
Towards a Cognitive Network Management and

Control System

by

Arman Rezaee

B.S., Arizona State University (2009)
S.M., Massachusetts Institute of Technology (2011)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2020

@ Massachusetts Institute of Technology 2020. All rights reserved.

Author...
Signature redacted

Department of (lectrical Engineering and Computer Science

Certified by..
Signature redacted January 25, 2020

Vincent W.S. Chan
Joan and Irwin Jacobs Professor of Electrical Engineering and

Computer Science

Signature redacted Thesis Supervisor

Accepted by ....
-. U Leslie Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OFTECHNOLOGY

MAR 13 2020

LIBRARIES



I



Towards a Cognitive Network Management and Control

System

by

Arman Rezaee

Submitted to the Department of Electrical Engineering and Computer Science

on January 25, 2020, in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

Future networks have to accommodate an increase of 3-4 orders of magnitude in data

rates with heterogeneous session sizes and strict time deadline requirements. The

dynamic nature of scheduling of large transactions and the need for rapid actions by
the network management and control system, require timely and judicious collection

of network state information. Within this context we will focus on the problem of
shortest path routing, and identify pragmatic schemes that allow a central controller

to collect relevant delay statistics from various links and nodes within the network.

We present Significant Sampling as an adaptive monitoring technique to collect

and disseminate network state information when it can be of significant value to the

optimal operation of the network, and in particular when it can help in identifying

the shortest routes. We start by developing an analytical framework that can identify

the optimal time for the collection of such information in a small but realistic setting,
when the underlying delay model is a continuous-time diffusion process (e.g. Wiener

process or Ornstein-Uhlenbeck process) and its parameters are known by the con-

troller. We show that this technique balances the need for updated state information

against the collection and dissemination costs and provides an algorithm that yields

near optimum performance.

We then extend the results by introducing a reinforcement learning framework

that learns the aforementioned optimal policy from its own interactions with the net-
work, and without any prior assumptions regarding the underlying delay model. In

addition to achieving a performance comparable to the analytically derived policies,
the deep reinforcement learning solution is more flexible and general and can accom-
modate a diverse set of network environments. This is particularly important because

it can provide good solutions for complex network environments where analytically
tractable solutions are not feasible.
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We conclude our work by noting that sensible network controllers should continue
to deliver a good performance between distinct instances of state collection and thus
any meaningful solution should strive to meet application demands despite the un-
avoidable uncertainty about the instantaneous state of the network. To that end,
we introduce a novel diversity routing scheme that can accommodate requirements
regarding delay variations despite a controller's relative uncertainty about the instan-
taneous state of the network. More specifically we utilize mean-variance analysis as
the basis for traffic distribution and route selection, and show that this technique can
improve the users' quality of service by taking into account the correlated nature of
delay across different paths. We conclude this work by commenting on the potential
application of this method to general transportation networks.

Thesis Supervisor: Vincent W.S. Chan
Title: Joan and Irwin Jacobs Professor of Electrical Engineering
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Chapter 1

Introduction

We are in the midst of a major technological storm that will change the landscape of

networking for years to come. The introduction and adoption of high-definition (HD)

video and a myriad of new applications that depend on it are the primary drivers of

this transformation. According to Cisco, IP video traffic will be 82 percent of all IP

traffic by 2021, up from 73 percent in 2016 [9, 10]. The same reports forecast live

video to grow 15-fold while virtual reality (VR) and augmented reality (AR) traffic

will increase 20-fold in the same period. As it stands, the majority of the global video

content is intended for human consumption. But the advent of cheap and versatile Big

Data applications such as facial recognition softwares, healthcare monitoring systems,

and autonomous driving will tip the scale in favor of video production for machine

consumption. In fact, machine-to-machine communications required for real-time

applications will soon become the dominant type of data transfers over wide-area

networks.

The proliferation of these applications presents a chicken and egg problem for

network engineers: on the one hand, these applications require high bandwidth avail-

ability, low latency, as well as extreme reliability but at the same time the bursty

and dynamic nature of their traffic introduces unpredictable delay and amplifies the

jitter. Furthermore, the continuous variation and abrupt changes introduced by ex-

ogenous traffic will create temporary bottlenecks in the network which can drastically

deteriorate the user's Quality of Service (QoS) and Quality of Experience (QoE).
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The International Telecommunication Union [11] divides these applications into

three broad categories, namely enhanced mobile broadband (eMBB), ultra-reliable

and low-latency communications (URLLC), and massive machine type communica-

tions (mMTC) as depicted in Figure 1-1. They state the minimum requirements for

latency as 4ms for eMBB and lms for URLLC. More specifically the URLLC appli-

cations expect a packet to arrive at the destination within 1 ms of transmission with

packet loss rate of at most 10'. It should come as no surprise that such stringent

requirements can only be achieved if the network control plane itself is very agile,

responsive, and reliable. In fact [11] sets the minimum latency requirement for the

control plane to be between 10-20 ms.

Enhanced Mobile Broadband |Capacity Enhancement

Gigabytes in a seconm

WourK &p ay ,n tne _Luuu
Smart city cameras Augmented reality

Industrial & vehicular auto maa

Mission critical broadban
Sensor NW

Self Driving Car

Massive loT Low Latency
Massive Connectivity I Ultra-high reliability &Low Latency

Figure 1-1: Broad categories of the 5G communication systems. Figure obtained
from [5] which was adopted from [6].

Consequently, the networking landscape created by this heterogeneous set of ap-

plications and products is no longer static, or even quasi-static. The input traffic is

continuously varying and can experience abrupt changes. The bursty and dynamic

nature of the traffic generated by these applications requires quick (100 ms - 1 s) net-

work adaptation to maintain quality of service and experience [12]. Unfortunately,

current Network Management and Control (NMC) systems are much too slow and

their operational paradigm does not scale well with network size and traffic intensity.
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Before delving into the details let us sketch the bird's eye view of the roles and

responsibilities of a properly designed NMC system as it interacts with the applica-

tion and various network protocols and resources. Figure 1-2 depicts a hierarchical

illustration of such a system. The NMC system is supposed to monitor the state of

the network at all layers, reconfigure network resources when necessary, and provide

data and instructions to applications upon request.

Specify Acceptable Receive Operational
QoS/QoE Classes Instructions

__-I
Digest Requests I Accept/Reject +

d gs Reuet Instructions

Orchestrate Resource
Update NSI Reconfiguration

t -- ,

E Aplcai . Transport Routing MAC Physical
Appliato H Layer H Layer H Layer H Layer

Figure 1-2: Roles and responsibilities of the Network Management and Control sys-
tem. The NMC should: 1) Collect NSI from all layers and components of the com-
munication network. 2) Interface with users and their applications, which includes:
a) Digest application requests. b) Determine feasibility of application requests. c)
Instruct the application of operational requirements. 3) Orchestrate reconfiguration
of network resources.

More specifically, when an application requires network resources, it will contact

the NMC system and specify its requirements, including delay, bandwidth, and se-

curity/reliability requirements. It is preferable for the application to specify a few

possible variations of its desirable requirements, each corresponding to a different

21
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QoS and/or QoE level. The NMC system will in turn evaluate the feasibility of the

requests, and respond by specifying the resources that should be used to achieve the

highest possible QoS and/or QoE levels. If the network, in its current state, is unable

to satisfy the application's demand, the NMC system would either reconfigure the

network to meet the requirements or reject the request.

Beyond the ability to reconfigure network resources, the NMC system should be

able to force the network to drop non-essential traffic and at times partition the net-

work to stop cascading effects such as malware propagation. As a result, the NMC

system may have a very dynamic behavior, for example during nominal operation

everyone is treated in the same way and everyone reports the same set of state in-

formation, upon receiving a critical message, some nodes may need to back off while

others may be instructed to report additional information. Agaskar has investigated

various methods for incorporating such capabilities into "smart city" applications

with critical time deadlines [13].

Given that the architectural specifications are so easily stated, we may wonder why

the development of such a comprehensive NMC system has not already occurred.

There are many reasons for the lack of such a system, but we can point to three

fundamental issues that have greatly contributed to the fragmented state of current

partial solutions:

1. Lack of a homogeneous network substrate with well-defined responses to network

events.

2. Lack of a universally acceptable theory for the design, analysis, and operation of

networks.

3. Lack of data regarding consumer/application preferences to guide the development

of such a theory.

The first issue points to the reality that what we abstractly refer to as a network is

an amalgamation of many varied technologies with extremely different properties.
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As an example, consider a simple search query on your cell phone. The first leg of

this communication path is often a wireless medium (Wi-Fi or cellular), after which

the message is transported on copper wires and/or optical links to the nearest data-

center. Once the search results are obtained, the resulting content will retrace its path

back to our phones. Note that the wireless medium behaves very differently from the

copper wire and/or the optical links. Any viable NMC system will have to identify

the correct level of abstraction for each component to avoid excessive complexity.

The second and third issues are somewhat intertwined. To see why, note that each

of the newly created applications has a somewhat unique operational paradigm and

thus places a different amount of importance on various network characteristics and

qualities. This in turn makes it difficult to define a universally acceptable objective

for the design, analysis, and operation of networks. This has resulted in the generally

accepted view amongst network architects that states "build a better network and

the killer app will be made for it".

Despite the persistence of these difficulties over many decades, we believe that

the proliferation of two new trends in the networking world can enable us to address

some of these challenges:

1. The wide adoption of Software Defined Networking (SDN).

2. The development of cheap and effective machine-learning tools.

The emergence and prevalence of SDNs in commercial networks allows us to con-

trol various network elements in a centralized fashion. This in turn gives network

architects the ability to design various network protocols with a certain level of flexi-

bility which would not be possible otherwise. Interestingly, the difficulties associated

with proper configuration of SDNs is also due to their flexibility. Typical SDNs have

hundreds of parameters which are coupled in rather non-intuitive ways. Fortunately,

machine-learning tools are the perfect solution for such situations. Today's deep-

learning models can keep track of hundreds of thousands of different parameters with

reasonably small computational overload, and are able to adapt to various network

conditions with very limited human intervention.
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The combination of these two techniques will enable us to engage in logically

centralized monitoring and control of various network elements. Given the importance

of scalability, we should always strive to find ways to create abstractions of lower layer

information that can be easily accessed through a universal interface.

Our goal in this thesis is to express the simplest possible abstraction of a cen-

tralized NMC system that seeks to collect and disseminate network state information

with the aim of optimizing the network performance. Noting the universality of delay,

we have selected it as the abstraction that can be associated with every link across

the network. The reason for this universality is the general preference of all users and

applications to communicate with one another in near real-time. Of course, modeling

delay is itself a difficult task as we will discuss in the following chapters, but it is so

central to the proper operation of the network that we shall bite the bullet and deal

with its inherent complexity. As a result, we will focus on optimal collection of delay

information as it relates to shortest path routing within networks. The following

section discusses some of the latest approaches in identifying the value of information

in shortest path routing.
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1.1 Related Work

Over the years researchers have introduced a whole host of ideas with the hope of

quantifying the best practices for collection of network state information. In fact

there has been a resurgence of active researchers from industry and academia that

recognize the importance and relevance of this topic to the efficient operation of a

wide variety of applications ranging from communication systems and networks, to

general transportation networks. To avoid a lengthy survey of all prior works, we shall

limit our discussion to a few examples to illustrate the general landscape of the area,

and various modeling approaches that have been proposed. Each example will be

accompanied by a short discussion of its strengths and shortcomings. The examples

cover the following categories:

" Analysis of network performance through game theoretic approaches

" Controlling network performance through information measurements

" Fault diagnosis in optical networking

* Linear programming and the geometry of shortest path routing

1.1.1 Example of a Game Theoretic Approach

Game theory has been used in many settings to identify the strategic interaction of

"rational" agents, where the assumption of rationality describes the general preference

of an agent for an action/state that maximizes their utility.

Game theoretic formulations of the shortest path routing problem are often con-

cerned with agents who are able to choose their desired paths to a given destination

based on the information available to them at the time. It is within this context

that one can evaluate the value of information with respect to the choices made by

agents. This paradigm is often concerned with transportation networks such as inter-

state highway systems (roads in general) whereby a driver can independently decide

on the best way to reach its destination given the available information at the time
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of the decision. Such systems are susceptible to certain inefficiencies which present

themselves as paradoxes. We shall reference a well-studied one, known as the Braess'

Paradox, which describes the counter-intuitive fact that at times adding a road to

a congested network could increase the overall journey time, while removing certain

roads could reduce the overall journey time. This paradox is named after the Ger-

man mathematician Dietrich Braess that originally postulated it. We refer interested

readers to [14] for additional information on the original formulation. We shall use a

numerical example from [15] to describe the phenomenon.

1l R, e3 elR, e3

S D S e5

e2 R2 e4 e2 R2 e4

(a) Original network with delay characteris- (b) Addition of a new link to the origi
tic: {d1(x),d2 (x),da(x),d4 (x)} ={x, 1,1,x}. network. d5) = 0.

Figure 1-3: Example of a simple network that showcases the Braess' Paradox.
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(a) Original network with delay characteris- (b) Addition of a new link to
tic: {d1(x), d2 (x), d3 (x), d4 (x)} = {x, 1,1,x}. network. d5(x) = 0.

Figure 1-4: Delay characteristics for the networks of Fig. 1-3.
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Let us start by studying the networks in Figure 1-3, both of which are supposed to

transport 1 unit of flow between the source and the destination. Edges in the network

are labeled as ei and there is a delay of di(x) associated with transporting x units of

flow on edge ei. Note that the only difference between Figure 1-3a and Figure 1-3b is

the presence of edge e5 in the latter, but as we will show (and contrary to intuition)

this addition can have an adverse effect on delay performance of the system.
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Starting with the network in Figure 1-3a, we can see that there are exactly two

paths that connect this source-destination pair, denoted by e1e3 and e 2e4 . As a result,

the total flow may be divided when x units of it traverse e1 e3 and the remaining 1 - x

units go through e2 e4. The portion travelling through e1 e3 will experience a delay of

(x + 1), and the rest will experience a delay of (1 + (1 - x)) on e 2e4 . Note that if

either path takes less time than the other, then a small fraction of rational drivers

will take that path and we will not have an equilibrium. Thus an equilibrium state

corresponds to the traffic allocation that provide equal delay on both paths, i.e. when

(x + 1) = (1 + (1 - x)) which occurs when x = 1. This analysis presents a satisfying

equilibrium solution as it postulates that the traffic will be split equally between the

two paths resulting in equal delay of 1 on both.

We shall now focus on Figure 1-3b which adds a new edge, e5 , to the network. Note

that this edge exhibits 0 delay. For simplicity let us assume that the network was in

equilibrium just prior to this addition and thus the traffic were equally split between

eie3 and e2e4. Upon the addition of this path, rational drivers on ei will realize that

they can reach the destination in a shorter time if they traverse e5 e4 instead of e3 .

At the very beginning, this new path (i.e. eiese 4 ) exhibits an end-to-end delay of

1 (because x = 1/2), but the delay will rise as more and more cars are diverted to

this new path. Note that the delay on e5 e4 is in competition with that of e3 and

will rise until they are both equal. As a result, in equilibrium the entire traffic on ei

will be diverted to e5 e4 . Meanwhile, the traffic at the source would prefer to traverse

e1 e5 instead of e 2 as it has a lower delay, and thus the entire traffic will be diverted

to ei. As a result, in equilibrium the entire traffic will traverse eie5e4 , resulting in

an end-to-end delay of 2. Somewhat counter to what we may have expected, the

introduction of the additional edge increased the delay experienced by users from 1

units to 2. This paradoxical behavior is often referred to as the Baress Paradox.

Acemoglu et al. [15] have recently introduced the notion of Informational Braess'

Paradox. This new model examines similar congestion games whereby users have ac-

cess to different information sets about the set of available edges and/or the delays

associated with them. In particular, they study the implications of availability of
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additional information about routes and confirm that providing additional informa-

tion to users may not reduce the overall journey time. More specifically they show

that "[Informational Braess' Paradox] does not occur if and only if the network is

Series of Linearly Independent (SLI). Where [such a] network is obtained by joining

a collection of linearly independent networks in series and linearly independent net-

works are those in which each route includes at least one edge that is not part of any

other route" [15, p. 2]. In other words, whether a network has this property or not is

simply a property of the graph structure and is not related to edge weights. Hence,

the "if and only if' statement should be interpreted as: if a network satisfies the

SLI property, then the Braess' paradox does not occur regardless of how the weights

are assigned but if the network does not have this property, then there exits some

weight assignment that would exhibit the paradox. Clearly, one can use the impact of

various information sets on the optimal operation of the network and then strategize

for the collection and dissemination of network state information.

Treatment of transportation networks with game theoretic tools is rather natural

and owes its usefulness to the fact that individual drivers make routing decisions in an

uncoordinated fashion based on their individual preferences. This is in contrast to the

way communication systems handle routing, which has traditionally been done by the

system and not by the user. To that end, the Braess' paradox may seem superficial

and contrived to a communication systems' engineer but at its heart it tells us that

routing protocols should avoid short-sighted approaches that blindly increase traffic

on routes which currently exhibit lower delay. Instead, we should focus on approaches

that consider the system-wide aggregate delay and design protocols that can deliver

a reasonable aggregate delay across all source-destination pairs.

We should note that new transportation paradigms that utilize autonomous cars

may eventually exhibit characteristics that are more similar to communication sys-

tems than before. Despite their nascent stage of development, various companies are

aiming to develop and operate large fleets of autonomous cars whose operations are

coordinated by a centralized entity. As these visions take shape it would be crucial

to once again focus on system-level approaches that benefit the whole system.
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1.1.2 Example of an Information Measurements Approach

As we discussed before, NMC systems are primarily engaged in the collection and

dissemination of information with the goal of improving the operational state of the

network. As a result, many researchers have borrowed various concepts and ab-

stractions from information theory that can help in identifying the most valuable

information as it relates to the optimal operation of a network. In this section we will

discuss the work of Michael Rinehart [16] with respect to "the value of information

in shortest path [routing]".

We should start by noting that from an information theoretic perspective, infor-

mation is a quantity that allows us to resolve our uncertainty about the realization

of a random variable. In this nomenclature, we often think of a source that generates

a sequence of symbols according to some pre-defined distribution. The total amount

of information in a given source, X, is defined as its "entropy", and is denoted by

H[X]. Now suppose that we have two distinct sources, X and Y, whose entropies are

denoted by H[X] and H[Y] respectively. We can define the "mutual information"

between X and Y as the average reduction in entropy of one source when we know

the other. Mutual information is a measure of the mutual dependence of two random

variables and is often denoted as I(X; Y) = I(Y; X).

M Channel

Message IEncoder Encoded
Sequence

Channel
p(y1x)

M Channel y

Estimated Message Decoder Received
Sequence

Figure 1-5: Abstraction of a communication system.
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In the classical abstraction of a communication channel, depicted in Fig. 1-5, we

seek to reliably transmit a message across a noisy channel, where the noisy nature

of the channel is captured by the conditional probability distribution p(yfx). It is a

well-established fact that the rate of information transmission, and thus the fidelity

of the channel is precisely captured by the mutual information between the input of

the channel and its output (i.e. I(X; Y)). More importantly, in traditional commu-

nication systems we are often concerned with the receiver's estimation error which

can be derived from the aforementioned mutual information. Furthermore, capacity

of the channel is defined as the maximal mutual information between X and Y.

In [16], the author studies the issue of shortest path routing on a graph with

random edge weights. Clearly, shortest path routing can be cast as a problem in

which agents utilize the available information regarding edge weights to reach their

desired destination in the shortest amount of time. The biggest difference between

this context and the typical communication channel is that traditional metrics such

as estimation error are no longer suitable because agents are not engaged in a de-

coding task. As the author correctly suggests, the "information quality [and value] is

determined by the average length of the paths the agent chooses, not how often the

agent decodes the optimal path." Hence, the author proposes an alternative measure

of information (instead of mutual information) that is more tractable and easier to

compute. Defining the average length of the paths taken by an agent as the per-

formance metric the author derives analytical bounds on the average performance

of an agent subject to a bound on the amount of information available to it. The

biggest shortcoming of such approaches is that the results are often stated as a set

of upper and lower bounds. While these bounds are helpful in charting the space of

possibilities, they rarely lead to algorithms that would be operationally significant.

We end this example by noting that cross-pollination of ideas across diverse sci-

entific fields has been the source of many discoveries, but we should also emphasize

that information theory (or "Mathematical Theory of Communication" as it was orig-

inally called) was formulated by Shannon to shed light on and answer very specific

questions, and extending them to other topics should be done with a lot of care.
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1.1.3 Fault Diagnosis in Optical Networks

In the spirit of collecting relevant network state information to identify failed com-

ponents, Yonggang Wen [7] studied a scheme for efficient discovery of link outages

in all-optical networks. Within this context, each optical link is constrained to be in

one of two states: ON or OFF, and the NMC system is expected to identify the state

of every link within the network through a sequence of optical probes. The best way

to visualize this scheme is to represent the network as an undirected graph where

the state of each edge is represented as an independent and identically distributed

Bernoulli random variable (corresponding to the distribution of ON/OFF states).

The overall network state as well as the identity of the failed links can then be deter-

mined through a sequence of end-to-end probing signals, each of which corresponds

to transmitting an optical signal along a particular lightpath. If the probing signal

arrives at its intended destination it will indicate that all edges along that lightpath

were operational (i.e. ON), otherwise we know that at least one of the edges along

that lightpath was impaired (i.e. OFF).

Figure 1-6 is an illustrative example from [7], that shows the operational details

of such a probing scheme. In particular, Figure 1-6a, depicts a simple three-node ring

topology and enumerates the corresponding set of permissible optical probes. Clearly,

identifying the state of the network can be cast as a sequential decision problem where

the result of each optical probe will be used to inform the NMC's decision about the

the next probe. Figure 1-6b depicts the binary decision tree corresponding to one

such probing scheme. Without delving into the theoretical details of the work, we

note that the author demonstrates that optimal fault diagnosis in optical networks

can be formulated as a source coding problem. More importantly he has shown that

minimizing the number of probes required for this diagnosis is closely related to run-

length coding schemes. This unique formulation allows us to identify the ON/OFF

state of all links in an optical network with the fewest possible number of probes.

Hence, if the cost of information collection is proportional to the number of optical

probes, then this technique minimizes the corresponding average cost of operation.
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(a) Permissible Probes. (b) Probing Scheme.

Figure 1-6: a) The set of permissible probes over a three-node topology. Each probe

is indexed with a number near the arrow. b) Probing scheme (decision tree) for the

three-node ring topology. The inner nodes of the tree correspond to specific probes

and the leaves correspond to the inferred network state. We should note that 0 denotes

operational state and 1 denotes a failure in each optical probe, and corresponds to

branching to the left or right on the decision tree respectively.

Source: Reproduced from [7, p. 67].

The biggest shortcoming of this approach comes from its binary assumption on

the state of each optical link. An ON/OFF model may be suitable for environments

that experience drastic impairments such as when a fiber is cut or when an optical

component fails completely; but the day-to-day operation of optical networks is often

affected by more subtle and gradual changes to the environment. These changes may

result from a physical phenomenon such as temperature change, or a deviation in

SNR, to user induced changes such as a surge in traffic. To avoid such pitfalls we will

try to model the network in such a way as to allow for a rich set of possible states.

In addition, we should point out that optical networks are often designed so that

light paths are in use virtually at all times, and thus the routine transmissions across

the links should provide sufficient information to upper layers of the network regarding

the ON/OFF state of individual links.
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1.2 Geometry of stochastic shortest path problem

To get a geometric understanding of the shortest path routing problem we shall focus

on its linear programming (LP) formulation. The formulation is standard and can be

found in many introductory textbooks on linear programming. We shall consider a

directed graph denoted by (V, E), where V denotes a set of vertices and E is a set of

directed edges between vertices. In addition to the vertices and edges, we associate

a cost' ciy > 0 with edge (i, j) E E. We are often concerned with identifying the

shortest path that connects an origin node 0, to a destination node D. This problem

gives rise to the following LP formulation:

minimize c cx ij
ijE

subject to x;> 0

-1, if i=z xi- E1 = D1,

10, else

where E xi - Ej xj is simply the total flow at node i, and thus the last set of

constraints denote the conservation of flow at every node along the way except for

the origin and destination nodes. Note that xij acts as an indicator random variable,

it is 1 if edge (i, j) is part of the shortest path and 0 otherwise. In other words, the

optimal solution, x* to the previous LP is simply a binary string of length |El.

We are ultimately interested in identifying the optimal solution to the aforemen-

tioned problem when we are faced with a set of stochastically varying cij's. It should

be clear that when cij is varying with time (i.e. when we have ci(t)), we have

to continually re-solve the problem in order to identify the optimal path x*(t) at

various time instances. Note that as the system evolves, the length of the short-

est path may get longer or shorter. But in either case, if we use the old solu-

tion x*(t') instead of the latest solution x*(t) we will be incurring an excess cost

of (x*(t')cT(t) - x*(t)cT (t)) = (x*(t') - x*(t)) cT (t).

'In the context of shortest path routing, edge costs are constrained to non-negative numbers
to avoid all issues associated with circular flows with negative costs. On the other hand, we will
present a few examples of a general LP formulation that include negative costs as it allows us to
easily demonstrate some of the relevant graphical aspects.
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In order to keep this excess cost to a minimum, we shall expend our monitoring

resources so that we can identify and adapt to the changing edge weights. Before

delving into additional details, let us study how the geometry of a non-stochastic

linear program is related to the cost vector. The following example, inspired by

example 1.8 of [17] showcases the relationship between the cost vector c and the

solution to the LP.

Example 1. Let us consider the following linear program:

minimize ci 1 i + c2x 2x1, 22

subject to x 1 - x 2  1,

x 2 < 2,

x1 ,X 2 > 0

The feasible region of an LP is defined as the set of points that satisfy every constraints

in the LP formulation, and thus the optimal solution to the LP (if it exists) has to be

in this region. Noting that the objective function is only a function of two variables,

(x 1 , x2 ), we can easily visualize the feasible region for this optimization on the 2D

plane. Figure 1-7, depicts this feasible region which is at the intersection of 4 half-

planes, namely: X1 > 0, x 2 > 0, x 2 < 2, and X1 - x2  1. Various cost vectors

C = (ci, c 2 ) are also drawn in the figure.

Graphically, the solution of an LP problem can be identified by drawing a plane

orthogonal to the cost vector and moving it in the direction of -c until the intersection

of the orthogonal plane and that of the feasible region has reached the farthest point

on the boundary of the feasible region 2 . For example, for c = (1, 1), and c = (-1,2)

the optimal solution would be at x* = (0, 0), and x* = (1, 0) respectively. Meanwhile

for c = (1, 0) every point on the vertical axis that is also in the feasible region is

an optimal solution, i.e. x* = (0, x 2 ) VX 2 E [0, 2]. The question at hand is what

2 For this example we have focused on linear programs where a feasible region exists and is
bounded. It can be shown that in such instances the optimal solution is always on the boundary of
the feasible region. If the feasible region is unbounded we may not have an optimal solution.
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Figure 1-7: Feasible region depicted in gray which is bounded by 4 linear constraints.

happens when the cost vector changes by a small amount. Intuitively, we would

expect small changes in c to not result in a change to the optimal solution. Posing

the question differently, we can ask how much can the cost vector change before the

optimal solution changes. One way to answer this question is to specify a range Ri

for the ith dimension of the cost vector ci, so that if we only change one coefficient of

the cost vector (while keeping others fixed) the solution would remain valid (there

may be other solutions). For instance in our previous example, for c = (1, 1) we

have R1 = [0, oo) and R2 = [0, oo); while for c = (-1,2) we have R1 = [-2,0] and

R2 = [1, oo). These ranges can be thought of as valid cost intervals for a specific

solution x*. Hence, for an n-dimensional cost vector we can specify a matrix R as a

function of c whose column are the respective ranges:

R(c) = R1 R2 ... Rn

The previous discussion may seem rather fruitful and promising but it conceals

a major shortcoming. Note that the aforementioned analysis is only valid when we

modify a single dimension of the cost vector while keeping others fixed. This is in



contrast to the situation in real networks, where all links undergo various changes

simultaneously, which renders the applicability of the previous discussion moot. To

the best of our knowledge there is no mathematically precise theory that can express

the effects of simultaneous changes to various dimensions of the cost vector on the

optimality of a given solution, and thus it remains an area of active research.

Before ending our discussion on the geometry of shortest path routing we would

like to review some of the well understood aspects of optimizing a linear objective

function with variable coefficients, a topic that has been studied under the banner

of "robust optimization". The reason for this extended discussion is that we believe

future advances in the theory and practice of robust optimization and linear pro-

gramming will prove immensely useful for the design and analysis of communication

systems and readers of this document may wish to familiarize themselves with the

basic concepts of this area. To this end, the most notable insights with respect to

optimizing a linear objective function with variable coefficients, is rooted in differen-

tiating between basic and non-basic variables, which are defined as [17]:

Definition 1. Let us denote the optimal solution of a linear program as an n-

dimensional vector x*. The ith component of the vector, denoted by x* is said to be

a basic variable if it is not equal to zero, and is a non-basic variable otherwise.

As an example, let us consider the optimization problem depicted in Fig. 1-7.

For c = (1, 1) both components of the optimal solution x* and x* are zero and thus

non-basic, while for c = (-1, 2), x* = 1 and is basic and x* = 0 and thus non-basic.

Note that the value of the objective function (cost function) is minimized at

the computed optimal solution x*, furthermore, and this value is simply the sum

of the product of basic variables and their corresponding costs. For instance in the

scenario depicted in Fig. 1-7, when c = (-1, 2), the objective function will evaluate to

c * -1- 1 -1. It should now be clear that non-basic variables of the optimal

solution do not contribute to the cost/objective function while basic variables do,

and thus changing the coefficients (i.e. the corresponding cost) of basic and non-basic

variables will have radically different impacts on the optimal solutions to a linear

program. The following subsection will elaborate on this topic.
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Changing the coefficients of basic vs. non-basic variables

Given our previous discussion about the value of the objective function at the optimal

solution, it is not surprising that increasing the coefficients of non-basic variables will

not affect the optimal solution. Intuitively, if ci is the coefficient of a non-basic

variable x 1, such that the initial minimization resulted in choosing x* = 0, then we

can see that increasing the cost of that "commodity" (increasing ci) will not entice

us to increase our demand as represented by x*. On the other hand, decreasing ci

will at some point cause us to increase x1 .

Varying the coefficients of basic variables creates a more complex situation because

their corresponding solution are non-zero. Let us consider c = (1, -1), for our initial

optimization and note that the optimal solution is at x* = (0, 2); which makes x2

into a basic variable. First and foremost, notice that decreasing or increasing c2 will

change the value of the objective function regardless of whether or not it impacts the

optimal solution. Furthermore, as c2 decreases, we will get additional reduction in the

objective function even with the old solution x*, but if c2 decreases enough we may

even choose to increase x2 to take additional advantage of it. Note that in general

the optimization may be subject to additional constraints such as -x 1 + x 2 < 1, and

thus any change to x2 may influence other dimensions as well. A similar phenomenon

occurs if c 2 increases, whereby after a certain threshold, the increase in c2 will cause

us to reduce x2 . The following subsection explains the role of basic and non-basic

variables in the context of shortest path routing.

Basic vs. non-basic variables in LP formulation of shortest path routing

The optimal solution, x*, of an LP formulation of shortest path routing is a binary

sequence where a 1 in the ith position indicates the presence of that edge on the

shortest path, and a 0 indicates the absence of the aforementioned edge in the shortest

path. Clearly, basic variables correspond to edges of the shortest path, and non-basic

variables are those not included in the shortest path. Naturally, increasing the weight

of non-basic variables will not affect the solution x*, which intuitively says that if the

price of traversing an expensive road is increased, we will continue not to use it.
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Changing the cost of basic variables is more complex but not as complex as a

general LP. The simplification comes from the fact that x* is a binary sequence and

thus the solution space is constrained. Thus, even though reducing the cost of a basic

variable may entice us to increase the corresponding basic variable, we have to stick

with a value of 1. Thus, in the LP formulation of the shortest path, reducing the

cost of basic variables will not impact the optimal solution; even though it impacts

the value of the objective function. Intuitively, the identity of the shortest path does

not change if we reduce the cost of its edges. Now, the question becomes how much

could we increase the cost of a basic variable before x* changes. Intuitively, the

cost of this edge can increase, until the total cost of this path reaches the cost of

the 2n shortest path connecting the origin-destination pair. Let us use c]AB to

denote the cost of the nth shortest path connecting node A to node B. Then, for

a basic variable i that represents the edge connecting node A to node B, we have

Ri = [o,c]O2, - c]O'A - C]B ,D]' where 0 and D are origin and destination nodes.

What about the lower-bound on the range of the cost of non-basic variables? Note

that reducing the cost of a non-basic variable impacts the identity of the shortest path,

if and only if the new shortest path includes that non-basic variable. In other words,

a new shortest path will materialize if and only if it includes the formerly non-basic

edge whose cost has been reduced. Since by definition, the cost of the new shortest

path has to be lower than the old shortest path, the lower bound on the cost of a

non-basic edge between A and B is equal to c]D - c] 0+A - C1 . Thus,

0,c]2D A - C D if i is a basic variable connecting A to B

Ri =

[c]1 D 0- A - C] D oo if i is a non-basic variable connecting A to B

This concludes our discussion of the geometry of the stochastic shortest path prob-

lem. We should note that despite the interesting insights of our previous discussion,

the LP formulation does not provide a foundation for the sensitivity analysis required

to handle simultaneous changes in the cost of various basic and non-basic variables.
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1.3 Problem Statement

In this thesis we will focus on the problem of shortest path routing, and identify prag-

matic schemes that allow a central controller to collect delay statistics from various

links and nodes in an optimal fashion. The controller should be smart enough to

request frequent updates when the information can be helpful in the operation of the

network and reduce it when they are of less use. This approach is in contrast to how

delay statistics are disseminated in current networks, which occurs at regular inter-

vals. We should note that monitoring delay statistics within a network necessitates

an underlying algorithm to determine network connectivity, and we shall assume that

such underlying processes and algorithms are already in place.

To this end, the thesis will include an analytical framework that can identify the

optimal time for the collection of such information in a simple two path network. We

will then extend the results by introducing a reinforcement learning framework that

learns the aforementioned optimal policy from its own interactions with the network.

Of course, properly designed networks should be able to operate in a reasonable

way between updating times and thus any meaningful solution should strive to meet

application demands despite the unavoidable uncertainty about the instantaneous

state of the network. Hence, we will complement our work by introducing a diversity

routing scheme that can cope with stringent requirements on delay variation despite

the controller's relative uncertainty about the instantaneous state of the network.
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1.4 Thesis Organization

This thesis is organized as a series of self-contained chapters. The reason for this

structure is that each chapter pursues a unique objective and interested readers can

focus on a specific topic without the need for excessive reference to previous chapters.

With that in mind, Chapter 2 discusses the issue of shortest path routing in uncertain

environments and introduces the notion of Significant Sampling as a way to optimize

the amount of information collected from the network. Chapter 3 provides a deep

reinforcement learning solution to the shortest path routing problem, and presents a

model-free framework for Significant Sampling. Finally, Chapter 4 models the uncer-

tainty in the state of the network and presents a unique diversity routing approach

that achieves favorable tradeoffs between the expected delay and instantaneous delay

averaged across paths.
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2.1 Introduction

As we discussed in Chapter 1, there are a myriad of interactive, data-hungry, and

demanding applications that are currently under development which will collectively

induce new traffic patterns in data networks that are no longer static, or even quasi-

static. One may expect the input traffic to any given link to be continuously varying

and experience abrupt changes. As a result, any befitting Network Management

and Control (NMC) system has to closely monitor the state of all links to be able

to provide the desired quality of service to all users. Unfortunately, current NMC

systems are unable to handle the enormous amount of network state information that

has to be collected, analyzed and distributed to properly manage the network.

As an example, we can reference a case study by Zhang et al. [18], that estimated

the average control traffic required for optimal scheduling of flows across a 60-node

optical-WAN representing the backbone of the continental US. The average total

control traffic is estimated to be as high as 300 Gbps. The collection of this much

data is itself burdensome, but more importantly the computational resources required

to analyze it would be impractical. With that in mind, we will introduce a cognitive

approach that considers the cost associated with collection and dissemination of state

information while it seeks to improve the network performance.

To illustrate the efficacy of our cognitive management approach, we will use an

example that primarily focuses on challenges involved with 'shortest path' routing

in dynamic networks. In this context, an NMC system has to monitor the state of

queues throughout the network to decide which path(s) should be used to connect

different origin-destination (OD) pairs. In practice, various shortest path algorithms

(Bellman-Ford, Dijkstra, etc.) are used to identify the optimal shortest path. The

correctness of these algorithms requires the assumption that after some period of time

the system will settle into its steady state. We refer interested readers to [19] for a

thorough explanation of these issues. Given the dynamic nature of future networks,

the steady state assumption is particularly not valid, nonetheless the basic functional

unit of these algorithms can be adapted to address the new challenges.
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Shortest path routing algorithms assign a length to each link of the network; this

length is often a proxy for traffic congestion on the link but can also incorporate other

factors. Depending on the specific implementation, the length may reflect the number

of packets waiting in the queue, loading of the output line, or the average packet delay

on the link during a pre-specified amount of time. Neighboring nodes exchange their

estimated shortest distances to all other nodes periodically and new information will

be disseminated throughout the network after a few rounds of exchanges.

Suppose the routing table for each node contains the available paths to each

destination and the latest estimates of their lengths, as shown in Table 2.1. Given

this table, a node can identify the shortest path to all destinations. Furthermore, it

can use the relative difference between the length of the shortest path and that of other

paths to determine the likelihood that the shortest path changes in the near future.

Hence, the frequency by which we update entries of the routing table can effectively

be determined from this likelihood as well as other pairwise considerations.

Table 2.1: Partial routing table maintained by node A

Destination Path Length
B C -D Y 2

Y E F G Y 3
H I IY 8
J -K Z 4

Z L M Z 7
N - P -Z 9

Thus, as opposed to updating the whole table at a minimum rate required for all

dynamic situations, each entry of the routing table will be updated only when it can

be of significant value to the optimal operation of the network. It is in this sense that

we refer to our technique as significant sampling. To illustrate this principle, we

will focus primarily on a simplified model where an OD pair is connected via exactly

two independent paths with time varying lengths. Within this framework, we develop

an adaptive monitoring system that determines the value of updating the length of

a given path as well as the cost associated with the updating process. This allows

the NMC to optimally allocate its resources to collect and disseminate information

regarding the state of network elements according to their importance.
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The remainder of this chapter is organized as follows: Section 2.2 introduces the

general stochastic model and establishes the framework through which the monitor-

ing process is optimized. Section 2.3.1 assumes a Wiener process as the end-to-end

delay process and evaluates the benefits and shortcomings of this model. Section 2.3.2

applies the framework to the Ornstein-Uhlenbeck process which circumvents a ma-

jor shortcoming in the Wiener process. Section 2.4 extends the results to general

networks. A summary and concluding remarks are provided in Section 2.5.
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2.2 Problem Setup - General Model

Suppose that an OD pair is connected via two independent paths P and P2 as illus-

trated in Figure 2-1, and denote the stochastically evolving weight of P by Xi(t). 1,2

P1 : X1(t)

O D

P2 : X2 (t)

Figure 2-1: An OD pair with two independent paths.

Let us use X(t) to denote the stochastic process that results from subtracting the

weights of the two paths, i.e., X(t) = X2(t) - X1 (t). Clearly, continuous optimal

routing can be achieved if we know whether or not X1(t) < X2 (t). This is equivalent

to knowing the sign of X(t) for all t. Since continuous monitoring of X(t) is far from

cost effective, our aim is to identify a strategy that specifies the best future updating

times based on the last observed value of X(t).

More concretely, consider a sample function of X(t) as shown in Figure 2-2. Given

X(to), (i.e. the state of both elements at time to), we would like to identify the next

epoch ti for updating our routing tables. When the value of the function at ti, i.e.

X(ti), is realized, we will use it to determine the following updating time t2 and so

forth. Notice that Ti's and X(ti)'s are the fundamental random variables and can be

defined in a recursive fashion. In general, the next updating epoch can be computed

as tj = ti_ 1 + T where the update interval T is chosen as some function, to be

determined, of the state X(ti_1) at the beginning of the interval.

SXi(t) can be the rate of transmission (messages/s) times the expected delay/message on P,

which gives it units of delay/s.
2Jt is a tacit assumption of our treatment in this chapter that a given link is carrying many

sessions from a potentially large number of origin-destination pairs, and that the rerouting decisions

regarding a specific session will not have a significant impact on the delay/congestion of the link.
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X(t) X(tn)

X(to)

to t 2 ... tn- 1  tn

Figure 2-2: Illustration of n samples taken during a period T.

Between two updating epochs t _1 and ti, the process X(t) will evolve according

to an underlying stochastic model. Recall that Pi is the optimal route if X(t) > 0 and

P2 is the optimal route if X(t) < 0. So the communicating OD pair will experience

an excess cost if the process X(t) changes sign between two sampling epochs and

the transmission route is not adapted. Let us use C[ti1 ,tij to denote the cost of such

errors during [ti_ 1, ti]. Without loss of generality, assume X(ti_ 1) > 0 and suppose

that the OD pair uses P1 as the route during [ti_ 1, ti]. Then the cost of error during

this period is simply the integral of X(t) after the process experienced a sign change.

In other words,

C4_1,4 =- X-(t) dx

where X-(t) is the negative part of the function defined as X-(t) = (X(t)-IX(t)|)/2.

Figure 2-3 illustrates this process through a specific example. Note that X(ti_ 1) > 0,

indicating that at ti_1, Pi is the shortest path. Furthermore, note that X(t) becomes

negative shortly after ti_ 1 at which point P1 is no longer the shortest path. If Pi is used

during [ti_ 1, ti], we will accrue an excess routing cost of C~t,-,, which corresponds

to the red area depicted in the figure. When the stochastic nature of the underlying

process is known, a distribution is induced over possible sample paths of X(t), and

we can use this distribution to compute the expected cost of error during this period,

denoted by E [C[t,,, ]
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ti1 ti

X(t)

Figure 2-3: Visual depiction of C[t 1 ,t], between two consecutive sampling epochs.

We shall now introduce the notion of updating cost to capture the efforts re-

quired to collect and disseminate state information throughout the network so that

all routing tables are up-to-date. Google Maps offers a great example of various

costs associated with such efforts, as the system gathers congestion information from

individual drivers on the road. The GPS-enabled device will incur a data transmis-

sion cost by using the wireless services, and will drain its battery as a result of the

required computation and communication. Furthermore, there is a cost associated

with reporting the latest congestion information to all other drivers. In general, the

updating cost may vary over time and can differ for various network elements, but

for simplicity we will use a single figure of merit, rq, to account for the cost. This

is a catchall quantity that should represent the costs associated with collection and

dissemination of the routing information across the whole network.

If we update the routing tables by sampling the process n times during [0, r], as

shown in Figure 2-2, then the expected total cost CTotal resulting from sampling and

unintended errors is

n

E ]CTotal] = j i + E [C[,t 1,ti]) + E (Citn ]
i=1
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For a given time horizon [0, T], an optimal offline sampling strategy will identify the

optimal number of samples and their corresponding epochs to minimize the expected

total cost. Alternatively, we may choose to minimize the cost rate (cost per unit

time) for an infinite time horizon. These two approaches can be summarized as

argmin E [CTotalI
n,{t,<...<tn<r}

IE [Cotall
or argmin lim

n,t1<.<tn<-r" T

The aforementioned formulations are not as useful in practice because routing and

updating decisions should be made in real-time. In other words, an NMC is interested

in making routing and sampling decisions for the immediate future and cannot afford

to plan too far into the future. Let us use C[t,_ 1,t,](x) to denote the cost of error during

[ti_ 1 , ti] given that X(ti_ 1) = x. Then the most informative formulation computes

the optimal updating period Ti* as

- +I EK [CY[t,,,] (x)]
T (x) = argmin

Ti>0 Ti

If X(t) is Markovian, then the distribution of its trajectory is only a function of

its last observed value. Hence, for Markov processes E[C[t,ti+r1(x)] = 1E[C[o,T](x)].

For such processes we can treat every sampled value as if it had occurred at time

zero. Using CT(x) as a shorthand for C[o,T](x), we can rewrite our optimization as

T1 (x) = a min)(2.1)
T>O T

This concludes our discussion of the general setting of the problem and the relevant

optimization formulations. The following section focuses on appropriate models for

transient behavior of congestion and/or delay.
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2.3 Delay Models

Queues constitute one of the basic building blocks of a communication network and

have been extensively studied for decades [20, 21]. While queuing theory has provided

tremendous insight into the operation of data networks, it has struggled in providing

tractable expressions that deal with transient behavior of queues (which is of immense

importance to us!). For example, let us consider an M/M/1 queue with arrival rate

A, and service rate p, whose state transition diagram as a Markov process is shown

in Figure 2-4.

A A A A
0 1 2.. j -1 j +1I

t ' I' cti

Figure 2-4: State transition diagram of the birth-death process of an M/M/1 queue.

Assuming that the queue is in state i at time 0, then the probability that it will

be in state k at time t is given by

00

Pk(t) = e-(\+p)t P(k-i)/2Ik-i (at) + P(k-i-l)/ 2 Ik++1 (at) + (1 - P)Pk | Pi/2I(at)j
j=k+i+2

were p = A/p, a = 2V'A-, and Ik is the modified Bessel function of the first kind

defined as,
°° (x/2 )k+2m

Ik~x) Ak ;> -1
mk W(k + m)! m!mn=O

Referring to this expression, Kleinrock notes: "This last expression is most dis-

heartening. What it has to say is that an appropriate model for the simplest in-

teresting queueing system [M/M/1 queue] leads to an ugly expression for the time-

dependent behavior of its state probabilities" [20, p. 78].

Hence, we advocate an approach whereby operational insights can be provided

through judiciously chosen alternative models which lend themselves to easier analysis

and can be insightful as engineering guidelines for the design of future networks.
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Desirable transient models of delay should possess the following characteristics:

* Stability - the stochastic model of delay should be stable so that linear combination

of two or more such processes will remain in the same family of distributions.

" Stochasticity - capture the rise in uncertainty about state of the network as more

time passes from last observation.

" Simplicity - provide a formulation that is amenable to analysis and/or numerical

computation, especially as we scale the network.

In selecting a model with these attributes, it is often beneficial to approximate the

delay process with an appropriate diffusion process. The inherent structure of diffu-

sion processes makes it easier to avoid some of the combinatorial challenges involved

in the original problem. The following two sections describe two such models of delay.

Section 2.3.1 uses a Wiener process as the underlying model for delay. As we will see

shortly, the Wiener process which is the limit of M/M/1 queues when the number of

arrivals and departures is very large, has one fewer variable in its description which

will reduce some of the complexity that was present in the M/M/1 model and allows

us to get analytical solutions that are easier to interpret. Section 2.3.2 considers

the Ornstein-Uhlenbeck process as the underlying model of delay, and addresses a

shortcoming of the Wiener process with respect to its stationarity.

Before getting into the details of each delay model, we should once again emphasize

that these models are only appropriate when (re)routing decisions do not have a

significant impact on the delay and congestion of individual links; which often occurs

when the rerouted traffic is a minor part of the total traffic on a link. Otherwise, we

would have to take into account the increase/decrease of delay and congestion that

results from specific routing decisions.
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2.3.1 Wiener Process

Numerous successful attempts have been made at modeling queuing delay as a Wiener

process. Most notably, it has been shown that the normalized queue length in heavy

traffic (i.e., as p -+ 1) can be approximated by a one-dimensional reflected Wiener

process, also known as the reflected Brownian motion [21, 22, 23]. Modeling the

waiting time of customers as a Wiener process satisfies our modeling criteria because

1) Wiener process is stable, hence the waiting time of customers in cascaded series of

independent links would itself be a Wiener process, 2) uncertainty in the realization

of a sample path of a Wiener process grows with time. We shall define and note a few

properties of the Wiener process and refer interested readers to [24] for a thorough

investigation of general properties of the Wiener process.

Definition 1. A real valued stochastic process {W(t) : t > O} is a Wiener process

with a start at x E R if the following hold:

• W(O) = x

" the process has independent increments.

" for all t > 0 and h > 0, the increments W(t+h) - W(t) are normally distributed

with zero mean and variance h.

* the function W(t) is continuous almost surely.

Lemma 1. A Wiener process {W(t) : t > 0} with a start at 0, has following the pdf

and cdf functions

1 (-x2
fw(t)(x) = exp 2)

y/2 7-t (2t

Fw(t)(x) = - 1+ erf

where erf(.) is the error function defined as erf(/3) = f e- dz.

Proof. The results are direct consequences of the definition of a Wiener process. E
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Recall that we used X(t) to denote the stochastic process that results from sub-

tracting the weights of the two paths, i.e. X(t) = X2 (t) - X 1 (t). If each Xi(t) is

approximated as an independent Wiener process, we can see that X(t) is another

Wiener process with a start at X(0) = X2 (0) - X1 (O) and a variance equal to the

sum of the variances of the two processes. Without loss of generality, suppose that

X(t) has a variance of a2t for some a E R, and assume that X(O) = x > 0. This

is equivalent to assuming X(t) = x + aW(t). As before, we will assume that the

OD pair uses P1 as the shortest route until the next update time at ti. Noting that

Wiener process is Markovian and using CT(x) as a shorthand for C[o,T](x), we can see

that routing through P for T seconds will incur the following cost of error

CT(X) = -j X-(t) dx = - min {X(t),0} dt
0 0

- jTmin{xx + aW(t),0} dt

Appendix 2.A derives the following closed form expression for the expected value of

this quantity,

v/YT- (2T a2 + X2) X 2 x [xT x 3~
E [CT(x)] = exp - - erfc( j +

3aye /_2 x( 2ae2T a v/-27- 2 6a2

which can be used with Eq. (2.1), as restated below, to get the optimal sampling

period

T~x) = .rl+ECT(x)

T1 (x) =argmin
T>O T

Interestingly, the shortest possible sampling period can be computed in closed form

as well by noting that E[CT(x)] is strictly decreasing in x, and thus for any T > 0

the expected cost of error is minimized at x 0. Solving the first order optimality

condition gives us

min T'(x) = T1 (0) = (2.2)

52



This is an important quantity as it constitutes a maximum updating frequency for

all "fixed-period" (i.e. uniform) updating strategies. In other words, if the NMC

updates occur any faster, the cost of updates will be larger than the potential gains

from identifying the optimal route. Furthermore, Eq. (2.2) shows that increasing the

updating cost q by a factor of -y reduces the frequency of updates (i.e. 1/T;) by a

factor of -y2/3; while increasing parameter a has the inverse of that effect.

Noting the complexity of the general optimization, let us use a simple first order

method to approximate the optimal updating period T;. Furthermore, to simplify

our notation, we will assume that a = 1 in the remainder of this section.

vT(2T + e2°P-x z o
E[CT(x)|a = 1] - - erfc + -

3 v/27 V/_2_T _ 2 6_

hence,

8 + E [C (z)|a = 1]) 1 v T (T - 2 e-4 T X3
-)- - -I + erfc( 2)=0OT T T 2 v/2i- 6 0!§

(2.3)

which can be solved numerically to obtain the optimal T; for any given x. Ap-

pendix 2.B shows that solving Eq. (2.3) is approximately equal to solving the following

equation for T

X(2 = TIn (2.4)
(187r772

Unfortunately T cannot be written in terms of elementary functions of x and the

above expression is the best (approximate) representation of the relation between the

observed value x and the next sampling time T. Figure 2-5 depicts a sample path of

X(t) = 1 + W(t) (i.e. X(O) = 1 and a = 1), and compares the solutions obtained by

numerically solving Eq. (2.3) to the approximate solution obtained through Eq.(2.4).

Red vertical lines are drawn to specify the updating epochs as computed by each

equation for a sampling cost of 77 = 1.
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(a) Exact numerical solution using Eq. (2.3) (b) Approximate solution using Eq. (2.4)

Figure 2-5: Sample path of a Wiener process, and associated samples for r 1.

Notice that both solutions are very close to each other, and in both cases we

sample the process more frequently when it is closer to zero. This is because when

X(t) ~ 0 the delay on both paths are very similar and any small perturbation can

change the identity of the shortest path. Much more insight can be gained from

Figure 2-5, but for brevity and to avoid repetition we will postpone this discussion

to Section 2.3.2.
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2.3.2 Ornstein-Uhlenbeck Process

The Wiener process, W(t), discussed in Section 2.3.1 lacks stationarity and wanders

to infinity as evident in the simulation of 500 sample paths of the Wiener process

shown in Figure 2-6.

100

-200-

s3000 2000 4000 6000 8000 10000 12000

Figure 2-6: 500 sample functions of the standard Wiener process.

In fact, law of iterated logarithms can be used to show that

limsup W (t)
t-+oo VY~tlnn(t)

W M)lim inf W -1
t-+oo V2tln ln(t)

While the algorithm described in the previous section can be readily deployed into

real systems, the absence of stationarity makes it impossible to reason about long-

term average behavior of our algorithm. To address this deficiency, we will leverage

the heavy-traffic results of Halfin and Whitt [23], which show that when service times

are exponentially distributed, the sequence of appropriately normalized queue lengths

will converge to the Ornstein-Uhlenbeck (OU) process. It is well known that the OU

process is the only non-trivial process that is simultaneously Gaussian, Markov, and

stationary; all of which are ideal for our purposes. Ornstein-Uhlenbeck process is

the continuous time analogue of the discrete time auto-regressive AR(1) process and

satisfies the following stochastic differential equation:

dX(t) = O(p - X(t)) dt +o-dW(t)
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where o- > 0 is the standard deviation of the process and W(t) denotes a standard

Wiener process. Parameter y is the long-term mean of the process, and 6 > 0 signifies

the mean-reversion speed. Parameter 0 may seem obscure at first glance, and the

reader may wonder which network characteristic is captured by this parameter. To

answer this question, note that many mechanisms are employed to steer the network

towards a desirable stable state. As an example, consider the role of congestion

control in TCP, which regulates the rate of packet transmission to achieve a high

level of link utilization while maintaining fairness and low delay. The magnitude of

6 roughly captures the strength and speed of such mechanisms and the behavior of

exogenous traffic within the network.

We should note that linear combination of independent OU processes with the

same 6 results in another OU process with the same 0, while variance and long-term

mean parameters would be added in a linear fashion.

Let us suppose that weights of paths P1 and P2 can be approximated by inde-

pendent OU processes with the same 6; then X(t) = X2(t) - X 1 (t) is another OU

process. A full treatment of the general OU process is possible but to simplify our

notation we shall focus on the case where the difference process, X(t), has a long-term

mean of p = 0. This corresponds to the case where the long-term mean delays of

both paths are similar/equal. Without loss of generality suppose X(0) = x > 0 and

assume that the OD pair uses P1 as the optimal route until the first update epoch

at T. Then the solution to the aforementioned stochastic differential equation can be

written recursively as

X(t) = xe-Ot + a e(t-) dW.

which can be written (conditioned on X(0) = x) as a time-scaled Wiener process as

X(t) =xe-Ot + W (e20t1)
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Given this formulation, the cost of error associated with misidentifying the shortest

path during this period can be computed as

CT(x) = T X-(t)dx = jTmin{X(t),0} dt

x (e-OT )- [T _e-_

xe-1T Tmin eOtW (e20t - 1), _xe-ot dt
0 0 v/ 250

Appendix 2.C derives the following closed form expression for the expected value of

this quantity,

£[CT(x)] x (e-T -1)

+ e 20T -1 _Y exp OX 2 )dy
4 0 v /0 2 (12

le 2erfc - dy
40 0  (1+y) 00v~Y a

It comes as no surprise that E[CT(x)] is the central quantity that dictates the be-

havior of the system, yet it presents a formidable challenge to intuition. Fortunately,

E[CT(x)] lends itself to a piecewise linear approximation that sheds light on its be-

havior. Before delving into the piecewise linear approximation, we shall investigate

the shortest sampling period associated with this process, which occurs when x = 0.

Let us start by evaluating E[CT(x)] when x = 0,

o- (ln (eOT + e2OT _ - 1 -29T)
E[CT(0)] =6'~

despite the relative simplicity of this expression, we cannot find an analytic solution

to the following objective function,

rJ+E (CT(0)]
Ti (0) = argmin [ (2.5)

T>O T

to obtain the first order optimality condition, let us differentiate the aforementioned
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expression and expand it as a Taylor series,

9 T-+E[CT()1- + U + /(T)
T T T92 3T2)T

setting the sum of the first two terms equal to zero gives us,

Ti (0) = T* U2 (2.6)

incidentally, this expression is identical to Eq. (2.2) which captured the shortest sam-

pling period of a Wiener process. This should not be surprising because at x = 0, the

OU process is not experiencing any mean reversion and is effectively indistinguishable

from a Wiener process.

The aforementioned result can be used to create a piecewise linear approximation

to E[CT(0)]. We can avoid the need for an excessive number of linear segments by

noting that we are only interested in the behavior of the E[CT(0)] when T is close to

T1(0), and thus the simplest such approximation can be stated as 3

0 for T [ (0,T*]

E[CT(O)] ~

m(T - T* ) for T > T*

where m = OE[CT(O)} 1_e20T* and T* = T1*(0).
O T=T*

Recall that our goal has been to solve the following general optimization problem

T*(x) = argmin (2.7)
T>O T

we can start by generalizing the linear approximation to E [CT* (0)] to non-zero values

of x.

3 We will focus on a 2-segment piecewise linear approximation in this section. A thorough devel-

opment of a 3-segment piecewise linear approximation is provided in Appendix 2.D.
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Note that

E [CT- (x)] E [CT- (0)] + x (X)]

where

aE [CT(X)] _ e-OT 1

ax 20
x=O

Note that E[CT(x)] is a non-negative quantity, and is decreasing in x. As a result,

we only need to consider the effects of x on the non-zero portion of the approximation,

and find its corresponding interception point with the horizontal axis. Putting it all

together we have:

0 for T E [0, f(x)]

E[CT(x)]

m(T - f(x)) for T > f(x)

where f (x) = T* + 1xe-T -
1 Je20T* a77\//

This approximation shows that the initial routing decision will remain correct

for approximately f(x) seconds; consequently the expected cost of error during this

period is approximately 0. As we pass the threshold of f(x) seconds, it becomes likely

that the originally selected path is no longer optimal and routing erroneously through

it will incur a cost of m units per second. Continuing with our approximation,

for T c [0, f (x)]
7+E[CT(x)]

T

m+ for T >f(x)

The approximate cost rate function shows that if the update epoch T occurs at or

before f(x), we will only incur the updating cost q, amounting to a cost rate of q/T.

However, if the updating epoch occurs after f(x), then the cost includes the updating
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cost T1, as well as the cost of error which accrues at a rate of m units per second.

Mathematically speaking, when T E [0, f(x)], the objective function is decreasing

with T and reaches its minimum at T = f(x). On the other hand, when T > f(x),

an increase or decrease in the objective function depends on the sign of 77 - mf(x).

If this expression is greater than zero, it will reach its infimum at infinity; otherwise

the minimum will occur at T = f(x). Putting it all together we have

+f[CT(x)] (x) if J < mf(x)

argmin
T>O T

0c else

This gives us a clear description of the approximate algorithm: if the cost of updating

routing information is small enough, i.e., if q < mf(x), we should update the routing

tables by sampling the process at T = f(x). Otherwise, the cost of updating is too

large and we should continue our previous routing decisions without any new samples.

As a result, if we constrain ourselves to cases where the updating cost q < mf(x),

we get a simple expression for the time until the next updating epoch, T, as a function

of the last observed value of the process, X, namely

. . 1 - e--0 '
T1(x)=T + xT(2.8)

1 - e--T* c-v (

Figures 2-7 depicts a sample path of an OU process with - = 0.5, 6 = 0.025

and an initial value of X(0) = 1, and compares the solutions obtained by numerically

solving Eq. (2.7) to the approximate solution obtained through Eq. (2.8). Red vertical

lines are drawn to specify the updating epochs as suggested by our algorithm and

the red dots denote the sampled values of the function. It should be noted that

our approximate algorithm closely follows the exact numerical solution and is a good

candidate for implementation purposes because of its significantly reduced complexity.

Notice that when the process is far from zero, indicating that the delay of one of the

paths is significantly less than the other, we do not need to sample their weights

frequently.
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(a) Numerical solution according to Eq. (2.7) (b) Approximate solution according to
Eq. (2.8)

Figure 2-7: Sample path of an OU process with a = 0.5, 6 = 0.025, xo = 1, 77 = 0.1.

This matches our intuition because in this scenario it is unlikely for the shorter/better

path to get worse than the second path in a short period of time. On the other hand,

when the process is close to zero, indicating that the weight of both paths are very

similar, we require more frequent samples to track whether or not the process has

changed its sign. The varying frequency of updates is revealed via the changing

density of the vertical red lines in the figure.

We should additionally note that the shortest updating period occurs when the

two paths have identical weights, i.e., x = 0. This corresponds to an updating period

of T1(0) = (187r72/a2)1/ 3 . Comparing our adaptive updating method to a uniform

one that samples at this rate, we see a gain of

G E [T*(x)] _ fo° T1*(x)fixt(x)dx
T;*(0) T1*(0)

where fix(t)l(x) denotes the pdf of the (one-sided) OU process. Recalling that the

OU process is Gaussian we have

fix(t)|(x) = 2 exp OX2  for x > 0

After some algebra we get

1 1-e-oT 1G 1+ e-OT* (2.9)
T* 61 _ e-seT* 60
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Figure 2-8: Gain of our adaptive sampling strategy ( = 1).

Which can be approximated as

1 (o.) 1/3 1/6
G ~-1 1 +-

6 y 1447r

where the approximation is accurate when OT* is small. Note that the gain is inversely

proportional to 9, and as such it improves unboundedly as 6 goes to zero. This is due

to the fact that 0 represents the strength of mean-reversion for this process (and is

inversely proportional to the coherence time of the process). As a result, when 0 is

small the process is not strongly attracted to its long-term mean, which significantly

reduces the chances of crossing the horizontal axis. For processes with small 9, our

adaptive algorithm will automatically adopt a lower sampling rate resulting in a

significant reduction in sampling and updating costs. This makes sense since processes

with long coherence time are very predictable and do not require much sampling.

The gain will also increase, though at a lower rate, when o- increases, which amplifies

the wandering behavior of the process. Figure 2-8 depicts the gain as computed

by Eq. (2.9), and shows one example where the gain is nearly as high as 100. We

should emphasize that such large gains reflect the fact that with small values of 9, we

have effectively removed the restoring property of the underlying process and hence

it closely resembles the Wiener process, and as previously discussed, in such scenarios

Significant Sampling will outperform uniform sampling by a large factor.
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2.4 Generalizations to Large Networks

Our analysis has so far focused on a single OD pair with two independent paths.

In this section we will show that the basic operation can be extended to general

networks. Recall that the shortest path can be identified through a sequence of

pairwise comparisons of available paths. Furthermore, the length of each path can

be updated at a time determined by our algorithm. To see the operation of such a

system, let us augment the routing table of 2.1 with an additional column to track

the variance of delay on each path, as shown in Table 2.2.

Table 2.2: Partial routing table maintained by node A

Destination Path Length Variance
B C-4DY 2 4
E F-G-Y 3 5

H-I-Y 8 1

Z J K Z 4 2
L M Z 7 4

N-+O-+P-+Z 9 7

Given the routing table in Table 2.2, node A can query nodes B and E, which are

the first hops on the two shortest paths to node Y, about their respective distances

to node Y according to our sampling formula

Ti(x) = Te + \/,F T (18F?7 2 )
v1 - e-2T* */- a-

where x = 3 - 2 = 1, = V4 + 5 = 3, and 6 is a global parameter that depends on

network protocols and network size. The same procedure can be used to compute the

updating time for all other paths. When a link is shared between multiple OD pairs,

the algorithm simply picks the smallest sampling time from those computed for all

OD pairs. Not only is the proposed algorithm simple to understand and implement, it

also addresses an often-overlooked byproduct of traditional routing protocols. It was

shown in [25] that routing updates can inadvertently become synchronized, causing
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instability as well as untimely and unmanageable bursts of traffic. To address such

issues, a whole host of ad-hoc randomization procedures have been incorporated into

commercial routers. In contrast, our algorithm requires each node to independently

measure the variance of delay on each of its outgoing links. Given the unique geo-

graphical location of each node within the network and expected difference in their

measurements, it is unlikely for the routing updates to synchronize, thus avoiding the

need for explicit randomization procedures.

2.5 Conclusion

In this chapter, we introduced a new algorithm that allows us to capture the tradeoff

between monitoring and optimal operation of a network. We introduced the con-

cept of sampling/updating cost to capture the cost associated with the collection

and dissemination of routing information within a network. We further studied two

stochastic models of delay, namely the Wiener process and the Ornstein-Uhlenbeck

process and showed that we can dynamically adjust the sampling times of each link

based on their instantaneous significance to network management. The gain (as re-

duction in number of samples) over the traditional uniform sampling was 100 in one

example. We concluded our remarks by extending our notions to general networks

and suggested that a network can be operated in a decentralized fashion at high

performance using significant sampling to report and update its network states,

allowing the NMC system to be scalable. The essential spirit of the cognitive NMC is

that it collects network states ONLY when they matter to the network performance.
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Appendix

2.A E [CT(x)] for a Wiener process

Recall that

CT(x) = -- X-(t)dx = - min{X(t),0} dt
IT T

fT

_ min{x+aW(t),0} dt

= jT x+min{aW(t),-x} dt

jT

=I - + xamin W(t), -Xdt

= -xT --a min W(t),

with an expected value of

E [CT(x)] -xT-a TE min W(t), X
0o .

dt

Since i is a constant and is independent of W(t), we can compute the distributiona

of the minimum as

Pr min W(t), -X < y}
Fw(t)(y)

1

for y < j

for y >
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Hence,

yfw(,) (y) dy + JPr W(t) > L

y y_ y x

2wt:: exp

exP ex 2ta22

1- Fw(t)(i aI) I
+ erf(a )]

Putting it all together we have

-xT + TIexp( 2ta2) dt + 2j1 + erf ix2)dt

vT (2Ta±X 2 ) exp ( 2 T erfc( x (j- xT x 3 ]3av -,/2-7r 2a 2T) - e rfc +602
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2.B Approximation to T1*(x) for a Wiener process

We shall start by proving the following lemma:

Lemma 2. For any / > 0, we have the following bound on the complementary error

function

(1 - e2 -_2
< erfc (3) <

Proof. The following proof is based on a similar result obtained in [26, p. 83]. For

/ > 0, a useful approximation to the complementary error function can be obtained

using integration by parts:

erfc(3) - exp(-z2) dz

- 1 (z exp(-z2)) dz
VFi z

= k( 2z exp

1
= exp (--# 2 )

_J 2z 2 exp (-Z2)
00

-z2)

1 °° 1 ( _)_ d

VFT 2 exp (z2) dz

dz)

for # > 0

0 < 0 exp(-z2) dz< zexp(-z2) dz = exp (-#2)

which gives us the following bounds,

(1 - e-r32

<2 erfc(

L-I

Let us recall the functional part of Eq. (2.3) as shown below,

yT__T_-_X2) e- (
-+ -++ -- erfc 20T

3 v2- 6 v/ZT =
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which can be rearranged as

2vT (T - X2) esT +v/2x 3 erfc ( 60r/

letting = and applying the result of Lemma 2 we get,

(2.10)

rearranging the terms of the inequality gives us

2vT I - T e-2 <v7x erfc ()x < 2v/Te-T
x2 /'2-T

It is clear that as -+ 0, the expression converges to the stated upper bound. Let

us use the upper bound as an approximation such that:

2'exp (V7x erfc ( 2

substituting this approximation in Eq. (2.10),

2T

2vT (T - x2)e- T x 22vT exp (- 2T

where terms with x2 coefficients will cancel to give us,

T ~
T2 (D T

Unfortunately T cannot be written in terms of elementary functions of x, and by

rearranging the terms we obtain the following results:

x 2 = Tn
(187r/2
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2.C E [CT(x)] for a zero-mean OU process

Recall that

- j T X-(t)dx=-

- min xe-Ot

- xe-Ot +min

f min {X(t),0} dt

+ W (e20 t 1) ,0

W (e2
0t 1)

-IJT -Ot dt - min{ WeOt we - 1)
v/20

dt

-xe- dt

, -xe-Ot dt

_xe -ot dtx (e- -O 1 T min { W (e 20t _ 1

and

- min W (e 20t -), et dtmm v/e2-0t

_ e mn W (e - ) V e (-xe-0t) dt

e n W (e2 - dt

-) T e-O min W (e20 - 1), x }dt

(20 26 T

(26)1 Jo

minl ),-x /- dy
1 {W)) 2 2

min {W(y), h} dy
(1 + y)3

where (2.11) is possible because 6 > 0, and a > 0, and we know that min(A, B) =

mmin(aA, aB) for a > 0 (in our scenario, a = eot). Equation (2.12) is the result

of a simple change of variable for y = e 20t - 1, and (2.13) simplifies the notation by

defining h = -xv/2/u.
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Hence,

E[C(x)] = x(eT 1) o- e 1 E [min {W(y), h}]dy0 (26)$ Jo (1 + y)1

Using the same process used in Appendix 2.A to compute the expectation, we obtain

E [min {W(y), h}] V,
x/ F + h 1exp 1 - erf ( /- h ]

=- exp + ~erfc

which simplifies the expected cost of error to

E[CT(x) ]
x (e OT-1)

0

±

T e 20T-

2(20)1 -o

x (e-T - OT

0

(1+y

(1+ y)12

h erfc
/2y

exp

-

40 e20j-1

+ e2 _( erfc40 0 (+ Y) 2
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2.D Piecewise Linear Approximation to E [CT(O)]

for an OU process

Recall that

x (eOT + je2-1 O2

0 40 50 0 (1+ \

e20T_

o- in (
E[CT(0)]=

erfc
(1+ y) a

v'/e2T - eOT)

- I dy
V/-' )T

1- e-2T)

20 /

We shall approximate E[CT(O)] via 3 linear segments. The first segment should

approximate the function when T ~~ 0, the third section should approximate the

function when T -+ oc, and the middle section should connect the aforementioned

two segments in a reasonable fashion. Let us start by computing the derivative of

E[CT(0)] with respect to T,

OE[CT (0)]
OT

- o- ( n e2r- e - 1 -e-20T)

O( 20 O- 1

2 v0-7raT in e26/OT _ 1 + e - 1- e-20T)

20e2
T + OeOT

20v7 Ve2T_1 + eOT

e2T _1+ e

2 v07- Ve 20T - 1 + eOT

e
2 0T _ e9O

Ve 2 T _ e2OT - 1T__eOT

2 /- e2OT- I1 + eOT eO 1~O

20e-2 T

21 - 1e-20T

e-20T
V1 - e -2

E [CT (x)]

and thus,

e-20T
V/1 _ e-20T)

o-'lI--20T

2 V'O
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Notice that

aE[CT(0)] 
0

aT T=O

BE[CT(O)] .i oV1 - e-2T

T-+oo aT T0oo 2 V 2 v'

Hence, the first segment of the approximation will be a horizontal line (i.e. with slope

of 0) and the third segment will have a slope equal to "j-. The slope of the third

segment signifies that the long-term growth rate of E[CT(O)] is equal to 17 . In fact,

since the process is stationary, this limit does not depend on the last observed value,

and is also valid for E[CT(x)]. Stated another way, if we do not sample the process,

in the long run, it will incur ' units of additional cost per unit time as a result

of misidentifying the shortest path. Consequently, the segment of our approximation

corresponding to the long-term behavior of E[CT(0)] should have a slope of '.

Computing the algebraic expression for the third segment of the approximation can

be done by,

0- (In ee __ _ o _ 1 _ e-20Tr
lim E[CT(0)] = lim n

Too T-2oo

o- (ln (2eOT) - 1)

o1 T - ln(2)
2/5

There are many ways to choose the middle segment. One reasonable way is to choose

it so that its intersection with the first segment coincides with the solution to Eq. (2.6),

i.e. it will intersect the first segment at T1 (0) = T*= (8"rC2 ) 3. Furthermore, we

can choose the second segment such that it will have a slope equal to the slope of

E [Cr(0)] at T*. Using mi to denote this slope, we have mi = BE[CT (0) - 1.e.20T*

T=T*
and T* = T1*(0).
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Putting all of this together, and letting L(O, T) denote our 3-segment piecewise

linear approximation to E[CT(O)], we get

L(0,T) = { 0

mi (T - T*)

M2 (T -1 - ln(2))

for T E [0,T*]

for TE [T*,T**]

for T > T

o- 1 - 2e-20T*

2v

'MT2 
- e + (

.. -T* 1-e-20r* + 1-in(2)

T =
1 - 1 - e-2Or*

Figure 2.D.1 depicts E [CT(O)] as well as our 3-segment piecewise linear approximation,

L(0, T), for o = 0.5, and 0 = 0.02.

50

- E[Cr(0)1

40F - L(0,T)

30

20

10

0

0 10 20 30 40 50 60
T

Figure 2.D.1: A 3-segment piecewise linear approximation to E[CT(0)].
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Chapter 3

A Deep Reinforcement Learning

Solution to Significant Sampling
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3.1 Introduction

In Chapter 2 we introduced a centralized routing protocol in which an NMC system

monitors the network state (e.g., link/queuing delays) to decide which paths should

be used to connect different origin-destination (OD) pairs. The monitoring process

was interpreted as a sampling process involving three steps:

(a) Updating: The nodes in the network report their state (i.e. their most recent

queuing delay over a period) to the NMC system.

(b) Decision: The NMC system identifies the shortest path between each OD pair,

and computes the next report time.

(c) Dissemination: The NMC system disseminates the updated routing informa-

tion and the next report time to all the nodes in the network.

We showed that a critical issue for this routing protocol is to determine the sam-

pling frequency. Uniform sampling at high frequency can be burdensome and costly

due to the excessive use of network transport and computational resources, while

sparse sampling can lead to misconfiguration and suboptimal routing decisions. We

emphasized that judicious sampling of network states should be an essential feature

of any pragmatic NMC system, and introduced the notion of significant sampling,

where the next report time is computed by the NMC from its cognitive understand-

ing of the network states and short-term behavior of exogenous offered traffic. In a

nutshell, the NMC will decide the next sampling time based on the likelihood that

the optimal routes should be recomputed.

In an effort to get an analytical solution to the significant sampling problem, we

proposed the Ornstein-Uhlenbeck (OU) process as the underlying traffic/delay model

and derived the optimal sampling policy when the parameters of the OU process are

known to the NMC system. Despite its advantageous analytical nature, the work in

Chapter 2 has a few shortcomings that we wish to address in this chapter. First, the

derived policy 0' suffers from an issue that we have dubbed as the "never-sample"

problem. This problem arises when the cost of sampling is too high, in which case

the policy 0' can instruct the NMC system to "never sample", a policy that can be
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Figure 3-1: The interactions between agent and environment in reinforcement learn-
ing [8].

detrimental in the long run. Second, considering the bursty and unpredictable nature

of traffic in dynamic networks, the assumed OU delay model is narrow in scope and

may not apply to many networks. Last but not least, even if the OU process is a good

approximation for a specific network, estimating the parameters of the OU process

can be difficult and estimation errors can significantly impact the performance of the

system. Furthermore, a realistic and robust sampling policy should be able handle

and smoothly transition through various operating regimes, an issue that was not

considered in Chapter 2.

In this chapter, we present an automated and model-free NMC system using deep

reinforcement learning (DRL) techniques. As a refresher, we note that a salient fea-

ture of RL is "learning from interactions". As depicted in Fig. 3-1, the agent interacts

with the environment in a sequence of time steps indexed by t. Given the observed

state of the environment, St, the agent takes action at, which steers the environment

to state st+1 in the next time step. The environment then feedbacks a reward rt+i,

from which the agent can measure the quality of action at. A mapping between st and

at is referred to as a policy function. The aim of the agent is generally to learn the

optimal policy that maximizes the cumulative future rewards. The latest trend in RL

research is to integrate the recent advances of deep learning [27] into the RL frame-

work [28, 29]. RL that makes use of deep neural networks to approximate the optimal

policy function - directly or indirectly - is referred to as deep reinforcement learning

(DRL) [30]. DRL allows RL algorithms to be applied when the number of possible

state-action pairs is enormous which inhibits traditional function approximators from

accurately approximating the policy function.
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The main contributions of this chapter can be summarized as follows:

" We prove that the sampling policy #' derived in Chapter 2 suffers from the never-

sample problem when sampling cost is high. We characterize the never-sample

region for the setup in Chapter 2.

" We put forth a DRL solution to the significant sampling problem. Our DRL solu-

tion has the advantage that it makes no assumption about the underlying traffic

model, but learns to sample the network in such a way as to achieve optimal per-

formance. We demonstrate the optimality of the DRL solution by using it to learn

the policy #'. Experimental results confirm that the learned policy matches the

analytical results of the previous chapter.

" We design a multi-step look-ahead policy, based on our DRL solution, to address

the never-sample problem of policy #'. This new policy considers the long-term

impact of a decision, and minimizes the cost rate over an infinite time horizon.

Experimental results show that our new policy outperforms policy #' by 39%, in

terms of the average cost rate.

" Given the model-free nature of RL, we demonstrate that our DRL solution is robust

to various network conditions. In this context, we extend the DRL framework

beyond that of Chapter 2 and provide solutions for general cases beyond the two-

path OU process.

The rest of the this chapter is organized as follows: Section 3.2 reintroduces some

of the concepts and findings of Chapter 2 with the benefit of additional nomenclature

and parameters that are needed in the context of DRL. Section 3.3 points out and

elaborates on two limitations of our prior solutions. Section 3.4 introduces our DRL

solution to the significant sampling problem and describes our new multi-step look-

ahead policy. Experimental results are presented in Section 3.5. A summary and

concluding remarks are provided in Section 3.6.
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3.2 System Model

3.2.1 Significant Sampling

Let us consider an OD pair in a dynamic network, and assume that the OD pair is

connected via N paths {P, : n E [N]}, where [N] = {1, 2, ... , N}. The stochastically

evolving weights of the N paths are denoted by {X,(t) : n E [N]}1 . In shortest path

routing, an NMC system will sample the weight of the N paths by orchestrating three

distinct actions:

(a) The nodes in each path report their weights to the NMC system.

(b) The NMC system identifies the path with the smallest weight and computes

the next sampling time.

(c) The NMC disseminates the routing information as well as the next report-

ing/sampling time to each node.

As an example, suppose that the nodes on the N paths report2 their weights to

the NMC at a sampling epoch ti_1. Given observation {Xn(t) : n C [N], t < ti1}, the

NMC will decide to route through Pa', where n' = argmin, Xa(ti_ 1 ). This routing

information, along with the next sampling epoch, will be disseminated to all the nodes

on each path. The same route will be used until the next sampling epoch ti, at which

point the NMC will use {X,(t) : n c [N], t < ti} to make new routing decisions. A

fixed cost r1 is associated with one sampling operation, which captures the efforts

required to collect and disseminate the NSI throughout the networks.

'Usually, weight refers to delay (queuing delay in particular).

2 At each sampling epoch, we assume that the nodes will report the trajectory of their evolving
weights since the last sampling report to the NMC. For example, at ti, the full realizations of
{X,(t) : n e [N], ti_1 < t < ti will be provided to the NMC, where ti_ 1 is the last sampling time.

3To be more specific, the cost of one sampling operation is composed of communication cost and
cost of action. The communication cost is introduced in steps a) and c), and can be considered as
constant. For example, the communication cost in the step a) can be fixed to one IP packet/node

(considering a typical IP packet containing 1K Bytes, a node can send 500 real numbers to the NMC
per update if we use 2 bytes to represent a real number). The cost of action is introduced by the
computation in step b), computational cost of updating routing-tables, and other side-effects. We
use r/ as a catch-all quantity to capture the overall cost of one sampling operation.
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Figure 3-2: Cost of error, C[t,_1,, between consecutive sampling epochs ti_ 1 and ti.

As illustrated in Fig. 3-2, if the shortest path changes between two sampling

epochs ti_ 1 and ti, we will incur an excess cost C[ta,t,] given by

C[4-1,4= Xn, (t) - min Xn (t) dt/ti
where n' = argminnXn(ti_ 1) is the shortest path at epoch ti_ 1, and minnXn(t) de-

notes the weight of the "true" shortest path at time t. Not surprisingly, continuous

sampling of the stochastic process can reduce the cost of error to zero, but will result

in an extremely high sampling cost. On the other hand, sparse sampling incurs a low

sampling cost, at the expense of higher cost of error. The optimal tradeoff between

sampling cost and cost of error can be described through a policy that specifies the

best future sampling times based on the previous observations of the weight pro-

cesses. Specifically, we write the policy at epoch ti_ 1 as a deterministic function that

maps the history of weight processes s(ti_ 1) = {Xn(t) : n E [N], t < ti_ 1} to the next

sampling interval Ti:

Ti = <s(ti_1))

If weight processes are Markovian (i.e., all the information is captured by the most

recent observation, and prior history of the process is inconsequential for optimal

decision making), we can design s(ti_1) to be s(ti_1) = {Xn(ti_ 1) : n E [N]}.
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The optimal policy #*, which specifies the optimal T* at epoch ti-1, minimizes

the cost rate (i.e., cost per unit time) over an infinite time horizon, giving

= argmin lim Ei (r ± C[t1 1 ,t1 1 +(s(t 1 ))I) (3.1)
4L-+oo Zf_= #(s(t 1 i))

We refer to the problem of discovering the optimal policy #* as the "significant sam-

pling" problem for shortest path routing.

3.2.2 Prior Solution

Chap. 2 derived analytical solutions to significant sampling under three assumptions:

1. N = 2, i.e., the OD pair is connected via only two paths with weights X1 (t) and

X2 (t). Since there are only two paths, identifying the shorter path is equivalent to

identifying the sign of the difference process X(t)= X 1 (t) - X2 (t) : XI(t) 5 X 2 (t)

if and only if X(t) 5 0.

2. Weight processes X1 (t) and X2 (t) are independent Ornstein-Uhlenbeck (OU) pro-

cesses with the same mean value, and same 0 parameter. This means X(t) is a

zero-mean OU process. An OU process OU(t) parameterized by {po, 60, U0 } is

governed by the following stochastic differential equation:

dOU(t) = Go(to - OU(t)) dt + o-o dW(t)

where yo is the long-term mean of the process, 00 > 0 is the mean-reversion speed,

and ao is the volatility. This expression consists of two parts. The first part,

Oo(pio - OU(t)) dt, captures the mean reverting behavior, which is akin to a force

that pulls the process towards its long-term mean. The second part, Uo dW(t), is

a standard Wiener process scaled by volatility factor uo. This second part acts as

additive noise and counteracts the mean reversion. Hence, the OU process can be

roughly described as noisy oscillations around p-o.

81



3. Direct derivation of policy #* is quite tricky, as both numerator and denominator

in (3.1) can increase unboundedly. In Chapter 2, we approximated the optimal

policy #* by

argmin 77 + E [Cgi ,ti_1+O(S(ti-1))

0 0(s(ti_1))
(3.2)

Compared with #*, policy 0' is myopic and minimizes the cost rate in [t_ 1, t%],

and takes no account of the actions after ti. We shall refer to the policy #' as the

"one-step look-ahead policy".

Given the above assumptions, we had focused on sampling the difference process X(t),

an OU process parameterized by {p = 0,6, U} 4 . Since OU process is Markovian, we

can simplify s(ti_ 1) to s(ti_ 1) = X(ti_ 1 ). The policy #' can then be written as

x) = ~+ E [Cytg,t,_ 1+rd lX(ti_1) = x]
# (X(ti_1) = x) = T = argmin (3.3)

t_1 )=x T>0 Ti

where we had further derived

E[C[ti_ 1,t,_1+rT] X(t 1) = x] = x

0201, 1/ 5 x 2

+ 2Ti V/ xp OX2)dy
4+ v ((1+ y0

e 2
O1i _1 erc __/x

+ -4 erfc -- dy (3.4)

The optimal sampling interval T'jX(t,_,)=x under this policy can then be computed

numerically by solving the non-convex optimization in (3.3). We have reproduced the

results of Fig. 2-7.a in Fig. 3-3 below which depicts a realization of an OU process

with parameters {p = 0, 6 = 0.025, o = 0.5} as well as the resulting sampling policy

#' when the sampling cost is 77 = 0.1.

4 If both X1 (t) and X2 (t) are OU processes parameterized by {po, Go, o}, then X(t) is an OU
process parameterized by {p =, 0, , o, = V20o}.
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Figure 3-3: Applying the sampling policy #' on a realization of an OU process with
parameters {p = 0, 0 = 0.025, u = 0.5}. The sampling cost r = 0.1.

3.3 Limitations of Prior Solution

This section elaborates on two limitations of the aforementioned analytical solution.

Hard to generalize - The assumptions stated in section 3.2.2 are meant to simplify

the significant sampling problem so that analytical solutions can be derived. How-

ever, the simplified problem still leads to complicated expressions that are hard to

interpret (e.g., Eq. (3.4)). Furthermore, extensions to more general cases (e.g., the

N-path case, or non-OU processes) can be even more complex.

The never-sample problem - Policy #' performs well when the sampling cost is

small. However, when the sampling cost is large, policy #' instructs the NMC system

to "never sample". The details of this never-sample problem can be understood

through the following Proposition 1.
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Figure 3-4: A visual explanation of policy #'. Where X(t) is a zero-mean OU process
parameterized by {p = 0, 0, o-}; X(t') = e is the sampled value at epoch t'; and g(t)

in Eq. (3.6) is the instantaneous cost rate for t > t' conditioned on X(t') = 6.

Proposition 1. Suppose X(t) is a zero-mean OU process parameterized by {p =

0, 0, o-}. At epoch ti_ 1, we sample X(t) and obtain X(ti_ 1). Then, there exists a real

number e > 0 such that V |X(tj_1 )| < e, policy #' will instruct the NMC to never

sample the process if

> - g(t) dt (3.5)
jo 4iF7

where
o.U2(i _ e-20) _ ,2 Ee-"t 6,2

g(t) = ()e " - erfc (3.6)
470 2 a.2(e~m_1

Proof. Assuming at some epoch t', we sample X(t) and obtain X(t') = 6. The

decision rule of policy #' for the next sampling interval T* can be described visually

by Fig. 3-4 (see Appendices 3.A, 3.B, and 3.C for detailed derivations and analyses).

As shown in Fig. 3-4, the shaded area increases with T; the optimal sampling

interval T* indicated by policy #' is the T that makes the shaded area equal to the

sampling cost q. As a result, the policy #' can instruct us to "never sample" if q is

greater than the shaded area even when T -+ oo. This gives us the lower bound for

7 in (3.5). When (3.5) is satisfied, if the absolute value of any sample X(ti_ 1) is less

than or equal to E, policy #' will instruct the NMC to never sample, and the cost rate

will converge to g(oo) = as time passes.
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We should point out that the "never sample" policy is not always suboptimal if

our objective is to minimize the cost rate over an infinite time horizon, as in (3.1).

A simple example is when q -+ oc, for which the optimal policy #* is to never

sample. However, Proposition 2 below, further shows that policy #' is guaranteed to

be suboptimal if 7 is smaller than an upper bound.

Proposition 2. Policy 0' is suboptimal in terms of minimizing the cost rate over an

infinite time horizon if

-- g(t) dt <ry< .1 1
0 40 40

In particular, sampling the weight process once at the equilibrium state can outper-

form 0'.

Proof. See Appendix A. E

This chapter is in particular concerned with overcoming these two limitations. In

particular, we put forth a deep reinforcement learning (DRL) solution to solve the

significant sampling problem. A DRL solution has the advantage that it makes no

assumption about the weight processes (often referred to as the "model-free" property

of DRL), and is thus more robust to various network conditions that give rise to

different stochastic variations of X,(t). This enables us to remove the assumptions

stated in section 3.2.2, and provide solutions to more general settings that go beyond

the 2-path limitation and traffic modeling assumption (OU process). Moreover, we

leverage this DRL framework to design a better policy that minimizes the cost rate

over a long time horizon. This new policy, by planning farther beyond the immediate

future, can effectively address the never-sample problem faced by policy 0'.
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action: Ti = #(s(ti_1))

State: s(t1 _ 1) S(t) = S(ti 1 + TO Environment
reward: r;(s(ti_ 1), T)

Figure 3-5: Significant sampling as a reinforcement learning problem. An agent

interacts with the environment to learn the optimal sampling policy.

3.4 A DRL Solution to Significant Sampling

3.4.1 Significant Sampling as an RL Problem

Let us start by transforming the original significant sampling problem to a rein-

forcement learning problem. The basic idea is that we can view the NMC system

as an agent, and the underlying weight processes {X,(t)} as the environment. As

shown in Fig. 3-5, the agent will maintain a ledger that contains the state of the

environment, i.e., s(ti_ 1 ) = {Xn(t) : n E [N],t t 1}. Given state s(ti_ 1 ), the

agent's policy # will output an action T = #(s(ti_ 1)), which effectively specifies the

next epoch for sampling the environment and thus the time for updating the ledger.

At t ti_ 1 + T, the agent will sample the environment, update the ledger with

s(ti) {X,(t) : n E [N], t < tj}, and the cycle continues.

The agent's ability to improve its actions depends on a feedback system that

can assign values to various actions so that the agent can distinguish good actions

from bad ones. This feedback is often expressed in terms of a reward function which

indicates the reward associated with taking a particular action when the environment

is in state s(ti_ 1 ). For significant sampling, the environment will provide {X,(t) :

n E [N], ti- 1  t < ti} as feedback at the end of a time step, from which the agent

computes a reward ri (to be defined later) to evaluate the action T in this time step.

We shall refer to a complete cycle from ti_ 1 to tj as one "time step". The learning

process will traverse many time steps, and each time step provides the agent with a

new experience denoted by the quaternion {s(t- 1 ), Ti, ri, s(ti)}.
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Action-value function

In standard RL algorithms, the agent's objective at epoch ti_1 is to learn a policy

that maximizes the future return Ri, a common definition of which is the sum of

discounted future rewards
00

Ri = -irl (3.8)
I=i

where -y E [0, 1] is a discounting factor. An action-value function (also known as the

Q function) describes the maximum achievable return if the agent takes action T in

state s(ti_1 ), and then follows the optimal policy from then on. That is,

Q*(s(ti_1),Ti) = maxEenv [Ris(ti__1),Ti] = Eenv ri + ymaxQ*(s(ti),#(s(ti)))

(3.9)

where Q*(s(ti_1), T) is often referred to as the Q value of action T in state s(ti_1 ).

This recursive form is known as the Bellman equation [8]. The action-value function

is important because it is a direct reflection of the optimal policy. That is, the action

with the maximal Q value should be the action chosen by the optimal policy. On the

other hand, if we know the action-value function, the optimal policy can be easily

extracted by acting greedily (i.e., choose the action with the maximal Q value).

Learn policy #'

As an example, we can make use of the DRL framework to learn the policy #'. To

this end, the reward and return can be defined as

r 7 = - ' , R ,= ri. (3.10)

The action-value function is then given by

Q*(s(ti_1), T) = max Eenv [ri | ] , (3.11)

As shown in Eq. (3.11), the policy #' is myopic and only maximizes the one-step

reward. Inspired by (3.8), we can design a farsighted significant sampling policy that

considers future rewards, well beyond the immediate one-step future.
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Ti Ti+1 = 4(s(t)) Ti+z =p(s(ti+1))

ti_1 ti ti+1 t4+2

Figure 3-6: Illustration of exponentially discounting reward for significant sampling,
in which the dynamics of the environment are continuous.

3.4.2 Action-value Function Design

In standard RL problems, the agent interacts with the environment in uniform time

steps, and rewards are received at the end of time steps. The algorithm can then use

the (discrete) -y-discounting to define the return as in (3.8). On the other hand, the

durations of time-steps in significant sampling vary from time step to time step, and

the dynamics of the environment are continuous. To address this issue, we propose a

more appropriate exponentially discounting method for the computation of the return,

instead of using the discrete -y-discounting. As illustrated in Fig. 3-6, the agent takes

action T in state s(ti_ 1) and receives the feedback {X,(t) : n E [N],ti_1 < t < ti}

from the environment at ti. Let us define

(Pi(t) = Xn;_ (t) - min Xn (t),7 ti_1 < t - t4,Sn

where n'_1 is the index of the shortest path observed at epoch ti_ 1. The exponentially

discounted reward within [ti_1, ti] can then be defined as

ri = -rje -lTi -f e--(t-1)pi(t) dt (3.12)/ti-
where # > 0 is a exponential discount factor. Note that oj(t)dt is the cost incurred

subsequent to ti_ 1 and is therefore discounted according to the time elapsed since ti- 1.

Likewise, the next sampling cost r/ is incurred at time tj = ti-1 + T and is therefore

discounted corresponding to T, the time elapsed since ti_ 1.
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Similarly, at ti, the agent takes action T+1 = #(s(ti)) and receives the feedback

{Xn(t) : n E [N], tj t < ti+1} from the environment at ti+1. The exponentially

discounted reward within [ti, ti+1] is then given by

ri+1 = -'re-Ti+1 _ e--(tt)Pi+I(t) dt

assuming discounting begins at ti. Future rewards within each time step can be

computed in a similar fashion. Overall, the return due to the action at ti_1 can be

defined as

00

Ri = rj + e-4Tiri+1 + e(Ti±Ti+i)ri+2 +*.* - = + r Z - e 0-Thrl+1 (3.13)
l=i

Note that in the above, the discounting of the constituent rewards in Ri begins at time

ti_ 1, hence the additional discounting factors for ri+1, ri+2, .... Essentially, return Ri

is the "present value" of all future rewards, where a reward received t time units later

is worth only e-t times what it would be worth if it were received immediately. The

discounting is introduced to prevent the return from diverging to infinity, as in (3.8).

The action-value function can then be rewritten in the following recursive form:

Q*(s(tj_1), T) = maxEenv [Rjjs(ti_1),T,#]

= Eenv rj + e- 3Ti maxQ*(s(ti), #(s(ti))) (3.14)

Given the Bellman-style equation in (3.14), we can leverage DRL algorithms to learn

the action-value function, and extract the corresponding optimal policy in a greedy

manner. We shall refer to this new policy, which maximizes the return in (3.13), as

the "multi-step look-ahead policy".

Compared with the optimal policy #* in (3.1), the multi-step look-ahead policy

maximizes the sum of the exponentially discounted rewards the agent receives over

an infinite time horizon. This is a better approximation to #* than the one-step

look-ahead policy #', especially when the discount exponent 3 is made to be small.
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Figure 3-7: RL algorithms as a generalized policy iteration.

3.4.3 An Actor-critic Solution

In RL, the policy function is often referred to as the "actor", as it controls the

behavior of the agent; the action-value function is often referred to as the "critic", as

it measures the quality of an action. An actor-critic solution for RL problems can be

described as a generalized policy iteration (GPI) [8] between the actor and the critic,

as illustrated in Fig. 3-7.

The policy function (actor) and action-value function (critic) will be initialized

randomly, and their evolution will progress through a series of policy evaluations

and policy improvements. Policy evaluation makes the action-value function more

consistent with the current policy in that it reflects better the returns produced by

the current policy (using Bellman equation). Policy improvement, on the other hand,

makes the policy greedier with respect to the current action-value function (using

policy gradient [31]). These two processes alternate and progress until the actor

converges to the optimal policy, and the critic converges to the optimal Q function.

Deep Deterministic Policy Gradient (DDPG) [32] is an actor-critic approach for

MDP with continuous action space. This paper adapts DDPG to solve the RL

problem associated with significant sampling. Specifically, we use two deep neu-

ral networks (DNNs), an actor network and a critic network, to approximate the

policy function and the action-value function, respectively. Fig. 3-8 depicts the log-

ical interaction of the actor and critic networks [33]. The actor, parameterized by

Aa, outputs an action T when the network state s(ti_ 1 ) is used as its input, i.e.,

T = Wa(s(ti_); Aa). The critic network, parameterized by A, outputs a Q-value

estimation Q(s(tj_1 ), T) when the state-action pair, (s(ti- 1 ), T), is used as its input,

i. e., Q (S(ti),0 Ti) = T,c(S(ti_-1), Ti; A\c).
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s(ti_ 1 ) Ti actor

s(ti) AC T) critic

Figure 3-8: The neural networks in actor-critic RL. The actor approximates the policy
function, and the critic approximates the optimal action-value function.

These two DNNs are initialized randomly. As learning continues, we use the accumu-

lated experiences to train both DNNs, as follows [33]. Suppose we have an experience

{ s(ti_-1), Ti, ri , s (ti)}1.

• The critic is updated using the Bellman-style equation in (3.14). Specifically, given

the state-action pair {s(ti_ 1 ), T}, we update parameters Ac in the direction that

minimizes the mean square error (MSE) loss between the target Q value ri +

e-Ti1Ic(s(ti), Wa(s(ti); A,); Ac) and the Q value We(s(ti 1 ), T; Ac) estimated by the

current critic network:

-VA,,c = -Vc [ri + e- 3T'i'e(s(t.), WJ,a(s(ti); A,,); Ac) - xIe(s(ti_1), T; Ac)]2

(3.15)

Updating Ac in the negative gradient direction given by (3.15) makes the output of

the critic network approach the target Q value. In turn the critic network approx-

imates the Q function more closely, resulting in more accurate policy evaluations.

In practice, directly using (3.15) to update the critic usually leads to divergence of

the Q function approximation. This is because the target Q value and the estimated

Q value in (3.15) are highly correlated (as they are computed using the same critic

network - note: the second term in the target Q is computed using the current

critic network as well). To tackle this instability, people often use separate actor

and critic networks (as opposed to using the current actor and critic networks in the

second component of the target Q above) to compute the target Q value (see (3.17)

below). This is known as "fixed Q-target" [28].
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* The actor is trained using policy gradient. That is, for state s(ti_ 1 ), we update

parameters Aa in the direction that maximizes the action-value function (i.e., the

output of the critic):

VA,QA' - Va,'Ic((ti_1), WPa(s(t~i); Aa); Ac). (3.16)

Updating Aa in the gradient direction given by (3.16) makes the actor greedier with

respect to the current critic. This is a process of policy improvement.

Following the practice of DQL [28] and DDPG [33], we also employ the ideas of expe-

rience replay in the implementation. The goal of experience replay is to remove the

temporal correlations between successive experiences, such that the experiences used

for training are less dependent. To this end, instead of learning experiences online,

we put the accumulated experiences in a FIFO buffer of size M (experiences will

be placed into and removed from this FIFO buffer continuously), and will randomly

sample experiences from the FIFO to train the DNNs. The following section will

provide a detailed exposition of the algorithm as well as the relevant parameters.

3.4.4 Algorithm

The pseudocode for the actor-critic solution to significant sampling is given in Algo. 1.

Initialization

As shown, we start by initializing a FIFO buffer of size M (for experience replay); the

actor and critic networks with parameters A,, and Ac; and the target actor and critic

networks with parameters A\a' and A, (for calculating target Q value). In particular,

the parameters of target networks are initialized to Aa = A,, and A, = Ac. The initial

sampling time is set to to, where s(to) is given.
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Algo. 1: Significant Sampling with Deep Reinforcement Learning.
Initialization:

Initialize a FIFO of size M for experience replay.
Initialize the actor and critic networks randomly with parameters Aa and Ac-
Initialize the target actor and critic networks with parameters A,' and Ac'.
Let Aa' = Aa and Ac' = Ac.
Set mini-batch size to K, evaluation cycle to B.
Set time step i = 1, training step j = 1.
Set resampling window to t, the number of artificial experiences to V.
Set parameter G.
In epoch to, all the nodes report their weights, obtain s(ti-).

while 1 do
New experience:
Feed s(ti_1) into the actor network for action Ti = W'a (s(ti_1); Aa).
In epoch ti = ti- 1 + Ti:

All the nodes report their weights in t - [ti_1, ti].
Compute reward ri by Eq. (3.12), and store experience {s(ti_1), Ti, ri, s(ti)}

into FIFO.
i = i + 1

Artificial experiences:
V = 1.
while v < V do

Select a random starting epoch t_1 in [ti - tw, ti),
Feed state s(t-,) into the actor network for Tv = T, (s(t _1 ); Aa).
if tV 1 + T < ti then

Compute reward r' by Eq. (3.12).
Store experience {s(t'_ 1), Ti', r', s(t')} into FIFO.
V V + 1.

end
end
DNN training:
if i * (V + 1) > M/5 then

Randomly sample G mini-batches from FIFO, a mini-batch has K
experiences.

for each mini-batch do
Update parameters AC (critic) in the direction given by Eq. (3.17).
Update parameters A' (actor) in the direction given by Eq. (3.18).
Update the target networks by Eq (3.19).

end
if mod(j, B) == 0 then

Evaluate the performance of current actor (policy) network on the
evaluation trajectory.

end
j =j+G.

end
end
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Experience collection

The next phase is "experience collection". At the beginning of a time step (i.e., at

ti_ 1 ), the agent feeds the current observation s(ti_ 1) into the actor network, which

outputs action T. Note that this action is bad early on, but will improve as learning

progresses (to guarantee exploration, Gaussian noise is added to the raw output of

the actor [33]). At the end of the time step (i.e., at ti), the agent computes a reward

ri from the environment's feedback (see (3.12)). Overall, one time step provides the

agent with one experience {s(ti_1), T, ri, s(ti)}. All experiences will be stored in the

FIFO for experience replay.

A challenge in learning the optimal policy for significant sampling is the ineffi-

ciency with which experiences are collected. Note that, one time step lasts for T time

units, yet it gives the agent only one experience, hence is quite inefficient. This raises

the following question: besides the collected experience, is there a way for the agent

to generate more experiences artificially? We answer this question affirmatively by

noting that in each time step, the continuously evolving weights {Xn(t) : n E [N]} in

interval [ti_ 1, ti] are collected and reported to the NMC. As a result, at epoch ti, all

past weights {Xn(t) : n E [N], t < t%} are in fact known to the agent.

In this context, besides this new experience, the agent will resample the past and

generate artificial experiences. Specifically, each time a new experience is collected,

the agent will randomly select V starting epochs in period [tj - te, ti], where t" is

a resampling window5 . For each starting epoch {t'- : v E [V]}, the agent will feed

s(t-,1 ) into the current actor network for action T'. It can then compute reward

r' which constitutes an artificial experience {s(t' 1 ), T,, r', s(t')}. This enables the

agent to collects V + 1 experiences during each time step, V of which are artificial.

5 We have set te to a large value (e.g., 2000 time units, much larger than the duration of one
time step) because initially we will be considering stationary environments. For non-stationary
environments, the choice of t, depends on the speed at which the environment varies, because new
environment requires the agent to "forget" about the past and "relearn" from the latest observations.

More discussions on this topic can be found in Section 3.5.
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DNN training

When the number of experiences is larger than M/5 (M is the buffer size), the agent

starts to train the DNNs by mini-batch gradient descent [8]. We will randomly sample

G mini-batches from the FIFO, with each mini-batch containing K experiences. For

each mini-batch, we have {s(t_1), T, rk, s(tk)},k E {ii, i2,. . . , i i ,

• Update parameters Ac in the direction that minimizes the mean square error loss

-VAc I I: [rk + eTk qc,(s(tk), Wa,(s(t); Aa'); A,c) - 'We(s(tk_1),Tk; Ac) ]2

kEfii,...,iK}

(3.17)

Unlike (3.15), the target Q value in (3.17) is computed using a target actor network

and a target critic network.

" Given state s(ti_ 1), we update parameters Aa in the direction that maximizes the

output of the critic (i.e., the Q value) by sampled policy gradient, giving

VQAC 1Aa'~ ZVA,'c W(s(tkl), T; Ac) 1
k E ii, ...,)iK I

1 r VVC (s(t_1), T; Ac) VA, 'Wa (s(t_1); Aa)K
kc{% 1,.. iiK}I

(3.18)

• Each time the actor and critic networks are updated, the parameters of target

networks will be updated using soft replacement [33]:

Aa' = pAa + (1 - p)Aa', (3.19)

Performance monitoring

Finally, to monitor and illustrate the continuous improvements of the learned policy,

we evaluate the performance of the policy/actor network every B training steps. The

evaluation is performed on an independent trajectory of X,(t) (this evaluation set

is completely independent from the sample path of the process that were observed

during the training process).
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3.5 Experimental Results

This section presents experimental results of the actor-critic DRL solution to signifi-

cant sampling. Our main goals for this section are threefold: 1) to confirm that our

DRL approach can learn the one-step policy #' by adopting a corresponding one-step

action-value function; 2) to show that, by adopting a multi-step look-ahead action-

value function, our DRL approach can learn the multi-step policy that addresses the

"never-sample" problem associated with the policy 0', and this policy is more opti-

mal than the policy #' in terms of minimizing long-term cost rate; 3) to show that

our DRL approach can provide effective solutions for more general environment with

more than two paths, and with weight-evolution processes beyond the OU process.

3.5.1 Learn the One-step Look-ahead Policy 0'

The importance of the analytical solutions in (3.3), in the context of this experiment,

is that they allow us to benchmark the performance of our DRL solution against the

theoretical result. A comparable performance will provide us with the foundation

to extend our objective and setup beyond what was presented in Chapter 2 with a

reasonable degree of confidence in its ability to perform close to optimal.

Let us begin by assuming the same system setup as in Chapter 2. Specifically,

the OD pair is connected via two paths, and the evolving weights of both paths

are represented by independent OU processes with the same mean value. Thus, the

difference process X(t) is a zero-mean OU process, and we can focus on sampling X(t).

The analytically derived policy #' in (3.3) will serve as the benchmark. To learn the

one-step look-ahead policy, we can set the action-value function to be (3.11). That

is, the objective of the agent is simply to maximize the one-step reward rate. The

MSE loss in (3.17) can then be simplified to

-VA,c = -V - Wc(s(tk_1), Tk; Ac)2 (3.20)
k Eii,... I Tk

Compared with (3.17), the target value in (3.20) is simply rk/Tk, and hence the target

networks can be removed in this experiment.
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Table 3.1: Hyper-parameter settings for the one-step look-ahead policy.

Description Symbol Value

FIFO size M 32768
Mini-batch size K 128

Resampling window tw 2000
# artificial experiences V 31

# mini-batches per training G 5
Maximum sampling interval Tmax 40

Since the OU process is Markovian, we can set s(ti_ 1 ) = X(ti_ 1 ), i.e., the state of

the environment is a real number. The actor and critic networks are designed to be

fully-connected (feedforward) neural networks. The actor network consists of five fully

connected layers, and the numbers of neurons in the five layers are {1, 32, 64, 32, 1}.

The three hidden layers use rectifier non-linearity as activation functions, and the

output layer uses hyperbolic tangent (tanh) non-linearity as the activation function.

The output of the actor network u takes value in (-1, 1) and is mapped to the

sampling interval T = Tmax * (u+ 1)/2, where Tmax is the maximum sampling interval.

The architecture of the critic network is the same as the actor network except that a)

the input layer has two neurons instead of one; b) the output layer uses no activation

function, and directly produces the Q value given a state-action pair (See Fig. 3-8 for

additional reference).

The hyper-parameter settings are listed in Table 3.1. We used Adam optimizer

for training the neural network, and set the learning rates for the actor and critic

networks to 0.0005 and 0.001, respectively.

We generate two independent trajectories of X(t) for training and evaluation pur-

poses respectively. As with previous examples, the sampling cost is set to r; = 0.1

and the OU parameters for X(t) are chosen to be {pu = 0, 6 = 0.025, - = 0.5}. The

duration of the training trajectory is 2 x 10' time units, and the duration of the

evaluation trajectory is 2 x 104 time units.
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Over the course of training, for every B = 100 training steps, we assess the

performance of the actor network on the evaluation trajectory. Specifically, let us

denote by #j the sampling policy learned by the actor network after j training steps.

We will apply the policy #j on the whole evaluation trajectory, and compute the cost

rate by

c( CL 1 , 11), (3.21)
Z1 Ti

where Li is the number of samples of policy #j when applied on the whole evaluation

trajectory, and the sampling epochs on the evaluation trajectory are {ti : i E [L3]}.

Fig. 3-9(a) presents the cost rate as a function of training steps in the RL process.

As a benchmark, we also plot the minimum achievable cost rate (0.0492) which is ob-

tained by applying the analytically derived one-step look-ahead policy given by (3.3)

on the evaluation trajectory. We can see that the cost rate achieved by the learned

policy decreases as training continues and eventually approaches the optimal cost.

The learned policies at different times of the learning process are plotted in Fig. 3-

9(b-e). The x-axis is the observed value of the weight process X(t), and the y-axis

is the corresponding action T given by the learned policy at that training step. The

benchmark, again, is the analytically derived one-step look-ahead policy. As shown,

the actor network will learn the optimal policy after enough training steps.

3.5.2 Learn the Multi-step Look-ahead Policy

Subsection 3.5.1 confirms that the actor-critic DRL approach can learn the one-step

look-ahead policy derived in Chapter 2. This is an important achievement in and of

itself because the DRL system is model-free. Specifically, unlike the analysis giving

rise to the analytical solution, the agent in DRL is unaware that the underlying delay

model is an OU process and yet "learns" to obtain a near-optimal sampling policy.

This subsection evaluates the multi-step look-ahead policy based on the actor-

critic framework. We have repeated the experiment in subsection 3.5.1 assuming a

small sampling cost followed by assuming a large sampling cost.
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Figure 3-9: The cost rate achieved on the evaluation trajectory, and the policy im-
provements in the RL process: (a) cost rate achieved on the evaluation trajectory
versus the number of training steps; (b) the learned policy of actor at point b; (c) the
learned policy of actor at point c; (d) the learned policy of actor at point c; (e) the
learned policy of actor at point e.

Fig. 3-10 shows the performance of the one-step and multi-step look-ahead policy

when q = 0.1. The performance curves for one-step look-ahead policy, both analytical

and learned, are reproduced from Fig. 3-9 (the difference is that the y-axis is in log

scale). As shown, with n = 0.1, the multi-step look-ahead policy achieves only minor

gain over the one-step look-ahead policy. This indicates that the one-step look-ahead

policy is a good policy when 7 is small in terms of minimizing the long-term cost rate.

This is not the case, however, for more general j.

In the second experiment, we use a larger sampling cost 7 = 15. Notice that

,= 15 falls into the region 12.2 < 7 < 35.68 given by (3.7) if we set e = 0.1. Thus, if

the absolute value of one sample is less than or equal to 0.1, the one-step look-ahead

policy will instruct us to never sample, and the cost rate will eventually converge to

g(oo) = .
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Figure 3-10: The cost rate achieved on the evaluation trajectory when the sampling
cost r = 0.1.

Fig. 3-11 shows the cost rates achieved by the learned one-step and multi-step look-

ahead policies. The analytical cost rate for one-step look-ahead policy is g(oo) ~ 0.89

(i.e., the dashed straight line in Fig. 3-11). We note that the learned one-step look-

ahead policy is better than the analytical results. This is because an "artificial"

maximum sampling interval Tm is set in the implementation (recall that the output

of the actor DNN is in [0,Tm,], where Tma = 120 in this experiment). Thus, if

the absolute value of one sample is less or equal to 0.1, the action chosen by the

one-step look-ahead policy is 120 rather than infinity. This is confirmed in Figure

3-12, where the learned policies are plotted. As shown, for the one-step look-ahead

policy, the learned policy is consistent with our prediction. When a sampled value

is close to 0, the action given by the learned one-step look-ahead policy reaches the

maximal sampling interval. On the other hand, for the multi-step look-ahead policy,

the learned policy matches with our intuition of a good policy, i.e., when X(t) is close

to zero, sampling should be more frequent; when X(t) is far away from zero, sampling

should be more sparse. The never-sample problem is well addressed by our multi-step

look-ahead policy.
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Figure 3-11: The cost rate achieved on the evaluation trajectory when the sampling
cost r; = 15.

Overall, the learned multi-step policy achieves the best long-term cost rate. Con-

sidering the average cost rate achieved on the evaluation trajectory, our multi-step

policy outperforms the analytical one-step policy, and the learned one-step policy by

39% and 8%.

3.5.3 Extensions to More General Environments

Our previous discussions focused on the same system setup as in Chapter 2, i.e., the

OD pair is connected via only two paths, and the weight processes of both paths are

OU processes. Thanks to the model-free property of RL, an advantage of our DRL

approach is that we can provide solutions for more general system setups with only

slight modifications to the algorithm. This subsection will study three generalizations

to the previously discussed system setup, namely:

* N paths with OU weight processes.

* Two paths with weight processes with memory.

" Two paths with non-stationary weight processes.
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Figure 3-12: The one-step and multi-step look-ahead policies when I = 15.

N paths with OU weight processes

This experiment removes the N = 2 assumption. We assume there are N paths and

the evolving weight of each path is an OU process. In particular, we choose N = 3

in the experiment.

The state of the environment is defined to be s(ti_ 1) = {X,(ti_1 ) : n E [N]}.

That is, the state input of the actor and critic networks is a vector of length N. We

can then increase the number of neurons in the input layer of the actor and critic

networks to N and N + 1, respectively. The hyper-parameters are the same as that

in Table 3.1. The three OU processes are generated using the same parameter set

{p = 0,0 = 0.025,o = 0.3}, and the sampling cost q = 0.1. We use the DRL

framework to learn the multi-step look-ahead policy in the implementation.

Fig. 3-13 shows the cost rate achieved by the multi-step look-ahead policy on the

evaluation trajectory. To evaluate the learning results, we apply the learned policy

(after 25000 training steps) on a separate realization of Xa(t), and plot the sampling

results in Fig. 3-14. The learned policy matches our intuition of a good policy: it

samples more frequently when the values of {X,(t) : n E [3]} are close, and more

sparsely when one of the three weights is much smaller than the other two paths.
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Figure 3-13: The cost rate achieved on the evaluation trajectory in the RL process.
There are three paths, and we use the DRL framework to learn the multi-step look-
ahead policy.

Two paths with weight processes with memory

In previous sections, we showed that the DRL framework can solve the significant

sampling problem when the underlying weight process is taken to be an OU process.

A favorable property of the OU process is that it is Markovian. Evolution of such

an environment is completely captured through the latest sample, and hence we can

define the state of the environment as s(ti_1) = {Xn(ti_ 1) : n E [N]}.

Unlike the OU process, real-world weight processes may exhibit complex inter-

dependencies over time and have memory. This suggests that optimal sampling of

such processes depends not only on the latest sample, but also on the history of

the process. To address this issue, one may define the state of the environment as

s(ti_1) = {Xn(t) : n E [N], t < ti_-1}, that is, we feed the full history of the weight

process into the DNNs for decision making. However, such an approach will require

an incredibly large and potentially infinite state space due to the continuous nature

of X,(t), and is thus impractical. Hence, we seek to reduce the state space required

for the optimal sampling of general processes.
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Figure 3-14: The result of applying the learned policy (after 25000 training steps) on
a realization of {X,(t) :n = [3]}.

This section combines the following two schemes to achieve this goal:

a) We characterize each weight process, X,(t), in the frequency domain, and use the

ledger to represent Xa(t) as a real vector obtained by uniformly sampling the pro-

cess (as per Nyquist sampling theorem [34]). This allows us to reduce/compress

the information contained in the continuous process/signal.

b) We assume the decision depends only on a finite period of recent history, and

truncate early uniformly sampled points before this period.

Denote by X(ti_ 1) = {X,(tj_1 ) : n E [N]} the N samples at a sampling epoch ti_ 1.

The state of the environment can then be defined as,

s(ti_1 ) = {X (t_ 1 - ,1 X t_1 - 2,x . .. , ti-1 f,ax X(ti_1)}
x fmax )max max

(3.22)

where fmax is the uniform sampling rate, and the history before ti_ 1 - (L - 1)/fmax is

considered to be irrelevant to the decision making agent. In a nutshell, state s(ti_1) is

composed of samples at the L most recent sampling epochs, if we sample the history

of X,(t) uniformly at rate fmax.
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The uniform sampling rate fmax is designed to be fmax = max{fi, f2,... , fN},

where f, is the uniform sampling rate for the n-th path. To determine f", we first

transform X,(t) to the frequency domain. If Xa(t) is band-limited, f, can be set to

the Nyquist rate of X,(t) (twice its bandwidth). If X,(t) is not band-limited as are

most real-world signals/weight processes, we will pass X,(t) through a low-pass filter

and truncate high frequency components in the stopband of the filter (empirically, the

spectrum of most practical process centers around DC, and progressively gets smaller

and smaller as frequency increases). Then, the filtered X,(t) is a band-limited signal,

and we set f, to be its Nyquist rate.

To confirm the proposed schemes are effective, we conduct the following exper-

iment, in which an artificial weight process with memory is used as input. In this

example, we assume the OD pair is connected via two paths, and we focus on sampling

the difference process X(t). In particular, we artificially generate X(t) by adding a

periodicity (i.e., a rectangular wave) to an OU process,

X(t) = OU(t) + Rect(t - iDR), (3.23)

where OU(t) is an OU process parameterized by {[ = 0,6 = 0.025, u = 0.5}; the

rectangular wave Rect(t) = sgn(t), -DR/2 < t < DR/2 (DR is the duration of one

period, we set DR= 20 in the experiment). The rectangular wave is scaled by the two

standard deviations of the OU process. A realization of X(t) is shown in Fig. 3-16.

Compared with OU process, this new process undergoes sudden changes, and hence

is challenging for the DRL framework to learn a good sampling policy6 .

To learn a good policy for the weight process in (3.23), the first step is to determine

an uniform sampling rate as in (3.22). Following scheme a), we set the uniform

sampling rate fmax= 1 sample per unit time (sampling at this rate, the dominant

spectrum of X(t) has already been captured). As a result, at an epoch ti_ 1, we will

uniformly sample the history of X(t), and set the state of the environment at ti_1

6We successfully experimented with various processes with memory, including ARMA, ARIMA,
filtered OU, etc. but the process in Eq. (3.23) is a good candidate to showcase the ability of our
algorithm, as the sudden changes of the rectangular wave present a challenging environment.
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to be a collection of L most recent uniform samples, i.e., s(ti_1) = {X(ti_ 1 - 1), 1 =

L-1, L-2, ... , 0}. We will monitor the performance of the learned policy for different

values of L.

In the experiment, the sampling cost is set to r1 = 0.1, and we let the DRL

framework learn the multi-step look-ahead policy. All experimental setups are the

same as Section 3.4 except for the DNN architecture. The shape of the actor is now

{L, 64, 128, 64, 32, 1}, where the L input neurons are used to represent state s(ti_ 1).

The shape of the critic is {L + 1, 64, 128, 64, 32, 1}.

First, we set L = 1. This means the actor network needs to determine the optimal

sampling interval T from state s(ti_1) X(ti_ 1). We then assess the learned policy

on an evaluation trajectory every B = 4000 training steps, and plot the achieved

cost rate in Fig. 3-15. Then, we increase L. The final performance of the learned

policy improves as L increases until L = 10. No further improvements were ob-

served for L > 10. Note that when L = 10, the history captured in state s(ti 1)

is half the period of the rectangular wave. Overall, choosing L = 10 helps improve

the average cost rate (at convergence) by a factor of 3.2 in comparison to when L = 1.
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Figure 3-16: Evaluation of the learned policy when L = 1 and L = 10.

To evaluate the results, we apply the learned policy (after 80000 training steps)

on a realization of X(t), and plot the sampling results in Fig. 3-16. Note that the

learned policy performs really poorly when L = 1, as captured by the large number

of unnecessary samples depicted in the figure. In this scenario, the actor network is

unable to make a good decision given only the latest observation of X(t). On the

other hand, when L = 10, the learned policy samples the weight process mostly at

the half-cycle of the rectangular wave where the sign of the rectangular wave changes.

Two paths with non-stationary weight processes

In previous sections, we extended our results by successfully applying the DRL frame-

work to a network with more than two paths, as well as a network whose underlying

weight process was non-Markovian and exhibited memory. In this section we will show

that the DRL framework can also be used in networks that exhibit a non-stationary

weight process. This is a particularly important capability because realistic and ro-

bust systems should be able to identify and adapt to various operating regimes. More

explicitly, we will show that our DRL solution can automatically adjust the sampling

policy and adapt to new environments in a reasonable amount of time.7

7Let us define the phrase "transitional period" to denote the amount of time it takes for a given
algorithm to adapt to a new environment. There are many ways to make this definition rigorous,
but for simplicity we shall use it to mean the amount of time it takes for the achieved cost to reach
within 10% of the optimal cost.
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Table 3.2: Hyper-parameter settings for the non-stationary environment.

Description Symbol Value

FIFO size M 10250
Mini-batch size K 128

Resampling window tw 1000

# artificial experiences V 1024

# mini-batches per training G 20

There are two important indicators when we consider the performance of a con-

troller in a non-stationary environment. First, we should ensure that the system can

operate optimally in a wide range of environments and thus, can accommodate var-

ious network conditions. Second, we prefer a controller that can quickly transform

its policy based on its perception of the environment. Unfortunately, these two goals

are often at odds with one another. Said another way, an agent's ability to identify

the optimal action depends on its ability to maintain and analyze past behaviors,

on the other hand, adapting to a new environment requires the agent to "forget"

the past states and "relearn" from the latest observations, and thus there is a clear

tradeoff between optimality and adaptability. The size of the FIFO M as well as the

resampling window tw are the critical factors with respect to this tradeoff.

Given Algorithm 1, we evaluate the agent's ability in adapting to a new envi-

ronment by observing the behavior of the agent when the underlying weight process

experiences a sudden change. To simulate this sudden change, the training data was

generated by concatenating two independent sample paths each of which corresponds

to an OU process with a unique parameter set. The first portion of the training data

has a duration of Di = 3000 and is a realization of an OU process with parameter set

{p = 1, - = 0.5,9 = 0.025}. The second portion of the training data has a duration

D2= 2000 and is a realization of an independent OU process with parameter set

{p/ = 0, o = 1, 0 = 0.025}. The hyper-parameter settings for this experiment is given

in Table 3.2, and a sampling cost of r/ = 0.1 was assumed.
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Figure 3-17: The cost rate on the evaluation trajectory of a non-stationary process.
The black line corresponds to the cost of an optimal policy.

To evaluate the performance of the actor network fairly, we have employed different

evaluation data for different periods of the learning process. Specifically, in the first

Di = 3000 time units, we use an evaluation trajectory generated by the first parameter

set, and in the remaining D 2 = 2000 time units, we use another evaluation trajectory

generated by the second parameter set. Both evaluation trajectories have a duration

of 20000 time units. Over the course of training, for every B = 200 training steps,

we assess the actor network on the evaluation trajectory.

Fig. 3-17 presents the cost rate achieved on the evaluation trajectory. Let us first

focus on the required time curve (the second y-axis on the right). The agent starts

to collect and resample experiences from t = 0. The first period is from t = 0 to

t = 3000 (i.e., training steps 0 to - 15000), where the agent learns to adapt to the

OU process generated by the first parameter set. The second period is from t = 3000

to t = 5000 (i.e., training steps - 15000 to the end), where the agent learns to adapt

to the OU process generated by the second parameter set.
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In the first period, the actor network takes approximately 1200 training steps to

approach the optimal cost (the cost yielded by the optimal policy which is depicted

as a black line in the figure). As training progresses, the realized cost oscillates near

the optimal cost. Then, after 3000 time units (corresponding to approximately 15000

training steps), the underlying process changes abruptly. In particular, the o of the

process is doubled, hence a more frequent sampling policy is needed. Clearly, the

policy learned during the first period performs poorly when applied to the second

process, as shown by the sudden increase in the cost of the learned policy. Moreover,

the poor performance persists for nearly 1000 time units. This is because in interval

t E [3000, 3000 + tw] = [3000,4000], the agent will still resample experiences from the

first period. These bad experiences will contribute negatively to the training of DNNs

and hence prolong the transitional period. Overall, various experiments have shown

that the transitional period is nearly equal to tw. After t = 3000 + t", the system

has nearly reached the optimal cost and will once again oscillates near this value. A

simple solution to alleviate the oscillations is to increase the resampling window, or

increase the buffer size. However, both solutions can further prolong the transitional

period. As discussed earlier there is a fundamental tradeoff between optimality and

quick adaptability.

In conclusion, we can see that the DRL framework enables the system to adapt

to distinct operational regimes in a reasonable amount of time.
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3.6 Discussion and Conclusion

We started this thesis by noting that any high-performance, resilient, and scalable

networking platform should be able to monitor the state of various elements within

the network and reconfigure them as needed. We also emphasized that traditional

methods for implementing such a capability would be particularly costly especially

for highly dynamic networks. We then suggested the notion of significant sampling,

which allows a centralized network management and control system to sample the

state of a given element if and only if this information is of significant value to

the operation of the network. In reality we should adopt a wide interpretation of

the sampling operation to include a process of collecting network state information

(NSI), identifying the shortest path(s) for different origin-destination (OD) pairs, and

disseminating routing information to the networks.

A robust and adaptive sampling policy specifies the next sampling time based on

the cognitive understanding of the network states at this moment. Within the nar-

rower context of shortest path routing, the goal of significant sampling is to discover

the optimal sampling policy that effectively balances the cost of sampling and the

cost of error associated with mis-identifying the shortest path until the next sam-

pling time. Of course in real applications, monitoring and identifying the shortest

path through significant sampling should run on top of other algorithms that deter-

mine network connectivity, and we have assumed that the underlying processes and

algorithms for that are already in place.

In Chapter 2, we focused on obtaining analytical results that could confirm the

benefits of such an approach. In order to get a tractable analytical solution, we made a

few (potentially unrealistic) simplifying assumptions and studied what may be consid-

ered the simplest possible network consisting of an origin-destination pair connected

via two independent paths. We ultimately decided that the delay on each path can

be modeled as an Ornstein-Uhlenbeck process; The unique non-trivial stochastic pro-

cess that is simultaneously Gaussian, Markov, and stationary. We should also note

that the presented model is inherently focused on situations were we are changing
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routes that carry reasonably small traffic. This is important because if/when traffic

is rerouted it should be a minor part of the total traffic on the link, so as to make the

OU-process a good model for the system. Despite the aforementioned assumptions,

shortcomings, and constraints, we showed that significant sampling, if implemented

properly, is able to provide enormous value to the performance of management sys-

tems, and significantly reduce the overhead associated with the monitoring process.

The ideas in this chapter have been focused on the possibility of creating a more

autonomous network management and control system that can accomplish the un-

derlying goals of significant sampling in a wide variety of network conditions that

may no longer satisfy the aforementioned assumptions. Of course, we would like to

verify that the behavior of this system, when faced with the environment described in

Chapter 2, is similar to the corresponding analytical results. Hence, the importance

of the result in Chapter 2 is in its ability to provide us with a benchmark to test our

new system.

We accomplished this task by presenting a deep reinforcement learning (DRL)

solution to the significant sampling problem. Modeling the problem as a Markov

Decision Process (MDP), we treated the NMC system as an agent that samples

the state of various network elements in order to identify the shortest path(s) and

make optimal decisions on the sampling frequency. The agent periodically receives a

reward commensurate with the quality of its actions. The decision on when to sample

will progressively improve as the agent learns the relationship between the sampling

frequency and the reward function.

Benchmarked against the policy #' derive in Chapter 2, our DRL solution showed

its ability to learn the target policy without a need for an explicit knowledge of the

traffic model or its parameters. In addition, we designed a new multi-step look-ahead

policy to address the never-sample problem faced by policy #'. Experimental results

showed that average cost rate of policy #' is 1.39 times of the DRL policy. Another

advantage of our DRL solution is that it is robust to various network conditions

and stochastic variations of traffic, thanks to the model-free property of RL. We

also presented three extensions to the original system setup. In one extension, we
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considered the case of an N-path OU process. In the other extension, we considered

a much more complex traffic model that is a mixture of OU process and periodic

rectangular wave. Our final extension considered a non-stationary environment where

the agent has to relearn and adapt to new environments. We confirmed that our DRL

approach can provide good solutions to all extensions.

Before concluding our remarks, we would like to discuss a few issues regarding

the use of neural-networks, and deep leaning models (including DRL) for real life

applications. Deep learning has experienced an explosive growth and adoption in the

last decade, and we expect to see many more remarkable achievements in the years

to come. As you may imagine and despite the current hype, deep learning is not a

panacea and we should be careful as we incorporate it into real world applications;

especially those that are critical to the well-being of the general public. One of the

biggest shortcomings in the current stage of deep learning research is its black-box

nature and lack of interpretability that has beleaguered many practitioners. This has

created a rather unsettling situation for many of us who are interested in understand-

ing the inner-workings of a system or the fundamental aspects of various scientific or

mathematical phenomena. New initiatives such as Explainable Al, and Interpretable

Al are hoping to address some of these issues but we seem to be far from a universally

acceptable solution.

This lack of interpretability has also impacted the natural way researchers develop

and deploy new systems. A typical development cycle for any deep-learning applica-

tion involves an extended period whereby the output/performance of the system is far

from expectations, yet the neural network cannot be logically decomposed into smaller

components in such a way as to aid in the discovery of the problematic component.

Of similar or even higher importance is when we identify a problematic/unexpected

behavior in a deployed system. In such scenarios, many other systems may have been

designed to work with this system and depend on it for their operation, and once

again lack of interpretability will result in a slow and arduous diagnosis process.
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As another specific challenge in this area, we should mention the tuning of the

hyper-parameters which is more of an art that a science. There are many instances

where a system fails to converge to a stable policy simply because the hyper-parameters

are off by a small amount. Many a trial and errors may be required to identify the

right set of hyper-parameters and achieve satisfactory performance.

Another shortcoming of deep learning solutions is that they are very sensitive to

small variations of the input. In other words, a small variation in the input may lead

to drastically different outputs. This is particularly problematic in adversarial settings

where a small and potentially imperceptible amount of noise can have catastrophic

results. In fact, we experienced some version of this phenomenon in our work as well.

There were instances were an atypical input (i.e. an input that should be statistically

rare) would be observed by the system and would negatively impact the sampling

policy.

In conclusion, we wish to convey that deep-learning models should be used with

abundance of caution and only in situations were the consequences of mis-behavior

are minimal. One way to ensure safe deployment of deep learning systems would be

to have a simple fail-safe mechanism whose behavior is fully understandable to human

operators. For example, we may wish to ensure that the delay on a given link does

exceed a certain threshold, a task that was originally assigned to a DRL agent. We

can put a fail-safe mechanism that monitors this link and if the threshold is crossed, it

will take over the operation of the link and potentially only allow high priority traffic

to go through. Such techniques will act as a guard rail to ensure that the behavior

of the DRL agent is within a reasonable range and major surprises can be avoided.
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Appendix

3.A The One-step Look-ahead Policy

This Appendix proves Proposition 1 and 2.

Suppose X(t) is a zero-mean OU process parameterized by {[ = 0, 0, o-}. Without

loss of generality, we sample X(t) at time t = 0, and obtain X(O) = E. Then, following

the one-step look-ahead policy 0' in (3.3), the optimal sampling interval T* can be

obtained from

7+ E[C[o,T] X() = e]
T = arg mi arg mn h(T)

T>O T T>O

where C[O,T] is the accumulated cost of error in [0, T]. Set dh(T) = 0, we have

d h(T) d E[C[o,T I X(0) = - ( + E[C[o,T]IX(0) 0
d T d T

dFE[C[o,T] X(0) = e]- EFCIX(0)
d T=

(3.24)

(3.25)

To compute E[C[o,T] X(0) = E], we can write C[o,T] as C[o,T] = fT p(t)dt, in

which p(t) is the instantaneous cost of error at epoch t C [0, T], and is given by

(t) = -X(t)1(- 0 ,o)(X(t)) (that is, when X(t) < 0, p(t) = -X(t); else, p(t) = 0).
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Thus,

E[C[o,T] X(O) = E] = E [<p(t)IX (0) = ]dt A jg(t) dt

and (3.24) can be refined as

_d fo"g(t) dtT ffT d
r7- dT T - g(t)dt =Tg(T) - Tg(t)dt (3.26)

We then compute g(t). Given X(O) = E, we have

X(t) = e - 1), t > 0, (3.27)

where W(e20t - 1) is a time-scaled Winner process, W(e 2 t -- 1) ~AJ(O, e2 0t -1). This

means X(t) ~ AN(pt, o2) at time t > 0, where pit = ee- and o _ e-2 0t).

Function g(t) can then be computed as

g(t)

A'2

-0 - x fx(t) (X (t) = x) dx - -vt2 e) ___ -~ 2 erfc ( Pt

o. 2( __ 2t) o2 Ee-et 6E2
e 7-7- erfc 1)

47r6 220t_

)
(3.28)

In fact, g(t) is the expected instantaneous cost of error at t given X(O) = 6

which describes the transient behavior of X(t) after sampling. Two key observations

from (3.28) are

" g(t) is an increasing function of t, and a decreasing function of e;

* g(O) = 0 and g(oo) = are constants irrelevant to e.
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3.B Intuitive Explanations of the One-step Look-

ahead Policy

Given (3.26) and (3.28), the one-step look-ahead policy $' can be illustrated by Fig. 3-

4, where we plot g(t) when E = 0.1, 1, and 5, respectively. Let us focus on E = 1 case,

the optimal sampling interval T* given by the one-step look-ahead policy is the T

that makes the shaded area equal to the sampling cost 71. This implies, the one-step

look-ahead policy can instruct us to "never sample" if

7 > j g(oc) - g(t) dt. (3.29)

In this case, the shaded area will always be less than 71 as t -+ oo, and the system

will never sample again. Moreover, since g(t) is a decreasing function of E, the policy

basically tells us to never sample again if the absolute value of one sample is less or

equal to E. As time goes, the cost rate of the one-step look-ahead policy converges to

g(oo)= 0.

Eq. (3.29) gives us the lower bound for 7. The next subsection gives an upper

bound for 71 to guarantee that "never sample" is suboptimal. We will show that, if

we sample once at the equilibrium state long time later than t = 0, and then never

sample again, the achieved cost rate can beat the one-step look-ahead policy.
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3.C Sample at the Equilibrium State

At the equilibrium state, an OU process behaves as

X(t) = 1 e-tW(e 2ot)

Assuming we sample at t = T in the equilibrium state, and obtain X(r) = x,

then x, ~ N(0, o-.), where a = T. Given observation X(T) = xT, the value of X(t)

at epoch r + t (t > 0) follows (3.27) and is a Gaussian random variable. We have

• X(r + t) ~FNup±t, -), t > 0, where pr+t = xre-"O and o- + (1 - e 2 0t).

* The instantaneous cost of error ,c(r + t) = --X(T + t)1(_,,o)(X(r + t)).

Then, for x, > 0, we have

E[p(-r+ t)|X(T) = X,] - j -xfx(+t) (X(T + t) = x) dx

o-r+t Tt r+t erfc Pr+t
r 2t 2 v/2oT-2t )

Averaged over all possible x, x, - N(O, o2),

E[p(T + t)] = E[(p(T + t)IX(T) = Xr]fX() (X(T) = XT) dx, = (1 - e0t)

Thus, if we sample at t = T, and the never sample again, the overall cost from

t = r to t = o will be rj + f£°° E(p(r + t)]dt. Let r/ + £°° E[o(r + t)]dt < f£° g(oc)dt,

we have

r, < j [g(oo) - E[(p(r + t)]]dt = 2 Jo00 e-Otdt = 0

Combing (3.29) and (3.30) gives us Proposition 2.
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Chapter 4

Diversity Routing and its Impact

on Delay Variation
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4.1 Introduction

As we discussed earlier, the networking world is preparing for an unprecedented

growth in adoption of time-sensitive and high bandwidth applications in the upcoming

decade. The interactive nature of many of these applications requires low latency but

more importantly they are extremely sensitive to "variation of delay". The variation

of delay is often referred to as jitter but as accurately described in [35], "this term

causes confusion as different practitioners use it in different ways". To reduce the

potential for this confusion we shall also avoid this nomenclature when possible and

refer to this phenomenon as delay variation. In traditional packet switched networks,

delay variation is often the result of the varying queueing delays at routers along a

given path. Let us ignore the mathematical complexity of queuing delay for a moment

and consider a source node that injects a set of packets into the network. Each packet

will potentially experience a different amount of delay as it traverses various links and

buffers until it arrives at the destination. As a result, it is often more appropriate to

think of the delay that will be experienced by a given packet as a random variable.

We will define delay variation as the standard deviation of this random variable in

our analysis and exposition. The aforementioned standard deviation measures how

much the delay of a given packet deviates from the "average" packet delay.

Applications such as high frequency trading, and tele-surgery are extremely sensi-

tive to delay variations. For example, high frequency traders would like to guarantee

that their orders reach various exchanges at the same time (<1 ms), otherwise the

execution of the first order at a given exchange may reveal their intent to other in-

vestors who can manipulate market prices by front-running the rest of their orders.

Similarly, surgeons who want to conduct a remote operation on a patient (i.e. tele-

surgery) expect a network that can deliver responsive and consistent haptic feedback.

The proliferation of these applications presents a chicken and egg problem for network

engineers: on the one hand, these applications require low latency as well as small

delay variation but at the same time the bursty and dynamic nature of their traffic

introduces unpredictable delay and amplifies the delay variations.
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In addition to the specific examples of previous paragraphs, we should note that

delay variation is a symptomatic characteristic of dynamic network environments and

arises naturally as a result of dynamic resource consumption and exhaustion within

networks. In such networks, users and applications can introduce bursty and unpre-

dictable new flows into a given packet stream. Introduction of potentially massive

new flows into a given stream will cause additional competition for available network

resources causing additional buffering at queues and increasing the delay along those

paths. Similarly, when an application terminates a large flow, it will reduce conges-

tion and buffering at various queues, hence decreasing the delay along those paths.

Such rapid changes in the end-to-end delay of a path connecting an Origin-Destination

(OD) pair is common place in todays networks, and applications experience its effects

as additional delay variation.

The continuous variation and abrupt changes introduced by exogenous traffic will

create temporary bottlenecks in the network which manifest themselves as variations

in delay. Traditionally, packet buffers were deployed to combat the negative effects

associated with delay variation. When the instantaneous packet arrival rate at a

queue exceeds its output rate, packets are stored in the buffer until they can be

transmitted through outgoing ports. Not surprisingly, increasing the buffer size is

not an attractive solution as it is costly and will increase the potential for excessive

delay. Other solutions include over-provisioning the network or providing dedicated

paths/circuits to such applications, both of which are not economical.

We may wonder how variations of delay impact the Quality of Service (QoS) to

the end user? To answer this question we should note that users and applications

prefer to operate in a static environment, because it allows them to tune their internal

parameters for optimal operation in that specific environment. As an example, con-

sider a video teleconferencing application. Such an application would seek to provide

the highest possible video quality to users. Given a fixed bandwidth and a prespeci-

fied delay, the application can decide on a specific video coding scheme (codec) that

closely matches the desired QoS metrics. Now, if the available bandwidth or the delay

performance of the network changes, the application has to determine its latest state
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and adapt the video codec to the new environment. It should be noted that when

the state of the network changes too rapidly (as measured by its standard deviation),

it becomes almost impossible to accurately identify and track the current state of

the network. Furthermore, any mistake that results in a wrong choice of codecs will

either degrade the QoS or waste valuable network resources. Other applications will

suffer in a similar fashion when unpredictable network dynamics induce additional

delay variations or other erratic behavior.

One may think that variations of delay can be accounted for by a Network Man-

agement and Control (NMC) system that continuously monitors the state of the

network to guarantee the desired Quality of Service (QoS). However, as discussed in

the previous two chapters, tracking the state of dynamic networks by the required

level of precision is a rather costly undertaking. Hence, any meaningful solution

should strive to meet application demands despite the unavoidable uncertainty about

the instantaneous state of the network.

This brings us to the ultimate question: can we accommodate these new applica-

tions with their stringent latency and delay variation requirements despite our relative

uncertainty about the state of the network and without massive over-provisioning? In

this chapter we will demonstrate that in certain cases we can answer this question

with a yes. The solution involves an innovative technique to distribute the traffic flow

over multiple paths in such a way that guarantees lower aggregate delay variations

despite the delay variations on individual links. This may seem counterintuitive at

first, but as demonstrated in the following sections if we account for the correlated

nature of delay across various paths we can reduce the apparent variations in delay.

This novel solution is inspired by Harry Markowitz's Nobel prize winning work

on portfolio selection [36]. His work has been instrumental in construction of invest-

ment portfolios that exhibit a pre-determined risk-return behavior. In that context,

he expressed the interest of the investors as hoping to achieve the lowest risk (lowest

standard deviation) for a desired expected return on investment. In other words, his

formulation tries to identify asset allocations that exhibit minimum variance for a

desired average/expected return. This objective can be formalized mathematically
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through the well-studied quadratic programming problem, where a quadratic objec-

tive function is optimized subject to linear constraints. We do not seek credit for

any of the mathematical formulations and/or developments of this subject which

have been exhaustively studied in economics literature. On the other hand, we are

unaware of other works that apply these ideas to communication networks and specif-

ically questions of delay. We refer interested readers to [37] and [38] for a short history

on the development of Modern Portfolio Theory, as well as the mathematical deriva-

tions and consequences of the theory. The namesake "diversity routing" has been

chosen to draw parallels to diversification of financial investments.

The rest of this chapter is organized as follows: Section 4.2 introduces the gen-

eral model under which diversity routing is considered. Section 4.3 casts the optimal

allocation of traffic as a convex quadratic optimization problem and describes the so-

lution space. Section 4.5 discusses the theoretical limits of diversification. Section 4.6

incorporates additional cost criteria into the optimization framework. Section 4.7 ex-

tends the results to general transportation networks. Discussion of our contributions

as well as future works is given in Section 4.8. Concluding remarks are provided in

Section 4.9.
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4.2 General Model

Consider a network management and control system that monitors the state of the

network at all layers, reconfigures network resources when necessary, and provides

data and instructions to applications upon request. More specifically, when an ap-

plication requires network resources, it will contact the NMC system and specify its

requirements, including delay, maximum allowable delay variations, and bandwidth.

It is preferable for the application to specify a few possible classes of its desirable

requirements, each corresponding to a different QoS and/or QoE level. The NMC

system will in turn evaluate the feasibility of the requests, and respond by specifying

the routes that should be used to achieve the highest possible QoS and/or QoE levels.

If the network, in its current state, is unable to satisfy the application's demand, the

NMC system would either reconfigure the network to meet the requirements or reject

the request. Figure 4-1 illustrates such an interaction.

Specify Acceptable Receive Operational
QoS/QoE Classes Instructions

Accept/Reject +
Digest Requests Instructions

Database Control Plane CPU

Orchestration Engine

Updat NSIOrchestrate Resource
Updae NS Reconfiguration

Application Transport Routing MAC Physical
H Layer H Layer- Layer -H Layer

Figure 4-1: Roles and responsibilities of the NMC system: 1) Determine feasibility
of application requests, 2) Instruct the application of operational requirements, 3)
Orchestrate reconfiguration of network resources.
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We should acknowledge that in current systems, the network is often unaware

of the user's specific quality of service requirements (except for some limited SDN

services). Our proposal requires a deliberate negotiation between the user and the

NMC system to convey such requirements in order to achieve better efficiency and

performance. We would like to be clear that our decision to take this (unconventional)

approach is a conscious trade-off. The following discussion exemplifies this process in

the context of routing with requirements on delay variations.

Let us suppose that an origin-destination (OD) pair is connected via n paths

P1, .. , P as shown in Figure 4-2. Based on the information available to the NMC

system, packets transmitted on path Pi will experience a delay di, where di is a

random variable with known mean and variance denoted by [¾ = E [di] , = Var [dj).

Recall that delay variation is defined as the standard deviation of delay, and thus -i

denotes the delay variation on path P.

P1

0 D

Figure 4-2: Depiction of an origin-destination pair connected via n paths.

With this description, each path connecting the OD pair can be visualized as a

point on the Cartesian plane if we use the expected value and standard deviation of

delay as its corresponding coordinates. Figure 4-3 illustrates the relationship between

a few arbitrarily chosen paths and their respective mean delay and delay variations.

Clearly, applications that utilize this network for data transport are affected by the

delay performance of its individual paths. But, can the network as a whole provide

delay characteristics which outperform the convex hull created by individual path

characteristics? The following section demonstrates how diversity routing enables

applications to meet delay requirements that in a certain sense exceed the performance

of individual paths as well as the convex hull of their performance.
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Figure 4-3: Representing the delay of each link on the Cartesian plane, using its
expected delay and delay variation as the coordinates.

Note that in general, the delay incurred on these paths are not independent.1 In

what follows, we use oij to denote the covariance between delays on paths P and P,

i.e. oij = Cov(d, dj). Hence we can denote this covariance matrix as,

20 1  01,2 9 ' 1,n

2
02,1 U2  . U2,n

Un,1 Un,2 2

Before concluding this section, we should clarify that delay variation can be caused

in two distinct ways and the receiver is often unable to resolve which type of delay

variation it is experiencing:

" Type 1: Variations due to the naturally fluctuating queuing delays at routers.

" Type 2: Variations that are due to the sender's (random or deterministic)

choice of paths which exhibit different expected delays.

'This fact is contrary to the assumption used in many queuing theory text books, known as the

Kleinrock Independence Approximation [20].
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Figure 4-4: Depiction of an origin-destination pair connected via two paths.

To see the difference, let us consider the following example.

Example 1. Suppose that an origin-destination pair is connected via two paths as

shown in Fig. 4-4. Suppose that path P1 has a fixed delay of di = 100 (ms) and path

P2 has a fixed delay of d2 = 300 (ms), and packets on neither path will experience

any changes in their queueing or transmission delays. In other words,

E[di] = 100, E[di] = 300, o-1 = 0-2 = 0

Suppose that 100 packets are equally split between the two paths. Clearly, 50 of the

packets will experience a delay of 100 (ms) and the other 50 will experience a delay

of 300 (ms). In reality, the receiver may be unaware or unable to distinguish between

the two sets of packets, and may perceive this observation as equivalent to delay

variations of the first type. In this case, the receiver may interpret and compute the

standard deviation of the observed delays (which is equal to 100), and declare it as

the delay variations. Of course, such a statement would seem naive and misleading

to an omniscient observer.

In some applications, Type 2 variations of delay can be easily eliminated if the

expected delay on both paths are known to the transmitter. In such cases, the source

will identify the path with the shorter expected delay (i.e. P1 ) and transmit its corre-

sponding packets after a fixed period of time reflecting the difference in expected delay

of both paths (i.e. 200 (ms)). This proactive approach results in near simultaneous

arrival of packets at the receiver and delay variation would seem to have disappeared.
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Such practices are commonplace in the financial sector, where a client such as

Goldman Sachs may demand that the service provider (say AT&T) guarantees ex-

tremely low Type 1 delay variation (< 1 ms) on paths that connect its trading desk

to various stock exchanges. Suppose that a trading desk in Boston wishes to simul-

taneously execute its orders at the New York Stock Exchange and the San Francisco

Stock Exchange, which are on average 15 ms and 40 ms away respectively. In this

case, the expected delays are taken out by sending the orders ahead of the desired

trade execution time by the aforementioned one-way delay so the orders hit various

exchanges at nearly the same time (within 1 ms).

That being said, our upcoming analysis will address some of the difficulties ex-

perienced as a result of the presence of Type 1 delay variations and hence, in some

examples we assume that Type 2 variations are already eliminated.

Last but not least, we should note that modeling the delay on a given link as a

simple random variable with a fixed mean and standard deviation carries the under-

lying assumption that traffic assignments will not significantly change the traffic flow

on that link. This is a reasonable assumption when the amount of traffic assigned to

a given link by a specific application/session is a small portion of the total traffic on

that link. 2

2 1n the financial literature, there is a similar concept known as the market impact which describes
the effects of a market participant on the price of an asset. Such effects can be modeled and
incorporated into the overall optimization but they come at great expense to simplicity and insight.
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4.3 Optimal Traffic Allocation

4.3.1 Formulation

Consider a routing algorithm that assigns a fraction fi of the total flow to path P.

Let us use F, and y to denote the vector of fractions, and vector of mean delays

respectively,

fi i

f2j
F= , p= 2

Note that each vector F corresponds to a unique Traffic Allocation, and as described in

the previous section if the transmitting source is not proactive, packet delays perceived

at the receiver will include both Type 1, and Type 2 variations. Of course, reasonable

implementations of what we describe in the following paragraphs should be such that

the source is proactive and transmission of packets on paths with different expected

delays are properly handled as to align their expected arrival at the destination, and

thus avoid Type 2 variations.3 On the other hand, the mathematical treatments that

are to follow will not address this aspect for two reasons: 1) The additional variables

that are needed to capture this implementation issue will unnecessarily complicate

our expressions and may obscure the central issues, and more importantly 2) In other

networks, we may be concerned with a transmission cost on each link that is by no

means related to delay and thus near simultaneous arrival of packets may be of little

value. An example of such a network is provided at the end of Section 4.7. With

that in mind, we will identify ways to think about and model this complex stochastic

process as to get some meaningful insights and results.

3Needless to say, when an application at the source is tasked with keeping packets in its internal
buffers in order to align and match the average delay of all paths, we may have to consider the costs
associated with the local storage and buffering of these packets and furthermore, independently
examine the costs of such actions to the application vs. the benefits of these techniques to the
network. This particular issue requires a separate investigation and is outside the scope of this
thesis.
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A reasonable way is to suppose that each packet transmitted on a path experiences

a delay, which leads us to think about the sequence of delays on a given path as a

discrete random process. Similarly we can think about the sequence of delays over

multiple paths as a discrete vector process. Suppose that we combine the portions of

the data stream on these paths that belong to a particular session and look at this

"merged" random process. We can define a random variable dTA for a specific traffic

allocation that reflects the instantaneous delay corresponding to this merged process

in the appropriate sense. We shall define dTA as:

n

dTA = fjdj (4.1)
j=1

Note that dTA is a weighted linear combination of the delays experienced across

different paths, where the weights correspond to the fraction of the packets that

were assigned to that path. In other words, dTA denotes the instantaneous delay

averaged across all paths, and thus conveys the notion of average delay experienced

by packets at a particular instance of time. We should emphasize that once a traffic

allocation F has been adopted by the source node, it can continuously and repeatedly

assign the corresponding fraction of packets on each path. We can then consider the

temporal realizations of this instantaneous average delay (i.e. dTA) over a period of

time. It is reasonable to say that in a stable system we hope to observe fairly uniform

realizations of dTA. Of course we should remember that delay variations of the first

type are the reason for degradation of this consistency, but we wish to choose the

fractional flows (i.e. vector F) in such a way as to guarantee a fairly stable set of

temporal realizations for dTA. Note that the mean and variance of dTA can be easily

computed as

n 'n

E [dTA] = E (ifjd] =Z fy1 = FT y
j=1 _j=1

n n

Var [dTA] = fifjCov(di, d) = FT EF
i=1 j=1
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Given the aforementioned quantities, how can we define the "optimal" traffic al-

location? An optimal allocation may refer to one that minimizes the expected value

or variance of dTA. Since expectation is a linear operation, the expected value corre-

sponding to a specific allocation is simply the weighted linear combination of individ-

ual mean delays and is thus minimized if the entire traffic is assigned to the path with

the lowest expected delay. On the other hand, variance of dTA is a quadratic function

of the traffic allocation F, and the allocation that minimizes this variance depends

on the covariance matrix E. One natural way to incorporate both criteria into an

optimization framework is to find the minimum-variance allocation that achieves a

pre-specified expected value, p*. Hence the optimization can be written as,

minimize F T EF
F

subject to eTF 1

FT y =P

0 < fA < 1i=1,...,n.

where e denotes a vector of all ones, and the constraint eTF = 1 ensures that frac-

tional flows sum-up to one. Algorithmically speaking, the application specifies a pair

of numbers (t*, o*) to the NMC system, representing the maximum acceptable values

for the expected value and variance of this instantaneous average delay. The NMC

system evaluates the aforementioned optimization to determine the feasibility of the

request. If a feasible traffic allocation exists, the application's request is accepted

and appropriate routing information is provided by recommending a specific traffic

allocation. If the request is infeasible, the NMC system will either reject the appli-

cation's request or will reconfigure the network in such a way to accommodate the

original request. Network reconfiguration tactics are outside the scope of this work

and is left as future work.
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4.3.2 Solution

The investigation of minimum variance allocations for a desired average performance,

as expressed above, was originally proposed by Harry Markowitz in the context of

portfolio theory and allocation of financial assets [36]. In that context, he expressed

the goal of rational investors as hoping to allocate/invest their assets in such a way

as to achieve the lowest risk (lowest standard deviation) for a desired expected return

on investments. In a similar manner, we wish to identify a traffic allocation that

achieves the lowest variance for a desired expected instantaneous average delay.

Before studying the details of the optimization, let us consider the simplest pos-

sible setting whereby an OD pair is connected via two paths. Let us suppose that

the first path, P1, has a mean delay of 300 ms and delay variation of 15 ms while the

second path, P2 , has a mean delay of 100 ms but a delay variation of 20 ms. We would

like to depict the characteristics of dTA for a range of traffic allocations. The best

way to accomplish this would be to visualize dTA as a point on the Cartesian plane,

where its first two moments (i.e. E [dTA] and Var [dTA]) are used as its coordinates

as shown in Figure 4-5. Note that if the entire traffic is allocated to one of the paths,

dTA would have the same first two moments as the delay associated with that path.

Hence, the red points in the figure correspond to allocating the entire traffic to one

of the paths, and reflects their specific mean delay and delay variations.

In general, a traffic allocation vector is F = (fi, f 2 )T, where f2 = 1- fi. Hence, we

can determine the performance of all traffic allocations by sweeping the fi parameter

between 0 and 1. Each line in Fig. 4-5 traces the set of achievable mean and standard

deviation combinations of dTA for a specific correlation coefficient. Note that a prop-

erly chosen traffic allocation can result in an overall standard deviation for dTA that is

significantly lower than that afforded by either of the individual paths. In particular,

if the delay on the two paths are perfectly anti-correlated, i.e. p = -- 1, there exists a

traffic allocation whose corresponding instantaneous delay averaged across paths (i.e.

dTA) will exhibit a standard deviation of zero. For our example, this point occurs at

(fl, f2) = (0.57, 0.43).
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Figure 4-5: Impact of diversity routing on the first two moments of dTA for various
correlation coefficients for an OD pair connected via two paths.

We should also note that a particular standard deviation requirement for dTA

can be satisfied at two different mean delays (corresponding to two different traffic

allocations). In the absence of additional selection criteria, we should always choose

the traffic allocation that has a smaller mean delay. In other words, we will always

be interested in the bottom portion of the aforementioned traces. The set of traffic

allocations that constitute the bottom portion of the curves will be referred to as the

set of Efficient Allocations, following a similar naming convention in [36]. Figure 4-6

depicts efficient allocations corresponding to the previously discussed case of an OD

pair connected via exactly two paths.

400

300

E[dTA] 200
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0-
0 5 10 15 20

Var[dTA

Figure 4-6: Efficient allocations corresponding to an OD

25 30 35

pair connected via two paths.
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Fortunately, the same basic behavior is observed when the number of paths in-

creases, as shown in the following simulated scenario. Suppose that the NMC system

has observed the instantaneous delay corresponding to 9 paths that connect a partic-

ular origin-destination pair over a long period of time. A possible realization of the

observed instantaneous delays for a 250 second period is depicted in Figure 4-7a. The

traces correspond to a set of 9 correlated random processes whose mean and standard

deviation (i.e. delay variations) are depicted as a grid in Figure 4-7b and the sample

realizations are color-coded to match the corresponding points on the grid. 4

400.. '' ' . 400

300 E
1-300
cc 0 0

0

2 100200 P15 P0 2 P 9

Tie)s)Dea Vaito*(~.0

0 .~P 3  ps100 0100

0 50 100 150 200 250 0 5 10 15 2025 30
Time (s) Delay Variation (i.e. ai )

(a) Sample realization of the instantaneous (b) Cartesian coordinates corresponding to

delay corresponding to 9 correlated paths. delay performance of each individual path.

Figure 4-7: Depiction of correlated delay of 9 paths connecting an OD pair.

Given these observations, the NMC system can readily compute the corresponding

correlation matrix (or equivalently the covariance matrix). The computed correlation

matrix for this specific example is depicted in Figure 4-8. We can then numerically

solve the following convex optimization problem, for all feasible values of p*. Feasible

values of p* are those that fall between the minimum mean-delay and the maximum

mean-delay of the 9 paths (i.e. between 100-300 ms),

minimize F T EF (4.2)
F

subject to eTF = 1

0 < f< 1, i = 1,..I n.

4 More specifically, these sample paths were drawn from a set of correlated Ornstein-Uhlenbeck

processes with pre-specified means and standard deviations.
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Figure 4-8: Correlation matrix corresponding to the delay observations of the 9 paths
shown in Figure 4-7.

Figure 4-9 depicts the solution of the aforementioned optimization for all feasible

values of pW*. Once again, each colored dot on the right-hand side of the figure corre-

sponds to the first two moments of dTA if the entire traffic was assigned to a specific

path. Not surprisingly, the coordinates of these dots correspond to the average delay

and delay variation of each of the individual paths as was depicted in Fig. 4-7b. Each

black point on the left corresponds a specific traffic allocation vector, and the resulting

characteristics of dTA. Note that the black points present a significantly reduced stan-

dard deviations in comparison to the original paths. Finally, the red dot corresponds

to the "minimum-variation allocation". The network cannot support an application

that requires more stringent delay variation than that afforded by the allocation cor-

responding to the red dot. As shown in the figure, the minimum-variation allocation

sends most of its traffic through paths P5 and P7 as denoted by f5 = 0.51, f7 = 0.45.
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Figure 4-9: Characteristics of the optimal instantaneous delay averaged across paths
(dTA).

To get some insight about this, we draw your attention to the significant negative

correlation between paths P5 and P7 as illustrated in Figure 4-8. Not surprisingly,

the overall variations (as measured by standard deviation) is reduced when the flow

is split amongst negatively correlated paths. Negative correlations can arise in many

situations in real networks. One such instance is exemplified by Autonomous Systems

(AS) that compete for traffic share by advertising different costs to a given destination.

When an AS advertises a cheaper route, it will attract traffic from other AS's, resulting

in negatively correlated delay on the respective paths. Another example is caused by

the cyclical nature of traffic demand which corresponds to the time of day, hence,

geographical areas that are offset by certain time differences will exhibit negatively

correlated behaviors. We shall wrap up this section by reiterating that the lower half

of the plot corresponds to efficient allocations.
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4.4 Incorporating a Path with no delay variations

One way to avoid delay variations is to utilize a dedicated path between an OD pair.

If the packet arrival rate into this path is constant, and if it is not shared with other

users, we expect it to exhibit a constant delay for all packets. In other words, this path

acts as a static pipe that delivers every packet to the destination node after a fixed

and deterministic amount of time. One may think of circuit switched architectures as

an example of a variation-free communication link. In such networks, once the circuit

is established it will be dedicated to carrying the information between a specific OD

pair and will provide a fixed-delay path without any variations between them.

In this section, we will discuss how the presence of such an independent variation-

free path fits into our diversity routing framework. For simplicity, let us assume that

the OD pair is connected via n paths, one of which is variation-free and independent

of the others. Figure 4-10 depicts such a scenario whereby the path with no delay

variations is denoted by a red 0 on the vertical axis. It is important to note that

there is a fundamental limit on the minimum expected delay of any path. This limit

is governed by the physical length of this path and the speed of light in that medium.

200
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Q 10d

50

00
0 5 10 15 20 25 30

Delay Variation (i.e. i )

Figure 4-10: Including an independent path with no delay variations denoted by a
red 0 on the vertical axis.
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Let us consider the set of optimal traffic allocations which are achievable by uti-

lizing every path except the variation-free path. This set is illustrated as a blue curve

in Fig 4-11 below,

200
1

150

E[dTA] 101

0
0 5 10 15 20 25 30

vVar [dTA]

Figure 4-11: Optimal traffic allocations when the variation-free path is excluded.

Recall that our discussion has been focused on a path with no delay variations

that is independent of all other paths! As a result, the performance of any "op-

timal" diversity routing scheme that incorporates the variation-free path will be a

linear combination of some point on the blue curve and the 0 point corresponding

to the variation-free path. Not surprisingly, incorporating the this path enables us to

improve the set of efficient allocations. The best way to visualize the delay character-

istics of such traffic allocations is by drawing a line that starts from 0 and is tangent

to the portion of the blue curve corresponding to the original efficient allocations as

shown in Figure 4-12. We can identify the performance of this expanded set of effi-

cient allocation by choosing the minimum point amongst all available combinations of

the plot. This is depicted in Figure 4-13. Note that this expanded efficient allocation

has two segments, a linear segment from 0 to the tangency point and a secondary

segment that is unaffected by the availability of the variation free path.
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Figure 4-12: Feasible allocations when the variation-free path is used in conjunction
to the previously optimal traffic allocations.
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Figure 4-13: The expanded set of efficient allocations.

If the variation-free path has an expected delay that is less than or equal to the

minimum expected delay of all other paths, then this path will be strictly better

that any other path and all traffic should be assigned to it. Under such singular

circumstances the curve corresponding to the set of efficient allocations will exhibit a

non-negative slope!
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We shall conclude this section by noting that the corresponding plot in financial

literature is often referred to as the risk-return spectrum, and the point corresponding

to variation-free paths denotes risk-free assets such as short-term Treasury bills. Un-

like financial engineering that allows for "shorting" of an asset, in diversity routing we

cannot assign negative flows to a given path. If one could assign a negative fraction

of flow to a given path, the aforementioned linear segment would be extended beyond

the tangent point and would remain linear! The slope of that line is often referred to

as the Sharpe Ratio of the Tangency Portfolio, and denotes the "fair" linear tradeoff

between the risk and return or in our case expected delay and delay variation.

While the diversity routing model does not generally result in linear set of efficient

allocations, we can still interpret the slope of the linear segment as a fundamental

quantity. Ignoring the singular case discussed previously, the slope of this line is

negative and has the interpretation of expected delay per unit 'delay-variation' and

thus assigns a "fair" tradeoff between these two quantities. Said another way, we

should expect a fixed reduction in expected delay for each additional unit of variations

that we can handle, or alternatively we should expect a fixed increase in mean-delay

for each unit reduction in variation.
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4.5 Limits to Diversification

The successful examples of previous sections may lead us to wonder whether we could

completely eliminate temporal variations of the instantaneous delay averaged over

paths (i.e. dTA) by using diversity routing and employing additional paths. As we

will see, there are limits to the diversification effect afforded to us through diversity

routing. The discussions of this section will closely follow the developments of similar

material in section 7.3 of [39] which showed the limits of diversification in context of

Modern Portfolio Theory.

Recall the expression for the variance of a given traffic allocation, and rewrite it as

n n

Var [dTA] = fifjCov(di, dj)
i=1 j=1

n

= f i + 2 fifj a,j
i=1 i<j

where ui,j is the covariance between delays of path i and path j respectively. Clearly,

variance of delay in individual paths, as denoted by u2, contributes n terms to the

sum while the covariances contribute approximately n2 terms to the sum. This sim-

ple observation signifies the importance and contribution of covariances/correlations

between various paths which can easily outweigh the delay variations of individual

paths! It can be shown that the contribution of the variances can be eliminated

through the introduction of additional paths, but the covariances will dominate and

constitute the bulk of the remaining variations. The following example is often used

to convey the aforementioned idea. Let us consider the case of equal-splitting of the

traffic amongst all n paths, i.e. fi = 1/n. Then:

n

Var [dTA] = of + 2 f f a
i=1 i<j

i=1 i<j

= Ag Vr + 1 - - (Avg. Covar)
n n
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Interestingly, as n -+ oc, the contribution of variances of delay will become negligible

and approach zero, and thus average covariance of delay becomes the dominant term.

In other words, diversity routing reduces the variance of dTA by incorporating paths

whose average delay covariance is negligible. The aforementioned analysis is the

basis of the common practice that dictates "diversification reduces risk" in financial

literature.

Contribution of each path to the variance of dTA can be quantified by rewriting

the expressions as,

Var [dTA] = f Cov di, fjd
i=1 j=1

i=1 j=1
n

Sfi Cov (d, E [dTA]
i=1

which shows that the total variance of dTA is a weighted average of the covariance of

delay on each path and the average instantaneous delay. We conclude this section by

presenting the following simple bound,

1
eTX 1e Var [dTA]eTE-le -

This bound is derived in Appendix 4.A and can act as the first check to determine

whether an application requirements can be met or not. The NMC system will reject

any application's request for network resource if they are not obtainable. Further-

more, network architects should use the aforementioned metric as a barometer to

decide if network resources should be reconfigured (including addition of new wave-

lengths, rejection of lower priority traffic, etc) in order to satisfy user demands. Last

but not least, application designers can use such metrics in their feasibility analysis

before deployment of their application on unknown networks.
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4.6 Generalized Cost Function and Indifference Maps

It should come as no surprise that in real networks, moments of dTA are not the sole

criteria for path selection in diversity routing; but how can we incorporate additional

cost criteria into the model? The most natural way of adding cost criteria is to realize

that transmission over different paths may have different "costs". One reason for this

may be the heterogeneity of the underlying physical layer. For example, a given

path may be a fiber optic while another one is a satellite link. Even in homogeneous

networks where transmission over all links have the same cost, we can associate a cost

with the "length" of a given path. Clearly, a path consisting of 3 links will have 3

times the cost as a path with 1 segment. Last but not least, we should recognize that

real networks (e.g. the US fiber backbone) are often a collection of independently

owned and operated subnets (aka Autonomous Systems). Hence, we should expect

various vendors to charge different amounts for using their systems. Either way, we

can easily associate and incorporate the respective costs with each path.

Let us use C to denote a cost vector, whose ith element ci denotes the cost per

unit flow over path P. We can then rewrite our original optimization problem as,

minimize CTF + FT EF (4.3)
F

subject to eTF = 1

F T y = P*

0 < ft < 1, i = 1, ...,In.

One way to interpret this new formulation is to think of a service provider that

has to balance two competing goals. The first goal is to reduce the transportation

cost as captured by CTF and the second goal is to reduce the potential loss of revenue

associated with delivering lower QoS. This loss of revenue may reflect the immediate

drop in customer satisfaction or the eventual customer defection caused by subpar

QoS. In effect, we have taken variance of instantaneous average delay, FTEF, as

a stand-in for this loss of revenue, reflecting our preference for reduced temporal
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variations in dTA. It is clear that the formulation could be further generalized by

using a convex function of FTEF as the second term of the objective function, but

we shall sacrifice that generality in favor of simplicity, for now.

Before investigating the impact of the generalized cost functions on the solution

space, we shall explore how user preferences can be mapped into reasonable cost vec-

tors. One of the best ways of visualizing such preferences is through an Indifference

Map, an example of which is shown in Figure 4-14. An indifference map is a collection

of indifference curves, whereby a given curve connects the set of points that provide

the same level of utility to users. As a result, it is reasonable to assume that users

would be willing to incur the same cost for points on an indifference curve. For our

purposes, it is clear that users would always prefer reduced average delay and delay

variations over higher ones and hence they would be willing to pay a higher cost as

we move to the bottom-left corner of the indifference map shown in Figure 4-14. On

the other hand, users may be willing to trade a slightly higher mean delay for reduced

delay variations, or alternatively slightly higher delay variations for lower mean de-

lay and thus the indifference curves depicted in the Figure 4-14 can be considered

reasonable surfaces of equal utility and cost to users.

oC3

C2

C,

Delay Variations

Figure 4-14: A potential indifference map for combination of average delay and delay-
variations of specific paths. Note that the utility and cost increases as we move to
the bottom-left corner of the plot and thus c1 C2 > c3 .
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With this characterization in mind, let us return to the generalized optimization

problem of Eq. 4.3. Note that this new formulation is still a convex quadratic op-

timization whose solution is obtained as easily as before, and hence we will refrain

from additional discussion of the solution space except for the following example. Let

us revisit the routing example used in section 4.3.2 and incorporate a specific cost

vector C as shown in Figure 4-15. We have assigned the paths to 3 different cost

groups, (150, 100, and 50). While the numbers were chosen arbitrarily, they reflect

our previous discussion regarding increasing cost as we move towards the bottom-left

corner of the plot.
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f7 0.44

V9 0.03)
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V/Var [dTA]
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25 30

Figure 4-15: Delay characteristics of optimal traffic allocations, with indifference
regions that correspond to path costs of 150, 100, and 50 per unit flow.

Once again, each black dots constitutes an "optimal" traffic allocations for each

value of expected delay, with the caveat that the minimum-cost allocation is no longer

on the leftmost point on the plot. The coordinates of the leftmost point is (1.12,226)

and is denoted in red. The figure also identifies the traffic allocation vector corre-

sponding to the minimum-cost allocation.
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4.7 Generalization to Transportation Networks

Our analysis has so far focused on the importance of diversity routing in commu-

nication networks. Fortunately, our proposed mechanism can also be utilized when

transporting physical goods over general transportation networks.

As an example, consider a retail store in Boston that wants to receive a steady

supply of a given product from New York City. Commonly, retail stores contract a

logistics and transportation company to transport the products from NYC to Boston.

If the logistics company uses one mode of transportation (e.g. trucks), the exact

delivery time can be impacted by the often unpredictable road conditions. On the

other hand, if multiple modes of transportation (such as air, sea, railroad, etc.) are

used the uncertainty in the delivery time of the products, as defined by the standard

deviation of the instantaneous arrival time averaged over all paths, can be minimized.

It is important to recognize that this improvement is due to the fact that different

modes of transportation are affected by different factors, and thus conditions that

impact one mode of transportation are often different from those that impact another.

For example, a road accident is unlikely to be related to conditions of shipping lanes.

By accounting for the correlation of delay on various modes of transportation (or

various roads), the logistics company can deliver the goods on a more regular basis (i. e.

lower variations). Note that regular and steady delivery of goods can be immensely

important to the retail store as well, because it will eliminate the cost of excessive

local storage and warehousing for the retail company. In fact warehousing of goods at

local facilities serves a similar purpose to packet buffering of communication networks.

As we noted in Section 4.3, delay is not the only consideration in a general trans-

portation network. This is particularly true when we consider the following two

emerging technologies/solutions: 1) the adoption of autonomous cars and the race

by many companies to operate large fleets of autonomous vehicles 2) new initiatives

within large cities and urban areas that try to incentivize certain traffic patterns

through dynamic congestion pricing.
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With respect to the first technology we can point to companies such as Uber

and Lyft which currently operate large fleets of cars with independent drivers and

are investing in the development of fully autonomous vehicles. With respect to the

second technology, we can point to London, Stockholm, and Singapore which have

already adopted various congestion pricing models as well as U.S. mega-cities such as

New York City which are on the verge of developing their own version of congestion

pricing [401.

Congestion pricing models range wildly in sophistication from simple fixed-price

tolls at the entrance of certain highways to dynamic models that can automatically

charge a vehicle based on a multitude of variables including make/model, weight,

time of the day, fuel type, geographical location, etc. One of the main reasons for

the current popularity of fixed-price tolls is their simplicity and consistency which are

of paramount importance to (human) drivers. On the other hand, variable rates or

complex pricing models can be easily analyzed by a computer and are thus more likely

to become prevalent as autonomous vehicles gain popularity. With that in mind, let

us consider a futuristic scenario where the operator of a large autonomous fleet has

to make routing decisions while considering the total cost of fleet operation including

the uncertain and dynamic congestion pricing.

Example 2. Suppose that on daily basis a fleet operator has to transport 1000

cars from point A to point B, which are connected via two non-overlapping roads.

From prior experience, the operator knows that sending a car over the first road

incurs a cost of C1 dollars and sending it over the second road incurs a cost of C2

dollars. Where C1 and C2 are two random variables with expected value and standard

deviation of (15, 50), and (10, 50) respectively. For this example, let us suppose that

our prior data shows that the two random variables are anti-correlated (i.e. P1,2 = -- 1

or equivalently Cov[C1 , C2] = -2500). Clearly, the cost of taking the cars from point

A to point B depends on the realizations of C1 and C2.

A rational operator is often interested in minimizing its cost of operation, and we

may (wrongly) think that it would prefer to send all 1000 cars through the second road

with a lower expected cost (i.e. E[C2] = 10). In reality, the true difficulty for a fleet
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operator in such a scenario is that it has to maintain a positive cash flow to support its

business and may not be able to sustain more than a few days of negative cash flow.

Unfortunately, because of the inherent uncertainly in the daily cost of operations, it

may be faced with a realization of C2 that is too large. For example, suppose that

the operator is faced with a realization of C2 that is one standard deviation larger

than the mean, i.e. c2 = 10 + 50 = $60. In other words, the operator has to pay a

total of $60, 000 on that particular day to transport its 1000 cars. Not surprisingly it

won't be able to sustain its business if it is faced with a multi-day streak of bad luck.

In this scenario, the question for the operator is whether or not it can operate

its fleet on a daily basis in such a way as to minimize the variations in the daily

cost of its fleet. What our formulation does, is to split the traffic in such a way as

to minimize the variance of this daily cost. Let us consider the scenario where the

operator splits the traffic equally between the two roads, i.e. 500 cars in each road.

We can see that the total daily cost of operation for this traffic allocation would be

CTA = 500 C1+500 C2, which would have the following expected value and variance:

E [CTA] = 500 E [C1 ] + 500 E [C2] = 500 * 15 + 500 * 10 = $12500

Var [CTA] = 5002 Var[C1] + 5002 Var[C2 ] + 2 * 500 * 500 Cov[C1, C2]

= 5002(502) + 5002(502) + 2 * 500 * 500 * (-2500) = 0

Let us take a moment to appreciate the importance of the two expressions above.

What it has to say is that if we split the cars equally between the two paths, we will

incur a daily cost of $12, 500 every day, (no more, no less)! In other words, despite the

dynamic congestion pricing, the daily cost of operation is fixed and has zero variance.

Of course we should note that this specific traffic allocation (i.e. equal splitting)

minimizes the variance only when we have a perfectly anti-correlated scenario as we

had assumed. Furthermore, we should note that the fleet operator may be okay with

a certain amount of uncertainly and may be willing to split the traffic in such a way

as to reduce the expected daily cost of operations in exchange for a small increase in

the daily variance of its cost.

148



We should caution that our simple example of dynamic congestion pricing over-

looked many other aspects of a real transportation system. First and foremost, we

should note that a transportation network is best described as a multi-party enterprise

where multiple (potentially independent) agents are interacting with one another. In

this sense, a game theoretic framework, such as that described in Section 1.1.1, may be

needed to properly examine and optimize the interaction of various agents. Further-

more, each agent may have a distinct objective and thus the various costs associated

with the whole system will be borne unevenly by different parties. Proper accounting

of these issues will be essential in any practical extensions of our work. We should

also emphasize that our example uses a correlation coefficient of -1 for illustration

purposes but real traffic networks may exhibit an arbitrary correlation.

Last but not least, we should note that a similar argument can be used to reduce

uncertainty in other aspects of supply-chain management. For example, a company

can order raw materials from multiple suppliers in such a way as to reduce the un-

certainty in their arrival rate or cost, where the fraction ordered from each supplier

is computed according to our formulation. We believe that our proposed method can

be used to systematically achieve high-level managerial goals which are often referred

to as "just-in-time manufacturing" or "lean manufacturing". These terms refer to

practices that enable a typical manufacturing plant to operate continuously without

the need for significant storage of raw materials. To achieve these goals each unit

within the manufacturing plant will only request items (and/or raw material) that

can be immediately used.
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4.8 Discussion and Future Work

In this section we discuss some of the overarching principles which should be consid-

ered with regards to the adoption of our diversity routing mechanism. Recall that

our treatment of diversity routing started with a network management and control

system that has visibility to all layers. This included the ability to monitor the

state and performance characteristics of various elements, as well as orchestration

and resource reconfiguration capabilities. Resource reconfiguration may include tasks

such as addition or removal of wavelengths on a particular fiber connection, which is

currently carried out by human operators. More importantly, the NMC system will

interact with applications to identify appropriate routes that can deliver a desired

level of service. This challenges the conventional wisdom that networks should avoid

any coordination or interaction with applications. This long-held strategy has forced

a whole host of responsibilities to the end-user terminal. For example, rate control,

congestion control and backoff algorithms are largely delegated to the communication

end-point and the rapid growth of internet access is often attributed to this choice.

We challenge this paradigm by promoting a user-centric view that expects the

network to do its best to deliver the desired quality of service to the user. Of course,

this approach comes at the expense of additional complexity to the network, but we

believe that this added complexity can be justified when it enables the rapid adoption

of next-generation applications. Simply put, current networking practices may impede

the arrival of new applications that will constitute the next wave of innovation. Of

course, introduction of additional complexity will have diminishing return and thus

the appropriate level of complexity should be investigated.

On a related note, we should point-out that we have not addressed the security

issues that arise when the network interface is opened to various applications. Not

surprisingly, malicious applications may leverage this ability to manipulate and/or

attack the network by making requests which can result in misallocation of resource

and ultimately resource exhaustion within the network. This topic is of immense

importance and should be the focus of future investigations.
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We should emphasize that diversity routing or multiple-path routing is not an

entirely new idea. As far back as 1998, the Internet Engineering Task Force was

considering the use of multiple paths to achieve QoS-based routing [41]. Singh et al.

provide a detailed survey of various such routing schemes in [42], and we shall address

a few major differences in our approach vs. the prior art. Most prior work concentrate

on throughput maximization as their central objective and not surprisingly using all

available paths is the simplest way to achieve this goal. Furthermore, most of their

analyses considers a static network as opposed to a truly dynamic network. Note

that from an optimal routing perspective, static vs. dynamic is simply a matter

of the precision by which network state (e.g. congestion/load) is known. Clearly,

optimal decisions can be made if the precise network state is known at all times. The

overarching assumption in the prior work is that the network state is either fixed or

varies slowly enough to ensure that underlying routing algorithms have a precise and

consistent view of the network. As a result, their formulation does not account for the

unavoidable uncertainty in the state of the network and overlooks the fact that routing

decisions should be made despite this uncertainty. In our approach, the uncertainty

in delay characteristic of a link/path is captured by variance of delay on each path,

denoted by of, which can be computed from the historical behavior of a given link.

Another unique feature of our development is that we account for and utilize the

correlation between various links to achieve higher quality of service. This is in

contrast to traditional approaches that disregard the presence of correlated behavior

and often assume independence to achieve/design simpler operating paradigms.

Additionally, most authors employ a narrow network-centric approach in their

formulation. These approaches lead network architects to attach undue value to

goals that are certainly reasonable but secondary in nature. For example, multiple-

path routing is often used to achieve load balancing and avoid undesirable oscillatory

behavior in the network. But load balancing should be a byproduct of clever network

design and not its primary purpose. Our formulation uses a combination of factors,

such as expected delay and delay-variations as the primary design parameters and

achieves a certain level of load-balancing as a byproduct of our solution.
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Last but not least, we should mention that communication networks can suffer

from out-of-order packet delivery associated with multiple-path routing. It suffices to

say that resequencing of packets can be handled separately and in fact error correcting

codes can be utilized to significantly reduce the effects of out-of-order packet delivery.

4.9 Conclusion

In this chapter, we introduced a new mechanism for efficient allocation of traffic across

a diversified set of paths. This allocation allows the network to deliver customizable

quality of service to different users and can potentially reduce the need for buffers

at various network elements. Our work focused on the tradeoff between mean-delay

and delay variation as the main contributors to QoS. An important feature of this

approach is its ability to achieve the desired QoS despite the relative uncertainty

about the state of the network. Noting that the introduction of demanding (and data

hungry) applications often outpace that of network upgrades, we have argued that

our innovative solution can accelerate the adoption of these applications without the

need for immediate capital expenditure. We concluded our remarks by extending

our findings to general transportation networks and argued that this approach can

significantly improve the supply chain predictability and reduce the need for storage

facilities.
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Appendix

4.A Lower Bound for the Minimum Variance Al-

location

By relaxing the positivity constraints on fi's, we obtain an analytical solution to the

relaxed optimization problem via a Lagrange multiplier. Let us write the Lagrangian

as

1
= - FTEF +(1-eTF)

2

which can be solved as the solution to = = 0. Where

f= fio + Zfj-i,j-= 0

rewriting the solution as a matrix gives us EF = e or equivalently, F =E-e.

Noting that eTF = 1, we get

eTF = eT (£E-e) = leT E-le = 1

1
t eTE-le

which gives us the following allocation

E-le
F = ET e

eTE-le

153



Let us use U to denote this unconstrained traffic allocation. Then we have the

following mean and variance for the delay:

E [du] = FT1y -- (Y -'e)T p

- eT- feU7 eTE-le

Var [du] = FT EF = FTle = leT F = f

Recall that we ignored the positivity constraints on fi, and hence the aforemen-

tioned variance, is a lower bound to the achievable minimum variance. If we use

minVar to denote the minimum achievable variance for operationally feasible traffic

allocations we have

1
< Var [dminvar]eTE-le
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