z; | y;) at the i-th trial. Finally, we estimate mse with the following unbiased
estimator:

1 Nsu.mp 1 T
mse —eie; .
Nsa.mp ; <N2 : )

Assuming that z; and e; are Gaussian, we find that the estimation error variance for mise is
given as follows:

Var (e e,)
NmmpN

Mo\
= E - — 2.20
( kit )\k,l i 0_12)> ) ( )

Var (mise — mse) =

sa,mp -lV k.l

where in the second line we have used the fact that for any Gaussian random vector 7
having ¢1, ¢2, ... as the eigenvalues of its covariance,

Var(niTm) = 224)?.

N

The relation in (2.20) is quite useful for determining the number of trials Nyomp required
to increase our confidence in the estimate mise to any desired level. To be specific, by the
central limit theorem, mse will be approximately Gaussian, and thus, for any tolerance ¢
and probability «, we can assert that

Prob (jmse — mse| < €) > «,

if the number of trials Nyomp satisfies
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where
1+«

)

B 2
with

®(z) = * e ﬁ/Z)
-0

Estimation of R..(-,-) Suppose we have Nyomp sample paths z1,z2,...,2N,,,, Of some

zero-mean, stationary WSMRF, whose correlation vector 7 we wish to estimate. Exploiting
the linear relationship (2.17) between r and A, we proceed by first estimating A, thus yielding
A and then letting

fF = FH) (2.21)

To estimate ), we use the standard technique of periodogram averaging. In particular,
we define w; as

w; = FHzi,

for which E(w,wf) = N?A. Then, letting (w;);, denote the (j, k)-th component of w;, we
use the following unbiased estimate for the j-th component of A:

N 1
Aig = ———— (w;
7k NyampN? & Zl ikl
with

A= (:\o,o Ao 0 AN—1,N-1 )T-

Assuming that z is Gaussian, and being careful to properly account for the fact that w; is
complex, we find that the estimation error variance satisfies

~ N (/\ )/ samp lf (Z77) = (kvl)v or
CE(Gus =)0 = Aen)) = 0 (i,hj) =(N-kN-1) (222)
otherwise

Turning back now to the estimation of r, we see that (2.21) constitutes an unbiased

~ estimate of 7. Combining this fact with (2.22), we can bound the diagonal elements of the

error covariance (again assuming that z is Gaussian) in the following way:

E ((mn = rmn)?) = 37 30 60670707 B (Ot = M) Cpg = )

k.l p.g

N4ZZ‘E(’\H“’\H)( P,q mw>

k,l P9
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N4 Z/\ (2.23)

N amp

This bound is fairly tight, and is quite useful for determining the number of samples N;qmp
required to increase our confidence in the estimate R, (-, -) to any desired level. The line of
reasoning is identical to that used in our foregoing discussion of Monte-Carlo simulation to
estimate mean square error of a linear least-squares estimator.

2.3 Multiscale Representations of WS Reciprocal Processes
‘and MRFs

Corresponding to any given zero-mean, WS reciprocal process or MRF, defined on a discrete
lattice, is a multiscale process that matches the first and second-order statistics of the
given process or field. This fact was proved by construction in [45]. We hasten to add,
however, that the existence of these multiscale representations does not completely mitigate
the computational complexity problems that we discussed in Chapter 1, in relation to
MRFs. The difficulty is that the exact representation of any given WSMRF requires a
multiscale model in which the dimension of the states z(s) is quite high; as we saw in
Section 2.1.6, a high order places a corresponding high computational burden on signal
processing algorithms, thereby limiting the model’s utility.

Nevertheless, there is a distinct advantage to the multiscale framework. In particular,
the high order, exact representation of a given MRF leads quite naturally to a family
of lower-order approzimate representations. These approximations preserve most of the
qualitative and statistical features of the much more complex exact representation. At the
same time, they allow us to carry out, in an extremely efficient manner, image processing
algorithms that are statistically optimal with respect to the low-order multiscale model and
that are nearly optimal with respect to the nearby WSMRF. This claim is substantiated
in [43,44], where the authors consider a texture discrimination application. Our main point
is that since in most any application, a WSMRF model is itself an idealization, there is a
reasonable possibility that aside from the computational speed advantages, our low-order
multiscale ' model will lead to better image restoration, better image segmentation, and so
forth.

' An exact representation of a WSMRF with the type of tree model described by (2.1)

involves a generalization of the mid-point deflection technique for constructing a sample path
of 1-D Brownian motion. To construct a Brownian motion sample path over an interval
by mid-point deflection, we start by randomly choosing values for the process at the two
boundary points of the interval according to the joint probability distribution implied by the
Brownian motion model. We then use these two values to compute the expected value of the
process at the mid-point, and then add to that a Gaussian random variable with zero mean
and variance equal to the variance of the error in this mid-point prediction. The process
is then continued by using the original boundary points and newly constructed mid-point
to generate values of the Brownian motion at the one-fourth and three-fourths points of
the interval. Since Brownian motion is a Markov process, its value at the one-fourth noint,
conditioned on the values at the initial point and mid-point is independent of the process
~values at the three-fourths and end-points of the interval; a similar conditional independence
property holds for the three-fourths point. Thus, we can iteratively generate values at an
increasingly -dense set of dyadic points in the interval; at each level, we can generate values at
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Figure 2-3: In these figures, we depict the information represented in the state vectors at the top
two levels of an exact multiscale representation of a WSMRF defined on a 16 x 16 lattice. At the left is a
depiction of the state at the root node, which contains the values of the process at the shaded points. At
the right is a depiction of the four states at the second level; for example, the state in the north-west corner
contains the values of the process at the shaded points in the north-west 8 x 8 quadrant.

the mid-points of all neighboring pairs of points, in parallel and independently of previously
generated points.

A 2-D generalization of the mid-point deflection technique is the key to representing
a WSMRF with a multiscale model. In 1-D, we iteratively partitioned the domain of the
process by mid-points, and in 2-D, we do this partitioning by mid-lines. We define the
multiscale model state z(s) to be the set of values of a WSMRF along an appropriately
chosen boundary so that the domain of the process is partitioned into smaller, conditionally
uncorrelated subdomains. Each of these subdomains is in turn partitioned into even finer
subdomains, with each state at the next finer scale corresponding to the values along the
boundary of one of these finer subdomains. In this way, we can iteratively generate values
of the process along an increasingly dense set of boundaries until the full field has been
generated. .

Example

By means of a concrete example, we now illustrate the simplicity of the underlying ideas
in the foregoing recipe for construction of multiscale WSMRF models. Consider a 2-D
WSMRF z(i,7) defined on a 16 x 16 lattice. An exact multiscale model for the GMRF is
defined on a quadtree (i.e., ¢ = 4). The state vector z(0) at the root node is defined to
contain the values of the WSMRF in the shaded boundary and mid-line points shown in
Figure 2-3a. The covariance P(0) for this root node is characterized by the joint pdf of the
associated WSMRF values.

At the second level, the states consist of points carried down from the root node as well
as new mid-lie points within each quadrant; the information content of the resulting state
vectors is displayed in Figure 2-3b. As we have already remarked, the Markov property
ensures that the new mid-lines are conditionally independent given the state of the process
at the root node; consequently, these new mid-lines can be constructed independently and
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in parallel, using a white-noise driven model of the form (2.1). From the detail provided
thus far, the general form of the scale-to-scale recursion should now be clear.

Approximate Multiscale Representations of WSMRF's

Maintaining complete knowledge of a WSMRF process on boundaries of 2-D regions leads
to multiscale models in which the state dimension is scale-dependent. For large domains,
this dimension can become prohibitively large and so we are led to consider lower order
approzimate representations [43,45].

At coarse scales, it seems reasonable to retain only coarse approximations to the bound-
ary values. As developed in detail in [45], a logical way to do this is to treat each boundary
as a vector of boundary values, and then to do a change of basis, keeping only some of the
coefficients in the new basis. We note that by fixing the number of retained coefficient for
all levels, we make the state dimension independent of scale. However, since the bound-
aries are smaller at finer scales, the fixed-dimension “coarse” boundary approximation is in
actuality becoming increasingly fine as we move to finer scales.

A natural basis choice, given the multiscale nature of our models is the wavelet basis.
The work in [43,45] demonstrates experimentally the success of this idea in the context of
texture representation. In particular, the authors showed that a low-order approximation
can yield texture sample paths that are visually indistinguishable from the sample paths of
the high order, exact WSMRF. In Chapter 3, we will develop a considerable generalization
of these results.

2.4 Canonical Correlation Theory

In this section, we introduce some convenient analytical tools for displaying, in an un-
ambiguous way, the correlation structure between two random vectors having some joint
distribution. Historically this material was treated as a somewhat arcane branch of mul-
tivariate statistics, known as canonical correlation theory [6,33,49]. With a more modern
perspective [29] has come the realization that this theory is little more than a special ap-
plication of the singular value decomposition (SVD). In a rough sense, the SVD is to these
methods what an eigendecomposition is to standard methods for displaying the structure
of covariance matrices. When treated with the SVD, canonical correlation theory is both
- elegant and simple. Moreover, it has practical use; in Chapters 3 and 5, we will adapt it to
our needs, in an apparently novel way, to produce a powerful computational engine for our
realization algorithms.

2.4.1 Setup and Main Proposition

Let 1 be a zero-mean random vector, having (n; + n2) components and covariance matrix
P,. We partition 7 into two sub-vectors, having respectively n; and ny components,

n = (af of )T- (2:24)

and we similarly partition the covariance matrix,

P, P, o
P = m mnz | (2.25)
! ( P%nz PUZ ) ‘



2.4. Canonical Correlation Theory 47

The following well-known Proposition asserts the existence of a pair of transformation ma-
trices 77 and 75 that can be used to clearly exhibit the inter-correlations between n; and
2.

To prepare for the statement of the Proposition, we denote the rank of P,, by mi, the
rank of P, by my and the rank of P, ,, by mi2; all of these matrices are allowed to be rank
deficient.

Proposition 2 There ezist matrices Ty and Ty, of dimension my X n; and mq X ngy, re-
spectively, such that

T
o O FPp Pyn o = Imy D (2.26)
0 T PL.. P 0 T DT Inm, )’
and
+ + T
Tl 0 Iml D Tl 0 — P771 P771772 (2 27)
0 T DT In, 0 T3 Pl P, | '

In these equations, I, is an identity matriz of dimension m; x m; (for i = 1,2). The
matriz D has dimension mi x my and is given by

D o
D = (0 0)’ (2.28)

where D is a positive definite diagonal matriz given by
D = diag(dy,dy,....,dmy,), 1>d1 >dy> ... > dmy, > 0. (2.29)
Finally, Tf 15 the Moore-Penrose pseudoinverse of T;, and is given by

Tt = P, TT, (i=12). (2.30)

(2

We refer to the triple of matrices (T}, T3, D) as the canonical correlation matrices asso-
ciated with (n1,772). Results very similar to Proposition 2 can be found in several places,
Jincluding [6,49,50] and [19]. Our constructive proof in Appendix A.1 is patterned most
closely after this last source. We include this proof in order to highlight the computational
issues, and also because our formulation allows in a natural way for singular covariance
matrices, unlike the references just cited. This allowance is not vacuous posturing; we will
need this generality when we apply Proposition 2 in Chapters 3 and 5.

A useful, alternative interpretation of Proposition 2 is that there exist matrices 7} and
T, such that the random vectors u1 and po defined by

Hi = 117;771'7 (7':172)

have covariance

_ (In, D |
- (DT L ) (2.31)
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where the form of the diagonal matrix D is given by (2.28). Furthermore, the transformation
from (11,72) to (w1, u2) is invertible

m (2.32)

In a mean-square sense,

El(ni — Tfu)(m — T p)T) (2.33)

We can exploit the relationship between (71,72) and (u1,42) to yield a decomposition
of 71 and 7, that isolates their correlated component. Because of the utility of this decom-
position, we state it as a corollary.

Corollary 1 There exists a decomposition of the form

(n) = (&) (2)

where n, vi, and vy are zero-mean, uncorrelated random vectors The dimension of n, which

is the sole component shared by m1 and m, is equal to the rank of P, n,. The interpolation
matrices, Hy and Hy are given by

“1 (2.34)

V2

H;

P"HTiT (i=

11, and vy are given by

1,2). (2.35)

The second-order statistics of n,

~

E(nnT)y = D,
D o
Iy = 1 (I, — =T
E(U’LV'L ) Tl (Imz ( 0 0 )) (’Ijl )
= P, - H,DHT (i=1,2).

In the sequel, we refer to the foregoing decomposition of 7; and 7, as a canonical correlation
* decomposition.

Proof of Corollary: First, we note by inspection that we can decompose p; and g; as

follows:
wi = ( s )n +E (=1,2) (2.36)
where n, i1, and 7, are zero-mean, uncorrelated random vectors, with
E(nnT) = D,
e - Do oy -
E(uiu;r) = In, — ( 0 0 ) (i= 1»72)- (2.37)
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Second, we apply the transformation specified by (2.32) to (2.36), thereby yielding the
desired result. QED. ’

In our applications, we will typically not require the full transformation matrices 7 and
Ty; in anticipation of developments later in this paper, we introduce truncated versions of
these matrices, denoted by T; . and defined to contain the first k£ rows of T;:

T, = (Ik 0)Ti (i=1,2).

)

As a special case, we define

lI:i = Ti,mlz-

There are two final comments that we want to make about Proposition 2. First, the
proof of the proposition will reveal that there is some flexibility in the choice of T} and
T5; these matrices are not unique. On the other hand, all possible choices for 77 and T3
lead to the same diagonal matrix D. The following Proposition precisely formulates this
uniqueness of D.

Proposition 3 Let Wi and Wy be matrices of dimension my X ny and ma X ng, respectively,
such that
WP, WE = I,

Then, for all such Wy and Wy, the nonzero singular values of Wle,nWZT are given by the
diagonal entries of the matriz D, which is unique.

Appendix A.2 contains a simple proof of this result. In the sequel, we refer to D as the
matrix of canonical correlations. As we next discuss, these correlations can be given a nice
geometric interpretation.

2.4.2 Geometric Interpretations of Diagonal Matrix D

To bring out the geometric content of the matrix D (see (2.28)), we begin by interpreting
the scalar components of the random vector n; as vectors in a vector space. In particular,
we define the vector space &1 to comprise all linear combinations of the scalar components
of the random vector n;:

& o= {ch ; ceR’“}.

In a completely analogous way, we define £ to be the vector space comprising all linear
combinations of the scalar components of the random vector 7;.

Our next step is to capture, in a mathematically precise way, the relative orientation
between the two vector spaces £ and £. A convenient way to do this is in terms of the
principal angles between the two subspaces [29]. After defining these angles, we will see
that each diagonal entry in the matrix D is equal to the cosine of a principal angle.

We define the first principal angle 6; between £; and &; to be

cosf; = maxmax{E{UV)}
Ue&E Vel

= max max {cTP,MZd},
cER™ dER™2
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where the maximizations are subject to the constraints

EU?) = ' Pue=1,
E(V? = dTP,d=1.

Assume that the maximum is attained for

U =U1 = cflr'r)l,
V=v=dln.

We can then define 6, as the smallest angle between the orthogonal complement of £ with
respect to U; and the orthogonal complement of £ with respect to V;. We continue in this
way until one of the spaces £, & is reduced to {0}; this will happen after a number of steps
equal to the minimum of m; and ms. Thus, we recursively define 8y, Uy, Vi, ck, and di by

cos O max max {E(UV)}

= max max {cTPmmd},
cER™M dER™2

where the maximizations are subject to the constraints
EUY = JIPyc=1,
E(U;U) = ¢ Puc=0, j=12,.,k-1,
E(WV? = dTP,d=1,
E(V;V) = dIP,d=0, j=12.,k-1,

and we assume that the maximum is attained for

U=U,=cln,
V =V =din,.
These constrained maximizations may appear quite formidable to solve, and in fact,

historically, they were solved via the laborious route of using Lagrange multipliers [6, 33].
On the other hand, with a more modern perspective has come the realization that the SVD

~can often simplify these kinds of vector space issues [62]. The SVD is exploited in the proof

of Proposition 2, which in turn manages all of the difficult work needed to find principal
angles. The relation between these angles and D is as follows:

cos 8 _ dk k= 1,2, .y T2,
BT 0 k =m12+17 m12+21"" min(mlva)a

where dy,ds, ..., dm,, are defined in (2.29). Although the proof of this result is straightfor-
ward, we omit it and instead refer the reader to [50].

2.4.3 Computational Issues

.The proof of Proposition 2 reveals that in general, for covariance matrix P, of dimension

N x N, the computational complexity of calculating the canonical correlation matrices
(Ty,T5, D) is roughly O(N?) floating point operations. The computations involved can be
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summarized as follows:

Step 1. Carry out two eigendecompositions: P, = S;A; ST (i=1,2).
Step 2. Carry out SVD calculation: A I/ZSTPT”T’ZSQA—I/Z U DUT.
Step 3. Set T, = UFATY?ST, (i=1,2).

For problems of practical interest to us, the dimension N could easily be on the order
of a million, in which case the computational complexity O(N?) is absolutely prohibitive.
Thus, given the importance of the canonical correlation decomposition in our later work,
we have considerable motivation for seeking intelligent ways to reduce this computational
burden.

If the correlation between 7; and n; has a certain special structure, then we can achieve
a substantial reduction in the complexity of the computation of {Tl,Tg,ﬁ}. In a loose
sense, this structure can be described in the following way. We assume that the correlated
component of n; and 7 lives in some low-dimensional subspace that is easily defined; we
then do all of our computations with low-dimensional random vectors that live in this
subspace, and thereby achieve our complexity reduction.

To describe more carefully this assumed structure of the correlation between n; and 75,
we introduce the two matrices ©; and ©,, which are assumed to capture the correlated
component of 7; and 7, in the sense that

E [(n ~ E(mlu)) (n2 ~ E(alua))”] = 0, (i=1,2). (2.38)

where

K = @im, (i = 1,2). (2.39)
The following proposition summarizes the key result.

Proposition 4 Let (Tl,’f’g,D) be the canonical correlation matrices for (1, 12). If (1, p2)

are related to (ny,m2), as in (2.38) and (2.39), then (T,01,T90q, D) are the canonical
correlation matrices for (ny,ns).

A proof is contained in Appendix A.3. The implications of this result are explored in
Chapter 3, where the result is used extensively in our model-building procedure.
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Chapter 3

Multiscale Stochastic Realization

In order for the multiscale framework to realize its full potential as a powerful approach for
solving statistical signal processing problems, there is a fundamental need for systematic
model-building tools. Just as Kalman filtering requires the prior specification of a state-
space model, so do our multiscale estimation algorithms require such a prior specification.
While we have seen in Section 2.1.2 that the second-order statistics of a multiscale process
z(s) can be readily determined from given values for the model parameters P(0), A(s) and
B(s), the converse is not necessarily true. In particular, it is generally quite challenging
to devise values for P(0), A(s) and B(s) so that they yield a given specification of the
second-order statistics of z(s). This latter, more challenging problem is the focus of this
chapter.

3.1 Introduction

Our approach to multiscale stochastic realization is based on a synthesis of ideas from two
distinct sources: (i) Akaike’s work in [2] on building state-space models for stationary time
series via canonical correlation analysis, and (ii) the work in [45] on building multiscale
models for WSMRFs. Let us consider the influence of each of these sources, in turn.

In [2], Akaike considered the problem of building a minimal-dimension state-space model
to realize a stationary random process y(n) (n = ..., —1,0,...), given knowledge of the
corresponding covariance matrices Ry, ({) (I =0,1,...),

Ryy(l) = E[y(n+1y"(n)]. R

The structure of the models he sought have the following familiar state-space form, discussed
in Chapter 1:

z(n+1) = Az(n)+w(n)
y(n) = Cz(n), (3.2)

where z(n) denotes the state of the process at time n, A4 is the one-step transition matrix,
C'is the observation matrix and win) is a zero-mean, white Gaussian noise diiving term.
Akaike motivated his approach to building these models by highlighting their Markov
property: conditioned on the present value of z(n), the past values of y (i.e., y(n—1),y(n -
2),...) are statistically independent of the future values of y (i.e., y(n'+1),y(n+2),...). In

53
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this sense, the role of the state information in z(n) is to provide an interface between the
past and the future. Of course, the dimension of the needed interface will be closely tied to
the structure of the covariance matrices Ry, (1), and for many applications, one can expect
that an exact realization of the specified Ry, (1) will require an unduly high state dimension.
For instance, in a Kalman filtering application, the computational load per time instant n is
proportional to the cube of the dimension of the state z(n), and if the model order grows too
large, then the algorithm becomes too slow. Thus, there are two principal issues that must
be confronted to deal with this time-series realization problem in a satisfactory manner.
First, for exact realizations, a method is needed for finding the minimal dimension and
corresponding information content of the state. Second, for reduced-order, approximate
realizations, a method is needed for measuring the relative importance of the components
of the information interface provided by the state, so that a decision can be made about
which components to discard in a reduced-order realization.

In the multiscale context, the realization issues are very similar, only now, the state
must act as an information interface among multiple subsets of the process, not just two.
To see clearly the role of state information in the multiscale context, let us consider a
multiscale process indexed on a g-th order tree. As we know from Chapter 2, the state
z(s) at any given node of such a tree represents an appropriate, aggregate description of
the subset of the finest-scale process that descends from the given node. Furthermore, the
given node partitions the remaining nodes into (¢ + 1) disjoint subtrees, one associated
with each of the children and parent nodes. This partitioning property leads us to the
important point that just as with time-series models, our multiscale models have a Markov
property. This property was described in Chapter 2, but its importance compels us to
re-state it here: if z(s) is the value of the state at node s, then conditioned on the value
of z(s), the values of the states in the corresponding g + 1 subtrees of nodes extending
away from s are uncorrelated. In light of the Markov property, the role of the state in a
multiscale process is clear. In particular, the role of the state at any node is to store enough
information about the process to decorrelate the corresponding g + 1 subsets of the process.
Moreover, continuing the parallel with the time-series case, complete retention of the needed
decorrelating information may lead to state vectors of unacceptably high dimension, and
thus we are frequently motivated to turn to reduced-order, approximate realizations.

As Akaike’s work showed, there is an elegant way to deal simultaneously and coherently
with the issues of both exact and reduced-order modeling. The idea is to bring to bear

canonical correlation analysis, which was reviewed in Chapter 2. While in its original form,
~ this tool is helpful only for the static problem of unambiguously displaying the correlation
structure between two random vectors, Akaike adapted this tool to a dynamical context,
and thereby devised his state-space models. ,

By another appropriate adaptation, we too exploit canonical correlation analysis to
build state-space models, but now for our multiscale processes. In making the adaptation
to this new dynamical context, we are guided by the WSMRF work in [45], which was
the first to highlight and exploit the decorrelating role of state information in building
multiscale models. For our purposes, the most important characteristic of this work is its
systematic decomposition of the modeling problem into a collection of smaller, independent
sub-problems, each myopically focused on designing the information content of = single
state vector to fulfill that vector’s designated interfacing role. It turns out that once this
information content has been determined, the rest of the model parameters follow readily.
'By formalizing and ‘generalizing this decomposition of the modeling problem, we are led
naturally to a procedure that allows us to build models for a wider class of random processes
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and fields than just Markov ones.

To carry out this effort, we begin by restricting the value of the state vector associated
with each node to be a linear function of the finest-scale process or field that descends
from the given node. In this way, just as in [45], we reduce the realization problem to one
of determining the linear function (i.e., the matrix) that relates the state vector and the
finest-scale process or field.

After reducing the modeling problem to a collection of independent sub-problems, we
next make precise the notion of a state vector approzimately fulfilling its decorrelating
role. Specifically, we introduce a measure of decorrelation that is closely related to the
principal angle concepts of Section 2.4.2. We then demonstrate that with respect to this
metric, canonical correlation analysis can in principle be used to optimize the content of the
state vectors; that is, canonical correlation analysis can be used to solve for the matrices
parameterizing the state vectors. In practice, an exact analysis is prohibitive, because of
the high dimension of the relevant covariance matrices, and so approximations are required
to manage the SVD calculations. We devise a particular approximation scheme that is
motivated directly by the simplifications possible when the random process or field to be
modeled is a WS Markov. Thus, our canonical correlation calculations are exact for WS
Markov processes and fields, and are approximate otherwise. Our experimental results will
demonstrate that these approximations are quite effective. Ultimately we obtain a flexible,
general model-building algorithm that it is capable of generating accurate and useful models
for both Markov and non-Markov random processes and fields.

This chapter is organized in the following way. We begin by providing a brief overview
of Akaike’s approach to the time-series realization problem. We then set up the multiscale
modeling problem, and reduce it formally to one of determining the information content of
each state vector. Next we make precise the notion of approximate realizations, and we de-
velop our solution to the modeling problem, where this solution takes the form of a readily
implementable algorithm having canonical correlation analysis as its computational engine.
We illustrate the application of the algorithm, by building multiscale models for both pro-
cesses and fields. Finally, we conclude with a rather lengthy discussion of an interesting
and non-trivial difference, uncovered by our analysis, between time-series stochastic pro-
cesses and multiscale stochastic processes. This difference is in regard to minimal-dimension
models and their expressibility in terms of so called internal realizations. As will be made
precise in our detailed discussion, the class of internal realizations is sufficiently rich in the
time-series context to always include a minimal model, while the same is not true in the
multiscale context, where sometimes a so-called ezternal realization is required to build
a minimal model. This fact will lead us to return in the last part of this chapter to the
modeling problem, to develop further tools, explicitly tailored to build external realizations.

3.2 Akaike’s Approach to Stochastic Realization of Station-
ary Time Series

As described in the previous section, the objective in the time-series realization problem is
to build a minimal-dimension state-space model of the form (3.2), driven by white noise,
so that the output process y(n) has some given correlation Ry, (;). Let us briefly consider
Akaike’s approach to this problem. The insights we obtain we will be quite useful for
addressing the multiscale counterpart of this realization problem.

One of Akaike’s achievements was to characterize the minimum system dimension (i.e

b
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the minimum dimension of the state z(n)) that can be used to realize y(n). Furthermore,
he devised a particular coordinate choice that leads to an unambiguous arrangement of
the components of the state-vector in descending order of importance to the past/future
interface, thus facilitating any decision about which components to discard in a reduced-
order realization. To elaborate on these results, we let Tpast(n) be an infinite dimensional
random vector containing the values of the process y(n) for all times less than or equal to
n, and let nyeure(n) be an infinite dimensional random vector containing the values of the
process y(n) for all times greater than or equal to n:

: y(n)
npast(n) = ’y(’n - 1) ) nfuture(n) = y(n + 1) . (33)
y(n) :

In terms of Mpqse(n) and 7gyrure(n), an exact realization of the specified statistics for y(n)
requires that the state z(n) be such that

Tipast(n) and fgypure(n) are uncorrelated, where
Tipos(n) = Tpos(n) — Empos(n) | 2(n)), pos = past, future

Lettiﬁg (T, Ty , D) be the canonical correlation matrices! associated with (Mpast(n),
Nfuture(n)), Akaike demonstrated that the minimal-dimension interface z(n) is equal to
the number of non-zero elements of D. Two possible choices for the state vector z(n) are

z(n) = T27]future(n); and Z(n) = E(TZquture(n)|T177past(n))a (34)

where the components of both are indeed arranged in descending order of importance to the
past/future interface; this prioritized ordering can be shown to hold with respect to both
an information-theoretic criterion, as in [27)], and with respect to the generalized correlation
coefficient criterion of Section 3.3.3.

In establishing (3.4), Akaike managed the infinite dimension of Npast(n) and 7pypyre(n)
by effectively using a result akin to our Proposition 4 of Chapter 2, thereby creating finite-
dimensional vectors fipest(n) and psyeure(n) that entirely capture the correlated component
of Npast(n) and Npypure(n). In general, ppest(n) can be defined as follows:

tpast(n) = ( ET(y(n) | pase(n)) ET(y(n + 1) | npast(n))
ET(y(n+7—1) | npase(n)))T

and similarly, pfyuure(n) can be defined as
ru‘fUture(n) = ( ET(y(n) | nfuture(n)) ET(y(n - 1) | nfutu‘re(n))
ET(y(n ~r+ 1) ] nfuture(n)))T

where r is any finite upper-bound on the system dimension. In the language of [3], linear
combination= of the random vectors ppest(n) and ffuture(n) are said to span the predictor
space of the past and futurc, respectively. A simplification is possible it y(n) is an r-th -

'Thanks to the stationarity of y(n), the matrices 7 T3 and D are here independent of time.
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order WS Markov process; we can then define ppqes:(n) and ppyure(n) as

y(n) y(n)
~1 +1
lllpast('n) = y(n : ) ) ﬂfuture(n) = v . ) )
yn—r+1) y(n+r—1)

Consistent with Proposition 4, then, the non-zero canonical correlation coefficients between
Npast(1) and Nfyeure(n) are given by the non-zero canonical correlation coefficients between
:U’Past(n) and /Jffuture(n)-

It turns out that once the information content of z(n) has been defined, as for example by
(3.4), then the parameters of the state-space model (3.1) follow readily [2]. Thus, attention
can be focused on designing the content of z(n). This reduction of the problem is noteworthy,
because in the multiscale context, we will focus attention in a similar fashion, and in fact
will use a natural extension of these canonical correlation tools to determine the information
content of the state vectors.

3.3 Formulation of Realization Problem

Let us suppose we have a ¢-th order tree, consisting of M + 1 scales. For random fields
(representing imagery, for instance), a quadtree as in Figure 1-1 would typically used, while
for random processes, a dyadic tree as in Figure 2-1 would typically be used. We emphasize,
though, that we will be treating all tree orders in a uniform way, allowing for all orders
q22. .
Informally, our objective is to build a multiscale model, indexed on the given tree, such
that the covariance of the resulting finest-scale process comes as close as possible to matching
some prespecified covariance. We must devise values for the following model parameters:

1. the covariance P{0) of the state at the root node,
2. the interpolation matrices A(s), and
3. the noise-shaping matrices B(s).

As detailed in Sections 2.1.1, these parameters provide a complete specification of the
process.

To ensure that the constructed multiscale model achieves a balance between the possibly
conflicting requirements of low dimension and high fidelity, we impose further structure
on the realization problem. There are two natural ways to do this structuring, and we
consider both in parallel throughout this chapter. In one formulation, we fix the quality of
the match between prespecified and actual realized finest-scale covariances, and subject to
this constraint, we seek a multiscale model having state vectors of the minimum possible
dimension. In the other formulation, we constrain the model dimension (i.e., the dimension
ui vhe process state vectors z(s)), and subject to this alternative constraint, we seek a
multiscale model having the best match between prespecified and actual, realized finest-
scale covariances. For now, we treat only informally the notion of this covariance matching,
deferring precise statements until Sections 3.3.3.
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3.3.1 Notation

To maintain a clear distinction between the specified, desired statistics and the actual,
realized ones, we use different notation for each. We denote the prespecified finest-scale
covariance by P, , where Y is a random vector having this covariance. Correspondingly, as
in Section 2.1.4, we denote the actual, realized covariance by P, where £ is a random vector
containing the finest-scale state information in this realized model. Also as in Section 2.1.4,
we let &5 and &;e be the particular sub-vectors of €o that contain, respectively, the finest-
scale state information that does and does not descend from s. In an analogous manner,
we define the random vectors y, and Xse as sub-vectors of yo. We denote the covariance
of & by P, and the cross-covariance between s and &, by P ¢ . Finally, we denote the
covariance of x; by P,, and the cross-covariance between Xs and xg by Py 5. .

3.3.2  Parameterizing content of z(s) by W,

As we work our way toward a more careful statement of the modeling problem, we wish
to shift the emphasis away from determining the parameters P(0), A(s) and B(s) to focus
instead on designing the information content of the state vectors z(s). Such a shift was
central to both Akaike’s approach to the time-series realization problem and also the ap-
proach in [45] to building multiscale representations of WSMRFs; by suitably generalizing
these results, we will find that such a shift is possible in our context as well. The primary
benefit of proceeding this way is our subsequent ability to reduce the realization problem
to a collection of independent sub-problems, each myopically focused on determining the
information content of a single state vector z(s) to fulfill its decorrelating role.

Multiscale representations of WSMRF's

To effect our desired shift in focus, let us begin by examining in greater detail the con-
struction in [45] of multiscale models for WSMRFs. As overviewed in Section 2.3, the key
in that context is to define the multiscale process state z(s) to contain the set of values of
the MRF along an appropriately chosen boundary, so that the MRF region is partitioned
into smaller, conditionally uncorrelated sub-regions. To be specific, let us consider a 2-D
WSMRF defined on a 2™ x 2M lattice, for which we correspondingly consider a multiscale
representation, indexed on a quadtree. The root-node state z(0) can fulfill its.decorrelating
- role if it contains the values of the MRF around the outer boundary of the lattice and also
along the vertical and horizontal mid-lines. For instance, on a 16 x 16 lattice, the root state
z(0) should contain the values of the MRF at the shaded boundary and mid-line points
shown in Figure 2-3a. Letting yo denote the MRF, this strategy for defining z(0) leads to
the following decorrelating property:

)20&,"0 L )2(00:,‘)‘:]07 1=1,2,3,4,
Xolo = Xo — E(xo | 2(0)), o = Oay,...,0a,

which we will soon see in a more gene.al guise in our more general nodeling strategy.
Furthermore, this choice for z(0) implies that F(0) must be given by

P(0) = E[I(O):ET(O)] N
= WoP, W7, (3.5)
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where Wy is a selection matrix, such that for z(0) = Wyxo, 2(0) contains the appropriate
boundary information. '

Now, turning to the construction of the next scale of the multiscale representation of the
WSMRF, the components of the four state vectors at this scale should contain appropriate
boundary information to partition the MRF region into even finer sub-regions. This idea
is illustrated in Figure 2-3b for our example involving the 16 x 16 lattice; in this case, the
shaded grid points comprise the components of the four state vectors. Here, the important
point is that the values of these four state vectors can be generated, independently and in
parallel using a white-noise driven model of the form (2.1). In particular, for ¢ = 1, 2, 3 and
4, we can decompose z(0a;) as

2(0a;) = E[x(00s) | 2(0)] + 5(00s), (3.6)
where, thanks to (3.5), Z(0a1),. .., £(0ay) are uncorrelated; we can then recast (3.6) as
z(0a;) = A(0a;)z(0) + B(0c;)w(0ay),

exactly as in (2.1), with A(0a;) 2(0) representing the prediction term E [z(0c;) | z(0)], and
B(0ai) w(0a;) representing the detail term £(0c;). We emphasize that values for A(s) and
B(s) can here be calculated in almost a trivial fashion, once the information content of z(s)
and z(s7) has been devised. -

We can iterate the construction just described, by defining states at successive levels
to be the values of the WSMRF at boundary and mid-line points of successively smaller
subregions. In particular, we can define the state z(s) to have the form

z(s) = Wixs, (3.7)
where W; is a selection matrix chosen to fulfill the following decorrelating condition:

}.(’sads 1 5((5&,-)‘|s_1 i=12,...,q

- 3.8
Xols = Xo = E(xo | Wixs), ¢ = sou,say,...,s0,. (3.8)

Each of these state vectors can be related to the state at its parent node by a white-noise
driven model of the form (2.1). Specifically, we have that

Elz(s) | z(s7)] = E(Wés | Wesésq)
= WPe,WE (WP, WE} L 2(s9),

Elz(s)a"(s)] = Ela(s)a"(s)] - Elz(s) T(S"Y)]E_l[33(Sﬁ)ﬂ?T(S‘/)]E[SIJ(S"Y)IT(S)]
= W.P W] -

-1
WiPees WE {Wer Pe,, WS Wes Pe, e WY

Hence, to 1maintain consistency with (2.1), we set

A(s) = W, Peye ;WE (Wi P, WE } : (3.9)
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and
B(s)BT(s) = W,P,WI — A(s)We3Pe,.e, WY (3.10)

Together, (3.5), (3.9) and (3.10) provide all the model parameters needed to specify the mul-
tiscale model, and they can all be determined readily from the arguably more fundamental
W, parameters.

Generalizing the WSMRF construction

The applicability of the foregoing construction can be broadened considerably, by making a
single modification. In particular, there is no reason to limit attention to selection matrices
for W;; while such a choice was certainly appropriate and natural for WSMRFs, it is clear
that a linear parameterization of the form (3.7) can accommodate a far richer class of
state vectors than merely decimated versions of the finest-scale process. In fact, a careful
study of the preceding construction will reveal that any given covariance matrix P, can be
realized as the finest scale of a multiscale process, by carrying out a two-stage procedure:
(i) determination of a matrix W, that fulfills (3.8), for each node? s, with all the matrices
at the finest scale being identity matrices, and (ii) calculation of P(0), A(s) and B(s) via
(3.5), (3.9) and (3.10), respectively. This procedure will yield a multiscale model for which
Pey = Py,.

The difficulty with the procedure just outlined is that it is only applicable to building
exact realizations, which almost always suffer from an impractically high state dimension.
We saw evidence of this fact with exact multiscale representations of WSMRFs, where the
required state dimension at, say, the root node was on the order of the number of pixels
along the perimeter of the MRF region; for many non-Markov random fields, we expect that
this required dimension for exact realizations will be even higher. Thus, the more pressing,
practical challenge is to formalize and address the problem of reduced-order modeling.

Fortunately, the WSMRF construction is of considerable utility for obtaining insights
into the reduced-order modeling problem as well. The key is to relax the rather stringent
condition (3.8) on the W, matrices, and allow for W matrices that only approzimately
fulfill (3.8). We can then apply these matrices in (3.5), (3.9) and (3.10) to obtain parameter
values P(0Q), A(s), and B(s) for a reduced-order model, in which, hopefully, P;, =~ P,,.
Indeed, this is the approach we pursue.

Regardless of how we actually determine the W, matrices for a reduced-order model,
~ we can obtain some immediate insight into the nature of the resulting approximation Py =
Py,. In particular, for every node s, the covariance P(s) of the state vector z(s) will satisfy

Py = W,P, W (3.11)

This fact can be established by induction. Specifically, the validity of (3.11) holds by
construction at the root node (see (3.5)); if we assume that for any s, (3.11) is true for node
57, then by substituting the values for A(s) and B(s) into the Lyapunov equation (2.2), we
find that (3.11) must also be true at node s, thus completing the inductive argument. As a
consequence of (3.11), the diagonal bLi:cks of Py, can trivially be guaranteed to match the
diagonal blocks of Py; we simply let each of the finest-scale W, matrices be an identity

®The choice W, = I is universally valid, though of virtually no practical value. owing to the high dimension
for z(s) to which it leads.
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matrix.

Given that the diagonal components of the covariance P,, can be matched exactly in
Py, the next question is to what extent the off-diagonal correlation can be matched. At this
point, the specific details of the W, matrices become important; in fact, most of the rest of
this chapter is devoted to determining values for these matrices. In Sections 3.3.3 and 3.3.4
we make precise the notion of approximate fulfillment of (3.8). Then, in Sections 3.4 and
3.5, we develop in detail algorithms for finding suitable W, matrices. Finally, we examine

further the nature of the approximate equality Pe, = P, through our numerical experiments
in Section 3.6.

3.3.3 The Generalized Correlation Coefficient

To measure the degree to which a given W, matrix approximately fulfills (3.8), we introduce
a generalized correlation coefficient. To define this coefficient, we start with the more
standard correlation coefficient p(m,m2) for a pair of scalar valued random variables 7; and
2!

El(m=Em))(n2—E(n2))]) ) _ .
V/Var(m) var(n,) if var(n;) > 0, for i = 1,2,
plm,n2) = -

0 otherwise.

Here, var(m;) denotes the variance of mi- We then define our generalization of p(+,-) in
two steps. First, for vector-valued random variables 7, and 79, we define their generalized
correlation coefficient (51, 72) by

p(m,m2) = IglaX{P(ff'/h, szﬂz)}
1,f2
where the dummy argument f; (for i = 1,2) is a column vector having the same dimension

as 7;. As an immediate consequence of our discussion in Section 2.4.2, we note that this
definition of (-, -) implies that

plm,m) = di
where d; is the first canonical correlation coefficient between 7; and 7. To extend the
definition of 5(-, -) to a collection of random vectors 71, ma, . .., Mk, we proceed in the following
way:
P(mima,--.yme) = maxp(ni, 7).
i#]

Each of these correlation coefficients has a conditioned version. In particular, the corre-
lation coefficient between scalar-valued random variables m and 72, conditioned on (possibly
vector-valued) random variable z, is denoted by p(n1,m2 | 2), and is defined as

E[(m1—E(m|2))(n2a—E(n3)2)) | 2]
V/var(n|z) var(ng|z)

if var(n:]z) > 0, for i = 1,2,
p(n,mz | z) =
' ' 0 otherwise,



62 Chapter 3. Multiscale Stochastic Realization

where
var(mlz) = B[~ Eml=)’ 2] (=1.2),

and where we recall that E(z]y) denotes the linear least-squares estimate of z given y. The
quantities 5(n1,7m2 | =) and p(n1,72,...,Mk | z) are defined in an analogous manner.
When the conditioning information z in p(n1,7m2 | 2) is a linear function of 71 and 75,

z = I/V(m),
n2

then we can express 5(n1,72 | z) in a particularly convenient form, as we now record for

T -
later use. Letting P, denote the covariance of ( n¥ nt ) , and defining P, as

P, = P,-P,WI(WP,WT)"'WP, (3.13)
pﬂl 13771772 )
= - 1 , (3.14)
( Pg;nz P’TZ
we have that -
~ n T 5
w = P, , 3.15
P (771,772 | ( M2 )) heRier, {fl qufz} (3.15)
where
F o= {fer™ fTh,f=1}. (3.16)

For future reference, we note two useful identities regarding the generalized correlation
coefficient. For one, the unconditioned and conditioned correlation coefficients are related
in the following fashion:

5(7717772 | 31) = ﬁ(ﬁ11ﬁ2)7 - (317)
where
i = m—E(mla), (1=1,2). (3.18)

This fact can be verified by direct application of the definitions.
Our second (and much more important) result demonstrates that g(-,- | ) is a non-
increasing function as the amount of conditioning information increases.

Proposition 5 For i =1,2 and for all matrices W;,

p(n,me | Wemi) < p(nu, m2)-

" A proof of Proposition 5 is contained in Appendix B. We emphasize that if the conditioning
information is not a function of either 71 or 7, alone, then the function (-, | -) may become
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an increasing one. For instance, if
El(m)(m ’72)}“(0.5 1)

,5(”717772) = 05’

then

but

pini,m|m+m) = 1L

We can, however, strengthen Proposition 5 a bit, by relaxing our restriction that all of the
conditioning information be a linear function of either n; or n,; in lieu of this restriction, we
restrict each individual scalar component of this conditioning information to be a function
of either m; or ny. We state this result as a corollary:

Corollary 2 For any pair (i1,42) € {{1,2} x {1,2}}, and for all matrices W1, W,

p(m,m2 | Wini,, Wams,) < p(mi,m2 | Wing,)

By combining (3.17) with Proposition 5, the validity of the corollary becomes immediate.

3.3.4 Precise casting of condition on W, matrices

The generalized correlation coefficient can be employed to formulate precise conditions that
each of the W, matrices must satisfy to fulfill their role of approximate decorrelation. To
describe these conditions, we begin by introducing some convenient, special notation. For
any matrix W, we let rows(W) denote the number of rows in W. We denote the set of
matrices having exactly n columns and no more than k rows by My ,, or more typically by
just My when there is no ambiguity about the value of n. Thus, for W € My, rows(W) < k.
As a final bit of notation, we denote by A/, , the following set of matrices:

Ny,s = {W1 ﬁ(Xsal,Xsazy-- <y Xsagr Xs© ‘ WXs) < 7} . (319)

‘We see that any W € N,  leads to a state vector z(s) = Wy, that fulfills the decofrelating

role (2.3) to within a tolerance .
As we stated at the beginning of Section 3.3, there are two formulations of the multiscale
realization problem that are of interest. For the first, we let v, denote the degree to which

the state vector z(s) should fulfill its decorrelating role (with v, € [0,1]), and we seek a W,
satisfying

W, = arngin rows(W). (3.20)

ENvs,s
In the alternative formulation, let A, <denote the maximum allowed dimension of the .tae

vector z(s), and we seek a W; satisfying

W, = arg Wlél}j[]’\ ﬁ(Xsal 1 Xsogy o+ oy Xsagy Xs¢ | WXS) ’ (321)
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We refer to both (3.20) and (3.21) as versions of the decorrelation problem, where the
objective is to (approximately) decorrelate the random vectors Xsays Xsags- - -+ Xsag a0 Xse.

Clearly, our two formulations of the decorrelation problem are closely related. In fact,
given an algorithm that yields a solution to one, that same algorithm can in principle be
used to solve the other. To see this, let us suppose in particular we have an algorithm that

solves (3.20). We can then iteratively apply this algorithm to find jointly the smallest real
number v* in the set

{velo1; My, NN, #0} (3.22)

and a matrix Wy € M, NN, ,; the resulting matrix W; is guaranteed to be an optimal
solution to (3.21). This iterative solution to (3.21) has a very simple structure, in which
we bracket the value v* by using the classical bisection method for root finding [57]. Our
initial bracket for v* is the interval [y_,~v+], with y_ = 0 and v, = 1. At the i-th iteration,
we then let v be

Y+ t-
’7 - D) "

F

and we solve for W as follows:

W = arg min rows(W).
WEN,s

If rows(W) > X, then we update y_ = v; otherwise, we update 74 = ~. Either way, we
then proceed to the 7 + 1-th iteration, continuing until the width of the bracketing interval
[v—,7+] is less than some prespecified tolerance e. At that time, we terminate, and set
¥* = <4, which is guaranteed to be within € of the actual minimum element of the set in
(3.22).

Going the other way, suppose we have an algorithm that solves (3.21). We can then

repeatedly apply this algorithm to find jointly the smallest non-negative integer k* in the
set

{k20; MV, 20},

and a matrix W, € My. AN, ;. This matrix is guaranteed to be an optimal solution to
- (3.20).

These iterative approaches for solving (3.20) and (3.21) highlight the intimate relation-
ship between our two formulations of the problem. Furthermore, they will provide valuable
insight as we carry out our algorithmic development in Section 3.4.

3.3.5 Summary

The multiscale stochastic realization problem has now been reduced to one of determining
the W, matrices, each parameterizing a state vector as in (3.7). For an exact realization,
ea:h W, matrix must fulfill (3.8) exactly, =c equivalently, must fulfill (3.20) with v, = 0.
On the other hand, for a reduced-order realization, either (3.20) must be fulfilled for some
choice of 75, or (3.21) must be fulfilled for some choice of A.

’ Deferring until Section 3.4 the details of how the W, matrices are found, to solve the
decorrelation problem, we summarize as follows our algorithm for building a multiscale
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model.

Algorithm 1 (Overall modeling approach)
Step 1. For s =0 (i.e., the root node),
a) Determine Wj.
b) Set P(0) = WoPy, WT.
Step 2. For scale =1.2,..., M,
a) For all elements of the set {s; m(s) = scale},
i) Determine W;.
ll) Set Px(s) = Wsts I’VST
iii) Set A(s) = W,Py,y,, WEPZ".

1/2
iv) Set B(s) = (Pa(s) — A(5)War Py WE) .

We can thus find all the model parameters in a single sweep from coarse to fine scales,
determining W, for each node as we go along, and thereby structuring the evolution of the
multiscale dynamics so that the desired statistical behavior emerges at the finest scale.

The most attractive feature of this approach is its decomposition of the modeling prob-
lem into a collection of independent sub-problems that can each be solved myopically. We
hasten to add, however, that by proceeding in this myopic fashion, we sacrifice tight control
over the quality of the overall model fit. While in an informal sense, we certainly expect
that there is a close relation between this overall quality of fit and the manner in which
the W, matrices are determined. this relationship is complicated, and is not at present
well understood. For instance, it is unclear how fulfillment of (3.20) for some choice for -,
relates to the loss in mean-square error (MSE) performance of the resulting model when
it is used to carry out least-squares estimation; we expect that as <, is decreased, the loss
in MSE performance will also decrease, but the precise nature of this relationship is not
clear. Certainly, this is a topic in need of further research, as we discuss in greater detail
in Section 6.2.1.

3.4 Solving the Decorrelation Problem

Now that we have a precisely stated modeling problem, we proceed to confront the heart
of that problem, namely the determination of the W, matrices. We begin by characterizing
completely the optimal solutions to (3.20) and (3.21) for the special case of decorrelating a
pair of random vectors. We then exploit these results to develop algorithms for decorrelating
a whole collection of random vectors. These algorithms yield matrices W, that can be
applied directly in Algorithm 1 to obtain multiscale models.

3.4.1 Decorrelating a Pair of Random Vectors

As a first step toward solving the general decorrelation problem, we consider here the
problem for the special case of decorrelating a pair of random vectors. Let us suppose 7 is
a zero-mean random vector, having (n; + ny) components and covariance matrix P,. We
partition 7 into two sub-vectors, having respectively n; and no components,

no= (aF )
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and we similarly partition the covariance matrix.

P, = (P};[u P}‘gmz )
mn2 n2
The specific problem we consider is that of decorrelating 71 from 72, where the decorrelating
information is given by W, for some matrix W that we must determine. In a manner
analogous to (3.20) and (3.21), we consider two versions of the decorrelating problem. In the
first. we let v denote the degree to which the information Wn should fulfill its decorrelating
role (with v € [0,1]), and we seek a matrix W satisfying

W = a,rgﬂx/réi/{’; rows(W), (3.23)

where AV, denotes the following set of matrices:
Ny = (W plm.me | Wn) < 7}

In the second version. we let A denote the maximum allowed dimension of the decorrelating
information Wn, and we seek a matrix W satisfying

- in 5 Wa). 13.24
w argwnel}axp(m,nzl 1) (3.24)

To supply a context for this problem, the random vectors 7; and 7, might represent, for
instance, the left and right halves, respectively, of the finest scale of a multiscale process
indexed on a dyadic tree (i.e., 71 = X0a, and 72 = Yoq,). In this case, both (3.23) and (3.24)
are directly applicable to determining the information content of the root node of a dyadic-
tree representation of xo. Alternatively, in the context of our discussion in Section 3.2 of
time-series realization, 71 (72) might correspond to 7past (Mfuture)-

The following proposition provides a complete characterization of a matrix W that
optimally solves (3.24). It turns out that the solution is closely related to the Acanonical
correlation matrices for (71,72). We denote this triple of matrices by (73,73, D). where
D = diag(dy, da, ... ., dm,,), with

1 2 dy 2dy 2 -+ 2 dmy
and mi; denoting the rank of the cross-covariance Py p,.

Proposition 6 For 0 < A < myy and fori=1,2,

in p W = in 7 Win:) = p(m, Tiam) = dasp. (3.25
HEI}B(A p(m,m | Wn) Hélj\l}u o(m,n2 | Wins) (e, m2 | Tiams) A+1- )
For A > m1o,
min 5 W) = min aln,m | Wim) = plnv,me | Tim) = 0. (3.26
Web\r/lb‘ P("71’772 I ) W,-elftrrlu p(m, m2 | n:) p(m1,m2 | Tin:) ( )

A complete, detailed proof is contained in Appendix B.
As a corollary, we have the following result, which provides a complete characterization
of a matrix W that optimally solves (3.23). To prepare for a statement of the corollary, we
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define (for i = 1,2) N, ; to be the set of matrices
Nyi = Wi pln,me | Wimi) < v} (3.27)
Corollary 3 For v € [0,1],

min rows(W) = min rows(W;) = rows(Ti;) = j*,
WEN-, ( ) Wie o ( z) ( 1,1) J

with T1; € Ny, and where j* is such that

(with dmy, +1=0).
Proof: Let j* satisfy (3.28). If 7* = 0, then we are done. If 5* > 0, then by Proposition 6,

in  pln,m | Wn) = dj= > 7. 3.29

win p(n1,ma | W) i > (3.29)

But (3.29) implies that rows(W) > j* for W € M., and by combining this fact with the
properties of 7 j-, the corollary follows. QED.

3.4.2 Decorrelating a Collection of Random Vectors

Harnessing Propositions 5 and 6, as well as their corollaries, we now develop algorithms for
addressing (3.20) and (3.21). We describe each algorithm, in turn, and then we examine
their optimality.

Throughout, we denote by (Tmi,f'( mi)c,f)sﬂ-) the canonical correlation matrices associ-
ated with (Xsas, X(sa;))» Where the diagonal elements of ﬁs'i are denoted by d! ;,d?

S“&" s‘,L-,....

Also, we will find convenience in having special notation for the number of diagonal elements
of Dy, that are strictly greater than +; we denote this number by o, ;(7v):

ooiln) = {5 di>n)].

Solving for W, to address (3.20)

Our first algorithm yields a matrix Ws € N,, 5, for any order tree ¢ > 2. The construction
of W is carried out in a sequence of g stages, where each stage consists of two steps:
(i) determination of the information required to decorrelate a pair of random vectors as in
Corollary 3, and (ii) incorporation of the resulting decorrelating information into the matrix
W.

At the first stage of the procedure, we focus on decorrelating Xsq, from X(sq,)c- To do
so, we define NV, 1 as

N‘)’,l = {Wy ﬁ(_XsalaX(sm)c | WXBC!1) S ’Y} )
and then apply Corollary 3 to yield a matrix W ; satisfying

Ws1 = arg_min rows(W).
WE 3.1
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Finally, we let
wh o= (W, 0),

where we pad with just enough zeros so that

Xso

Xsaz

Wslxs = Wsl -
Xsaq

= Ws,leala

and where the superscript 1 denotes that this matrix has been produced in the first stage
of the procedure.

Let us now counsider the ¢-th stage of the procedure, for i € {2,3,...,q}, where we
inductively assume that stages 1 through ¢ — 1 have already been executed. In a manner
directly analogous to the first stage, we focus in the i-th stage on decorrelating x;q, from
X(say)e- To do so, we define AV, ; to be

S

Nyi = W5 B0t Xsane | WXsas) < 7}, (3.30)
and then apply Corollary 3 to yield a matrix W, ; satisfying |

Wi = arngin rows(W). (3.31)

€ Y5t

Finally, we define W? to be the block-diagonal matrix
Wi = diag(W,1, Weo,..., W, 0), (3.32)

where we pad with enough zeros so that

XSC!]
- | ox

W;Xs - W;‘ 5'02
Xsaq

XSOq

. : Xsaz

= dla'g(Ws,la Ws,2, LI Ws,i) .
Xsa;

Thanks to Corollary 3, the matrix W} preserves all the decorrelating work done in the
first 1 — 1 stages of the procedure and captured in W:~!. In particular, we are assured that
forj=1,2,...,1,

ﬁ(Xsaj,X(saj)" | W:XS) < 5(Xsoz_—,", X(sa;)e |W5Xs) < ﬁ(xsajv)((saj)‘ | WSJXsaj) < s,
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and hence

T .
f’(Xsau sy Xsas ( XZ‘OH+1 o X{aq XZ; ) | W;XS) < %

Thus, since W € N ,,, we can complete the procedure by simply letting W, = WJ.
The following is a summary of our algorithm for solving (3.20).

Algorithm 2 (Solving for Wy to address (3.20))
Step 1. Fori=1,2,...,q,
a) Determine (’f’wi, T(ml.)c,ﬁs‘i) associated with (Xsasr X(ss)e)-
b) Let j* be the smallest integer for which d-l':. < s
c) Set W, = Asai,jx.
Step 2. Set W, = diag(W,,1,Ws2,..., Wsq).

As this summary reveals, we do not ever actually use ’f’(mi)c, and so in practice this
matrix need not be computed. Thus, we can reduce computation by modifying Step la to
the following:

Step la) Determine (T%q,, 155,1-) associated with (Xsa:» X(sa:)e)-

Solving for W, to address (3.21)

In keeping with the discussion in Section 3.3.4, we use Algorithm 2 as the kernel of an
iterative procedure for addressing (3.21). We summarize this approach as follows.

Algorithm 3 (Solving for W to address (3.21))
If dimension(x;) < As, then set Wy = I.
Otherwise
Step 1. Fori=1,2,...,q, calculate (Tmi,f)s,i) associated with (xmi,x(mi)c).
Step 2. Find 7} = min{y € [0,1]; 37, 7s5.i(7) < A}
Step 3. Fori=1,2,...,q, set W,; = Tsaii00:(v2)-
Step 4. Set W, = diag(W, 1, Ws2,..., W, ).

We remark that if ¢*~! < A\, < ¢*, Vs on a g-th order tree, then the if condition will
hold for all the nodes at the k finest scales. On the other hand, for the coarser scales, the
otherwise condition will hold. Also, we note that just as in Algorithm 2, there is no need
to compute T(sai)c, thus explaining its absence in Step 1.

Optimality of Algorithms 2 and 3

Let us now consider the optimality of the two foregoing algorithms. We demonstrate that
while Algorithm 2 is guaranteed to yield a matrix W, € AN ,,, there is no guarantee that
W will have the minimum number of rows of any matrix in M, ~,. Thus, since Algorithm 3
is based on Algorithm 2, it too must be sub-optimal.

One of the primary sources of sub-optimality in Algorithin 2 is its restriction to block-
diagonal matrices W,. While our discussion in Section 3.3.3 indicated that relaxation of the
block-diagonal form of W can lead to an increasing function

P(Xsar> Xsags - - - » Xsagr Xse» | Wsxs)
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as the amount of conditioning information increases, there is no guarantee that this increase
will occur in general. In fact, to the contrary, it is fairly straightforward to concoct examples
for which there exists a non-block-diagonal matrix W € M., ; having fewer rows than the
matrix W, produced by our algorithm. As a specific example, let ni, ng, n3, v1, v, v3
be scalar, independent, identically distributed, zero mean, unit variance random variables,
and suppose that we are building W, for a particular node on a dyadic tree for which
o =mn1 +ng + ng, with

o+v o+ v o+ v3
Xsay = ( n ! )7 Xsaz = ( ns ): and Xse = ( na )7

If our objective is to choose Wy so that

ﬁ(XsalaXsaz, X s | WsXs) < 0.5, (3.33)

then a bit of algebra will reveal that by letting W be such that Wyx, = o (requiring that
W, have only a single row that is in violation of the block-diagonal restriction), then (3.33)
can be achieved with equality. On the other hand, the symmetry of this particular problem
implies that Algorithm 2 will yield a matrix W having at least three rows, in order to fulfill
(3.33), which is clearly sub-optimal.

Even within the class of block-diagonal matrices, Algorithm 2 is not guaranteed to find
a minimal matrix. One reason is that the decorrelating information generated in each of
the ¢ stages is determined without regard for the information generated in the other stages.
This problem can be partially mitigated by making a single modification to our original
algorithm. Specifically, we modify the definition of A/, ; from the one given in (3.30) to the
following alternative:

N,yi = {W? ﬁ(XsaiaX(sag)f | Wsi—le’WXsa.-) < 'Y}- v (3.34)

We thereby obtain, at stage ¢ of the procedure, a matrix W, ; which takes better account
of the decorrelating information generated in the ¢ — 1 preceding stages. As a result, the
number of rows in W ; is non-increasing as (3.30) is replaced by (3.34), and so the number
of rows in. the final W, is also non-increasing as (3.30) is replaced by (3.34). However,
a considerable price in computational complexity must be paid to use this modified form
of Algorithm 2, since we must calculate conditioned covariance matrices at each of the ¢
" stages.

Moreover, while this modification, in which we replace (3.30) with (3.34), will certainly
improve performance, we are still not guaranteed to find a minimal matrix, even within the
class of block-diagonal ones. In fact, the sequential nature of the stages of the algorithm is
such that the output matrix Wy is highly dependent on the ordering of the block components
of xo,

T
T T T T T
Xo — ( Xsay Xsaz ~°° Xsaq Xse© ) .

To clarify this remark, let P be any matrix that permutes the block components of xg, tr
instance, P might be such that

T
By /T
(PXO)T = ( X?aq X?qu_l T X\zﬂal Xse ) .
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If we then apply our algorithm to the random vector Pxg, we will obtain a matrix W/ for
which '

ﬁ(Xsal L] Xsazy v quaq: Xsc I T/VsIPXS) S 75a

and hence, PW, € N,, ;. The point here is that W, may be unequal to PW!, and the latter
matrix may very well have fewer rows than the former.

To construct a specific example, let n, vy, vo, v3 and v4 be scalar, independent, identically
distributed, zero mean, unit variance random variables, and suppose that we are building
W for a particular node on a dyadic tree for which

n+ v n+vs
Xsoy = ntvy |2 X2 TN and  Xse = n+ vy

By inspection, if we let W, be such that W;x; = Xsa, (requiring that W have only a single
row), then

A(Xsa1s Xsazr Xse | Wexs) = 0.

On the other hand, because of the ordering of the stages of our algorithm, the output will
be a matrix having two rows, for vy; = 0.

To the best of our knowledge, the only way to obtain a matrix W that is insensitive
to this permutation issue is to try all block permutations, and use the one yielding the
minimum number of rows.

3.4.3 Calculating the Canonical Correlation Matrices

At the core of Algorithms 2 and 3 is the need to calculate the canonical correlation matrices
(T, D,) associated with pairs of random vectors of the form (s, xs¢). From Section 2.4.3,
we know that the calculations associated with a single pair (s, xs¢) require roughly O(N3)
floating point operations, where N is the dimension ys. Thus, for problems of practical
interest to us, the exact calculation of these matrices is generally out of the question. For
instance, if xo represents a random field of dimension 256 x 256, then N will be roughly
5x10%.

For Markov random processes and fields, this computational load can be reduced consid-
erably, by properly exploiting Proposition 4. In particular, even if xo represents a WSMRF

as large as 256 x 256, then the canonical correlation matrices associated with (xs, xs¢) can

be computed in a manageable fashion to machine precision. Moreover, for non-Markov
processes and fields, a slight generalization of this approach serves effectively as a method
for obtaining good approximate results.

~ We illustrate the approach by considering, in parallel, a 1-D example and a 2-D example.
In our 1-D example, we let xq represent the values of a first-order, scalar-valued WS Markov
process over a segment of length 2562, while in our 2-D example, we let y represent the
values of a first-order, scalar-valued WSMRF over a 256 x 256 square region of the plane.
We focus on a particular node ¢ for which X, and x,c contain the values of the process (field)
at the subsets of puints displayed in Figure 3-1a (Figure 3-2a). Specifically, x, contains the
values of the process (field) at the 8 (64) grid points marked with circles, both filled and
not filled, in the white region, while x,c contains the values at the all other grid points;
subsets of these other grid points are displayed in the figures, where they are marked with
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Figure 3-1: Mlustration of our approach to finding the canonical correlation matrices associated with
(Xs,Xs¢) for (a) a first-order WS Markov process, and (b) a non-Markov random process. In both cases, the
vector s contains the field values at the 8 grid points marked with circles (both filled and not filled) in the
white region, while x,: contains the values at the other grid points, all marked with squares (both filled and
not filled). Also in both cases, the vector u, contains the subset of y, values at the grid points marked with
filled-in circles, while p - contains the subset.of xs« values at the grid points marked with filled-in squares.

The dimension of both g, and p,ec is lower in (a) than in (b), owing to the WS reciprocal nature of the
process in (a).
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Figure 3-2: Illustration of our approach to finding the canonical correlation matrices associated with
(Xs»Xxs<) for (a) a first-order WSMRF, and (b) a non-Markov random field. In both cases, the vector Y,
contains the field values at the 64 grid points marked with circles (both filled and not filled) in the white
region, while x,« contains the values at the other grid points, all marked with squares (both filled and not
filled). Also in both cases, the vector g, contains the subset of x, values at the grid points marked with
filled-in circles, while ps: contains the subset of x,: values at the grid points marked with filled-in squares.
The dimension of both 1, and p,e is lower in (a) than in (b), owing to the WS Markov property of the field
in (a).

squares, both filled and not filled.

Let us consider how Proposition 4 can be exploited to simplify the calculation of the
canonical correlation matrices associated with (xs,xsc). To use Proposition 4, we must
devise selection matrices ©; and ©,c such that the random vectors p, and e,

ks = Ogxs and pse = Ozexse, (3.35)
capture the correlated component of xs and X, in the sense that
E [(xs = B(xslm) (xse = B(xse|w))T]| = 0, (3.36)

-for both p'= p, and p = pse. Thanks to the Markov property, this task can be carried out
by inspection for both of our examples. In both cases, we simply let ©, and ©,c be selection
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matrices® chosen such that p, and pse contain the values of x, and ys at their respective
boundary points, where these boundary points are marked in the figures with filled-in circles
and squares, respectively. If we denote by (7%, T%, D) the canonical correlation matrices
associated with (us, <), then thanks to Proposition 4,

T, = T¢©,, and D, = D (3.37)

To see the computational savings that can result, we note that in our 2-D example, the
dimension of pge is roughly 5 x 10~ times the dimension of x;e, this approach reduces the
computational cost of determining (Ts, D,) by roughly a factor of 6 x10°. From this example,
the structure of our approach should be clear, for any case in which we are modeling a WS
Markov random process or field.

For non-Markov random processes and fields, there is no guarantee that the correlated
component of (xs, xs<) can be captured by boundary information over a region as thin as the
one used in our foregoing examples. To compensate for this fact, we modify our approach
slightly for the non-Markov case. Our modified strategy is to make the boundary region as
thick as possible for each of x; and x,e, subject to the constraint that the resulting vectors
ps and pge have dimension no greater than some prescribed limit. Using the same graphical
conventions as in Figures 3-1a and 3-2a, this idea is illustrated in part b of the respective
figures; in Figure 3-1b, 6 is the limiting dimension of both s and ps, while in Figure 3-2b,
132 is the limiting dimension of both x, and ps. Once p; and psc have been defined, we
proceed exactly as in the Markov case.

Overall, our approach for both the Markov and non-Markov cases can be summarized
as follows:

Algorithm 4 (Calculation of canonical correlation matrices)
Step 1. Impose an upper bound 8,4,s on the number of rows in ©; and Oe.
Step 2. Define selection matrices @, and ©,ec.
a) Make boundary regions as thick as possible, with up to 8,y in each of O,
and Oe.
b) Set us = Oyx, and pse = Oge xse.
Step 3. Determine (T;”,Dg) associated with (us, pse).
Step 4. Define (T, D;) as in (3.37).

We remark that the selection matrices ©, are quite sparse, and thus, the matrix mul-
tiplication involved in the definition of Ty in (3.37) should be computed with care, taking
‘advantage of this sparsity. This issue is discussed in detail, in the next section, where we
summarize our overall modeling algorithm.

3.5 Summary of Modeling Algorithms

Taken together, Algorithms 1-4 contain all the details of our approach to multiscale mod-
eling. Here we reassemble those details into a single, coherent package. We then describe
the considerable simplifications that are possible when xq represents a process or field that
is WS stationary.

SA selection matrix consists solely of zeros and ones, with the additional restriction that each row have
exactly one non-zero component and each column have at most one non-zero component.
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3.5.1 General Algorithm—No Stationarity Assumption

Algorithm 1’ (Overall modeling approach, comprehensive summary)
Step 1. For s = 0 (i.e., the root node),
a) Determine Wy, using either Algorithm 2’ or 3'.
b) Set P(0) = Wo P, W{ .
Step 2. For scale =1,2,..., M,
a) For all elements of the set {s; m(s) = scale},
i) Determine W, using either Algorithm 2’ or 3'.
il) Set, P:c(s) = WSsz W;T
iii) Set A(s) = WPy, x,; WLP3'. /
1/2

iv) Set B(s) = (Pm(s) — A()Wey Py, WT)

Calculating W matrices

Algorithm 2’ (Solving for W to address (3.20), comprehensive summary)
Step 1. Fori=1,2,...,q,
a) Define (©;q,, ©(5q)) s appropriate selection matrices.
b) Set psa, = OsaiXsa; and fi(sa;)e = O sas)e X(s:)e-
c) Determine (T#,,, D¥,) associated with (isay, fi(sa;)e)-
d) Set Tio, = T, Osq, and D, ; = D¥,.
e) Let j* be the smallest integer for which di:;- < s
f) Set Ws,'i = Asai,jn
Step 2. Set W = diag(Ws 1, Ws2,..., Wi q)-

Algorithm 3’ (Solving for W to address (3.21), comprehensive summary)
If dimension(x;) < Ag, then set W, = I.
Otherwise
Step 1. Fori=1,2,...,q,
(a) -(d) Carry out steps 1(a), (b), (¢) and (d) of Algorithm 2', without
modification.
e) Define o, ,(v) = Hj; ;> 'yH
Steps 2-4. Carry out steps 2, 3 and 4 of Algorithm 3, in Section 3.4.2, without
modification. '

The computational complexity of both Algorithms 2’ and 3’ is O(63,,,,), where 6rus
denotes our imposed upper-bound on the number of rows in each the selection matrix ©;.

Calculating P(0), A(s) and B(s) -

"Let us now consider how we exploit the sparsity of the W, matrices to calculate A(s) and
B(s) and P,(,), beginning with consideration of P;(;). Towards this end, we note that the
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covariance P,, can be block-decomposed as

Px.val PXaczl Xsag ’ PX:al Xsaq
PXsa2X3a1 sza2 T PXS&QXsaq
P = : : " : ’
XsagXsay PXsaq Xsag PXso:q

and hence, in light of the block-diagonal structure of W, P(5) can be block-decomposed in
the following way:

Pysy = WP, WT

W1 P, WII W 1Py sz e WPy wTI

Xsaq sary Xsag say Xsag .S:I,_‘q
T T e
W5.2me2 Xsay Ws,l Ws,2 Xsag Ws,2 V{/'s,prm2 Xsagq Ws,q
T T ... T
WS)qPXaczq Xsaq WS,]. WsquX.!aq Xsag WS,2 W5|qPX:nq Ws,q

Using now the definition of W ;, we see that each block component of P(s) can be decom-
posed as

-

Ws-iPXsaiXsaj W.z:j = Tsahki (650i PXsa,' Xsaj esTaj) Tﬁj,kj’ (338)

where k; and k; are appropriate integers (whose values follow from the particular algo-
rithm used to determine the matrices W,; and W; ;). The important point here is that
because ©,,, and Osq,; are selection matrices, the calculation of matrix products of the

form @sa‘,PXmiij Gfaj involves nothing more than selecting elements from the matrix

Py, Xsa,; Since we select 62, elements, the complexity of calculating these matrix prod-

ucts is O(62,,,,), independent of the dimension of Pysa;xse;- Thus, the overall computational

complexity of calculating (3.38) is upper-bounded by O(63,,,), and since the complexity of
calculating Py is roughly q® times the effort required to calculate any single block of Py,
it follows that the total complexity of calculating Py (s is upper-bounded by 0(q%63,,,).

By a very similar line of reasoning, it follows that the calculation of A(s) and B(s) can

also be carried out with complexity O(¢?62,,,,). We omit the details.

TOowsS

Overall computational complexity

The computational complexity of this model-building algorithm is O(63,,,) per tree node.
Letting NV be the number of finest-scale nodes, it thus follows that the overall complexity
is O(N§?

T‘O’UJS)'

3.5.2 Specialized Algorithm—Stationarity Assumption

When the random process or field to be modeled is WS stationary (but not necessarily
WS Markov), we can streamline Algorithms 1, 2’ and 3'. The most immediate effect of
stationarity is that the covariance matrix P, becomes independent of position within any
fixed scale. Also, the cross-covariance matrix Py,x,y takes on only ¢ distinct values at
any fixed scale. In particular, at a fixed scale, every node s that is the i-th child of its
parent node s (so that s = sJa;) shares the same value for Py, fore=1,2,..., ¢
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Finally, and perhaps most importantly, stationarity can be exploited to develop and justify
an approximation scheme in which the matrix Wy becomes independent of the location of
the node s within any fixed scale. By an abuse of notation, we thus write W, = Win(s)s
where we defer until later in this section the details and justification of this approximation.
Let us consider the effect of stationarity on Algorithm 1. For one, the covariance matrix
Pys) satisfies Py(s) = Prys). Also, the matrices A(s) and B(s) can take on only ¢ distinct
values for each scale, where the i-th value is taken, for ¢ = 1, 2,..., ¢, if node s is the s-th
child of node s5. We thus again abuse notation by writing A(m(s),7) and B(m(s),4) rather
than A(s) and B(s), where ¢ is the unique element of {1,2,...,q} for which s = sj0;. With
these simplifications established, the following algorithm is used in lieu of Algorithm 1.

Algorithm 5 (Ouverall modeling approach, stationary case)
Step 1. For s =0 (i.e., the root node),
a) Determine Wy, using either Algorithm 6 or 7.
b) Set P(0) = Wy Py, W¢ .
Step 2. Form =1,2,..., M,
a) Determine W,,, using either Algorithm 6 or 7.
b) Set P, = W,, P, ,WZX, using any node s at scale m.
c)Fori=1,2,...,q,
i) Select a node s at scale m such that s = sya;.
ii) Set A(m,1) = Wi Py,x,. WE_ Pt

iii) Set B(m,i) = (Pm — A(m,i)Wom_1 P,

s Xs

W£>1/2.

Calculating W,,

One might intuitively expect that when stationarity holds, the W, matrices automatically
satisfy W, = Wi,(,y. The difficulty, though, is that we are only realizing processes and
fields over finite sets of grid points, and so boundary effects can arise that disrupt the offset
invariance of the W, matrices. To see this fact, we examine our relations (3.20) and (3.21)
for determining the W, matrices. Both of these relations are closely tied to the value of the
following generalized correlation coefficient:

ﬁ(Xsal y Xsags- -+ y Xsagr Xs© | WXS)' : (339)

While stationarity assures us that

P(Xsarr Xsazr -+ Xsaq | Wxs) = P(Xoar» Xoag: - - - y Xoag | Wxo)

for any two nodes s and ¢ at a common scale, the finiteness of xo implies that the statis-
tical relationship between x; and ys will almost always be different from the statistical
relationship between x, and x,c, and as a consequence of this difference,

ﬁ(Xsoszsaz sy Xsagy Xs© | Wxs) # ﬁ(Xfmu y Xoags- -+ Xoag) Xo© | Wxo).

The implication of this last inequality is that we must modify our relations (3.20) and
(3.21) in order to achieve W, = m(s)- As we now show, the needed modification is
‘straightforward. The key is to embed the vectors xg, xs and X, in an larger vector ¥o that
contains the values of the random process or field (to be modeled) over its entire, possibly
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infinite, extent; actually, the only case in which ¥g will be finite is when the random process
or field is indexed on a circle or toroid, respectively. With Yo embedded in %o, we can
readily do away with all boundary effects. To proceed, we define ¥, to be the particular
sub-vector of o that contains all the values of ¥¢ that are not in the vector xs; in other
words, Xsc contains y,e as a sub-vector, and is also such that

— Xs
Xo = Ps ( Tse ) )
for some permutation matrix P;.

For the purposes of determining the W; matrices, we now simply replace ysc with ¥,e
n (3.19)-(3.21). The immediate result is that W, = Win(s), s0 long of course as As = Ay
Or ¥s = Ym(s)- Lhere is a tradeoff involved in this replacement strategy. On the one hand,
our decorrelation task is made more difficult with the replacement, because now each of
the vectors Xsa,, Xsags. - - Xsey Must not only be decorrelated from x;e, but also from
the larger vector ¥sc; we are effectively being more conservative than we have to be, as
we determine the amount of decorrelating information to include in W,x,. On the other
hand, by being more conservative, we achieve the relation W, = Wi(s), whose simplifying
effect has already been seen on both the overall flow of our modeling algorithm, and on the
symmetry of the resulting parameters A(s) and B(s). Moreover, the new matrix W, is more
intrinsically tied to x, than the old Wy, in the sense that the new matrix is independent of
the size of the finite subset of xo for which we are building a multiscale model. Thus, if we
later decide to build a multiscale model for a larger region of the process or field ¥g, then
we can still use the same W, matrix already computed.

We now describe our modified algorithms for determining the W, matrices. An impor-
tant observation in this regard is that the canonical correlation matrices (Ty, D,) associated
with (x5, Xsc) satisfy T, = Tm(s) and D, Dm(s).

When addressing (3.20), the following algorithm is used in lieu of Algorithm 2’ to cal-
culate W,,.

Algorithm 6 (Solving for W, to address (3.20), stationary case)
Step 1. Let s be any node at scale m; let o = soy.
Step 2. Define (0,,©,) as appropriate selection matrices.
Step 3. Set gy = Oy X0 and poc = Oye Yoo,
Step 4. Calculate (T“_H,Dm_,_l) associated with (g, fige).
Step 5. Set Tm+1 T"_H_1 and Dm+1 D# -
Step 6. Let j* be the smallest integer for which dﬁ:_‘_l < Y.
Step 7. Set W,, be a block-diagonal matrix, having ¢ blocks, each equal to

Tm+l,j*-

On the other hand, when addressing (3.21), the following algorithm is used in lieu of
Algorithm 3’ to calculate W,,. Symmetry here tells us that we should devote an equal
number of components of the state vector z(s) to decorrelating each of Xsa;, Chisay, .- -,
sag fTOM X(50,)e, X(saz)er - - > X(saq)es TeSPectively; hence, A, should be set to a multiple of
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Algorithm 7 (Solving for We, to address (3.21), stationary case)
If dimension(,\/s) < As, then set Wn=1.
Otherwise

ional complexity of both Algorithms 6 anq 7is O(03,, ), where Orows
denotes oyr Imposed upper-bound on the number of rows ip each the selection matrix @,,.

Overall computationa] complexity

In contrast to our general modeling algorithm, the computational complexity of this spe-
cialized algorithm i O(82,.,,) per séule. Hence, the overa]] computational complexity js
O(M63

rows/:

3.6 Application of the Model-Building Algorithms

In this section, we present four multiscale modeling examples that display the generality
and effectiveness of our modeling procedyre,

3.6.1 WwWs Stationary Random Process Having a Damped-Sinusoid Cor-
relation Function

For our first eXample, we consider a stationary 1-pD random process Yn whose correlation
function Ryy(-)is a damped sinusoiq:

structure, which wao €Xpect to pose a most stringent chalienge to our mod
We consider the problem of building a multiscale model, indexed on 5 dyadic tree, to

realize a 128-point Segment of this process. To assign values tq the parameters of Ry ()
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Preliminary analysis: value to use for dimension constraint

Let us begin with some preliminary analysis to determine a reasonable range of values to
use for our constraint on multiscale model dimension A,,. Although this analysis is not,
strictly speaking, necessary to apply our algorithm, it is nevertheless useful, and it makes
some nice ties back to our examples in Section 2.3 on realizing on Markov processes and
fields.

The spectral density Sy, (-) corresponding to Ryy(-) is obtained as follows:

Sy(z) = z Ryy(n)z™"

n=-—Cco

1— Bt +(z+271)

3.41
= FD( - p= )~ B~ 52) (G40
with
1 .
g = e~(a-V=lwo) g = §(ﬁ+l3 )(|512 - 1>~
We can factor (3.41) as
Syy(zy = H(z2)H(z™"),
where, for the correlation parameter values given in (3.40),
—0. - 0.7787z7! —0.1562(1 — 0.7787z"!
H(z) 0.1562(1 — 0.7787z7") - 0.1562(1 787z71) (3.42)

(1-Bz1)(1-p"2"1) = 1-19198z"1 +0.980227*

This transfer function is causal, stable and indicates that y, can be realized by a second-
order state-space model, driven by white noise, exactly as in (3.2). For example, one possible
choice for the state-space parameters is as follows:

1.9198 —0.9802 1
A = ( X . ) b_<0_7944), ¢ = ( —0.1562 0).(3.43)

Now that we have discerned the Markov structure of the process ¥y, it follows readily
that there must exist a low-order, exact multiscale representation for y,. In particular, by
closely following the construction of the models in the examples of Section 2.3, we can build
an exact realization in which the state vectors have a dimension no greater than 8, with

each state vector containing appropriate boundary information. At the root node, the state
is defined as ’

2(0) = (27(0) 27(63) =T(64) 2T(127) )T,
while at the two children of the root node, the state are defined as
z0m) = ( 27(0) 2T(31) :T(32) 2T(63) )T
z(0cg) = ( ZT(64) 2T(95) 2T(96) zT(127) )T. (3.44)

Scale after scale, we continue in this manner to divide the process-into conditionally in-
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Figure 3-3: Comparison of the fidelity of four multiscale models for representing a stationary random
process having an oscillatory correlation function. The solid curve displays the desired correlation function,
which can be realized exactly with an 8-th order multiscale model. The correlation function of the 6-th order
model is very close to the exact, while there is more noticeable degradation in the correlation function of
the 4-th and 2-nd order models.

dependent sub-domains, until at the fifth scale, all the values z(0),2(1),...,2(127) have

been generated, and thus, thanks to (3.43), all the values y(0),y(1),... ,¥(127) have been
generated.

Evaluation of the multiscale models

Motivated by our preliminary analysis, we build four multiscale models, with the state
dimension constrained to be no greater than 2, 4, 6 and 8, respectively.

In Figure 3-3, we display the correlation structure of the finest-scale of these processes.
To carefully describe the content of these plots, we let £} denote the random vector com-
- prising the finest-scale of the particular multiscale process in which the state vectors are
constrained to have dimension no greater than A; we thus have &2, &3, €8 and 8. We denote
the i-th component of £} by £3() (for i = 0,1, ... ,127). Finally, to account for the fact
that our multiscale models may lead to correlation structures that are only approximately
stationary, we define ‘

127—-n

1 . .
Ry(n) = T JZ;B E[{{,\(J+n)§3(])], n=20,1,...,127.

Fignre 3-3 displays plots of Ry(-), R4(-), Rs(-,. and Rg(-), where this last function kzppers
to coincide exactly with the desired correlation function. Cousistent with our preliminary
analysis, the 8-th order multiscale model is exact. The 6-th order model is very close to
“being exact, while there is noticeable degradation in the 4-th and 2-nd order models.

An alternative, and arguably more useful, way to measure model fidelity is in terms
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Figure 3-4:  The percentage loss in error-variance reduction of our three reduced-order multiscale models.

of model performance in a designated application. Since one of the great strengths of our
multiscale framework is the efficiency with which least-squares estimation can be performed,
we treat least-squares estimation as the intended application. We focus specifically on the
problem of estimating the value of the random vector X0,

w = (v ¥ - yam ),

given the noisy observation yg+vp, where vg is a zero-mean random vector having covariance
equal to a multiple of the identity (i.e., equal to rI, for some scalar multiplying factor 7).
For any fixed value of 7, we denote by xg¥ * the optimal linear least- -squares estimate, and
by Xo the estimate associated with our multiscale model of order A.

Our metnc for model ﬁdehty is related to loss in error-variance reduction that results
from using Xo rather than ¥ ‘Dp . To define this metric precisely, we denote by p; the prior
variance of the process to be estlmated and also we denote by pop: and py the error variances
of an optimal and a sub-optimal estimates, respectively. In our case, pi = Ryy(0) = 1, while

Popt = %E [(Xo - >‘<8“”)T (Xo - )28’”)} » Pa = mE [( XS)T (Xo - Xé)} :

Since the optimal and sub-optimal estimates yield error variance reductions of p; — Popt and
Pi — Da, respectively, we associate with the sub-optimal estimate the following measure of
fractional loss in error variance reduction (for a noise variance of r):

A(T,/\) = 1-— Di — DA — Px —_pil_)ﬁ

. (3.45)
Pi = Popt Pi — Popt

In Figure 3-4, we plot the values of A(r, \), as r varies, for the values A = 2,4 and 6;
the curve for A = 8 is not included, because A(r,8) = 0 Vr. The abscissa of these plots has
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k= -2 Co-1 0 1 2
2 -0.0302 | 0.0592 | -0.0407
1| 0.0406 | -0.0980 | 0.2182 | -0.0006 | -0.0001
1=0]-0.0836 | 0.4341 0.4341 | -0.0836
-11-0.0001 | -0.0006 | 0.2182 | -0.0980 | 0.0406
-2 -0.0407 | 0.0592 | -0.0302

Table 3.1:  Autoregressive weights {rs,} for the wool-texture WSMRF [39).

a logarithmic scale, where the signal-to-noise ratio (SNR), in dB, is related to r as

; 1
SNR = 1010g10p’r— = 1010g10 ;

By this criterion, even the 2-nd order model has quite good performance, with loss in
error-variance reduction no greater than six percent for the range of SNRs displayed.

13.6.2 Reduced-order Representations of WSMRFs

We now turn our attention to a stationary WSMRF, having a fourth-order neighborhood
structure and an autoregressive representation (2.8) that uses the weights given in Table 3.1.
We define the field on a toroidal lattice, so that exact calculations, based on FFT techniques,
are computationally feasible. We can then evaluate the loss associated with using reduced-
order multiscale models as opposed to using a full-order multiscale model (or equivalently, as
opposed to using statistically optimal FFT-based techniques). Figures 3-7a and 3-8a display
mesh and contour plots respectively of the field’s correlation structure, while Figure 3-6a
displays a sample path of a field of dimension 256 x 256, drawn from the exact distribution
using Gaussian deviates. This so-called wool texture is borrowed from [39].

We consider the problem of building a multiscale model, indexed on a quadtree, to
realize this field on a 256 x 256 toroid. We constrain the model dimension, and then apply
Algorithms 5 and 7, with the parameter 6,,,s set to 516.

Preliminary Analysis

As in our first example, we begin with some preliminary analysis to determine a reasonable

‘ range of values to use for our model-dimension constraint \,,. In keeping with our discussion

in Sections 2.3 and 3.3.2, an exact realization will require complete retention of boundary
information in the state vectors z(s). To be more specific, let us define the random vector
is to contain boundary information of y;, exactly as in Section 3.4.3. In order to fully
decorrelate xs from y;c in the sense that

E [(xs = B(xslts)) (xse = E(xselus))T] = 0,

we must choose u; to contain the values of x; over a boundary of width 2; this fact follows
directly from the fourth-order Markov structure of the wool texture. Straighiforward calcu-
lation then reveals that for x; representing the values of the field over a K x K block of pixels
with K > 4, the needed boundary information requires that p; have dimension 8(K — 2).

“Thus, an exact multiscale realization requires a scale-varying state dimension. For a lattice

of dimension 256 x 256, the state at the root node will have dimension 4-8(128 — 2) = 4032,




3.6. Application of the Model-Building Algorithms 83

0.9/ 4

0.8 -‘ \ — Scale 1 b
N - - Scale2

07k, '=-- Scale 3 i

: NN e Scale 4

o
(o2
T

Canonical correlation coefficient
o
(4]
T

0.4 b
03r 1
0.2r 1
01 1
0 o 1 L
0 100 200 300 400 500 600
Correlation index
Figure 3-5:  Plots of the values of canonical correlation coefficients between pe and pse for m(s) =1, 2,

3 and 4. In each case, both p, and psc have dimension equal to 6,ows = 516.

each of the four states at the next finest scale will have dimension 4 - 8(64 — 2) = 1984, and
so forth. In contrast to our preceding 1-D example, we will here have to reduce drastically
the state dimension, in order to obtain models of practical use.

We can obtain additional insight by examining the values of the canonical correlation
coefficients between u; and pse. The random vectors ps and pge are defined in step 3 of our
modeling algorithm (i.e., Algorithm 7), while the canonical correlation coefficients between
ps and pge are calculated in step 4. In Figure 3-5, we plot the values of these coefficients,
for nodes s at scales m(s) =1, 2, 3 and 4. In the context of building reduced-order models,
the displayed values do not appear encouraging; for all four displayed scales, there are
many large-valued canonical correlation coefficients. For instance, there are 64, 34, 17 and
8 coefficients at the respective scales 1, 2, 3 and 4 that exceed the value 0.75. However, as
we demonstrate next, the plot in Figure 3-5 is quite misleading; we can actually do quite
well with a reduced-order model of far lower dimension than suggested by Figure 3-5, if we
measure model fidelity with respect to either of the criteria used in the previous example
(i-e., the match between desired and realized correlation, or alternatively the fractional loss
in error-variance reduction, in linear least-squares estimation.)

Evaluation of the multiscale models

Let us evaluate the performance of three multiscale models, in which the state dimension
is constrained to be no greater than 16, 8 and 4, respectively. In Figures 3-6b, ¢ and d, we
display sample paths generated using our three multiscale models. A visual comparison of
these sample paths with the one in part a suggests that all of our multiscalc models, even
Lue 4-th order one, have captured the important qualitative statistical characteristics of the
wool texture. A careful inspection of (b), (c) and (d) will reveal slight discontinuities at
the quadrantal boundaries (e.g., at the horizontal and vertical mid-lines), but these effects
diminish as model order increases and are barely discernible in the 16-th order model.
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Figure 3-6:  These four figures display sample paths of the wool-texture WSMREF, for a 256 x 256 pixel
region. The sample path in (a) is drawn from the exact distribution, using FFT techniques. The paths in
(b), (c) and (d) are drawn from distributions that approximate the exact distribution; they come multiscale
models in which the state dimension is constrained to be less than or equal to 16, 8 and 4, respectively.



3.6. Application of the Model-Building Algorithms 85

In Figures 3-7b, ¢, and d and 3-8b, c, and d, we display mesh and contour plots,
respectively, of the correlation structure of the finest-scale of these multiscale processes. As
in the previous example, we must proceed with caution here, since our reduced-order models
lead to correlation structures that are only approximately stationary. We let 56\ denote the
random vector comprising the finest-scale of the particular multiscale process in which the
state vectors are constrained to have dimension no greater than A; we thus have 53, 58, and
£46. We denote the (4, j)-th component of &) by €33, ) (for i,7 =0,1,...,255). In terms
of these conventions, the plots in Figures 3-8b, ¢, and d display contours of the function
Ry(+,), for A = 16, 8 and 4 respectively, where

255 255
Ry(m,n) = %16—2 SYE [53 ((i +m) mod 256, (j +n) mod 256) & (i,j)] .
1=0 5=0

To facilitate comparison of these plots, Figures 3-9a and b display horizontal and vertical
slices of the contours, where in each case, all of the slices are overlayed on a single plot. These
figures make clear the steady improvement in fidelity that is associated with increasing the
model order. We remark that the correlation function for each of our multiscale models
has been evaluated by Monte Carlo simulation. In particular, we have generated Nsomp
sample paths of the field, and have then averaged together the sample correlation functions
of these sample paths. Using the insights gathered in Section 2.2.3, and in particular (2.23),
we have chosen the value Ngump to be sufficiently large so that with 95 percent confidence,
each estimated value of Rj(m,n) is with 0.005 of its actual value. Since a variation of 0.005
is roughly on the order of the width of the plotted lines, no error bars are needed here.

Finally, just as in our previous example, we evaluate the fidelity of these multiscale
models in terms of their performance in a linear least-squares estimation context. Letting
xo be a random vector containing the values of the wool-texture random field over a 256 x 256
region, we consider the problem of estimating xo, given the noisy observation xo+vo, where
Vg is a zero-mean random vector having covariance rI. For any fixed value of 7, we denote by
{oP* the optimal linear least-squares, and by %3 the estimate associated with our multiscale
model of order A.

Our metric for model fidelity is once again percentage loss in error-variance reduction. In
Figure 3-10, we display this loss for a number of different SNRs. The values in the plot have
been calculated by Monte-Carlo simulation; using the insights gathered in Section 2.2.3, and
in particular (2.20), we have chosen the number trials to be great enough to ensure that the
variance loss percentages are within 0.5% of their true value with 95 percent confidence. By
this criterion, even this 4-th order model does a very respectable job, yielding estimation
results that are within roughly 5% of the optimal estimator.

- 3.6.3 Reduced-order Representations of Isotropic Random Fields

We now turn away from WSMRFs, to build multiscale representations for a random field
that is stationary, but is explicitly not a WSMRF. The particular correlation function we
examine is aa isotropic one that is of consicerable interest in the geological sciences [59];
the function can be expressed analytically as follows:

Ryy(k,l) = Ry(r) = { (()1 = 3/2(r/0) + 1/2(r/2) gf Z’S & (3.46)

PR —
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Figure 3-7: These four figures display mesh plots of the correlation function of the wool texture. The
mesh plot in (a) represents the exact correlation function, as determined by FFT techniques. The contour
plots in parts (b), (c) and (d) represent the correlation function of the finest scale of the 16-th, 8-th and 4-th
order multiscale models, respectively. The contour plots in parts (b), (c) and (d) have been determined by
Monte-Carlo simulation, using enough trials so that with 95 percent confidence, every estimated correlation
value is within 0.005 of its correct value. Since a variation of 0.005 is roughly the order of the width of the
plotted lines, no error bars are needed.
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Figure 3-8: These four figures display contour plots of the correlation function of the wool texture,

with the contour levels at 0.8, 0.6, 0.4, 0.25, 0.15, and 0.1. The contour plot in (a) represents the exact
correlation function, as determined by FFT techniques. The contour plots in parts (b), (c) and (d) represent
the correlation function of the finest scale of the 16-th, 8-th and 4-th order multiscale models, respectively.
The contour plots in parts (b), (c) and (d) have been determined by Monte-Carlo simulation, using enough

trials so that with 95 percent confidence, every estimated correlation value is within 0.005 of its correct
value.
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Comparison of (a) vertical and (b) horizontal slices of the correlation contour plots in the

previous figure. Again, these plots are based on Monte-Carlo simulation, where each point is within 0.005
of its correct value with 95 percent confidence.
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where 7 = k2 + [2, and £ is the characteristic length of the function. A plot of this function
for £ = 80 is represented by the solid curve in Figure 3-12; we see from this plot that there
is significant long-range correlation, at least relative to the total grid size (i.e., 128 x 128)
we will be using.

We consider the problem of building a multiscale model, indexed on a quadtree, to
realize the correlation function (3.46) on a 128 x 128 grid. We constrain the multiscale
model dimension to the respective values of 64, 32, 16 and 8, and then apply Algorithms 5
and 7, with the parameter 8,4, = 260.

In Figure 3-11a, we display as a contour plot the exact correlation function (3.46). Then,
in Figures 3-11b, ¢ and d, we display as contour plots the correlation function associated
with our multiscale models of order 32, 16, and 8, respectively. We do not include a contour
plot for our model of order 64, because for orders greater than just 16, our multiscale
models capture virtually all of the significant correlation structure. This fact is reinforced
in Figures 3-12a_and b, where we display horizontal and vertical slices of these contour
plots. ‘

In Figure 3-13, we display sample paths of this random field, generated with our models
of order 64, 32, 16 and 8, and using Gaussian deviates. In contrast to the foregoing criterion,
for which the 16-th order model did an excellent job, we here see that such a low-order model
leads to visually distracting blocky artifacts at the quadrantal boundaries. While in many
applications, these artifacts are devoid of any statistical significance, they may be important
in other contexts. One way to eliminate these artifacts is employ a relatively high-order
model multiscale model; for instance, as shown in Figure 3-13a, the 64-th order model is
effective in this regard. An alternative, arguably more elegant approach to eliminating these
artifacts is pursued in detail in Chapter 5.

Finally, let us consider the use of these multiscale models to carry out linear least-squares
estimation. In Figure 3-14a, we display the original signal that we will be attempting to
estimate. This signal consists of 128 x 128 pixels and has a Gaussian distribution. It is drawn
from the ezact distribution implied by (3.46) with £ = 80. This is effected by embedding
the 128 x 128 grid into a larger 256 x 256 toroidal lattice, and extending the definition of
Ryy(-,-) to have periodic boundary conditions; for £ = 80, this approach leads to a valid
(i.e., positive definite) correlation function.

We consider two estimation problems related to the signal in Figure 3-14a. For the
first, we corrupt the signal with spatially stationary white noise having covariance one,
thus leading to an SNR of 0dB (since the signal also has a variance of one, as indicated by
(3.46)). In Figure 3-14b, we display an estimate based on our multiscale model of order 64.
The MSE here is 0.0498. While there is no computationally feasible way to determine the
mean-square error of an optimal estimator for this problem, we can obtain a fairly tight
lower bound for the optimal MSE. In particular, let us consider the problem of estimating
the value of the 256 x 256 signal, from which our 128 x 128 signal has been extracted. Since
this 256 x 256 signal is stationary and is indexed on a toroidal lattice, exact calculations are
possible. In particular, for estimating this signal in 0dB white noise, the optimal, FFT-based
estimator has an MSE of 0.0458, which must lower-bound the MSE of an optimal estimator
in our original estimation problem. By comparison, then, our measured MSE of 0.0498 is
quite sztisfactory. Although not shown in the Figure, the same level of performance is also
achieved by our lower-order inultiscale models; specifically, our modeis of order 32; 16 and 8
achieve MSEs of 0.0501, 0.0533 and 0.0544, respectively, which are all close to the optimal.

We now turn our attention to an estimation problem for which the FFT is of no practical
use at all. In particular, we now consider the problem of estimating the signal displayed
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Figure 3-11:  These four figures display contour plots associated with Ryy(-,), defined in (3.46), with
the contour levels at 0.9, 0.7, 0.5, 0.3 and 0.1. (a) The exact, desired correlation function. (b), (c), and (d)
The correlation function associated with multiscale models of order 32, 16 and 8, respectively. These three

have been determined by Monte-Carlo simulation, using enough trials so that every estimated correlation
value is within 0.005 of its correct value.
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Figure 3-12: Comparison of (a) vertical and (b) horizontal slices of the correlation contour plots in the
previous figure. Again, these plots are based on Monte-Carlo simulation, where each point is within 0.005
of its correct value with 95 percent confidence.

in Figure 3-14a, based on noiseless measurements at the extremely sparse set of points
displayed in Figure 3-14c. These points provide only 1.11% coverage of the image region.
Their irregular distribution is the key reason that FFT techniques are not applicable. On the
other hand, in Figure 3-14d, we display the estimate that results from use of our multiscale
model of order 64. In light of the sparsity of our measurement coverage, this estimate has
impressively captured the coarse qualitative features of the true signal; in fact, the MSE of
this estimate is only 0.1147, i.e., about 90% variance reduction.

3.6.4 Reduced-order Representations of Warped-version of Isotropic Cor-
relation Function

For our last example, we build multiscale representations for a stationary random field
having a correlation function that is a warped version of the isotropic correlation function
Ryy(k,1) in (3.46. Our warped version, which we denote by Ry, (k,!) is defined as follows:

R;y(k,l) = Ry (¥,1'),

k' _ 10 “cosf sind k
i - 0 4 ~sinf cosd P
T T

g = ———. 3.47

4 13 (3.47)

The characteristic length £ of Ry,(k,!) (see (3.46) is again set to £ = 80. A contour

plot of Ry, (k,!) is displayed in Figure 3-15a, while slices of this correlation function along

the directions of strongest and weakest correlavion are displayed in Figures 3-16a and b,
respectively. '

- We consider the problem of building a multiscale model, indexed on a quadtree, to

realize the correlation function (3.47) on a 128 x 128 grid. We constrain the multiscale
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Figure 3-13:  These four figures display sample paths of random fields having approximately the isotropic
correlation function given in (3.46). The sample paths each have 128 x 128 pixels, with (a), (b), (c) and (d)
corresponding, respectively, to multiscale models of order 64, 32, 16 and 8, using Gaussian deviates. We see
that a relatively high-order model is required to eliminate the blocky artifacts at the quadrantal boundaries.
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Figure 3-14:  These four figures relate to linear least-squares estimation of a signal having the isotropic
correlation function in (3.46). (a) The original signal, with Gaussian deviates, drawn from the exact dis-
tribution using FFT-based techniques. (b) Estimate of the sample path in (a), based on noisy, densely
distributed measurements of the signal, with 0dB SNR; a 64-th order multiscale model is used to obtain this
estimate. (c) Locations of observed pixels, for a second estimation experiment; these observed pixels provide
only 1.11 % coverage of the image. (d) Estimate of the sample path in (a), based on noiseless observations
of the observed pixels (displayed in (c)).
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model dimension to the respective values of 64, 32, 16 and 8, and then apply Algorithms 5
and 7, with the parameter 8,,4, = 260.

In Figures 3-15b, ¢ and d, we display as contour plots the correlation function associated
with our multiscale models of order 32, 16, and 8, respectively. We do not include a contour
plot for our model of order 64, because at this order, the contour plot is indistinguishable
from the ideal, desired correlation in (a). To allow for more direct comparison of these
contours, we overlay slices of them in Figures 3-16a and b; more specifically, Figure 3-16a
represents a slice of the contour plots, along the direction of strongest correlation, while
part b represents a slice of the contour plots along the direction of weakest correlation.

In Figure 3-17, we display sample paths of this random field using Gaussian deviates,
generated with our models of order 64, 32, 16 and 8. We see that unless a relatively high
order model is used, the sample paths exhibit visually distracting blocky artifacts at the
quadrantal boundaries. Again, we emphasize that in Chapter 5, we will describe an elegant
way to eliminate these artifacts.

3.7 Parameterization by‘ W, Matrices: A Closer Look

In essence, our approach to multiscale modeling can be summarized as follows: (i) we start
with a g-th order tree and a desired, finest-scale covariance P,; (ii) we determine, for each
node s in the tree, a matrix Wy that parameterizes the information content of the state
vector x(s); (iii) we calculate, from these W, matrices, values for the parameters P(0),
A(s) and B(s), via (3.5), (3.9) and (3.10), respectively. Thus, any model produced in this
fashion can be characterized completely by the set {P,,, W}, from which the parameters
{P(0), A(s),B(s)}, follow uniquely.

While the numerical experiments in the previous section clearly demonstrate the practi-
cal viability of this modeling approach, there remain unaddressed certain theoretical issues
regarding our parameterization by {P,,, Ws},. We note, for instance, that while we can
always map from {P,, W,} to {P(0), A(s), B(s)},, we cannot always go in the reverse
direction, even with exact realizations; in other words, for a given covariance P, and pa-
rameters {P(0), A(s),B(s)}, that realize this covariance exactly, there may not ezist o
corresponding set {W,} . A similar phenomenon occurs in the time-series realization con-
text, where the consequences are well understood, and by comparing the two cases, we will
obtain some interesting insights. - _

The other issue we explore is the effect of our {W;}, parameterization on the interscale
propagation of state information. This propagation is handled only implicitly by our myopic
modeling approach, and more specifically by our use of the {W,}, parameterization. This
observation leads us to develop an alternative modeling approach that is less myopic, thereby
allowing the propagation of information to be handled with tighter control. The difficulty
with this alternative is the demanding nature of the required bookkeeping. In fact, this
bookkeeping prohibitively stresses both memory and computational resources in problems
of practical size and interest. Thus, by way of contrast, we ultimately underscore the
practical soundness of our original modeling approach.

3.7.1 Internal Vs. Externai Realizations

In Section 3.2, we saw in the time-series context that under fairly general conditions, an
exact, minimal realization of a vector-valued random process y(n), evolving in discrete
time, can be achieved with a state-space model in which the process state z(n) is a linear
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Figure 3-15: These four figures display contour plots associated with R}, (-,), defined in (3.47), with
the contour levels at 0.95, 0.85, 0.75, 0.6, 0.45, 0.3 and 0.15. (a) The exact, desired correlation function. (b),
(c), and (d) The correlation function associated with multiscale models of order 32, 16 and 8, respectively.
These three have been determined by Monte-Carlo simulation, using enough trials so that every estimated
correlation value is within 0.005 of its correct value.
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Figure 3-16:  Comparison of slices of correlation contour plots in the previous figure. (a) A slice along the
direction of the major axis of the ellipses in part (a) of the previous figure. (b) A slice along the direction of
the minor axis of the ellipses in part (a) of the previous figure. Again, these plots are based on Monte-Carlo
simulation, where each point is within 0.005 of its correct value with 95 percent confidence.

function of either the past of y(-) or the future of y(-) (i.e., either 7pest(n) OF Nyyture(n) in
(3.3)). This idea is formalized in [41], where such a realization is termed an internal one,
because everything internal to the state-space model (i.e., z(n) and w(n)) is obtainable
directly from the observed process y(-). A standard example of an internal realization is the
so-called innovations representation, in which the driving noise is the innovations process
produced by either a forward-running or backwards-running Kalman filter associated with
any state-space realization of the process [2,41,56]. Our main point here is simply that in-
ternal realizations are readily obtainable in the time-series context, and under fairly general
conditions, they constitute a rich enough class of models to include minimal realizations.
It is natural to generalize the internal-realization concept to the multiscale context,
where, for obvious reasons, we refer to multiscale models that are parameterized by {Py,,
- W}, as internal multiscale realizations. Given the richness of internal realizations in the
time-series context, let us consider their richness in the multiscale context. As a vehicle
for our development, we consider the problem of building a multiscale model, indexed on a
dyadic tree, to realize exactly the following finest-scale covariance:

Py = (3.48)

o= N W
IO &)
[NCRNIC RS
[SCHN S

By direct calcalation, one can verify that this covariance is realizable with a multiscale
model consisting of three scales, in which all states have dimension of one, the covariance
P(0) has value one, and all transition matrices A(s) and noise-shaping matrices B(s) have
‘values of one. Because a unity state dimension is the minimum possible, this suggested
realization must be minimal. On the other hand, there does not exist a set {Pyo, Wi},
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Figure 3-17:  These four figures display sample paths of a random field having the correlation function
given in (3.47, for a 128 x 128 pixel region. The sample paths in (a), (b), (c) and (d) correspond to multiscale
models of order 64, 32, 16 and 8, respectively, using Gaussian deviates. Just as in our previous example,

we see that a relatively high-order model is required to eliminate the blocky artifacts at the quadrantal
boundaries.
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Figure 3-18:  Notational conventions for our use of dyadic trees to realize (a) Pyq, given in (3.48), and
(b) Py,, given in (3.49).

that leads to a minimal; exact realization of (3.48); in other words, there is no internal
realization of (3.48) having a state dimension of one at every node. The reason is that for
the node labeled s in Figure 3-18a, any matrix W that exactly fulfills (3.8) will have at
least two rows, thus leading to a state vector z(s) having dimension at least two, which is
not minimal. We demonstrate in. Appendix C this fact regarding the matrix Wj.

Thus, we have uncovered an interesting and non-trivial difference between Gauss-Markov
time-series processes and multiscale processes. While in the former case, the class of internal
realizations is sufficiently rich to include minimal realizations, the same is not generally true
in the multiscale context.

3.7.2 Propagation of Information from Scale to Scale

We now turn our attention to the issue of interscale propagation of information. To see the
issues involved, let us consider the problem of building a multiscale model, indexed on a
dyadic tree, to realize exactly the following finest-scale covariance:

P, = (3.49)

O O O -
O = = o
O == O
_ O O o

Just as with the covariance in (3.48), an exact realization will here require a dyadic tree
having three scales. For convenience, we index the seven nodes in this tree by 0, 1, ...,6,
as illustrated in Figure 3-18b. One possible internal, exact realization uses the following
values for the W, matrices:

Wo = (0 10 0),
W1=(0 1), W2=(1 0),
W3 = I’V4 = I’V5 = Ws = 1. (350)

A valid alternative, which also leads to an exact, internal realization, is to replace Wy in
(3.50) with Wy,

Wi = diag(1,1,1,1),
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while retaining the same values for Wy, W,,..., Ws as in (3.50). There is an important
difference between the models that result from these two choices for the W, matrices. The
first choice leads to a model in which coarse-scale information is preserved in its journey
to the finest scale; in particular, we see that z(s) = W £,. On the other hand, the second
choice leads to a model in which information is lost in its journey to the finest scale. In
fact, by using W{ in lieu of Wy, we have somewhat perversely created a multiscale model
in which the entire finest-scale process is generated at the root node, and then some of
this information is immediately discarded in the transition to the middle scale, whence new
values for this discarded information are generated in the transition to the third, finest scale.
Although the finest scale process does have the correct, desired correlation, care must be

exercised in interpreting the information content of the coarsest-scale state. In particular,
~our parameterization z(0) = Wyyxo is misleading, in the sense that actually, z(0) # Wy&.
The source of this problem is the implicit way that information is propagated from scale to
scale.

3.8 Alternative Realization Approach: Explicit Handling
of Information Propagation

We now develop an alternative realization approach that handles more explicitly the propa-
gation of information from scale to scale. For simplicity, we limit our attention to multiscale
processes indexed on the dyadic tree. Our objective is to build a multiscale model, indexed
on the given tree, such that the covariance P, of the resulting finest-scale process ezactly
matches P,,. While one solution to this problem was described in Section 3.3.2, that solution
was tied to the W, parameterization, which we explicitly wish to avoid here. Furthermore,
although we focus on exact realizations, we will pinpoint where canonical-correlations ideas
can be exploited to extend our preliminary development here, for addressing the reduced-
order modeling problem.

3.8.1 Overall strategy and design of root node

As in our development in Sections 3.3 through 3.5, our modeling strategy here is focused
on fulfilling the decorrelating role (2.3) of state information. However, we will no longer
myopically seek the fulfillment of this condition; now the information content of, say, node
s will be more closely tied to the information content at the children nodes sa; and so.
In keeping with our basic strategy, the root-node state z(0) should represent just enough
information about the finest-scale process &; to ensure that conditioned on this information,
the left half and the right half of the finest-scale process (i.e., oo, and £ya,) are uncorre-
lated. At this point, we recall the canonical correlation decomposition that we described in
Corollary 1. We recall that Corollary 1 guarantees that we can decompose £pq, and €0a, 8S

anl ) _ HOcu Voo
( 50&2 - HOag mo + Yooy ’

where the random vectors ng, Voe, and vpa, are uncorrelated. The important point is that
if we let z(0) = ny, then £go, and &ga, will be uncorrelated, conditioned on z(0).

There is a nice, additional benefit of the choice z(0) = ng. In particular, Corollary 1
guarantees that in the sense of Proposition 1, this choice yields the lowest possible state
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dimension for the root node. Hence, we employ ng as the value for z(0),
z(0) = mng, and P(0) = E(ngn}),

thereby maintaining consistency with our decorrelating strategy, with the most compact
possible representation for the requisite information (in an exact realization).

For the purposes of the rest of this development, we note that the residuals 500”0 and
£~0a2|0 are given by

EOa;[O = Yooy (i=1,2),
and the least-squares prediction matrices Hyq, |0 and Hoq,|p are given by

HOa,'|0 = HOO(; (7‘=172)

3.8.2 Design of Intermediate-level Nodes

Now, let us consider all of the nodes that lie between the root node and the set of finest-scale
nodes. We use an inductive-style argument to design the structure and information content
of these nodes. There are two components of our inductive hypothesis. First, we assume
that at all the nodes at levels 0,1, ..., k (for some integer k, 1 < k < M) the corresponding
state vectors fulfill the decorrelating role (2.3) of state information. Second, we assume that
we know the covariance of the zero-mean residual variable ESM.

Let s denote any arbitrary node at level k+1. Just as with all of its ancestor nodes, z(s)
should represent just enough information to ensure that (2.3) is fulfilled. We conveniently
decompose into three steps the determination of z(s). In a rough sense, these three steps
can be described as maintenance of previously generated information, generation of new
information, and consolidation of these two types of information into a more compact form.

Maintenance of Ancestor Information

In the first step, we carry down all the information from the parent node sJ. This infor-
mation (or at least a portion of it) will be necessary to maintain the conditional uncorre-
latedness that we inductively assume was established at the parent node; in particular, we
must maintain the property that £; and £;c be uncorrelated, conditioned on z(s). Thus, we

- tentatively let

() = 2(s7)

where we have appended a prime to z(s), as a reminder that this choice is only tentative.

Generation of New Information

In the second step, we augment z'(s) with additional information, chosen to be sufficient
to guarantee fulfillment of (2.3) at the given node. The specific nature of this additional
information is again determined by using a canonical correlation decomposition. Appealing
to Corollary 1, we decompose the two residual variables f san|sy and 13 sara|sy @S

fsa2|s=/ Hsaz_ Vsay
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where ng, Vo, and vsq, are uncorrelated. As we presently verify, ny is the augmenting
information that we seek, and hence, we modify z'(s) to become

P(s) = (3(37) ) (3.51)

s

We retain the prime on z(s) as a reminder that this choice is still tentative.
To show that our modified z'(s) does indeed fulfill its decorrelating role (2.3), we first
note that by induction, £; and &, are uncorrelated, conditioned on z(s%). Furthermore,

E [ESQI | gsazvzl(s)] = FE {E[Esal II‘(S"_)/)] + gsaﬂs"y | ésazls’ya"r(s:)'):na‘}
E [sar | 2(s7)] + E (€sarjos [ 7s)

Il

and hence, €54, and &4, are uncorrelated, conditioned on z'(s). Combining this result with
the conditional uncorrelatedness of &5 and £, we find that (2.3) is fulfilled.

Consolidation of Information

In the third step, we consolidate the information content of z’(s) into a more compact form.
Although, in its current form, the vector z'(s) is consistent with our basic strategy, it may
contain redundant and/or superfluous information that unnecessarily burdens its dimension.
To see that this possibility is genuine, let us recall the Brownian motion construction in
Section 2.3. At the left node of the second level in this construction, we implicitly discard the
root node information about the value of the right end-value of the Brownian motion process;
in this way, we have obtain a more compact representation of the needed information,
without any effect on the finest-scale statistical behavior.

For Markov and reciprocal processes, there is no ambiguity about what information we
can discard; on the other hand, in general, we require systematic tools for carrying out this
task. We now describe an effective technique for reducing the information in z'(s) to its
essential component. This technique is based on the following lemma.

Lemma 1 Let z'(s) be a state vector that satisfies (2.8). Let z(s) be a state vector that is
related to 2'(s) in the following sense:

E(&|z(s)) = E(&]2'(s)).

‘This condition is sufficient to guarantee that z(s) also satisfies (2.3).

Proof: We prove the lemma in two stages. First, we show that &s and € are uncorrelated,
conditioned on z(s):

E(&|a(s)&e) = E[B(&]a(s)) + £yolals)bsc]

= El&|a(s)] + E (G | &)
= E(&] ().

Second, we show that {4, and &4, are uncorrelated, conditioned on z(s):

B (Gsor | 2(5),6003) = E B (s | 2(5)) + Eua)s | Enpr 3(5)]
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= E [55&1 I.II(S)] + E (ésaﬂs | €sa1)
= E (€sa1 | 1:(8)),
thereby establishing the lemma. QED.

In order to exploit the lemma to compress z'(s), we begin by expressing E[¢; | 2/(s)] as
a function of z(s¥) and ng, thereby highlighting the roles of these variables. We have

Elg|a(s)] = E[E(E|2(s7) + Eyss | (s7),m,]
= Hs|s’y 33(3'7) + E (€s|s’y | ns)

HSQ
= He 2(s7) + (H 1 )ns

sag

_ [HSIS‘V ( Z: ) } ( m(yfﬁ) ) (3.52)

Now comes an essential step. By QR factorization,

e ()] = (@@ ()

= Q:iR, (3.53)

where (Q1 Q2) is an orthonormal matrix, the columns of Q; span the column space of
the left-hand side of (3.53) and and R is an upper-triangular matrix. In terms of this
factorization, we can define a matrix z(s) that satisfies the condition of Lemma 1 and has
a dimension no larger than the dimension of z/(s). Specifically, we let

z(s) = Rz'(s)
R ( z(s7) ) (3.54)

N
By combining this with (3.52) and (3.53), we can verify that z(s) satisfies Lemma 1:
Ef6|2(s)] = QuiR2(s)
= Q1 z(s)
= E[& [ =(s)].
Thus, we employ (3.54) as our definition of z(s).
There are several consequences of this choice for z(s). First, this choice implicitly

provides us with appropriate values for A(s) and B(s). In particular, to be consistent with
(3.54), we must let

Als) = Ry, B(s) = [Ry E(nun?) BE]".

(3.55)
In this expression, the matrices R; and R, constitute a block partition of R,

R = (R1 RQ),
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in which the number of columns in R, is equal to the dimension of z(s%). Our choice for
z(s) also implies that the residuals €say)s and €saq|s are given by

gsails = Vsq (7;__“1)2)-

Finally, the least-squares prediction matrix H s|s 18 given by

Hs[s = Ql-

We have now specified everything needed for z(s), A(s), and B(s), and we have main-
tained consistency with the inductive hypotheses. Thus, the induction can continue.

3.8.3 Design of Finest-Scale Nodes

At the finest scale, our approach changes slightly. We are no longer interested in fulfilling
(2.3), because that condition no longer makes sense. Instead, we want to simply let

1,‘(5) = Hs]s’y .2,(3’_)/) + ésls-‘y-
Consequently, we let

A(s) = H,

IS:Y’

B(s) = [E(Esh‘?éﬂs’y)]l/z'

3.8.4 Final Comments

We have now completely described our realization procedure. In doing so, we have estab-
lished both that a solution exists and that one can, in principle, be found. One of the
principal difficulties with actually implementing this procedure is that we must keep track
of the covariance matrices of the random vectors fsls; for problems of practical size, both
the calculation and storage of these matrices is prohibitive. There may be merit in seeking
ways to combat this computational burden, especially in modeling situations in which it is
Imperative to propagation coarse-scale information in a consistent way.

3.9 Conclusion

We have developed elements of a theory for multiscale stochastic realization. We have fo-
cused in particular on the problem of building multiscale models to realize, either exactly
or approximately, prespecified finest-scale statistics. In this context, we have formalized
the reduced-order modeling problem, we have developed model-building algorithms for ad-
dressing this problem, and we have demonstrated the practicality of our approach in an
extensive set of numerical experiments. Finally, we have noted some non-trivial differences
between time-series stochastic processes and multiscale stochastic processes.
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Chapter 4

A Multiresolution Approach to
Discriminating Targets from
Clutter in SAR Imagery

In most detection and estimation problems, there is no ready availability of a complete
statistical description of the quantities relevant to the problem, and thus, in these cases,
the model-building techniques of the previous chapter are not directly applicable. Instead,
we must build an appropriate multiscale model from the observed data directly. In this
chapter, we consider an important problem in automatic target recognition (ATR), for
which we must apply so-called techniques of multiscale model wdentification.

4.1 Introduction

The fundamental ATR problem is to detect and recognize objects of interest (i.e., targets)
In a noisy environment (i.e., clutter) that has been imaged by an imperfect sensor. The
heart of an ATR system is an integrated collection of algorithms designed to process sensor
measurements so that the targets can be efficiently detected and identified. These algorithms
are applied on a computer and ideally, they are organized so that human intervention is
not required. In a military context, the hope is that if computers can be made to detect
and recognize targets automatically, then the workload of a pilot can be reduced and the
accuracy and efficiency of the pilot’s weapons can be improved. We emphasize though that
the applicability of ATR technology is not limited to the purview of military surveillance.
For example, the technology can provide insight into the problem of recognizing landmarks
sensed by a visual navigation system or by a robotic system. We direct the reader to [21]
and the references therein for a thorough overview of the ATR problem.

A critical challenge within ATR is to determine automatically the locations and deploy-
ments of various kinds of military apparatus. Furthermore, in addressing this challenge, a
desirable attribute of any ATR system is the abilit; to reject regions of exclusively natural
clutter in a computationally fast and simple way. Resources can then be focused on the
classification of a relatively small number of regions of interest containing man-made objects
that are potentially targets.

In this chapter, we consider ATR for the case of a system whose inputs are synthetic-
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aperture radar (SAR) images.! Within this problem domain, we both develop and exten-
sively test a new algorithm for discriminating man-made ob jects from natural clutter. The
novel feature of our approach is its exploitation of the characteristically distinct variations
in speckle pattern, for imagery of natural clutter and of man-made objects, as image resolu-
tion is varied from coarse to fine. The fact that speckle has multiresolution characteristics
is also noted and exploited in [61]. However, in contrast to that work, where the differ-
ent characteristics of natural clutter and man-made objects are used to analyze individual
image pixels, in this paper we use our multiscale framework to model and exploit these
characteristics over entire blocks of imagery.

To understand the nature of the multiresolution characteristic of SAR imagery, we begin
by recalling that SAR is a coherent sensing device. This coherence implies that the complex-
valued radar reflectivity measured in any given resolution cell of a 2-D SAR image is equal
to the coherent summation of all the returns from the scatterers residing in that resolution
cell. Furthermore, as resolution is changed, the value of this coherent summation changes,
due to migration of scatterers either into or out of the resolution cell. These elementary
observations lead us to the most important point: the variation in speckle pattern, as a
function of resolution, is typically different for natural clutter and for man-made objects.
In simplified terms, the reason is that for natural clutter, there is typically a large number
of equivalued scatterers in a resolution cell, while for man-made objects, there is typically
only a small number of prominent scatterers [61]. This difference leads to very different
statistics for the variation in speckle pattern as resolution changes.

This description of the SAR scattering mechanism suggests that there is considerable
information in the phase of the complex-valued reflectivity measurements. Specifically,
we can use the phase information to create coherently a sequence of images, each image
having successively coarser resolution; in turn, this sequence of images can be analyzed
collectively to discriminate between natural clutter and man-made ob jects. This coherent
approach stands in contrast to typical SAR ATR algorithms, where phase information is
discarded; in these cases, the complex-valued SAR imagery is converted to magnitude (or
log-magnitude) form before ATR processing is applied. Our approach is more in line with
the increasing realization in the SAR community that there may be merit in exploiting the
phase information in complex data. Several potential uses of this information have been
identified: . (i) to capture the multiresolution characteristics of speckle, as considered here
and in [61], (ii) to capture aspect-varying characteristics of radar cross-section, as considered
in [10] and (4], and (iii) to manage the phase distortion induced by target motion. While
- the focus of this paper is on the first of these, we believe that the statistical foundations
established here may very well be useful in these other contexts as well.

Although previous multiscale modeling work provide motivation for considering the
possibility of multiscale representations of SAR imagery, we emphasize that none of that
previous work has direct applicability to our problem. We identify two such reasons, in or-
der to both clarify the role of previous work and highlight outstanding obstacles. First, the
focus in [43] and in the previous chapter was on designing multiscale dynamics (i.e., princi-
pally, choosing values for A(s) and B(s)) so that a desired, prespecified statistical structure
emerged at the finest scale, with no detailed regard for the structure of the coarser scales.
Conseque~tly. no mechanism was provided for explicitly embedding non-local process infor-
mation as coarse-scale states. Second, both [43] and the previous chapter were exclusively

'A comprehensive reference on synthetic-aperture radar is provided by [16]. A nice overview, tailored to
the typical background of the signal processing community, is provided by [51].



4.1. Introduction 107
Prescreener

Imagery containing Imagery of natural Imagery of
no potential targets  clutter false alarms man-made clutter

Input SAR

Classified target
imagery

imagery

Classifier

Figure 4-1:  Illustration of the input-output operation of the SAR ATR system described in [52]. The
input consists of SAR imagery representing many square kilometers of terrain and potentially containing
several targets of interest; the output consists of locations and classification labels for these targets. This
article describes a novel, multiresolution-based approach to the discrimination done in the second stage.

concerned with building models from a complete statistical description, rather than from
data alone. Both of these issues will be addressed in this chapter.

We build a pair of multiscale stochastic models for SAR imagery: one model capturing
the statistical characteristics in the scale-to-scale variations in SAR imagery of natural
clutter and a corresponding one for imagery of man-made objects. Interestingly, the method
we use for constructing these models from actual data is the direct scale-recursive extension
of a widely used method of autoregressive modeling for time series. We validate our models
on actual SAR data and then use them to define a multiresolution discriminant. This
discriminant is the likelihood ratio for distinguishing between natural clutter and man-
made objects, given a multiresolution sequence of SAR, images. Thanks to the structure of
our models, the calculation of these likelihoods is a computationally simple task [44].

We incorporate our multiscale stochastic models and the resulting multiresolution like-
lihood discriminant into an existing SAR ATR system developed at Lincoln Laboratory -
[40,52]. This system has been designed to operate in an off-line, experimental setting; it
has been rigorously tested over the past several years, and is one of the first systems of its
kind to process large quantities of actual SAR data. The system is conveniently decomposed
into a sequence of three processors: a prescreener, a discriminator and a classifier (see Fig-
ure 4-1). The prescreener searches through imagery representing many square kilometers of
terrain, and outputs a collection of so-called regions of interest? (ROIs) centered at possible
target locations. The discriminator applies further processing to distinguish between two
kinds of ROIs: those containing man-made objects and those containing natural clutter.
All ROIs that appear to contain natural clutter are discarded. Finally, the classifier assigns
each remaining ROI to a predefined target category, or to a none-of-the-above category if
the ROI appears to contain man-made clutter.

Our multiscale discriminant fits naturally into the second or discrimination stage of the
Lincoln Laboratory ATR system. In an idealized setting, this discriminant would be a suf-
ficient statistic for making the hypothesis testing decision [63]. However, a more practical,
realistic view is that our stochastic models do not capture all of the characteristics that
distinguish man-made objects from natural clutter. We take this latter view, and in con-
junction, we take advantage of the years of development that have gone into the Lincoln
Laboratory ATR system, which have led to the identification of a number of useful charac- -
teristics for carrying oyt discrimination [40]. Guided by this previous work, we £rst develop
an cptimized version of Lincoln’s discriminatos, in which we measure and exploit a small

) *Each region of interest (ROI_) is a subimage extracted from the original SAR data set; collectively, all
ROIs represent only a small fraction of this original data set. o
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number of size and brightness characteristics of the ROIL Then, we combine the resulting
measured values with the value of the multiresolution likelihood ratio into a single scalar-
valued measure of the so-called distance of the ROI from the class of targets of interest. In
effect, then, we treat the likelihood ratio as a multiresolution-based textural feature. All
ROIs having a large distance are labeled non-target and the remaining ROIs are labeled
target. )

We have applied our new discrimination algorithm to an extensive data set of 0.3-meter
resolution, HH polarization® imagery gathered with the Lincoln Laboratory millimeter-wave
SAR [31]. As we show in Section 4.4, the detection results are impressive. In particular, we
demonstrate a substantial and statistically significant improvement in the receiver operating
characteristics when we augment our optimized version of Lincoln’s standard discriminator
with our new multiresolution discriminant. This result is surprising good, in light of the
number of years over which the standard discriminator has been developed and refined and
the relatively simple multiresolution algorithm we have used here. The result conclusively
demonstrates that multiresolution methods have an effective and important role to play in
SAR ATR algorithms.

This chapter is divided into four major sections. In the next we describe our procedure
for identifying multiscale models for SAR imagery. We then develop our multiresolution
discriminant, and describe both the standard discriminator and our refinement of it. Next,
we show the results of our extensive testing of these discriminators. Finally, we summarize
the main points of the paper and suggest directions for future work in SAR applications of
multiresolution-based techniques.

4.2 Identification of Multiscale Models for SAR Imagery

In this section, we develop our multiscale stochastic models for SAR imagery. These models
are particular representatives of the multiscale model class introduced in Chapter 2, suit-
ably specialized to characterize the statistical distribution of speckle pattern variation in a
multiresolution sequence of SAR images.

In light of the vastness of the two classes natural clutter and man-made objects. there is
certainly an issue regarding the number of multiscale models we should build. One could
imagine developing a number of models for our designated discrimination application. We
could develop a whole suite of models for natural clutter, including one for grass, another for
. trees, and so forth; and a whole separate suite of models for man-made objects. However,
for this initial development and demonstration, we choose to develop only two models, with
a single model representing each class. Our model for natural clutter, hereinafter referred to
as our natural-clutter model, is specifically designed to describe imagery of grass, while our
model for man-made objects, hereinafter referred to as our man-made model is specifically
designed to describe imagery of tactical targets. A natural question is whether the resulting
models lead to a discriminant that is robust to variations within each of the two large classes.
We will see in Section 4.4 that the answer is yes.

Our development proceeds as follows. We begin with a detailed description of the objects
we wish to model and classify; in particular, we describe our procedure for generating
rultiresolution sequences of images. Noxt we duswribe our approach to multiresolution

3The nomenclature “HH polarization” means that the SAR sensor both transmits and receives elec-
tromagnetic radiation in which the electric field has a horizontal orientation with respect to the ground
plane.



4.2. Identification of Multiscale Models for SAR Imagery 109

model identification. This approach has three principal steps for each of the models we
identify. First, we restrict the search to a simply parameterized subclass of multiscale
stochastic models, namely linear autoregressions in scale. Second, we choose appropriate
regression coefficients, based on a simple optimization criterion. Finally, we characterize
the statistical distributions of the model driving noise wy.

4.2.1 Generation of Multiscale Image Sequences

Our procedure for creating a multiresolution sequence of images begins with complex-valued
SAR imagery, formed to the highest resolution available. Each pixel value in this imagery
represents a measurement of both the amplitude and phase of the radar reflectivity of the
scatterers within a resolution cell. In all of our work, we use HH polarization imagery
gathered with the Lincoln Laboratory millimeter-wave SAR [31]. Although this choice will
affect the specifics of the models we build, our general procedures should be more broadly
applicable.

From this full resolution imagery, we assume that ROIs have been extracted. For each
ROI Z, we create a multiresolution sequence of images, Iy, I;,...,I;. This sequence is
created directly from Z, with no dependence on the rest of the SAR data set from which Z
was extracted.

To prepare for our detailed de?scription of the processing used to go from Z to Iy, I1,. .., I1,
we introduce some useful notation and conventions. We assume for simplicity that the image
7 has the same resolution in both range and cross-range, and we denote this resolution by
6 (for the Lincoln Laboratory millimeter-wave SAR, § = 0.3 meters). We denote by Z(k,1)
the measured reflectivity at range/cross-range position (k,!). Finally, for convenience only,
we assume that this image array is square, consisting of N x N pixels, where N = 2™ for
some integer M.

Finest-scale image

The finest-scale image is created by applying to Z log-detection (defined in (4.1)), followed
by normalization. The resulting image is denoted by I; it has resolution & x § and consists
of N x N pixels.

The intermediate, log-detected image I} is defined by

Io(k,1) = 20logg |Z(k,1). (4.1)

Our use of log-detection is motivated by standard practice in the SAR community, where
the dB format has an established history. The logarithm effectively compresses the radar-
reflectivity variation, which typically spans several orders of magnitude, so that it is easier
to interpret visually. Furthermore, many established SAR ATR algorithms call for dB
formatting (see, for example, [28]); one reason is that the logarithm operation converts the
multiplicative effect of speckle noise to an additive effect, which is sometimes considered
easier to analyze.

For carrying out nypotiiesis vesi decisionmaking, however, there is a aifficulty with
directly using the log-detected image Ij. The problem is that its pixel values are dependent
on the radar sensor’s absolute calibration, which is susceptible to spurious fluctuations.
To eliminate this dependence, we apply a simple normalization to I, thereby yielding Ij.
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Specifically, I and Iy are related by
Ip(k,1) = Iy(k,1) = Co,

where Cy is equal to the sample mean of I,

1 N-1N-1
Co = 33 DS Lk, (4.2)
k=0 [=0

Because Iy has no dependence on absolute calibration, our decisionmaking exploits only the
relative variation of image intensity, with respect to a mean level of zero.

Coarse-scale images

We denote the coarser-scale images by I, I, ..., Iz, respectively. We form these images
from the original complex, fine-scale data Z by sequentially applying three processing steps:
(i) lowpass filtering, (ii) decimation, and (iii) log-detection with normalization. For image
Im, this processing ultimately yields a 27N x 2~™N square array image having resolution
2m§ x 2M6. .

The first processing step effectively reduces both the bandwidth of each SAR pulse (thus
coarsening range resolution) and the width of the SAR aperture (thus coarsening cross-range
resolution). To describe this operation, we denote the inverse discrete Fourier transform of
the 2-D complex data Z by 7, where

—

N-1

. 1 V= ,2;rk 2l
Ip9) = 3 k;) [ Z(k,1)exp (JITP) exp (J N q) :

In terms of Z, we define I’ via
N-1N-1
- 27k 2wl
(k1) = ;O q;) Z(p; ) Hm(p)Hm(q) exp (—]TP> exp (—qu) :
where H,(p)Hm(q) represents a separable 2-D Hamming window with Hp,(p) defined to be

0.54+046cos 2 0<p<2™! & N-2ml<p< N
Hnlp) = 1 2=l < p< N—2m-1

In the second processing step, we eliminate the oversampling in I}, by decimating by a
factor of 2™ in both range and cross-range. The result is denoted by I/, and is related to
I by _

Ik = I (2™k,2™), 0<kI<2™N.

Finally, in the third step, we apply log-detection and normalization. These operations
have exactly the same form and rationale as the detection and normalization operations we
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Figure 4-2 Illustration of a multlresolutlon sequence of three SAR images, together with the quadtree

onto Wthh we map pixel values. In this example, the pixel value at scale m and position (k,!) is denoted
by Ip_m(k,1).

applied to 7 to yield Iy. The image I,,(k,!) is thus related to I” via

1 (2=™N-1) (2-™N-1)

In(h, D) = 20logio [In(h Dl = mr 2 Z 20log1o | In(p, 9)]-
NE &

Mapping the multiscale SAR image sequence onto a quadtree

The multiresolution image sequence I, I1, ..., I is matched quite naturally to the structure
of a quadtree, and we consequently use the quadtree for all our SAR image modeling. In
Figure 4-2, we illustrate our convention for the correspondence between pixel values and
tree nodes. To formalize this convention, we associate each node s on the quadtree with
a 3-tuple (m, k, 1), where m denotes scale and (k,1) denotes 2-D location; correspondingly,
we denote by I(s) the image pixel residing at node s, namely I,,,(k,!). For example, in the
context of Figure 4-2, I(0) corresponds to 5(0,0), and I(0c;) (i = 1,2,3,4) corresponds
to 11(0,0), 11(0,1),I;(1,1) and I;(1,0), respectively. In a manner that we will make precise
in the next section, we treat these pixel values I(s) as our multiscale process observations
y(s).

Our example in Figure 4-2 illustrates a special case in which we have formed a complete
sequence of images, down to a single-pixel image at the coarsest resolution possible (i.e.,
L = M). More generally, we allow the possitility of truncating the image sequence at some
image having more than a single pixel (i.e., L < M). When tais possibility occurs, the
nodes at the coarser scales of the tree have no corresponding measurements. This additional
ﬂex1b111ty is useful, because beyond a certain coarseness of resolutlon SAR imagery conveys
very little meanmgful information.
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4.2.2 Identifying the Multiscale Dynamics

We are now prepared to turn our attention from the details of generation of multiresolution
image sequences to the details of statistical characterization of these sequences. Specifi-
cally, we wish to characterize the joint statistical distribution of pixel values in Iy, I1,....I}.
Given our defined relationship between pixels in the SAR images and nodes on the quadtree,
the heart of this characterization is to determine multiscale dynamics that yield process
statistics consistent with our process observations. This characterization must ultimately
yield, for each of the stochastic models we build, suitable values for several model param-
eters: (i) the matrices A(s), B(s) and C(s), (ii) the distribution of the driving noise w(s)
and (iii) the distribution of the initial condition z(0).

We remark that although there is a considerable body of literature devoted to statistical
modeling of SAR imagery, this work has typically focused on characterizing marginal, single-
pixel statistics of imagery at a single resolution [36,68]. In contrast, our interest lies in
jointly characterizing the scale-to-scale statistical coupling of a sequence of SAR images
Io, I1,..., I, spanning multiple resolutions. In principle, this desired characterization could
be devised by combining a first-principles model for Z together with the effect of the chain
of processing steps from 7 to Iy, I;,...,I. However, given the state of our understanding
of the imaging physics, this first-principles approach is problematic. As an alternative, we
pursue a more purely statistical approach: we begin by specifying a parametric subset of
the multiscale model class, and then we use so-called training data to complete the model
specification, using an approach that is the direct scale-recursive quadtree extension of a
well-known modeling technique for time-series.

Restriction to linear autoregression model class

We focus on a specific class of multiresolution models of the form (2.1). This class is
motivated by the idea that in going from coarser to finer scales, the SAR image value I, (&, )
can be partially predicted using its coarser-scale ancestors, but that the image value also has
an unpredictable component, due to the changing effect of speckle as resolution is varied.
This line of reasoning is also pursued in [61] for the analysis of the multiscale characteristics
of a single pixel. In terms of the quadtree picture in Figure 4-2, this single-pixel analysis
corresponds, roughly, to separate modeling for the sequence of pixel values starting from
each individual finest-scale pixel and proceeding upwards through the pixels at successive
- ancestor nodes. In what we now describe, we use a single, overall self-consistent statistical
model for the entire sequence of multiresolution images represented on the quadtree. In
particular, the physical interpretation of the multiscale effect of speckle suggests a model
in which the SAR pixel value residing at node s (i.e., I(s)) is related to its ancestors by a
linear autoregression in scale:

I(S) = al,m(s)I(s:Y) + a2,m(s)I(s;72) + o +0’R,m(s)I(s:YR) +'LU(S). (43)

This model’s analogue in time-series analysis is extremely popular. This popularity is
in part due to the simplicity of the autoregression, but is also due to its effectiveness
in modeling a wide variety of phenomena and its successful use many applications [42].
These facts, together with our physical interpretation of the scale-varying effect of speckle,
provide the motivation for our use here of the scale-recursive counterpart. Of course, we
‘must validate that our resulting models are consistent with actual data; we will see that the
models not only pass this consistency check, but are also quite effective in their designated
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discrimination application.

There are several additional comments to make about our autoregressive model. With
regard to (4.3), R is the order of the regression and @1,m(s)> @2,m(s): - - - 1 @R,m(s) are the scalar-
valued regression coefficients. These regression coefficients are allowed to be scale-varying,
but are restricted to be shift-invariant for any fixed scale. We will have occasion to refer
collectively to the whole set of coeficients for a given scale, and for this purpose, we define
the vector a; as

T
a = (01,k ke GR,k) -

The term w; represents the residual error in the prediction of I(s). We assume that
ws and w, are statistically independent for s # o. The probability distribution of wj is
allowed to be non-Gaussian, and furthermore the distribution is allowed to vary with scale.
However, for any fixed scale, the distribution is assumed to be spatially invariant. We denote
the standard deviation of the residuals at scale m by oy,. As we will see, this independence
assumption on w, is what allows us to develop an extremely simple procedure for likelihood
calculation for the entire piece of multiresolution imagery. Thus, the validation of this
whiteness assumption is critical.

To accommodate the fact that we only have a finite number of SAR images, namely
for the finest L 4 1 resolutions, we must statistically characterize the initial condition of
the recursion in (4.3). This initial condition comprises the values of the pixels in the R
coarsest-scale images Iy, I _1,...,I;_gr+1. In devising a suitable characterization, we are
guided by the following observation: we are more interested in the scale-to-scale variation of
the speckle pattern than in the initial condition of this pattern. These relative interests lead
us to impose no prior knowledge about the values of the R coarsest-scale images. We simply
observe these images, and use the observed values as the initialization for the recursion in
(4.3).

As a final remark, our linear autoregressive model can be expressed in a state-space
form, exactly as in (2.1). We defer our development of this form until Section 4.2.2.

Identification of the regression coefficients

Given our specification of the class of linear autoregressions, our next task is to identify a
regression order R and corresponding regression coefficients for each model we build. We
identify these model parameters using complex-valued, training images, generated with the
Lincoln Laboratory millimeter-wave SAR. For our natural-clutter model, we use a single
image, which is displayed in Figure 4-3a. This image represents a homogeneous region of
grass at 6 x 6 resolution®, and consists of 256 x 256 pixels. Figure 4-3b depicts an example of
a scene containing a man-made object. In contrast to the case of natural clutter (Figure 4-
3a), the object in Figure 4-3b is spatially localized and nonstationary, and thus it makes
no sense to build our model based on a large region of “homogeneous targets” analogous
to Figure 4-3a. Thus, to build our target model, we use a training set of 64 SAR images
(having 32 x 32 pixels each) of howitzers, each imaged at a different aspect angle.

We convert a given training image Z into a multiresolution sequence of images Ig, I, .. .,
Ir, as described in detail in Section 4.2.1. We then systematically consider a sequcace f
possible regression orders, R = 1, 2, 3. For each proposed order, we apply the autoregression

*As defined in Section 4.2.1, 6 = 0.3 meters.
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(b)

Figure 4-3: Training SAR images used for model identification. These images were created using the
Lincoln Laboratory millimeter-wave SAR. (a) Image is used to build our natural-clutter médel; the image
represents a homogeneous region of grass at § x § resolution. (b) Image of a target-like, man-made object
at 6 x § resolution.

to the training data and solve for the regression coefficients that minimize the sum of the
squares of the residuals. In particular, we implicitly define each regression vector a,, by the
following relation:

2
ay = arg min Z [I(s) —aykl(sy)— ... — aR‘kI(sﬁ/R)] . (4.4)
HERE | (s m(s)=k)

An explicit expression for a, is straightforward to obtain from (4.4), as shown in Ap-
pendix C.1.

Our least-squares approach is the most widely used method for parameter estimation,

and is eminently reasonable here, especially given our absence of prior knowledge about the

- statistics of the residuals w(s) [42]. As we will see, the outcome of this procedure suggests
both a natural model order and appropriate regression coefficients for each of the models
we build.

Table 4.1 summarizes the outcome of applying our estimation procedure. The first
column of the table lists the resolution of the image pixels to be predicted (i.e., the resolution
of I(s) in the autoregression in (4.3)). The second column lists the proposed order of the
regression. Finally, the last two sets of columns list the regression coefficients a,, and the
residual standard deviation o, for the natural-clutter and man-made models, respectively.
For example, according to the table, the appropriate second-order regression for prediction
of 26 x 26 resolution pixels I(s) in imagery of man-made objects is

I(s) = 0.84I(s5) — 0.161(s5°),

‘with a residual standard deviation of Om = T.5.
With regard to the natural-clutter model, the table suggests that there is no practical
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- Natural-clutter model Man-made model
Image Model Regression Residual Regression Residual
resolution | order coefficients std. dev. coefficients std. dev.
1 0.28 5.4 0.70 7.2
bxé 2 0.31 -0.011 5.4 0.67 0.10 7.0
3 0.28 0.008 -0.01 5.4 0.69 0.12 0.008 7.0
1 0.30 5.3 0.87 7.6
26 X 26 2 0.32 0.02 5.3 0.84 -0.16 7.5
3 0.28 0.02 0.02 5.3 0.82 -0.11  0.009 7.5
1 0.25 5.5 0.58 8.5
46 x 46 2 0.25 0.008 5.5 0.58 0.002 8.5
: 3 0.25 -0.008 0.007 5.5 0.57 -0.009 0.01 8.5
Table 4.1: This table summarizes the outcome of our least-squares procedure for determining both

model order R and regression coefficients a,.. The first column lists the resolution of the image pixels
to be predicted. The second column lists the proposed order of the regression. Finally, the last two sets
of columns list the regression coefficients and the residual standard deviation for the natural-clutter and
man-made models, respectively.

Natural-clutter model Man-made model
Image Regression | Residual | Regression | Residual
resolution | coefficient | std. dev. | coefficients | std. dew.
§x6 0.28 54 0.67 0.10 7.0
26 x 26 0.30 5.3 0.84 -0.16 7.5
46 x 46 0.25 5.5 0.58 0.002 8.5

Table 4.2: This table summarizes our final choices for both model order R and regression coefficient
values an, for each of our two models. The first column lists the resolution of the image pixels to be predicted.
Then, the next two sets of columns list the regression coefficients and the residual standard deviation for
the natural-clutter and man-made models, respectively. '

benefit to using a model order greater than one; the higher-order regression coefficients have
negligible magnitude and the standard deviation of the prediction error is not noticeably
reduced by an increased model order. For these reasons, we use a first-order autoregression
for the natural-clutter model. On the other hand, for the man-made model, a second-order
regression appears to be preferable. In particular, the second-order regression coefficient is
not negligible (at least for the § x § and 26 x 26 images), and the standard deviation of
the prediction error is reduced by increasing the model order from one to two. Because a
third-order regression fails to continue this trend of increased benefit, we use a second-order
autoregression for the man-made model. These model choices are summarized in Table 4.2,
which represents a subset of Table 4.1.

~ As a final remark, we uute that the leading regression coefficient in vur man-made model
is significantly larger than the sole regression coefficient in our natural-clutter model. In a
loose sense, this observation implies that a multiresolution sequence of images of a man-made
object is more tightly coupled than a corresponding sequence of images of natural clutter.
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This interpretation is consistent with our description in the Introduction of the different
SAR scattering mechanisms for natural clutter and man-made objects. In particular, we
expect a multiresolution sequence of images of a man-made object to be tightly coupled,
as the same few prominent scatterers dominate all the images. On the other hand, we
expect a sequence of images of natural clutter to be only loosely coupled, as the large
number of equivalued scatterers interfere with each other in a more unpredictable way as
resolution is varied. In addition, the identification of a first-order autoregression for natural
clutter and a second-order autoregression for targets is consistent with the individual-pixel

models developed in [61] using simple theoretical models of the scene and the SAR imaging
mechanism.

Validation of residual whiteness

As we have previously noted, a critical assumption in our modeling framework is that the
residuals w(s) in our models are statistically independent, both in space (for a fixed scale)
and in scale. Whiteness in scale is, to a considerable degree, guaranteed by the nature of our
fitting procedure in exactly the same way as for the case of time series analysis. In particular,
the well-known principal of orthogonality provides theoretical assurance that when the
expected error (4.4) is minimized, the resulting error in the scale-to-scale prediction (i.e.,
ws in 4.3)) is uncorrelated with coarser scale features and thus with values w(c) at nodes
o that are ancestors of node s. This whiteness along paths of our quadtree in Figure 4-2
is, in fact, what is justified using a theoretical model, then exploited in [61]. However, in
order to use our approach over an entire image, we want much more than this: we also want
ws to be white in space as well as in scale. To validate this spatial whiteness, we examine
the sample correlation of the residuals that result when the appropriate autoregression is
applied as a predictor to a multiresolution sequence of images.

An example of the data used in this validation for natural clutter is provided in Figure 4-
4. The left column of this figure displays a multiresolution sequence of three images of the
region of grass we used for training. Proceeding downward, the images have resolution
46 x 46, 26 x 26 and 6 x §, respectively. The right column of the figure displays images
of prediction residuals; in keeping with Table 4.2, the top image represents the residuals
formed by the difference

I(s) = 0.3I(s¥), with I(s) in the image having 26 x 26 resolution,
and the bottom image represents the residuals formed by the difference
I(s) - 0.281(sy), with I(s) in the image having § x § resolution.

At least visually, Figure 4-4 suggests that the residuals are approximately uncorrelated.
This is further confirmed by Figure 4-5, which displays the sample correlation function of
the residual image from the lower-right corner of Figure 4-4. One can readily discern the
impulse-like shape of this correlation function, which renders it in striking agreement with
our model assumption. Although not shown, the same impulse-like shape is exhibited by
the sample correlatior. f{unctions of coarser-scale residuals. These numerical experiments
are quite reassuring, and nicely demonstrate that our natural-clutter model can do a good
job of decorrelating the prediction residuals across any fixed scale.

We now consider our man-made model. Proceeding in a manner parallel to our validation
procedure for the natural-clutter model, we display in Figure 4-6 a collection of five images,
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Figure 4-4: Images used to validate our natural-clutter model assumption that prediction residuals
are white. The left column contains a multiresolution sequence of images of the region of grass we used for
training; proceeding downward, the images have resolution 4§ x 46, 26 x 26 and § x &, respectively. The
right column contains images of the prediction residuals; the top image represents I(s) — 0.31(s%), with s in
the image having resolution 26 x 26 and the bottom image represents [(s) — 0.28(s%), with s in the image
having resolution 6 x §. We note that the residuals ~ppear approximately uncorrelated, in agreement with
our model assumption.
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Figure 4-5:  Sample correlation function for residuals in prediction of 6 x § resolution image of a region
of grass, using only the 25 x 26 resolution image. One can readily discern the impulse-like shape of this
correlation function, which renders it in striking agreement with our model assumption.

three of which are SAR images and two of which are residual images. We immediately see
that the residuals do not have the same completely uncorrelated appearance we observed in
Figure 4-4. In this sense, the man-made model does not capture as completely the scale-to-
scale statistical coupling of the multiresolution sequence of images. Nevertheless, as we will
see in Section 4.4, if we ignore this remaining correlation and apply the resulting likelihood
calculation methods based on the assumption of white residuals, we obtain excellent results.
Of course, this also suggests that potentially even greater gains can be achieved if more
sophisticated models are used, a point on which we comment further in Section 4.5.
Finally, for both of our models, we can measure the correlation of residuals across
different scales. We have empirically found that the peak correlation between residuals
at different scales is roughly 0.2, which is quite modest. In general, we conclude that the
correlation of measured residuals behaves in manner impressively consistent with our model
assumption of uncorrelatedness, particularly in the case of our natural-clutter model.

Identification of the residual distributions

Our final identification task is to characterize the probability distributions of the prediction
residuals w(s). For each model, we proceed by first calculating the sample cumulative
distribution function (CDF) of the residuals associated with our training data (see Figures 4-
4 and 4-6); then, we find a matching CDF that has a compact analytical form.

In Figures 4-7 and 4-8, we plot both empirical CDFs and our analytical fits to them; the
first figure displays the entire CDF's, while the second focuses exclusively on the upper tails.
We first consider the CDFs shown for the residuals associated with our man-made moccl.
The sample CDF (i.e., the dashed line) summarizes the aggregate statistics of the residuals
~in the prediction of 136 finest-scale images of tactical targets. Each of these predictions is
based on an autoregression using the coefficients listed in Table 4.2, applied to the coarser-
scale images of the respective target. Our corresponding analytical fit (i.e., the dash-dot
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Figure 4-6: Images used to validate our man-made model assumption that prediction residuals are
white. The left column contains a multiresolution sequence of images of a target-like object; proceeding
downward, the images have resolution 46 x 46, 26 x 26 and § x 6, respectively. The right column contains
images of the prediction residuals; the top image represents I(s) — 0.841(sy) + 0.16I(s3%), with s in the
image having resolution 26 x 26 and the bottom image represents I(s) — 0.67(s7) — 0.17(s%?), with s in the
image having resolution § x 6. ’
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Figure 4-7:  CDFs for prediction residuals associated with both our man-made model and our natural-
clutter model. The sample CDF associated with grass summarizes the distribution of the residuals in the
prediction of a finest-scale image of grass, using one previous scale image. The analytical fit to this sample
CDF is achieved with a log-Rayleigh distribution; we note that the match is so good that the two curves
are difficult to distinguish. The sample CDF associated with targets summarizes the aggregate statistics of
the residuals in the prediction of 136 finest-scale images of tactical targets, using two previous scale i images.
The analytical fit to this sample CDF is achieved with a Gaussian distribution.

line) is with a Gaussian distribution,

exp[~w? /(207 )]
Voo

where o, is chosen to match the sample standard deviation associated with the training
data. We note that the match between measurement and analytical fit is reasonably good.
Although not shown in the figure, the same reasonably good match is also obta.med for
coarser-scale residuals, where we continue to use a Gaussian fit.

We now consider the CDFs in Figures 4-7 and 4-8 for the residuals for our natural-
clutter model. The measured sample CDF (i.e., the solid curve) is based upon the residuals
in the prediction of a 256 x 256 finest-scale image of a homogeneous region of grass, using
the 128 x 128 second-finest scale image. Our corresponding analytical fit (i.e., the dotted
line) is with a zero-mean log-Rayleigh distribution,

Py,(w) =

(4.5)

P, (w) = kexplkw—~—explbw—7)], =~ (4.6)
where
In10
T

v o= 0.57721566 (Euler’s constant).

The log-Rayleigh distribution is closely related to the complex Gaussian distribution,
which in turn is frequently used to characterize the statistics of speckle. To elaborate on
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Figure 4-8:  CDFs for prediction residuals associated with both our man-made model and our natural-
clutter model. These distributions are identical to the ones in the previous figure; here, however, the axes
have been scaled to focus exclusively on the upper tails of the distributions.

this connection, let us consider the radar reflectivity measured in a given resolution cell
with a SAR sensor. This reflectivity is often modeled as X + jY, with X and Y are
‘independent, identically distributed, zero-mean Gaussian random variables (and j = /—1)
(53]. This speckle model has been justified, both theoretically, by appealing to the Central
Limit Theorem, and experimentally, with actual radar sensor measurements. From the
complex-valued random variable X + ;Y we can obtain a log-Rayleigh random variable as
log(vVX?%2+Y?). :

We note in Figure 4-7 that the match between our sample CDF for grass residuals and
our analytical fit is quite good, at least up to the CDF level of 0.99. Although not shown
in the figure, the match is equally good when a log-Rayleigh distribution is used to model
the residuals at coarser scales.

State-space representation of models

With the model identification procedure now completed, we recast our final model choices in
state-space form. This recasting provides a convenient way to summarize our model choices.
Furthermore, the state-space form brings out clearly the models’ Markovian properties,
which will be central to the efficiency of our likelihood calculations.

The state 2(s) is defined to be an R-dimensional vector, containing the pixel value
I(s) together with the pixel values residing at the R — 1 ancestors of node s. For our
natural-clutter model, R = 1 and for our man-made model, R = 2, and thus we have

I(s) (natural-clutter rodel),
z(s) = | (4.7)
: ( Il(gi;) ) (man-made model).
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To be consistent with (4.3), the scalé-recursive dynamics for z(s) are thus defined to be

a1,m(s)T(sY) + w(s) (natural-clutter model),
:L‘(S) = m(s) @2m(s) ) 1 (4.8)
1 0 z(sy) + 0 w(s) (man-made model).

In this recursion, w(s) is scalar valued and white (i.e., w(s) is independent of w(c), for
s # o). For the natural-clutter model, the distribution of w(s) is log-Rayleigh, given by
(4.6), while for the man-made model, the distribution is Gaussian, given by (4.5). The
values of the model-dependent regression coefficients a; m(s) are given in Table 4.2.

Since the pixel values I(s) are directly observable, the measurements y(s) must be
noiseless. In fact, we define y(s) to be

z(s) (natural-clutter model),

y(s) =
( 10 )a:(s) (man-made model).

= I(s). (4.9)

4.3 Description of Discrimination Algorithms

Now that we have identified stochastic models for SAR imagery of man-made objects and
natural clutter, we are prepared to confront directly the problem of automatic discrimination
between these two image types. We describe two discrimination algorithms, both designed
for application to ROIs cued by a prescreening algorithm. The first focuses on size, texture
and contrast characteristics of single-resolution imagery, and represents an optimized version
of the standard discriminator used in the Lincoln Laboratory ATR system. The second
represents an extension of the first, to include multiresolution characteristics in the decision-
making process.

We begin by describing the procedure for calculating our so-called multiresolution dis-
criminant. Then, we describe each of the two discrimination algorithms. We emphasize
that the multiresolution discriminant is used only in the second of these.

' 4.3.1 Calculation of Multiresolution Discriminant

To motivate the structure of our new multiresolution discriminant, we recall that our multi-
scale stochastic models provide an implicit characterization of the joint statistical distribu-
tion of the pixel values in the multiresolution sequence of images Iy, I, ..., I1. In particular,
our models implicitly define the two conditional probability density functions (PDFs)

Pron,...I |man—made(l0, 11, . - -, Iy | man — made) and
PIo,Il,...!ILInatural—clutte'r(101 Il1 fee sIL | natural — clutter)

As we describe bLelow, these conditional PDFs can b2 calculated efficiently. Thus, with
their ready availability, we are led naturally to a modified Neyman-Pearson formulation of
‘the discrimination problem. In this formulation, we seek to minimize the probability of
false alarm (i.e., the probability that a natural-clutter ROI is incorrectly classified), subject
to a fixed probability of detection (i.e., the probability that a man-made ROI is correctly
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Figure 4-9:  Schematic description of the calculation of our multiresolution discriminant. An input region
of interest is coherently processed into a sequence of lower resolution images. Likelihoods are then evaluated,
conditioned on each of the multiscale stochastic models being correct. The multiresolution discriminant is
defined to be the logarithm of the ratio of these likelihoods.

classified). Classical results assure us that the optimal processor (assuming that our models
represent truth) is a likelihood ratio test [63], and motivated by this fact, we define our
multiresolution discriminant to be the logarithm of the likelihood ratio.

A schematic description of the procedure for calculating this discriminant is provided
in Figure 4-9. As indicated in the figure, we begin by coherently processing a given ROI
into a multiresolution sequence of images. Then, we perform a classical likelihood ratio
calculation, evaluating the likelihood of the multiresolution sequence, conditioned on each
of our models being correct.

Likelihood calculations clearly play an essential role in this procedure. Fortunately, the
Markovian structure of our models leads to simple, explicit likelihood expressions that can

be computed efficiently. To describe them, we first introduce some convenient notation. We

let Hy (H;) denote the hypothesis that the ROI represents natural clutter (a man-made
object). We let My and M; denote the coarsest and finest scales, respectively, for which
we have observations (i.e., Mo = M — L+ 2 and M; = M). We define Y to be a vector
containing all the observations y(s). We let at g, (ak z,) denote the kth scale regression
coefficients for the natural-clutter model (man-made model). We let wpg,(s) denote the
residual in the autoregressive prediction of the pixel value I(s), using the model underlying
Hj; in keeping with the conventions established in Section 4.2.2, wg,(s) is given by

wir(s) = y(s) — akg) #,2(s7). (4.10)

Finally, we define Py, |p,(ws | Ho) (Py, o, (ws | H1) to be a log-Rayleigh distribution (4.6)
(Gaussian distribution (4.5)).

With these notational conventions established, the multiresolution discriminant can be
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expressed in the following way:

log (Py s, (Y | H1)) ~ log (Pyiso(Y | Ho)) - (411)

In this expression, each log-likelihood term has a simple decomposition that renders it easy

to compute. As justified in detail in Appendix C.2, this decomposition takes the following
form:

M, ’
log [PYlHi(Y | Hi)] = > > log [Pw5|H.- (wa,(s) | Hi)] : (4.12)
k=Mo {s; m(s)=k}

Each summand in this decomposition represents a penalty associated with a single residual.
This penalty provides a quantitative measure of the mismatch between actual data and our
models’ predictive fit to these data. For example, under hypothesis H;, we can use (4.5) to
express the penalty in the following familiar quadratic form:

wh, (s)
bdmwmwmnmﬂ=-1$(—bdwwm0. (4.13)
m(s)

Combining (4.11) and (4.12), we see that for a given multiresolution sequence of im-
ages, our multiresolution discriminant can be calculated via a straightforward three-stage
procedure: :

1. Calculate the prediction residuals wg,(s) for : = 0, 1.
2. Calculate the penalty log [Pw,IHi (wg,(s) | Hz)] associated with each residual wgy,(s).

3. Sum these penalties, as prescribed by (C.2) and (C.3).

4.3.2 Standard discriminator

We now describe the discriminator that is traditionally used in the second stage of the
Lincoln Laboratory ATR system. The main idea underlying this discriminator is that an
ROI has a number of characteristics, or so-called features, whose statistical distribution
will significantly depend on whether the ROI represents a man-made object or natural

- clutter. In Table 4.3, we identify nine such features, spanning the categories tezture, size

and contrast, and measured using finest-resolution imagery only. These features comprise
all the ones available to the standard Lincoln Laboratory discriminator. A brief description
of each is provided in Appendix C.4, while a much more detailed description can be found
in [40].

The approach used for processing features into a discrimination decision is based on a
so-called one-class classification scheme [25,40]. To describe this scheme, let us suppose we
have assembled a small number of measured, scalar-valued features into a vector Z. We
assume that the conditional PDF Pgzi4rge:(Z | target) is known, and this PDF alone is used

‘to make the discrimination decision, using the rule

target present
target absent

Declare { } if P,jtarget(Z | target) { z } T, (4.14)

where T is a threshold parameter.
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| Category | Feature

standard deviation
Textural | fractal dimension
rank fill-ratio

mass

Size diameter

rotational inertia
peak CFAR

Contrast | mean CFAR

percent bright CFAR

Table 4.3:  This table identifies and categorizes the nine features that are available for use in the Lincoln
Laboratory discriminator. A brief description of each is provided in Appendix C.4, while 2 much more
detailed description can be found in [40].

To implement the decision rule in (4.14), we must of course specify the conditional
PDF P.|i44et(Z | target). In this regard, an empirical analysis in [40] demonstrated that
for many choices for features, the conditional distribution of Z is approximately Gaussian.
Thus, the decision rule (4.14) can be written more explicitly as

target present

Declare { target absent

} if (Z-M)TS7HZ - M) { f } T, (4.15)

where T is another threshold parameter, and where M; and ¥; are the mean and covariance,
respectively, of the Gaussian distribution. This rule is known as a quadratic discriminator,
and is straightforward to implement, once estimates for the distribution parameters M; and
3¢ have been computed. These parameters are estimated off line, using appropriate training
imagery.

In the numerical experiments in the next section, we do not actually use the decision
rule in (4.15); instead, we use an optimized version, in which a simple, but very effective
modification is incorporated. To describe this modification, we first note that the diameter
size feature is a powerful discriminant that has been found empirically to work best when
it is used in isolation. Thus, the actual decision rule that we use consists of two stages,

‘and works in the following way. In the first stage, the diameter feature is evaluated; only

ROIs having a diameter within a prespecified range are passed to the second stage, while
the others are assigned to the non-target class. In the second stage, the remaining ROIs
are processed using the quadratic discriminator described in (4.15).

As a final note, we have so far bypassed a discussion of which particular features from
Table 4.3 are used and how they are chosen. We will address this issue in the Section 4.4.

4.3.3 Standard discriminator with multiresolution discriminant

Our second discrimination algorithm represents extension of the tiisi, in whicu vhe feature
set used to make the discrimination decision is augmented to include the multiresolution
discriminant we developed in Section 4.3.1. The structure of our decision rule here is
identical to the structure of the first algorithm’s decision rule: the only difference between
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the two algorithms is that now our new, powerful multiresolution feature is available.

4.4 Performance of the Discrimination Algorithms

In this section, we present the detection performance results obtained by applying our
discrimination algorithms to an extensive data set of actual SAR imagery. Our objective is
to evaluate the detection-performance improvement that can be achieved by incorporating
our new multiresolution discriminant into the standard Lincoln Laboratory discriminator.
We do so by comparing the two discrimination algorithms described in Section 4.3.

4.4.1 SAR Imagery Used in Study

For our study, we have used actual imagery gathered with the Lincoln Laboratory millimeter-
wave SAR. All of this imagery has 0.3-meter resolution (in both range and cross-range) and
has HH polarization. There are two components to this data set:

e A training data set, used to build our two multiscale stochastic models and to estimate
the parameters M; and ¥, associated with the conditional PDF P7ltarget(Z | target)

e A testing data set, used to test the discrimination algorithms.
The training data set, in turn has two components:

e A SAR image of a large, homogeneous region of grass. This is used to build our
natural-clutter multiscale model.

e A collection of 136 SAR images, each representing an umcamouflaged tactical target.
This collection is used both to build our man-made multiscale model, and to estimate
the parameters M; and Z; associated with Pz\target(Z | target).

The testing data set contains imagery representing 56 square kilometers of Stockbridge,
New York. Included in the imagery are the following items:

¢ 136 tactical targets (i.e., 68 tanks and 68 howitzers) that are realistically deployed
with radar camouflage netting,

e a large number of man-made clutter objects, including powerline towers, a farmhouse,
a golf course clubhouse. and a junkyard (complete with buildings, a crane and old
military jeeps), and

e natural clutter regions of trees, grass, and shrubs.

In the sequel, we refer to this testing data set as the Stockbridge imagery.

4.4.2 Generation of ROIs

To prepare for evaluation of discrimination performance, we must generate a collection of
ROIs. We proceed i two sters, nsing the Stockbridge imagery.

In the first step, we apply the Lincoln Laboratory prescreening algorithm (i.e., the first
stage of the Lincoln Laboratory ATR system) to the Stockbridge imagery. We adjust the
‘sensitivity of this algorithm so that none of the 136 camouflaged tactical targets are dis-
carded. At this sensitivity level, the prescreening algorithm yields 136 ROIs representing
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ROI Generation | Tactical | Total | Man-made | Natural
step targets | FAs FAs FAs

Prescreener 136 8739 2266 6473

Size filter 136 2071 849 1222

Table 4.4:  This table summarizes the outcome of our two steps for generating a collection of ROIs that
can be used to evaluate discrimination performance.

tactical targets and an additional 8739 ROIs representing false alarms, both natural and
man-made. Each ROI consists of 128 x 128 pixels, corresponding to a region of approxi-
mately 38 square-meters.

In the second step, we apply the size filter described in Section 4.3.2 to the ROIs gen-
erated by the prescreening algorithm. We recall that this size filter is used by both of the
discriminators described in Section 4.3. The filter has the effect of eliminating all ROIs
whose principal object’s diameter is not within the range of diameters we expect a tactical
target to have. Again, we adjust the sensitivity of this filter so that none of the 136 ROIs
representing tactical targets are discarded.

Table 4.4 summarizes the outcome of the two steps we have just described, by catego- ..
rizing the ROIs that are generated.

4.4.3 Standard Lincoln Laboratory Discriminator Vs. New Discriminator

We now subject the collection of remaining ROIs to a quadratic discriminator. In keeping
with our objective to evaluate the effectiveness of the multiresolution discriminant, we
consider two versions of the quadratic discriminator. The sole difference between the two is
that each has a distinct set of features available for use in the decision process. These two
sets are summarized as follows:

o The first set Ssandarg contains the features listed in Table 4.3; these are the ones
traditionally available to the Lincoln discriminator.

o The second set Smr—aug i an augmented version of the first set, in which the mul-
tiresolution discriminant is added.

For each version of the discriminator, we evaluate the effectiveness of every possible com-
bination of features, where these combinations are simply subsets of the available features.
In this way, for each version of the discriminator, we search for the feature combination
that results in the smallest number of non-target ROIs being classified as targets, subject
to the constraint that all 136 of the ROIs actually containing tactical targets are correctly
classified.

The resulting optimal features, corresponding to the sets Syiandarq and Smr—aug, are as
follows:

® Sstandard: standard deviation, fractal dimension, peak CFAR and percent bright
CFAR, '

® Smr—aug: Peak CFAR, mean CFAR, new multiresolution discriminant.
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Figure 4-10:  ROC curves summarizing performance of the discrimination algorithms when applied to
HH-polarization SAR imagery representing 56 square-kilometers of Stockbridge, New York. The dashed and
solid curves summarize, respectively, the performance of the discriminator, using the optimal combination of
features from the sets S;tandarq and Smr—aug. We note that the performance of our new discriminator, cor-
responding to Smr—aug, represents a substantial and statistically significant improvement over the standard
Lincoln discriminator.

Table 4.5:

Natural FAs Man-made FAs Total FAs
PD Sstcmda.‘rd Smr—aug Sstandard Smr—aug Sstandard Smr—a.ug
0.8 52 5 963 256 615 261
0.9 117 8 676 350 793 358
0.95 191 34 753 429 944 463
1.0¢ 300 241 786 667 1086 908

This table summarizes the discrimination performance at four particular operating points of

the ROC curves in Figure 4-10. The first column identifies the probability of detection Pp at the operating
points of interest. The next three pairs of columns list the corresponding number of false alarms generated
by the discrimination algorithms.

“As a caveat, the results at this operating ﬁoint are nou statictically significant; for virtually all practical;
non-degenerate problems, the operating point Pp = 1 implies that Prs = 1.
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The corresponding discrimination results are summarized by the receiver operating charac-
teristic (ROC) curves shown in Figure 4-10 and in the Table 4.5.

These results merit a number of comments. First, we note that the performance of our
new discriminator, using the optimal features in the set Smr—aug, represents a substantial
and statistically significant improvement over the standard Lincoln discriminator. Consider,
for example, the operating point Pp = 0.95: the new discriminator reduces the number of
natural-clutter false alarms by almost a factor of six.

Second, we note that the optimal feature combination corresponding to Smr—aug 1S 1n a
certain sense consistent with the optimal feature combination corresponding to Sstgndard- T0
clarify this comment, we recall that the features standard deviation and fractal dimension
are part of the optimal combination corresponding to Ssiandera- But our new multireso-
lution discriminant essentially captures both of these characteristics: standard deviation
information is directly captured in the structure of the log-likelihood ratio, as expressed in
(4.12), and fractal characteristics are fundamental to the structure of our multiresolution
models and processes, as discussed in [9]. This observation is reinforced by the features in
the optimal combination corresponding to Smr—aug, Where use of the new multiresolution
discriminant essentially supersedes joint use of standard deviation and fractal dimension.

Finally, we emphasize that our multiscale model are extremely simple, and we would
expect to obtain even better performance if we used more sophisticated models. For ex-
ample, as we saw in Section 4.2.2, our man-made model does not completely capture the
scale-to-scale statistical coupling of a multiresolution sequence of images of a man-made
object. The discrimination results obtained here certainly provide motivation for future
work on developing more sophisticated models.

4.5 Conclusion

We have developed and extensively tested a new algorithm for discriminating man-made
objects from natural clutter in SAR imagery. This algorithm has been extremely successful,
as it has exploited the characteristically distinct variations in speckle pattern for imagery of
man-made objects and of natural clutter, as image resolution is varied from coarse to fine.

Within our multiresolution framework, we used actual SAR imagery to identify a pair
of multiscale models: one for SAR imagery of natural clutter and another for imagery of
man-made objects. We then used these models to define a multiresolution discriminant as
the likelihood ratio for distinguishing between the two image types, given a multiresolu-
tion sequence of images of an ROI. We incorporated our new discriminant into an existing,
established discriminator that was developed at Lincoln Laboratory as part of a complete
ATR system. To classify a given ROI, we merged the information provided by our new
discriminant with the measured values of a small number of size and brightness features.
We applied the resulting, new discriminator to an extensive data set of 0.3-meter resolu-
tion, HH polarization imagery. The detection results were impressive. In particular, we
demonstrated a substantial and statistically significant improvement in the receiver oper-
ating characteristics when we augmented Lincoln’s standard discriminator with the new
discriminant. This result is surprisingly good, in light of the number of years over which
the standard discriminator has been developed and refined; the result conclusively demon-

strates that multiresolution methods have an effective and important role to play in SAR
ATR algorlthms
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Chapter 5

An Overlapping-Tree Approach to
Modeling and Estimation

5.1 Introduction

In spite of the success of the multiscale approach to estimation with regard to computational
efficiency, mean-square estimation error, and ability to supply error covariance information,
the approach, as developed up to this point in time, has a characteristic that would appear
to limit its utility in certain applications. Specifically, estimates based on the types of
multiscale models described so far tend to exhibit a visually distracting blockiness [46].
Actually, we saw this blockiness firsthand in Section 3.6.3 in the context of multiscale
representations of isotropic random fields.

While various interpretations of and ways to overcome this blockiness have been devel-
oped, discussed, and shown to be more than adequate in particular applications, none of
these offers a completely satisfactory resolution of this issue in general. As an example of
this discussion and interpretation, the authors in [46] argue correctly that in many appli-
cations, the construction of fine-scale estimates is not supported by the quality of available
data, and in such cases, only coarser scale estimates are statistically significant. In these
applications, one should be suspicious of any fine-scale estimate of the field in question, and
any corresponding blockiness has a complete lack of statistical significance. However, in
other applications, such as the problem of estimation of the ocean surface height [22] or the
investigation of surface reconstruction in [24], multiscale-based estimates are subsequently
used in a manner that requires the calculation of surface gradients; in these cases, there
is an essential need for having smooth estimates, so that the gradients can be calculated
meaningfully. :

- Although estimate blockiness can be eliminated by simple post-processing (e.g., the
application of a low pass filter), the resulting increase in smoothness and visual appeal comes
at a price. In particular, the post-processing can render less clear the proper interpretation
of error covariance information provided by the estimation algorithm, and it limits the
resolution of fine-scale details in the post-processed estimate, since the added smoothness
is achieved by spatial blurring. As an alternative, our work in Chapter 3, and the work in
[43,45] has demonstrated that 1ultiscale models can be constructed that produce arbitrarily
accurate representations of broad classes of random fields, including those with considerable
smoothness. However, in order to achieve a high level of smoothness, the methods described
in Chapter 3 and in (43, 45] by themselves require the use of multiscale processes in which the
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Figure 9-1:  Two nodes, s, and s2 that are close neighbors in physical space, but are distantly separated
in tree space.

state vectors z(s) have fairly high dimension, thereby leading to a sacrifice of the significant
computational advantages that the multiscale modeling framework offers.

The preceding remarks suggest that for applications in which the computational effi-
ciency of the multiscale framework is desired, but where blockiness is unacceptable, we
have considerable motivation for seeking a new approach to both multiscale modeling and
estimation. In this chapter, ! we consider a novel approach that yields the desired effect.
Our approach simultaneously achieves three objectives:

1. It yields low-dimensional multiscale models that are quite faithful to prespecified ran-
dom field covariance structures to be realized, and thus admits an extremely efficient,
optimal (or nearly optimal) estimation algorithm;

2. The resulting estimation algorithm retains one of the most important advantages of
the multiscale estimation framework, namely the efficient computation of estimation
error. covariances;

3. Both the multiscale models and the corresponding estimation algorithm eliminate the
blockiness associated with previously developed multiscale models and estimates.

In contrast to standard multiscale processing (23, 46], which achieves objectives one and
two, and to standard multiscale processing with simple post-processing [46], which achieves

objective one and partially achieves objective three, our approach accomplishes all three
objectives.

5.2 Overview of Approach

To describe our modified approach to multiscale modeling and estimation, let us begin with
a more caretul look at the source of blockiness that is typical of estimates produced by the
standard multiscale approach. Towards this end, we consider a multiscale process indexed

!The work in this chapter was done in collaboration with fellow graduate student Paul Fieguth.
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on a g-th order tree. As we know from Chapters 2 and 3, the state z(s) at any given node of
such a tree represents an appropriate, aggregate description of the subset of the finest-scale
process that descends from the given node. More specifically, the designated role of the
state z(s) in a multiscale process is to store enough information to decorrelate the values
of the process in the corresponding ¢ + 1 subtrees of nodes extending away from the given
node s. This decorrelation role is what leads both to efficient estimation algorithms and to
the source of the blockiness problem.

We can clearly see the connection between the decorrelating role of state information
and the blockiness problem by considering Figures 1-1 and 5-1. Focusing on the upper-
left and upper-right quadrants of the image domain depicted in Figure 1-1, we note that
these two quadrants are separated at the coarsest level of the tree, and therefore all of
the correlation between any two finer scale pixels in the two quadrants, such as s1 and
sz in Figure 5-1, must be completely captured in their common ancestor, namely the root
node sq at the coarsest scale of the tree. In this sense, the pixels s; and s, may be close
physically, but they are separated considerably in terms of the distance to their nearest
common ancestor node. We refer to this latter distance as so-called tree-distance; with
respect to tree distance, pixels s; and s are far apart. High local correlation between such
spatially close neighbors, as one might expect if the field being modeled has some level of
regularity or smoothness, translates into z(sg) having a high dimension, in essence to keep
track of all of the correlations across quadrant boundaries.

One way to reduce this high dimensionality is to identify and retain only the principal
sources of correlation across boundaries at each level on the tree. Keeping only these
principal sources effectively achieves maximal decorrelation of descendants with minimal
dimension of state variables. Indeed, Chapter 3 was devoted to developing a systematic
procedure for identifying the needed principal sources of decorrelating information, and
to building multiscale models of any desired fidelity. While this approach by itself can
yield low-dimensional models of sufficient fidelity for many applications (such as texture
discrimination [44] or problems such as that in [46] where only coarse-scale estimation is
meaningful), it cannot overcome the blockiness problem. In particular, neglecting even a
small amount of correlation at a coarse level of the tree can cause noticeable irregularities
across boundaries such as that separating s; and s, in Figure 5-1, and thus an additional
element must be introduced.

In this chapter, we introduce the needed additional element by discarding the standard
assumption that distinct nodes at a given level of our tree correspond to disjoint portions
of the image domain. Instead we construct models in which distinct tree nodes correspond
to overlapping portions of the image domain. As a consequence of this simple idea, which
was first used in [22,24], a given image pixel at, say, the finest scale may now correspond to
several tree nodes at this finest scale. In this way, we remove the hard boundaries between
image-domain pixels such as s; and s, in Figure 5-1. These hard boundaries are eliminated,
because now multiple tree nodes contribute to each of these pixels, thus reducing the tree
distance between the nodes corresponding to these pixels and spreading the correlation that
must be captured among a set of nodes. For obvious reasons, we refer to these multiscale
models as overlapping-tree models.

We use these overlapping-tree mcdels for both modeling and estimation, as depicted
abstractly in Figure 5-2. In both of these (fontexts, we start with assumed knowledge of
the correlation structure P, of some random field . Corresponding to this random field
X, we devise a so-called lifted-domain version ;, where this lifted-domain field lives at the
finest-scale of an overlapping-tree multiscale representation of x. The mapping from x to
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X: is denoted by x; = Gz, where we emphasize that this operator G, is one-to-many:
the lifted-domain field x; has more pixels than the image-domain field x. To map back
from x; to x, we devise an operator H, having two important properties: (i) the field H,x;
has exactly, or nearly exactly, the same correlation structure as x; (ii) the field H,y; is
guaranteed to have the desired level of smoothness.

In the top half of Figure 5-2, we depict an application of our overlapping-tree models to
the problem of efficiently generating sample paths of a random field having the prespecified
correlation structure P,. Given Py, a low-order multiscale model is built to approximately
realize the correlation structure of the overlapped field x;; we denote this correlation by Py,
where P,, = G Py GT. Because of the low order of this multiscale model, sample paths can
be generated in a computationally efficient manner, and by post-processing these sample
paths with the smoothing operator H., we obtain sample paths of a random field that
are guaranteed to be smooth and that approximately have the desired correlation P,. We
have already essentially addressed in Chapter 3 the technical problem of constructing the
tree model. Here we address the additional issue of devising the lifting and interpolation
operators G, and H,, and we combine these operators with the model-building tools of
Chapter 3 to meet the three objectives of low-dimensional states on the tree, accurate
approximation of the desired second-order statistics of the field x, and the generation of
fields without blocky artifacts.

In the bottom half of Figure 5-2, we depict an application of our overlapping-tree models
to the problem of optimal estimation of the value of a random field x, given noisy obser-
vations y. For this purpose, we devise an operator G, that plays a role directly analogous
to the role of G;: the operator G lifts the actual observations y of the random field, to
yield lifted-domain observations y; of the random field x;. These observations are then
processed by our efficient multiscale tree algorithm to produce an estimate ¥; which is then
projected back to yield x, the desired estimate of the random field. The low dimensionality
of the multiscale model allows the estimation calculations to be carried out in an extremely
efficient manner, and the properties of the operator H, guarantee that the field estimates
can be generated to have the desired level of smoothness. We address the technical problem
of justifying the optimality, or near optimality of this estimation procedure, and we also
demonstrate that estimation error covariance information can be generated in an efficient
and meaningful way.

This chapter is organized in the following way. After introducing some convenient, spe-

cial notation, we introduce all the components of our approach to modeling and estimation,
~including a more complete description of the operators G, Gy, and H;. In this fashion,
we identify the precise technical challenges to be confronted to develop fully the approach.
We then characterize the optimality properties of our estimation procedure. Next, we de-
velop an implicit scheme for describing the projection operators to and from the overlapped
domain, and finally we illustrate the effectiveness of our new approach to modeling and
estimation by means of five examples.

5.2 The Estimation Oper=tior

For the purposes of our development in later sections of this chapter, it will be useful
‘to have an explicit input-output expression for the optimal linear least-squares estimator.
Specifically, suppose that we wish to estimate a random vector y based on linear observations
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Original domain ' Overlapped domain Original domain
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X1 _| Multiscale 1 _| Fast sample | [
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Figure 5-2: An abstract view of our overlapping-tree approach to multiscale-based modeling and

least-squares estimation. Fast multiscale estimation and sample-path generation (producing possibly blocky
& and X: respectively) are accomplished in the overlapped domain. G, projects the statistics of x into
the overlapped domain; Gy projects measurements y into the domain; and H,, which possesses certain
smoothness properties, projects the estimates x; back out of the overlapped domain.

Y, where
y = Cx+v. (5.1)

Here v denotes the measurement noise or error, assumed to be zero mean and covariance
R and to be uncorrelated with x. For simplicity, we assume that y is zero mean? with
covariance Py. Then, a standard result in linear least-squares estimation is that the optimal
estimator can be expressed in input-output form as

% = Ly (5.2)
where?
L = PCT(CPCT +R)™! (5.3)
and the associated error covariance is given by
P, = P -PCT(CPCT+R)"ICP, = P, - LCP,. (5.4)

While the multiscale estimation algorithm described Section 2.1.5 calculates 2(s) and
the error variance Pj,) in a recursive manner, taking advantage of the Markov structure of
multiscale processes (rather than by explicit matrix-vector multiplication, as in (5.2)), it will
be useful in subsequent sections to have such an input-output view available. Furthermore,
although our multiscale framework applies to the general case, we focus in this chapter ex-
clusively on a particular case that, as we will see, corresponds to the problem of estimating
a scalar random field (e.g., an image), given noisy (and possibly sparse) point measure-
ments of the field. Specifically, we assume all attention focuses on the finest scale, so that
observations are only available at that scale and only the fine-scale estimates are of interest.

>Otherwise we can subtract out its mean me first and simply add it back after estimation of (z — m,).

3Obviously for these expressions. to make sense, the indicated inverses must exist. While there is no
conceptual difficulty in extending these ideas to the singular case in which R is not invertible, for simplicity,
we assume throughout our development that R is invertible. o
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Furthermore, we assume that at this finest scale, both the state and the measurements are
scalar valued.

If 51, 9,..., sy denote the nodes of the tree at the finest scale, then we can identify the
vector x to be estimated as the vector of the z(s;) ordered sequentially. Similarly, we let
8iyy Siys - - -, iy, denote the subset of these nodes where we have measurements,

y(s;) = Clsij)z(sy;) +v(sy;) (5.5)

where the measurement noises v(sij) are zero mean, uncorrelated with each other, and have
variances R(s;;) # 0 (so that there are no measurements that are perfect). We let y denote
the vector of the measurements y(s;;), ordered sequentially, and we define v analogously
in terms of the noise terms v(s;;). Then, y, x and v are related as in (5.1), where C
is a matrix determined by (5.5) and the construction of y, and v has covariance R =
diag(R(si,), R(siy), ..., R(siy,))-

5.4 Formulation of the Problems of Modeling and Estima-
tion with Overlapping Trees

In this section, we identify the central components of our new approach to multiscale model-
ing and estimation with overlapping trees. As previewed in Section 5.1, three of these com-
ponents include the lifting operators G, and G, as well as the interpolation, or smoothing,
operator H;. There are two others, namely the lifted-domain observation matrix C; and
the lifted domain observation-noise covariance R;, that play roles in the overlapped domain
directly analogous to the roles of the matrices C' and R introduced in Section 5.3. We will
see that these matrices all have a great deal of structure and that there are important,
simple relationships among them. Furthermore, we will see that any sub-optimality in our
approach to estimation can be completely traced to our use of an approximate model to
realize the correlation structure of the overlapped field x;; in the last part of this section,

we formalize this fact with a precise statement concerning the optimality of our estimation
algorithm.

5.4.1 Modeling of Random Fields with Overlapping Tree Processes

- Let x be a zero-mean random field written for simplicity as a vector, and having covariance
P,. We now consider the problem of simulating x, or a close approximation thereof. That
is, we consider the problem of generating sample functions of a zero-mean random field with
covariance equal to Py or close enough to P, so that its significant statistical characteristics
are captured.

From a computational point of view, this simulation problem poses nontrivial challenges,
and has been the focus of a considerable amount of research in the signal and image process-
ing community. One notable case in which computationally efficient techniques do exist is
for generation of sample functions of stationary random fields, defined on regularly sampled
toroidal lattices. In this case, the 2-D FFT can be used to diagonalize the field’s covari-
ance matrix; sample functions can then be generated as discussed in detail in Section 2.2.3.
However, for most other types of fields, the generation of sample paths is quite complex

‘computationally. ‘For example, one approach involves the following three step procedure:
(i) compute the square root Pi/ 2 of the covariance matrix, (ii) generate a vector w of unit
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variance uncorrelated random variables, and (iii) compute the sample path as x = P)%/ Yw.
While this approach is conceptually straightforward, there is a considerable challenge in
computing the matrix square root P,%/ 2 requiring in general O(K3) calculations for a ran-
dom field of K points. Similar computational difficulties are encountered with iterative
generation methods, such as those for Markov random fields, which can frequently take an
exorbitant number of iterations, especially to capture significant large-scale correlations.

On the other hand, as discussed in Section 2.1.6, the simulation of a random field
having a multiscale model is extremely fast; in fact, even in the one case where fast FFT-
based methods can be used, namely for generation of stationary random fields on regular
lattices, the O(K') complexity of our method is asymptotically better than the O(K log K)
complexity of these FFT-based approaches. Thus, we are led to consider more completely
the issues involved in an overlapping-tree approach to simulation.

An overlapping-tree approach to simulation

Our construction of a a simulation procedure involves two distinct steps. In the first step,
we specify the matrix G, which serves to lift the random field X into another random field
X! via

xi = Ggx. (5.6)

This lifted-domain field x; corresponds to the finest scale of an overlapping tree process, and
acts as a particular, redundant representation of X, having more pixels than the original
field. The matrix G, is not chosen arbitrarily; it has a considerable amount of sparse
structure, as we discuss in greater detail in Sections 5.4.1 and 5.5. Furthermore, G, is
chosen such that it has a left inverse H,

H,G, = I, (5.7)

satisfying certain smoothness properties to be discussed shortly.

In the second step, we combine our knowledge of the covariance P, and matrix Gy,
together with the stochastic realization method developed in Chapter 3 to build a low-
dimensional multiscale model whose finest-scale statistics are an accurate approximation to
‘the statistics of x;. Specifically, from (5.6), we see that the covariance of y; is given by

P, = G,PGT : (5.8)

Then, the covariance P, of ¢, the random field living at the finest scale of the multiscale
model that we construct, satisfies

P& ~ sz (5-9)

To generate a sample function of a random field € qualitatively similar to x, we then
apply the operator H, to &;:

£ = H. (5.10)

This random field ¢ is guaranteed to be smooth, by the assumed smoothness properties
imposed on H,. Also, thanks to (5.7)-(5.10), £ will have approximately the same statistics
as x. o
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Figure 5-3: lustration of an overlapping-tree representation of a process of length three, showing

both the dyadic tree (left) on which the representation is based, and depiction (right) of the representation
of each tree node. The bar H associated with each tree node represents the subset of the points {1,2,3}
associated with that node.

Designing G, and H,

Thus, the design problem confronting us is that of specifying the operators G, and H, and
then constructing the multiscale model for &, so that the following properties hold: (i) G,
and H; are sparse and local, (ii) H, achieves the desired smoothness, (iii) the multiscale
model is of sufficiently low dimension that simulation can be done efficiently, and (iv) the
approximation (5.9) is sufficiently accurate so as to lead to sample functions with the desired
characteristics captured in P,. The method we use here to construct the multiscale models
is the canonical-correlations-based stochastic realization method described in Chapter 3.
The focus of attention in the remainder of this and the next section is on the design of
G: and H;. In Section 5.6, we then demonstrate that our approach does indeed achieve

objectives (i)-(iv).
Example

To introduce the basic issues involved in specifying G, and H,, let us consider a very simple
1-D example of a random process of length 3. Collecting the process values into a vector

xT = (x1, X2, x3)T, we suppose that the covariance of x is as follows:

1 05 0 |
E(xx') = Po=|05 1 05 (5.11)
0 05 1

Our objective is to develop an overlapping tree model for x, indexed on a dyadic tree
having four finest-scale nodes, thereby providing only a minimal amount of redundancy.
Figure 5-3 displays an example of such a tree. On the right, we depict the tree with an
indication of the subsets of real, physical points (i.e., subsets of {1, 2,3}) to which each node
corresponds. Thns. the top node corresponds to all three poiats (i.e., {1,2,3}) and the two
nodes at the second level correspond to {1,2} and {2,3} respectively. At the bottom level
there is a single node corresponding to data point 1 and another for 3, but there are two

nodes corresponding to 2. That is, in the lifted domain on the tree, signal point 2 is lifted

to have two finest-scale tree nodes. Thus if we order the four fine-scale nodes from left to
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right and we view our 1iffing process as simply copying the value of signal point 2 to both
of the tree nodes to which it corresponds, then we are led to the following definition of G,:

1 00
G, = g 1 8 , (5.12)
0 01
which implies that
1 05 05 0
TR o1

0 05 05 1

Basic constraints on G, and H,

The preceding example illustrates the basic constraints that we place on any lifting matrix
G

1. It consists entirely of zeros and ones.
2. Each column has at least one nonzero entry.

3. Each row has exactly one nonzero entry.
These conditions ensure the following basic properties:

1. Every position in the original domain corresponds to at least one position in the
overlapped domain.

2. Every position in the overlapped domain corresponds to exactly one position in the
original domain '

Thus, the lifting process is local (in that each tree node corresponds to a single point in
the original domain) and is in fact the product G.x is trivial to compute, once G, has
been specified. This specification of G, can be associated naturally with the overlapping
structure as illustrated in Figure 5-3 or, more specifically, with the association of fine-scale
nodes with pixels. Thus, depending on how one chooses an overlapping structure, a different
lifting operator will generally result. ,

Turning to the smoothing operator, we note that the inverse relation (5.7) between H,
and G, together with our imposed constraints on the structure of Gz, lead to an important
constraint on the structure of H,. In particular, the value at any given point in the original-
domain is equal to the weighted sum of the values of the finest-scale nodes corresponding
to the given data point, where these weights must sum to unity. For example, with G as
in (5.12), the possible choices for H; are of the form

ro |

¥

\

where @ + b = 1. Here a and b can be thought of as the weights being placed on the value
of the two nodes corresponding to data point 2 in order to specify x2. For example, equal

(5.14)

o O =
o8 O
o o O
-0 O
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weighting a = b = 1/2 would intuitively lead to the most smoothness in the correlation
structure from x; through x3. On the other hand, it is important to emphasize that the
averaging implied by (5.14) is not at all the same as spatial averaging, since we average only
those tree points corresponding to the same point in real space.

5.4.2 Estimation of Random Fields with Overlapping Tree Processes

Let us turn now to the problem depicted in the bottom half of Figure 5-2. The objective
is to exploit the efficiency of the multiscale estimation algorithm to perform optimal or
near-optimal estimation of a random field ), while avoiding blocky artifacts.

Suppose that we have noisy measurements of x

y=Cx+v v~ N(0,R)

where two conditions hold: (i) each component of y represents a measurement of an individ-
ual pixel, so that each row of C has only one nonzero entry, and (ii) the measurement noise
terms are uncorrelated with each other, so that the covariance R of v is diagonal. From
Section 5.3 we know that ¥ = Ly, where L is given by (5.3), assuming that y has prior
covariance Py. However for a K-pixel field the calculation of L is generally O(K?) and the
calculation of the product Ly is O(K Nyeqs) where Nypeqs is the number of measurements.
Virtually the only case in which this computational load can be reduced to a practical level
1s when the field x is stationary, and we have dense, regularly sampled measurements of
identical quality (implying that C and R are both multiples of the identity); in this special
case FFT methods can reduce the computational load to O(KlogK). However in other
cases, the O(K3) computational load cannot be reduced, and in these cases, the traditional
approach is to turn to iterative methods for the computation of ¥. The problem here is that
not only can these iterative methods be slow, but they also do not yield error covariance
information. .

We are thus motivated to consider the estimation approach illustrated in the bottom
half of Figure 5-2. To develop this approach, we will need all the results from our approach
to modeling, plus a bit more. In particular, we will need the lifting and projection operators
Gz and H; for our random field, as well as a multiscale model for &, such that H & is an
adequate approximation of the field x; the issues related to determining these were discussed
in the preceding section.* In addition, specific to the estimation problem, we need to define
a lifting operator G, for the measurements:

= Gyy (5.15)

and a lifted measurement model

v = Cixi + . (5.16)

Once these quantities have been specified, we can carry out estimation as a two-step
procedure: (i) application of our multiscale estimation algorithm to estimate y; based on
Y1, and (ii) application of H, to the resulting estimate, chereby yielding a near-optimal
estimate of x based on y. A

For step (i) to be feasible, the components of ; must represent observations of individual

“The only exception is the construction of the multiscale model for &1, which was described in Chapter 3.
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fine-scale tree nodes, where the observation noises are uncorrelated. In other words, each
row of C; must have only one non-zero entry and the measurement covariance R; of v; must
be diagonal. Turning then to step (ii), we can clearly see the requirements for its success
by writing the multiscale estimator in input-output form as in (5.2):

-1
Xt =Ly = le C'lT (C[PXICIT + R[) U (5.17)

Combining (5.17) with (5.15), we see that our step-(ii) objective of satisfying ¥ ~ H,x; is
equivalent to satisfying

-1 -1
PCT (CPCT +R) ™ =L =~ HLiGy = H. Py CT (C/PCT + R)) (5.18)

Designing Gy, C; and R,

Assuming that G, H;, and the multiscale model (which specifies P,,) have been chosen,
the remaining quantities to be specified include Gy, Cj, and R;. Given the construction of
Gz, in which each pixel is associated with a set of fine-scale nodes, the most natural choice
for Cy is specified by requiring that if a real measurement is made at a particular pixel, then
lifted measurements should be specified at each of the fine-scale tree nodes corresponding
to that pixel. For example, for thé three-point process and dyadic tree lifting illustrated in
Figure 5-3, let us suppose that we have measurements of x; and X7, namely

(;’:) Cs(égg) RE(32> (5.1‘9)

Then, in our lifted domain we should have three measurements, one corresponding to the

single node associated with x;, and two corresponding to the nodes associated with x».
That is, '

<
i

1
c=1| o (5.20)
0

O N O
N oo
o O O

An obvious question at this point is how to create three measurement values on the
tree when only two real measurements are available. The answer here, and in our general
-procedure, is that we simply copy the actual measurement value at any pixel to all fine-scale
nodes associated with that pixel. In our example,

w=Gy=| v (5.21)

1
G, = 0
0 Y2

[

At first glance, this procedure appears to create a significant problem: for the multiscale
estimation algorithm to work, we require that the measurements at distinct nodes have
uncorrelated errors. With y; and C; defined as in (5.21) &nd (5.20) this uncorrelatedness
certainly does not hold, since two of the “measurements” are identicai. Nevertheiess, there is
no intrinsic mathematical difficulty with simply modeling these two measurements as being
distinct ones, each of the state at the corresponding node, with uncorrelated measurement
errors; indeed this modeling approach is how we proceed. However, by proceeding this
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way, we appear to have created another difficulty. Specifically, by modeling y; in this way,
we appear to be asserting that we have more information than we actually do; we now
have two independent measurements of the nodes corresponding to z3. To compensate
for this fact, we need to ensure that the total information in these two measurements is
the same as in the single actual measurement. We make this idea precise by defining the
information content of a scalar-valued measurement to be equal to the reciprocal of the
measurement’s noise variance; for instance, the information provided by y», as defined by
(5.19), is 1/4. Furthermore, we define the information content of a whole collection of scalar-
valued measurements of a single point (assuming uncorrelated noise terms)to be equal to
the sum of the information contents of the individual measurements. In terms of these
conventions. it is straightforward to ensure that the amount of information in y; is the same
as the amount of information in y; specifically, given R in (5.19), we define

3 0 0
R[ = 0 P1 0 y (5.22)
0 0 p2

where the positive scalars p; and ps are constrained to satisfy

1,1 _ 1
p1 P2 4

For instance, one possibility is to let
pr = p2 =8

5.4.3 Optimal Estimation Through Lifting and Projection

Let us now turn to a general analysis of the optimality of our overlapping-tree approach to
multiscale estimation. We demonstrate that if our multiscale model for y; is such that the
approximate equality in (5.9) is in fact an exact equality, then there exist values for the
matrices G, Gy, H;, Cj, and R, so that the resulting estimate x = H.%, is ezactly equal to
the optimal estimate (5.2) of x based on y. This optimality will hold for all least-squares
problems of the form

Estimate X
Given y=Cx+v

so long as C is a weighted selection matrix (i.e., each row of C has exactly one nonzero
entry and each column has at most one nonzero entry.®), and the covariance of v, which we
denote by R, is diagonal. The example given in Section 5.4.2 illustrated one very simple
way to choose values for the parameters G, Gy, Hz, C; and R;; we show here that in general
there is actually considerable flexibility in their choice.

The optimality properties of our estimation procedure are significant. They imply that
any actual sub-optimality is traceable directly and comnletely to approximations made in

5These conditions are equivalent to saying that each measurement is of a distinct pixel and any pixel
‘has at most one measurement associated with it. The latter assumption is for simplicity only; if there
are multiple measurements of a single pixel, then since R is diagonal we can replace these by a single
measurement obtained as the weighted average of the redundant measurements.

g o & _— e . N e, " meagms 2 eae = oaa ma— . e - T
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building a low-dimensional model for x;. We thus have explicit control of the complexity-
accuracy tradeoff, and in Section 5.6, we provide some illustrations of how we manage this
tradeoff.

As in our simple example in Section 5.4.2, we restrict ourselves to choices of G, such that
three properties hold: (i) G, consists entirely of zeros and ones, (ii) each column of G, has
at least one nonzero entry, and (iii) each row of G has exactly one nonzero entry. We then
must choose H; so that H,G; = I, and while this requirement does indeed constrain H;,
it does leave some remaining degrees of freedom. In particular, as we have seen, the choice
of G, is directly related to the overlapping structure that we have chosen, which in turn
specifies which fine-scale tree nodes correspond to which real pixels, and H, then performs
a weighted averaging among each set of tree nodes that correspond to each individual pixel,
where there is flexibility in the choice of these weights. Thus, there is considerable freedom
in the choices for G, and H,. Furthermore, the resulting matrices are quite sparse. On the
other hand, for 2-D problems of practical interest, these matrices will be quite large, and
thus any structure that can be imposed or discerned about the sparsity in G, and H, will
be of considerable benefit. In Section 5.5 we describe how these matrices can be specified
in an implicit manner that achieves a considerable reduction in storage requirements and
increase in computational speed.

We now turn our attention to devising Gy and C). Towards this end, we note our actual
measurements are y = Cx + v while our lifted measurements are computed as y, = Gyy
and modeled as y; = Cj); + v;, where y; = G;x. Thus we have two expressions for how the
real random field x affects the lifted measurements y;, namely C;G.x and G,Cx. A logical
requirement on C; and G, then is to require these two expressions to be equal for any y:

GG, = G,C (5.23)

Thus, once the value of either C, or Gy is determined, the value of the other is automatically
determined.

We now construct an appropriate matrix for C; exactly as we did for our example. Specif-
ically, we assume that for each real pixel measurement, we have an analogous measurement
for each of the tree nodes corresponding to that real pixel. Thus if the jth component of y
1s y; = a;X; + noise (where x; is a component of x) then y; will have measurements of the

form

(w1),, = o (x1),, + noise . (5.24)

for each n such that finest-scale node (x;),, corresponds to the real pixel ;.

Since C is a weighted selection matrix, so is C;. Since C has full row rank, it follows
from (5.23) that

G, = CG.CcT(cch)—1 (5.25)

While this expression for Gy is correct, its simple, sparse structure is obscured. However,
once we note that (CCT)~! is a diagonal matrix and that the weights in C; are the same
as those in C, it follows fairly easily that Gy is a lifting matrix, just as G, is. This general
result ic concistent with our simple example: we define lifted-domain observations to exist
for those lifted-domain nodes where corresponding original-domain observations exist, and

we then assign values to these lifted measurements by simply rephcatmg the appropriate
original-domain measurement values.
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The construction of R, is facilitated by defining S(j) to be the set of finest-scale points,
in the overlapped domain, that correspond to pixel j in the original or image domain;
equivalently, S(j) can be defined as the number of 1s in the j-th column of Gy:

S(y) = {3 Gy(iaj) =1}.

Then, consistent with this definition, |S(j)| is the number of times the j-th original-domain
measurement is replicated. We then define R;, the covariance of the measurement noise
vector v, to be a diagonal matrix, where the ith diagonal entry Ry(¢,%) must be greater
than zero and satisfy

Z 1 _ 1
is(y) 9 R(3,7)
where j is the unique index for which Gy(4,7) = 1. A more compact way to express this
condition on R, is to restrict R; diagonal and positive definite, with

GIR['G, = R! (5.26)

Any matrix R, that satisfies these conditions provides the observation covariance amplifi-
cation required in the lifted domain to offset the apparent increase in information caused

by the replication of measurement. A specific choice for R; that is consistent with (5.26) is
to set

Ri(i,9) = [ISGIR3,J), (5.27)

where, again, j is the unique index for which Gy(1,7) = 1. This choice for R; has already
been seen in the context of our simple earlier example. Furthermore, this type of am-
plification scheme for R, is what we will exclusively use in our numerical experiments in
Section 5.6.

We have the following Proposition.

Proposition 7 Let x be a random field with covariance P, and let y = Cx + v be a set
of measurements with C a weighted selection matriz and R, the covariance of v, diagonal.
- Suppose we then choose Gy, Hz,Gy,Cy and Ry as just described. Then the optimal linear
least-squares estimate X of x based on y can either be computed directly or by lifting, per-
forming optimal estimation in the lifted domain, and then projecting. That is, if ¥ = Ly,
and x; = Ly, then

-1 -1
PCT(CPCT+R) = L = H,LiG, = H,P,CT (CPCT + Ri) ™ Gy(5.28)

where Py, 1s defined in (5.8). Moreover, if P; denotes the estimation error covariance in
estimating x based on y, and Py, denotes the estimation error covariance in estimating X
based on vy, then

Py = H, Py HT (5.29)

A detailed proof of this proposition is contained in Appendix D.
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Figure 5-4: Basic overlapping-tree notation: o, represents the degree of overlap between the regions

represented by sibling multiscale nodes on scale m; w,, represents the width of the region represented by
each node on scale m.

5.5 Specification of the Overlapping Framework

In this section we describe an implicit, compact, and efficient method for specifying the
operators G; and H;. The details of this material can get quite involved, and so for
simplicity, we focus on a simple case that conveys only the main ideas. A muth more
detailed and general description of the ideas contained in this section can be found in [23].

The case on which we focus is the representation of 1-D random processes with dyadic
overlapping tree models. For simplicity, we impose the constraint that the structure of the
overlap be spatially uniform; more specifically, we insist that for any two nodes s; and s
on the same scale of the tree, the manner in which their descendants overlap must be the
same. For a dyadic overlapping tree model having this prescribed structure and also having
M +1 scales, it turns out that the operators G, and H_ can be specified completely in terms
of only M parameters.

To describe this compact parameterization, we first recall that each node on the multi-
scale tree is associated with a connected interval of points in the original domain. We denote
the width of this interval, for a node at scale m, by w,,. This convention is illustrated in
Figure 5-4. The figure additionally illustrates the geometry of the overlap of the intervals
associated with the two children of any given node; we denote the amount of this overlap
between sibling nodes at scale m by o,, > 0.

To avoid a situation in which successive scales have the same resolution, we impose the
constraint that sibling nodes do not completely overlap:

0< 0 < Wy, m=1,2,..., M. (5.30)

The width parameters w,, and the overlap parameters o,, are closely related; in fact, we
can see from Figure 5-4 that they are related by the following recursion:

Wm—1 = 2Wm — Om. (5.31)
Collectively, the M overlap parameters
O = {o1,09,...,0pm},

provide a complete characterization of the overlap structure of the tree.
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Let us turn now to the consideration of how values for M and the overlap parameters O

are selected, to represent a 1-D sequence of length, say, K. Clearly, the length K imposes
the constraint that

M > [log, K1, (5.32)

where the operation [z] yields the smallest integer that is greater than or equal to z. For
any fixed M satisfying (5.32), the overlap parameters O are implicitly constrained by two
boundary conditions on the recursion (5.31). First, each node on the finest level of the tree
must correspond to a single pixel:

wp = 1. (5.33)

Second, the root node of the multiscale tree must be associated with the entire random
field:

wo = K. (5.34)

The constraints (5.30)—(5.34) still leave some degrees of freedom is specifying the overlap
parameters O. In our examples in Section 5.6, we eliminate these remaining degrees of
freedom by additionally constraining the so-called fractional overlap, o, /wm to be approx-
imately constant as a function of scale; the fractional overlap cannot generally be made
exactly constant as a function of scale, since the parameters w,, and o,, must take on
integer values.

With regard to selecting a value for M, it is clear that as the value M is increased,
for a fixed value of K, the amount of overlap at each scale must also increase, in order to
fulfill the boundary conditions (5.33) and (5.34). Thus, if a given applications calls for a
significant amount of smoothness, then we will be compelled to use a large value for M,
since a greater amount of overlap leads to greater smoothness. However, in obtaining this
greater smoothness, we pay a price in computational complexity, because as M increases,
the complexity of carrying out simulation and and estimation also increases. Thus, there is
tradeoff involved in choosing a value for M that is typically best resolved by a combination
of engineering judgment and numerical experimentation.

The value of the projection matrix G, follows uniquely, once values for M and the
overlap parameters O have been devised. To see this fact, let us consider the k-th row of
" Gy, for any k. Thanks to the constraints on G, that were established in Section 5.4.1, we
know that this k-th row will have a single non-zero entry, where the value of the nonzero
entry is unity. If we let sx denote the k-th node at the finest scale of our overlapping tree,

then this node will correspond to some index I in the 1-D process being represented, and
S0

1 =1
0 otherwise

Gx(kvl) = {

As we now show, the index [, can be determined directly from M and O. Indeed, let us
again consider the finest-scaie nude s5. Clearly, there is a unique path from the ioot node
0 to the node si, where this path can be described as a sequence of M downward-shift
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‘operations:
sk = 0aj oy, - .. gy, Jm € {1,2}. (5.35)

Here, oy and oy represent the left and right children, respectively, of node o, and

M
ko= Y (m—12M (5.36)

m=1

But it is easy to see from our earlier discussion of overlap geometry that the index k
corresponding s, must satisfy

M
k = Y (Um—1)(Wm — 0m). (5.37)

m=1

Thus, as claimed, %; can be determined from M and O. Since the same procedure can be
repeated for every row of the matrix G, the entire matrix can be determined from M and
0.

The construction of H,, while constrained by the specification of M,® and the fact
that H,G; = I, still has degrees of freedom that must be specified. To uniquely define
H, we recall that each componefit of Hy; is supposed to represent the value of a pixel
in the original image domain, where we insist that this value be a weighted average of the
components of x; corresponding only to that single original-domain pixel. In this sense, the
operator H; performs purely an ensemble average, with no spatial averaging of any kind.
To enforce our restriction that H, perform no spatial averaging, we impose the condition
that the distribution of non-zero elements in H, be the same as in Gf; in other words,
if G¢(i,7) = 0, then we must also have that H.(j,i) = 0. One valid way to fulfill this
constraint is to let H; be equal to the Moore-Penrose pseudo-inverse of G; this choice
additionally satisfies our constraint that H,G, = I. However, as we describe next, it is
possible to devise a matrix H, that actually does a better job of smoothing.

To describe the H; that we actually use, let us consider two nodes on some scale m,
such as the two child nodes shown in Figure 5-5(b); with these nodes fixed, let us now
consider some pixel that lies within the overlapping regions of these two nodes (e.g., the
pixel marked x in the figure). We need to specify the contributions of the two child nodes
(and their descendants) in determining the value of pixel *; for example, as indicated in
the figure, the left child is given a weight of % and the right child a weight of %. Thus
the right child (and its descendants) will have a contribution three times that of the left
child. In order to maintain a total contribution of unity at each pixel, we will normalize
the contributions at each pixel to sum to one; these normalized values will be referred to
as relative contributions. We propose to achieve smoothness in H, by tapering the relative
contributions of a node towards zero as one approaches an overlapped end of the interval
associated with the node; one such tapering is sketched in Figure 5-5(a).

The previous paragraph outlined a procedure for determining the relative contributions
of two overlapping nodes. Suppose this procedure has been applied to all nodes on all scales.
To illustrate how H;.is determined in terms of these contributions, we consider a node s
on the finest scale, and we define k and I; as in (5.36),(5.37). The participation of node Sk
on the finest scale is determined as the product of all relative contributions associated with
position [ on all ancestors of s;. This construction is illustrated in Figure 5-6; the figure
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Figure 5-5: Two overlapping nodes: the set of relative contributions to each finest-scale pixel must sum
to one. The contributions are tapered linearly over the region of overlap. Figure (a) shows this tapering
pictorially; Figure (b) provides a specific example for. two nodes which overlap by three pixels.
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Figure 5-6: An example of the construction of H.. A four-level tree is used to represent a process

having four points (a,b,c,d). The process points associated with a multiscale node are indicated below the
node. The relative contributions of each node to its associated process points are indicated above each node.
Products of these relative contributions determine the elements of H-.

illustrates an overlapping tree representation of a process having four points: (a,b, ¢, d).
Consider finest scale node s =) (second from the left end of the tree). The participation of
s in determining the value at point b is given by the product of the relative contributions
to b of all ancestors of s — i.e., the numerical values above each ®in Figure 5-6. Thus the
‘participation of s is equal to 1- % . % ‘1= %; so the weight in H, associated with s is % The
weights in H, corresponding to each of the finest-scale nodes are shown in Figure 5-6.

For all but the smallest estimation problems, a dense representation of the G, and
H; matrices is completely impractical. The observation that each row of G, and each
column of H; contains only one non-zero entry suggests that a sparse representation based
on storing only these non-zero entries might be adequately compact. However for large
multidimensional problems even this sparse representation may be very large (indeed, the
combined number of non-zero entries in G, and H, may exceed the number of values in
the entire multiscale tree). As has been discussed in this section the overlapping structure
paratuesesization { M, O}, in which there are only M parameters, forms a sparse and implicit
representation of G, and H;. We have found the construction of G; and H, from the overlap
parameters O to be so rapid that we have exclusively used this latter representation in our
software. '
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k= -2 -1 0 1 2
2 -0.0085 | 0.0139 | -0.0058
1| -0.0008 | -0.1164 | 0.2498 | -0.1405 | 0.0091
1=101-0.0517 { 0.5508 0.5508 | -0.0517
-1 | 0.0091 | -0.1405 | 0.2498 | -0.1164 | -0.0008
-2 -0.0058 | 0.0139 | -0.0085

Table 5.1:  Autoregressive weights {r} of the “wood texture” WSMRF [39].

5.6 Experimental Results

The overlapping tree framework provides a powerful, new approach for carrying out both
modeling and estimation. In this section we consider four applications of this framework to
problems involving Markov random fields.

We focus, in particular, on a WSMRF having a fourth-order neighborhood structure and
an autoregressive representation (2.8) that uses the weights given in Table 5.1 [39]. Just as in
our WSMREF example in Section 3.6.2, we define the field on a toroidal lattice (of dimension
64 x 64), so that exact calculations, based on FFT techniques, are computationally feasible.
Figure 5-Ta displays a sample path of the field, drawn from the exact distribution using
Gaussian deviates. Clearly, this so-called wood texture exhibits considerable anisotropy,
having much stronger correlation in the vertical direction than in the horizontal one. This
long-range vertical correlation, together with the quasi-periodic structure in the horizontal
direction, are the principal qualitative features that have previously been found difficult to
preserve with non-overlapping tree models, even using relatively high-order ones [45]. In
contrast, we will find that our overlapping approach yields impressive results with low-order
models. -

All of the multiscale models used in this section are indexed on the quadtree. Since
the original domain has dimension 64 x 64, it immediately follows that corresponding non-
overlapping models will be indexed on a tree having 7 scales. On the hand, for the over-
lapping models, we have more freedom, as described in detail in the previous section. For
all the examples in this section, we use an overlapping tree having 8 scales; the associated
overlap parameters O have the following values:

0O = {10,5,3,2,1,0,0}.

We note that this choice for O is consistent with (5.33) and (5.34), and renders approxi-
mately constant the fractional overlap o,,/wy,. The dimension of the state vectors in the
models we build will be dependent on the particular example at hand; we will make explicit
this model order in each individual example. As a final note, the techniques described in
Chapter 3 have been used.to construct all of the multiscale models used in these examples.

5.6.1 Sample-path Generation of WSMRF

While we expect that the principal uses of our iuultiscale models will be for use in the 2esign
of estimation algorithms, we begin here with an example of simulating random fields. In
Figure 5-7Tb and c, we display, respectively, sample paths associated with non-overlapping
and overlapping tree models. The model orders have been chosen so that the computational -
effort required to generate a sample path is roughly the same for these two models; while

e . e e et e —————— e e et = b 4 e ow S N
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Figure 5-7:  These three figures display sample paths of the wood-texture WSMRF, for a 64 x 64 pixel
region. The sample path in (a) is drawn from the exact distribution, using FFT techniques. The sample
path in (b) is based on a simulation using a non-overlapping tree model of order 64. Finally, the sample
path in (c) is based on a simulation using an overlapping tree model of order 16. We note that while the
sample path in (b) has noticeable blockiness, the one in part (c) has none.
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Figure 5-8:  Comparison of the fidelity of a non-overlapping and an overlapping tree model for the wood
texture. The solid curve displays the desired correlation function for the vertical direction. The dashed
(dotted) curve displays the correlation function associated with the non-overlapping (overlapping) model,
these two curves have been calculated using Monte Carlo simulation, using enough trials so that with 95%
confidence, all calculated values are within 0.005 of their actual value; this uncertainty is on the order of the
width of the plotted lines, and so no error bars are needed. While the overlapping model certainly yields less
blocky sample paths, the non-overlapping one does a better job of preserving the ideal correlation structure
in the vertical direction.

the non-overlapping model has order 64, the overlapping one has order 16. The sample
path in (b) clearly suffers from visually distracting blocky artifacts, all of which are absent
in the sample path in (c). In this sense, the overlapping model appears to have achieved
superior performance.

In Figure 5-8, we compare the correlation functions, for the vertical direction, of the two
multiscale models. Here, the non-overlapping model has achieved superior performance.

5.6.2 Estimation: Densely Sampled Field, Homogeneous Model

Our remaining three examples address various issues related to multiscale-based estimation.
Our first such example is for a case in which we have dense, regularly sampled measurements
of uniform quality. These conditions allow us to compare our multiscale-based estimates
with statistically optimal, FFT-based estimates, where the latter can be efficiently calcu-
lated in this special case. To carry out the experiment, we have corrupted the original
sample path displayed in Figure 5-7a with white Gaussian noise, to yield an observed image
having 0dB SNR (i.e., the variance of the measurement noise is equal to the variance of the
signal). In Figure 5-9. we then compare three different estimates of the criginal field, based
on the given noisy image. In (a), we display the estimate produced by optimal FFT-based

. techniques, while in (b) and (c), we display the estimates associated with non-overlapping

and overlapping tree models, respectively. Again, we have chosen the multiscale model or-
ders so that the computational effort required to calculate (b) and (c) is roughly the same;
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(b)

Figure 5-9: These three figures display linear least-squares estimates of the sample path in Figure 5-
Ta, based on dense, noisy measurements of the signal in Figure 5-7a with 0dB SNR. (a) The statistically
optimal estimate, which is calculated using FFT techniques. (b) A multiscale-based estimate, using a non-
overlapping tree process in which the state dimension is constrained to be no greater than 40. Note the
blocky artifacts at the quadrantal boundaries. (¢) A multiscale-based estimate, using an overlapping tree
process, in which the state dimension is constrained to be no greater than 16. Note that all blocky artifacts
have been eliminated. The computational burden is the same for computing the estimates in (b) and (c).
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the non-overlapping model has order 40, while the overlapping one has order 16.

One way to compare these two multiscale-based estimates is in terms of percentage loss
in error-variance reduction; this metric was defined in (3.45). By this criterion, the non-
overlapping estimate in (b) has a loss of 1.4%, while the overlapping estimate in (c) has
a loss of 2%. Hence, with regard to this criterion, the non-overlapping estimate has done
slightly better for this one trial. On the other hand, a wvisual inspection of these estimates
reveals that while the one in (b) has distracting blocky artifacts, the one in (c) does not.
Thus, if the elimination of such artifacts is an important concern, using an overlapped model
is decidedly superior.® Furthermore, if a MSE closer to the optimum is also desired, the use
of a model of slightly higher dimension can achieve that as well.

Although the FFT technique is both efficient and optimal in terms of MSE, it suffers
from a limited applicability to special circumstances. In particular, each of the following
cases precludes the use of the FFT, but may be solved using our multiscale method: (i)
irregularly sampled measurements, (ii) spatially varying measurement noise, and (iii) spa-
tially varying prior model. Indeed, we next examine estimation problem for which the
FFT-based techniques are inapplicable.

5.6.3 Densely Sampled Field, Heterogeneous Model

We now consider an estimation problem for which FFT techniques are inapplicable: the
computation of estimates for a random field having a non-stationary prior model. Figure 5-
10a displays a sample path of the non-stationary model. The 64 x 64 pixels of the field
were divided into groups g; and gy: g contains the pixels in the upper left and lower right
of the image, and g, contains the pixels in the diagonal band running through the center
of the image. The prior model for the pixels in g1 is the “wood” MRF model of Table 5.1;
the prior model for the pixels in g, uses the the same coefficients in Table 5.1, but with the
whole table rotated by 90 degrees. The cross correlation between groups g; and g, is zero.

The choice of such a non-stationary prior model, as opposed to the simple prior model
of the previous example, just implies a change in the prior statistics on the finest scale of
the multiscale tree. Otherwise there is no essential difference, and the multiscale model
development and estimation procedure proceed unaffected.

Figure 5-10b displays a noisy version of the original sample path, corrupted by white
Gaussian noise to 0dB; Figure 5-10c displays the corresponding multiscale reconstruction
based on an overlapplng multiscale model of order 32. As mentioned in the previous ex-
ample, the smoothing operation H, of the overlapping framework has not at all blurred
the edge between the two prior models — the edge stands out distinctly. Furthermore, no
blocky artifacts are apparent anywhere in the reconstruction.

5.6.4 Locally Sampled Field, Homogeneous Model

Let us consider another estimation problem in which FFT techniques are inapplicable: the
computation of a set of estimates given a stationary prior model, but with measurements
available at only a small, non-rectangular subset of the pixels. Figure 5-11a shows a subset
of the pixels of the “wood” texture from Figure 5-7a; this elliptical set of »ixels represents

This points to the fact that MSE is not always the criterion by which we judge reconstructions. In fact,
.in the eyes of both this thesis author and his collaborators, the reconstruction in 'Figure 5-9c is superior not
only to the one in Figure 5-9b, but also to the optimal FFT—based reconstruction Figure 5-9a, which seems
excessively smooth compared to the original process in Figure 5-7a.
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Figure 5-10:  These three figures display results of linear least-squares estimation with a heterogeneous
texture. (a) A sample path of an inhomogeneous MRF, in which each pixel belongs to either a horizontally
or vertically correlated texture. (b) Observation of the sample path in (a), with corruption by 0dB white,

Gaussian noise. (c) Estimate of the sample path in (a), based on the observation in (b), using overlapping
tree model of order 32.
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(a) (b)

Figure 5-11: These two figures display results of linear least-squares estimation based on observation
of only part of the field. (a) Noiseless observations of small subset of the sample path in Figure 5-7a. (b)
Estimate of the sample path in Figure 5-7a, based on the observation in (a), using an overlapping tree model
of order 16. We note that the structure of the estimate has a very smooth evolution from being grainy

and detailed to being smooth and less detailed, as the distance increases from the center of the ellipse of
observations.

those pixels to be used as measurements. No noise was added to the measurements, however
since a measurement error variance of zero is not permitted in the particular implementation
of the multiscale estimator used here,” a measurement noise variance of 10~4 was specified.

Being given measurements at a subset of the image pixels, as opposed to a dense set
of measurements as in the previous two examples, just implies a trivial change in the
measurement projection operator G, and, consequently, in the multiscale measurement
matrices on the finest scale of the tree. Otherwise there is no essential difference, and the
multiscale . model development and estimation procedure proceed unaffected. It is rather
significant to note, however, that while the multiscale framework is readily adapted to
the loss of measurements, a change from dense to irregular sampling immediately makes
" FFT-based approaches inapplicable.

Figure 5-11b displays the overlapping tree reconstruction, based on the limited set of
measurements given in part (a) of the figure. The multiscale estimator does capture the
coarse features of the original texture of Figure 5-7a outside of the measured region. Even
certain aspects of the vertical bands to the left and right of the measured region are properly
captured. Also, once again, despite the fact that we are using a multiscale estimator, the
estimated texture evolves smoothly, without blocky artifacts, as we move away from the
measured pixels.

For our final estimation example, we again consider estimation using a stationary prior
model, buv now with noiseless observations that are spatially distributed according to a
sample path of 2-D Poisson process. In Figure 5-12a, we display the original sample path,
while in part (b), we display the locations of the observations (denoted by the blackened pix-

" Although such an estimator could be implemented. .



5.5. Experimental Results 157

Figure 5-12: These four figures display another example of linear least-squares estimation based on
observation of only part of the field. (a) Sample path of original field. (b) Locations of observed pixels;
these observations represent only 10% of all the pixels. (c) Estimate of the signal in (a), based on the
observations in (b), using a non-overlapping model of order 40. (d) Estimate of the signal in (a), based on
the observations in (b), using an overlapping model of order 16.
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els.) In Figures 5-12c and d, we display, respectively, estimates based on a non-overlapping
and an overlapping model. The order of the non-overlapping (overlapping) model is 40 (16).
In this case, the estimate based on the overlapping model is both more visually pleasing
and has a lower mean-square error. In particular, the MSE of the estimate in (c) is 0.1563,
while the MSE of the estimate in (d) is 0.1440; the pixel variance in the original image (in
part (a)) was unity.

5.7 Conclusion

We have presented a new approach to modeling and estimation, using a recently introduced
class of multiscale stochastic processes. Our work has been motivated by the observation
that estimates based on the types of multiscale models previously proposed have tended to
exhibit a visually distracting blockiness. To eliminate this blockiness, we have discarded
the standard assumption that distinct nodes on a given level of the multiscale process must
correspond to disjoint portions of the image domain. Instead, we allow distinct tree nodes
to correspond to overlapping portions of the image domain, thereby eliminating the hard
boundaries between pixels. This is done in a way that eliminates blocky artifacts without
spatial averaging, so that if a field does indeed have sharp chscontmultles these can be
captured without blurring in our framework.

By coupling this overlapping framework with a multiscale stochastic realization tools of
Chapter 3, we have developed a powerful estimation and modeling tool which allows one
to manage the tradeoff among estimate smoothness, statistical fidelity, and computational
effort. Furthermore we have characterized the optimality properties of our estimation proce-
dure. As we have discussed, these properties imply the important result that any actual sub-
optimality is traceable completely to approximations made in building a low-dimensional
model for the specified statistics. We thus have explicit control of the complexity-accuracy
tradeoff.

In the examples of Section 5.6, we applied the overlapping multiscale framework to
problems of modeling and estimation involving MRFs. The flexibility of the multiscale
framework allows us to confront problems for which FFT techniques are not applicable;
in particular, we considered problems involving nonstationary statistics, where we found
that edge preservation was possible, and also problems involving irregularly sampled data.
Actually, the flexibility of our framework is greater than that implied by examples considered

. here; in particular, the modeling and estimation of processes in higher dimensions is also
possible.




Chapter 6

Conclusions and Suggestions for
Future Research

This chapter summarizes the contributions of this thesis and provides some perspective on
and suggestions for future research.

6.1  Thesis Contributions

The focus of this thesis has been on extending, refining and applying a recently introduced
framework for multiscale stochastic modeling. In Chapters 1 and 2, we laid the foundation
for this work by providing a broad view of the challenges of statistical inference with 2-D
random fields and by reviewing previous results that are needed to understand our specific
research contributions. Subsequently, in Chapters 3, 4 and 5 we pursued the core of our
development, where our specific, new contributions were detailed. Here, we summarize and
review these contributions.

6.1.1 A Theory for Multiscale Stochastic Realization

In Chapter 3, we developed elements of a theory for multiscale stochastic realization. We
focused in particular on the problem of building multiscale models to realize, either ex-
actly or approximately, prespecified finest-scale statistics. In this context, we formalized
the reduced-order modeling problem, we developed model-building algorithms for address-
ing this problem, and we demonstrated the viability of our approach in an extensive set
of numerical experiments. The specific contributions of this work can be summarized as
follows. :

- First, we have successfully brought to bear a popular reduced-order modeling tool from
the time-series context to the multiscale context. This tool is canonical correlation anal-
ysis, which was originally developed in multivariate statistics as a method for displaying
unambiguously the correlation structure between two random vectors. Akaike adapted this
tool to the dynamical context of state-space realization of time series, where he used it to
devise particular bases for state vectors, in which the componerts of the state are arranged
in descending order of importance to tiie past/future interface. This arrangement allows
for a straightforward, rational decision about which components of the state to discard
in a reduced-order realization. We have made a further extension of canonical correla-
tion analysis to the multiscale context, allowing us to build rationally and systematically
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reduced-order multiscale models. Our use of canonical correlations represents a non-trivial
extension of the time-series approach, primarily because of the complications that arise
when the process state must act as an interface among three or more subsets of the process.

Second, we have demonstrated the utility of our modeling methods by considering a
number of numerical examples, involving both 1-D random processes and 2-D random fields.
These models allowed us to confront some challenging 2-D estimation problems (involving,
for example, isotropic random fields) that are impractical to address with more traditional,
FFT-based estimation methods.

Third, we have highlighted some interesting differences between time-series stochastic
processes and multiscale stochastic processes. While one difference is the two-way versus
multi-way nature of the information interface provided by the process state, there are oth-
ers. Most notable is the difference in the richness of the class of internal realizations. In
particular, in the time-series context, the class of internal realizations is sufficiently rich to
contain minimal, exact realizations of specified statistics. On the other hand, multiscale
internal realizations do not enjoy the same richness; there sometimes exists a so-called ex-
ternal realization of given statistics that has lower dimension than any internal realization
of the same statistics. We illustrated this latter fact by considering in detail a specific
example.

Finally, we have brought into sharper focus the issues that must be confronted in the
multiscale modeling problem. We have seen, for example, that one attractive features of our
primary modeling approach is its decomposition of the problem into a collection of inde-
pendent sub-problems that can each be solved myopically. However, we further noted that
this computational attractiveness comes at a prices; in particular, the approach’s myopia
leads to a sacrifice of tight control over the interscale propagation of state information. We
examined a specific example to highlight this fact, and we then developed an alternative
model-building approach that handles the propagation of information more explicitly. In
its present form, the computational cost of this alternative is prohibitive for problems of
practical size. Nevertheless, this alternative provides a nice contrast to our primary ap-
proach, and together the two illustrate the tradeoffs involved in the design of multiscale
model-building algorithms.

6.1.2 A Multiresolution Approach to Discriminating Targets from Clut-
ter in SAR Imagery

‘In Chapter 4, we identified multiscale models for hlgh resolution, millimeter-wave SAR

imagery. Subsequently, we used these models to facilitate likelihood calculations in an
important discrimination problem in ATR; more specifically, we used our identified models
to define a multiresolution discriminant as the likelihood ratio for distinguishing between
man-made objects and natural clutter, given a multiresolution sequence of images of a
region of interest. We then incorporated this likelihood ratio into an existing, established
discriminator that was developed at Lincoln Laboratory as part of a complete system for
automatic target recognition (ATR). Finally, we tested this modified ATR system on an
extensive dataset of actual SAR imagery, and compared the performance to that of the
established, traditional Lincoln ATR system. The specific contributions of thiz work ran
be summarized as follows.

. First, although speckle has traditionally been treated as an obstacle to good ATR per-
formance, we have joined [61] in taking and persuasively supporting the opposite view. We
argue that in fact the speckle signature is dependent on scatterer type and that this depen-
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dency can be exploited to improve discrimination performance. The quality of our results
supports this claim.

We found that our approach to discrimination leads to a substantial and statistically
significant improvement in receiver operating characteristics, compared to an optimized
version of the standard discriminator that is traditionally used in the Lincoln Laboratory
ATR system. For instance, at a probability of detection of 0.95, our new discriminator
reduces the number of natural-clutter false alarms by almost a factor of six.

6.1.3 An Overlapping-Tree Approach to Modeling and Estimation

In Chapter 5, we extended the multiscale framework by relaxing the standard assumption
that distinct nodes on a given level of the multiscale process must correspond to disjoint
portions of the image domain; instead, we allowed a correspondence to overlapping portions
of the image domain. Using the stochastic realization techniques of Chapter 3, we then
built so-called overlapping-tree models, which we subsequently used for both sample-path
generation and least-squares estimation of random fields. The specific contributions of this
work can be summarized as follows.

First, our approach provides a nice way to overcome the visually distracting blocky
artifacts that are typical of sample paths and estimates produced by standard multiscale
models. Although in some applications, these artifacts are unimportant and are completely
lacking in statistical significance [46], in other cases [24], multiscale-based estimates are
subsequently used in a manner that requires the calculation of surface gradients; in these
latter cases, there is an essential need for having smooth estimates, so that the gradients
can be calculated meaningfully.

Although estimate blockiness can be eliminated by simpler means than our overlapping-
tree approach, (i.e., by post-processing with a low-pass filter), such simplicity comes at a
significant price. In particular, low-pass filtering can render less clear the proper interpreta-
tion of error covariance information provided by the estimation algorithm, and the spatial
blurring produced by a low-pass filter post-processor limits the resolution of fine-scale de-
tails in the post-processed estimate. In contrast, our overlapping-tree approach retains one
of the most important advantages of the multiscale estimation framework, namely the ef-
ficient computation of estimation error covariances. Moreover, our numerical experiments
demonstrated that we can proceed with low-dimensional multiscale models that are quite
faithful to prespecified random field covariance structures to be realized. Thus, our esti-
mates are not only smooth, but are nearly optimal in terms of mean-square error and can
be calculated (together with the error covariance information) efficiently.

6.2 Suggestions for Future Work

6.2.1 A Theory for Multiscale Stochastic Realization
Relation between local and global measures of model ﬁdélity

A large fraction of our effort in Chapter 3 was focused on determining the information
content of the state vectors z(s), by solving for W, matrizes to address either (3.20) or
(3.21). While our numericai experiments in Section 3.6 suggest that both (5.20) and (3.21)
provide useful guidelines for building reduced-order models, these criteria are only indirectly
related to the overall quality of model fit. In fact, it is natural to interpret the parameter ~,
in (3.20) and the parameter A, in (3.21) as local measures of model fidelity. An interesting
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and important question is how to relate analytically v, and As; to more global fidelity
measures, such as loss in error-variance reduction (see (3.45)) or the Bhattacharrya distance
(discussed later in this section).

Although Monte-Carlo simulation can certainly be used to relate experimentally our
local fidelity metrics to more global ones, there are compelling reasons to characterize
analytically these relationships. One reason is that analytical relations can aid in choosing
uniform values for the local parameters {7}, or {A,},. To clarify our meaning of uniform
here, we need only consider an extreme case in which we build a multiscale model in which
the root node state is constrained to have dimension no greater than 10,000 (ie., Ap =
10,000, while all the coarser-scale states are constrained to have dimension no greater than
1 (i.e., A; =1, s # 0). Colloquially, a chain is no stronger than its weakest link, and so it
is here with multiscale models: our hypothetical values for {A;},, will likely lead to very
poor overall fidelity, with the high fidelity information contained in the root node having
no way to propagate to finer scales. The point here is that the local fidelity should be
uniform throughout a model. Moreover, to find uniform values, it would be helpful to have
analytical relations between local fidelity and global fidelity.

Another reason to seek analytical relations is that they are invaluable in addressing
an even deeper question regarding model fidelity: as image size grows, how must state
dimension grow to keep overall model fidelity at a constant level? We certainly expect that
the needed model order will grow with image size, but at what rate? At present, the only
case in which we can readily characterize this rate is for exact realizations of WSMRFs,
where the relation between image dimension (i.e., length or width) and model order is,
by inspection, asymptotically linear. For reduced-order models, our numerical experiments
suggest that model order grows more slowly than image dimension, but this observation is
only anecdotal, and has not been carefully quantified. Much work remains to be done to
resolve this issue satisfactorily.

Bhattacharrya distance: a global metric

In our numerical experiments, we used loss in error-variance reduction as a global measure
of model fidelity. An alternative, that is less closely tied to any one application, is the
Bhattacharrya distance [38], defined by

d(pe(X),p:(Z)) = —In / pe(t) pa(t) dt,

for any two PDFs p,(X) and p.(Z). This distance measure, which is commonly used
in information theory, is closely related to the probability of error in binary hypothesis
testing problems. To make the connection precise, suppose that we have a Bayesian binary
hypothesis testing problem-in which the two hypotheses, Hy and Hi, are equally likely.
When Hj is true, we observe a realization of the random vector Z and when H; is true, we
observe a realization of the random vector X; the hypothesis testing problem is to design
a decision rule that uses the observation to decide which hypothesis is true. The theory
associated witir ihe Bhattocharrya distance tells us that there exis*s a decision rule having
a probability of error that satisfies the bounds [38]

1
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In many situations, the upper bound in (6.1) is quite tight [38], and in these situations, the
Bhattacharrya distance behaves in a manner consistent with how we intuitively expect a
distance measure should behave.l For example, if the distance is large, then in the context
of the binary hypothesis testing problem, we expect that a reasonable decision rule should
have a low probability of error, which in turn, is consistent with the error bound in (6.1).
For more information about the Bhattacharrya distance, we refer the reader to [38].

To illustrate the challenges of employing this metric in our modeling context, we consider
a simplified. special version of the multiscale modeling problem. Proceeding, let us suppose
that we have a zero-mean, Gaussian random vector Z of 2NV components, for which

_ Zy 71 T 7\l _ [ Zu Zip
7 - (Z2>’ EKZ?)(ZI 4| = h Im )’
where Z; and Z, are each N -dimensional, and both Y11 and T4 have full rank. We wish to
realize Z as the finest scale of a two-level multiscale process, defined on a dyadic tree. We
note that there are only three nodes in this two-level dyadic-tree process, and so for this

simple, special case we specialize our notation. In particular, let zg denote the state vector
at the root node, and let its distribution be given as

g ~ N(O,Po).

Let z; and z, be the two state vectors at the finest scale, and let them be related to the
state at the root node by the relations

T, = Ajzy + Bw; (1= 1,2),

where the driving terms w; and wy are independent and identically distributed Gaussian
random vectors,

wi ~ N(O,I) (i=1,2).

In terms of these notational conventions, we can precisely state our realization goals.
Subject to certain conditions, we want to specify the values of the model parameters
Po, Ay, Az, By, and By, We insist that these parameters be chosen such that z1 has the
same marginal statistics as z; and that T3 has the same marginal statistics as zy:

E(ziz]) = A,pAT + B, BF
= X (i=1,2). (6.2)

As we will see, these two conditions can be trivially fulfilled, and their fulfillment does
not form the interesting part of the analysis. The interesting issue is the tradeoff between
the dimension of the root node state z; and the fidelity of the preservation of the desired
cross-correlation between z; and Z3. The primary objective of the following analysis is to
explore this tradeoff.

We know, from Proposition 1, that to achieve equality between Z12 and E(z1z7), the
dimension of z must be at least as large as the rank of ¥12. In fact, by applying Corollary 1,

lAlthough, we remark that the Bhattacharrya distance does not obey the triangle inequality.
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we readily see that one possibility is

Py, = D, (6.3)

A o= TF ( I’B” ) (1=1,2), (6.4)
1/2

B, = TF [I— ( ’g g )] (i =1,2). (6.5)

In these relations, we are using the notational conventions established in Section 2.4.1,
with mys equal to the rank of Xj5. In light of (6.3)-(6.5), we are interested in precisely
characterizing the Bhattacharrya distance between p,(X) and p,(Z) when the dimension
of z¢ is pushed below m1s.

We consider a particular, structured family of approximate multiscale representations.
We index these models by the dimension mg of the root node state; there are m;, models in
the family, ranging from exact and complex (wherein mg = m13) to very loosely approximate
and simple (wherein mg = 1). Thus, we drive mis — mg of the components of zg to zero
variance. In this way, we obtain the following family of models:

Py = Dp, (6.6)

4 = 71*(1’3°) (i=1,2), (6.7)
. 1/2

B = T} [I—(D(’]"O g)] (i=1,2), (6.8)

where the diagonal matrix f)k is a modified version of D, in which the mis — k smallest
diagonal entries are nulled out to zero. One can readily verify that every member of this
family of models preserves the marginal statistics that we want to preserve, as dictated
by (6.2). Thus, these approximate representations have only degraded the fidelity of the
desired cross-correlation statistics.

Under mild assumptions, the Bhattacharrya distance can be analytically evaluated for
our problem [26]. To show this, we must first establish some notation. Let 3 denote desired
covariance of the finest scale process,

Y X
r = .
( oh Zw
Also, let ﬁmo be the covariance of the finest scale process that results when we use a model
from our family of approximate representations,

$ . Y T

™m - — .

° 2 Ix

In this latter expression, the subscript 7y is 2 reminder of the dimension of the root node
in the multiscale model approximate representation; also, the cross-covariance is given by

~

Y = A RAL
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Finally, for our problem,.we denote the Bhattacharrya distance by d(Z, 2,,10).

If both ¥ and i‘mo are strictly positive definite, then we can analytically evaluate
d(X,3,,,) as

1 1y
“ 1 52 + gﬁmo
d(X,Xmy) = =In l - 75 (6.9)
1/2 /
IZ[7% B,
Letting
_ T, 0
T = ( 0 Tz)’ (6.10)

and noting that if ¥ and f)mo are invertible, then so is T, we can simplify (6.9) as follows:

TR S AT I
2 [TV |/ T T2 T2 S, |1/2 |TT|1/2
_ 1, [BTErT ~ %;rimm]
27 | |TSTT V2 TS, TT|1/2
— %In |I_ %(D +DW:0)2| :l
1T = D2 |1 = B, |12

1 X 1—3d}
= = Z In 47k
2 k=mg+1 \/ 1- dz

3 + sin? 6,
T2 Z ln( 4sinf, /'

k=mg+1

where 0 is the principal angle associated with dj (defined by ) = cos™1d}), and di, d, e
dm,, are the diagonal elements of the matrix D.

This result has a simple, intuitively satisfying interpretation. In particular, the Bhat-
tacharrya distance d(X, flmo) increases monotonically as the dimension of zq decreases below
miz. Moreover, the distance increases in such a way that we can easily pinpoint the distance
contribution from each incremental drop in the dimension of zo. These distance contribu-

.tions are a monotonic function of the change in the affected principal angle between the
vector spaces X} and Xy; the contribution monotonically increases from zero (if the angle
realignment is zero radians) to infinity (as the angle realignment approaches 7/2 radians).

The challenge remains to generalize an analysis such as this one to a multiscale process
having more than two levels. This sort of analysis appears to be quite challenging, but is
certainly worthwhile to pursue.

Direct Simplification of a Given Model to a Reduced-order Form

Our approach to the realization problem, as discussed in Chapter 3 as well as in the foregoing
part of this section, has been predicated on the assumption that the multiscale modei is to
be built from known covariance data. On the other hand, there may be circumstances in
which we already have available a multiscale model, and our goal is to reduce this model
to a simpler form. This new problem could be cast in the form of our standard problem; in
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particular, we could derive the covariance structure of the given model, discard knowledge
of the given model, and then proceed as we did in Chapter 3. However, we would intuitively
expect that a more straightforward, effective approach would be to operate directly on the
given multiscale model. We may obtain useful guidance by the time-series analogue of this
problem, as described in [8,20], with the analytical tools described therein being brought
to bear in our context.

Identification of Structured Multiscale Processes

A problem that has recently received considerable attention in the literature is the direct
identification of state-space models for stationary stochastic processes, indexed by discrete
time [48,54]. In this problem, a state-space model is built directly from input-output data (or
just from output data), without the intermediate step of estimating covariance or transfer
functions; in this sense, these modern approaches are more appropriate for the handling of
real data than the approach taken in Akaike’s landmark paper [2].

These approaches are not appropriate for addressing the stochastic realization problem
that we have studied in Chapter 3. One of the principal difficulties is the identification
schemes in [48,54] assume and exploit the considerable structure that is contained in sta-
tionary stochastic processes indexed by discrete time. On the other hand, there may be
some merit in focusing our attention on a restricted class of multiscale stochastic processes
that have a special, regular structure in scale, analogous to the structure in time of station-
ary time series. For such a restricted multiscale class, the theory and techniques developed
in [48,54] might be applicable in suitably modified form.

We now illustrate the type of special, regular structure that might be required of a
multiscale procéss, in order to render it amenable to the time-series techniques. As a caveat,
we remark that this description is purely speculative; we have not yet done any analysis of
this problem. Proceeding, consider a multiscale process in which the interpolation matrices
A(s) are constant across all scales, and the noise-shaping matrices B(s) are also constant,
modulo a scale-factor:

A(s) = A and  B(s) = 27#m)B.

If we somehow knew the scale factor u, we could perhaps invert its effect, and thereby cast
the problem in a form that is quite close to the time-series identification problem.

Explicit embedding of coarse-scale information

Throughout Chapter 3, we restricted attention to a multiscale realization problem in which
we explicitly constrained only the finest-scale correlation structure. In some applications,
we may also wish to constrain, at least partially, the coarse-scale correlation structure. For
example, we may wish to reconstruct the value of some process, based on sensor measure-
ments that are best modeled as noisy, non-local versions of the finest-scale process. In this’
situation, it is reasonable to model explicitly this non-local information as a coarse-scale
process state.

To address this more general modeling problem, we should certzinly, if pnssible, take
maximal advantage of the tools developed in Chapter 3. A most straightforward way to
proceed is to first devise matrices W, exactly as in Sections 3.4, without regard for the
‘explicit coarse-scale state information we wish to embed. Then, as a second step, we could
augment these W; matrices with additional rows that capture the desired coarse scale
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information; for instance, if we wish to have an average of the whole process as a state, then
we could augment Wy with a rows consisting of all ones. Finally, using these augmented
W matrices, we could find parameter values for P(0), A(s) and B(s) using (3.5), (3.9) and
(3.10), respectively.

One difficulty with the approach just described is that the important coarse-scale state
information does not necessarily propagate to finer scales in the consistent manner we would
like; this problem was discussed in Section 3.7.2. As an alternative, one could use a modified
version of the realization approach described in Section 3.8; this may hold promise, since
the propagation of information is handled more explicitly. The challenge, though, remains
to streamline computationally the approach of Section 3.8.

Miscellaneous other issues

Our choice for the information content of states in multiscale processes has been heavily
influenced by canonical correlation analysis; there would certainly be some benefit in explor-
ing other methodologies for constructing the process states. In fact, it is argued in [64] that
the normalization involved in the definition of both the correlation coefficient p(-) and its
generalization p(-) can destroy important information concerning the energy (i.e., variance)
of the correlated components in a pair of random vectors. The authors of [64] thus argue
that the canonical correlation coefficients can be misleading, and that an alternative, supe-
rior metric can be devised. As a second alternative, the authors of [8] consider a time-series
stochastic realization problem in which the state is chosen to minimize the covariance of a
prediction of the future, based on a linear function of the past.

Proposition 1 provides a lower bound on the state dimension required for an exact
realization of prespecifed finest-scale statistics. However, as revealed by our construction
of a multiscale model for Brownian motion (see Section 2.3), this bound is not tight, even
if we restrict attention to processes indexed on the dyadic tree. Thus, a remaining open
question is to devise a tighter bound for exact realizations. ‘

Our use of the selection matrices ©, and ©,c (in Section 3.4.3) to calculate canonical
correlation matrices leads to approximate results in the non-WSMRF case. An open issue
is to quantify the fidelity of this approximation, as a function of the window width implied
by the dimension of the ©, and ©,c matrices.

Finally, there may be benefit in utilizing matrices ©, and ©,- that capture more than
just boundary information. For instance, if the selection-matrix structure were relaxed,
then we could envision the components of, say, X containing both spatially localized,
fine-scale information as well as more spatially distributed, coarse-scale information.

6.2.2 A Multiresolution Approach to Discriminating Targets from Clut-
ter in SAR Imagery

Our results in Chapter 4 suggest a number of interesting possibilities to pursue in future
work. For one, there are connections between the multiresolution approach taken here
and the one taken in [61]; the two approaches have the same spirit, but are different in
some important ways, and there may be merit in clarifying the connections between the
two. For example, theoretical models are developed in [61] ihat could possibly be used to
either validate or refine the multiresolution models we developed here. Furthermore, certain
optimal resolutions are identified and exploited in [61]; perha,ps we could use these optimal
scales in lieu of the dyadic progression of scales used here.
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A second possible extension of the work here would be to develop more sophisticated
multiscale models. Recall, for example, the residuals in Figure 4-6 resulting from applica-
tion of our man-made model to a multiresolution image sequence containing a man-made
object. These residuals demonstrate that the man-made model is not completely capturing
the scale-to-scale statistical coupling of the images; there is a need for better accounting
of the dominant scatterers in the images. Perhaps this need could be fulfilled by devel-
oping a whole collection of man-made models, with each individual model specialized to
a particular target configuration. Given this collection of models, we could then envision
carrying out likelihood-based target recognition. We emphasize that the efficiency of our
likelihood calculations would be instrumental in the practical applicability of this approach
to recognition.

Another possible extension would be to exploit the multiresolution models to carry out
lmage compression, in a manner analogous to the use of linear predictive coding for time-
series (e.g., speech) compression. Finally, there is the possibility of developing multiscale
models for remote sensing applications, such as classification of terrain cover, for which we
could develop a number of natural-clutter models, including one for trees, another for grass,
and so forth. ‘

In general, the multiresolution nature of both our statistical models and our algorithms
provide a very natural way for managing the considerable computational burden of this
detection problem, especially in the likely scenario that there is a large amount of data,
representing wide area surveillance.

6.2.3 An Overlapping-Tree Approach to Modeling and Estimation

In Figure 5-7, we displayed sample paths of the wood texture, generated using both non-
overlapping and overlapping tree processes. Qualitatively, the sample path generated with
the overlapping model (i.e., the sample path in (c)) looks more like the actual wood texture
(shown in (a)) than the sample path generated with the non-overlapping model (i.e., the
sample path in (b)). However, according to the more quantitative measure of correlation-
matching, we find in Figure 5-8 that actually the non-overlapping model is superior. In light
of these results, a natural question is whether the overlapping model could be improved by
increasing the amount of overlap in the vertical direction.

In an unrelated vein, we have not explored the full variety of possibilities in specifying
the values of H, and R;. With regard to the former, we exclusively used in our numerical
- experiments a linear tapering for H;; the structure of this linear tapering was described
in Section 5.5. Certainly, however, there exist other possible tapering schemes, such as a
quadratic one. With regard to R;, we exclusively used the rule (5.27) in our numerical
experiments, although (5.26) allows for considerably greater flexibility. By intelligently
taking advantage of this flexibility, we may be able to further reduce the MSE of our
overlapping-tree estimator.




Appendix A

Proof of Propositions 2, 3 and 4

A.1 Proof of Proposition 2

Let 71 and 7, be random vectors of dimension n; and ny. Let P,, be the covariance of 7,
for 1+ = 1,2 and let P, ,, be the cross-covariance between 7; and 73. Finally, suppose that
P, has rank m;, for: =1, 2. »

Proposition 2: There ezist matrices Ty and T, of dimension m1 X ny and my X ny,
respectively, such that ‘

T
ARV Py Phn, i 0 = Imy D (A1)
0 T PI_ P, 0 T DT Inm, )’

T
F o I., D 7 0
0 T, Dt 1., 0 Tf
In these equations, I, is an identity matriz of dimension m; X m; (for i = 1,2). The
matriz D has dimension mq X mq and is given by

D o
D=(00>, | (A.3)

‘where D is a positive definite diagonal matriz given by

and

m mmn2 ) (
Py . A.2)
( I 311172 P,

D = diag(di,dy,dmy,), 1>dy>dy> ... > dmy, > 0. (A.4)
Finally, T is the Moore-Penrose pseudoinverse of T;, and is given by

Tr = P, TI, (i=1,2). (A.5)

12

Proof: We prove the proposition by construction. Our strategy is to construct 7} and
T3 in a sequence of two steps. In the first step, we devise a pair of whitening matrices W
and W3, defined such that for n,, = W, n; (for i = 1,2) we have

Elnwnl] = wiP,WF
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= In, (i=1,2). (A.6)

2

In the second step, we devise a second pair of transformation matrices W and W,, defined
such that with g, = Wi Ny, (fori=1,2), we retain the whiteness of 7y,, and additionally,
we render diagonal the cross-covariance between 7w, and 7My,:
Elnonl,) = WiWiPomWE WL
= D. (A.T)

_Finally, we satisfy (A.1), by defining T; as follows:

T, = Wiwi,, (i=12) (A.8)
To construct Wi and W, we first let Ai2y. -y Aimg be the nonzero eigenvalues of Pp,,
and let S;1, Si2,--- Sims be the corresponding eigenvectors. Consolidating this eigende-

composition information into the eigenvalue and eigenvector matrices Ai, Si,

A, = diag(hi1, Mzs-eos Mima)s (A.9)
S = (Si,1 | Siz | o | Si,mi) (i=1,2). (A.10)

we have that

P, = SiAST, i=12
sTS; = In,

We then define W;, for : = 1,2, as follows:
w, = A;YRST, =12

which has the desi;ed whitening property (A.6).

To construct Wi, we first do a singular value decomposition of the cross correlation
matrix for My, and nNuw,: '

E(lelnz;z) = Wlpm'nVV?T
- U,DUY,

where U; is an m; X m; orthonormal matrix (1 = 1,2), and D is the diagonal matrix of

singular values. In terms of this decomposition, we readily verify that by letting

w, = UF, i=12,
the property (A.7) is fulﬁlled, and hence this is how we define Wi Finally, we define Ty
and Ty as in (A.8), for which (A.1) is satisfied.
We now verify, in turn, (A.5) and (A.2). By construction, T1 and T3 have full row rank.
Hence, the Moore-Penrose p-eudoinverse of T; must be
-1
T+ = TF (TiTiT )

1
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SAY 2y
P, TT (i=1,2).

thus verifying (A.5). Using this definition for 7", we verify (A.2) by straightforward calcu-
lation:

(@) = (sl (67A)
= P, (t=1,2)
T1+D(T2+)T = SAVA U DUT)ALST
= S AYAATVAST P, ., Sony )AL ST

= SlSl 7717725252

= Ppg,-
Finally, we demonstrate that rank(D) = rank(P,,,). Since D = T1Pyn, T, we see
that rank(D) < rank(P,,,,); on the other hand, since P,,,, = T3V D(T;")T, we see that

rank(Py,,,) < rank(D). Hence, the equality of the ranks of D and P,,,, is established, and
the proof is completé. QED.

A.2 Proof of Proposition 3

Proposition 3 Let W, and Wy be matrices of dimension m; X n1 and mg X ng, respectively,
such that

W.P,WI = L, (i=12)

Then, for all such Wy and Wy, the nonzero singular values of W, P, 2 W are given by the
diagonal entries of the matriz D, which is unique.

Proof: We continue to use the matrices S; and A;, for i = 1,2, as defined in (A.9) and
(A.10). Now, in light of our assumption concerning W, and W5, we see that

W; (Sz'Ai‘Sér) VViT = Iny, (:=1,2),

‘which means that WlﬁlAi /2 and WQSzAZ/ are unitary. Using this fact, we can charac-
terize the singular values of W1 P, ,, W2 in the followmg way. We note by straightforward
calculation that

WleszT = W (SISI PmnzSZSZT) WZT
= (ms514)7) (AT2ST Py S205 %) (Y2 STWT )
= (msiAy?) (vipuf) (a2 sTwY).

But, we can pre-multiply and post-muiiiply any given matrix by a unitary mairices, with
no effect on the non-zero singular values of the given matrix. Hence, the singular values
of W1 Py, W2 are given by the diagonal elements of D, which c01nc1de with the diagonal
elements of D. QED.
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A.3 Proof of Proposition 4

Proposition 4 Let (’f‘l,Tg,D) be the canonical correlation matrices for (pa, p2). If (p1, pa)
are related to (ny,m7), as in (2.38) and (2.89), then (T1@1,T2®2,D) are the canonical
correlation matrices for (ny,n3).

We begin by establishing that (n1,72) and (u1, u2) share the same number of nonzero
canonical correlation coefficients; by Proposition 2, this result will follow, if we can establish
that E(nnd ) and E(ujpul) share the same rank. But, E(p1p¥) = ©1E(mnf)©7 and hence

rank[E(u14])] < rank[E(mn])]. On the other hand (2.38) implies that there exist matrices
Fy and F; such that

i o= Fp, + 7 (i=1,2),

where 7; and 7, are independent, and each is independent of both x; and ;. There-
fore, E(mnd) = FiE(piuT)F¥, and hence rank[E(mni)] < rank[E(gp43)]. Combining
these inequalities, we conclude that (ny,m2) and (u1, 2) share the same number of nonzero
canonical correlation coefficients.

Now, by assumption,

PO ~ T
7170 e,p,0f ©,pP,,,07 7 0
0 Ty 0,pPT 0T e,p,07 0o T

mn2

1
TN
o~
~
N————

Hence, by straightforward algebraic rearrangement,

- - T ~
7,0, 0 P, Py, AT _ I D
0 10, P . P, 0 T T \D 1)
Appealing, finally, to the uniqueness property of D, as asserted by Proposition 2, the
proposition follows. QED.




Appendix B

Proof of Propositions 5 and 6

In this appendix, we prove Propositions 5 and 6. As in the main text, we let 7, 7; and
72 be random vectors, having covariance matrices P’L’ P’ll apd P,, respectively, exactly as
in Section 2.4 (see (2.24) and (2.25)). Also, we let (71,73, D) be the canonical correlation
matrices associated with (7,7), with D = diag(di,da, ..., dm,,)-

To review, here are the results we will prove:

Proposition 5 For i =1,2 and for all matrices W;,

p(m,me | Wims) < p(m,m2).

Proposition 6 For 1 <k < miy and fori=1,2,

in 5 Wn) = min W) = plm,me | Topms) = disr-
pin p(ny,m2 | W) i A(n1,m2 | Wins) p('rnrnzl k7)) = it
For k > mq,,
min p(m,me |Wn) = min p(n,me | Win) = p(n,m2 | Tims) = 0.
WieM,

WeM,

Throughout the proofs, we assume without loss of generality that

@) e-(52) -

There is no loss, thanks to the invertibility of the transformation in (2.26) and (2.27), which

T
implies that we can reduce the case of arbitrary covariance for ( ot ) to form in (B.1)
by exploiting the identity

Wnenﬁkp(m,nzllwn) = W?éﬁkp(Tlnl,TznleTn), (B.2)

where T is the following block-diagonal matrix:

T = diag (Tl,Tg) .
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B.1 A Useful Lemma

The following lemma will be instrumental to both proofs, as it relates p(n1,m2) to p(n1,72 | Wim)
n terms of the matrix D.

Lemma 2 Let Wy € R¥*™ | for any fized k, with W, having orthonormal rows. Let Wit
be a matriz whose rows form an orthonormal basis for the nullspace of W1. Then,

0 -_ D B-3
p(m,m2 | Wim) flanll,afxzer {fl Wi fz} (B.3)
= max || WitD , B.4

FER | WiDfa [l2 (B.4)

where Fl and Fy denote the following sets:
Fi = {ferm™ fTf=1},
F, = {feRr™; fTI-DTWIW\D)f = 1} ~ (B.5)
Proof: For any unitary matrix U,

plnime | Win) = (U 1, me | (WLU)(UTm)). (B.6)

' T
Letting U = ( wl (wiHT ), we see that the conditional covariance of< OTa)T ot )

is given by
0 0 0
0 In_k WiD

N\T
0 _ DTw T
(W%D) I - DTWIW,D

cov [( UT?“) | (WlU)(UTm)] =

Hence, adapting (3.15)-(3.16) to this special case, the lemma follows. QED.

-B.2 Proof of Proposition 5
We know from (3.13) that

p(ni,m) = dp.

Combining this fact with (B.4), it follows that the Proposition will be proved if we can show
that

WEDf |2 < d2. B.7
}?Ea’F)'cz” iDfallz < 1 (B.7)

To establish (B.7), we first note that since the rows of Wi* form an orthonormal basis
for the row space of Wy, we have that Vz,

Fz 3 = IWeld + | Wizl (B.8)
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Since Vfy € Fy,

fI-DTWIWiD)f = | f213 - || WiDf |I3
= 1, (B.9)

we can apply (B.8) in (B.9) with z = Df, to see that Vf, € Fy,
IWitDf2 13 = DA -1 f213+1, VY€ P (B.10)
But

T _nT
uin {1 213 — 1 D52 18) e }

F20 { 7 (I - DTWIWLD) f,

. [f7(I-DTD)f, . I3 f2 }
£220 { 77, } e { T - DTWIW.D)Js

= Amin (I - DTD) Amin [(I — DTWITW1D) _1]

I\

= (1-4) (B.11)

where Amin(-) denotes the smallest eigenvalue of the enclosed matrix exﬁression. In the third
line, we have used Rayleigh’s principle [60], which asserts that for any pair of symmetric,
positive definite matrices A and B,

. zTBz
min
z#0 2T Az

Amin(A™1B).

By combining (B.10) and (B.11), the desired result (B.7) is established. QED.

B.3 Proof of Proposition 6

For the purposes of establishing Proposition 6, we not only assume that (B.1) holds, but
also that all elements of the matrix D have values strictly less than one. If, to the contrary,
the first k; diagonal elements of D were equal to one, then £ would have to be at least as
great as k; in order to reduce 2(n1,m2 | Wn) below unity. Furthermore, we could, without

loss of generality or optimality, let the first k; rows of W be ( I, 0O ); expressing, then,
W as ‘

(L o0
W= ( Wre'rna,in ) '

we could solve for W, emain (having k — k; rows) as

s iz, ] (J )

~ Also, we restrict attention throughout our proof to matrices W € My having full row
rank. o
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B.3.1 Proof of Proposition 6

We begin by temporarily constraining W to have either of the two forms
W o= (Wlo) or (0 W), (B.12)

and we find a matrix W that minimizes A(m,m2 | Wn), subject to this additional con-

straint. The following Lemma summarizes the key result here, with the proof contained in
Section B.3.2.

Lemma 3

min p(n1,m2 | Wim) = p(ni,m | ( I, 0 )7)1)

WieM,
= p(n,m2 | ( In O )772)
- in 5 | W
pn p(m,m2 | Wans)

= dgt1.

Next, we establish that in fact there is no loss of optimality in the additional constraint in

(B.12). The following lemma summarizes the key result here, with the proof also contained
in Section B.3.2.

Lemma 4 For any matrizc W e RFx(n1+n2) having full row rank, there ezists a pair of
matrices Wi € RF1*™ gnd W, € RF2X12 it ky + ko < k, such that

plm,m2 | Win, Wamz) < p(ni,ma | Wn).

To make clear the consequences of Lemma 3, let us suppose that
W™ € M minimizes p(n,7m5 | Wn).

Then, from Lemma 3, we know there exist matrices Wi € My, and W35 € My, (for some
k1 and ky such that k; + kg = k) such that

CP(mm2 | W) = p(m,ma | Wiy, Wan).
- Then, fixing W7}, let us define

ﬁi = - E(Th [ anl)v (7’ = 1)2)1

which we use to see that
] w* = i o(m, Win, W
p(n,me | W*n) wii, p(m,m2 | Winy, Wan)

= m.n o(n ;~ W i

Wiz A1, 2 | Wafia)
= min PG, 7 | Wif)
‘ W1€Mk2

= _min p(n,m2 | Win, Win)
W1€Mk2 o

= in 5 Win.).
nggakvp(m,nzl 171)
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The first line follows directly from Lemma 3. The second line follows from the definition of
7;. The third line follows from Lemma 2. The fourth line follows again from the relation
between 7; and 7;. Finally, the fifth line follows from the fact that both of the vectors of
conditioning information in the fourth line of functions only of 7;. With the exception of
Lemmas 2 and 3, which follow, the proof of Proposition 6 is now complete. QED.

B.3.2 Proof of Lemmas 2 and 3

Proof of Lemma 2 In light of Lemma 1, and in particular (B.3), it is sufficient to devise
particular values for f; € Fy and f; € F; for which

WD) fy > deg, (B.13)
thus implying that
p(n1,m2 | Wim) 2 diy,
where this bound must be tight, since by inspection,
p(n,m2 | ( Iy 0 )771) = di41. | (B.14)

To establish (B.13), we first note that at least one of the unit vectors

T _T T
€1, €3, -y €kl

must belong to the row space of Wi, which itself has a dimension of ny — k; let us suppose
that e? belongs, with \TW- = ef for some A € R™~*. Now, exploiting the orthonormality

of the rows of Wll, we see that A € F1, and hence we let f; = A. Also, we let f; = e;, where
the fact that

Dej = djej
= ;Wi f,

implies that W;De; = 0, so that indeed e; € Fy. But for these values for f; and fs,

fL(WED)fa = d;
Z dk+1a

thus establishing (B.13) and completing the proof. QED.

Proof of Lemma 3 Let us express the matrix W in terms of its constituent rows as
T
wo= (W W o Wi ),

where the column vector W, for i = 1,2,...,k, can itself be decomposed as

Wi nj
W, = (Wi;2>’ Wi;eRY, j=12_
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Let us suppose that for some particular 4, say 41, Wi, 1 # 0, and W, 2 # 0. We demonstrate
that W;, can be replaced with one of the two vectors Vj or V;, where

o= (W3,1> and V; = (W92>,
) 21,

with no incurred increase in the value of 5(n1,72 | Wn). after the replacement.
At this point, we will find (3.13)-(3.16) quite useful. From (3.13), it immediately follows
that

PwWT = o. (B.15)

which in turn implies that

so that

T 5 — wT B s
Wil,IPmWil.l = Wil.ZPmWn.Z
T A
= _W’i1,1P771772‘/V7:1‘2'

There are now two possibilities:
N - -
7:211,1P7]1 11,1 > 07 or W il,le W”i‘l,l = 0.

The first implies that p(n1,m2 | Wz) = 1, in which case there can certainly be no harm in
our replacement strategy. The second implies that

P,Vi = 0, and B,V; = 0, (B.16)
which, in turn, means that there exist unique vectors A; and A in R¥ such that
v, = WTx, (i=12).

Now, by exhaustively considering the possibilities, one can verify that at least one of A;
and Ay must have a non-zero value in its 7;-th component, for otherwise, W could not have

* full row rank. If A1 (X2) has this property, then we can replace W;, with Vi (V3) with no

change in the value of p(n1,n2 | Wz). QED.




Appendix C

Detection and Discrimination

C.1 Least-squares Estimation of Regression Coefﬁcienté

In Section 4.2.2, we described a least-squares procedure for estimating the regression coeffi-
cients in our models for SAR imagery. Central to that procedure was the need to solve (4.4)
for the regression vector a;. Here we fulfill that need, obtaining an analytical expression
for ay.

Our strategy is to recast the optimization problem in (4.4) as one of solving an overde-
termined set linear equations in a least-squares sense. To proceed, we define the matrix J
as

I(s17) I(1%%) - I(s17%)
P G ,_y) I(s2%%) - I(527%)
I(SN’7) I(sn%?) -+ I(sn7%)
where s1,s2,..., sy denote the pixel locations in the image to be predicted at resolution k.
We also define the vector b as
I(s1)
I(s
b = (. 2)
I(sn)

In terms of J and b, we can recast the definition of a; in (4.4) as

a = argairé%l {(b— Jag)T (b - Jak)}. (C.1)

Assuming that the columns of J are independent, which is virtually assured for all values
of R of interest, the solution to (C.1) is well-known to be

a, = (JTJ)_l ITh.
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C.2 Derivation of Expression for Multiresolution Discrimi-
nant |

In Section 4.3.1, we described a straightforward procedure for calculating our multiresolution
discriminant. Central to efficiency of that procedure was the decomposition (4.12) of each
of the log-likelihood terms in our expression (4.11) for the discriminant. Here we establish
the validity of that decomposition.

We continue to use the notation that was established in Section 4.3.1. Additionally, we
define X to be a vector containing all the state vectors z(s) at scale k, and similarly, we
define Y to be a vector containing all the observations y(s) at scale k.

In terms of these notational conventions, the multiresolution discriminant is given by

log (Pyja, (Y | 1)) — log (Pyis(Y | Ho)) (C2)
By elementary probability, we can factor each of the likelihoods in the following way:

PY|Hi(Y 16) = PYMO,...,YMIH-L-(YMOP- Y ‘ H;),

= PYMOIH.;(YM[) | Hi)PYM0+1 ..... YM1|YMO,H«;( Mo+1y--- :YMl‘YM():H'i)
‘ M
= Pry 10V | H) T Pratvies,onVargo s (Ve | Yeon, oo+ Yoo, Hi).- (C.3)
k=Mop+1

To simplify the right side of (C.3), we note that by construction (see Section 4.2.2) of
our state-space models, the conditioning information contained in the set

{Yeo1, Yoz, Yare, Hi}
is the equivalent to the conditioning information contained in the set
{Xk‘—la Xk—21 R 1XM07Hi} -

By combining this fact with the Markov properties of our multiscale models, we readily see
_that each element of the product on the right side of (C.3) can be factored as

Pyl Yarg H (Y | Yo, Yigg, Hi) = PyiXu1,Xarg Hi (Ve | X1y -y Xnao, Hi)
= Pyx, 10 (Ye | Xe—1, Hi),
and thus,
M
Py, Y 1 H) = [T Prixeosm(Ye | Xeor, Ho). (C.4)
k=Mp

Again appealing to the Markov properties of our multiscale models, we can expald ach
of the elements in the product on the right side of (C.4) as

Pyiixe i (Y | Xpm1, Hi) = I Pueys: (y(s) — af g,z(s7) | Hi) ,
{s; m(s)=k}
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so that

My
Py, (Y H) = ] [ I Py (y(s) —a} y.z(s7) | Hz)] . (C3)

k=Mo | {s; m(s)=k}

Finally, combining (C.2) with (C.5), we conclude that the multiresolution discriminant can
be expressed as

M,
{ 2 2, log [Pw(S)IHH (y(s) - aZ,Hll‘(S’Y))]} -

k=Mo {s; m(s)=k}

{}Af > log [Pugya (y(s)-af.gom(sﬁ))]},

k=Mp {s, m(s)=k}

which is in agreement with (4.12).

C.3 Description of Prescreening Algorithm

For the purposes of prescreening the SAR imagery, we use a two-pararieter CFAR (constant
false alarm rate) algorithm [28]. This algorithm can be viewed as an adaptive image-
processing scheme that makes a decision at each pixel location indicating whether the pixel
value belongs to a target distribution or a clutter distribution. Put simply, the algorithm
takes advantage of the fact that in SAR imagery, targets typically appear brighter than
non-targets.

To describe how the CFAR algorithm is implemented, we denote by z the value at the
current pixel location or test cell under consideration. We assume that both the test cell
value z and the cell values in the neighborhood of the test cell represent realizations of
independent and identically distributed Gaussian random variables. Under these assump-
tions, we can estimate the parameters of the common clutter distribution by collecting a
large number of neighboring pixel values and computing their sample mean . and standard
deviation G.. The two-parameter detector is then defined by the rule

‘ target present e T — fic > K
Declare { target absent } if Oc { < }

where K is an algorithm parameter known as the threshold and where the ratio (z — fe)/Ge
is known as the CFAR statistic. In Figure C-1, we show the image stencil that is used for
selecting the pixel locations used to estimate the mean and standard deviation of z. We
note that a large guard area is used between the test cell and the outer-stencil cells so that
the presence of a target does not affect the estimation of the clutter distribution parameters.

If the pixel values in the image are indeed independent, identically distributed and
Gaussian distributed, and 2 = p and & = o, then the detector just described will yield a
constant false alarm rate; this rate will be a function of the thresLold value K. If these
assumptions do not hold, then the CFAR property is not guaranteed. Even in these cases,
however, the above rule is often employed because it provides a reasonable algorithm for
detectmg targets in SAR imagery. In any case, we are compelled by tradition to continue
to use the term CFAR to describe this algorithm.
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Figure C-1: Image stencil used to compute the target detection decision in the two-parameter CFAR
algorithm. A large guard area is used so that the presence of a target does not affect the estimation of the
clutter distribution statistics. The cells in the outer stencil are used to estimate the local mean and standard
deviation of the clutter. If the value « in the test cell is at least K standard deviations beyond the mean,
then a target is declared to be present.

By setting the threshold K to a suitably low value, we can ensure that at least one pixel
will be assigned to the target class for every target of interest in the SAR imagery. Because
we do not want to discard targets at the prescreening stage, we use such a threshold. In many
instances, the CFAR algorithm will thus yield multiple detections on a single target, which
we cluster together. Corresponding to each cluster, we create an ROI, with the centroid
of the cluster aligned with the center of the ROIL In our application with 0.3m x 0.3m
resolution imagery, each ROI consists of 128 x 128 pixels. Each ROI is passed on to the
discriminator for further processing.

C.4 Description of Features in Lincoln Laboratory Discrim-
inator

In this appendix, we provide a highly abridged version of the description in [40] of all the
features used in the Lincoln Laboratory discriminator. These features are listed in Table 4.3.

C.4.1 Textural Features

‘We first consider the textural features standard deviation, fractal dimension and ranked
fill-ratio. The values of these features are calculated using the pixel values in a special
target-sized region within the ROI. This region is chosen in the following way: a target is
hypothesized to exist in the ROI; then, the position and orientation of this hypothesized
target are estimated by applying simple matched-filtering with a rectangular-shaped, target-
sized template. We denote the resulting target-sized region by 7. '

The standard-deviation feature is calculated as simply the sample standard deviation
of the log-detected pixel values in.the region 7. The fractal-dimensicn feature provides
an estimate of the Hausdorff dimension of the spatial distribution of the brightest 50 pixel
values in the region 7" [40]; the details of this feature’s calculation are too involved to include
" here. The rank-fill-ratio feature is the percentage of power that is contained in the brightest
five percent. of the pixels in the region T.
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(a) (b)

Figure C-2: Hlustration of effect of morphological operations that are used to identify the principal
object in an ROI. (a) Original ROI, containing a man-made object that appears target like. (b) Effect of
morphological processing on ROI in (a).

C.4.2 Size Featutes

We now consider the size features mass, diameter, and rotational inertia. The values of
these features are calculated using the pixel values in the region of the ROI containing the
ROTI’s principal object. In a rough sense, this principal object is defined to be the bright
blob near the center of the ROI. For example, in Figure C-2(a) we display an ROI containing
a man-made object, and in Figure C-2(b), we display a binary-valued image that clearly
identifies the location of the ROI’s principal object. In general, the principal object in the
ROl is found by applying morphological processing; we denote the resulting principal-object
region by P.

The mass feature is calculated as simply the number of pixels in the region P. The
diameter feature is equal to the length of the diagonal of the smallest rectangle (either
horizontally oriented or vertically oriented) that encloses the region P. The rotational-
inertia feature is calculated as the second mechanical moment of the region P around its
center of mass, normalized by the inertia of a square having equal mass.

C.4.3 Contrast features

Finally, we consider the contrast features peak CFAR, mean CFAR and percent bright CFAR.
To calculate these features, we first apply the CFAR algorithm (see Appendix C.3) to a
log-detected version of the ROL In this way, we obtain a CFAR image, in which the pixel
value at location (k,!) is given by

I (kx l) — /)'c
g
where I(k, () is the pixei value at location (k,!) in the log-detecied image, and fi. and &
are estimates of the local mean and standard deviation, respectively, of the annular reglon

surrounding pixel (k,[) as in Figure C-1.
The values of the contrast feature are calculated using the pixel values in the region P
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of the CFAR image. The peak-CFAR feature is simply the maximum value of the CFAR
image, within the region P. The mean-CFAR feature is the sample mean of the CFAR
image within the region P. The percent-bright-CFAR feature is the percentage of pixels in
the region P of the CFAR image that exceed a certain CFAR value. '




Appendix D

Proof of Proposition 7

In this appendix, we prove Proposition 7, which for convenience, we restate here.

Proposition 7 Let x be a random field with covariance P\ and let y = Cx + v be a set
of measurements with C a weighted selection matriz and R, the covariance of v, diagonal.
Suppose we then choose G, Hy,Gy,C; and Ry as described in Section 5.4.3. Then the
optimal linear least-squares estimate x of x based on y can either be computed directly or
by lifting, performing optimal estimation in the lifted domain, and then projecting. That is,
of X = Ly, and x; = Ly, then

-1 -1
PCT(CPCT+R) = L = HLGy = H.PCT (GP,CF +R)) G,
where Py, 1s defined in (5.8). Moreover, if Py denotes the estimation error covariance in
estimating x based on y, and Py, the estimation error covariance in estimating x; based on

Y1, then
P, = H, Py H?
Our proof is facilitated by the following identity:

(crcT+ R = GL(CP.CT + R)'G, (D.1)

We prove (D.1) in the following way:

(CPCT + R)[GT(CiP, CT + R))71Gy)
= [(RGIR;'Gy)CP,CT + R|[GT(C,P,CT + R)™'G,]
= [RGIR['C\P,,Cl + RGT(C\P,,CT + R)™'G,
= [RGTR[Y(C\P,CT + R, - R) + RGT|(C/P,CT + R)'G,
= RGTR;Y(C/\P,,CT + R)(CPy,CT + R)™'G,
= 1.
I: the first line, we have exploited (5.26). Then, in viie second line, we have used (5.23) and
(5.8). In the third line, we have simply added and subtracted R;, while in the fourth line,

we have simply done a rearrangement of terms, which leads to some cancellatxon Finally,
in the fifth line, we have again used (5.26).

185
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Appendix D. Proof of Proposition 7

We now verify (5.28). We have the following sequence of identities:

L =

p.cT(cP,CT + R)!
PCTGY (P CT + Ri)™

1
G’y
-1
PGICT (CP,CT + Ri) ™ Gy
-1
HwPXICIT (CIPXIC!T+RZ> Gy

In this sequence of identities, the first line is a direct consequence of the foregoing lemma.
To obtain the second line, we use (5.23), (5.8) and (5.7). Finally, in the third line, we have
used the definition of the estimation operator L; in (5.3).

Now we verify (5.29). We have the following sequence of identities:

Py

P, — LCP,

H,P, HY — H,L,G,CP,
H.P HI - H.L,C,G.P,
H. (P, - LiC,P,) HEY

= H,P,HT.

The first line is a restatement of (5.4), while the second line uses (5.28) and (5.7). In the
third line, we exploit (5.23), while in the fourth line we exploit (5.8) and (5.7). Finally, the
last line represents a restatement again of (5.4).
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