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Towaru a-Theory fer AbsffilctData, Types 

AWract 

A rigorous framework for studying immutable data , iypes hawng :nondetenninistic 
operations and operattons exhibi~ ~epdonal' beha¥ior '.is·devel0,ed. ··•· 'fhe; .ft-amework 
embodies the -view of ·a data type ·taken in ,propamming,-looguage~' and ·supports 
hierarchical and modulnr1stnldure among data types:, 

The central notion in this framework is the definitioft.::of; a ata·type., An ·atgebraic and 
behavioral approach for defining a data type is developed which focuses on the 
input-output behavior of a data type as observed through its operations. The definition of 
a data type abstracts from the represitnfudc,ftal.,11.f&UJnr.of:e:Vatues US<:Wlfl as from ,die 
mu I ti pie ,epresenta1icms of the values for;ahy JePJ1111tntational structure. 

A hierarchical specification language for data types is proposed. The semantics of a 
specification ,is a set of'rtlatCMt- data'types whose ~bave-the}behavior captured by 
the spedficaticm. ·A ctear.dislincoon·ist11ade betwet1N1·datatyj>e and its specification(s). 
The nonnet -behava llrul- em,·•ce,.,tiotal t,dajyiof:ief' die Joperations are specified 
separately'-' -. The specifitation,1fat1suagc:;prb,itlis;~- t&-'specify (i) a precondition 
for an operation ·thus stating its iJltended~ (ii)lhci~ which must be signalled 
by the operations. and (iii) the exceptions which the operations can optionally signal. Two 
properties of a specification, consistency and behavioral completen~. are defined. A 
consistent specification is guaranteed to specify at least one data type. A behaviorally 
complete specification 'completely' specifies the observable behavior of the operations on 
their intended inputs. 

A deductive system based on first order multi-sorted predica~e ca~culus wit~ identity is 
developed for abstract data types. It embodies the general properties of data types. which 
are not explicitly stated in a specification. The theory of a data type, which consists of a 
subset of the first order properties of the data type, is constructed from its specification. 
The theory is used in verifying programs and designs expr~d using the data type. Two 
properties of a specification, well definedness and completeness, are defined based on what 
can be proved from it using different fragments. of the deductiv.e system. The sufficient 
completen~ property 'of <,uu.ag: and -Homing is ,afso :i:Jrmllized !and 'fetated to ·the 
behavioral completeness. property. The wett·defineclaess pqiaty-js strortset than tile 
consistency property, because the well delnedness p,opetly,, MJt~ only requires that the 
specification specifies at least one data type. but also captures the intuition that it preserves 
other specifications used in it thus ensuring modu-lar ~cture among specifications. The 
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completeness property is stronger .than .. the adlicimt ,co~. property, since in 
addition to the requirement that the behavior of the observers can be deduced on any 
intended input by equational reasoning, it also requires that the equivalence of the 
observable effect of the constmctors cat' be,dectuced from the specification by equational 
reasoning. 

A correctnes., criterion is proposed for an itnplementauon. coded in a programming 
language with respect«> a specifteation.. It is defined as .a mation betweett u.e,semanucs of 
an implementation and the :Semantics of a specification. . It does not require a. correct 
implementation to have the maximum amount of noadetennioism Sl)CCifted by a 

., . 

specification. A methodology for proving correctness of aii implementation is developed 
which ernbodies the corr~ criterion. · 

Name and Title of Tllesa Su,enisor: Barbara H. Liskov . 
Associate Professor of Electrical,Engineering 
and Computer Science 

Key Words aad Plnses: Abstract Data Type. Data Type. Data Abstraction, Type Algebras. 
Nondetennitrisnl. &ceplions. SpecificatioR ·Language. Semantics, 
Consistency. Behavioraf,(Jom~ Defludi)'e$ystan. 
Verif~ PJoofT~ique. Sutfieient ChmpJetenes.,. 
CompJetens, Well Ddiacdnels. lmp.lomentation C.orredness 

This report is a minor revision of a thesis of the some title submitted to the Department of: 
· Bectrical Engineering · and C.00.puter Science in March. ·10 -in partial tµlftHment of the . 
requiranems for the degree of Doctor of Philoil,phy. · · · 



-4-

Acknowledgn1ents 

am thankful to my thesis supervisor, Professor Barbara Liskov, for her patience and 
encouragement during the thesis research and especially during · the later stages; to 
Professor John Guttag for posing many challenges and for many suggestions leading to 
improvements in the presentation of the thesis; to Professor Carl Hewitt for helping me 
organize and present my ideas in the early stage of the research; and to Professor Hal 
Abelson for diligently reading the final draft and making many helpful comments. 

My officemates, Valdis Berzins, Srivas Mandayam, and Car] Seaquist have helped me in 
many ways during the thesis research. They gave me an audience whenever I needed, 
helped me organize my ideas, and found time to read my work whenever I asked them 
irrespective of their other important responsibilities. Carl and Srivas provided a very 
stimulating and encouraging atmosphere during the last year. I am also thankful to Russ 
Atkinson, Moms Krishnamurthy, Dave Musser, Gene Stark, and Jeannette Wing for their 
helpful comments. Eliot Moss is to be thanked for producing and maintaining the software 
necessary for the production of this document 

The graduate study at MIT has provided me a unique opportunity to live outside of my 
own country which has been a tremendous learning experience. Besides computer science, 
I have learnt a great deal about life, this country, my country, and myself, which has 
fundamentally changed my attitude and outlook towards life. For this, I am indebted to 
the students and staff of the Seminar on International Students and Their Participation in 
Development, and my friends, especially Arvind, Ashok, Carl, Kanchan, Krishna, 
Mukundan, Nagu, Ravi, Rashid, Sekhar, Srivas, Vaqar, and Vinod. Without their 
encouragement and interest, continuing the thesis research would not have been possible. 
Roli has contributed to the completion of the thesis in her own unique way; in no way can I 
adequately express my gratitude to her. 

This research was supported in part by the Advanced Research Projects Agency of the 
Department . of Defense, monitored by the Office of Naval Research under contract 
N00014-75-C-0661, and -in part by the National Science Foundation under grant 
MCS'74-21892' AOl. 



This empty page was substih,ted for a 
blank page in the original document. 



-s-

Table of Contents, 

1. lntroductiQn ···········-····~·········=·········••.•.•···~•·.~-..•·1!,, ......... 9. 

1. Scope aod APPfQ~h-">f tb•:iih.1(1:;1' ..... ,.: ...... ~ .. ~T"•u·•- .............. 11 .. 
1. Scope and AssupflJ~n~ : ........................ :--:'.~ .................................... , ... ····:········ ..... 11 .. 
2. Defln1tlon ot·a··CJale·tvt,e· : ............. ;· ................. ~ ............................................ 11 .. 
3. Specfficaffon MelfMkt: ~~ .. ~ ......... ~ .. ~ ......... ;.;:;:~ .•.. ;·.~.................................... 13 .. 
4. Deductive S-yatem ....... ; .......................................... ~: ............. ' ................. 17 .. 
5. Correctness -of tmplementeUon ............................ ,,,,.; ..................... _.............. 18. 

2. Related Work .......... :·.~·:·~·-~ .. :-.... : .. ;.:.~~ ........ -.. ·.\~.2.:·~:!'~--........ 19. 
3. Outline Of'the The·sts · ........ "~~:~~.' ......... ~ ..... ■ '.· •••••• :~.~., ••. ~-•••••••• 22. 

2. Definition of an Abstract Oita Type_ ~.:: ..... ~, .. ~·-···~·· .. 23. 
·. ~-: t ,? 

, 1.. Informal Description of a,Oata:''l'JH ... """ .... 1, .................. .; ........ 26. 
1. Terminology .. ,, ........ ,, ...... J1J1••···~•!1 ....... r- .. _. .... ~ .. ~ ... !',~•· .. • .. ·•..,··~~--·,.··· .. ••••• .... 28 .. 
2. Hlerarc.blca1·structure ......................... ~,..---•~·~·•••;. .. :to .. 't ............ ~ ........................ 28 .. 
3.. Mintmalil¥ Prape_rty ...................... .,.-,,:~ .. •·••~~...., ••• .-:lMl'.'.•~•--•, ......... lf<.................... 29 .. 

2 .. 
, ·t" , 

Formallsm ........................................ _. ................ '!:.·:~; .... :· .... ~~ ................................ 31 .. 
• ,, ., - ; --': l ~ , 

1. Type Algebras ···•1!••~~ ................ \9 ........ -............. 4' ••• ~~-..,:-:.~• ..... ,.;·.:~~.:-... -... ~ •• -......................... 32. 
2. Examples of Type· Algebras,. ............ ~ ........ ::: ...... : .... ~ ... ::: .... "........................... 35 .. 
3.. lnterpretalioR off....,..., .... ; .. ~~ .... ~;.~ .. , .... :, ... -ii•i' .. ...,.• •• ~1 ...................... ~ .. •· .. ~-• ........... 37 .. 
4. Observable Behavior ........................................................................................... 39 .. 

1.. Definitions of Observable Equivalen~~ ilJ\4I,. . , 
Distingulsflabfflty ; ... ~~.: .... ~ ... ~ .... :: ........... :/ .. : .. :.~:; .. L ....... : .................................. 41 .. 

2.. Reduced Algebras ....................................................................... ~.................... 45 .. 
. ,._ ' 

5. Bebf.'f•••~v--c.e oj, ~~ t.1.-111-.•r ... ~ .. ~P•~ .. •• ............. .... .. ... 45 .. 
6. Definition of a Data Type .......... ~-~•r-4~ .. •··~~••"AO••····............................................ 49 .. 
7. Observable Equivalence and.Oistlngulshabfflty of Terms ............... 51. 

3.. Exceptional Behavior of affahi~ :.;' . .,;.~ .. ~ ... ~ ........................ 53. 
1. Ass11~ptions a_bout Exception WP1 MM~a,-i•m ...... _. .................. 53 .. 
2.. Formatlstn ...................................................... ~ .... ~ .... .,.~,..~·~, ...... ~·••9; .. ~••· .......... !" ................ 58. 

1. Terms, Exception Terms, and:-.Wlf~lf;~• ... ~.................... 57 .. 
2. Examples of ~•u~.;r~ ~-...-~i .. "1'~-~ .. :~~ ...... , ............................... 58 .. 
3. Observable Behavior and~9~-,1J,\J ............ m .......... 59 .. 
4. Compa,~ with Geeu•Q'~ ~pp_...b · ......... , ............................... : ... 62. 

3.. A Simpler Approach ........................................ -~.'<-............................ · ...................... 63 .. 

4.. Mutually Recursive Data Types ... .... ......... .................................... 66. 



-6-

3. Specification of an Abstract Data Type ............... 68. 

1. Specification Language ••........................................... 72. 
1. Operations ······•················~·•·!••········~··~•!_ ... -~ ..... .-............... ~ ........ 73. 
2. Auxiliary Functiaril', ..................... ~;i.;,~.; •••..••••.••.•••••••••••.....•.••• 74. 
3. Restrictions ............................................................................ 77. 

1. Preconditions .................................................................... 77. 
2. Exception Conditions .......................................................... 79. 
3. Discussion ......................................................................... 80. 

4. A'xloms ........................... ; .................................... : ................... 81. 
5. Specifying Nondeter~ini,Jlc Operations .................................. 83. 
6. Specification-of MuiuaffyflecUrsiwDatar'Types ....................... 85. 

2. Semantics of Specification Lada- ~ ..... : ..... ~ ............. 86. 
1. Specifications without Auxiliary Functifffla : .............................. 87. 

1. Restric;llons ························••!••····· .. ·,~-.•~•,•~~·······••!••·········••'!'• 88. 
2. Axioms ······················••11•--.•·· .. •·• .. a;••·~-~····--··=-~··•••.-•···· .. ·········--··· 89. 

2. Specifications with Auxiliary Functions ................. ~ ................... 91. 
3. Semantics of a Specification •. : ......... ~•··~···~••.•.--••· .. •·• ................. 92. 

3. Specification of a Data Type and 
Equivalencf of ~i~ca"°""• -..,. ...... ;.., ........................ 94. 

4. Specification of Bool ..... ........ ................ ....... ..... .. . ... . . . 98. 
· 5. Properties of. a Speeificatton .~ ... ~ ... ;J .. ~ .......................... 99. 

1. CG11sist:ency -••••••••••.•••• -. ••••••••••••• -........................................... .•• ••.• 99. 
2. Behavieral-Com-plelefleas .•••.•.•••••. ;i ••• J ••••• .-.~.·.......................... 102. 

1. Pfftial laOtROrf)hic.EttUWalence ....•..•. .; •••••.•.••...••.•.•.•.••....••. 103. 
2. Isomorphic Embeddabllity ........................................... ., ... ;104. 
3. Partial lsomorpflfo Embeclclabillty ........... ~ ......................... 108. 
4. DefinitiOn ofSetravloral Ccm,'Pte,t~•• .~.~.,. ........................ 108. 

~: • "'. <~ •• : • 

6. Comparison With Related Worka . ................................. 109. 

4. Deductive System ·······················~···-················· 112. 

1. Pre.liminarles ........••••..••••...••••••••••.•••.•••..........••...•..•• 115. 
2. Theory of Data Types without Nondeterminism~ 

without Exce.pUonal Behavior .~·~····~-:.~~ .... ~ ............ ~..... 119. 

1 ~ Derivation of Nonlo9ical Axioms ••....•....•... ,.... ................ ....•.... 121. 
2. Equational Subtheory ··················· ... ~.:................................... 122. 
3~ Distinguts1n1bfflty Subflleory .......................................... ~...... 123. 
4. Inductive Subtheory ............................................. ; ................ 124. 

1. Infinite Induction flute ................. · .. ;.................................. 125. 
2. Rationale for an·1n11t11te lnducUon"ule .~ ......... ~; ................. 128. 
3. Use of the tnducttenlrUte ...... ~.~ ....... ~ ........ ~ ......................... 128. 
4. Specifications wttf\'Nohtdvlaf:PreciondltlOns 

for Constructor, ······••!"••············· .. ·9:••··· .. ···•······················· 131. 

5. The Full Theory ........................................................ ·-·•·~-·· ••. 134. 
6. Properties of a Specification ••••••.•••••••••••••••••••••••••••••••••••••.••••• 138. 



1. Sufficient Co~• •• =. ••• ~·•····••-·•···•'-"··•• .. •···•·••'ir-•• •••••.•••. 138. 
2. Completeness .•.. •.. • .•...• ••• •..•.• ••.. .... ••. .......... ... . ...... ... ... . ...... 141. 
3. W~lfbe'ft\'\1tdn•••' ........... : ..... , ....... · .... ~ ................................ 142. 

. . , . / :· _· ,·_ ~ _, -: . - . .. . 

7. Automation Of IND(SJ .................. _, ...... ,...,~••••.•····•~••.•··••t·•·• ... •.~··············· 143 . 
• • • • ' • cl- • ~. • i • 

3. Theory of Exceptions Without Nondeterminism ......... 144. 
1. Derivation.of .. onlogical Axioms . ........... rn••······i•-'h"'•···_.:: •• ,.~ ••..• ,·145. 

1. Restrictions Component •.•••.•••.•.....•.. '................................ 145. 
2. Axioms Compon_ant ..•••••••••• ~ ••• : •••• -............... ~ ••. ·., •••••• :~............ 146. 
;3. Definition of tf?o• ., ... ~ .. ••e:.•••·· ...... ~•~••·•··•'a•~•~-:-••~-•~•••-~~--•~•· .. ·•••.•····· 147. 

2. Equational Subtheory ............................................................ 149. 
3. Distinguis'1ability Subtheory ............... ; .......................... t••·· .. , 4$1-. 
4. Inductive Subtheory ..................................... :.:~ ..... :............... 152. 
5. Th~ F~, Tll9CJJY --.. !••·······•·~-,~•··~···•·~·,~-.:~••· .. •·••ll!••t,-.,_.~••····•··~·-·••---!'••· 168. 
6. Properties of a Specification .................................................. 157. 

1. Sufficient Completeness ....................... .................... ... .... 158. 
2. Complet.ness attCWel•~•': •..•.... oh.;.; ............. ,;, .... ·160. 

4. Theory of Nondeterminism ............. ~ ••• ~ •••• .: ... H ....... .: ...... 161. 

1. Transformation Procedure TR ....... - ....... ~ ..... •·•-··•· .. ~.............. 163. 
2. Th(S) ............................... _ ........................ ;;.·•·~····· ........ :,..._ •... ~ ........ ! ••••••• 187. 
3. Data Types with ExcepUonaiBettavtor ........... : ..... i ............ ~ ....... 188. 
4. PropertittaOf:aSpeelficatt4n •• .".,:; •..•...•• .,;. ... ~ ..... ~ ... ~ ...................... 173. 

5. Strong Equivalence o_f Specifications ....................... 175. 

5. Correctness of lmplementaUon ......................... 1.76. 

1. Correctness Criterion and, 
Overview of Correctmtss,Methocl ..... ,:~ ...•• ~ ...... ~~ ........... ' 178. 

1. Semantics Qfan.jmplemenlaUcm ................... ~ ........ , ............... 179. 
2. Correctness Method .............................................................. 181. 

1. Nondeferminlsm 
0

n ............................................... : ...... ~...... 1•82. 
2. DefiPlitiOn of Correctness ··i·•~··•····~ ..................................... 185. 

2. lmplementaUon Structure and Semantics ................. 187. 

1. Procedures - Approach I ........................................................ 188. 
•2. Procedures - Approach II ....................................................... 188. 
3. Properties of the Encapsulation Mechanism ....... .................... 191. 
4. Semantics of an Implementation .... ... ................. ... ... . .. ... ........ 195. 

3. Correctness Method ................................................ 196. 
1. Auxiliary Functions in a Specification .................................... 196. 
2. Preservation of Inv ................................................................ 196. 
3. Termination of Procedures .................................................... 197. 
4. Proving Restrictions and Axioms ............................................ 197 • 

. 1. Preservation of Equivalence Relation .•••.• ~ ...................... ; .. 198. 
2. Restrictions ..................................................................... 199. 
3. Axioms ....•....••..•..••.••...••••••..•.•.•..••.....•••••.••.•••••.••••.....•.•.•. 201. 

5. Nondeterministic Procedures ................................................ 202. 



-8-

6. Pseudo-Nondeterministic P-rocedures .....••.... ;........................ 203. 

4. Recursive and MutuaUy Recu rsive,J~p~e.menL.ttions .. 205. 
1. Recursive 1mplementations ................................................... 205. 
2. Mutuatry Recuriive 1,nptementatlon~ •. : •. ~·.:~:: .••• :~ ... : •.• : ....••........ 209. 

6. Conclusions ·········••·••--···········--··.;.•·•·•;· .... -•. -............. 210. 

1. Summary of Contributions .••..• ~ .................................. 210. 
2. Directions for Further Research ... ~ ............ : ........•..... 212. 

Re.ferences ........... · ....................... · ........ ~ ................ 216. 

Appendix I. Elaboration of Scope and<A-ssumptlons 224. 
• -i: ~ I ~ •• ~· ' 

1. Immutable and Mu.table Data T-ypee .............. ,. •............ 224. 

2. Ex-eeptional Behavior ....... ~.1 ••••••• ~~ •••••••• ••.•••••.•••••••••••••••••• 225. 

3. Nondeterminism ...................................... ~·-···········.. .... 225. 

Appendix II. D.efinitions of Afg-~Jcijc,Co~~,epts and 
Proofs of TheoreMatn-,Chapter 2 .~ ...•. 227. 

1. Congruence, Homomorphism, and Isomorphism ......... 227. 

3. Ela bo rat ion of the Def initiaa-ef :ileh.a¥io:r•"-Equivalence 
and Proofs ofTheorem•2'.6 and-:2:.81.;..;.·.~--~.,. .................. 230. 

Appendix Ill. Proofs of T-Net:fren,s·!'n_,9ti~tt?r4 .•.... 236. 
Appendix JV. Specifications of Dabffyp~$ ·used in 

Chapter ·5 ....... -...•. -.. -.:-~, ............ -.• -............ 246. 



-9-

1. Introduction 
. 

The role of abstraction, modularity and hierarchical structure has been well 

recognized in the literature on program design and construction [12, 66, 73]. Data 

abstraction, in particular, has been found to be a useful abstraction mechanism in the 

design and construction of well structured programs [51].1 Most of the recent 

programming languages encourage the use of abstract data types by providing an 

encapsulation mechanism for implementing them [65, 49, 52, 75, 45, 1]. It is necessary to 

develop a rigorous foundation for abstract data types so that the informal concept of an 

abstract data type can be placed on a firm and sound basis, and various aspects of this 

concept can be studied and analyzed.2 

In this thesis, we develop a framework for abstract data types. The central notion 

in this framework is the definition of an abstract data type. We develop a behavioral 

method for defining a class of abstract data types, called immutable data types [49, 52]. An 

immutable data type is defined as a set of behaviorally equivalent algebras having 

interpretations for the values and the operations of the data type. Behaviora11y equivalent 

algebras have the same behavior as observed through their operations. We propose a 

specification language for abstract data types. The semantics of a specification is a set of 

related data types sharing the common behavior captured by the specification. We make a 

clear distinction between a data type· and its specification(s). We develop a deductive 

system for abstract data ty,pes embodying their general properties which are not explicitly 

stated in a specification. We use the deductive system to prove properties of an abstract 

data type from its specification. We propose a correctness criterion for an implementation 

of an abstract data type with respect to its specification, and develop a methodology for 

proving correctness of an implementation with respect to a specification which embodies 

the proposed criterion. 

1. The .tenns abstract data type, data type, data abstraction, and type arc used synonymously in this thesis. 
2. Liskov and Zilles [47) emphasize the need for rigorously developing the mathematical foundation of the 

specification methods for abstract data types. 
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The main contribution of this research is a framework for atmractAlata types that 

is rigorous and that brings together various aspects of abstract data types in a unified and 

coherent way. Our approach is better than otliet sirnilar: attempts~ :in:. particular the initial 

alg~bra formalism of the ADJ group (23j- and the titegory theory formalism of Gbguen 

[20, 1. 30], because it is more in tune with the.waf;prograrilming'languages support the 

mechanism of abstract data type. The framework int6fJ)OrateS'ittiportant and useful 

features such as hierarchical structure and modularity.' · 11 'is' also·~broader in scope· as it 

handles data types with nondeterministic operations· 'and with . operatihns exhibiting 

exceptional behavior. We had originauy-developed the framework :without considering 

nondeterminism and exceptional behavior; Ho~ever; we did not encounter any major 

difftculties in extending it to incorporate nondeterministi(aWcf exceptional behavior. This 

makes us believe that our framework is robust and e~tenSJole 1brstudying_other aspects of 

data type behavior not discu~ in this thesis. 

Our framework wiJJ be useful to a designer of a>specifteation language for abstract 

data types as it provides a semantic basis for studyittg and 'd)m~aring soch . specification 

languages. It can be used to define the semahtks .of a: sr,&lftbititm language: It also 

provides a formal basis of automatic deductive systems for· abstract data types, such· as 
AFFIRM (60). It suggests an approach for studying and' ettentfi11g the method of 

reasoning about data types developed in the thesis. Other methods of-reasoningcan'1dso be 

developed using it Furthermore, this· research cllltiffes our intuitions about data type 

behavior and provides a fonnal basis· for them; as exatnples, the notions of consistency and 

sufficient completen~ advocated by Guttag · ·and·· Homing' (28}. and·· the co~ess 

criterion for an implementation [29, 40) can be stated fol'fuaffy ~nd unalyzecl 
Our research has been highly influericed'by'Pcano·s method of defining natural 

numbers and McCarthy's method of defining s~expr~:t57f.' We'1ate· intellectually 

indebted to Zilles (77) and the ADJ group (23), for their work on the lilgebraic approach for 

abstract data types, and to Guttag et al. [25. 28, 29) for their work on specification 

technique for abstract data types which emphasizes programmers' intuitions about data 

types. We cite other related works in Section 1.2, and mate how we plan'to compare these 
:.- :- -

works with that discussed in the them. 
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- .•' 

We first state the scope of the thesis and the assumpti~ns made about the data 
. -- . . ' 

~ • • • ~' ,,, '- ;! , • 1 

type behavior. The scope and assumptions are further di~ussed in Appendix I. Later, we 
' t . . . ., . ,-~ ' ~ 

give an overview of the approach taken in ~udying four issues, n~ely. definition, 
· . · '., ... : 1 · .:· ",F :-· . :. -->: ·· - . ,:3; .-: 

specification, deductive system, and implementation correctpess. 
• . -; 'l ' '. ; ;;_•~ 

1.1.1 Scope and Assumptions 

In our research, we . • have · considered immutable · data types having 

nondeterministic operations and operations exhibiting, aceptioD?I: behavior. Eve~ 

operation is~umed tobe·total and oomputabte:,see.f42}:fQr,aiJ)fecise characteriiation of 

computability on the vahres of a data type. It tormmares on evBl'l}' input ii\; its domain either 

nonnally by returning a value of its range type ort,y ,sigllalling an exce~ '1 

nondeterministic operation . has only ftnilely. many <:hoices 'OD an input If a 

nondeterministic operation signals on an input, it is assumed tobeaave,dctenninistiga}Jy on 

that input So, it doe9 not have a choice between signalling and terminating normally. on a 

particular. input Heoceforth; by a data type, we mean-an fimmatabfe data type with the 

above behavior~ and by an 'Object, ·we mean »innnuatble object or a Yalue. 

1.1.2 Definijion of a-Data Type . 

Our formalism for defining a data type is algebraic in the· style of ZiUes (77) arid 

the ADJ group [23). Algebras are a natural and-elegant ~ay :to define an immutable data 
·, ... 't;°•· 

type, because an immutable data type is informally a set of values and a set of operations. 

In .a programming language supporting ~ta types, ,the most ·important aspect of a data type 

to its designer as well as its user is the input o~tput behavior of its operations (37, 47, 25]. 
The values of a data type are manipulated only by its operations. Outside its 

implementation module(s), the values are viewed abstractly as sequences of operations. 

The details about the representations of values and th<! ,operations of a data type are of no 



relevance.3 To a user. two distinct representations are-bdla~y,idemicaJ ffthey·~not 

be distinguished by the operations of the data type. We cal1 thi~ view the .behavioral view 

of a data type. The behavioral · ~ew ~bstracts from the representational· structure of the 

values as well as from the multiple· repr~ntatic»is -of"a ·vawe f6r ·any' representational 

structure. It is ~ further abstraction on the view of a ~ta type adopted by ADJ (23) and 

Zill es [77] which abstracts only from the representatk:>nafstructure of the. vaJues. 

In a programming language supporting ~~-•~?!{L ~cl ~ierarchi~I $1Jcture 

such as CLU, EUCLID, etc., data types are implemented hierarchically one at a time 

except that mutually recursive data types are imp~te,ttogether.BSa group; data types 

other than those being implemented are assumed tE> ~ implemented elsewhereJ4 We take 

the some approach in defining :a· d$a type. ,Our deJiMtiona.l method .is hieran:mcal. We 

distinguish between the data type(s)•beint defmed:Md QtJ)er -data types used in the 
. . 

defimtioll. We can the data type(s) being defifted the defm«I type(s.) .. d ,QtheF dat,l types 

in the definjtion the defining types. The distinction botw~ ~ •fined ty,~ and ~jo.ina 

types is signifiamtbeca11se the behavior ofthe ~ of tlte,dflfi~.type is.pbserved by the 

operations which r.ettml:the values ofthe,ddiJting.~ ~ ,,.,~, p<>inted out by 

Outtag (25L ~ is the basis of.his definition ef)he,fllfficient·~letent:5$ J){Opelltyr We 
use the data type boo/~ which is self-ooetaiaed ••tdoes ,,_ .qave~y de.finjng types,..• 

the basis of our definitional method. We assume its definition and that all boolean values 

are distinguishable. In fact. any data type whose Vl1ues 1:81'l be distinguished· a, priori 

(outside the formalism) can be used as the basis. For example. any data type dir-ect.ly 
. - .. :,·. = }" ·'., ",•- .; ·.; -. : ,:· _, -

supported in a programming language whose values are distingu~able using the literal 

(co~t naming) mechanism in the programming "language is a soitable candidate. 
We classify the operations of a data type into two categories - the constructors. 

which construct. the values of the data type, and. the .observers, which return the values of 
,, •. l 

3. We will not be c.onccmcd about ocher iS$UCS. such as efficiency of lhc operations. etc., relevant to a user of 
a data type. Our formalism is limited in this ielile. , . · . , ' . . 
4. Mutually recursive data typcS arc different from mutually recursive implementations; see Chapter S for~ 
detailed ctisnnskJn. 
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the defining types. A value ofa data type manifests its behavior through the observers witp 

the help of constructoIS. 

Our approach fo~ modeling the exceptionaj behavior .emboq\es a practical view of 

exceptions. Each exception is named, and can have arguments that carry information to its 

handler from the: place where it i~ signall~_.; _ The ~ceptional behavior-of uie operations 

can also be used to distinguish among .djtTerel,ll, v~ . All': operation can distiqgu~~ 

between two _values by sigaalling.;Qn_ Ofle:valµe apd-~iootigg_._normally on the. other 

value, or by signalling .ditTerent exc~ptions on differet)t val~ 

The model used for non,eeterminisn,J is .~11\Ple. . Jf a Jl91ldeterministic operation 

behaves nondetenninistically on an input:(i.e., it ba~.a ch9iceto return one of the many 

possible results), we expect it to return every possible result. We do not consider ho~ tlwse 
~ults are scheduled by an impl~mentation of _the operation. Two operations having 

different ar11ounts of nondetemt;H\~m. are consipc;J:~d to hflv,e,differel)t observabl~ be~vior 

because for some input, they: .can always reU¥::n d~guishable results. Data types with 

operations having different amounts of nondetennim~ are-~ co11sidcred_ different.·. For 

exampJ~ consider a . da~ :type finµe sel of ~l?Blf& witll. ~. llQlldeterministicooJ)eration 
- • ;; • • - " • " . • .j, . • 

Clloose which non~rministically picks an a~i~lel»e~ U'Qffl a nonempty fipi~ set 

of integers given~ an argument This data type.~-differ4mt ~~er,~imilar 4Ma,type 
• - o, " • '. • ' 

with the saroe set of operations which also bav.e the saine·· .~ widl tl\e exceptio~ of 

Cltoose which is de~nninistic and returns tile ~iJnijlll int.,;, of a .nonempty &et 

Furthermore, both data types are different fm0})1et Jl ~~,da~ type with the $aUle set of 

operations .. ~ the ~r .two types elCept that Choose bas. a ; Ii~ am9~ of 

nondetennin~m: Clloo$e non®teqninistically picks between tpe maximum and minimum 

integers from a nonempty set. 

1.1.3 Specification Method 

A specification is mainly used, among other things, for reasoning about a data 

type. So, our specification method is axiomatic in the style of Standish [69), Hoare [38, 39), 

Guttag [26, 29), Nakajima et al. (62), etc. A specification embodies infonnation hiding [66), 

i.e., it only specifies the behavior ·or a data type. Our specification method is hierarchical. 
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Data types are·specified incrementally, one at a time: a specification uses the specifteations 

of other data types. We believe that specifications should be modular and wen structured 

just like programs; otherwise~ specifications or large problems become unmanageable and 

difficult to understand 5 

A specification expr~ the propentes partic'ular to the data type(s) being 

specified. It specifies (i) .the domain, range, and the exceptions with the types of their 

arguments, if any, signalled by every operation, (ii) the normal behavior as well as· the 

exceptional behavior of the operations. The genera) properties of data types which hold for . 

every data type, for example, the minlmaliry properiy which requires that every value of a 

data type is constructed by finitely many applications c)fits constructors, are not included in 

a specification. 

The normal behavior of the operations is specified as a restricted set of formulas 

of first order multi-sorted predicate calculus with identity.· A typical formula is a 

· conditional equation relating different sequences of operadoos under a condition. A 

specification can use a finite set of auxiliary functions g)· that any data type with a finite set 

of total deterministic computable' operations can be specified m this ·way (4lJ. · A 

nondeterministic operation is specified like a deterministic opdatien hy expr~ing;the 

properties of its possible results on an input rather than ·by·explicitly specifying its relation 

which holds for·all posgble results of the operation·and;the mtmtand does oot hold for any 

other value and theinput For example, in case of the data type finite set ofintegen,tlte 

nondeterministic operation C~ is specified by relating ftsi pamble results· to: its set 

argument, instead of explicitly specifying its· relation Clloose_p: Set-Int x Int--> Roel 

which ~Ids for a set and an integer if and onlf if Chose 'tan retmn the integer when 

applied on the set 

The exceptional behavior of the operations is specified as a separate layer on top 

of the normal behavior. · Following Guttag [31), if an operaticin signals an exception, we 

S. Durstall and Goguen (7) and Nakajima ct al (62) also ·empbasizc,dle ~ foI structured spccificaainn& 
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specify the condition on its input under which , the ,ex<:eption is, signalled.6 The 

specification language provides mechanisms ·to specify the ex-ceptions which must be 

signa1led by the operations as well as the exceptions which the operations can optiooaJly 

signal. The specification also a1lows a precondition on anoperation·to be specified, stating 

that the behavior of the operation on inputs not.satisfyingthe .. precondition is notof·aay 

interest A fonnula expressing the nonnal·bebavior of,,the operations helds only·if the 

input to the operations in the fonnula satisfy the! specified, preconditions and. if dJe 

operations do not signal; it thus has a restricted intc,pretatioa.- A formula specifying the 

nonnal behavior is called an axiom. The preconditions and the exceptional behavior of-the 

operations is specified using resirlc.tiom. 

Our approach of specifying data types, is, thus different ofrom those of Zilles [77) 

and the A DJ group (23). In -their approaches. a· specification of a: data type is a finite set. of 

identities (or conditional identities) presenting the setdf algebras serving as the definition 

of a data type. These identities are mterpreted ,exactly the same way as in Universal 

Algebra {4, 10). We are also not- constrained to employ only "equational" reasoning; 

instead, our remDning method embodies the general,properties of data types as is discussed 

later. 

The semantics of a properly designed specification is a set of related data types 

which differ in the behavior intentionally' not captured by the specification. If an operation 

is specified to be nondeterministic, the semantics iO£ • specifi~ includes,data types in 

wltich that operation can have . ., much ·nonoemnninism.as desired.insofar as the opetatien 

behavior satisfleS the axioms and restrictions exp,essc,d .in '.tiao,speciftcation. We defi~ 

equivalence _among SQecifications. We, also state when a, data type ,can be (p8Cisety) 

specified in the proposed specification language. We define 'two important properties of a 

specification: The consistency property. which· states \\'hether a specification specifies any . 
data type; the behavioral completeness. property. which gu~ees that the observable 

behavior of the operations is not left unintentionally unspecified. These properties ensure 

6. However, this way of specifying the exceptional behavior of the operations may be overly restrictive, as for 
an operation, the subset of inputs on which it signals a particular cxccptionmay be vccy complu to specify; 
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that various components of a specification, have the daired structure~ Cllecking for these 

properties. is a step towards ensuring that the specification captures Ute intuiuon of a 

designer.· 

In our research, a clear distiaction is made between a data type and its 

specification. In most of the literature on, speciflaltion techniques for data: · types 

(47, 25, 28, 29, 61, 77, 48, 37). this distinction is,either not giade or blurred if it is implied. 

Most of the literature does not explicitly define what ,a data tyf)e: is. The ADJ group, (23) 

was the first to our knowledge to explicitly &tate:in their formalism a definition of a data 

type and make this distinction~ We believe the·clistinction between a data type and its 

specification is useful and necessary in a formal treatmentofdata types. Given a definition 

of a data type, different specification tedmiqud can be developed .to•serve different 

purposes, if needed, and their semantics can be, given· ,iR terms of data types. Different 

methods of reasoning about a data type can, he developed-incorporating the genetal 

properties of data types with the definition of a data type strving as their basis. The 

question of whether a given data type can be specified using a particular specification 

technique can arise only when this distinction ismade;:OBly theft mn:different specification 

techniques be compared in their exp~ve power. Only then it is meaningful to discuas 

the properties· of a specification ·technique. such-·•,. the ;rtase . of expremon, 

comprehensibility. minimality. etc., (47). tSee,{34} ·fbr a>simiar discussion for programs.) 

A specification plays an important role in our resesrdl. ·-ltiis used as a standard for 
. . 

checking the correctnm of an implementation swell as, fi>r .dmivina properties ofthe·,data 

types specified as is discussed in the· next twosulDtillaioas. ft is an intefface;between the 

programs using the data type and the· -program(~ implementing the data type. The 
• • • J 

specifications of abstnct data types are a.-m.,r component-of a ·PllOlf8lll verification 

system. Our specification method am. be used to spe,;ify, the •behavior of 1he data 

compopent of software designs; questions a11,Haq.uiries ~t the- data in a ,design. can be 

exprac;ed and analyzed using tbe deductive system discussed :in the DCKl subsection. (See 

the two survey papers on specification methods [47. 48)~ where the. need for writing formal 

specifications is discu~d. Guttag and Horning [32] discu~ the importance of formal 

speci~tions as-a design tool.) · 
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1. 1.4 Deductive System 

As was stated earlier, one of the main reasons for designing a specification is to 

have an implementation independent description of the data type that can be used to 

reason about the data type as wen as to reason about the. designs and programs using the 

data type. We propose a .deductive system based on first order multisorted predicate 

calculus with identity for deriving properties of a data type from its specification. The 

deductive system embodies the general properties of data types which are not explicitly 

stated in a specification but assumed in its semantics. These properties are derived from 

the syntactic structure of the operations. 

The deductive system has an infinite rule which captures the minimality property 

of data types. The deductive system is powerful enough to prov·e inequalities. We 

axiomatize the general properties of the exceptional behavior of the operations. Properties 

expressed using nondeterministic operations can be proved. We construct a theory of a 

data type, which is a large subset of its first order properties, from its specification. If a 

specification specifies a set of related data types, every theorem in the theory constructed 

from the specification holds for each data type in the set 

We define three other structural properties of a specification, namely, sufficient 

completeness, well deflnedness, and completeness, based on what properties of a data type 

can be deduced from its specification using different fragments of the deductive system. 

We precisely state the sufficient completeness property defined by duttag and Homing 

[28] for a restricted set of specifications and extend it to specifications in our specification 

language. This property requires that the behavior of the observers on their intended 

inputs can be completely determined from the specification by purely equational 

reasoning. We relate this property to the behavioral completeness property stated in the 

previous subsection, which is model theoretic and which requires that the specification 

compl~tely specify the behavior of the observers on intended inputs. Reca11 that the 

· behavioral completeness property does not say anything about what can be deduced from 

the specification. In this sense, the relation between behavioral completeness and sufficient 

completeness reflects the power ofthe equational fragment of the deductive system. 

The well definedness property is stronger than the consistency property, because 
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the wen definedness property not only requires that a specification 'specifies at least one 
data type, but also that it (specification) is modular in the ~nse that_ it preserves the 
specifications of other data types ~sed i~ it · , , · · · · '· . · 

' ' 
The complet~ness property is stronger than the suflkient complete~ess property, 

since in addition to the requirement that the behavior of the obseh'ers ~ be deduced on 
' > ' 

any· intended _inpur" by equational reasoning, it also requires that the equivalence of the 

observable effect' of. ,the constructors on. intended - inputs can -be , ded·uced from· the 
> - , ' 

specification by equational reasoning. 

1.1.5 Correctness of Implementation 

We state the correctness criterion for.-an-implemematiorrcoded'in a programming 

language with respect to a, specification. as a relation ~n the semantics of the 

implementation and the. semantics ;0f the speciflaltion.c . &ougldy. speaking. a. oonect 

implementation implements one of the data·typeS insthe semaotics of a specification. Our 

correctness aitcfion. is weak as it does, not- require a. correct 1111plementaticm to have +he 

maximum amount of nondeterminism specified:lwia·.«:i~· • -· · 

We develop ·a method ·for proviBg mrredacss of au, imp]cmentation with respect 
to a specificaaion which-emb()diatbecorreetaesa,~ The1Ddnod requires. among 

other th~ that the procedures implementing the .q>erat.ioBs .,satisfy .the. axioms aad 

restrictions in dJe. specification• whm appropriatelJ. :intefl)fdecl: -· We thus provide the. 

formal basil of the cooectam tDcthoctpmposed b,y-Outmg:ct al {l9l and ,extend it!{>

s,arifications specifying noftdetcmrinaic opetmion~abaopetatioas. •hibiting exceptiOPal 

behavior. 

We distioguish among different pmcedunts,implenlenfing an :operation specified. 

to i>e ~inmic. since the nondeterministi£' betiam& ofl an operation on abstract 

values tan be implemented by a, deterministic,prodedureJHbthei representation of thae 

abstract. values that returns ditTer~t results on different but equivalent representatiolls. 

We call a procedure RQnde1ennillistk (respectffely" delemilnisllc) if it is: nondetermin~ 

(respectively~_detenninisuc)and•it-retums eqai~J>t msultsoaequwaJe~.representation& 

Otherwise, if a ·fJl'0CC(.iufe: rcturu different{results()(l ~tl'fl'ieStlltabOn~ .· then it is 
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ca11ed pseudo-nondeterministic irrespective of whether it 1s detenninistic or 

nondeterministic on the representations. We discuss the correctness method for these three 

kinds of procedures implementing an operation specified to be nondeterministic. 

1 .2 Related Work 

In this section, we discuss different definitional and specification metholls for data 

types, briefly stating the major differences as well as the main thrust of these works. The 

detailed comparison of these works with ours is contained in the rest of the thesis where we 

discuss various topics. 

_ The definitiol)al methods for data types can be broadly classified as (i) the 

algebraic or model approach, and (ii) 1he axiomatic approach. ln the model approach, a 

data type is defined as an algebra satisfying certain properties, or as a set of such algebras. 

ADJ [23] defines a data type in this way. Though Hoare [37], Zilles [77], Guttag [28], and 

Berzins [3] do not explicitly define what a data type is, their approaches suggest that a data 

type is defined using the model approach. Our approach is also the model approach. 

Nakajima et al. [62] take the axiomatic approach; they define a data type as a first 

order multi-sorted theory. Recently Nourani [63] has also discussed the use of a first order 

theory for defining a data type. Though this view of a data type is useful in program 

verification, there is no e:Xplicit model of a data type to match with the intuition of a 

designer of the data type. If a first order theory is interpreted as in Logic (16) and its 

models are taken as the models·of a data type being defined, then there are nonstandard 

models for a data type, which are of no relevance to its designer. A nonstandard model 

does not satisfy the minimality property of data types discussed in the next chapter. Hoare 

[38, 39) has also used the axiomatic approach for defining a class of data types. ·· 

A survey of specification techniques for data types can be found in [47) and [48). 

The specification techniques can be broadly classified into three categories based on their 

approach: (i) the· model approach, (ii) the algebraic approach, and (ii) the axiomatic 

approach. The model approach is used only in case a data type is defined using.the model 

approach. A -data type is specified by presenting one of its models. Berzins (3) has 

formalized and extended the model approach originally proposed 6y Hoare [37). He has 



-20-

also related his research to other works followmg,U.,:modetap_proach. __ We .di~uss here 1he 
algebraic and axiomatic approaabes.,, 

The·algebraic ,approach has been proposed by, ZiHes, {77) and the ADJ group,(23); 

in this approach. a set of algebras defining a data type is presented as a finite set of 

identities or conditional identities. Burstall and Goguen (7) and Goioen [2t)f~ify-a data 

type as an ~lgebraic theory. 

The axiomatic approach for sp~ifying a data type can be used for either of the 

two definitional approaches disc~- above. · If a data type is defined using the model 
- . 

approach, a specification using the axiomatic approach 'consists of the 'properties ~f the 

models of a data type. Otherwise, a specification CO!}Sists of a subset of the theory serving 

as the definiti~n of the ·data type ... The axiomatic .approach· 'followed by Nakajima et al .• 
; . • • . - . • - . : ·. ~: . ( •'. :· :, j . ~ ? ' . .• ." • ; . 

Hoare (38, 39). and Standish [69) uses the full first order predicate calculus to-specify data 

types. 'fhe approach advocated· by Guttag et al. uses a restricted set_ of formulas, ·namely 
. . 

equations and conditional equations. 
. . 

Our approach ·is also axiomatic.· A ~itication· expr~ the normal-behavior of 

a ·cJata type(s) (which is a set of a~ebras) as ~uation~ ·ahd -~o~ditional equatiorii and its 

exceptional behavior ~ restrictions: As·~ sta~ ~th~ pretioui; sectio~.-these formulas are 

interpreted using the restrktions in a chWeknt ~Y th~ in -the algebraic approach. In 

contrast to the specification m~tlmds p~: b; N~ajima 'et ai .• Ho~. _and Stan-dish. the 
-. ·.i' ,· • • ' , • • - ~ 

general properties <?f data types are not explicitly stated in our method A specification -

provides an incomplete (in tf:ie sense of Logic) first order axiomatization of the data types 
· · - · _ . . ~~!r ·:; ~, , __ ""'!'. :'f· · _·, ; :.---- ., . · , t -

~ing specified. From a prope.;ly designed specification, it. is: possible to derive most of the 
- - ,. , . ~ 

interesting properties of a data 'type needed. in prognutl venticatloa 
. . . . 

The major foc;us of Zilles' worlc and: the ADJ group.-s w~rf h'as been to extend the 

f:beory of heterogen~s algebras to capture tile m~ning· cif'\iata· :ty~. They have not 

· investigated how to use the definition of a data type for -proving properties of programs 

using 93ta types. Zilles [76) has su~~ed an ad hoc rileth()d ,~/establishing co~tn~ of 
' . . . . ;_ ".".. ,. . 

. . . . . . . . . -;._ :,,_- ,- . . / ,.~-- - '_ , ' . ~ . ; . 

an implementation of a data type; however, the method as well as its foundation have not 
, .••• •.. f :,•e_;,~,.~,c:·:_j,.,pi ?, ••: 

been fully developed. -The ADJ group and Ehrig" et, ~l [lSl hive proposed· an algebraic 

approach for establishing the correctn~ of an iinplemeoia1iori of~ data'type in which they 
- ·- .: i 
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have attempted to incorporate the aJgebraic semantics•of Ute control structures ,of the 

programming language used for the implementation. Although the ADJ group's work is 

rigorous, there are two main problems with it: 

(i) it has not embodied the view of data types taken in programming languages, and is 

thus useful only for a small set of data types. and 

(ii) it is complex. 
-, 

The approach taken by Burstall and Goguen [7] seems more promising than the ADJ 

group's approach from the viewpoint of program· verification.·but, we have been told. its 

category theoretic·semantics again seems to introduceUnneeessat'y complexity (30). 

Outtag et al. have focused on using specifteations for p,ovitlg properties of·data 

types and programs using data types. The _nice aspect of their epproadl is that it captures 

the view of a data type taken in- programming·lattguages. OUr research fonnalizes •. provides 

a mathematical basis fur, arid extends their approach. 

The ADJ group [23) has been the fim to iltvestitate_ rigorously the .exceptional 

behavior of a data type. In their method,' the set of vaiues of every data type is extended to 

include a distinguished value. called error. Using special auxiliary '.functions which test 

whether an arbitrary value is an error, they specify tlwf~xcer,tional and nonnal behavior of 

a data type. Goguen (20) has enriched and strutturect-their approach:, Our approach is 

based on Guttag's receht suggestions -for separatittg the exceptional behavior of a data type 

from its normal behavior [31). 
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1 .3 Outline of the Thesis 

The second chapter introduces a formal~Jor defining a data. type. We first 
' ~ . . - -~· 

discuss the fonnalism for data wpes assupling that lhe opemtK»IS 49 !l]Q\ signal exceptions. 

Later. we extend the formalism to incorporate.the ~ptio~l,Qe~v,iorofthe <;>perati_qns._ 

The third chapter describes the specification language. gives i~ ~Jllan~ and 

defmes the consist~ncy and behavioral completea~ prQPerties .of a specification. 

The fo~rth chapter disc~the deduaive sy~ We.diSCUS& how a theory ofa 

set of data types serving as the semantics of a sp~q1tion; can l?e constructed from the 
specification~ We fir.st describe the deductive,~~tem for.specifications specifying neither 

OODdetenninistic operations nor the excepti(ma), .behavior of the ,pperations; later. we 

di~uss specificati<>ns specifyj~g·the exce~nal.lld:la,vior of lheOP,~ratio11s, .. and .finally. we 
• - • " • • -• ' • • I ~.. • a.. •••• _. 

incorporate nondeterminism. We disc&&.~ de4ueti~,syste1U:incrcmentally introducing 

its various components; we first discu~ the equatiopal tl;leory. -tb~n the distinguishability 

theoey, lat.or the inductive theory. and finally. the f.U.thtory. 

The fiftit chapter.· discusses a (X)ll'eC~ . cri~on .· for an . implementation with 

· respect to a specification and a methodology .embQdymg ~ cri~pp. Tile «>rrectnea pf 
recursive and mutually ~ive implementations • aJsQ biiefly dilwsse,d. 

The sixth chapter p,esents couc,lu~$ and dir~for ~rt; ~ 
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2~ Definition of an Ai,straet Data Type 

In this chapter, we deve1o_p a formalism to define an abstract data type.· We take a 

behavioral view for definiog a data type in which ~v~o·, vaJue of,Uie ~ ty,~ is cpnstru~d 
' . • . - , • "'. l l • . ' ~ ~ 

by finitely. many applications of its constructors an~ th~ v~lues are distinguishable only 

by means of its operations. We adopt.the modetap~: A,dal,a tfpe ~~ d~fineq to ~,a 

set of behaviorally equi.valent type algeb,ras. where ii. type, algebr~,, ~ an extended 

heterogeneoijj ~gebra with a4ditional. prop4rties. neede4 '4>: ~09'!l _data types. · The . 

syntactic structure of a data type determines the str~f.µf~ qf ti,v~ ~lgeb~as i11 th~ s,et. Every 

type plgebra in the ~ is called a mo(:le,l ~f the-~ ;'«ft!· ,\ lll94el prqvides an explicit. 

m~aning (interpretation) for the values and· the ~t.i9JJ~ of a_.4~ta t~pe; in this way, it 

captures concrerely the infonnal. d~iption Ji ~ ,,~. type ip our iwll;d. Th~, model 

approach for defining a data type, is closer to ~ ~ip;tio'): qf; A ,l?~O&r..\mmer . than the 

axiomatic ijpproach-a., in (62, 63), wher~.a data W~.i~4sf~d • ~ f)fSt;order theory. 

The .. crucial concept in the definitJ<w:· of a. ... '¥P~ is .that of ~avioral 

equivalenee of type algebras. The defmjµon of ~h;iviQ¢, ~uiva)e~ captures the 

· informal. notion that two behaviorally equiv*Jlt,ty~ ~r~ ~e tlle same b#lavjor as 

observed .through their operations. We,ar~ ~ter~-inh~v,,1.the,,ipterpre~~ons of the 

values and the ope~tions ·ef a ~ type in a ~; be,hav~ a9d llpt .ln ,.J19w .«iey ar:e 
" . - ., -

represented. We have decided nottQ pick a ~lar. m~IJo _be~ definitiOIJ of aaata 
, - - ,. • ·- ~ < •• -- ·-' !,. • :. - • - - •••• • • ·,' 

type because we do not want the irrelevant details of the model _lR,;l.w ~~ ~!t\lJ)\e 

data type. We ,have. Em-JY oonsidered the inpukoutput beh;iviqf -Qf ~~,operations of a data 

type. 

Behavioral equh:alence abstracts-frofn (i) multip~ rep~n,t.ations of_ a value for 
~ " ' '~ . - ' ' . 

a representational structure as well: as from. (ii) llle: rept~P,~n~I ~T4Cture of the values 

in an algebra. Thus type algebras differing .only in the representational structure of their . , .. 
values are behaviQraJly eQ.llivalent; furthe"11ore. eype,. algebras using the same 

• - • e • - ,; • 

representational structure but diffe{ing in the number ofrepresentations a value has are 

also behaviorally equivalent The property (i) above is achieved by defining a congruence, 

called the observable equnalence .relation. on a ty,pe_.al~ ~- the property (ii) is 
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achieved by the standard algebraic: concept of i~iam~, The:. distinguiill~ility 

relation, w~ich is the complement of the observable equivalence relation, on the 

representations of the· values of the data type· is defWted' induffl\#ely · in tenns of the 

'distinguishability of the representations ofthe valueslofthe&fining types of the data type. 

(The basis of this induction is any data type witlt no'tfefining·types, and in particular, the 

data type boolean,·wh~ two values, tnuHinH Ja}se/are dtm1e<rto be distinguishable.) 

Two ·representations are distinguishatile if ·and -only if there is a sequence of operations 

h~ving an observer f$ the outermost operatidn~ thtit produces ,~nguishable resu~ when 

applied separately on tlle representations. 

If the operations of a data ·type signa1 ne-eptioftl then' two·rt!presentations can 

also be distinguished due to the exceptional &ehaviof 1of the operations. · lf ·a 9equence of 

operations signals on a representation' and 'does ne1::-silflal on the,otJter~ dt if it signals 

different exceptions on the two representat-ioos-., the1f they are distinguishable. 

The model -used ·tbr' nondetemrinism · is :siftlplt. : ff a nondeterministic opetatioo 

behaves nondeterministically on an itrpot (i:e:,· it; has a chokeJto retum· one ·of the many 

possible results), we exfjectit to return every ~''fdult. '\Ve--do not consider how ttlele 

results are scheduled by an implementation of •the operation. Two -operations· '-aving 

different amounts of nondetenninism are tbnsidetelt toliave tfifferenrobservable behavior 

because for some inpui they can always retum~ ... e-.tesult.s.- The definition of 

distinguishability relation -ori- representations of1he values of, a data· type incotpOrates · dlis 

-view of nondeterminism. · · 

In the first section, we 'introduce · birmiilolagy, · define -. hierardtically structured 

data types, and informally discu~ the minimality property of a data type. We ~me:dafa 

types to be hieratehieally structti~cl' and defined 'Me· at &-'time: There are however no 

technical problems· iti our· formalism in bandlifll·· rnutilitlly recuBift data types· which -are 

not defined separately. We outline' the simple extensions of the formalism· to such· data 

types in the·last section of the dlapter:· lJntil the point where we define a data type;we 

have used the notion of · a data type in an inl!Jmtal: · way to 'motivate the · fonnalism 

developed. . 

In the second section, we first introduce the formalmm for· defining a -data type 



- 25-

assuming that its operations do not signal exceptions. Our definitional method is 

hierarchical; we assume that the definitions of the defining. types are given. We motivate 

and discuss in detail the distinguishability relation on the represehtatiom of the values. We 

then precisely define the behavioral equivalence relation on type a1gebras. 

In the third section, we incorporate the exceptional behavior of a data type ·and 

discuss extensions to the formalism introduced in the second section. We extend a type 

algebra and the behavioral equivalence reJ~tion on type algebras to c~pture the normal as 

well as the exceptional behavior of the operations. We cpmpare our approach with 

Goguen 's approach of modeling the exceptional behavior [20. 21). · We also formalize a 

simpler approach for modeling the exceptionalbehavior,which has,qeen~nerally •med 

in the literature on algebraic specification of data types [25; 27, 77, 23i···We compare our 

definition of a data type with the definition used by the A_DJ group (23) which abstracts 
' : ~ -~ ; .. -'. ' ';; .: ' 

only from the representation structure of the val~es in a type algebra. 
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2.1 Informal Description.of a Data Type 

We use tile data.type finite set of inlegers for illustration; let Set-Int be its nam_e. 

Set-Int has been widely discussed in the_ literature [37. 76. 74, 31). It-has the fo11owing 

operations: 

Null a constant (or 0-ary operation) returning the empty set of integers; 
Insert constructs a finite set of integers by •adding a given ·mteaer' t:o a given 'finite set of 

integers; 

Remove constructs a finite set of integers by deleting a given inteacr from a given finite set of . ' ' 

integers; 

Has checlcs whether a given integer is an clemcrit·o( a given finite set of integers; 
c:-~ results in an integer givina the size uf a given finke s,:t ofinfe&ers 

In addition, we assume that Set-Int has an additional operation Ctioose, which has 
non-deterministic behavior. Choose returns an arbitrary elemen{rif a given non-empty set 

of integers: for the time being, we arbitrarily assume that Clloose returns the integer 'O' for 

the empty set This behavior of Choose for the empty set may not be adequate for some 

applications. In Section 2.3, we modify Choose so that it signals.an exception for the empty 

set. 

2.1.1 Terminology 

To simplify the mathematics, we ~ume that an operation has a cartesian product 

~ibly empty) of data types as its domain and a single data type as its range. An 

operation having a cartesiao product of n data types (n > 1) as its range can be viewed in 

one of the foJlowing two ways depending on whichever is more convenient: (i) The 

operation is modeled as a family of n operations. each having the same domain as the 

original operation and a different type in the cartesian product as the range. or (ii) the 

cartesian product is viewed as a single type. We use the first method in the thesis. 

Let D be the name of a new data type being defined. and n be the finite set of 

symbols naming its operations. Let A' stand for the set of names of data types appearing 

either as a component of the domain or as the range of an operation in o. Let A be 
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A' - { D } .1 D is the defined type and every data type in A is a defining type of D. 

ln order to include the syntactic specification (i.e.. the domain and range 

specifications) of the operations. we index every operation o in o by a pair (4, r). where d is 

a string made from the alphabet A' and r is an element of A'. d specifies the domain of a 

and r specifies its.range. 

Let Int stand for the data type integers and Dool, stand for the data type boolean. 

For Set-Int, A = { Int, Bool }, A' = { Int, Dool, Set-Int} and 

o = { Null, Insert, Remove, Has, Size, Choose } . The index of Insert for example is 

(Set-Int · Int, Int). 

As is discussed in the first chapter, the operations of D can be classified: as 

constructors and observers. Let oc be the subset of o consisting of all constructors of D 

(reca11 that a constructor is·an operation having Das its range). For example, Null, Insert, 
~-- ' ... 

and Remove are the constructors of Set-Int. The constructors construct all the values of D. 

Some constructors con~ct a value of n using c»liy the values of the 'defining types of D. 

We can such a constructor a- basic constructor. For example, Nan is a basic constructor of 

-Set-Int. Every data type is required to have at ledMebusicconstnwtor; otberwise, o·will 

not have any values. 

Let n
0 

tJe,the subset of o consisting of all observers ofD. An observer examines 

the values of D; it takes at least one argument of type D,-andiretums'a:.value of a defining 

type of D. For example. Has. Sitt, and Cloose are the observers of Set·Iilt Every 

inter~ing data type must have at least one observer<O otberwise there is, no way to 

distinguish m'ROilg·different values of 0(25) other than_by the operationssignalling on the 

values., An observer is also caHed an inquiry operatiollf17]. 

We thus ~ume~that every operation of 1) either :result:$ in a ,value of D. or takes 

an argument of type D, or both. We consider a data type having an operatiOft not satisfying 

this requirement to be not properly designed.· because the behavior of such an operation 

· does not depend on the data type. 

I. Henceforth we wi11 not distinguish between a data type and its name, and between an oJ)Cration and its 
name. unless needed. 
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Let o
0
d stand for the set of nondeterministic operations of D. We allow any kind 

of operation. an· observer or a constructor, to be nondeteFtninistic. In our experience, 

.however. we have found that a nondetenninistic operation is-often an observer. 2 

2.1.2 Hierarchical Structure 

We define the fol1owing two relations on a set of data types for capturing the 
' : ~ 

dependency structure ~ong the data types: 

Def. 2.1 D directly depends on every D' € A, and does not directly depend on any other. data 

type. I. 

Det 2.2 D depends on D' if (i) D d1rectly depends on D', .or (ii) there is a D" such that D 

directly depends on D" and D" depends on D'. I 

The direct dependencJ' re!Dlion captuRs one lev~ of hi~mcaJ dependency. The 

dependency relation is the transitive closure of the direct·depen<lency rel~p. We define. 

(D)+ = {D'IDdepena,oaD'}.aad 

(D)* = (D)+ U{D}. 

lfdata·types are designar-so that every data.type on .which D,d,pe11ds is 3SSl)med to be 

designed independently of D. then the. dependency .. relation oa CD)+ ,l"ill: not have any 

cycles and is a· strict partial order on -. types., ,Jn .·iUCh ~-"ctse~. data. •ypes;are ·said to .be 

hierarchically Sf/WIUl'ell., and they can be ~Jncremdttally, ~ tt ~ tune. Pata ,types 

on which D depends do not:have to be designed bn1ny particular order relative to D; any 

approach. for example top-down, bottom,-upi. etc.. js cotnpatil)le. . Unte. stated otherwise. 

we eume in tbethesis,tbat-deta:types arehienarehkally stiucwred. 

We aaume· that U. paniaJ,ordff-induced, by: the1~ncy rel~n on. tJ)e set of 

hierarchically structured-data types has finite descending d)ains. 1he bottom of every 

2. In case a constructor a is nondeterministic. a is usually derived with respect to a subset 08 of deterministic 
COll!llructors (~ ~ Oc) in the sense dllt • does aot retm'll any .wluc .Jbal cannot, be consuuctcd'.uaiag the 
constructors in o1 . 
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chain is a data type having no defining type. Throughout this th(,-sis, we assume that the 

data type boolean does not.have any defining type; Dool serves as the bottom element of 

the chains in the partial ordering for all interesting data . types {IS will. be clear from the 

discussion in Section 2.2.· (The definition of Dool i$given in Section 2.2.) We will often use 

the structure induced by the dependency relation on the:set of data types for inductively 

defining properties of data types; as well as for pmvinj properties about data .types. Boot 

will .often serve as the basis step of such definitions,0and proofs (in: general~ data types 

having no defining type serve as the basis). 

2.1.3 Minimality Property 

The requirement on a data type behavior imposed because of the modularity and 

good program design considerations that its values be manipulated only by its operations 

translates to requiring that its values be constructed only by its constructors, possibly using 

abstractly the values of its defining types. Furthermore in a computer the values can be 

constructed only by a finite seque'!ce of operations, '.iO the values of a data type constitute 

the smallest set closed under finitely many applications of its constructors. We call this 

property of a data type the minimality property. 

We require that every data type under consideration satisfy the minimality 

property. This requirement constrains the implementations of a data type to be protected in 

Morris's sense [59). An implementation of a data type defined in a strongly typed language 

that hides the representation of its (data type) values froin its users by providing an 

encapsulation mechanism, as in CLU, ALPHARD, etc., is· protected The minimality 

requirement does not rule out data types defining 'infinite' values, insofar as these values 

can be finitely described. 3 . 

3. For examp1c. we can define a data type infinite seque11ce of squares.-.._ .v~.are infinite. sequences.of 
consecutive squares starting from n2, for every n > 0. It has a constructor. ·eons. which takes a natural 
number as an argument and gtum • mfinilc saqucncc, .. m·addition:. ,if.,Jlat: ~ ~ers ;-. ltllst. which 
givts the first clement in -the!soquentc: lest. whidr~siYos:·tho. remainins~uenco;;du:r stripping the. first 
sequence; and, Equal. which dlocts whcChff bffl mfinite ~ arc equal «-. . = 
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The minimality property serves as the basis of apowerful induc1ion rule for a data 

type U: To prove that a property J>,hoWs for D, ie., for alL'81o~ :0f Dr we need to shc:»W 
that P is -J)feserved by- every constructor ofD.i': We~umctSpilzenr(7ll called this 

generator tndttciion; Gdag et aL [27): calWc:l iLdirila'JJJ)e 'induction~ .We discuss this 

induction rule in detail in Chapter 4 on the deductive~ for data types. 

Since every operatioaof l>is-amumed tdbe./am,~ble. it can be easily shown l>y 

induction on data types. that tbe·set,of vallies·bf1JJ' is :n,c:ul'iively enumemble.4 . 'fl1is is 

based on the fact that the set of sequences of~• recuniu_., Thig,-thesis•~ 

data types with a recursively enumerable set of values and a finite set of total computable 

operations. 
~I'; ,,;:,,-.,:-"'I', ', < 

4. A set Sis r«rtniw·iff adlatactcristic ftmotit~-wllirrkdedisrwlledlclf.aaNm--dcmentis a membcr«S 
~MIOt. is total computable; A-ICl Sa IWll~~e(f.l.):ilfil~---.aitolal '~ 
· function. In other wonts.•r.e.-Scan belillQlt.ttyaitliMw4 Aatfe :"':01P"M: , ''" .. · 



- 31-

2.2 Formalism 

ln this section, we describe the fonnalism to sta~ precisely what a data type is. To 

simplify the presentation, we assume that data types do not have any exceptionalbehavior, 

i.e., their operations do not signal any exceptions. Every operation terminates normally on 

every input in its domain. 

This section is organized as follows. We first extend the notion of a 

heterogeneous algebra as defined in [4] to model nondeterminism; then we define a type 

algebra to be an extended heterogeneous algebra with additional properties. The domain 

corresponding to the defined type D consists oftherepresenta~ons'ofthe values ofD and 

is called the principal domain of the type algebra. To extract the behavior of a type algebra 

as observed through its operations. we must 

(i) abstract from the mu1tiple representations of a value, -~urning a particular 

representational structure, and 

(ii) abstract from the representation structure of the values and -operations in a type 

algebra. 

To do the first, we define an interpretation of a term in a type algebra, where a term 

expresses a sequence of operations. Tenns are used to observe tlie ~be}ijlviQr of the 

representations of the values of the. defined type in a type -algebra .in te~s of the 

representations of the values· of the defining typeS. We define the observable equivalence 

and distingulshabflity relations on the principal domain of a typt algebra. These relations 

are defined-inductively using the corresponding relations·<mthe domains-oorresponding to 

the defining. types in the type algebra. Observable eqm,afence ·is an equivalence relation 

and is presetved by the functions in a type algebra; it relates two -values having the same 

behavior. We then define th~ behavioral eqtiivalenee relation on type algebras which relates 

two type algebras having the-same observablt? ·behavior. A· dsta type is an equivalence class 

defined by the hehavioratequivatence relation, and·'every-tn,e,algebra :in the equivalence 

class is a model of the data type. A model of a data type concretely defines the value set, 

which is the principal domain of the model, and the operations of the data type. 

Most of the definitions tluoughout thjs section are inductive;. they, make use of 
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the dependency relation, which is a strict partial order with finite descending· chains. on 

hierarchically structured data types. An inductive definition of a concept has three parts: 

(i) Basis part, which deals with the case of a data ty~ D having: no defining type, i.e .• its A 

is the null set, 

(ii) inductive pa~ which deals with the case of a data type having defining types, and 
(iii) closure part, which states that the above two ways are the only ways 'or denning a 

concept 

To avoid repetition •. we omit the closure pan, and i.f the. basis part can be derived from the· 

iw;luQ:ive part by ~ming A to be the. null set, we,giv~ only the. inductive p~rt of the 

definition. Some of the definitions - the definitiQns of type algebra (Def. 2.3), 
• ' - ~ - • • : o - • : • C •. ' 

distinguishability and observable equivalence re)atioJtS (De~,2~& and.2.7) and cJ~~ Jype 
• •. •- - • • • A ---' • i ! ~ •) • -• , ' · - >" • 

(Def. 2.14 ) are mt,tually recursive .. The, defil;litio~ 2.3. 2.6. 4nd 2. l ~ume the definitions 
-· . • t ~ .. . ~ :. • ~ - '. _ °" • j ~ < • ~ -. • 1 , 

of the defining types in A in their inductive part. ._, . 

We would like tomativate various concepts ~d de,.fi,nitioas .introduced on type 
- .. - . . , ' . .. . ';_. . - ' . . 

algebras. So for exposition purposes,.we may refer tn a type algebra as though it is a ~I 
.. • -:: ' ~"' ' .<. ~ ~. 

of a data type being disamed. 5 

2.2.1 Type Algebras· 

A heterogeneous algebra as defme<I by 9"hofTapdJJpson 141 is a finite indexed 

set of sets (called dompins in the thesis). ana a fiQit.;. in~-~ of total functions. We 

extend -this definition to model the ~ •. •~s. qf_ a data. type. An 
. ~ ... . .. 

exlended heterogeneous algebra can have eitber a tot.a1:(~i~~c) t\lnction or a total 

IIOlllleterminiSlk function. 

A 11ondetenninistic function r: X .... ·Y is similar,tQia!unaioo in mathematics with 

the exception that it has a ch<).ice among: a subset of ~le.,~ .~-'1!1 app1ie<I on an 

input x € X. Let f(x}stand for aa arbitnuy result of •1ij'18J,oq :-t- f ~ be cha,~ 

5. We arc technically justified to do so as almost every type algcbrais a ~t of some dala type. 
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using a relation R ~ X x Y such that 1{x) E R(x).6 If R(xfis a singleton set for some input 

x, then f is said to be detenninistic on x. By { l{x)} we wilhdean the set R{x); in this way 

we do not have to refer to R. Since we assume every ftondeterministic operation to have 

finitely many cnoices on a particular input. { ftx)} is always 'a finite set. We admit that 

catling fa nondeterministic function is an abuse of,theterm function; however, we feel this 

term conveys the behavior off well. Henceforth, by the term function we mean either a 

mathematical (deterministic) function or a nondeterm;riistic function, un~ qualified. We 

have chosen a nondeterministic function over tne corresponding detenninistic relation for 

modeling a nondeterministic operation becausec(i) in oontrast to the· nondeterministic 

function. the relation models the nondetenniinistic operation indirectly, and (ii) it is 

inconvenient .and unnatural to express the behavior of a crimptttation scheme involving 

nondeterministic operations by means of the rel~ps corresponding to . · the 

nondeterministic operations. 

The definitions of concepts such as congruence, homomorphism, isomorphism oi, 

heterogeneous algebras [4] are revised for extended heterogeneous algebras in Appendix II. 

Henceforth, we use the term heterogeneous. algebra to mean an· extended heterogeneous 

algebra. 

A type algebra is a heterogeneous. algebra·with additional properties. For a.data 

type D, we are interested in type algebras having a particular svucture. whicih is determined 

by fl.' and o of D. The sets A' and o serve as the index,sets of t);)e type algebras of interest 

for D. W~ call such an algebra as an algebra of type D Msimply a type algebra when Dis 

evident from the context The triple (D, A; n) is called ·the (similarity) type, of such an 

algebra. An algebra A of type D consists of a domain corresp<n1ding to every type name 

D' Et,.' and a function of the appropriate arity corresponding~ ~yery operation name in o. 
The domain corresponding to D is the principal domain of A. The function corresponding 

to a is called the interprelation of the operation symbol~ in A.: The dorn~in cor~esponding 

to a defining type D' EA is the interpretation ofD'. 

6. For a relation R, a subset of X X Y, R(x) stands for the subset { y I <x. y> ER} of Y for an x € X. and 
R(A) stands for { y I <x. y> € R. x €A}, where A~ X. 
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We ~ume that every definmg ty~ Ir in 4 ,of 0, js .<!dined qlsewhere, and w~ are · 

gi,1e11 the models of D' (see Subsection 2;lv ror tbe clef1,NtiQn ~a,dfttll type and a tmdel of 

a data type). The interpretation of a data type D' € A in. an .algebna of type Dis fixed. We 

use the models of each D' € A to define type-,algeb,ias ofD. ,The,domaiJ1,rorrespoodisgto 

D' ( A in a type algebra A Qf D ~the.value set,Qf l)' ~ed ,by~ .model A' of-D'. A 

type algebra A of D .~plicitly indudes only the jnterpretatiens:of the openittoo name$ of 

D.and does not include the int•rpre~~-0fthe ~io,\ nin'69f-aay ~finmgty,peD'. 
We a$U01C that every QJ>erati()(l, name-.of a, :4.efmilJ&,,type_ Jl' flQ&.the same interpretatioa in 

A of D ~its.interpretation in the model A' p[O'. In this way. :,,.,e, define the interpretation 

of every opc,ration name of a data type D''.€ (O.}* in-a ty~ algebr,a,A Qf I). 7 An alg~.A 
• oftypeD is.thus really a huge str~rehavingci~ons tbr:¢:wffY data,iype,in,(D) ..• 

Def. 2.3 An algebra A of type Dis a heterogeneou~ algebra 

( {VD' ID'€ A'}; {, ro Io€ 0} L 
such'that 

(i) for every defining type D' € A. V0" is the vatue·ser:ofD' defined by a·· 

model A' ofD' • 

. (ii) for every, • € o. r 
O 

is a totaJ functkm ofttle~ri~ amy.,· i.e.,: if d has 

ol·x ... X DD as dB 'dt!Jmaill 'and• ;D' ;··•· its zninlf';. then C fc, has 
VO x .•.. x VD as its dQJoain, and1V b' 11,its blBge. and 

l D 

(iii) VD is tlk,, :smallest :Set dosed untkf, finitely; dHU4J' :apf)lications of the 
funct~CQrreSPOftdiN _,.,the co~of Q.:ie... ,, . : · :,. 

V0 =. U VJ.~ wherJ V~ ~.11 and . . ..· , 
J = 0 

vJ,+1 · { fc,Cv
1
,: .::. vD) lrotciich ~ ;t oc sucb1hat 

I 

·, . . < r-:· '.· .,· . " ·. , .. · ':•". . 
a: D1 x ... x D•-+ D, v, ~ t ~ 

0 
V,p if D,i = 0, and,.

2
~j. E_V0,jf Di:#. D }. 

• 7 .. JlctalHhat (D) is the set;coosislinaofD and..0 ~liY.~98 'Vhi£tl O ~ .. 
8.1.e .. (D1 • •.. • DD. D') is lhc index of o. ·, i ,· ,✓ 
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So, VO is the principal domain of A, f 
O 

is the ,interpretation in A of the operation name 

a£ n. We do not require the interpretation f
0 

of q, to be ~ deterministic function if o is 
,. 

deterministic and f to be a nondetenninistic function when a is nondeterministic; the 
0 

reason for this will become clear in Subsections 2.2.5 and 2.2.6 on the· ·behavioral 

equivalence of type algebras and the definition of a data type .-es·pectively. 

1f any f
0 

in ,A is a nondeterministic function, then A 'is called a n(J1ldeterministic 

type algebra; otherwise, if every r is deterministic, then A is ca11ed · a ller~n»lnistic type 
0 

algebra. Henceforth, ih the eontextof an ·algebra A of type D. Jjy,hn op,eration ·a we mean. 

its interpretation fa and by a value of D we mean ah 'element ofV O .•· ' 

The property (iii) above is· due to! t11d~ret1uirement that D satisfies the minimality 

property. For a construct(){ a, if f
0 

i8 noQd1t,:nw,-ic; .-bell V0 .i~.cl~d under f
0 

~urning ra could return any possible resu It founl i•ut., O~·~ vakte ~ coResponding 

to each defining type D' is fixed~ then ,OQ¥~a\y V0 .isi AmiQue.ly determi~ :hf 

{ r 
O 
I a E oc } • and is nonempty,., becaese •e 1is nooerqpt; alldr1A8$ ,at least one basic 

constructor (see Secti.a 2.1). 

2.2.2 Exa"lpJ~~~p:f Typ~ Algebras 

We disc~ss belo~ a type algebra A
8

,' of.Set-Int. A
81

'is a natural model of Set-Int 
' ' ' -,; '1 ! fr A, , a , _ • • , ~ . •• ·, ~ ~. ;, "_ , , : • ·: ._ . ~ 

in the sense that its principaf domairi rs·· the 'set or· all firiite ·sets of integers, and tne 

int~rpr~tations of its operations are defineiiri tenris ·cir tti~ sraHd'aRI set op~~tions· (16). ~ ~ · 

A
8

i = {.{ ~~ Z,'.B }; { Nu, In, Re, Ha7 Si, Cla} ), · 

where B = { tnae..; f,alse } • a value ~t ~ Beol, 
1 
> , 

• ~ " p " .. "' •• ' ·0;: ' ' ,, 

Z = { 0, 1. -.L 2, -2, ... ,·ha val~e ~t ofh)t and 

s = {,0,{0},Jl}, {-1}, {2}:·l~i. {0~·1i;~ •. -1}, {O. 2t 

{O ,-2}. ·{l. :-ll~. {_l,·¥· .~:·. }, th~ ~maiq)mrresPQl!dir)j ~5't·lnt. 

The domains Zand Bare defined etsewhete by tlie models-'1r·1.- and B~I, respectively. 

The first two letters of an operation name are u~ to dendte iff 1t
5

i the total 

function corresponding to the operation. These furlttions Me de(1,Hed beloW. ;We will use 

any convenient matlftmafiear formalism to give the.,cfefinitions of the functions. We use 
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the symbol ' ~ ' as the definition symbol; the symbol ~;• marks the 'beginning of a 

comment in a definition. running until the end of the line. 

Nu ~ fa 

ln(s, i) ~ s U {I} . 

Re(s, i) Q s • {i} 

Ha(s, i) ~ i € s 
Si(s) ~ #(s) 

o«•> Ag 

; - is the difference operator 

; the cardinality of the set 

ifs= ,a 

such that i € s, Qtherwise. 

,CII is a nondeterministic total function; ifs is not ill, then {Cl(s)J = s. 

We discuss another type algebra A!1 of-fiet·lnt !n which, the set -values are 

,~presented as finite-sequences of nanrepeating ~ -

A!1 = [ {SQ1. Z, B }; { Nu~. lil\lte\ffal,,;Si1,-Clti l1 
where SQ1 = { <>. <O>. <I>. <-I>. <2>, <-2>. <O, I>. <O. -1>.:<0. J>; ~.· ~». 

<I, O>, <1, -1>. <I, 2>, <I. ·2>. <-1, O>, <-1, I>, <-1, 2>, <-I, -2>, 
. -

<2, O>, <2, I>, .... }. the domain cortespc)n<ting to""Sef~lnt: 

The set SQ1 contains all finite ~uen~es of intege~ nqt having ~11l~le occurrences of the 

same integer, for example. <0: O>. <O .. I. -I. 1r ~e ~ in SQ1• i~t s ;stand -for an element of 
SQ1"'So,s · <i

1
, ••• ,i.>.m~O;ifm ·o.-thens-, -◊.- · ::-· · · -

Na1 A<> 

r: 
Sl1cs) ~ m 

a.1(<11,· ••• , '.>> A 

( <~, ... \ 1.> · · · 3 1 s; ~ m, ~ .... i 

l <11, .•• ~ ' I_, I> - - "Otbenrise 

.. 
f_◄<t1,.;., ,~1_·, ~~ 1,..,- 1.>. 1-1 SJ s m. ~ = i 
(<'1' •.• , ,., . . . -~ 

- 3 lSJ :S Ill, ~ = i 
~ 

m=O 
1 sJs•>o. 
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2.2.3 Interpretation of Terms 

• A term is constructed using the operation names of types in (D) · and tbe typed 

variables. lt expr~ a sequence of operations, so it forms a straight lmeiproglJWl•. The 

interpretation of.a tenn in a type alge~a is l\ke the ~ecutiQJl of such a prQ&ram .. The 
~ .- . . .. - ' .. 

interpretation of all terms characterizes th~ qehax_io,r-of ~alae~flt-
We assume that we have as many variables (possibly infinite) of every type 

• D'- E (D) as needed. 

' . 
Def. 2.4 A 1erm of type D' E (D) is defined inductively as follows: 

(i) 

(ii) 

A variable x1pftype D' is a_tenn of type D', . 
. · . ' . ·._' . 

if a is an operation of some type D" E (D) 'such that its domain is 
Dl X ... xnn a11d,it:s range.is D:. tl~11r·.cr<'1~ •·• .. ,,e)! is a·tefll}:oftype. ', 

D' if apd only if each e. is a term of type D. E (D) •. I 
. I U · -~ . 

If a term has no variables. it is called a g,l)IJntJ term. A ttnn l>f type .Dool is called a boolean 

tenn. When we wish to refer to the variables of e, we write .e as e(x1~ ..• ~ xJ(or e(X)), 

where the set { x1, .••• x
0

} (or ~consists of all m~les in e: A mblemrof a ~rm that is 

a variable is the term itself. The subt.@rms of a term of the- fomt· '•( et ... , e;)' are (i) the 

term 'a( e1, •.• , e )' itself~ (ii) all subterms of e
1
, .•• , e , and nCJthing e11e~ . 

n . D 

An inte,prtrotion of a ground term e in aa:algebra A ,of type D is obtained by 

performing the sequence of operations eIJ>re&11td by e. A grol)t)d ter.m .e of tY~. li)'-is 

intetpre-ted in• A as follows: If e is a 0-ary operation pame :a-. an,4nteg>retation of e .is-die 

result of applying the interpretation of·• m A. lf6•is' cr(ei>. ~. ~ e/.' an.interpretation of e 

is the result of applying the interpretation of" in,,.~fon U,e int,erpretatkms of_e1, ••.• ~ en in 

A. An interpretation of e is an element of\\)', Since .-~ may be .DQflStrJJcted U$ing 

nondeterministic operation names,· e can have mafl.rinterpretations. L~t ,t A stand,i>r an 

arbitrary interpretation of e in A. 

For example, let us assume that . the defining type Int of Set-Jot has the 
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constructors 0, t, 2, and 3, and that tttey have lhe'stanclard,intett,retttion in a model of Int. 

Then e1 = Insert(lnsert(Null, 0), 1) and e
2 
= Clloose(e

1
) are _gr_ound t~nns of types Set·Int 

and Int respectively. We have, ;:, :·; - , ·, -;., ' · · · · 

..... ~11 A,,· . {O. 1 }. an~ 

e I A = O,orl. 2 al 
• • Since every operation· name of a data type· D' f (D) has· a total fuRctio1r as its 

interpretation in an algebra ·A of type D,· we have 
. : : . . . .. . . 

Prop. 2.1 Every ground term of type D' E (D) has an interpretation in A. 1 .. 
. .I 

Furthennore, since every data type under copsid~ration fl~ the minimality property. we 
, . ·- : ,, ; ,_ :-; •. 

have 

Prop. 2.2 Every value in VO is an i~terpretation of s6m~ gl'Outm term of type D. 

Proof ·Straightforward.. by induction on type algebnls-using;thtllependency relation. I 

i ' .· ' , . . : . . . l: ;. . ·· · . 

For a tenn e of type D' having variables, i.s interpretation -is· a function, which is 

denoted ;by; le. If ·e ·~ ·•ondetcrministic: ~LMlll~· lbw) -fe• ~ in general a 

nbndetenninistic functioa Let { Xr,~ ..• xn l be the ~y ... ~le$·~ ~,and Di be the type 

of :xi • Then re ._ V Dl X .... X V J)D as its ,~:JVtd :Yo~ i_t$. rang~. If the ·y~les 

x1, ... ; x~- in. e are insmnliated in A to be tbewamaL,1; .. . ', vb ,apectively. ti'oln the 

appropriate domains . in A, then e (xr ... ~ x.► is, ·sai4 to · be instantiated in A as 

t (x
1
/ v

1
, .••• x Iv J •. and ,tan· be• inmpreted ,·tn, A:.·,, :l1te llirig,lllfent. {Xc I ,

1 
••• · •• x Iv ] is 

D B ,-,-1 . D D 

.cded an A-inSlance.-of x
1
, .•. , x

0
• and eadI vf is called, an in~ of xi.~ (We will 

tlbweviate the·assignmettt as(XIY]. where ¥$1Ddi h(l'{J~ .•• v);) An,interpref:aticnof 

· e(XIJ1 in A,·written as elXI~ A. is defined as i>llows: 

(i) If e is a variable xi • then e1Xit'lA = "r ancl! · 

(ii) ifeis·ofthe tbmt• cr(er·· ..• e.) ',fl'~ 0~• 

then e( XIYI A·= r.,( e1 I X/Jl]I A, ...• e. ( XIYI A). 

fe(Y) is e[XIJ11 A. 

Interpreting a ground tenn or an itistantiated term· in ·A is· thus like performing a 
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computation; an interpretation is the result of-the computation. 

2.2.4 Observable Beb1vior 

The behavior of a sequence of operations of a data ~ype _ D, strictly speaking. 

becomes externally observable if the sequence has an effect on the outside world, for 

example, the seque.nce of operations ultimately res~lts in some output on an 1/0 device, 

such as a line printer, CRT, etc. In this sense, the distinction betwee~. two values of D is 

observable if and only if there· exists a sequence of operations_ such that when applied on 

the values separately, it returns distinguishable outputs on an 1/0 device. An output on an 

J/0 device ca~ be consid~red as a sequence of characrers, ·and we can have a predicate on 

the outputs, resulting in the boolean consta~is T and F depending upon 'whether the 'two 

given outputs are distinguishable or not. rn this way, we can define the disiinguishability of 

the values of Dusing the distinguishability of the ~lean con~nts. We stop at_lfool. As 

was stated earlier, we use the definition of Dool~ the. basis or'our formalism. In fact, any 

data type (or a collection of data types) whose values·can· ~- disifogu1shed a pri~ri (outside 

the formalism) can be used as the basis. For instance, ·tdiata type directly supported in a 

programming language whose values are distinguishable usingthi1iteral mechanism:m the 

programming language can be used. 

We structure the above informal definition of· distfnguishability using the · 

dependency relation on data types~ Instead of defimttg the dislinguisltability of the value., 

of D in terms of ~e distinguishability of booltm' va1ues' in : i-rsingle ~. · we • db it 

incremerttaHy. ·We ~ume tftat the distinguishability refatioo. is deffneti· ·on· the values of 

every defining type D' € A, if nny; in this way~ the'behavidr df'the valuts of o·can·be 

incrementally observed through its observers. Except for Dool, if D does not have any 

observers, i.e., its n
0 

is the empty set, then the°values ofD·are not distinguishable, as there 

is no way to tell whether any two values are ditTemtt. That is whyw~arted earlier that 

every interesting data type ml,Jst have atleast one observer. 

For a D with a nonemt,ty set of observers, it is generally not sufficient to examine 

the values of D directly by the observers · due to the pos.gbfe deliiy~ effects of the 

constructors. The distinguishabifity · Gf3 the values may~, not manifest itself until some 
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constructors are applied on them. For example; two.iflifferent.-11onentJ)ty. stacks of the data 

type stack of integers may have the same integer as their top element. ~ they cannot be 
~ ''l'_~--.;'t- ... ,; .~~~ -~_ •. -... ~ ---;'• n - ~ ~ "'. -

distinguished directly by the observer Top. But if we appffffie'Pi>p 01,etaliofi ·nrSt dn the 

two stacks, then. the. resulting stacks may be dir~tly distinguishµble by the, observer Top 
: - . , . ' . . . , ' . . . ~ - - . ~ } - - - ; : ' ; - - .- .. 

thl,JS e,hib.iting that the original ~ks are al~ distingui~bh;., There is generally a need to 
' ' ' • - - - - .,, . ' : - '. ' , ,; : -. ~,- , - : . - i ' ! ": •. _: ~ .. ;: . . ' ,. , 

perform ~ sequence of operations with an observer of D as the last operation in the 
,·-- i - ,__._ ! • • - - _,----- - - -. - . - ~ ' 

sequence, to distinguish two values off). 
~ __ - :: ' . . .' - ,. ' ,. - . 

lnforma11y. two values ofD are distinguishable if and only jf either 
- < • ·- ·:.,;. :.- 1 ! .• 

{i) there is a sequence of deterministic operations of D.such that when it is applied on 
-- • • • : • < _- - • ~ - ·: • : J : ' • -- - ' - - ; • - • •• • ; 

the. two v.alues ~urning every othe~· argument . of the se9~ence fixed, it. results in 

distinguishable values of some definjng type D' € A~. or . 
~ - ~-

(ii) there. is a . sequence including nondeterministic operatiqns such that the result of 
- . - - • • i; ~-- t- . 

applxing. i.t on a value for some choice. made by ~e. no11~eten;n.inis~ic, operations ~ 
. . - ~ - , _. ~ . - , -

distinguishable from the result of applying .it on· the other value no matter what choice is 
- - - "· . . . . - ~ .'· {. : - . - - . ,. __, ' -

tllade by the nondetenninistic operations. 

If two values m:e not ,distiD~~able; tfiey are caUe4 observab/J,. f!quiV!l/ent. . For .bettei" 

expqsition, we have del~tely structun;d .the de.finiti<.m. ot."distinguis})ability into two 
• • • . C, >. 'f ,.,__, ••' •• > /,_;;, ,<'-c; ,v::-t • • • . ' •-::._ 

cases, though the second case can be modified to cover ~e.~~- ,,Toe secon~t~.~Y 

appear to,be a ~.~988 ~re~ but q ~l,~g~t ofthillk!ng ~l.JJ4 convince 

th~ rea<Jw ,.that .Sl.lCh is not. the Pl$e~· as we._ <Jew,i~b',.. do }l<>t. wapt:c a value. to ~ 

distiQguish~9,e fr~ i~f. Furthennpre. observab~ eqJ#y~~ ~o~\d-pe a,n equi~alence 

reJ~ andit mvst be preseive~ by the e>pe~,of the cJAtaJ~·~.. We pr~c~Jy -.ate 
. - , • •- ....;, '. -, • - . \_I~. < 

below tbese reg1J~reme~ in ·~ context of a type ~bfa and illu~~te . tj}etn USU>& 
examples. 

The operations of a data type must. also Pfe$Cr¥e the. observ@le equivalence 
' - -, • ..,._ • '. 1 ·,.. • • 

relation on the. v1llues of every defining type)~ :th€t~n~ l}lat the ~eratipns cannot 

distinguish among the observably eg11i~et1t. v;ilUQS; ~f, a, ~jng:.tYPF·. 'll;I~ T~<J~iremel}t 

on the operation:behavjQr is nee;~ heQ\use of 1.he:~11Q~;baJ,1r,.structure of data.types. A 

new data type should not impose ·any. additional .~e °' tqe .. v~ues Qf any . of its 
defining data types. This property of a data, tfpe ~,gµaran~ in all progrrumning 
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languages supporting an abstract data type mechanism in which an implementation of a 

data type is hierarchically structured and the representation ~ hidden from the users of a 

data type. 

We would like the type algebras to have):h~ above prf.}perti~. Definition 2.3 ofa 

type algebra does not guarantee them. so we p~~,addltioJ1i1Jo(lstr~ on a type algebra. 

We first define the observable equivalence, relation E1, ~the;prindpal domain VO of a 

type. algebra A; we will assume that the observable eQU#v~cerelation ED, on. V 0, in A is 

defined for each D' EA ~y a_ model A' ~fD' havip& ¥11 ~. jts arincip,al domain. We show. 

that ED as defined below is an equivalence relation. Later we de~ne a well formed type 
. - . -/ - '. ' ~ '-·' f' ~ '~ ' . 

algebra whose functions preserve the set E = { ED, I D,.'€ A' } of observable equival~nce 

relations. Only the well formed type algebras are of interest for defining a data type. -

In the above disa&ion~ we have only·considered'the inpUrGJtputhehavior of'1he 

operations for distinguis~ing different val~es. We have_ no~~?tsi~ered ~he efficiency of the 

operations. In.case of nond~terministic operations. we have not considered how ~ible 

values that a nondeterministic operation can return .•on a p~icular ;inp~t are' scheduled. 
, . . ,, - ' - . "" : ~ . . ' 

Our formalism is limited in this seme. 

2.2.4.1 Definitions of Observable Equivalence and btstinguishabllity 

We give the basis and the inductive parts of the indt1ctive. definition of the 
, :·' . ,f.,.., f'.'. ~ ;. , ,. -' ' ~ ~. <> " ' 

dijtinguishab_ilq:y r~la~ion.'. The l;lasi~ pau)~.the ~ wbeQ D_c:loes nqt have any definins 

type and the indua.ive part is, the ·c.ase. }Yh~~ ·o· .~~ 'cleft~\OJ t;~: Jn the ·~ispart. there 

are two su~:' (i) D itBc,o). an.d (ii) D is diff~·~ent. fro~ ~.. w~ first defin~ the data 

type Boohtnd then define ttte,distingumhabilitffelati'm on the,mooefs' ofM,l,L ' 

The data type Dool does not have any defining types and is self-contame& ·w~ 
present below a model or~• and~• itB. _- -. 

B ::; ( { {.ctrue. ••• lJ~ { T. F. v. "",. A.=>,~ l ). \fl~ere .-

T · ~ true 

F ~ false 

- true ~ false 
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,,_ false ~ true 

true V true ~ true 

true V false ~ true 

· false V true · Q ti'H , 

. false V false · ~ false 

'X A y ~ -((- x) V (w y)) 

x :io y ~ (-x)Vy 

x-. y 6t (-(x V y)) V(x A y) 

The interpretation of T is the log~cal value true and the interpretation of F is the logical 

. valuetalu. 

Def. 2.5 The-data type Beol is the set of all type algebras isomoq)hic to· B. I 

We will often use B as if it is the only model of Dool. and interchange between T and its 

interpretation true in Bas well as between F and its.interpretation false. We assume.that 

the boolean constants T and F are distinguishable' from each other a priori. meaning tJ,at 

th~ir interpretation in every model of Bool is disting~ishable. Each ·.boolean :~n~t is 

observably equ~vaJent to itself. 

Def. 2.6.l Let A be a model of Dool and V Boel be the value set of Dool defined by A. The 

observable equivalence relation on V Bool is detlned to· be'liie, id~ntity relation ~n V Boal . 

The distinguishahility relation on V ao.t is defined to be the complement of the observable 

equivalence relation with ~ect to the universafrelation on·~~ (Le~. V Dool X V Dool). I 
' C • • ~ • • ' - • 

:.., ·. 
The other component of tbe basis part .o('.the. qefinjt;ion;-pf ~illguislaab;Jity is 

• • --~· ,. > ~ ••• ~-· -~ ' ~ - - • -

DOW 9iven. 

Def. 2.6.2 For any data type D other than Boot ·not fmving any def ming ;type. no value in 
VO of an algebra A of type' D is distinguishable frorn ·any other Vatue in VD . I 

The inductive part is ~ follows: 
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Def. 2.6.3 Two values v
1 

and v
2 

in VO of a type algebra A are distinguishable iff t.Qere is _a 

tenn of type D' with exactly one variable of type D. expressed as c (x). such that the 

instantiation c [x/v1] interprets in A to a value of a type. D' -~ A(ai:i element of V 0,) that is 

distinguishable from every possible value to which the ~tantiatioo c (xlvJ interprets. or 

. vice versa. I 

The case 2.6.2 above can be derived from the case 2.6.3. 

Def. 2.7 v1 and v2 are observably. equivalent. i.~~• (vl' v2)£Er, itf v1 and v2 ar4! not 

distinguishable. I 

It should also be obvious from the above definitions that if D does notbave any observers 

and D is different from Dool, then all members of VO ·arc observab1y equivalent.' The 

following definitions are useful in dealing with data' lYPl'S having , oondetenninistic 

operations. 

Def. 2.8 Given two subsets A
1 

and A
2 

of VO • A
1 

is. observably _equivalent to A
2 

and vice 

versa. _iff (V v1 € A/(3_ v2 E A
2
) [ <vr vi>~€~ ~cl vice versa I . 

Def. 2.9 A1 and A2 are distinguishable itT A
1 

and A
2 

are not'dbservab1y equivalent I 
. ., 

Then the case 2.6.3 can be rephrased as: 

vl and v2 are distinguishable iff' there is fl term c(~such that { c(x/v1lf A } is .... 
distinguishable from { c(xlvJI A}. 

·, : i ~ ~ -. -~ ,, 

Consider the type algebra A•1 of Set-Int (see Subsectioh 2.2:2}. :,ltiean be proved 

using the definition of Int th~ the observable ,eqaj".alt:IW~, re)~oi10,i,Z. the valµe set of Int 
• • - - ' • ; • • ~ •• - • - - •• ~,,:: ' • - ; : ~ •• < : • ··' '.! 

usrp in ~., • is the idenilty re}atipn. 'fben the.~t:s ~l:~lldJQJ .~r,~,~istirig~!s~~ble sipce ,the 

tenn Size(x) distinguishes~. The sets {(ll} ancl {l. 2} are alscuJistingu'11able siij~ 
,. - • s " •· •• ,_. ·.;.... ,, • • ' ' " 

the tenn Choose(x) distinguishes them: An interpretation ofChoosc({O, 1}) is either O or 1. 

and ifO is chosen as an interpretation, there is no interpretation ofChoose({l. 2}) returning 

0. By similar reasoning, {O, 1} is also distinguishable from {O}. {O. 1} is observably 

equivalent to itself .. The observable equivalence relation on the principal domain of A•1 is 

the identity relation. However, it can be shown that the observable equivalence relation on 
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the principal domain of A~i is not the identity relation. because for example, (1, 2> is 

observably equivalent to <2, I>. In fact. any two sequences having the same set of integers 

. are observably equivalent In A!1 ,_ 

~-lat = { <sl. s2> l·sl is a pennutation ofs2 }. 

Thm. 2.1 The observable equivalence relation E0 is an equivalence relation. 

Proof That E0 is reflexive and symmetric is obvious from the definition. The transitivity -

of Eu can be shown.by induction on type algebras using the-dependency Telation. I 

' The requirement that the ftinctions in a well fonned type algebra A preserve the 

observable equivalence relation E0 , -- :for each D' £ A'·: is '. equivafent to requiring that 

E · = { E1>' 1-D' € ~· } be · a congruence on A~. where a oongnltnce on a heterogefteous 

algebra:isdefmed inAJ>PCll(la II. 

Del 2.10 A type algebra A is well formed if and only if E is a congruence on A. I 

Since· we are interested only in wen fonned type algebras, by a ty,x; algebra we -henceforth 
, - ; _. • - l' ' , 

mean a well formed type algebra uriless stated otherwise; 

. Fqr,ex~ple._\x>th A,., a_nd A!1_ ¥C w~llfor,xied. ~1
- = { ~t-lnt, Ei.n.Eeo.i} 

in case of A!i 'where Eiat and EBool are the identity re·l~tion, ~:a-~ngruence on A!, .. 
-=-~.,.. - .~ ~>I' ri.- ~ Assuming that EBaol is the largest CODBfHCtice_ op.~, mod4!) of Bool. _E is the 

;· ' ~ .",' - ~: . ·• - . . . .; : . 

1argesi·congruence on A. -

Pr.'8f See Appendix II. I 

The above theorem implies that the observable equivalence relatidns on the domains in A 

completely extract its observable behavfor in the '~hse tllat in··t1tt quotient aJaebra A/E 

induced by'E·on A, every vatue is disfinguishabtefrom:~h'od&er~ -
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2.2.4.2 Reduced Algebras 

It is technically cumbersome to deal with a type algebra having distinct but 

observably equivalent valu~ so we introduce the notion ofra redu~ algebra. 

Der. 2.11 An algebra A of type I> is called reduced if and onl{iffor each. D''E b.', E0 , is the 

identity relation. I 

So all members in every domain of a reduced type algebra are distinguishable. For 
- . ,) f ' ~ _- '.. 

example, A
5

i is reduced:. whereas A!i is not. B, the model ofBool~· is also reduced. 

Given an algebra A, we can get Its reduced algebra by taking tf1e quotient of A 

w.r.t E = { E0,) Di€ A' J, since E is a corigrue'i1ce ·on A. The reduced algebra 

corresponding to A is 

A/E = [ { VJ), /E0 , ID'€ fl'}; { g
0 

I a€ O} 1!,~er~ 

g
0

([v1] • ... , [vJ) = ( f
0

(v~ . .... ~.) t~ 
The principal domain of the reduced algebra corr~ponding -~ an algebra of D having no 

observers, where D is not 8ool, . will have a single el~ment The reduced . algel;ra 

corresponding to A~ has as its principal domain 

SQ11Eset-1nt = { { o }, l <i> }. {<-I>}. { <2> }. t <-2> }. 
{ <O, D, <LO>}, { <O, -1>. <-I. O> }. . . . } 

2.2.5 Behavioral EqUl~atence of l'ype Algebra 

As was stated at. ;the beginning of this, se£ti0n,.sin-order, to ~stracH:h~ observable. 

behavior of a type algebra, we must. abstract frqm:(j)~_~le,repiesentations of the values 

ofa data type in the tYpe algebfa as well ~ from (ii) d;ff~'1~,Je9~ntatio»al. stnJcwres 
used for the values in different type" algc:,bms~.· .~ ~f)':?We .. _:eguiva~ce ~latioti 

- ' . :'. { 

discussed above does the first task. It identifies representations having the same observable 

· behavior. For the second task, we employ the standard algebraic concept of isomorphism. 

9. It can be easily shown that A/Eis also a type algebra. 



-46-

By combining the two, we define the behavioral equivalenc:e"}~1itiott on type jatgebras as 

follows: 

Def. 2.J 2 Type algebras A
1 

and A
2 

are .behaviorally equivaltnl if and only if the reduced 

algebra correspondh1g to A
1 

is isomorphically , equiv,Jl}ent to the , reduced algebra 
' '! . - i --

corresponding to A
2 

• I 

We later show that the above definition indeed captur,es the desired intuition that 
• ' > ! • ~ ~: ·_ , .. : • : ~ - • • : ,- : 

two behaviorally eq_uiv~ent algebr~ have the same obsetvable ~avior., By this, we mean 
_ : - - , ;__ , -. -- ~- - . -- ., __ $- · -- 1 _.i .• ~ ~- . r.., _: . . . . 

tl;lat. ao intcrpret;ation of a grqt1nd term _e in one algebra be,have.s t)te same' way as an 
. ' . ,· : '. ' . .:. >. . . . - ; : ; _·; -, -~ _·'.! --~ • ; "" : . . 

inr~rpretation of e inJhe ottier algebra. when manipulated by th~ ope@tions. (Informally 
: - , . - - . , .: . __ ·? .<.: r , ~ ·:.' ? -· { ; . - -

speaking. a comptitation results in equivalent values in two related type algeliras.) 
~ ' : - . -~ . . . . . . . 

The isomorphic equivate~ ,of two . t~ff ?lge~~ , i~., strong~r than the 

isomorphism of the two type algebras ir'~~sid~~i~ they-~r~._ JfD,does not have any 
. '.' . ' . ' ' '' , ' : , , 

defining type. thenisomorphic equivalence is th~ ·s;dile as:th~ '~umrpliism. _ However, if 
·., ·- ·, \. - - ;: -. ~ ·""': ·. - --- '. - ··; :; :;'.J•-1. ·:; : -. ,.,. -

two J_y.pe algeJ>ras are cor:i~idered in the expanded. fOllJl ip which th~y. have a domain 
, ·. . ,· . . ·; •· '. ,, . ''; !ii;: .·; , 

corresponding to every data type D" E (D) ~ll~ .. ?:.~nction correseondi°-g to every 
~ ~ ~ ! ; , ' ~ i '-.. :i • I t-: '. • • ~~ o a j- • __ - • ~ j • • ~ 

operation of D". then isomorp~,i~ equivalence is .satrre · ~ ~m~~ Since we_ do not 

wish to carry all this in fonnation in , a ,-ty~ .al~bfa ;a!).d c.orisid~/ ~ type algebra in the 
- . ., - ! : _;,, /• . :_'} . -

expanded form, we assume that for each D' i~ A, the m<Xiets of D' defining V ~· and V ~· as 

the value sets of D' are isomorphiQIQy~jyak@~ ~,~~~1~~ ~• from \l~'-'~ 
V ~· defined by the isomorphic equ_ivalence relation. We thus do not use any arbitrary 

bi~·ti'om Vb, in A
1 
to·Yt, ·in·,A

2 
teshow,komorphic~~valade between A

1 
and A1. 

Instead, ·we build 'the 'bijections bottom up· establisbmg conespolldeftttibetween' the values 

iri tbetwo algebras. The set { •i{f D' € A J induees a bijediott'4b; ftom::Vb to VA.,, dlat 

• ~.;;.: f •o· I-D' { t,: l is an ·isommpl'tmm from Atto Al • ; 
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Def. 2.13 Given two type algebras A
1 

and A
2 

such that f~r each D' EA. the models 

defining V1~, and V~, as the value sets of D' are isomorphica1ly equivalent, which defines a 

bijection ♦0, : V 1~,-+ V ~ .. A 
1 

and A
2 

are isom6tp1,1ta1/y equiva/eitt if and. only if there is a 
bijection cr,D from V ~ to V ~ such that • = f •o· I D' E A' } is an isomorphism from Al to 

A
2
• I 

Note that both A1 and A
2 

above are either detenninistic·ot the corresponding functions in 

A1 and A2 have the same amount of nondeterminism. . 
·, 

For examples. the models of Bool are iso!]orpbically equi"talent The type 

algebras A
5
i and A!i of Set·lnl are behaviorally equivalent because Ast and A!i /E are 

isomorphically equivalent We can define three other type algebras of Set~lnt which are 

similar to A!i . The type algebras A;·1 • A!1 • ap~·/':i have· sets· rePieseyf~d by finite 
' . 

ordered sequences. of nonrepeating integers. finite ·ord,red sequences of repeating integers. 

and finite (unordered) sequences of repeating inte~rs respectively; the definitions of 
. Ii ..;. ,, -- • .. ,., '. . C 

various functions are appropriately given. It can be. sliown that ~e type 'a1ge6ras A91 • 

A!1 • A;1 , A;1 • and A:1 are beh~viorally equiv~r.t •. , ,H,;, . 

Note that two behaviorally equivalent type ,algebras need pot have the same 
:· ', ~ _e:. ;_ot ~ • ' 

amount of nondeterminism. In fact. one c;ould be deterroinistic whereas the other could he 
• • , : .-' - -_ . ~ .- ;_ . , • "; f ·_: r , , - j . . , .,, . , .. , . 

nondet~rministic ~u~. the J)QSSibJe r~µlts .return~. by. a n<?l)de,t~rministic, function. on 
. . . - . ' - . _, -• . 

an input in $U~h a nondeterministic ~lgebra ~r~ qb~ably equiyalent. 
• - ,- • , _·. ,.J-_ • • 

From the-definitio.ns of isomorpJtic equivale~e and behavioral equivalence. we 
' ' .- : . . '. - ' ~ . - ·. . ' ' . 

have the following: 

Tinn. 2.3 A
1 

is isomorphieally equivalent to A
2
., A

1 
is beha¥iom11y equivalent to A2. 

Proof Assume A1 and A2_ are isomorphically equivalent l.et E{ and E2 be the sets of 

observable equivalence relations on A
1 

and A~ respectively. Then, A/E
1 

and A/E
2 

can be 

shown to be isomorphicatt y equivalent. (By Theorem t2; E
1 

"is 'the largest congruence on 

Al and E2 is the largest congruence on Ar) So, Al and A2 are befiavidrafly equivalent i 
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Thm. 2.4 The behavioral equivalence relation on type a1gebras is an equivalence relation. 

Proof The reflexivity and symmetry property are ~vious from U,le definitiqn. _ The 

transitivity can be proved from the fac~ that comp<>S.itjo.p Q(.two-~morphisms is also. an 
..,_ • ·~ ' ; ~ \ t ~' ; • ii : { • • • 

isomorphism. I · · · 

The behavioral equivalence of type algebras A
1 

a~_d A
2 

fan.be expr~d as 

• 
Al ---->---· •2 
I I 
l t 
I I 

HI)' 'f "2 
I 1· 
I l 

A/E1 -->-----· Az'E,_ • • 

such that the above diagram commutes, ie~. · 
•. Hl = "2 ~ •. (t) 

(The function r . g has the same behavior as appTying· g first and then applying f on the 

result) El and El are congruences consisting of obsetvilb~'equivalentetelations on A·~·and 

Al respectively; A/E{ and A/E2 are the redUted:afgebras co~ndfog to Al ·and A2 

respectively; and, ♦ is the isomorphism defined bY; the isdmorphit ~nivaience of A/E1 

and A/E2. "1 and "2 are the homomorphisms induced by the congruences El& Al'atid 

~ on A2 rq,edi_v~ly. The eq1,1&tion (t) defines ,the.set,~ of;~Jo many ,mappi11gs 

{ i'D' .; V ~ ....... V ~,tD' E A u { D }} relating A1 an4 A.r In Ap_Pen<lix n, we discu~ for ~o 

~bavjor~Uy ~uivaJent type algebTilS A1 and A2, ~w a i~~Y _ to . many mapping 

'I' 0 : V ~ - . VJ can be constructed from the set of man~ to qianr fll~ppin~ { 'I'D' I D' € A } , . 

wherG for eath D' E A, 'I' 0 , is_ a mapy to many mapf>i~g,. fro~ Y ~ to Vii' ~fined by _ 

-behaviorally equivalent models Ai and Ai of D' defining V ~• and VJ, respectively. We 

also show that the above definition of behavioral equivalence indeed captures the desired 

property that the set of interpretations of a ground term are 'equivalent' in behaviorally 

equivalent type algebras. 
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Tlun. 2.5 For behaviorally equivalent algebras A
1 

and A
2
, for eyery ground term e of ty~ . -

D" € (D), for every v €,{ eJ A }, there is a v' € { el A }such that< [·v ], [ v' }> E ♦0,,, and 
1 2 

vice versa. 

Proof See Appendix II. I 

The following theorem expres.5es that the distinguishability and observable 

equivalence of ground terms are invariant over behavioralJy equivalent type algebras.· 

Thm. 2.6 For behaviorally equivalent A1 and A
2
, fot"any grou~d. terms ei'and e2 of type 

D", { lei I A 1 l = { le2 I A 1 l ~ { le1 I A 1 l = { le2 I A 1 }. .. 
l 1 2 2 ' 

Proof See Appendix II. I 

{ [ ... ) } stands (or a set of equivalence classes. 

2.2.6 Dertnitionof-a Data Type 

The beh1vioral equivalence relaf:ion on type .algebras abstracts their obsef\'.ab~ 

behavior as shown abpve an(I captwes the m~ning of a data type. 

Def. 2.14 A data type D is an equivalence class of-aJgeb"'8 of type D defined by the 

behavioral equivalence retatioo. I' 

Let M0 stand for the set of all behaviorally ~µivalentalgebras of type D. Every 

A in M0 is called a model of Q, as we have captpred.the ~man~~s of,the operations of D. 

The principal domain of a model A defines a ~j~~-set of D . . If~ model in Dis a reduced 
,::: . -· •. . . . 

algebra, then_ it is called a reduced 11.1odel. Since isomorphically equivalent algebras have 
' . . .,: ;. . . s.·: - . - -, ~ . ' • . . . " ' 

the same amount of nondeterminism, all reduced models of D are either deterministic or all 
! - ; ! • • . .. ; - 'i ~· ' ! ~. • : -__ - • . ,! - : • : • 

are nondeterministic (see p. 47). If a reduced model in D. is_ nondeterministic, then the 
~ . . - . - -~~ . -~ 

interpretation of an operation in every reduced model has, informally speaking, the same 
f "" ' ' . ' . -., : .. "" ~ .. ,-; "·, - . -; ✓ 

amount of noncleterminism. When we wish to present a d~ta type D, w~ will do so by 

presenting an element of M0 as the re~resen_tatfv_~ of Mu .. We call this model the 
_,. ,,_, . ' ·. , . : 

denotation of D. We often use a reduced model as the denotation of a data cype. 
. ·- , ' • f ~ ," ., . ' ;'"} . ~ ~ ';; . ,,. 

We can order algebras in M0 usiqg the o~to homo~ofPhism relation. Given two 
, , 0 : L • 
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algebras A
1 

and A
2 

E M0 ~ A1 < A
2 

if and only if A
1 

is an onto-homomorphic image of A2, 

when A
1 
and A

2 
are considered:ifl their~expanded form. The ~Jatioff< can bedlown to be 

a partial order. A reduced model A of D is the least model in M0 upto isomorphic 

equivalence. It is also called final in M0 because there is a on¥J hom,omorphism from 
- . 

every mode] A' ofD in M0 to A as depicted in the fo11owiilg diagram. 

A' 

H' 1\•=•.H' 
A'/E'➔--A 

• 
Def. 2.15 Set-Int is the set of alJ algebras behaviorally equivaJenlto A•1 • I 

So. A51 , A~1 • A;1 -, A!1 , and A:1 are models of-Set-l110dt can be :"Verified that all 

models of Dool are behaviorally equivalent type algebras of Bool. We will use Bas the 

denotation of Dool and A•1 as the-4enotation ofSet·111t. 

It should be clear from the above definition- tftat a data type D not having any 

Qbservers consists of all type algebras:of J>., ~ is.:S>Lb,c~tlf~ dt;fmition of behavioral 

equivalence of type algebras depends only on the behaviorpf:~~~ 

We now compare our definition of a data type with those of Zilles [77] and the 

ADJ group [23]. They require a data type to be -a set ci ~f :~rphic '(isomorphically 

equiv?lent to ~ ex,act) type algebras. which abstracts only the' rep-resentation details from 

the algebras. (They 8$UffiC that a data type has ~ly deterministic operations). In their 

appr~h. a data type whose models are the reduced algebrak is disfiilct. from another data 

type whose models have distinct observably equival~nt values. even' though. both data types 
' - ~ • u• ~ 

have the same observable behavior. -For example, th;e_ data type consi~ing OJ models 

isomorphically equivalent to Asi would be ditrere11{ frOlll the data type consisting or 
models isomorphical)y equiv~l~nt to A!1 . ·F~ ~· programmer's point of view, both the 

data types are the same and cannot be disting1a'i~hed. We do ftOt understand the motivation 
. - . ~ ,• . 

for making th~ above distinction. Our definition of a data type is str~nger than theirs, and 

it does not make the above distinction. It not ori1y a~ frortl · the representations of the 
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va1ues in a type algebra, but it also considers representations to be distinguishable only if 

they can be distinguished by the operations. It is based on the programming language view 

of a data type. 

2.2. 7 Observable Equivalence and Distinguishability of Terms 

Since every va]ue in the va1ue set VO defined by a model A of D is an 

interpretation of some ground term of type D, the observable equivalence relation and 

distinguishabi1ity re1ation on VO induce the observable equivalence re]ation and 

distinguishability relation on the ground terms of type Das follows: 

Two ground terms e
1 

and e
2 

of type Dare observably equivalent w.r.t. A if and only if the 

possib1e interpretations of e
1 

in A are observably equivalent to the possible interpretations of 

e
2 

in A. And, e
1 

and e
2 

are distinguishable w.r.t. A iff they are not observably equivalent 

w.r.tA. 

For example, the ground terms Insert(Insert(Null, 2), 3) and Insert([nsert(Null, 1), 2) of 

type Set-Int are distinguishable w.r.t. Asi , as their interpretations {2, 3} and {I, 2} in "si 

are distinguishable, whereas lnsert(lnsert(Null, 2), 3) and Insert(Insert(Null, 3), 2) are 

observab]y equivalent w.r.t. Asi, because they have the same interpretation in A
5
i. The 

observable equivalence and distinguishability re1ations on ground terms of D w.r.t A have 

the properties of the observable equivalence and distinguishability relations on VO in A; 

remarks and observations made in Subsection 2.2.4 hold for them also. 

Using the fact that all models of Dare behaviorally equivalent and Theorem 2.6, 

it can be shown that every model of D induces the same observable equivalence relation on 

the ground terms of D. So we can say that the above relations are independent of a model 

and are relations on ground terms of D. We can use a reduced model to derive the 

observab]e equivalence re1ation on the ground terms ofD. 

Distinguishability and observab]e equivalence of the ground terms of Dare useful 

in understanding the behavior of D. These relations characterize the behavior of D in the 

same way as these relations on the values of a type algebra characterize the behavior of the 

type algebra. Distinguishability captures the informal notion of the ground terms being 
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unequal. The models of a data type also induce observable equivalence and 

distinguishability relations on ground terms of type D' E fl involving the operations of D in 

the same way as above. Understanding of the observable equivalence relation on the 

ground terms is helpful in writing a specification of a data type, as discussed in the next 

chapter. A specification of a data type can be viewed as a way to describe the observable 

equivalence relations on ground terms. 

We can also define the observable equivalence relation on tenns (possibly 

involving variables) as· fo11ows: 

Given terms e
1 

and e
2 

of type D' E fl', let X be the set of variables in e
1 

and e
2

; e
1 

and e2 

are observabfv cquiva!c111 if and only if for some A E M0 , for every A-instance V of X, the 

possible interpretations of eJXI J1 in A are observably equivalent to the possible 

interpretations of eJXI v] in A. And, e
1 
and e

2 
are distinguishable if and only if they are not 

observably equivalent 
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2.3 Exceptional Behavior of a Data Type 

So far we have assumed that every operation of a data type D returns a normal 

value of its range type for any input in its domain. This assumption is not realistic, as it 

glosses over an important component of the behavior of. a data type. In this section, we 

discuss the exceptional behavior of a data type. We relax the constraint that every 

operation terminates normaHy: An operation can terminate either norma11y by returning a 

value or by signalling an exception. For example, we modify the behavior of the operation 

Choose on the empty set; henceforth, we assume that it signals an exception instead of 

returning the integer 0. We discuss the assumptions made in the formalism about the 

behavior of the exception handling mechanism of a host programming language supporting 

the abstract data type mechanism. We extend the fomrnlism introduced in the previous 

section to model the exceptional behavior. 

2.3.1 Assumptions about Exception Handling Mechanism 

We consider the exception handling mechanism an integral component of a host 

programming language supporting the data type facility. The exception handling 

mechanism performs two functions: Signalling the exceptions and handling the exceptions 

(52). Signalling is the way a program notifies its cal1er of an exceptional condition, and 

handling is the way the caner responds to such a notification. A module implementing a 

data type must provide an adequate interface with the rest of the programming language 

for exception handling. Such an interface can be designed by naming the exceptions 

signaJled by the operations along with the specification of information carried as arguments 

to the exception handlers. We will not be concerned with the semantics of the exceptional 

handling mechanism of a programming language in this thesis; we rather consider the 

exceptional handling mechanism insofar as it interacts with the data type mechanism. 

Liskov and Snyder [50) discuss two models of structured exception handling - the 

resumption model and the terminalion model. In the resumption model, it is possible to 

resume the operation invocation signalling an exception after the exception has been 

handled. In the termination model, the operation invocation is assumed to be completed 
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once it signals an exception. Liskov and. Snyder d~c· -many advantages · of the 

termination model over the resumption model. In particular. the behavior of the handlers 

for the exceptions signalled by an operation is separated from the behttvior of the operation 

in the termination model approach; this maintains the modular structure of the operations. 

In the resumption model, on the other hand, the behavior of the handlets beoomes a part of 

the operation behavior. Though there is not Sttfflcienf experience io suggest which among 

the two models is better suited -for abstract data types, we have decided to adopt the 

terrnination model approach because of its simplicity. 

ln a language supporting call-by-name argmnent~ng methanism (or in fact. 

any mechanism in which the argument ev~luation tak-es place inside the procedure body), it 

is ~bte to implement a data type whose operations ,am'hatlate the exceptions signalled 

by the evaluation of their arguments. Few recently designed progtamming languages 

support such an argument passing mechanism for-·affetist:twt,;~ns((;} Its-semantics is 

quite complex, and (ii) it is inefficient to implement Most programming languages 

support call-by-value, call-b~-object (52). or -call~by~reference \mech'ariism; with these 
me(:hanisms, it is not posgble to implement a data type having ,all ~ration that handles 

exceptions signalle_d by the evaluation of its ~UIJICnts. _ We mum~ in our work that an 

operation does not handle any exception _ signalled. by the evaluation of its arguments. 

rather suc;h exceptions are handled in a module in which ,the operation ~- invoked • 

arguments are evaluated inside. this module,. Every -operati<>n ~-~ed to expect nonnal 
- . , t ' ' ~ 

values as arguments.11 -

If an operation takes multiple arguments, many_ argu~ents may_ signal exceptions. 

The.order in which the exceptions are signalled and bimdled depends upon the evaluation 
. - ' - ~ . ' : - . 

o(der of the arguments of a procedure invocati011 in th~ bost pro.gramminJ language; we do 
, ' ; .. : _- ~' ~ . "~ . - .-

not address this ~ue in the thesis .. We would,Jite QUr formalism tQ be C!Jrnpatible with any . \ . , ::- . .• •', 

reasonable. ordering scheme adopted in the host programming_ lru;igu~. 
. ·•, . ,-._, 

IO. However, our approach tor defining a data type is general and ftcxiblc enough to model a data type 
having operations that handle exceptions signalled by its arguments. We simply have to extend the fonnalism 
proposed in this section. A dala, type with such behavior can also be specified by extending the specification 
, language to be proposed in the next chapter. 



We adopt CLU's view of a data type that the handlers ~iated with the 

exceptions signalled by the operations of a data type are not a part of the data type. This . 
view keeps the behavior of the handlers separate from the type behavior and maintains the 

modular structure of the type mechanism. A. user of a data type has the flexibility of 

associating different handlers for an exception in different contexts. We will not disc~ 

the behavior of the handlers in our research. 

Exceptions signalled by the operations are distinguished by naming ·them. An · 

exception can carry information as its arguments from· the J>lace where the· exception is 

signalled, and this infonnation can be used by a~handler associated -with the signalled 

exception. An operation can signal many exceptions to exhibit different -properties of an 

input 

For illustration, we consider the data type bounded stack of integers, of size< JOO, 

denoted by Stk·lnt·fOO. Sti·lnt-100 is an 'instaptiation of the parameterized stack example 

lnJ31J; it has the following operations: 

Null a COffimlt denoting the empty stack cl intqen. 

Push insens a givca ~teaer•··i at the end of a '.l,ivAHt •t s.· It si&nals the cxc~ 
ovcrOow(s, i) if the given stack is of size~ JOO. A handler for overflow may examine 
the· stack and remove the useless elements. to. make space for. tJic dew etcmeni.' or it 
may do ·sometltiilg elile. 

Pop removes the ~ µiteacr inscruxl into a given-~p~ stack s. Wh~ invoked on dle. 
empty stack, it returns the empty stack back. . 

Top returns the last integer inserted ifififagiv~it n6ri~rh1,tfstack s. It signa1s tfle exception 
· no-top() ifs is empty. No-top does not take any arga,pnent. 

Replace replaces the last integednscrted into a gi~e~ 'nonem~tYstid s by a given integer i It 
. signals the exception can't-~ en tlie einpty ,,tack. ; l 

Empty tests whether a given stack is empty or not 

For Stk·lnt·IOO, A = { Int, Dool} and o = { NuU. Push, Pop. Top, Repla~e. Empty}. 
. .; . . . 
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2.3.2 Formaliam 

We discuss extensions of ttie formalism i~odu~s:t- jn the previous section to 
- - -' . ~ ' : . -· . 

model the. exc~ptional behavior of the Qperations.. _We di~u~ modifications to the 
' ~ , , . " - • - . ~ ' ,:~. ' • t ~ _, ~; ~. :,; : l ~ ' : • • • 

definitions an<l their impli.c.ations. SQme important definitions will be fully presented. The 
• ' • . : ; • - : ; .. ~ ~ . , - - •• ; ' ; • ~ ~-· - ..c· ·,:_ ~, ': ~:; - i ~. ,. '; 1 ; • t: ' ; - i 

discussion and results of Section 2.2 are ajipJi~l?I~ ~~e these: mopifications are 
• ~ ~ • ! • " 

inCOl')>Ql1llC(I. 

We first extend the definition of~ type aJgebra given in Subsection 2~2.1. We 
" 

want to keep the normal values of every d,ata type separate; (rom the exceptions. because 
'• . -~ , ; .. · : - . . . 

the exceptions have tptally different behavior ~ ~pared to the _nQflllal valu«;s, and 
. - . . , . . . . ~ ~ ~ -

because the exceptions should. not be typed. In addition· to a domain corrcspondi,n~g'ito 

every D' EA' containing the nonual_ v~ues of n:. a modified ~ype algebra has anew domain 

~f exceptions, d~n~ted as EXV. EXV :ro.~sists_ of, ~u'.eXG~~!1P~.,#>r;,.e~cepti9n val~) 
-. -• :· ,,. ·-·' . ' ·_ ;. '. ~.;. _,"': .:,; -. ,., ... ;,• : . . ... _ ...--;. 

signalled by the operations of D" E (D) . whe.re for every excepli(),n .. name ex of arity 
·•-:.;';~-.,~1,.~-z-. __ ,.zc~ ~tntWf.1nt·: .- ;2· - .. ~ . ; " , ~L 

DI X .. . X D • and each V. of type D.. ex( "1· .... V ) is called all exception value. The 
D 1 1 ~ D 

exception domain EXV in a type.alMbra, .. ~_. ~l):.~:-~W,jil,c~ly. ~•in A 

inheriftthe erceptiort domain of a model A' brD' E A whtJSe11friwciJ,al doMain V 0,'is.being 

useii~ ~:;,.~~ e~cep~~-v~lu·es ~j~~l~e~fby: me.·~~~s ~j~~in~~~ operations of D 
are explicitly specified Let exv stand for an exception val_.._,~"~•~ .v_), ..,l£:a11 operation o 

signals. thisis mndeled asmintc,rpretatiotif n:NJlfflftg·mr~trfofBYl · ·• 
-~:r..::~",: -!_/ ,;<··~:-~.> !-~ ,i 

W~ llOW present tJie.mQdi.fied type~ 
• , • ~.C I , • • ' - .'- - ' . ! • '. 

Det 2.16 ~ ~,gebra A of ty~-l>)s a_heterpgep~s algebra 
: a • ~ • ' • • • , -;. ,;.:, -,_.: • ,· : • 

[ { Vo, ID'€ A'}, EXV;,,{J.,,111 E o-}J .... ;- , .. • 

(i) for every defining ~Y~ D' €. A, VD' is a _value set ~f o: defined .hY a model 
. •··· ' ., . "' ,i.,,, " ... : ··,. , ...... ~, ,,., . . .} •. '· , •',-

of D;~ ·v 0 , cons~ only of the n6nnal values 'returned by the oonsttudots 
ofD', 

(ii) EXV is the exception domain including the exception domain of a model 
of D' defining V 0, for each D'_ E A, and the exception values signalled by 

the operations ofD, 
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(iii) for every a Ea, its interpretation r
0 

is a.total function of the.appropriate 

arity. If D' is the range of a, f
0 

either ~~l~,in a._ norm~I value in V0 , or 

returns an exception value. If any argument to fer is in EXV. fer is not 

defined on these arguments. ll and 

(iv) VO is the smallest set dosed under finitely tnany ~pplications of the 
functions~ding to the ctmstrutlorsof D:Ci~t".,f r0:1 u•~ s~ }). V0 
only contains the normal values resulting from the constructors. I 

Recall that by assumption. even if f is nondeterministic, it behaves dete~i~istically on an 
. CJ . ' C •• . : 

input on which It signalsO" We assume that for every D' EA', it is· possible to distinguish the 

normal values. from the exceptions; this assumption is implicit in every programming 

lan$uage supporting exception handling. 

2.3.2.1 Terms, Exception Terms, and Interpretations 
[ ·( .· 

In addition to terms as defined in Subsection 2.2.3, · we have exception terms 

defined as follows. 

Def. 2.17 _For every exception name ex of arity D1 x 
exception term if each ei is a ~llltof.~Di._·.J 

An exception term not baving any variables is called a ground exception teJM. 

An interpretation of a ground term e in a type aija;fi'li~jhol\1erined if any of 
• C: 0 • • • .i • - ~: ·.J 'C -,\ •~ • •· :• ••• ••• • 4 : • •- • - • f _ • 

its sabterms inteiptets fu an exception value. So, 'Proposit1on 1:1 'in Subsection 2:2.3 gets 
modified to · 

::1 ' ... :.,?t i{ -~ 

11. An equivalent interpretation is lo bivc fu sigruif a d~inguisflcd exception value, say :abortO for example. 
We have not dio&Qttlis~bccausc ,il tpv$1htt~ of thCJ~ti valut'boing i,essed as 
an argument to the operation. If WC wish to mo~~~.-~: 4-t,ta, ,\YP£; ,r~~ ~~- ~rnt,l<lfl; h~_dlio! e~cptiQns 
signalled by the evaluation of its arguments:' wc"1:annot· mate ·ttfe~vc ~oi'i: ,, /\n' operation' er could 
return normal values even; when its 41il.flllCnt$ sipal cxoeptic)fJi; so:-f. eckJld, rett1m a normal value ~ :'that 
case. 
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. . . . . . . 
Prop( 2.3- An -interpretation of a ground term of type D'' € {D) in an algebra A of type D 

is either a normal' value. an exception value, or ~ndelin&t 11 · ·' 
<; --

,' .. - -

If an interpretation of e is an exception :'#lllk! or,~~J.l:fld~i,tneJl e J1as a unique 

interpre~tion in A. An inteq>retati.on of.lffl_i~ale(I tefJP.. as,~~~~ a )erm in A are 
• •• ' • ;. • ' • - • -.- .. -- • -✓ ~ • ' - ... ·-- • ~ - .Ji ,,., . , 

similarJy defi~ed .. Proposit;9n 2.2 ~n•~~2~tl~l·~~ UMl,modified type 
, . ,. . ,• 

algebra. ·:' 

An interpretation of an exception ~roun_d_term .e1~i• ...• :e
11
),in A. is. defi~f4 only if 

ea~h· eil A is a n·ormal value of type Di; the~. ex(el.' .~.. e)[A · ex(~11,A·<··· e9'A). 
Otherwise, ex(el' ...• · e

0
)I A is undefined .. lbe ~efiniti911 of at1

1
_ in,terpr~~on of· an 

. irtsiantiated excepti~n term··~d- of~ exc~~tion ~rm)n A:'~an ~ give~ _using the above 
definitions. <;e·;.,i,, ...•. : , ; ··.'.'; ·. ;:' ,r :. . .. ' ., ·" ·. 

" ~·-:..,;_~ - ~:-- ·0 - -r·-
2.3.2.2 Examples of Modified Type Algebras 

The type algebras A~i -~d A!1 ~ of Sd·Int ~i:en in Subsectio~ ~};;A~~~~~~~_ 
to incorporate the exceptions. We will use the symbols A81 and A!1 to stand for the 

modifted type a1pras.;_ : ; . - . 

A
51 

= [ { S, Z, B }, EXV: {Nu.In, 11e,a-{s,-~1}!~-, ': , . :··.,:· · ;. ·., · 

The Choose operation signals the exceptjon.no-ele•~~ which J$.P1~~d~ jp EX.Y; so . 
. . . ;• ,, q.(~l}Hi' -~' ·,• .· ; ,. : _,~-~;: : '.''.'.,~<- .. ,\~! :-:·' . ,;. ·~. . - ... 

instead of 0. Othe.:;ise, .the definitions o( the functiol)s _remai.i:i tl)e $l1DC. Si_milarlJ, for 
:i:.;. .. : .·: · ·.·· · c ._-:.: 1!'J .. 1,;.·r:~ ,;;: !J.,. ·.::'.·; .. ,, ., .... ·.· 

A•1 , we have. .,>. ·:. ,,, 

. A;1 = [ { SQ1
• Z. B }, EXV; { Nu1

, ln1. Re1, Ha1, Si\ Cll1 } l 
where Ch1

( <>) ~ no·elementO. and the definitions of other functions remain the same. 

We ·present a type algebra Astk ofStk·lnt·l■. ···-· ~- .... _ . -~- .... _ 
,.Astk = [,{ 89', Z. B }. EXV: { Nu,J~••• P~. To. ~e.-J~Jl., 

w~re Z and B are the value sets defined by; the models ef Int and,Bool,espectively. And. 

SQ' is the ~t oran sequences ofinteaeis.oflengtb ~ 100,
1 
... 

-SQ' = { <>. <O>. <1>, <·l>, <2>, <-2'>, <0,-0),'(o, l>,<4>.·004>,: • ,; : ,} 

The interpretations of the operation names are defined ~ follows: 
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Nu ~ <> 
Pu(<i1, ••• , im>, i) ~ \ ov~rOow(<,;, . .. , im>, I) 

l <,i, · · · , 1m• 0 

Po(<i1,. .. , im)) A\<> ifm = 0 

l <i1, ••• , im-? otherwise 

To(<il, ••• , ;m)) Q s,~mo-top() if m = 0 

l otherwise 

Re(<il, .•. , im), i) ~ ~ c~n't·re~lac. e(i) ifin '= _o 
( <11, ••• , 'm-i' i> otherw,se 

Em{<i1, ••• , im>) ~ ~ TF if m = 0 
7._ otherwise. 

ifm ~ 100 

otherwise 

Henceforth, by a type algebra, we mean a modified type algebra unless stated ottierwise. 

2.3.2.3 Observable Behavior and Distinguishability 

The ·definition ,of Beol given in Subsection 2.2.4 remains• the same, because no 

boolean operation signals. 

As was stated earli~r. if the operations of-a data type Cl"hibit exceptional beflavior, 

its values can also be distinguished due to its exetptional1 behavior.· If a sequence of 

operations.signats:an exception on one value and. doeanot si!nah>n d1e other, then the two 
' .. 

values are distinguishable. If a sequerice of,~eratibns mgnals''Oit·ooth values, the two 

values are distjnguishable if the sequence sig~n)s; clitTe.re9.t_,~f~~.ions. Ttt~ the b~havio,r 
, • ' ! . ' • ~ '.[. ' ; '.' ' ' t .,. . l • C i- ~ 

of the values .of a data ty~ can also be Qbservec;I using the ex~~_pt_iQn-:handling mechanism 
,'' . . : . . ~ \. . . ; ' "':;. t < \;.. :· ~. : ; ' -

of the host programming language. Even if a data type does not have any def!ning t)'pes, 

its values can be distinguished if its operations signal exceptions. 

We.define the distinguisbabifity retatiori·on V
O 

aridthedistinguishability relation. 

on the exception domain EXV in A mutually recursively. using the =distinguishabtlity 

relations. on the domains corrcspondiqg_to the .. deff:Oing.~pg.; It ~.ould be. Jllade sure that 

arguments to exception names ar~ -such that,th~ two ~e(i.nitions are wen foµnded. The 

definition of di~oguishability on excep.tjon val,ues,i~ra~ .tmlt (i) two exceptions 
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having different names are distinguishable, and (ii) two exceptions having the same name 

but distinguishable arguments are distinguishable .. 

Def 2.f8 · Given two exception values ex
1
(vl' v ••• v

0
) and' exJv~ •...• v~) in EXV. they are 

distinguishable iff (i) ex
1 

;J; ~x
2 

.. or (ii) if ex
1 
= ex

2 
and ~ = ii, then. for some i < i < m. vi 

is distinguishable from v'. . Two exception values·· are ooservably equivalent itT they are not 
I - t , , ' -. . 

distinguishable. I . · - · --. 

We denote the observable equivalence relatio1;1 Qn EXV by·E,:x\l"' 

Def. 2.19 For an algebra A of type D having no defrtiing types and whose operations do 
.~ .. 

not signal, all values in VO are observably equivalent. I 

Def 2.20 Two norm~ v.al_ues v1 and v2 in V0 ofan al¢>ra A ~~ty~ ~ are distinguisl?abf~ 

ifTthere exists a term with one variable of type D. expre&5ed as c(x). such that one of the 

following conditions holds: , · 

(i) the instantiated terms c(x✓v1) --and c (»t'l"~ interpret .to distinguishable 
exception values in A, 

(ii) c[x/v
1
J inrerprets to· a normal value aB(t clx/v,J .,interprets to an 

exception va~ or vice versa. ~d 

(iii) c (x/v1)1A and c(xl,JI A __ are normal, values 8Rd _ { c [xl,1DA } i$ 

distiuguishable from { c[xlvJIA }. I 

Note that in the above definition of distinguishability. we -have not included the case in 

which exactly one of c(x/v
1
) and c(xlvJ is nof defiried because' the condition (ii) -above 

takes care of it 

Def. 2.21 Two normal values v1 and v2 are obser«1b/y _equiWJlenJ itT they are not 

distinguishable.. I 

Theorem 2.1 of Subsection 2.2.4 extends to the above definition of observable 

equivalence relation. ~xv is also an equivalence relation. 

We extend the definitions of congrueriee/hoindmotphism, and -isomorpbism-for 
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type algebras having exception domains .. The mappings from the nonnat domains of a type 

algebra A
1 

to the corresponding normal domains of another type algebra· A
2 

induce a 

mapping cJ>EXV from the exception domain EXV 
1 

in · A 
1
.to the exception domain EXV 

2 
in 

Ar The exception names act like operations; they prese~e these mappi'ngs. Given 

A1 = [ {Vb· ID' EA'}. EXVl; { r; I a€ O;}) 

A2-= [ { V{}' ID' EA'}. EXV2 ; { f!l a€ Ii}], 

for every exception name ex o.f arity D 
1 
x ... x D n' 

< ex(vl' ···• vn), ex(•n/v1), ···• •o/vn)) > € •Exv · 
Theorem 2.2 modified to say that E = { E0, I D' E A' } u { EEXV } is the largest 

congruence in A holds; the proof is similar to the proof ~t fheorem 2.2. · E captures the 
normal as well as the exceptional behavior of the functions of a type algebra A. 

We define a reduced algebra in the same way as in Subsection· 2.2.4 using the 

congruence E. The definition of behavioral equivalence relation on type algebras is the 

same as in Subsection 2.2.5~ The definition of isomorphil equivalence used in the 

definition of behavioral equivalence is extended by includin;g the ~apping •Exv in the 

family cJ> and requiring •EXv also to be a bijection. The theorems of Subsection 2.2.5 
,• • . ; ' • ::, • - :,·: ·,1 

exhibiting that the definition of behavioral equivalence of unmodified'fype algebras indeed 

captures the desired i~tuiti~n exte~d to the modi tied type algebras. The results antf proofs 

are modified to incorporate the fact a ground term 1e(.tlvely, ao· instant_iated term 

e[XI Jt]) may interpret to' a normal value, an exception value. or be ·undefined (see 

Appendix II). 

A data type D is defined in the same, way as in Subsection 2.2.6 -as a set of 

behaviorally equivalent type algebras. Let Mo stand for this set' Every model in Mo now 

has the exc~ption domain EXV. . The observable equival~nce and distinguishab1lity 

relations on the ground terms oft;pe D a~e defined as iri Su~on 2:2.7. 'We incorporate 
J". 1 • /. i . 'c••·. ,- ;_ , - . , 

the facts_ that two ground terms whose interpretation an every model _n, -M~> are ·undefined, 

are observably equivalent, and that if one of the ground terms has an undefined 

interpretation whereas the other does not~ then the two ground terms ·are distinguishable. 
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2.3.2.4 Compam.on with Goguen'-•,Appn.,a~ 

... 
Our approach is similar : to Ga&qen ·s approach [20. 21] of modeling. the 

. : . •- L .: . . 

exceptional behavio_r. of a data ,type in the sense _that e~_~eptj9~t ai:e_named. and can hav~ 
• -~- f ,·. -_ • -_· .·::· ; ~,• :. __ ;,:._:-·;LL,•-,, 1i.Yt~ :-, .... ,; 

arguments. However. there are c;ryrjal, di~~ncqjq ttie. tw<>,cJ~ign phi10S9Phies. In 
1 {. }( . ~ : ; -r f,. ·;, , .; . ,,. \ :: ~ .· .. l ·: ~ - . !). 

Goguen ·s approach, the definition of a new ~ ty~ ~ ~bl)'. e#e119 ihe d~finitions of 

its defining types. This is so because the e~~P,tio~ (c;~I~ 
0

,Wl-;k ~a1ues tn [20J) are typed 
· 11 ;·_. 1. . :.. ~; ~ . . - ._~.; :. ~ - ... . . . 

just like the nmmal values (called ok valu?, ii) (?OJ). ~llStead qf h~i!1S. a single_ do01ain of 

ex~eption~ Goguen p~~ti~ns a va!ut~t of D,.in~; the e~~e~~\~l~es and, the nonn'!i . 
_ .. -· ~---~ - ; - • ;_ - ·. - ··. . : ;; • - k. . . ~! -_'fl:·:~ "/-y_,:,~ { ; :;. -~(-. '~~> .-· ·.:;·- ' 

v_aj~es;_ t~e exceptiop value I?~~ of the value.,·set e~pand$ as new types using D are defined. 
~--::.· , . -·~ '.: ., ;:::-:~.' '",: ,_ ~·-~- ~· .. _;~j• .; ·::~:: .*:t· ·. ":-!! -:.,·;·t; ·:.:·:,:: . . .. -~<J""_ 

For example. the d~finition of ~k-lnt-iOQ _wouJd extend ttte definition of Int by defining a 
1 -1~~-<:·: ·.t": <: · ,~, · -;t; _ .~: fc: ~-.:::'~,,1i .. :i.J L /::,·:1._,-~)-··, -~ ,::, ~ ·,J ; ••• 

new. integer DO:"top (which is a not-ok value). We consider this as violating the modular 
. --~ . . . : ' . • • • • , . ' • • . ,,.i - - : .. - .. , • ,.;··_ . 

mucture of the definitions. 
- •. i: ~ • cc _: f , ; . : • ''• , . . . ~ . - . ; , . - . :. 

The OBJ. language .of Goguen and T~~ {2J] al~ws the h~ndlers for the 
.· •.c~·,. ~ ~; _ •· --• •; ~ . ,• ~~-. •; :L:- .;:·:; t -.. •· ;f•• •'.l -•'~<-:;; • , .. ~-, .-..:•:. 

exceptions signalled by tile ~rations tp be speci tied ~ l!- p~rt of the type . specification, 

th\lS~aking the_~pe be~~~iQ~~lex., we'~~tharthey.~pt-thi~~~p~h ~se 
~fitJei:r atte1J!pt ~ de,v~~P -the ~IJebraic. ~tnant~ J a:~p1~; t~grJnjmi~g langu•: 

~-- .... ·. ;•~ ~--· ,) ..... ~-~-~ · · ·.-: ~:~.< o'<~;):.~ :r..;-:-~Jr .. ~b\:~:"': !~'.; !1£-i'.':..~~:~_;f.; .)"i! :: ;:,_; •, r:•L,·:·~.,: 
iqcludin_g the control __ structu,res.. So. they ~ not _SCfl8:(ate the ~~antics of the ~ception 
r:>" : ~ ·<.;. 'i· . .,.·"~. >·. .·.-_,_ <':··_ , . - -~: ;·t-1-c!;:~ ~}riJ [~! t1~·:· :···· nr/;;·~t(::::.. ,- :;; "·· ;_: _._ ;t: --

han_dtipg mechanism from the data type. 
'T\ ~;,: 1 - ·: • 'C~~ :: .-:~~;~-!~::~;·), "1 °- "·: :.; .;.,,:.'.lf, ~~_-; • ~r•. ·11 '"5;, -:~ , .... ,._ • ... i• 

1n contr-. we have concentrated on the··~vior of data types only. W~ haye 
? • ' ,. • '~ ' ". ,,, :• - - ~ • .,.. -<l'jc • l.; .; . ,'" r-.r-, -;o, \fl V .,, j ; ~ -- "' .. ~. ,.-

separated the exception handling mechanism 'from the.dab! type ~ecb~isni." w~ hav~ 
{ ~ : . ~-.. - •: •p 

qn,ly conside(qi compoIH;n1' ~f the exception ,t~andling ~~sm rehued, to the type 
- :·: .. -.~ - , _ .. :_ ': ,_./·,,.·~,c- t:-: _q lt~ 1·:· -.~:·~s,_~ ~jn1 n1 tJ...,:-~ik::n ;~~ tl :;i~V! ;~_;f> ... _ 

definitiop mecJ}anism. We do not co_nsider the behJvior of exception handlers as a part of 
:: - _ ·;. : _; ~ri~ ~ - ,:_ -~:,> . ;~ .'. .}.~-- i- .~r,i~ :..:_J ~-f'~}!C;~;r:fi~ j(Lrj L,;·=/~~-1~u~·-~-} t'L;- '. >' .·,ri~ , 1 

a datat>1pe for reaspns disc~ earlier., We~liev~Jhat Ule type m~antsm should only 
· ;" ;_;;;,. .. =:."~i'JL:1-Jr:;;; __ .. --~-~·;·)~~ii.) Jrti .. ·-1~~i ri;fn~r·;!; i:~_·.·1ZQ:;::1~-, -.~i·, ;/<[, 

p~ovide 81). aqequate _interfa(:C _ to 1:1\e ~~ep~ han<Ving m~anism · of the host 
-~·;.·.-:· -· -.<: 'tr , ~~,.\ ·-._."]) - -,:-~- .. ·· -·'.~·; r,..;~·-:.r• Jb J1t~ \I c,f_t{j ir:~ lfH1~? t)n:~~::-~.~~ " __ J.:• ;"· :. ~ _i, 

progt:af\lming_ 1an1magc;. ,We sepa.rate thf! exception domain from the domain of nO!Jllal 
.:,-~,~' ·r, ': ~a~ r·n !-=::;~}:''."fJ ·~:-~-~~, i·;~ Z!()Lt1~~-;:--~1f>Jf1j ~.0c,-~,;rf,11 ?~!f1:j} !>ffi;.•-::..; ,;,}:t \~ 1-:f ~--:~; ,J/ 

valu~ as exceptions have different beh~vior tio!ll th~ normal valuf:S. ·• We do not type 
.~ .- : - :- __ :·· --,-:~-~~ L· . ;:_-_._ . :~] ~l.. ,· .. 1{ t~~-:1 ~J;.1_: :~·~:J;:_,,.-:~t,·,, "·- . .,.,. .. - :~·.\-. . 

exceptions either because doing so seems fl)eaningles •~ th~ way. we 'have been able to 
,, - , -• .: ,: ~-:---.,:-~J :. -~--{ __ ,.,, .r.:;:_, ::Jzt; .J.:·~n ,.<;{_.i.U /_;~;:!_;!'_.df.,; ;~/'j;,-::-;;f.-1 ;~:~~ i >_"! __ --':_' ~~ 

define the behavior of the operations of a data type completely and uniformly, _without 

extending the definition of ~Y of its defining types thus preserving the modular structure 

of the type mechanism. 
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2.3.3 A Simpler App~oach 

In this subsection, we discuss anQther approach (or modeling the exception 

behavior of a data type, which is ~impler than tht app~h \liscussed earlier. This 
- . - "'!; -~ • • ._ 

approach has · be~n generaffY assumed in· the titeriltute *oct .:a1ge1'taic SJ)etificauon · of data 

types when the authors do not wish to discuss the exception· beh~it>t of the c,perations 

[29, 77). The ADJ group's work (23) is an attempt to formalize~ "18 liututg f31rembeds it 

in a rich way in a specification language. We discuss this approach f(?rjctwQ: re~ns: (i) our 

discussion is simpler and more natural than that of (23i· (ii),pured_~\JSSion .wyyJd•place the 
·- ~ ' . 

works of those who have implicitly or ~~xplic,~y ~urned this approach of modeling 

exceptional behavior on a,firm basis. and (iii) our di~io~PT(ffides. a ~mantic basis of 

Guttag'sspecification Ian..._ , 

In this approach,.excw,t,ipns signalled by opera~ hA,vin~ th~ ~~:range are 
• ~ I i 1 ' 

not distinguished and no inf~tion is passed with \an' exception to its handler. An 

operation on an input either returns a nonnal val.~!\9f '$&Palt,a~ exceptieq fajture. For 
-~ J ~~ . --: < 

example, the op~~ Push, Pop, and ~~••~ si~ tfie same exception failure. Every 
• •• ; ' ':'! . I 

operation is assumed to expect normal v~ as argumeqts. If an ~~gum~nt tq ·~ operation 

signals failure, then the operation pn>p~ it by signalijng it. 

Such exceptional behavior of the operations can be modeled t;,y extending the · 

domain of .every D' E A' in an. algebra A of type ;D (as defin~d in Subsection 2.2.1) with a 

special exception failure; we denote it by err0 ,. Whenever~· operation _a si~als failure. 
its· interpretation f 

O 
in A returns err D' • where o: is the ~ge ty~ of~. So ~e have 

' ' - ft - --.. ; 

A = [ {VDU { err0 }} U { VD' U { err 0, } l.D' E, AJ; {f
0

,I 0
1 
~ 0 } t 

lf any ofthe x/s is err0 _. then f.;(~ •.. ·~ .• xn) = .,,&'. i;~ f
0

js Slrict with respect to its 
I 

arguments. We &0me that for every D'·E A\ _it,is pomble to, distinglJish betw~n the 

normal values and the exception value err0 , . 

We modify the defmition of Bool given in Scctioa2~2. The model B of Dool is 

extended to have. the exceptional value •rr.,. 
B' = ( { { tru., falae, e«.ra, lJ; { T,F. v,-. A ... ,.-.}). 

where the defmitions. of the ~ean opemtions: sanains the same OJ\ normal values. 



Besides. every function is strict Dool is defined as the set o~;type: algebm isomorphic to 

B'. 

We discuss a type algebra A~lt< ofStk·lnt•l81J. ~• 
, - • , • -- 0 :'" ~ .. ~· • • .. J f'~-

Asi1t ,:{{SQ',U { ..., •• 1~z:t;B',}; l~u.', "''.;Po\ T•'!'Jle\ ~· r1 
where B' =BU{.,,._}. 

z.· = zu { .,,,}► 

. Nu' ~ <> 
· · ifm~100 

.: otfierwise ' 

" if•· . · - ~ 0 .. ftt:=:::., .. •. 

--otfte~ 

,· iftn = 0 
.. ·;: otherwise 

. The theory discu~ in Section · 2.2 directly e~tends to the above algebras also. 
, . . . . . . ' ·.. .. . . .. ·:.':.}_':{:; . . . ' .· . . " 

The.defit1ition of the interpretation of~ term· in Subsection 2.2.3 easily c;xtends. · A prund 
• - ~; ) ; : • • • - , ,.. :! ~-· ~ : --; Ii :: l : k '_;·, ~ 

t,erm of type D' or 3J) instantiated ~nn 'tnay ,i_nterp~ ~.-.•,rn-. · ·The definition of' 

distinguishability of values of D in a ty~ algebra. also exwnds in a straightforward manner. 
- - - - : _·: J. ,. -•. : ,' ,.' ; . . , •. - f.. ·._ . 

We want·to add to the definition that (i) evety!.D<>tn\a'fVlllut of D is•drstingaishahle from 

the exceptional' vafue 1tri0 , and (ii), tw<filOnnal- v~ •i-•and,JJ"t'in··Vu,_ofJl are alS> 

distinguishable if there is a term c(x) Stieb :that d[ xlY1t,i~ets to a&'l~xceptioaal -vaJ.ue. 

whereas c [xiv) interprets~ a normal value. or-~cveda. • 

The behavioral equivalence relation oa modified: tJpt, algebras is a simple 

extension of the definition given in Su~-246. 1 
•• The. medified- definition, ~ 

isomorphic equivalence .roqtfires that every mappied ~,,in,• mapsrtlle exception value 

~•n· in A
1 

to err0, in Ai. Other conditions remain the;sameJn the defmiti(& A data type 
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D is a set consisting of all behaviorally equivalent type algebras of the above kind. The 

observable equivalence and distinguishability relations on ground terms are defined in the 

same way as in Subsection 2.2.7. 
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2.4 Mutually Rec11reiva Data Jy.pea 

We have assumed so far that data types can be de.si~~d.hieran;hically one at a 
• ~ , ;. 5 ' .,- , ~ '' ' • ' • : ' ·-- . ·-, '~ . 

time and that the data types on which a data ty~ D depends can be designed 

independently ofD. These assumptions are not valid for a-subclass of data types. In some 

cases, it may be more meaningful to associate an operation with a collection of data types, 

instead of a single data type; for example the conversion operations between the data types 

fixed point number and floating point number. Or a group of data types may be mutually 

dependent such that they cannot be defined one at a time, for example, data types picture. 

contents. component, and view in [32] · are mutually recursive. In the latter case, the 

dependency relation on data types as defined in Section 2.1 will have cycl~ 

For the above cases, we consider groups of mutuaUy recursive data types together 

as one entity. and define direct dependency and dependency relation on such groups and 

nonrecursive data types in an analogous manner so that the relations do not have any 

cycles. A group of mutually recursive data types can be then ~fined hierarchically when 

considered as one entity. 

Let D stand for a group of new types being defined together. Let 4 stand for the 

set of their defining types, ~med to be defined elsewhere, and o stand for the set of their. · 

operation names. 

A type algebra for a group of new. data types Dis a straightforward extension of a 

type algebra for a single data type D. It has a ·domain corresponding to every D € D in 

addition to the domains corresponding to every defining type D' € A and the exception 

domain EXV. It also has a total function (deterministic or nondeterministic) corresponding 

to every operation name in o. Instead of having a single principal domain as in case of a 

type algebra for a single data type. we have many distinguished domains in a type algebra 

for D: Every domain corresponding to D €Dis a distinguished domain. Jn order for the 

. distinguished domains to be nonempty, it is necessary that at least one of the data types in 

D has a basic constructor (a constructor that does not take any argument of a type in D). 

Furthermore, all the distinguished domains must be constructible mutua1 recursively. 

The theory developed for a single data type easily extends to a group of mutually 

recursive data types. We can directly extend the definjtion of the interpretation of a tenn 
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in a type algebra defined above. · The observable equivalence and distinguisliability 

relations can be similarly defined on VO for each D E D. They induce the observable 

equivalence and distinguisha'bUity relations on the ground terms of type D. Behavioral 
I . 

equivalence relation on type algebras can also be defined analogously. 

A group of mutually recursive data types 'D is a_ set of all behaviorally equivalent 
:-1 ; ' ' 

type algebras of the above kind. Every type algebra ·in the equivalence class is a inodet of 

D. A model of D defines a value set of each i> { D. ~hich :is the distinguished domain 

corresponding to D in the model · 
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, 

In tbjs chapter, we di~uss a method for spe_c~fyi_o;_"a~,strac~ data types. Like the 
. . ~ . . j_'i.·.--_;: --~;;c;f __ f;_ ... _ -•.~i - --

definition method, the _specification met.ho~ is hierarchiqi) 41nd modular. We d~ribe a 
.·,.-,:: · ___ . ":_ .. ' .- . -: ·;,.:~ ·-:;-~(! ~J~L ~~<t'Z~ ,- d· ;;i1;~, _ _; .f:·:;~)i. ;!L:~; --

si;>ecification J;mguage. in: ~~ich data t);pes havir_s non~~e~iJ1istic _on,erations ard having 
, .. - . . . . . ~:· _. . : ~-" .: ,-__. _, ' :. , L:.:;.:; - ; . , _, -· 

op~ratio!ls exhibjting except!onal behavior can be specified.· The main ~1 in designing 

the.language has been to ~velop ~-g~ -~tion(:for·e~pr~~g '.ihe- ~~~q ~f th~ d~~ 
, .,.,. ·- I --- -- ,. : '""·· ~<<"J_,,- .:·: -~~- ,; . t-_ :,; UJ _,:..__~•~~-~- • . ' 

component of programs. The specification language should pe as flexiple as possible to. 
}JJt;{,~r I • ~tt ·1 ·. i ( _. ,.J.; _ - ~1 ,,,: ~ ,-.~ 

enable a designer to conveniently express his/her intent We do not restrict a specification 

to sped fy a single data type only. instead a specification in general specifies a set of related 

data types sharing a common behavior. A specification only exp~ properties particular 

to the data type(s) being specified. Properties common to. all data types, for instance, the 

minimality property. are not specified. They are instead 5umed in the semantics of the 

specification language. 

Since a data type is a set of models, its specification(s) must capture the properties 

common to these models. The specification must specify the syntactic structure as well as 

the observable behavior of these models. There can be many ways to do this. One way is 

to present a model that acts as a representative of the above set. For instance, the definition 

of a denotation of a data type D can serve as its specification; as an example, the model A•1 

of Set-Int can serve as a specification ofSet·lnt. A data type is specified in this way in the 

model approach [3], which is briefly discussed in Section 1.2. This method ruw a 

disadvantage that since a particular representation of the values of the data type is used to . . 
specify the data type, there is a danger of the irrelevant properties of the model being 

associated with the data type. This shortcoming of the model approach can be 

circumvented by. choosing an appropriate semantics of the specification m~thod as in (3]. 

Another way is to specify the properties that characterize the observable behavior 

of all models of a data type. We adopt this approach, which is called the axiomatic 

approach in Section 1.2. We specify the observable behavior as a finite set of properties of 

.the operations of D. These properties are expreEed abstractly without referring to any 

particular model of D and without assuming any particular representation of the values of 
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D. They are presented as first order formulas relating sequences of operations that return 

observably equivalent values. The reasons for choosing the axiomatic approa~h are: 

(i) A theory of a data type can be directly developed frotn its flXiomatic specification 

without referring to any other domain of discourse, 

(ii) our work can be integrated with the wotk on the developmentof axiomatic systems 

for reasoning about control structures [17, 36)-and the automation of the verification 

process, and 

(iii) the methodology for prbYing the correctness of an implementat1011 of the data type 

with respect to its specification is simple and natl.flat -for a wide dnss of specifica~ons. 

Instead of allowing arbitrary first otder fonnulas, we restrict the axioms to be 

equations because 

(i) an equationat specification is amenable for deducing the properties of a data type (see 

the next chapter, where the proof theory of a data type is developed ftom its specification; 

also see Musser (60) for discussion ofa theorem prover for equatienal specifications), 

(ii) an equational specification is easier for a programmer to undeFStand· (see· (29) for a 

discussion on viewing equational axioms as roounive prografhs), 

(iii) certain desirable properties of specifications can ht guaranteed by putting constraints 

on equations (28), 

(iv) an equational specification has been found to be more suitable for semi-automatically 

derivi~g an implementation of a data type 164, 68J;' and 

(v) a model can be more easily constructed from.a equauonal specification than from a 

specification whose axioms use existential quantifiers [16). 

Our specification language aUows a specification to introduce a finite set of 

auxiliary functions to express the properties of the operations. An auxiliary function-is not 

an operation of a data type; rather it 1s a helping function in a,specification. So it is a part 
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of a specification of a data type. and not a part of the data type itself.1 The use of auxili~ 

functions in a specification is a nec~ity~ because if axioms ace restricted to be equations 

without auxiliary functions, many data types cannot bespedfaed [2. 53, 71.A3).2 With the 

help of a finite set of auxiliary functions, one can.specify, using a finite set of equations. 

(i) any data type with a recursively enumerable-(r.~.) value,~tand a finite set of total 

deterministic computabl( functions [28. 43}. and 

(ii) any data type that can be specified using a recursively enumerable set of equatiQos, 

restricted conditional equations. or PQSitive ooodition1d ~u~s,143]. 

In this sense. our specification language is.quite expressiv~ .. :(For .a-detµiled disc~ion of 

the expre$ive power of an equational language with,,auxiliary functi~s and how it 

compares with other algebraic languages for specifying data types, see [4-J.,l;) -~.~~ 

have found ,auxiliary functions conveBient and· usefltl in e,tprQSSill$ the f)(Pperties of 

complex operations; the .judicious choice of . ~iliary~ f~tiQns . ~ft~n . results in 

specificatiens that are relatively easier to write andun(te,stand as.compared -with equivalent 

specifica~ons written '1'ithout using the auxiliary fuQAions. 3 

We cliscuss the specification language in die Just ;Seetion. Different .componenm 

of a specification. are described. The semantics Q[a s,e¢~on,is:given ·in .. d)e second 
section. It is defined to be a set of related data types sharing the COlllf!lOtl ~ipJ 

captured by the~fieatlon., Jo.the third section. we statew&lat-itffl@.~-fQr a-~Jype to 

be (precisely) specifiable by a specitkatioo; equw•~ 8Ul0AI 5"Cif~ns is def .. 

The fourth section discusses ·the specificatiQn of the :data ty~ ~- In, the• fifth:·~tion. 

we discuss two structural pr~ of a $pf£i~. ~cy. and ~ 

1. An auxiliary function sllould not be confused. with an intcma1'procedure needed in an impkuncntation of 
a data type to implement it-; operations. (Chapter 5 discusses internal ,.procedures.) An auxiliary function 
however serves the same purpose in a specification as an internal procedure in an implementation. It is not 
available to the users of a data type, and is used only for cxpres.gng and proving pmpcnics of the data type 
from its specification. 
2. We conjectured in (43] that even if axioms arc allowed to be conditional equations (restricted, positive. or 
unrestricted), there arc many interesting data types that cannot be specified without auxiliary functions. 
3. Guttag [31 I rightly compares the use of auxiliary functions in a specification with the use of subroutine 

(procedure) abstraction while writing a complex piece of software. 
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completeness, expressed in terms of relationships aONng-ttm set ofcdatatypes specified by 

the specification. The consistency property requires that a specification specifies at least 

one data type. The behaviorat completeness' property ,requires that a specification 

completely specifies the observable behaviotbf-the operations' on· intended inputs; it tules 

out only intentional incompleteness itt' a specificatron. In :the sixth sectidn, we compare our 

specification language with the works of Zities [77). 'Otittag et al. {29,'31), the ADJ group 
(2J),.Goguen 120). Burstall ~nd Goguen (7)~'0oguen nnd1Tnl1lo l2l],1tnd Naltajima et al. 

f62J. 

• 
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3. 1 Speciftcation· Language 
. -_ : .- "...,. _.:·:•., -~'i.; ·. ·: 

. The specifsca~on language has a ~~:'$Yi~tac,tic,uQit.,called_1-$J'ec(fica11~n m~le 
-. , • • ·· ' • -,.-,.)··.,•.•,~~.•;•:' .,• :;.~ .,_. :or,~--' • ,;\,·> -•~- 4, • 

_(or si•pb•. a speciflcalion~ whi~IIJn_ gen~~jfi~ il ~t Qf~J,-Jt~Q~~ type,s. , Wi; f\rst 
-- . ~ .. -- . '"" ,- ' . • • -~--· ,.'i.-."J" ~\.: ... 1.__ ... ~ ·'- .• :_ -• je" __ ._ .. •• ;·.·._ .;,:•.;~ -: / ~- _._'. t· :,":-"-~;o-:~.~-_:,·-c-: ;-:: 

piscuss,spetjfio.ttions qf rnet"5'~Y .. ~r¢d (non.~_ulJi,ve),4~~-~; ~t.AA'te~eA<i of · 
.. •-' -· ·= . --t., .-·· • .... !-:_,~:,:,Z'½:).,,·.<-, ·,•' . .,._ :··. :! ___ ._- ~:;: :,, .. · - t --~ -- _,, __ :·:""~•' 

~ sectiqn we disc\Jss a ~iOQ\ti~~"'"1tually wcursiv~ ~,fl~ -
,·- : . • ~- • _ _;. .... !<-'! ;;--=-· •:;o..,__ #t~ ;- ~ _·.·- '.:- _.,,,-_, __ ~ ... ';" __ ,. .. ;1,,.:i . . ,. ---, :---

. _. ::W~ will ~ aiSi9p:name:~io ~Qd:Jor, ~Y, -~f tl)~ ~ta .ll'~• Sll~ified;~Y,.a .. 

specification. We 'may use the same name ~ tlle n~e of i~ sp~ification whe;ev;~ ,i-~ 
possible')o disambiguate from the context whether a name refers· to a data typ~. o; ;i~ 
specification. When we consider more than one specification of a data type, _we use 

different _names for different specifications. J1lough a long name for a concept may convey 

information about the behavior of the concept. the long name can be inconvenient to use, 

so we allow abbreviations for long names to be introduced in a specification preceded by 

the symbol as. Let D stand for a type being specified 'by a specification S. 

A specification in general has four components: 

(i) Operations, 

(ii) Auxiliary Functions, . 

(iii) Restrictions. and 

(iv) Axioms. .. 

The operations component specifies the syntactic properties of D, and the restrictions 

component and· the axioms compo~nt specify its semantic properties. We illustrate 

different coiriponents of a specification using the specifications given in Figures 3.1 and 3.2 . 

. Figure J.1. is a specification of ~t .. Jnt. Figure 3.2 is a specification of a set Stk .. Jnt of data 

· types; the:data type Stk·lnt· 100 defined in Chapter 2. is in this set. 

. ·A -specification is hierarchically structured; it refers to the specifications of.data· 

· :. · · ·' · :. · ·types other than D assuming that these specifiaitions .are given elsewhere. Data types other 

than. D may have already t>t:en specified, or they will be specified later. For example. the 
\ " . ' ~ ; . . . 

·. specification of~t-lnt in Figure 3J refers to a specification of a data type Int. We as.,ume 
. : - '.' . ' . "· 

· that Jot is specified elsewhere. Since a specification of Int can specify a set of data ~ 
. . ' 

: Int in Figure 3.1 stands for any data type in the Sit. 
. ' 
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Figure 3.1. Specification of Set·lnt 

Operations 

Null : -+ Set-Int 
Insert : Set-Int X Int -+ Set-Int 
Remove : Set-Int X Int -+ Set-Int 
Has : Set-Int ·x tnt -+ Bool 

S.iie :. Set-Int -+ Int 

Choose . : Set-Int -+ Int 

-+ no-elementO 

Restrictions 

# (s) = o => Choose(s) signals no-element 

Axioms · 

Remove(flJ, i) = 25 

as flJ 

mx2 Ex1 

as-•<~1i . 
nonde1erministic 

Remcwe(lnsert(s, 11 ), il) = if it = 12 theri Remove(s, 11)'else ln&ert(fhtmove(s, i~), 11) 

iE8 ■ F 
i1 E lnsert(s, i2) = If 11 = i2 then T else 11 € • 
ll(flJ) EE 0 
# (lnse rt(s, i)) = If i E s then # (s) else II (s) + 1 

Choose(s) € • = T 

Whenever we introduce a new construct of a specifation in this section; we 

informally -discu~ its· meafringafor motivation •d duity· o[ expmitiort. As was :Stated 

above, the precise semantks of a specification will· be pen in 1he•nextsection. 

3.1.1 Operations 

This component specifies (i) the domain and rang~. and (ii) the names of the 
, , ~ ~ ·' a- ' 

exceptions sign_alled by every operation of D on its intendei inputs, along with the types of 

the arguments to the exceptions. It is a sequence of.specifi~tio~s ;of ~he following form: 



a : D
1 

X ... X D
O 

--t D' 

-: ex1(D11, ••• , D~) 

..... ext(Du •...• Dbl\). ~-~· ;,,: ,. .• 
where D 

1 
x . . . x D n is the domain of a and D' is its ran~: • si~s excepµons having 

names ex
1 
••••• ext • whose argument types are also specified. If~ ope!'9ti8ft1S specified 

to signal an exception·, the exception must be listed in i~,$yn.~c;pc'spedficrition. If~ does 
~ --:,•;~·-.H";<_;·; •~=.;,~ , 

not take any argument, then it is a constant of its range type. If an exception name ex does 

not take any argument, it is expr~d as ex() or simply ex. The operations com~nerit of a 

specification of D indirectly specifies the A and O~B: , · 

When an abbreviation is introduced for an n-ary operation name, we can spetjiy 

how the abbreviation distributes over the arguments using the argument place holders 

x1 ••••• x0• For~ the Of)emtion Ha\S ofSekJ.flt ii ab\lr~.,i~lo ~E\a~d it:is ~ • 
'x) Ex/ We discuss later (Subsection 3.1.5) ho~ .no~~ermi~~ic oPei:ation~ are spedfted~ 

• ' .- . i ";, ~. '·~ ~ : -I -, : • ~ ' + 

3.1.2 Auxiliary Functions 

This component is optional; it exists if auxiliary functions are used in writing the 

Axioms and the Res1rictions. As was discu~d before, atfiiliaryiurictions are introduced to 

cmhance.tbe expr•tve;power of tbe:~fication llmguageM,d:to:make tbttltnpage more 

llaible so that speciflallions,JlJ"e.asietto WU. aaG::UD~i\ We· do-, JIOtl~ 

choosing auxiliary· functions nmdomly- to. expras-tlie ~•c>J"'<>f tile ~ns. : lll§te8d. 

they should be chosen with care. An auxiliary function should embody a subsidiary . 

procedural abstraction needed to expr~ the operation behavior. Ifft 1S ··a' good design 

p~ice to compJetel_y spedfy an auxiliary function even if its behavior is needed only for a 
~ ••;·:-> {. ~ ·: , .. : . .;~-.• ~, , .. : .• 1 ; ··-~•-.'": :· :·t;.· ~.,. ,,',irL , . ~ 

subset of its input domain. Furthermore, if ari auxiliary function is'ofthejresult type D, it 
'-, . -~ . - .::.1' , , ;._ ~~ ·_-_. ~ 1: <;· ·~-~ ...,~, ":;· -L·;-·:··· .. __ \fa-~·/-'~.,_---;_ ·f ·>:, .. -,_ .. , -~---, 

should not have to construct values that cannot be con~ by the· constructors· of D. 
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Every auxiliary function is deterministic, and there are ·no testrictfons associated with it 4 

For example, the specification of Stk·lnt in Figure 3.2 uses the auxiliary functiQn Size. 

We specify· the domain and range of every auxiliary function used in the 

specification in the same way as the operations. Let A1 stand for the set of all auxiliary 

functions used 'in a specification. An auxiliary function may use a data type not in' 4.i 
,,,.· •• , •• !!- • • 

( = /l. u D) as a component of its domain or as its1,ange: we· can such a data type as an 

auxiliary type. Like a defining type, every auxiliary type is assutned to 'be speciffe~ 

elsewhere. Let A1 stand for the set of auxiliary types used by the:~i~ry functions in A1. 

If a specification does not have the auxiliary functions comp(ffleflt, 'then·,A1 = if'atld 

A1 = 0. 

We extend the definitio~ of a term in Subsection 2.2.3 to include terms 

constructed using the auxiliary functions and the operation symbols ofthe.auxiliary types. 

• Def. 3.J An auxiliary term of type D' E u (D") is defined inductively as 
D" E { D} U A1 

(i) a tenn of type D', 

(ii) if a E A1 such that its domain is D
1 

X ... X Dn and its ~ng~ is D', then 'a(e
1

, •.• , e
0
)' 

is an auxiliary term of type D' if and only if each e. is an auxffittry ternt of type D. . t · 
, , ._ I , :•. ,. . . 2', .. . . I . 

Clearly, if A1 and A1 are the empty see;, the definitions of an auxiliary term and ,8: tenn 

coincide. An auxiliary exception term can be defined by replacing terms by auxiliary tenns 

in the definition of an exception term in Subsection 2.3.2. Henceforth, b,y~a t~nn~ ~ie in~ 
an auxiliary term, and by an exception term, we mean an auxiliafy C}(ception tenn. unless 

stated otherwise. 

4. These constraints on auxiliary functions arc imposed for convenience and simplicity. Our formalism 
would work equally well if these constraints arc not imposed. 



F1111re 3.2. Spe~ilicatioo ofStk·Int 

Stk-lnt as Stk 

Operations 

Nun 
Push 

p0p 

: - Stk 
: Stk X Int - Stk 

- ONrflow(S~ ,Int} 
: Stk -+ Stk 

Top : Stk - Int 
-t 'l'IO•tew,O 

Replace : Stk X Int ..-., Stk 
Empty : Stk - Bool 

AMxi/iary,Functions 
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SiZe : Stk - Int as- #(x) 

Reslliclions 

Prl'(Pop(s)) :: -Empty(s) · 

Pre<Replace(s, I)) '.: ~ Empty(s) 

EmptyC.) ~ 11:op(&) s{gnals. ~. 
Pusb(s, i) signals ovarflow{s, i) =o, # (s) ~ 100 

Popf Push(s, I)) = • 
f GP(haH(s;, I)) a I 
....... ~I) '!!·Pu~),I) 
Empty(Nufl) s T 
Empty(Push(s, I)) a F 

#(Null).s O 

# (Push(s, i)) = II (s) + 1 
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3.1.3 Restrictions 

The restrictions and axioms components of a specifkation specify the normal~ 

well as the exceptional behavior of the operations. They alSQ define the auxiliary functions, 

if any, used in the specification. The axioms component specifies the normal behavior of 

the operations. The exceptional behavior is specifi~~ as a §eparate h1yer over the normal 

beh~vior. This is achieved by specifying reslrictions on the operations in the restrictions 

component An axiom in the axioms component holds ORiy if the operations used in the. 

axiom satisfy the specified restrictions. The r~rictions c~ponfnt is an extension of the 

Reslrictions Specificalions ofGuttag (31]. 

The restrictions component is a set of restricti9ns; every restriction is associated 

with an operation. There are two kinds of restrictions: 

(i) Preconditions, and 

(ii) Exceplion Conditions. 

Every exception listed in the syntactic specification of an. operation should have an 

associated restriction specifying the input condition when the e,cception is signalled or may 

be signalted by the operation~ The boolean condmons in the exception conditions tor an . . 

operation must be disjoint Another constraint on; the boolean conditions when they use 

nondeterministic operations is ; discussed· later. Asi ir stated, in :the, first I chapter, for 

operations having complex behavior; 'it ,may: be very difficult rtct,spedf;y :conditions on their 

inputs under which they signal a particular exception. This approach of specifying the 

exceptional behavior is not suitable for such opetatioas,, 

3.1.3.1 Pre~nd_itlona 

The precondition restriction for an operation -SpCCifies the .subset of its. input 
• ~ , - ! ' 

domain on which the operation behavior is of interest. Th~ operation is expected to be -

invoked on inputs in .this subset; it is the user's responsibility to ensure this. The operation 

behavior is specified only on these inputs; it is left unspecified on inputs outside the subset 

because it does not matter. An operation can either signal an exception or return a value 

on an input not satisfying the precondition. For example, in certain applications, we may 

• 
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not care how the operation Replace in Figure 3.2 behaves on the empty stack as it is never 

going to be invoked on the empty stack. It could either return a stack value or signal an 

exception. Also see [51, 32] for more examples of such operations. ff a specification 

commits to a particular behavior on an input ~ot satisfying the precondition, for instance 

signalling an exception, many implementations would be ruled out Our approach is to 

encourage a designer to specify only that portion of the data type behavior which is of 

interest to him and allow the rest of the type behavior to be left unspecified so that an 

implementor has the maximum flexibility. 

The precondition restriction for an operation a E o is specified as: 

Pre (a(X)) :: P(X), 

where P(X) is a boolean term having x
1
, ..• , x

0 
(the input X) as its variables, and it cannot 

signal on X. The axioms involving a hold only if the input to every invocation of a satisfies 

the precondition P(X). If the Restrictions component does not specifyaprecondition'for 

an operation, the operation is assumed to be specified for its entire syntactic domain, i.e., its 

precondition is T. For example, - Empty(s) is the :prerondition for 'Pop as well as Replace 

in the specification of Stk·l•t in Figure 3.2. The specification dQeS not specify the behavior 

of thtse operations for the empty stack. No. precondition is spqcified for any other 

operation, so their preconditions are T:. Similarly~ no .;precondition js · specified tbr any 

operation in the specification of Set-lat in Figure3.l. · Jf:a precondition different from Tis 

specified for an operation ", -er is said to ba¥e a nOldriwal precondition. ~Let P
O 

stand for 

the precondition for "· 

If an operation a does not signal 011 an input not satisfving its precondition. it 

cannot return an arbitrary value. If a is a constructor, as for example, the operations Pop 

and Replace in Figure 3.2, the result must be constructible by tlte:cdnfuuctors of Dusing 

inputs satisfying the associated preconditions. Similarly, if a is an observer, th.en it must 
·: ' .,- ':. .-". . 

return a value of its result type. 

\ 
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-3.1.3.2 Exception Conditions 

There are two kinds of exception conditions: 

(i) Required exception conditions. and 

(ii) optional exception conditiont 

A required exception condition for an.operatioo a is ex~ as 

R(X) => a(X) signals e.x(e
1
, ••• , et>, 

stating that if the input X satisfies the precondition Pa and the boolean condition R(X), 

which is a boolean tenn, then the operation a mustsignol t_he exception ex having e1, ••• , et 

as the arguments to its handler(s). The exception name ex is of arity D
1 

x ... x Dt , and 

each ei is a tenn of type Di having variables only Jrom the~_ { x
1 
••••• ~n } • For example, 

in Figure 3.1. the operation Choose i& spedfied to,sig111l the exception noi-element on the 

empty set. la Figure 3.2~the operationTepsianals:Nrle,:on the.empty stack. We call the 

above exception, condition required because-·-tl.le :()Jw.11Btion is required to signal the 

exception. It is possible to specify an operation signalling different exceptions for different 

subsets of inputs. 

In certain applications, it may be restrictive to require that an "operation signal an 

exception when its input satisfies a condition. At the same time, it may not be desirable to 

leave the operation behavior complet~ly unspecified. I'~stead, we would lik~ to place -

constraints on the behavior. If an input to the operation satisfies _the: sp~ified condition, 

the operation is specified to have the option of eithe~ signalli~g the specified exception or 

returning a normal value. In case the operation chooses riot 'to' signal, it must behave as 

specified by the axioms. Optional exception conditions are introduced to capture such 

behavior of ail operation. An optional exception condition is expre~ecf as 

a(X} signals e.x(e
1
, •• • , et) => O(X). 

stating that in case a signals an exception ex having e
1
, .•• , et as arguments and the input X 

satisfies the precondition P , then the input X must also satisfy the boolean condition 
. 0 ~ 

O(X),_ a boolean term. 

Optionai exceptions are especially useful for specifying a set of similar data types 

having values whose capacity (size) has different upper bounds. 'Ifis,~ib!e to state a size 



requirement on the values of the data type, but at the 'Sam~ tnne not;be very restrictive 

about the· requirement An implementor could decide on the .exact bound based on 

convenience insofar as the specified bo~nd condition is met. Such behavior of a data type 
~ l { =~ , i ~ . . ' ; h ;-: .. ' ' j '. •. - • : ~ " . C 

is specified by stating that the constructors have the option to S~Jnaf exceptions . 
.J ",. . , : ,· .:· : . . . ·. . . • . . , 

For example, in the data type Stk·lnt-180 deffned in· the previous chapter, the 

operation Push signals ifits~d a~iis,ofsize,100~ ,Jflhe~Fed requirement is that 

a stack value be able to store at least 100 integers, f11is, l>eha~&f PalHs :very restrictive. 

Jt'rules ,out a·' implementation ,supportmg ~ va~ 0f si~) ]00, even though:·the. 

it!'lplementation has the desired ~haviorexcept ttaat,._. does'D0l signal exactly on statks · 

of size ·100~ but rather on stacks of size 128.; Wefkpecify the·desircd requirement in 

Figure 3;2 by stating that Push optionatfy signals: .whetrevet'Puih,signats o,crflow, its.stack 

mgumennnust·b~r at~teast ,of size •1-.: tn this way. a s,:>eri~ .~fies me 4east upper 
. , 

bound on me size·ofthe values,of,adate,tyl)f:iaadtih\e·~ibility-Ofdecidiilg the exact· 

upper bolmd is deleaated·to:anflf)1emen10r~·,_ Stklt,1r speaAaltidn(tis' flexible and•not 

restrictive. ' 

3. 1.3.3 Discussion 

. 

Note that the nontriviaJ precondition ~ri,aions and the optional exception 
, ,.. . ~ ' : . -, ... ,. } ~ i_ ~ ~ , ~ ! ; l ;_ ~ ; - · " . . _. , , - . 

conditions leave the specification of the ~ration~ inc~plete because , the operation 
.. ·:· • , '. ---, ··:•. --,_ ':;t{ .~;_; 'a:":•·: ;~:: ~ :a_; c::· j~•: ·_, · -_ ; __ , ·:c: • 

behavior is not cqmpJetely specified on a subset of inputs. AR ~ration could behave on, 
.: i r : • • .• . ! : : : ~ •, ; : : - • • ' ., : ~ ~ • • • • : . .'• '. ~ !' :. •~ ·> ~-t} C ' • :• r =• ' !c i' •,: • • ~ : : -

0
~ ~• •- a ~ ! ~ > • ~ :/ • ~: ' ~ ' 

such inp.uts in any way cons~ent with the specified. ~havior. That js why a specification 
- - ' • • ,>. - : ' •• • ' • ~ + • -· - --~, - - • • '. • ~ ,, --

in general specifies a ~ of r:elated data types; the· operations of these· data types have the 

same behavior for a su~t of their ,syqtactic ~'ins.'·: Fo;, ~~amp~. Stk·Int specifies data 
_· . -· . ·i__.'i• - -.-. - ·' ~-·1 :~, ::~i ;_'. ,·: ,,_ · ,;i"' '... ~- , -· __ 

types having stack values whose size has different up~r ~~n,ds > 100 .. The opera,tiQns of 
~ t ,,_ . :r .,... - ~ -· :. . 

th~ data types behave the same way on stacks of size< 100, exc~pt that Pop and Replace 

of different d~ta. types may. behave d1tT~rently on,( the: ~PlY 'stack. , We can ~ch 
' i; ' _, - " , e : ~ '. '. :_ :,. t .--~ ", . ., i u: , , .i. 

incompleteness in a ij)ecification as intentional incompleteness, 'in contrast to unjnte_nti(?nal, _ 

incompJetene~ introduced be_cause of the omismoo on the part ofa d~i~er' in:_~ecifying 
~ . ' ~ 

the properties of the q,eration~. . _ 

It should be intuitively clear that if no nontrivial precondition and no optional 
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exception condition are associated with any operation, and the axioms completely capture 

the observable behavior of the operations, then a specification specifies a single data type in 

case the specification of every defining type also specifies a single data type. We elaborate 

this informal statement later in the chapter. 

3.1.4 Axioms 

This component specifies the normal behavior of the operations in o and the 

auxiliary functions in Af if they are used in a specification. The behavior is specified as a 

finite set of equations of the form 'e
1 
= e/ where e

1 
and e

2 
are auxiliary terms of the same 

type; at least one of e
1 

and e
2 

must have its outermost symbol in O U A1 , otherwise an 

equation would not be specifying a property of D. 'e
1 
= e

2
' informally means that the 

sequences of operations expressed by the terms e
1 

and e
2 

have the same behavior, i.e., when 

values are substituted for variables in e
1 

and e
2
, the instantiated terms interpret to 

observably equivalent values. The symbol '=' is interpreted as the observable equivalence 

relation. The equations attempt to capture the observable equivalence relations on grou~d 

terms defined by the data type(s) being specified, which is discussed in Chapter 2. 

If a specification does not have the restrictions component (i.e., the operations do 

not signal exceptions and there is no nontrivial precondition associated with any operation}, 

then the variables in an axiom are universaJly quantified: Any value of the appropriate type 

can be freely substituted for a variable. 

If a specification has a restrictions component, then an axiom is interpreted in a 

different way; the variables in an axiom cannot be freely substituted. We must also 

consider the restrictions imposed on the operations appearing in the axioms. The values 

substituted for the variables must satisfy the following two conditions: 

(i) For every operation a having a nontrivial precondition P , the arguments to every 
l1 

invocation of a in the axiom must satisfy P , and 
l1 

(ii) an instantiation of any subexpression in the axiom must not interpret to an exception 

value. 

The condition (ii) above is equivalent to requiring that an interpretation of an instantiation 

of e
1 

or e
2 

is neither undefined nor an exception value. For example, consider the axiom 
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Replace(~ i) = Push(Pop(~ I) (*) 

in the specification of Stk·lnt in Figure 3.2. -It applies only for the values of s for which 

- Empty(s) holds, which is the preoondition tor both lte,fatt amf'Pop. Furthermore, Push 

must not signal overDow on the result returned by ¥op; whieh iftnnnot in any case. The 

equations characterize the normal behavior of the operations in this way. 

It is often the case that two tenns are observably equivalent only when it condition 

is placed on their variables; for example. in the second axiom in the specification ofSet·lnt 
.·, - ,. , . ' 

in ·Figure 3.1, Remon'(lnsert(s., ii), i2) is observably ~uivale~t tp lnsert(Rem~fe(s, i2), il) 
- .-. : ' ' ! 

only if i1 and i2 are not equal. So. while writing the axioms. it is convenient to assume an 

auxiliary function if·then·else corresponding to every o: E A' u A1 . The definition of 

if-then-else is given as: 
if·then·else : Bool X D' X D' -+ D' as if x1 t~n x2 else .x3 

if .T then x else y ;ii :x 
if F theq x else y a y. 

Since these functions are used frequently, they are ass~ to be implicitly defined 

whenever needed. Thef are not explicitly stated in the,auxiliary mnctions component of 

the specification. and are not jn A,. If Dool is A,ot adef;ima&tvJ>J!, men Bool is 8$umed to 

be an auxiliary type. An _axiom of the fonn • e1 = if b .tile~ e2 • stands for the equation 

'e1 :df-~ben·em(b,e
2
,e

1
).'_ We call 'e

1 
= if b tlle■;.-e; a cBl1diliona/equation.5 It is· 

equivalent in its interpretation to the formula 'b = T.~ e1 e. ~-· An axiom of the form 

• el a if b then ell else eu· stands- for the ,equation ~efae if~else(~ ell, e1:z>.• It is 

equivalent to the following. two conditional equations 

• e1 ii if, b tllea e.i· 
'e1 = if- btlllll fn.' 

5. Note that a conditional equation as defined above is different from a positive condit1onal equation of the 
ADJ (71). in which the condition in the axiom can be expressed using ii positively. A conditional equation.of 

, the above fonn is called a restricted conditional equation in f4lt We have chosen such axioms because of 
simplicity, as even using positive conditional cquations•as niems d6cs11ot add to the c-tprcssive power of the 
specification language (43]. Furthermore. homomorphisms do ~ p~rve pusi1've .conditional equations. 

• l.. ,,._ . -, 
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3.1.5 Specifying Nondeterministic Operations 

. If an operation .is nondeterm,inisti<:, this is specified usmg the symbol 

nondetermin_istic following its range specification! as for·the Oloose operation of Set"lllt in 

Figure 3.1. The behavior of a nondeterministic operation 1~ ~~i.fie4 .in_tae s;,mie way as.of 

a deterministic operation. The restrictions component 1™ilY spe.cify &.Pr~it~ a~tof 

requ_ired exception con~tions. and a set of .QPtiona1 qce.ption -:~011ditions for a 

nondetenninistic operation. For ~ nondetermin~ .. o~v~ f~UOling-many possible 

results on an input. the. axioms do not speqfy :~~ reSt>~~ iµ~,,, they specify the 

propert}~s of the results. . For ex~mple,. ~ aiioin. spccifymg th~ -~havior of the 

nondcterminist~c operation Choose. of Seklnt on an ~on~y ~t s states that a result· 

returned by Choose on .s must. be an element -()f the ,.~t s. . , For 8: nondetennil)j~c . . ' ,_ 

constru~tor. its be;havior is chara~terizeq by specifY,ifl&,#l~-resu\tfre,l~rned by the o~rvm 

on the possible values constructed by it 

If a boolean . condition in , a re.strjction; is ex~q using nondeterm,i~ 

operations. we require . that for every input X1 ~ -~-- ,;qndjtjon- belulyei; . : . . . .. - ' 

deterministically, i.e., it returns either T or F. It ~)l)~iqa\~lf#J,f a~lta,D coadiQM..to: 

return T as weU ~- F on X: In case of i,.pr~uqn._ .• _ejq~taAtiate~ bool~n .conditipn 
. - . - . " --... t- , ., - · .. - ~ ~ ' ~. - ,-_, . -

rewrning T ~ well as F w~uld .JP~~ _th~.the \l)PMl •fi~ ~tpre~mJjtiqi, ~: weIJ:•:<.Joes. 
not satisfy the precondition. In case of an exception condition, this wouldJ~~ .u,t• er 

sign~ Qf ~~ signal on tile i\Jnµt~ w~.as,that1c,;-~1~•oal9'~~ ~ , 
W ' • , ' • - - • ~ - • • • • • a• ' ~ •- •• ... , • 

For an equational axiom 'e1 = e2' expr~ using nonde~~~~'-.;We , 

use the follpwing interprePJJ,iQn: For:an: in~q~~p{,~-~~es-~ the ~~-411owed 
- . , . , . . -· . : , . •, 

by the preconditions and restrictio~ tll~. set of~~. ~pq,-f~~Jw.~_ ~tiated· 
. . 

e1 is observably ~uivalent tp the~ qf P,Qssib)~ya~,lf9 reiL1.P1~lly tile i~ti$d-~2 (i.e., 

for every choice of n;ondetermi~istic o~:~~jn.~~ f!.w: valµe:~ by the i~tan~ 

e1 is observably, equivalent to a value ,tui:»,e4 .b): ,dle :~~Wl~. et for .S()lt)e. chQice of 

nondeterministic operations in er and vice versa). We have rejected another ~ij)le 

interpretation which is that for any choice of nond~terministic_ ~erations in both e1 and e2, 

the vafues returneaby the instantiated :~l ~~d e~·ar~ ob~:rvdbfy equr~'alent.' because under 
• !- • :·. ;_; ~- -~. •• • '.~ -:;_-~ _. ~~. -<:/:,.·-~-·.;:-~., .• :, :;;! ,:;i>'l:\!~.::'<'_; , · .-~~ • 

this interpretation, the axiom does not hold when e
1 

and e
2 

exh1b1t nondetenmnistic 
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behavior; an equational axiom thus ooes not ~Xf)mfi any useful p1operty. ,If an axiom is a 

conditional equation 'e
1 

:;: if b then e/ where the boolean condition b involves 

nondeterministic operations. then we require that for an instamiation ofthe variables x
1
, ••• , 

x , b behaves deterministically. As in case of a· boolean condition in a restriction, an 
n 

instantiation of b_behaving nondetenriinistica11y and returning T as welt as F does hot make· 

any sense in a 'conditional equation. 

An alternate approach for specifying a nond~enninistic operation would be to 

indirectly specify it by having the axioms specify its 'relation. which is deterministic. The 

relation can be specified using equations and conditional equations. However, the 

constraint that ifthe ·nondetenninistic operation·'l"Ctums a normal value on a~ input. then 

the· relation holds for the input and at least one result, .cannot be expr~ed in tenns of 

eqtmtions arid conditional equations. This can· be ·circumvented by assfrming that every 

such refation satisfies the above constraint tf-a ndtrdetem'finlstic ope'ration signals on an 

input. some convention ~bout the behavior of the:·rei~tiori'brt such an input must fre 
decided. Using this approach, it is · ~le · tcf speclff the precise amount of 

nondeterminism an operation should have. However~ we have · adopted the , fonner 

approach because of the following reasons: • 

(i) We do not want the :specl.fication· to specify lhe precise amount of'nondeterminism an 
operation should have: instead, we leave this decision to the designer bf an· 

implementation, 

(ii) it seems more natural to directly specify the behavior' of' an operation than specifying 

the-corresponding~. 

(iii) the ~antics ora specification designed' using the latter 'approach would have to be 

derived ·indirectly. as should be evident from the discus.,ion in ~ next section, and 

(iv) if we adopt the latl'Cr approach',; the 'nOrWuil' behavior of the nondeterministic 

operation would be intfirectly specified by speci{ymg"its relation, ·wflereas its exceptional 

behavior would be directly specified. :we wodkflite tc,'avoid·using twd noriitfons fdr the 

same concept 

But one major advantage of adopting the latter approacltis that we ~o not ~ave to develop _ 

any additional formalis,n for nondetermjni$i,; operation~ The theory develop,ed- fQf. _ 
e 1'' : '• - •:• 
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specifications specifying only detenninistic operations applies to nbndetertninisti_c 

operations also. 

3. 1.6 Specification of Mutually Recursive Data Types 

A specification for mutually recursive data types -ts ~imilar to ,a,Jipedfication Jor 

nonrecursive data types. Let.P S41nd for an ~nee 1>f a groQp of mµtu'111Y- recursive data 
types being specified. The specification is given ,either ~f· name of some. data type in Dor 

a name different from the names of data types in D. Like a specification of a f\O.Q~ursive 

data.type, it has four components: 

(i) Operations, 

- (ii) Auxiliary Fur,ctions, 

(iii) R~siriclion,s. and 

(iv) Axioms. 

The Operations component specifies the syntactic· properties of the operations of D. It is 

divided into subcomponents. There is a subcomponent entit1ed D corresponding to every 

data type Din D specifying the operations ofO; 'So,i a subrorr1ponenf'is·like the-operations 

component of a nonrecursive data type as discussed abb\te.· Uesides, there is another 

subcomponent entitled Combined Operations. which ~ifies'tbe ~ntactit"ptoperties oftbe 

operatiol'IS not belonging to any particular data type, but ratm!r" to the 'wttbfe group 0. The 
remaining three components are the same as in a spedllcatitiri-of a· siriglt data ty~. If D 

does not have any combined operations. the''Specifications of data 1y_pes in D''can be given 

separately like nonrecursive data types. However~ ·the 'semantics of these specifications 

must be given together. 

Henceforth, we · discuss only nonrecursive ditta types. From the following 

discussion. it should be clear how to extend the results and'thetheory to mutttttlly recomve 

data types. For instance. we can give the semantics of such a specification in a similar way · 

as for nonrecursive data types (discussed in the next section) excepttftat'We will need to use 

type algebras defined in Section 2.4. 
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The semantics of a specification S is defined to be a set of related data types. 

F.ach data type in the set iS;::fAid.to be-specified~b)'.,S. ~~stano-lot,this.sct.. Since a 

specification S refers to other spccificntions assuming them to be given, for example, the 

spedfteatiOtl of Se{.:lftt refcrS to the specificationstlflftt'1thd 8-obt the semantics of S is 

given using their semantics. For a defini"ng type D' e .t used4n S~ we af&J111e that O' has a 

specification S' having a nonempty set of data ,Yi>es as ifs-semantics;- Dlf Sbtnds for any data 

type in D(S'). 

If S does not specify any nondetenninistic operation~·then' everY data type in b(S) 

can be shown to be deterministic. Operations of different data types in f)('S)·share the 

common behavior specified by S. Different data types differ in the:wartheir operations 

behave on inputs not satisfying the preconditions specified for the oyjemtibns and/or on 

inputs on which the operations are specified to have the option between signhtlhig and 

returning a value. If the axioms.do not compl~tely '8J>Uln! ~-ob~v~blebeoaviQf Qf the 

operations, then data types in D(S) '1a,v.e open&tioos ilaYillS ditrere~t behavior on in~t on 
- . - ' . . ,_,. - ,- - . ·" - . . 

which the axioms leave'. their behavior unspecified. 

In case S speciji~ n~detenw11~ ope~i9ns, then -types ill D(S) also differ 

in th~ amount of nqnqetermiBism, tbeir ~µoos_ ~vi, ~). has·«ta~: ~- iit.w~. the 
optmttions specifiecf.to -~ nondeterministic are.de~~ W#lt•-da&a:types hi which 

• - C ' - ~ ,"- - • - • \ • - , e • • • • • 0 --; •• • 

st.Kil operations have. the m~upi am9unt __ of -~4.,emiiAis&n, al~wt>.d_. by S. .For 
example. the setpautics of the specification.of~flt,ji.venin,Fi_g~re J.l has a data~ in 

_, ,.; , . - • .- • -! 

whidl the operation Clloose is cletenninistic..r«!tu~ni~ ~i~µJJl int~~,dn • nQDe&nPty , 

set s passed as the argument to Choose. It also has the data type ~;-J,d de,fin~ -in tit~, , 
. previous chapter in whichotlle ~~ii:,~ly. pif,ks:any eletnent Qf s. In 

gep~ a data type in D(Set·lnt) has the ~rati~--Paotser wtu~,~ '.~ent fl'()lll a, 

nonemptY: _subset of s. 

The semaptics of a specification. specifying AQn,;letef19inis,t~ operations is thus 

nec~rily a set of data types differing in the amount of ~i~, the$!.~ .. 
have, even if the specification does not specify any precondition or any optional exception 

condition for the operations and the specification completely specifies the observable 
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behavior of the operations. This semantics of a specification is chosen because of our view 

that a specification should not constrain an implementation to have any precise amount of 

nondeterminism, and that the decision about how much nondeterminism an 

implementation should have, be left to the designer of the implementation. Since a 

specification serves as an interface between the programs using the data type and the 

implementation(s), every theorem derived from the specification, as discussed in the next 

chapter, must hold for a correct implementation when interpreted appropriately. 

It is possible to write a specification in our language which specifies unbounded 

nondeterminism. (fhe tem1 unbounded nondeterminism used here is different from the 

way it is used in [13, 35].) For example, in the specification of N1 (a version of the data 

type nawral number) in Figure 3.3 specifies unbounded nondeterminism because the 

operation Pick is specified to have unbounded nondeterminism. For such a specification 

there does not exist any data type having maximal amount of nondeterminism. We will 

precisely state the condition when a specification S specifies unbounded nondeterminism. 

For a specification specifying bounded nondeterminism, we define data types having 

maximal amount of nondeterminism allowed by the specification. 

1 nstead of giving the semantics of S directly in terms of data types, we give its 

semantics as a set of (well fanned) type algebras. Let F(S) stand for this set. We then 

partition this set using the behavioral equivalence relation on type algebras and get the set 

D(S) of data types. Each type algebra in F(S) is a model of some data type specified by S. 

· We first assume that S does not use any auxiliary functions, i.e., A1 = 0 and At = 0. 

Later, we discuss the semantics ofS assuming that A, -I:- 0 and At -I:- 0. 

3.2.1 Specifications without Auxiliary Functions 

A type algebra in F(S) must have the syntactic structure as specified in the 

operations component of S and the observable behavior as specified by the ~ioms and the 

restrictions in S. F(S) is inductively defined; as in Chapter 2, we combine the basis and 

inductive steps into a single step. F(S) consists of all (well formed) type algebras of the 

fonn 



Figure 3.3. Specification of N1 

Operations 

0 : - Ni 
S : Ni -+ Ni 

p : Ni - Ni 
- no-predO 

= : N1 X Ni -+ Bool 
> : N1 XN1 -+ Bool 

Pick : -+ Ni 

Reslriclions 

x = o => P(x) signalsno-pred() 

Axioms 

P(S(x)) = x 
X'1:XiiT 
x > z = if (x > y A y > z) then T 
S(x)~ X a T 
x '1: S(x) = F 
x ~ S(y) = If - x > y then F 
x = y = (x > y A y '1: x) 
PickO>o = T 
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as X1 = Xi 
as X1 ~ ~ 
nondeterministic 

mch .that A satisfies the restrictions and the axioms in S, where for each D' € '1~ V 0 , is the 

principal domain of an algebra A' € f{S'). A' is a model of'3 data type D' in D(S'). 

We first discuss when a type algebra A satisfies restrictions;· later we discuss the 

axioms. Let X = { .x'l, •••• XD l standfor·an \iallabies in' an axiom'or a restriction. Let 

V = { 111' •••• v
0 

}, where each \Ii is a norqial v~ue of the ~propri~te type, stand for a 
. - - ;. ~-- - ' ; - - . . ;, - ~ 

A-instance of X, i.e., each v. is an instance of x . . 
I 1 

3.2.1.1 Restrictions 

If a nontrivial precondition· Pa is specified·for a constructor a, then on an input V 

such that P ;[X/)1 interprets to F, r (v
1
, .• :, v) either signals or returns a value a a n 

constructible by the constructor functions using arguments satisfying their preconditions. 
. . 

It would be meaning)~ to aJlow fa to return an arbitrary value that cannot even be 
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constructed. For example, if a data type ·satisfying the specification in Figure 3.2 has its 

Push opemtlon signal avedlow en stacks of size 128. itis abswrd to Jet the operation Pop 

return a statk·of size 1000when appl~d.on,tbe:empty stock, the input that does not satisfy 

the precondition specified for Pop. Similarly, if a is an observer, thenfJ,,1t••··· V
8

) either 

signals or returns a value in V 0, • where D' is the r~ult type of a:.': 
Jfthe restrictions component specifies a required ~ception oonditlo.n on a as 

R(X) => .a(~.- Sci~nals ex(e1 ••••• ,;.), 
1 

:- • . 

the.n for every V. if bQtp P .,JX/ Jl}an.q R (X/Vlint.t;rpn;tto T. ~hen .£..(V> must signal the . 

. e~ception value ex(eiJ:XI v]I A·.,., e.._ [XlJ.:11 A) for A to:5'4tisfy ,rh~Jiboye restriction .. 

If the restricti_ons component speciO~s a tQ qptiQnally ~goal a°' exception, i.e., 
. . ' ·,. ·,: .,\ - . 

a(X) si~na/s e~e1,. , • , ~) => q(X) .. , -~ 
the_n for every V su~h that P

0
[X.{ V:) int~~rets_ ~ T an.d. J/V) sjgna,ls th~ exception ex with 

the interpretations. 9f e1 [XI VJ •... , et (XIV) as argq.ments ~. its h~dlers. 0 (XIV I. must 

!nterpret to T for A to satisfy the above restric~QQ. 

Since the restrictions are assumed to completely specjfy the exceptional behavior 
- - ; i"' '- . " . . j > 

of the operations, for evecy operation a, the jnterpretation f . in A. must be. such that . . -. .. . . ,,. . , er. 

f 0( vr .. : , v
9
)js ~ nonnal value if (i) P 

0
(X(fg b~. {ii) ,;ipQ~ of RJX I J1 f\olds, ~d (iii) 

none ofO.[X/ J1 holds . . l . 

3.2.1.2 Axioms 

A (behaviorally) sati$/itS'an equation 'e{ = e
2
' ·(or·'e

1 
~ e

2
' holdsin A) if and only if 

for every V, one of the following conditions holds: 

(i) 

(ii) 

(iii) 

The instantiation of e
1 

or of e
2 
interprets to an exception or is undefined, 

the input to an invocation of some l fin v
1
''.~ •••• v:' does·~ot satisfy the o m 

precondition associated,with .~i.e:;-'P,(v
1
\,;., ,· v'H~ to F) wtten· 

fl m 

the instantiations of e
1 

and e
2 

are int~rpreted, and 
. ·. - ' -;; , - - ', . :··• ,,: 

{ e
1 

[X/J11 A} is observably ~uivalent to { e
2 

[XIJ11 A}. 

In the previous section, we informalJy described the semantics of .conditional 

equations using the auxiliary functions if-then-else. Here we formalize the discusmon. To 
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check whether a conditional equation 'e1 e if btllell e; holds in A; we,extend A to include 

the interpretation of the ·auxiliary function 1-tlle ... -tfse' :·0oo1 x D' x D' - D' 

corresponding to every D' E A'. -The interpretation ftt•tlltn•eise in the extended algebra has 

the following behavior: 

fif·then·else(T,_ v1• vJ ~ Yr 

fif·then·else(F, 111• vJ ~ l'2· 

The interpretation of a conditional equation involving ir-then-else can be verified to be 

equivalent to interpreting the formula ·1, · T ==- (l\ = e}·· tt we require that b behave 

deterministicaUy for every A-instance. Henreforth, we vie- a conditional equatibn as a 

formula "b => e
1 
= e

2
• so that we do not have to consider the auxiliary tlmctions if·then·else. 

1 fa type algebra A is in f(S), then we say that A beHirviora/ly satisfies S, and call 

A a model of the sirecitication S. Note that A satisfies the axioms under the interpretation 

of the symbol ·= · as the ~rvable equivalence relation on· th~· domains of a type algebra. 

J fa model A of S satisfies the axioms interpreting '= · as the identity relation as in Logic, we 

say that A idemically sati~es S. 

For example~ the models A81 and A!i of the aata .type Set·lnt discussed in 

Chapter 2 can be shown to be in f:{Set-Inf). So. they are also the 'inudels of the 

specification of Set-Int given in Figure 3.1. A
8

i identicalJy satisfies the: specification of 
Set·Int. It should be easy to see that every reduced algebra in f{S) identicaJly satisfies a 

specification S because the observable equivalence relations are the identity relations. 

Using the fact that the set E of observable equivalence relations on the domains in 

A above is a congruence, we have 

Tbm. 3.1 A E f(S) iff A/E E f{S). I 

So, to check whether a type algebra A is in "8), we can check whether its reduced algebra 

A/E identically satisfies S. Using the above theorem~ Wttllt 

Thm. 3.2 Jf A€ f(S), then every type algebra behaviorally equivalent to A is in f{S). I 
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3.2.2 Specifications with Auxiliary Functions 

An auxiliary function is not a part· of a data ~pe; so a model m f{S) cannot have 

any interpretation for-the auxiliary functions. We '(mt.define "1. atended,ffata, m,e,-D
1 

from D, whose .operation ,set is· flu A; and the-3et of,defmia8 t~, is·• u A1 •. lf:the 

Auxiliary FullClionscomponent is indoded iR:thc-tJpem,-.r-oontporient:lnS.,themodi&d 

specification S1 is a specification of data typer.~aving the same syntactic structure as Dl' 

and S1 does not use any auxiliary fu_nct,iQhs.' \ We define f(S
1
) _ for the modified 

specification S1 as discussed above. An algebfa A
1 

of,,type D
1 

in f(S
1
) is 

Aj = [ { V ~•ID' E /l' u At} ; t'! I• E ~'!J.Ai }j; : 

So an auxiliary term can be interpreted irt A
1 

. ~e ~ioms in S expressed using the 

auxiliary functions in A1 hold in A
1 

. 

For every algebra A 
1 

of type D
1 

in ,={8
1
), ~ obumt an algebra A of type D in 

f(S) as follows: 

A = [ { V8, ID' Ell'·};' f
0 

.t~E gJ). . 

where for each D' E fl, V 0 , = V ~ .. and VO ~ V ~. A function fa itp teSlri~twn of r, t.Q,d;le 
t . -

domains of A such that V0 is thesmall~tse:t~~mderfi~M ~~!~jc-ions of the 

functions i~ { fa I a€ gc }. V0 . can_ be .a p~,t~QSet,p~ ¥it·~ S 11J1#Y .use .an 

auxiliary function having D as its range that constructs some extraneous values (~ L7~;for 
.:: ' '-,. ~ i ' ( 

an examp~:ofsuch.~ specifiqltio,n).6 

For example, th~ model A_.k,of ~ data l)'~ ~~~'; µJq, d~4;Un Cpaptcr 2 

. can be shown to be in.R:~:-)nt)! w~ mU$l e~i~n,~t44tlt:'¥l~e lhe;~f~Of\$ of 

the au~iJiary function Size such that Si(<i1, ... , im>) 6 ~~cliuse !heextencle.4algebra 

for proying,th.ttit sa~fi~,the.axi~ an<1,r~t~~Ejg~J4 .. 

6. Jfowever, we do not encourage spe<;ifJC~tion~ in which auxiliary µaoctions are of_ result type D and 
gcnc'rate values not constructible by the constructors offl. : · . · 



.. 92-

3.2.3 Semantics of a Specifieation . 

Using Theorem 3.2.- we partition F(S~ qsing. the behavioral equivalence relation 

on type algebras..and get the.set O(S) of daaa types 1IS 'tlle semantics of S. A reduced 
. , 

algebra in every equivaleace class in the partitio~ oo f{S) caa serve as•a representative of 

the data type defined by the equivalcqce elm. This can be: pictorially. expl'CRd ~ 

s 

/-\··· 
~S) 1-i' . -~ i\} .. • 

11{S) = { Au ... ~ . ... -.. ~1 ... AUL . ... . } 
I . --. 

where D1 •..•• Dk •...• are the data types in ~).,and Ai~·-· ... Aka\, ... , are the 

models of a data type Dk. 

Jt should be clear from the discus.oon ·in• the last two subsections that the 

operations of different dam types in D(S) drare·the befiavidr specified by S. However. they 

differ in 

(i) the amount of nondeterminism they have, if specified to-be·nondetenninistic by S, 

(ii) their -behavior on inputs not satisfying the p~s speatietf by s. 
frii) their behavior ·on -~ iatisfying ~. J)tttondifiom ·• and •optional txception 

comtitions specified by 'S, and 

(iv) their behavior on inputs on 'Which their behaviot is'unintentibnaHy omitted in S. 

If S specifies a to optionally signal on a subset of inputs, a for-different data types may or 

may not signal for some of the inputs in the subset If the constructors are specified to 

optionaJly signal for expr~ing the size requirement on the values of a data type, different 

data types have different upper bounds on the size of their values. 

For example, D(Set-lnt) defines different data types in which Choose behaves 

differently because it has different amounts, of nondetet1v1~. m w~ discUS$ed. et1tlier. 
< :: '. -· :•: .~ < , ' ' • '. • • - ,- , ; : •• - • - ! : --· 
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D(Stk-Int) has different data types whose operations Pop and Replace have different 

behavior on the empty stack, and the operation Push behaves differently on stacks of 

size 2: 100. Some of the data types differ in the maximum size allowed of the stacks. The 

data type Stk-lnt-100 defined in Chapter 2 is in D(S). 
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3.3 Specification of a Data Type and :Equivalence of 

Specific anons 

Def. 3.2 A specification S specifies a data type D iff.0:ED(~ (j.~ .. :-M0 c,E{S)).7 I 

If a specification S specifies the data type D, the specification need not be precise in the 

sense that it may not completely specify the behavior of D; a portion of the behavior may 

not be. in fact. captured by S at all There may be data types in D(S) different from D. We 

introduce the following stronger definition ror specifications_ specirying deterministic 

operations only. 

Def. 3-1.1 S precisely specifies D ifT D(S) = { D } (i.e., MD = f{S)). I 

The above definition requires that the specification of a defining type D' E A also precisely 

specifies D'. 

For a specification specifying nondeterministic operations. its semantics has data 

types differing in the amount of nondeterminism their operations have. nondeterminism 

allowed by S. We define a partial ordering on type algebras in f{S) which orders data 

types in D(S) based on the amount of nondetenninism in their operations that are specified 

to be nondeterministic by S. Instead of comparing two arbitrary type algebras in f{S), it is 

convenient to compare algebras having the same domains but differing in their ~ndions. 

Def. 3.4 Given two type algebras A and A' ofD 

A = [ { VD' ID' €A'}. EXV ; { f
0 

I a€ 0}] 

A' = [ { v 0. 1 D' e A'}. EXV; { r; 1 CJ e o} L 
A' is al /easJ as nondeterministic as A, expressed as A <nd A', if and only if 

for every operation a€ o, and for each v
1 
.... , v

8
, 

{ f ( v
1
, ••• , l' ) } C { f' ( v

1
, ••• , V ) } • I a n - a n 

Informally, the above means that every function in A' is at least as much· nondeterministic 

7. RccaJI that MD is the set of all models of the data type D. 
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as the corresponding function in A. We say that A <nd A' if and only if A <nd A' and there 

is at least one nondeterministic function f~ in A' such that for some v
1
, ... , v

0
, 

{ f ( v
1
, ... , v ) } c { f' ( v

1
, ... , v ) } and { f ( v

1
, ... , v ) } :t { f' ( v

1
, .•• , v ) }. a n - a n a n a n 

We can order the reduced models in f(S) using ~nd relation. 

Def. 3.5 A reduced model A in F(S) has maximal amount of nondeterminism allowed by S 

if and only if there is no reduced model A' in F(S) such that A <nd A'. I 

If a reduced algebra A E F(S) has maximal amount of nondeterminism allowed by S, then. 

it can be shown that any algebra behaviorally equivalent to A also has maximal amount of 

nondeterminism allowed by S. Using this, we get 

Def. 3.6 A data type D E D(S) has maximal amount of nondeterminism allowed by S if its 

reduced model has maximal amount of nondeterminism allowed by S. I 

For example, the model A
5

i has maximal amount of nondeterminism allowed by 

the specification of Set-Int in Figure 3.1, so the data type Set-Int defined in Chapter 2 has 

maximal amount of nondeterminism allowed by the l)pecification in Figure 3.1. It is easy to 

see that no model of the specification of N1 in Figure 3.3 can have maximal amount of 

nondeterminism; given any model A, we can find a A' such that A <nd A'. 

Def. 3. 7 A specification S specifies unbounded nondeterminism if and only if D(S) is not 

empty and there does not exist a - data type in D(S) with maximal amount of 

nondeterminism allowed by S. I· 

So, the specification of N1 specifies unbounded nondetenninism because of the operation 

Pick. The specification of Set-Int specifies bounded nondeterminism as there are data 

types with maximal amount of nondeterminism a11owed by the specification of Set-Int in 

D(Set-lnt). In this thesis, we have considered data types with operations having only finite 

nondeterminism, so we are interested in specifications that specify bounded 

nondeterminism. Henceforth, we assume that a specification S does not specify 

unbounded nondeterminism. 

In case of a specification specifying nondeterministic operations, we have 
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Def. 3.3.2 S precisely specifies D if { D} - { Drnax t Dmll € D(S) and Dmu has maximal 

amount of nondeterminism allowed by S }. I 

The above definition a1so covers the-case 3.3.1 above. as in case of a specification specifying 

only deterministic operations. the set i D l D · · · E D(S) l is' the same as D(S). For 
max mu 

example, the specification in ·Figure J..1 precisely jpeeifa the-data type Set-Int defined in 

Chapter 2. whereas the specification in Figure3.2 does not.precisely specify the data type 

Stk·lnt· 100 defined in Chapter 2. 

We can also show that a specification S is correcl'w.r.t. a model A by showing 

· that A E f{S). 

We can define equivalence among specifications as foTiows: 

Def. 3.8 Two specifications SI and S
2 

are equivalent, expr~d as SI = S2 • ifT 

D(S1) = D(S2) (i.e., f{SI) = f(SJ). I 

Note that we do not make any distinction between a ~ification in which the 

constructors are 'completely' specified and another spedficatio~ in which some of the 

properties of the constructors are not specified .. F~r exa~ple9 th~· specifi~tion of Set·Int. 
- , - ~ - _, ' 0 

doesnot specify the property oflnsert that the~der in which integers are inserted does not 
". - -., . \ i~ ~ , • ~ . . . .t";. ~ -~ / ~ ~, • a • ; •' - , 

matter. The specification in Figure 3.1 IS equivalent to the new specification obtained by 

addingtheTollowingaiom i>ecauae··bodt haw·theta111e'S8Jll•m: • · · · 

lnsert(Jnsert(s; U). i2) a if n·•~i2111e1tlllser$. il)ae:lnsen(Jasert(s, 12}. ll). 

However, as we discuss in Chapter 4, it is possible to provt nibre properties about Set-Int 

using the specification with the above axio11;1 tfian the specification _given in F~ure.3.1. We 
. - ' ' . -, ;· ~ . - . :-- , -'f ~ -,, , ' - : :· -' : ~ ! ; . • . : ~ . 

disting~ish between the two specifications th~re~ an~ de~ne a stronger equivalence relation ·. 

on specifications which incorporates this distinction. 

We have discussed above one way of precisely specifying~ ga~ type D. As stat.ed 
in the beginning of this chapter. D can be presented_ in many ~ays. ~- <:)ne' way. is to present 

8. We have dcli~tcly used the word~'.~ of-'~ .tQ,avoid confusion,.as we have 
precisely characterized above when a data type can .be specified. . . 
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a representative model A and define the semantics of such a presentation to be { A' I A' is 

behaviorally equivalent to A }, as in [3]. 1l1cre could be other ways of presenting data 

types. If the semantics of these methods can be given in terms of type algebras using our 

formalism, we can relate specifications given using different methods (sec discussion in 

Section 3.6). 



-98-

3.4 Specification of Bool 

In Chapter 2. we defined the data type Bool which serves as the basis of our 

fonnalism. Figure 3.4 contains a specification of Joel;, this specification cannot be 

expressed in the proposed specification language because it llas an inequality 

T 3' F 

as a~ axiom. This axiom is introduced to capture the property that the boolean constants T 

and F are distinguishable from each other. The semantics of the specification is the data 

type Bool; it can be verified that every axi9m in the specification holds in a model of B~ol. 

Because of the inequality. we do not need to introduce inequal-ities in the specifications of 

other data types; we will show in the next chapter (SubsectiQn 4.2.3) how to deduce them 

using the above inequality. The specification of Dool is ~urned to be given. 

F1&9re 3.4. Specirlcation of Boot 

Operations 

T : -tBool 
F :-tBool 

not : Bool -t Bool 
or : Boot X Bool -t Bool 
and : Bool X Bool -t Bool 

Implies : Bool X Bool -t Bool 

eqv 

Axioms 

T II F 

: Bool X Bool -t 8ool 

-F aT 
xVy = yVx 
xVT: T 
FVF = F 
x A J = - «- x) V (- y)) 
(x ~ y) = (- x) V y 

x - y = (x - y) A (y - x) 

as-x 
as x1 V ~ 
as x1 A~ 
as x1•~ 

as x1--~ 
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3.5 Properties of a Specification 

We discuss two properties of a specification, namely consistency and behavioral 

completeness, based on its semantics .. These'pf<1perti~'.·are different from the ~nsistency 

and sufficient completeness· properties defined ·t,y duttag ·~nd Homing [28], which are 
' . 

proof theoretic (i.e., based 'on \vhat can·be dedu~ed frt>Jn ~ spedtication). We discuss the 

relationships between the properties introducecfin i1is sectiori and the properties deri~·ed 
' .• ~ . . 

· by Guttag ahd Horningtn the next chapter. 

Consistency and behavioral completeness are bot.ti; structural properties; they 

ensure proper re1ationships among different components of a specification. Generally 

speaking, consistency. means. that a pidperty assumed alread{ ~' not invalidated. In this 

case,· it means that properties expre~d in the 'speciticatior{ of a defining type or· an 

auxiliary type, or the. aSstimptions: made abott t'l\i ~a~ 'the 0~xc~ption;{behavior of the 

operations be speclfled; are not in'talidaied .• k en~fes th~t. a ~Jfi~aticin specf ti~ 'J least 
one data type. 

-·~ .. "',))" ~· ... !;·~·'_:.;. 4 .. :• • )' 

Behavioral completeness captures the intuition· 'that a 'specification· completdy 

specifies the. ob~rvable behavior of the- operatk>ns' orf tbe'"iriteni!e<f inpits '(te.:, ~puts 
I '. .- ' :'!: : , '.' - f ' - I - ' '.- -, . - ' :,;:~: ' '-.. ; • : :•~ '. ·-; { . •i . - ; 

satisfying the aSsOCiatecf preconditions}: A designer'" of'a speciticauon intentionaily leaves 

the. operiidoh behavior' u'nspecified''hy ass6cia1tni?i>rJcoiiditions and ~ptlilnat'' e~c~ption 

, . conditions with flit operationi Ap~rt ftom i11teiftio~at'mcom~1aeN~~ J .specifi'ciltiori~ ~y 
be incomplete fkci\ise~tll~-d'esiih~¥;Jni~tenti86iillV~t~e~usi>iri~;iaio111~. -:1ht6ehaviofat 
completeness 'property eitsurJs' lth~t ;a sp~dtrctiti~n'.'ik1 cirit'y ,in&nfi8naiiy' iric~~p)~te'.' · sh. it 
wa.m~ against.~y_omi~iQ11: .. Jt i~ a.d~irnble.Dr~Jor.most.o[th.e specifirntions... - .. 

We· first discu~ the consistency property; lat~J. we discu~ the bebaviorpt 
] /..J }ti f~iti {L ~}l t·~~·:.:;>"'~ ;». __ ~~ ;f;J~ ~f 

completeness property. 

3.5. 1 Consistency 

A specification S is, informally speaking, inconsistent ,, 

(i) if S specifies ground terms of a defining type (or an auxiliary type) that ru;e "~ified 
to be distinguishable by its specification, to be ~leql.tMllta,,e,, ·- :'' 
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(ii) if S specifies ground terms of a defining type (ot:an auxiliary type) that are specified 

to be observably equivalent by its specification, to be distinguishable. 

An example of the first case would be a specifica~pn SUS.in& the specifkation Qf Bool and 
. - . . .' - ' '~ ' -

specifying T and F to be observably equivalent An example of tbe .second case is, the 
< ' - ; ~ • ~ ·, ' , : • 

specification of EXJ given in Figur~ 3.5. The ~ata type ,EX,1 "~~s ,only pne val.ue. l)te 
• ..;___, • - ·-• a--' • 

predicate P distinguishes among observably equi".,~ent grou,nd tefD;tS of Set~lnJ : P returns 
- ' _. i . ' ----- • _;. • : . . .I - < • 

T if and only if in its set argument, an integer h~ ~~O in~nec;l n19re thanc9nce; otherwise. 
• - - • < ~ - , ' : • -. . - . -

it returns F. This property of~e set values is,1191: observa,b~ by the operations of Set-Int as 
' - ;.,,,', . . -

specified in Figure 3.1. 

In either case, S does not have any rn~els. i.e .• F(SL= 0. ln the first case, no 
- . ;;_' ~- . . . 

type.algebra can satisfy S because one ofth.e axio,n~ WQ~Jd want two di$til'8uishable values 
:c • , r . ., . ~ '. ·, . ~ - - '. • - • .' • -, - • . 

in the domain of D' to be obseryably eqt.Jiyalent Jn.the ~Qn,d,~. S does_not have.any 
' . . - - '. . '. - - -~ ~ . . - ~ : ' : - - _: ' ·. ' . ·"· . . : ~ . . . ' : 

models because of the well forme~n~ _property_ ~~ilJY~; alget;>!, (wQich,i$ that tb.e set of 

observable equivalence relations is a cong~ence).·"· - ·.. · , . · . 

EXI cannot. be imple_~ent.ed in. _anY .. R[9~tl,lllmi~. ~Jlg~ag~ in .which an 
. . - ~ . . . 

implementation of adata type is. hierarchica11t~re4 ,nd.,t~ fF~r~ntation a( a:data 
type is hidden from the.u~rs of the da~ type,~ sinq:~IY.:~.e.eii~~ ~!t{lV\QfofSet-lnt 
. - . - : . . - .: ~ . '. ' . '. . - . . 

can be observed. Thus the predi~ J> __ ca911qf~}~,)mJ?l~~p.~d, beqluse, the 
, - i ~ - - ~ . ·. 

implementation of P mu~t _ di~ngui~~ bet~~en~ _ fQf, ~x_a~p!~,J~~ ,pp~n,;aluy .· equiv•nt 

. ground tei:ms lnsert(lnsert(eJ, O)~ ·o) ~f!d ~~, tl}r ,fQl~.iJl~!JIPlhas 8'~ disq18Se4, $ldl a 
• : : . : . - ._,. _-- - '_\i', '" :··,• -~-- -· - :.:.,;:,, _ _,-;. ' - ' ~ - - ~ -··• 

viola~on by a specification.~ of tfl~ s.p,ecifigltjpl}lJ>(.t\lAi~tJp;.~. ty~ .. l:le saic;l ~cll a 
• • ' ' . ~ • • ' ; - - -- , t • . - " ? -. • _,. • .,' • " '' - - . ;, ',. - --· . 't • ; -• ) 

F1pre 3.S. Specifacation or EXI -

OJJffllllons 

a : -+ EX1 
P : EX 1 X Set-Int -+ Boo1 

Axioms 

- P{a. QJ) !!E F 
P(a, lnsert(s, I)) = iU~.a1hen lelsaPCa,.a) 
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specification had pro1ection errors. 

A specification can also be inconsistent became tile exceptional behavior of the 

operations is not properly . sperified, -for example., the boolean·· conditions in exception 

condition restrictions may not be disjoint 

Def. 3.9 A specification Sis consist~nt i(and onlyif{i) the specification S' of D', for each 

D' E A u At , is consistent, and (ii) D(S) is not the empty set I 

A specification S defines observable equivalence mhtions otr,gtound terms just. 

like a data type does. ·By a term here, we mean a term constructed without using auxiliary 

functions. 

Def. 3.10 S specifies two ground terms e
1 

and e
2 
of type D' € A' to be_observahly.eqwivalent 

(or e
1 

and e
2
_are o/¥frvpbly equ('f(Jlenl by,S)iffe

1
and;e,,are ~rv~bly,~uivalent in every 

data type in ~S) (i.~ .• the PQ$Sible interp~et.ations;Of~1 in a mQdel AJ~ l?(S) are obsefvably 

equivalent-to the possible interpr~tions ~fe
2 
in A). · 1-

Del 3.11 S _specifies ei and e
2 

to be distinguisho!,/e iff: ~1 and ~2 "r~ d~~g~iseable in every 

data type in D(S) (Le.~. the possible interpretatioas:_of ~
1

:in a,.mode] A in f(S) .are 

distinguishable from the possible interpretations of e
2 

in A). I 

For example, lnsert(lusert(-0~ I). l) anc:f lmert(e/, l) "are specified by the specification of 

Set-Int to be observably equivalent lnsert(it~ 'I) ·and lart{i,. 2) are distinguishable. 

However the specification in Figure 3.2;, does not' speclty·1 ~ltf and Nolf to be 

observably equivalent or distinguishable.1ff Sis iWct,nSistent.;th'ereare'ground·tenns which 

are both observably equivalent as well as· distinguishable by S~ becau~ "S) is the empty 

set 

Since a specification S inay leave the behavior of operations unspecified on 

certain inputs usirig the precondition and/or oi,tkmal exception restrictions, there may in 

general ~ist ground terms of type D' EA' which are neither specified by Sto be observably 

equivalent nor distinguishable. For example, Pop(NuH) is tieitherobscrvably:equivalent to· 

Null nor distinguishable from Null by the specif1eatibn· of Stk·lftt in Figure 3.2. as a data 

type in O(Stk-lnt) may have Pop' return the efupty -stack itself when invoked on the empty 
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stack and another data type in D(S) may have Pop signal on the empty stack. Ground 

terms involving nondeterministic operations may also be nfflherobservably equivalent nor 

distinguishab1e by S; for-example. the gt'ound tenn !Clroose(lnsnt(l•rt(Nldl, 1), 3)) is 

neither observably equivalent nor distinguishable :fronr 3. 'lbe ,above observable 

equivalence and distinguishabi1ity relations capture the common behavior of data types in 

D(S). 

3.5.2 Behavioral Completenese 

In the definition of behavioral completeness, we must capture the intentional . . 

incompleteness of a specification. Jf a specification S associates a nontrivial precondition 

with an operation, different data types in D(S) can have such an operation behaving 

differently on an input not satisfying the precondition. lf-1tn"OJ)eration 'is specified' to have 

an option to signal when its input satisfies a conditiml. dif'ferenf datn types iR D(S) can have 

such an operation signa11ing the specified exceptioft·or'tenilimmng·normally on an -input 

satisfying the associated condition. If S specifies a nondeterministic operation. different 

data types in O(S) can· have such an operation having as tnuch: nondeterminism as desired. 

_ This incompleten~ in S is intentional~ Any oth~r difference in the beha~ior of data types 

in D(S) is unintentional. 

The above means that for a specification S ft> be behavjqrally complete. 4ata types 

in D(S) having maximal amqµnt of nondetermium. aJJQ~ by S must have the ~e 

observable behavior on inten~ inputs. except tlMtt. if there. is an: optional. exception 

condition specified for an operation. then _the .~ llas -~ option of signellipg or 

termina.ting nonnally on an input satisfying the boolean conditionin the optional exciption 

condition. 

We define three relations on the models .in _F{S). The_ partial Isomorphic 

equivalence relation formalizes the intentional inc:omplet~~ introd~ced due to the 

nontrivial preconditions specified for the operations in S. The isomorphic emb,ddabi/Uy 

relation formalizes the intentional incomple~n~ due to Ute ~<>ns specified to have 

the option to signal exceptions. Later we combine them to define the parlial isomorphic 

embeddability on reduced models in f{S). We~.~ partial isomorphic embeddability 
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relation to define the behavioral completeness of a specification by, relating the reduced 

models of data types in D(S) having the maximum amount of nondeterminism allowed by '. . 
the specification S. 

3.5.2.1 Partial Isomorphic Equivalence 

Let Pa be a precondition specified for a in S. Let S' be the specification of a 

defining type D' EA. in S. The partial isomorphic equivalence relation relates m~els 

whose operations have the same behavior on in~~ts ,satisfyi~ ~~ir, p{ewn~~- - The 

definition is obtained by modifying the definition of isomorphic equivalence (Def. 2.13) 

given in Chapter 2. As in Chapter 2, we assume that the· domams corresponding to each 

D' EA. in models A
1 

aA<t A
2 

are defined by tmrisomorphicatly-equivalent 'models in F{S~) 

and that the isomorphk equivalence relation on thtse models: in RS') indUces a bijection 

... ·vi v2 •o· · o·- D' · 

Der. 3.12 Given two algebras A
1 

and A
2 

in f{S) 

A 1 = l { V ~• I D' E A.' } , EXV 1 ; { r; I a, E O} ] 

A2 = [ {Vii' ID' EA'}, EXV 2 ; { r2 1 a E µ}] _ _ 
• ' . ' 0 ' . ' ' ' ' ' 

such that for each D' E A, v.b· and Vii'. are ~e va!~e sets define~. by isomorphically 

equivalent models Ai and Ai in F(S'). where S' is a. SP;ecifi~~q of D' ~,a~d ♦0, : V /y-+ Vi, 
is a bijection induced :due to the isomorphi~_ equival~nce ~r' Ai an~ ~i• A.1 ~d A2 ~ 

. ,. ~ t,. .• , • . • ,I ' '. , -· • ~ 

isomorphically equivalent w.r.t. { P I a€ o} (or w.r.t S) iff there are bijections 
a . ·'·.· .·' , 

4>0 : VA- Vii and •Exv : EXV 1 -+ EXV 2 such that • = { •o· I D' E A' } u { cJ>EXV } has 

the following properties: 
. ' 

(i) For each ex: D1 x ... x D 
0

, and for every v1 ~f type Dr ... , .v
0 

of type D
0

, 

c)EX.V (ex(vl' ... , vn)) = 1:.x(•ol<v1>· ... , • .,D<r.>), and 

(ii) for each a E o. a :D
1 
X ... X D

11
-+ D', 

for every v
1 
of type D1, ... , v

0 
of type o •. if P a(y1, ... , v

11
~ = T,.then 

(a) if neither r; nor r; signals, then 

{ 4>0 ,(f;(vl' ... , V
0
))} = { f;(ct

01
(v1) ••.. , •n/v

0
)) }; otherwise, • 

(b) 4>Exv<f!(vl, ... ' vn)) = r;(•ol(vl), ... , ♦b/v,)). I 
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We also call A
1 

and A
2 

parlkl/ly isomorphically equiwtlent. when { P
O 
I f1 € D } is evident 

from the context. . 

The reason for requiring •o to be a bijection (and not a partial· one -to one 

function) is the ~umption that for the case when a constructor· is specified to have a 

nontrivial precondition. if it terminates nomiafty on an·1np\Jf ttbt satisfying' its precondition, 
the value returned can be constructed by the constructo~ us!ng inputs, satisfying their 

preconditions. 

3.5.2. 2 Isomorphic Ern:beddabiltty 

In the definition of womorphic embeddabiUty relation •. we want to capture the 

intuition that if a specifitatioo S ~iates an ~Lexccption condition with an 

OJ)eflllion a, then .on an input X satisfying the ~- boQleail ooodition O(X). the 

function corresponding to a either behaves the same in different algebras in ·f(S) (i.e~, it 

either returns the ·same· value or signals the 'same' exceptiol) value). or the .function 

behavior differs in different algebras to the ~xte~t J~t in one alsebra, the function signals 
" ~4: ,. ~ . -, • ' 

the desired exception value and in the other; the fuJ!Clion return~ the d~~d normal value. 
::' -;· -- .. 

The condition (iii) in the definition below captures-this. 
If any constructor " is specified to optionally signal, then the value set of D 
• • • • - . , • ~ - - ": • ~ 1. < ;' t .. _ ' - ~-. -

defined by one algebra in f(S) may be a subset of the value set ~f D defined by another. 

algebra in f{S). (In fact. o~e value set may h~ve a' value th~ is d~nguishabl~ from every 
- • .;.:. , ' < 

value in the other va1ue ,set) That is why in the.definition ~Jow, we do not require the 

mapping relating the value sets of D in two algebras to be a bij~ort;. instead, it is required 

to be a .one to one partial function.9 However, the mapping must ~\tefinJd' for every 
,7 ~- ·: __ , ! .. , . f { ,,;_ • • - ~- •. . ~ 

value. constructed by the function corresponding to a constructor a using inputs which 

satisfy the associated precondition ~nd d~ ~ satisfy: 'a~y.,_6ool~n condition -•d in a 

• required exception condition or an optional· except1ori conditfrin sp&ified for "· This. 

constraint is capture({ in the condition (i) below. ·· · 

9. That is also the reason for callina the· relation isomorphical1yiembo4dable. 
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Def. 3.13 Given two algebras A
1 

and A
2 

in f{S) satisfying the requirement about the 

domain. corresponding to D' E A stated in Def. 3.12. A2 is isomorphically embeddable in A1 

w.r.t. S itT there exist 1-1 partial functi<>ns •o; V ~,-:+Vil and •uv : EXV 1 -t _EXV 2 , with 

the following properties: 

(i) for every set of values v
1
, ••• , vD, for a constructor a, if 

(a) P 
0
[x/v1, ... , x/vJ holds, 

(b) for every required exception condition specified for a, its boolean condition 

R.(x
1
/v

1
, ••• , x Iv I does not hofd, and 

l D D 

(c) for every optional exception condition sp-ecified · for' a, its boolean condition 

O.(x
1
/v

1
, ••• , x Iv) does not hold, 

J D D 

then «1>0 is defined for every .value f;(v
1
, ••. , v

0
), 

(ii) for every e,xc~,ption name ex : Oi x ... ~ x D~ , 

cl>EXV (e.x(v; ••..• v_;)) = e.x(4>0 ,(v~~ ••• ., c,0 ,,(~J) i()1,o:(-v') i&~defined\ for each 
· 1 . lll l 

1 < i < m, and 

(iii) for each a E o, for every set of values v
1
, ..• , vD such that •o.< vi) is defined for each 

1 

1< i < n, F•, 

(a) if on v
1
, ••• , v , f 1 signals an exception value ex( v

1
\ ••. , v ' ) specified to be 

n a m 

optional, by s, then the associated condition Oftr .. ~, XJ) :)lofds on VI' ••• 'VD, and 

r;<•nl<v1), ... , •1\(vD)) either signals_ el(+n~"i>.- .. ; ·•d~(v~» 01! returns •o,(v) for 

some v',or 

(b) if • 0 ,(vi), ... , ♦0 ,(vJ are defined and r; signals an exception ·vatue 
1 m • 

ex( •o ·< v{), ... ' •o , ( '~)) specified to be optiorial' by s oh input ·•o '(vl), . : . ' •o (vD). 
1 m , .. · I . n 

then the associated condition O.(xl, ... , x ) hcitds ·. on ':•o ( vl), ... , •o ( v ). and 
J D , 1 D D 

~!(v1, ... , vD) either signals e.x(v~ • ... , v~) or returns v'; otherwise, 
' 1 ' 2 ', . , .. 

(c) { f/vr ... , v
0
)} = { fa(•0 (vl) •... , •o (va)) t I 

· l ·· ' ff -_•';; · . 

For example, let us modify the model Astk discusse,d·in Suhsection2.3.2 IK>that 

the function corresponding to Push signals overflow if sequence size is 128, instead of 100, 

and can the modified model A~tk· It can be shown that Astk is isomorphically 

embeddable in A~tk . A~tk is 'bigger' than Astk because the value set corresponding to 
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Stl has more elements in A;1k than in Astk· When optional exception conditions for 

constructors are specified to state a least upper bound on the size of the values of the data 

type, as in cast! oftne specification of Stkrlnt ir{Figure 3.2, different algebras in f{S) may 

have different upper bounds on the size of the values in their value sets. · 

3.5.2.3 Partial Isomorphic Embeddability 

We combine the notions of partial isomorpllic eqµh:alence and isomorphi~ 

embcddabi)jty to define another relation. The .. new. relation. captu_res both kinds of 

intentional incompJetene~- due to preconditions as w~I as due to optional exception 

ronditions. 

Def. 3.14 A 
1 

is partially isomorphically -embeddable w .r.t S in · A
2 

if and only if there eiists 

a model A' in P{S) such ,that A' ,is panially:iSOOtOl'phically· equivalerif to A1 and A' is 

isomorphica11y embeddable in A2 • . I 

3.5.2.4 Definition of Behavioral Completeneaa 

We_ define behavioral completeness of a specifiadioil by relating· the reduced 

models of the data typesttaving, maximal ~ountof-'ilondetaminism .allqwed by S. in D(S) 

using the partial isomorphic embeddability relation. The definition of beh,avioral 

compJeten5. is a single level d~nition in the.. sense. that a speciftquion S can be 
behaviorally complete irrespective of whether a. wecif~ -of p ~_fiping type in S is 

. . ., ' 

behaviorally Q>mplete. If the specification of a defi1'ins t;ype· is,behavi,;>raJly incompl~ '. 
. . ' - '· ,._. 

the incomp1eteness will be reflected in the semant~ of a behaviorally complete S. So, in 
. ~ .- ' • ~ . . . t: . --; . -- : ' _- . . . ' . 

- , • •.. • I 

the definition,. we consider only reduced models in F(S) that have the domains 

co~responding to ~h- D' E A defined by, the -iso~orphically. equivalent models in f{S'), 

where S' is a speciftcation ofD'. 
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Def. 3.15 A specif1eation S is_behaviQrally comp/_e,f iff (i) S ~ inconsistent, or (ii) for any 

two reduced models A
1 

and A
2 

in f(S) having maximum amount of nondeterm~ 

allowed by S ~d whose domains corresponding to each D' E'. /J.. are defined ;by the 

isomorphically equivalent models in f(S'), wher~ S' is aspecifwation of D', A1ispartially 

isomorphically embeddable in A2 or vice veisa.- I 

The reasons for having the first case.this way in the above definition are that for 

an inconsistent S, f(S) = 0~ so any relation antb'rig. nlgel>ras 'in F(S) holds, and that we 

want our definitions to be compatible with the defh1itions of'consistencfand completeness· 

in logic, in which an inconsistent theory is complete:' 
, . For exampfes, the specificationsof$et-1nt~'Stk·lrit, 'dna•iJoot in Figures 11, 3.2, 

and 3.4 respectively can be shown to be bebav·idititty:&lmptete. 'Note that any spedf1cation 

not specifying any .observerS is trivially be11avibrairf complete. We tan show the' foHowint: 

' 
Thm. 3.3 For a specification S specifying only deterministic operations and not specifying 

any precondition or an optional exception condition for an operation, a consistent S is 

behaviorally complete itTS precisely specifies a data type D assuming that the specification 

S' of every D' E /J. precisely specifies D'. 

Proof The above definition of behavioral completeness reduces under the stated 

conditions to requiring that the reduced models in f{S) are isomorphically equivalent 18 

This means th~t R:S) = M0 . 

Hence the the9rem. I 

The behavioral completen~ property guarantees that -the behavior of the 

operations has not been left unintentionaHy unspecified. However, there are situations 

when the behavioral completen~ requirement on specifications is restrictive (31, 51). For 

example. consider a modified version of the specification of Set·lnt in Figure 3.1 in which 

Ch~se is not specified to nondeterministi~. In such a specification also, we do not wish to 

IO. If a specification docs not specify a nontrivial precondition for an operation and also docs not specify any 
optional exception condition, the partial isomorphic embcddability relation reduces to isomorphic 
equivalence. 



commit to the vatue Cheese may return on an nonempty ·set. so the axiom specifying 

Choose is still 

Choose(s) € s a1 T. 

This specification is not behaviorally complete. We would want such a specification to be 

behaviorally incomplete, as otherwise Cheese , must be completely specified Toe 

behavioral completeness requirement is restrictive in such a case be~use the reduced 

algebras in the semantics Qf the modified spe~ification ~e not isom~rphica11y equivalent 
. ; . , . ' ~ 

For example, in one redured algebra, the function correspon(Jing to Choose when applied 

on { 1, 3 } may return 1, while in another reduced algebra. the corresponding function may 
' • •' s' • -. • •: •: c• • > 

return 3. For most &J)ecifications,specifying nondetenninisti~ ope.rations. if we modify such 
" - " . ,., 

a specification so that an operation specified originally to; be nqndeterministic is instead 

specified to be detenninistjc, then we wouJd•often. want the modified specification to be 

behaviorally incomplete. 
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3.6 Comparison With Related Works 

We compare our specification language with those of Guttag et al. (29] with 

extensions proposed in [31], Zilles [77], the ADJ group [22, 23], Burstall and Goguen [7], 

Goguen and Tardo (21], and Nakajima et al. (62). We first discuss the capabilities of these 

specification languages and the approach used to give their semantics. Later, we compare 

the semantics of a specification in these languages. 

Zilles [77] and ADJ [23] do not allow auxiliary functions in a specification, so their 

languages have a limited expressive power. Zilles (77] assumes that the operations of a data 

type are deterministic and that they do not signal exceptions. The ADJ (23] do not aJlow 

nondeterministic operations either; they adopt the simpler approach discussed in 

Subsection 2.3.3 for modeling exceptions, and discuss a specification language embodying 

this approach. Goguen (20] extended the ADJ method of modeling exceptions, which we 

compared with our approach in Subsection 2.3.2. His approach for specifying exceptional 

behavior of the operations is different from our approach; it is motivated by the view that 

exception values Jre like normal values (and so they are typed). The exceptional behavior 

of the operations is specified using equations.· Our language is 1icher than his language 

because of the preconditions and the distinction made between optional exception 

conditions and required exception conditions. His semantics of the specification method is 

complex. 

Burstall-and Goguen's [7] CLEAR language and its extension, the OBJ language, 

support hierarchical structure and modularity like our ianguage. However, Burstall and 

Goguen have ambitious goals; they are attempting to develop a general purpose 

specification language based on algebraic semantics . in which the semantics of a 

programming language can be specified. So they are forced to introduce complex 

mechanisms, for instance, procedures.operating on theories, which make the specification 

language hard to understand. The category-theoretic semantics of their language is also 

complex [30]. Our approach instead has been to concentrate on the data component of 

programs, and develop a specification language and a formalism for data types. Our 

semantic method is simpler. 

Guttag et al.'s work [29] is the closest to our work. Their language is limited as it 
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cannot specify data types with nondeterministic operations. As was said in Section 3.1, our 

specification language is an enrichment of the specification language in (31]. Our 

formalism can provide a semantics for their specificati<>n langu~e. Our formalism can also 

be used to provide a mathematical basis of th,e AFFIRM system (60, 61]. In this sense, our 

formalism places their work on a firm basis. 

Nakajima et al. [62] specify a data type, as discussed in Chapter 1, as a first order 

theory. Their method differs from other methods including our method because they allow 

any first order formula to be an axiom in a specification. Auxiliary functions are not 
·- • f 

allowed in a specification. Operations are assumed to be deterministic; they do not signal 

exceptions. We have not yet seen the semantics of their specification language. If we 
' ' 

assume that a first order theory is interpreted in a standard way as in Logic [16), the 

problems with this approach are discussed in the related work section of the first chapter. 

We further comment on their specification method in the next chapter from the point of 

view of deducing properties from a specification. 

Burstall and Goguen, Nakajima et al., and Guttag (31) can specify a type scheme 

(also called a parameterized type) 1n their ,languages. Recently, the ADJ group [71) has 

given a category theoretic semantics of a parameteri~d type. Our specification language, 

as it is, cannot expre~ a parameterized type. However it should be evident from the 

discu~ion that our formalism as well as specification language can be dlSily extended to 

parameterized types. We discu~ these ex tensions in the .last chapter of the thesis. 
. . 

There are differences between our semantics of a specification. and those of 
~" . " 

Zilles, the ADJ group, and Guttag et al. (28], which_ are motivated by different definitions 

of a data -type used in various fo~alisms. Zilles and the ADJ assume that values not 

specified to be related by the axioms are different, even if _they are observably equivalent 

Guttag et al. on the contrary assume that the values are equiv~~nt unless specified to be 
- .. , 

different We have taken a different approach; we consider the axioms as specifying the 

observably equivalence relation. Our approach towards the semantics of a sp~ification is 

similar to the one adopted in logic; we consider all models of the axioms to be the 

semantics of the specification. (Of course, we consider only the algebras satisfying the 

minimality property for modeling data types, and rule out nonstandard models.) Our 
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semantics thus subsumes Zilles's and the ADJ's definitions. as well as Guttag et al.'s 

definition in the fol1owing way. 

To understand the semantics of a specification in the ADJ group fonnalism as 

well as in Zilles's fonnalism, we introduce the following definition. As is stated ·in 

Subsection 2.2.6, the models in R::S) can be partially ordered using the onto 

homomorphism relation, Le., A
1 
~ A

2 
if and only if A

1 
is a homomorphic image of A2 . 

Def. 3.16 A model A in R::S) is called .initial if A ~s a mrud111al model with respect to the 

homomorphism relation. and A identical1y satisfies S. I 

In an initia~ model A, VD' for each D' € A is a value.set defined iby an initial model in F{S'), 

where S' is a specification of D'. Two· members in, V0 ate not'the same unless they are 

related by the axioms and restrictions. The: ADJ group and Zittes define .the semantics of a 

specification S to be the set of initial models in, ·F{S). Guttag et al.; on ·the other hand, 

define the semantics of a specification S to be the set of redutetfmodefS in ,f{S). · 
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4. Deductive System 

In this chapter, we develop a deductive sy~m _ for abstmct data types. The 

deductive system embodies general properties of <ktta types which,are not explicitly. stated 

in a specification but ~med in the semantics of the specification language. We construct 

a theory of a data type. which is a collection of pwperties of the data type, from its 

specification. The theory of a data type can be used in reasoning about programs and 

designs that use the data type in the same way as the properties of natural numbers are used . 

in reasoning about programs operating on natural numbers. In. particular, the correctness 

proof of an implementation of a data type with respect to its -sp~ilication as discussed in 

the next chapter, i9volv¢S the use of the theoriesofils dcffningtypes and the theory of its 

rep, the data type whose values are used to represent the values of D in the 

implementation. We can pose questioni, about the behavior-Of a data type and check 

whether they can be answeroo from its specjf1COtioft according,to our intentions using the 

deductive system. In this sense, constructing the theory of a data type can enhance our 

confidence in its specification. 

Th~ construction of the theory of a data type · from its specification has an 

important advantage that the theory does not depend on any particular implementation of 

the data type. The correctness criterion used for implementations in ChaJ?ter 5 guarantees 

that every property.in the theory is satisfied by every correct implementation. We can thus 

reason about programs using a data type abstractly without referring to any particular 

implementation of the data type. This separation between the theory of a data type and its 

implementations via the specification factors the proof process in to two independent parts: 

(i) Proof of use of a data type, and (ii) proof of correctness of implementation of a data type 

[37). In this chapter. we discuss the first part; we discuss the second part in the next 

chapter. 

The theory of a data type is constructed hierarchically from its specification, using 

the theories of the types used in the specification, just l_ilce the specification of a data type is 

designed. The design of our specification language has been influenced by the goal that a 

specification should not have to state more than what is required and that it be structured 
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in the sense that different components of the data ty~ behavior are separately specified. 

To construct the theory of a data type from its sp~iftcatioo.. we combine these components. 

For instancei as is discussed in the previous chqpter. an axiom) in the axioms component has 

a restricted interpretation: A variable of type D' in the ~iom ~nnot_be freely substituted; 

instead, the substitution should be such that tbe input to every ,operation symbol satisfies its 

precondition as specified by the restrictions_ component, and no operation invocation 

should signal. We first construct the unrestricted axioms-ffqpl tbe r~stricted axiom~ in tile 

axioms component of a ~ification.using the Jestrictions; these unre~icte(j ~ioms are 

used to construct the theory. Henceforth. we refer to a (restri~te4) a~iom in the axioms 

compo,-ient ofa speciµcation ~ a formula µnq to an unrew~ted .~iom as an ax10rnto 

avoid confusion. 
. . . ~ 

The proposed deductive system is ~ tQ;pr0:ve Pf.QJ?Crties. n.a»u~ly. W~ have 
>., -- - i 

not investigated the possibil~ties of a¥tomating th,tl,deducti~~ ,y~,- ~t we: relate our 

work to_ Musser's work {60. 61) on _mia~matins the,p,;~f :th9ofy -of data types_ f~otn their 

algebraic specifications. 

Instead of discussing the .-complete deducti\'# syswm apd the construction of a 

theory from ,.a: s,.>~,rica_tion ~ecifying IID,lldetenniniJtici o~~t.¥iJns and ~iQ~ 

exhibiJ;ing exceptional ~havior in a single shot, we do so step -by step., We ,fust Elise~ the 

theory of a data type with deterministic operations and without considering their 

exceptional behavior. We then incorporate the exceptional behavior of data types into 

their theory. Finally, we discuss data types with nondeterministic operations to exhibit the 

extra machinery needed for introducing nondeterminism. 

For specifications specifying only deterministic operations. we discuss various 

subtheories, namely, the equational subtheory. distinguishability subtheory, inductive 

subtheory, constructed using different fragments of the deductive system. We define three 

structural properties of a specification. namely. sufficient completeness, well definedness, 

and compleleness. Checking for these properties for a specification is a step towards 

ensuring the correctness of the specification. We precisely state the sufficient completeness 

property defined by Guttag and Horning [28) for a restricted set of specifications and 

extend it to specifications in our specification language. This property requires that the 
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behavior of the observers on their intended inputs can be completely determined from the 

specification by purely equational reasoning. We relate this property to the behavioral 

completene~ property discu~d in the previous chapter, which "is rnodet theoretic and 

which requires that the specification completely specify the behavior of the observers on 

intended 1nputs. Recall that the behavioral completeness property does not say anything 

about what can be deduced from the specification. We show that sufficient completen~ is 

stronger than behavioral completenem. 

The completeness property is even stronger than the sufficient completeness 

property, since in addition to the requirement that the behavior of the observers can be 

deduced on any intended input by cquationat reasoning, "it ,also requires that the 

equivalence of the observable effect of the constructors on intended inputs can be deduced 
' 

from the specifteation bf equational reasoning. 

The wetl defmedness property constrains· that a specification be modular in the 

sense that it preserve the specifications of defining· types and aux i1iary types in it. This 

property is stronger than the co~sistency property. 

In the last section, we define a stronger· equivalence on specifications than the 

equivalence defined in Section 3.l The stronger equivaleftce ofspeciftcations requires that 

not only the two Sfl\.,~if1Cations have the same seman~ buttheir i:ftoories must also· be·the 

same. 
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4.1 Preliminaries 

A data type can have many different but equivalent specifications (see Section 3.3 

and Section 4.5). These specifications may differ because 

(i) they may specify the properties of constructors to different extents, 

(ii) the prope1ties of the operations are specified in different ways, and 

(iii) they may use different sets of auxiliary functions. 

Theories constructed from different equivalent specifications can be different, as will be 

clear from the following discussion. Unless stated otherwise, we assume that a data type 

has a single fixed specification; in the last section of the chapter, we discuss theories 

constructed from different but equivalent specifications of a data type. 

If a specification S specifies only a single data type D, then the theory constructed 

from S is the theory of D. If S specifies a set of related data types, then the theory 

constructed from S is the theory of the set of related data types. The theory constructed 

from S consists of properties characterizing the behavior of the algebras in .F(S), the 

semantics of S. Let Th(S) stand for the theory constructed from S. 

The deductive system uses multi-sorted (or many sorted) first order predicate 

calculus with identity [16] as the underlying logic. 1l1ough a first order theory cannot 

completely characterize the 'infinite' models in .F(S), we prefer first order logic over second 

order logic because of the following reasons: 

(i) First order logic is well studied, and is better understood than second order logic, 

(ii) most of the programming logics developed for reasoning about the control structures 

of programming languages are first order, 

(iii) the recent work of Cartwright and McCarthy [8] has established that even the 

termination proof, which was believed to employ second order reasoning, can be 

adequately done in first order logic, 

(iv) most of the work in automatic verification uses first order logic as the underlying 

basis, and 

(v) we believe that the most of the interesting properties of programs can be expressed in 

first order logic. 

Multi-sorted logic is more convenient than single-sorted logic as it avoids the use of type 
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predicates, which must be introduced in a single-sorted logic to differentiate· among terms 

of different types. We use an induction rule having infinitely many premises which is some 

what unusual; the proofs using this rule are infinitary. We interpret the_ fommlas in Th(S) 

in the algebras in f{S); we do not consider uncountable strucuires because they are not 

type algebras and so they are of no interest. 

As was discussed in the previous chapter, a formula is interpreted in a type 

. algebra in the same way as a formula in a structure iri Logic (16). except that the symbol-:-
. - . - - . 

is interpreted as the observable equivalence relatiori (see 'the definition in Sections 2.2 and 

2.~) on a domain instead of the identity reiatiori. · Because th~ observable equivalence 
,. 

relation is an equivalence relation and is preserved by every ftmciion ih a type algebra. the 

standard mies for identity ho1d (i.e .• the rules for :identity are sound under this 

interpretation). 

We now discuss the structure of formulas expressing ·properties of the models in 

f{S). Following Enderton (16), we define the language ~r Th(S) as the set of nonlogical 

symbols; the·nonlogical symbols are ·used with the logical symix;ls to' construct formulas. t· 
•.· ... - - - ~ ..... -- t _·,~t-·:_i.!~.~" ; '~ -

Let l..(S) stand for the ~anguage of Tli(S): Instead of' defining' the complete language of 

lla(S) here. we introduce it rncrementally. We discuss here L(S) for a sp·ecftication neither 
r 

specifying nondeterministic operations not the eic~J>tional beliavfor of the operations. 

l.(S) includes the operation symbols of D specified by Sas ~ell~ ihe a~xiliar/function 

symbols used in S. Since Tll(S) is constructed using the theori~ o( th~ defining types and 
the theories"oftbe auxiliary types used ins. L(S) includei'L(S1)9 where S' is a specification 

. . 

of a :data type D'. for each D' € A U A1• 

In Section 4.3 on specifications specifying exceptional behavior of the operations, 

we inch1de the exception nameS' in L(S). In Secti'?fl 4.4, ori ,specifications ~ecffying 

nondeterministic operations. L(S). includes addi&~~J'-'.synibols. n~ed . fot expressing 

l. A symbol (or an axiom or a rule of inference) is called 11011/ogical if it is specific to a panicular domain'Of 
discourse whose theory is being constructed. This is in t9QU'ct.1l 4>;lop:af ,$Y8'bols. 11bich ill"C. dctero,ined by 
the underlying 1ogic . used lo. develop the theory. . For iilsfancc~ la' logical. axiom. charactciilcs the logical 
reasoning available in the underlying logic. whereas a nonlogical axiom characterizes a pru,i,rty about die 
domain of discoune. 
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properties about nondetenninistic operations. 

Terms of various types can be constructed using the symbols in L(S) and variables 

of various type,s as disc4sscd in the. pr;evious chapter. A-. atQmic formula is; an ,equation of 

the form 'e
1 

a. e2', where e
1 

and e
2 

are terms of the same type. Compound formulas are 

constructed from atomic formulas using the sumdf)r;d, rules 9f c;onstruction for first order 

predkate calculus with th~ help of logical symbpi.. .. 

We consider a boolean term as a te1111; !Bther thap ,an a~ formula; in this 

sense, we adopt aMnifQrm v~w ~•t~,sym~ ill ~S):~siQe,ipg ~has.a function 

symbol. This view i& esP,eci~Uy convep.i~t.when;~_:i~te1the exceptional behavior 

of the operations. Jn case we ~ ,~;- poolca,lli le.nn .b ~ a JQ~ula;, a is .considered as the 

abbreviation for the equation 'b = T.' 

Recall that 'e1 = if b then e
2
' is an abbreviation for 'e

1 
= lf·thcn·else(b, e2, e/ and 

'e
1 
= if b then e2 else e

3
' stands for the following two conditional equations 

· e 1 = if b then e/ 
. 'e 1 = if ... b then e/ 

1n the simple case when exceptional behavior is not considered, 'e
1 

= if b then e2' is 

equivalent to '(b = T) => (e
1 
= e}: When we incorporate exceptional behavior, the above 

equivalence does not always hold, because b could possibly ·signal an exception. However, 

if bis guaranteed not to signal, then the above equivalence holds in that case also. 

We use the abbreviation 'e1 "= e2' for the formula ·- (Y xr ... , x
0

) [ e1 = e2 ].' 

where x
1
, •.. , x

0 
are the only variables in e

1 
and e

2
• Note that if e

1 
and e

2 
are ground terms. 

then 'e
1 

"= e2' is equivalentto ·- (e
1 
= e}: ln fact, it is easy to see that 

(Y x
1
, •••• x

0
) (- e

1 
= e

2
] ~ ( e

1 
a e

2
). 

Only a subset ofTh(S) is useful in reasoning about programs and designs using D. 

This subset consists of formulas in Th(S) expr~d using only the operation symbols. 

Formulas expre&'ied using auxiliary functions are not directly useful because the auxiliary 

functions are not available to the users of the data type(s) being specified, but these 

formulas help in proving formulas without auxiliary functions. The correctness criterion 

for implementations with respect to a specification S discussed in the next chapter does not 

require a correct implementation to include implementations of auxiliary functions used in 
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S. Even if an auxi1iary function is implemented, it is not available to the_ users of a data 

type. 

Let L(D) stand for· the language of a data type D, which is a subset of L(S) 

consisting only of the operation symbols. L(S) - L(D) is then the set of auxiliary functions 

used in specifications of various data types. Let Th(D) stand· for the subset of Tb(S) · 

consisting of formulas in Th(S) expre~d:using the oonfogica1 symbols in l:.(D). We are 

primarily interested in formulas in Th(D). The correctness criterion used in the next 

chapter ensures thut Tll(D) holds'for aH oorrect'implementutions with respect to S. Th(D). 

serves as the interface between programs using D and' ltte correct ·implementations of D. 

Note that Tll(D) does not include those non1ogical axioms of Tll(S) which are expra,ed 

using auxiliary functions. . 
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4.2 Theory of Data Types without Nondeter.minism and without 

Exceptional Behavior 

We start with the simpJe case of specifications that do not specify 

nondeterministic operations and the exceptional beha~ior of the operations. The 

restrictions component of such a specification may specify _the nontrivial preconditions for 

the operations. For illustration, we modify the data type, ~et-l~t so that Choose is 

deterministic; let Set-Int' stand for the modified Set-Int lbe.,sp_ecification of Set-Int' is 

given in Figure 4. l, which is ~btained by modif~.~ t}:le specifi,ctttion qf Set-Int given in 

Figure 3.1. The syntactic specification of the operation Choos,e c.toes not have.the identifier 

nondeterministic. lnsteµd of the required exceptioq cQndition for C:~oo~e on th~ empty set, 
' . . - ' .... ' 

we specify·- #(s) = o· as its precondition in the restriction compom;nt of the spedtication 

of Set-Int'. 

We first discuss how to construct unrestricted n<>nlpS:icul axioms of Th(S) from 

Figure 4.t. Specincatibn of Set-Int' 

Operations 

Null 
Insert 
Remove 
Has 
size 
Choose 

: -+ Set-Int'. . 
: Set-Int' X Int.-+ Set-Int' 
: Set-Int'~-,- S.t-Jp&' 
: Set-Int' X l~-1. :_ Bool 

. : Set-Int~ ...:.. Int . 
: Set .. Jnt' _._ lot 

Restrictions 

Pte(Choose(s)) :: ,..; ( # (s) = 0) 

Axioms 

1 . Remove(0, i) = 0 
2. Remove(lnsert(s 1 tt), if) = if 11 = 12 then Rembve(s 1 i1l else :1nsertmemovefs, i2)~ t1) 
3. i E 0 = F 
4. i1 E lnsert(s 1 i2) = if i1 = i2 then T else 11 € s 
s •. #{fl> :! o. 
6. # (lnsert(s, i)) = if i E s then # (s) else # (s) + 1 
7. Choote(s) € •• = T 
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the fonnulas in the axioms componerlt and the, precooditiom; specified in S. We then 

discuss how to construct Th(S) from the nonlogical axioms thwobtained.' We do so step 

by step exhibiting the power of .various fragments of the deductive system. This will also 

help in investigating how easily these fragments can be automated. We first discuss a 

simple but useful subset of Th(S), caned the equational subtheory' and written as EQ(S). 

Formulas in EQ(S) are proved using, the rules of· and d1e substitution rule of v. Most of 

the work on developing the proof tbeory of data types from their algebraic specificutions 

has focused on this subtheory (23, 71, 7, 21, 29). 

We discuss later a richer subtheory, called the dlsti11guisl1abifity subtheory and 

written as DS(S), having inequalities 'e
1 

31! e
2
' ih addition to equations. The inability to 

prove an incquality·has been a major limitation of the ·tetent ·works on proof theories based 

on algebra specifications. For instance, both in Zilles"'s method.as well as in:ADJ'slnethod. 

two terms e
1 

and e
2 

are unequal, i.e., 'e
1 
.t e

2
' is provable, if and only if 'e

1 
= e

2
' is not'in the 

equationa1 subtheory, so' the'proof Of ineqtlality ~omes meta.~ ;Zi1'es f76frecognizes this 

limitation and suggests also using inequafities as niolns. In our deductive- system, 

inequalities can be proved from equations by the methqdd,prpof ~Y. ffiP1{~diction. ~e 

have this advantage because we view two abstract values (i.e .• ground terms) of a data type 

to be distinguishable (so unequal) if and only if a sequence of operations can distf~guish 

them. This is in contrast to the view taken by the ADJ &f~~,nd. ~Hfeo;s (fijt t~o abstract 

values are distinguishable if and only if they are not speciffectffl~equtt 
.. ' - . •~' ~~;~::j ... ~,-~ :. . -'· .. 

We later include an inductjop rule which captures the mi.pi~aliJy. J)fcgptrty of a 
-. : t ' . ·- . •. - . •· ' 

data type. This rule is 'infinite' and is derived from the syntactic; specifications of the 

operations and the restrictions components of the specification. More properties of a data,. 

type can be proved using the induction rule than without it. We d~uss how, the rule is 
. ,.' . ~..r; . . 

used to prove other rules using the nonlogical axioms derived from the specification, which 
~-~. ~. -~ . ' 

simplify the proof of properties of the data type. The subset of equations and inequalities 

provable using J.be il,lduction rule AQd;Ule,~ Q(,th~. 4istio11-1~~H~\ubtbeoey' is called· 
the inductive sul;>theory and written as IND(~). 

We finally construct the full theory Th(S) using the whole machinery of first · 

order predicate calculus and the 'infinite' indu~~~ rule: \ve·d~~~~te.the-useoflil(S) 
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in vc1ifying properties of programs. Every subtheory (as we:U ~ the full theory Th(S)) is 

constructed hierarchically from the corresponding subtheory_ (or the full theory) 

constructed from the specifications of the defini01 types and the auxiliary types used in S. 

For instance, IND(S) is constructed from INO(S'),· :WMl"e · .S' is a specification of 

D'€ A UA1 . 

Jn the last subsection, we define sufficieM compteteftess.,-eompleten~. and welt 

definedness properties of a specification, and relate them to behavioral Cdrrip1eteness and 

consistency properties discussed in Section 3.5. 

4.2.1 Derivation of Nonlogical Axioms 

The unrestricted nonlogical axioms for a specification S can be derived in a 

straightforward way. lfS'specifles a nontti-.iiafpr~n fbfsomc:opemtioos, then the 

non logical axioms are gcntrally c()flditional: eqimt'i6Yls;: -Let PC e starid for a conjunction ,6f 

conditions of- the form' •p: (el, . ,' . . e ) = 'r 'for every occurrence; of (1' having' the' input a n 

el' .. ·., e~ in :e. If an,equation ·el~ e2' is ii11heaxicYM'&irlporierit'ofS; tf-ie corresponding 

nonlogical axiom ofTh(S) is the formula 

(PCe1 /\ PCe?~i(e1 • e':). 1,· i. 

For ;example,· the· fonrtula 

Choose(s) E s = T 
' ' 

has an occurrence" of the bperatiott ~. Which rs sptat'fetl"'fd:hnve the nontrivial 

precondition, so the correspondltig urrrestricted ndn~cil rudom; is · · 
·· (~ '#ts) ~ 0 = 'I)':!:> ((,\oose(sJt· s-a \'fl.~) ' '' 1 

· '. ' _;, ·· 

. If a formula in the•:axibms1c6mpdnent ticJes·nbf hav~eLany oper~tion specified: t() 

have a nontrivial preconditibri, then die formula itself se~ias,~'!nort1dgica:t axioiri; For 

example, the fotmula 

#(lnsert(s,i)) = if i Es then #(s) eas. #•) +. l,J ·,,., 
itself serves as a non logical axiom. . : ; 

. / . . 

For any restricted quantifier .. free-· fof'1'l.lla--f~, thct CQtr¢sponding unrestricted 

formula is • PC ~ f\ where fJC}sa'conji.foction of the formulas PC e. for ;every terin ei in. 
I 

the formula f. 
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4.2.2 Equational Subtheory 

The . equational subtheory EQ(S) consists of equations derived from the 

non logical axioms of S. An equation ~e
1 

a e
1
' is in EQ(S) if ancl only if it is provable from 

the nonlogical axioms of S and EQ(S'), where S' is a specification of D', for each 

D' € A u At, using the four rules of E, namely, 

(i) reflexivity, 

(ii) symmetry, 

(iii) transitivity, 

(iv) substitution property of every function symbol, 

and, 

· (v) the substitution rule fort,b,e universal q,i.,amifier v (i.e •• ~ubstituting an appropriate 

t~ for (very occurrence of a,free variable. in a nonJoaica) axiom).. _ 

All five of the abov.e rul~ ai:e not necessary;,.someof them can ,.be: deri;ved from the others 

[16}. As an .illusuation, we-;giv:e a prootof the equation· #(~~-1, i}, i)). = 1: in. . . I . . . . 

Figure 4.2. 

EQ(S) defines a relation on ground tenns of di~,rent types; -let ,EQ0 , stand for 

this relation on ground terms of type D'. For any ground terms e1 ~d~ <(r,ei?. € ~u.if 

and only if' e
1 
= .e

1
' € EQ(S). 

If the nonlogicala~iom,:are eguatio~ ~* -1;1~-Jf-tlaeD:"~lsc. functions), they 

can be considered ~ un~recti~ rewrite. ru~-,bl;-defm.~~~-~ approp.te ordering on 

terms. If a decision procedure for ~~-~~Ji~:!~ .• ipn: EQD' fQr,. each 

D' €AU At U {D),is:idecif.table1 thenjt ~ often,~~fil,~~ -~·cpnverg~t set of 

rewrite rules from the nonlogical axiom_s: using ili,e ~nuth-~x. _algorithm {44). which 
- • ' '< • • • ~ • • -

Figure 4.2. Proof of' #(lnsert(lnsert(Nuli, it, t))'• I',···:· 

1. i E lnscrt(Null, i) = T 
2. #(lnscrt(lnscrt(Nun. i~ i)) = #(lnscrttNulU)) 
3. = #(Null) + 1 
4. = 0 + 1 
5. = 1 

Substitution in Axiom 4 of Set-Int' and the theorem oflnt 
Stqj 1tisuli,Wtutieh ill Awiom'.6of&l-lnt' 
Axiolll l. ~-in •iom,.f; uf S..-lnf~ and tranlitivity. 
Axionls of Set-lit . . . . - . 
Theorem of Int 
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constitutes the decision procedure for EQ(S). The AFFIRM system (60] is designed in part 

around this result. Though nonlogical axioms using if-then-else functions have been 

studied (60, 21, 5), there appears to be some difficulties in using the Knuth-Bendix 

algorithm on them (61]. 

For automating the process of proving properties from the non logical axioms of S 

using the above five rules, it may be helpful to view a formula of the form 

PC ~ (e1 = e
2
), 

where PC is a conjunction 'b
1 
=TA ... /\. bn = T' as the fonnula 

e1 = if b
1 

I\. ••• I\. b
11 

then e
2
, 

as the two formulas are equivalent and the second formula can be considered as a rewrite 

rule. For example, 

(~ #(s) = 0 = T) ~ Choose(s) Es= T 

can be viewed as 

Choose(s) Es = if~ #(s) = 0 then T. 

4.2.3 Distinguishability Subtheory 

11,e distingtiishability subtheory DS(S) is richer than EQ(S); it has two kinds of 

formulas: (i) 'e
1 
= e

2
,' and (ii) 'e

1 
-i:. er' Our approach for proving inequalities is simple; it is 

based on the definition _of distinguishability discussed in Sections 2.2 and 2.3. The 

distinguishability theory of Dool serves as the basis; since 'T -i:. F' is a formula in the 

specification of Dool, 'T -i:. F' E DS(Bool). (Recall that only the specification of Dool 

includes an inequality as an axiom.) 'T -i:. F' obviously holds in every model of Dool. This 

inequality is used to prove inequalities of terms of type D by reductio ad absurdum (proof 

by contradiction); this is the sixth logical rule, besides the five rules discussed in the 

previous subsection, which is used to construct the subthcory DS(S). We of course use 

inequalities in DS(S'}, where S' is a specification of D' E t:,. U A
1
. 

Given two terms e
1 

and e
2
, we prove 'e

1 
-i:. e

2
' as foHows: 

We assume on the contrary that 'e
1 
= e/ 

we then derive · ei = e; ', where • ei -i:. e; ' is already provable, i.e., either 

' ei -i:. e; ' E DS(S'), or ' ei -1= e; ' E DS(S). 
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We illustrate the above rule to prove the inequality ·Null -'= lnsert(s, i)'in Figure 4.3. For 
'. 

any ground terms e
1 

and er the formula ·e
1 

._ e
2
' interprets in a-model in F{S) to whether 

the interpretation of e
1 

is distinguishable from the interpretation ofe
2
• 

The method of proof by contradiction can be integrated · into a rewrite rules 

system like AFFIRM. lfan inequality 'el 'E. e2· is to·be pfoved. we 3$Ume ·el= e2· 3S an 

axiom and add it to the set of nonlogical axioms. We· get the rewrite rules corresponding 

to the new set of axioms and run them to check whether a contradiction. i.e., one of the 

rules 'T--+ F' and 'F--+ T' or • e~..,. e/ is generated, where· the in~uality • e; · ._ e~ · is already . 

proved. 

4.2.4 Inductive Subtheory 

The subtheory DS(S) is still not rich enough because there are many u~ful 

equational fonnulas which hold for every data type:i~~}.:l>ut(annot:be proved usingthe 

logical rules of DS(S). For example, the equation 

Has(Remove(s, i), i) a F 

cannot be proved because 

(i) there is no nonlogical axiom directly expr~ing the behavior ofllas on a set argument 

having the stmcture Remove(s, i). and 
1
' ' : 

(ii) Remove(s, I) is not' equivalent to·Null or ari expremon ot the form ·1nsert(s', i') uriless 

some conditions are placed on s. 

But. "Has(Remove(s, i), i) = F holds in every ·mooefin f(Set·lnt'). 'Even if we use the 

whole deductive .system or first order predicate caltului '.this 'Jorrii'ula cannot be prov~d 

from the nonfogical axioms of Set·lnt'. 

Figure 4.3. Proof of Null i: Insert(~ i) 

To prove Nul1 ~ Insert (s. i) 
assume Null = Insert (S. i) 
Has (Null, i) = Has(lnscrt(s, i), i), 
FaT, 
which is a contradiction. 
so Null~ lnscrt(s, i) € DS(Sct-Int'). 

substitution property "of Has 
the axiQQil3 aJJd'◄ of:Sct·lnt'. 
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The above limitation is due to the fact that the minimality property of data types, 

which is captured in the definition of a type algebra, is neither captured in the underlying 

logic nor expressed as a non logical axiom (see the discussion of the minimality property in 

Section 2.1). We discuss below an induction rule which captures this property. The rule 

can be constructed from the syntactic specifications of the operations in S. We compare 

our rule with other similar rules proposed in the literature, and demonstrate the inadequacy 

of some of these rules. We discuss how the 'infinite' rule can be used in proofs. For better 

exposition, we first assume that no constructor of D is specified to have a nontrivial 

precondition by S; we later relax this restriction. 

4.2.4.1 Infinite Induction Rule 

Def. 4.1 A ground term e is called a constructor ground term if e is expressed only using 

constructor symbols. I 

( t) Induction Rule 

Given a formula ct>(x) with a free variable x of type D. 

For every constructor ground term e of type D, ct>[x/ e] r- ('d x) cf>(x). 

The above inference rule is infinitary, as there are usualJy infinitely many constructor 

ground terms of type D and so, the mle requires infinitely many premises. The notion of a 

proof is infinitary whenever the induction rule is used. Intuitively, the above rule states 

that if a formula ct>(x) holds in every case when a value of type D is substituted for x, then 

we can deduce the formula '('d x) cf)(x).' It is easy to see that the above rule is sound 

because every type algebra by definition has the minimality property, which states that 

every value of D is represented by some constructor ground term of type D, It is sufficient 

to consider only constructor ground terms because these represent every value in a type 

algebra 

Burstall and Goguen (7] also realized the limitation of the proof theory based on 
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the rules of =· 2 They introduced the induce operatQr on theories; the induced theory is 
; - - - ' t 

equivalent to the original theory with the above induction rule. The above induction rule is 
,,•. -

a generalization of the structural induction rule of Burstall [6]. The structttral induction 
' .1. . . -,: .- • 

rnle is based on identifying a minimal set of constructors (instead,of all constructors) which 
• ' • > • ,. • -" -, : '• • ? : • ~ ':;: ·; ! C : ~ ;' •.• t; ~ : , C , • • ' ' 

generates the values of D and has the property that every finit~ sequ.ence of constructors in 

the subset generates a distinguishable value. To our knowledg~. W_~breit and Spitzen (72] 
.- ' • [ ,; _- ' e < :-· • ~ ' r ·J- ' • • -~ , 

were the first to generalize the stru~tural induction ru~e. but they presented it informally. 
-· ,,. 

The data induction rule of Guttag et al. (29] is the same ~ th~ induction rule of Wegbreit 
' ._. '. : ·: , ::;-;I J. ,-

and Spitzen. Recently, Musser [61) has suggested a formalization similar to our 

formulation of the rule. 

Below, we discuss the rationale for using an infinite rule to capture the 

minimality property of a data type. We demonstrate the inadequacy ,of an: intfnttioo 
scheme seemingh suggested by Wegbteit ,andSpitten f12}, Guttag ettal {29l and Nakajima 

et al. [62). For illustration, · we· use a simple vfflioft · of tM; &ta type 11t1tural numtJer, 

de.noted by N2. N2 has four operations; 0, the co~i"~,«l~,~ .. ,;the ~ccessor pperation; P, 

the predecessor operation; and. = ► J)le egualjty ~io,e. -11' ~ification is giv~n .in 
• ' ' • • . • • --'.~ • ' ~ ~ ,r ~ . .... • - ~ < " - < • 

Figure 4.4. The coostructQ( P is derived in ~ ~JMtthe: Yal~ returned by P can be 
. - . • • . . . • - • ,:: - i . ,.__, ' : ' ~ i. .,- ~ 

constructed usiogO and S. We would.like to.prove_frqm,tbe ~al axiom~of N2:~ 

the induction rule. the following nonnalfonn lemma i1t,tbe full theory: 
. . - } ; - ~, - ',. . 

(1) (v x)_lx. == 0 V_(3 y)( x =!IS ~)Jl . 
In general. we would like to have_in Th(N1)thescbeme 

(2) (4)(0) A (V x) [ ca,(x) => ct(S(x)) l) ~ (Y x} 4(x),, 
' . ' , , ' - ' - . - . 

where ♦ is a first order formula with at least one free variable. 

lfwe expr~ the roinimality:JUqJ>CJ1,Y ofN2 w4k ~ fol.lo.wing scheme: 

(3) (ca,(O) A (V x) [ ca,(x) => (~P(x)) A -s,(S(x))]) • (V x) 4'(x), 

2. However, ADJ [71] do not seem to agree that properties provable using the induction rule are relevant 
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Figure 4.4. Specification of.Data Type N2 

Operations 

0 : -+ N2 
S : N2-+ N2 
p : N2-+ N2 
= : N2 X N2 --+ Bool 

Axioms 

P(O):: 0 
P(S(x)) = x 
x=x=T 
x=Y=Y=X 
S(x) = O = F 
$(x) = S(y} ii X = y 

where 4> is a first order formula, we can nei~her prove (1), nor (2)~ This is becaµse there are 
' ~ .; . , • ~ '. - • ' • •~ ". at ~. -. 

nonstandard models of the i,,onl~ical axioflls giv~Jt. iJ:\ figi+fe,i4:4 a,iq, the s.c~em~ (3). in 
, ;t ' . "'( ., ' • •· ~ .,. <• ' J •. ' :_ ' ,. ; 

which the scheme of formulas (2) and/or the formt:J1J~ !iPilJPl:b.~~-. Figu!e;45 is. one 
such model in which the nonlpgkal axjoms as: wt;Ji ~,me .schei:p,e (3) hQ,1ds but the formula 

t • • • ~ : • ; •. : 
0

' ! • • 5 : < • • • , ,a O • ' ~ • C , • • , 

scheme (2) d~s ~ot hold. :Th~ model ~s .. wi ~fiPif;e ch.~~.&qlµg f~p~ a~~~ symbol c 

in both directions in adQjtion to the chain of. q~ur~. Jllffl)~rs. an~ ~ere, is ~ ~pary 
- ''·' ., . . . ''~ ..,. ~ - . .. ' ·-' . , ' . 

predicate symbol M whose interpretation in the model js the,J)ledicate whjch ~ false <mi all 
~>~•• .:., ,-.;·•,; M1.,~ •,1 ~-~ •,.~.~.f{ .~-:~·. ",,:•, •; • ~.'$!.! j, 

constants on the negative side of c, and true otherwise. The figure shows the values in the 

modelsonwhichtheintcrpretationofMisfalse. ,,,_. -···· 1; .. ,,-'.;• ... ~ , ; ... 

The scheme (3) does not capture the property that the operation P when applied 

on any natural number will hit in finitely ritany stt~;titflet O'dfa•riumber"thttt benaves like 

O(innonstandard models}. This property'is needed-ioaetNe(l)hr(iJ., -
Jt should:be obvicms-that the scfiernet(2f;is well as'-the tbrmut,r-(l}·hold.iri evety 

model in P(N2). Formulas 6f 1he kind (2) andthe fomnila O) are very useful in proving 

properties of programs using N2. · ror exafup~~ using'the fbritiuta schethe (2)~ the proof by 
induction amounts to checlcing for the basis 

0

c6ndition 1lnd·a single case in tfre inductive 

step, where as (3) requires two cases in the indu<-ffic step. -

•. We ·. would like· the- induction rule- .. to'··be constructible ftorri the syntactic 
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Figure 4.5. A Nonstandard Model of the Axioms In N with tlte 'Scheme (3) 

s s s 
0->-~ 1 ->- 2->-3->--4->- ... 

-<~ -<- -<- .•. 
p p p 

s s s s s 
... ··>-· c-2-->-- c-1 ··>·· c ->-· c+ I->-- c+2 ... 

-<- -<- -<- -<- -<-
p p p p p 

F F 

specification so that the rule does not have to be stated explicitly for every data type in ifs 

specification. In addition, the induction rule should be strong enough so that. for example, 
. , , 

the fonnula scheme like (2) and the nonnal form theorem 0) can be derived in case of N2. 

The above discussion shows that the scheme '(3) is not powerful enough. However, the 

in finite induction rule (t) for N2 does the job. · It can ·be' shown that the scheme (2) and the 

fonnula (1) are derivable from thatrule. 

Another alternative for characterizing the minimality· property is to use 

multisorted second order predicate calculus as the ·underlying logic and expr~ the 
. . 

minimality property as a second order fonnula. But, this appro.ltff is not attractive because 

of the reasons discussed in the first section. 

4.2.4.3 Use of the Induction Rule 

For using the induction ru~ ( t). we m1,1st establish infinitely many premises. This 

can be done by impa;ing a partial ordering on the set of C9ftstructor ground terms and 

using inducti~ on ground terms. We discu~ bel~w a ,tecllni«J¥C: for dQi~ this. We start 

with an instantiation of this technique which .uses the struc-tur~ of the ground terms; this 

method is known.as the structural induction [6}. W~ show,that 

(i) for each basic constructor a : D
1 

x ... x D
8

-+ D. which does not take any argument 

of type D, 4>[xla(e
1
, ••• , e

8
)] is provable, and 

(ii) for every other constructor a € O, cl>[x/ cr(e1, ..• , c)J is provable •urning 4t(x/ eJ for 
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every D. = D. 
I 

However, there are situations when the structural in,ductiOJl is not useful or convenient; 

instead. a different partial ordering on ground Wll\1S-is preferable. 

We present below a generalized technique. Let G stand for the set of all 

constructor ground terms of type D. We can define an ordering relation (non-reflexive, 
' -

antisymmetric, and tratisitive) < on G such ·that (G, <) satisfies the minimum condition. 

Defining< on G gives a gettera1ized (Noetherian) induction rule flO] on G. 

Def. 4.2 (G, <) satisfies the minimum condition iff for every nonempty subset A ofG, A has 

a minimal element with respect to<. 3 I · 

Generalized Induction Rule: 

If for every e E G such that for every element e' € G that is< e, ct>[x/e'], => 4>(x/e], 
' ' 

then (v e E G) 4>[x/ e]. 

So, in order to establish the infinitely many premises otthe 'infinite' induction rule (t), we 

define a partial ordering< on the constructor ground tJrms 'ih G such that (G, <) ,has the 
minimum condition and use the generalized induction rule. 

Using the nonlogical axioms of S, one can identify ·a 'subset c·ofG such that for 
, . 

every constructor ground term e E G, there ! is a 'ground term l i~ "·c such· that 

'e = e· € EQ(S). We can then simplify the induction rule using the-following 'rule of first 

order predicate calculus: · 

(e = e') I- ct>[x/e) ~ 4t[x/e'] 

We need to show only that for every ground term e € C, 4>l.x/e). For example, it can be 

shown in case of Bool, that for every boolean grouAa·rerm e,\either'e = T' E EQ(Bool) or 

'e = F' ~ EQ(Bool). So to prove 'a property'. havirig a free ' variable -of type Dool by 

induction. it suffices to show that the property holds fo case ofT and F. 

Let us consider the example of Set-Inf'. The i~dtiction fule (t) for Set-Int' is: 

3. The propeny of a set A satisfying the minimum condition with respect to an ordering relation < is related 
to the well foundedness propany of A with respect to<. it c:hn be shown that A is well founded with respect to 
< if and only if (A, <) satisfies the minimum condition. 
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For every constructor ground term e of type Set-Int'. ♦(xi e] I- (V x) 4»(x). 

The following theorem establishes that the constructor lte1110,e is derived in the sense that 

it does not construct any varue ofSet·lnt' distinguishable from _the values,constructed by 
NuJI and Insert. 

Thm. 4.1 Every constructor ground term e of type ;~.t~lnt' is equivalent by equational 

reasoning to a ground term e not haying any occLJrrence pf llemo\'e,. ~e1• the equation· 

• e =· e' • E EQ(Set-lnt'). 

Proof Using induction on the number of Remo\'e (and subs:equ~1_1tly the number of Insert) 
. ~< . : . • .- t . . , 

in a constructor ground term, we show the above with the help of the axioms 1 and 2 of 

Set-Int'. For details, see Appendix III. I 

Using this theorem, we get a simpler induction rule for Set-Int': 

(4) For every constructor ground term e of type Set·J--''.Jlavi_ng,only Jhe occurrences of 
• , : • • • J • : • ~ _; • ' , ~ 

Null and Insert, ♦(xi e] I- (V x) 4,(x). 

We can define an ordering generated by the following relation on ground terms .. 
constructed using Null and Imert. 

Null < Insert(x. ,). and ~ < Inse,_rt(x. O 
for any constructor ground term x and integer constructor groµnd term i. Qsing the 

\ . . ' - . '· -

induction rule (4). we can prove for any formula•• 

(~) ( 4>[x/Null] A (V x) [ ♦(x) ~ (V i) ~nsert(x. /))] ) • (~. x) ff(x). 

We also get the following normal form theorem for ~t•lnt' usin,8:(5) 

(V s) [ s :ii: Null() v (3 s\ i') s = l~(st, i') 1 . 
. '" : ; ~ ; . 

Note that the above formula is different from Theorem 4.1. (Ille above formula is not in 
. ~ , - - , _ . , r _: , 1 -· ~ 

IND(S) because of the use of the existential quantifier 3,iJJ,i~ pp\ i~ is in TM~)~.discug;e(i_ 
- . . , ~-- ' v~ . --: : : - ; ~ ~ , 

later.) Theorem 4.1 cannot be expr~d in fi~ ~d~r pred~e cat~ulus. Using the 

scheme (5) and the nonlogical axioms of Set-Int', we prove 'Has(Remove(s, i), i) = Fin 

Figure 4.6. Recall that this formula could not be proved in.JlS(Set,IRt'). 

The inductive subtheory IND(S) consists of equ~tions. and inequalities. and is 
• < - - • ' ~ , 

defined to be the set of formulas derived fran the~ :axioms using the six rules 

discussed iJl the last subsection (meaning DS(S) t: 1ND(S)l and the infinite induction rule 



- 131-

Figure 4.6. Proof of 'Has(Remove(s, i), i) a F 

We use the formula scheme (5) above. 
Basis: Has(Rcrnovc(Null, i), i) = ,Has(Null,.i} a F 
inductive Ste/; Assume Has(Removc(s, i), i) = F, 

to show (\l il)t Has{R-emo~IMCrt(s,,il). i}, i)s f') · 

Case/: i = il 

Axioms 1. 3. 

· Has(Rcmovc(lnscrt(s. il ). i), i) = Has(Rcmovc(s. i), i) = F, Axiom 2, and the assumption. 

Case 2: -(i = il} 
Has(Rcmovc(lnscrt(s. il). i). i) = Has(lnscrt(Remove(s. i), il), i) 
= Has(Rcmovc(s, i), i) = F 

Using the scheme (5). WC get Has(Rcmovc(s. i), i} =· F. 

Axiom 2. 
Axiom 4 and the assumption. 

(t). We later discuss the conditions under which formulas in IND(S) can be proved using 

the Knuth-Bendix algorithm (Subsection 4.2.7). 

4.2.4.4 Specification~ with Nontrivial PreqgqdJJ~JJ.,,~o/Consfructors 

The induction rule (t) is also applicable to speciticati~_,,sp~ifyini;nontrivia1 

preconditions for the constructors as it captures a general propertf 6fd~,~·typcsand ~wt',~-~ 
property of specifications. It can be simplified depending on the semantics ~~d ~or a, 

, ,· '· . t ; .\ f ~. i. ' 

constructor a on inputs not satisfying its precondition. 

Jf nontrivial preconditions are specified~ for constructors. we are interested ili ' 

constructor ground terms in which the input to every constructor invocation satisflet'the·' 

specified precondition. This is so because a constructor is not likely to:be. invoked ,with,m{ 

input not satisfying the specified precondition. Even if the coristr~ctor.is i~voked or{such. 

an input. we are not interested in its behavior. 

Def. 4.3 A constructor ground term e is caHed legal if and only if (i) e does not have .. any 

occurrence of an auxiliary function, and (ii) for every subterrn of e of th~ ,form 

e
1 

= a(e
11

, ••• , e
10

), where a is a constructor. 'P u(e
11

, ••• , ea)= T' ~. EQ(S)~ • 1·· 

The restriction that 'P a(e
11 

•••• , e
10

) = T' E EQ(S) is for convenience; we. cpul<i have 

required the formula to be in Th(S). the run theory constructed fr~m-S. (RecaJtthat Pcr(X). 
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is a boolean term without involving any quantifier;) ·we ate mostly interested in formulas 

involving legal ground terms. 

Assuming the semantics used in Chap~r '3 (i.e., on an input not satisfying its 
~ ' . - -

precondition, a returns a value of D constructible by the constructors of D using inputs 

Figure 4.7. Specification or Stk·Int 

Stk-lnt as Stk 

Operations 

Null : - Stk 
Push : Slk X Int - Stk 

. -'+ overffow(Stk, Int) 
Pop : .Stk -+ Stk 
Top : Slk --t Int 

-. no-top() 
Replace : Slk X Int -+ Stk 
Empty : Stk -+ Boot 

Auxiliary Functions 

Size : Stk -+ Int 

R~Slricllons 

Pre(Pap(s)) :: .,.,, Empty(s) 
Pre(Replace(s, I)) :: - Empty(•> 

Empty(s·) =:. Top(s) signals no-topO 
Push(s, i) signals overflow(s, I) • #(s) > 100 

Axioms 

. 1. Pop(Push(s, I)) a .s 
2. Top(Push(s. I)) ii I 
3. Replace(s, i) = Push(Pop(s), I) 
4. Empty(Null) = T 
5.· Empty(Push{s, I)) a F 
6. ti (Null) s 0 
7. ti (Push(s, I)) = # (s) + 1 
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satisfying their preconditions4 ), the induction rule ( t) gets simplified to 

for every legal constructor ground term e of type D, <l>[x/ e] I-- (V x) <l>(x). 

This is so because every constructor ground term that is not legal is equivalent to some legal 

constructor ground term by the above assumption. 

If the above assumption about the behavior of a is dropped and nothing is 

assumed about its behavior on inputs not satisfying the preconditions, then we have 

for every legal constructor ground term eoftype D, «l>[x/e] 1--

(V x) ( V (3 x. , ... , x. ) [ x = a.(x. , ... , x. ) /\ P (x. , ... , x. ) = T]) · 
i = 1, m 11 1n. 1 11 1n. ai 11 

1n. 
I I I 

~ cl>(x)' 

where { a 1, ..• , am } is the set of constructors of D. The condition in the matrix of the 

consequence of the above rule ensures that x ranges over values serving as the 

interpretations of the legal ground terms of D. This is the strongest consequence we can 

have because the interpretation of i))egal constructor ground terms is not known. For 

example, if we drop the restrictions in the specification of Stk·lnt repeated in Figure 4.7 

specifying the exceptional behavior of the operations, the modified specification associates 

preconditions with the constructors Pop and Replace. The induction rule would then be 

for every legal constructor ground term e of type Stk· Int, <l>[s/ e] 1--

(Vs) ( s = Null() V (3 s', i') s = Push(s', i') V (3 s') [,., Empty(s') = T /\ s = Pop(s')] 

v (3 s', i') [,., Empty(s') = T /\ s = Rcplace(s', i')]) ~ cl>(s). 

We have discussed in Chapter 3 the reasons for assuming that a constructor a on 

an input not satisfying its precondition can either signal an exception or return a value 

constructible by the constructors using inputs satisfying their preconditions. An additional 

reason for this assumption is that otherwise the induction rule gets complex, as should be 

evident from the above discussion. 

4. a can a1so signal on such a.n input; since we arc considering data types without exceptional behavior, this 
choice is ruled out 



-134-

4.2.5 The Full Theory 

In proving properties of programs, one. often uses, prqperties of d~ta. types other 
' . • • ' . . \ . i 

than equations and inequalities. For examp1e, we ofte11 neQd tQ ,prove properties of the 
y . . ... 

form ·cell= ell I\ ... A eln = e2Q) => ('1 =l.}.' Or, we may' need a formu]a involving 

existential quantifiers. For example, consider the union procedure on sets of integers 

written in a CLU-like language and given in Fjgµre 4.8. Thf jnte~er variable i inside the 

loop defines the range (-i + 1, i-1) of integers which have been checked to be members of 
. . 

the first argument and if so, have been inserted into the result being computed. The 

variable i is incremented every time the loop is executed. To prove the termination of 

union, we need to show that a set is either empty or there is an integer k. such that every 

element of the set lies in the range (-k, k). The following formula expresses this property: 

(6)' (V s) f s = Nun V (3 k) (VJ) [ llas(s, j) = T => ( j :S; k A f:2: -k) 1] 
To prove such properties; we need the whole machinery of first, order predicate ca1culus 

with identity. The proof of (6) is given in Figure 4.9. 

The fu ti theory Th(S) is the set of fortnulas derivable from the non logical axio:ms 

of S and Th(S'), where S' is a specification of a de tining_ typeor an ru.t~iliary type used in, $, 

using the logical axioms and rules of inference of multi-~rted first order predicate calculus 

F1111re 4.8. Procedure Uaioa · I 

union = proc(sl, s2 : Set-Int') returns (Set-Int") 
i:lnt:=O 
rl : Set-Int• : = s1 
r2 :. Set-Int" : = 12 

· while - Sct-lnt'SSizc(rl) = 0 do 
ifSct-Int'$Has(rl. i) then rl : = Sct-lnt'SRcmove(rl. i) 

r2 : = Sct-lnt'Slnscn(r2. i) 
end 
ifSct-lnt'SHas(rl, -i) then rl: = Sct-lnt'SRcmovc(rl, -i) 

r2: = Sct-Int'Slnscr1(r2. -i) 
end 
i := i+l 

end 
rctum(r2) 
end union 

, : :r • 
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Figure 4.9. Proof of the Formula (6) 

To prove (V s) [ s = Null() V (3 i) ('t' j) [ Has(s. j) = T • ( j < i A j ~ -i)]) 

Using the scheme (5), 
4>(s) = [ s = Nul1 V (3 i) (V j) [ Has(s, j) = T • ( j Si A j ~ ·i))] 
Basis 4>(Null) < = > T 
Inductive Step Assume 4-{s). to show (V k) (l,(lnscrt(s, k)) 

Since c,(s) .,,,.T, we have two cases, 
Case I s =- Null() 
cJ)(lnscrt(Null, k)) - T, because i is lkl. the absolute of k 

Case 2 · (3 i) (V j) [ HaS(s, j) = T ::o ( j < i A j > -i)) 
Subc·ase I - i S k S i. 

i itself serves to prove that (l,(lnscrt(s, k)) t=tT from 4)(s) 
Subcase 2 k > i V k < -i .. , . 

lkl serves as i to prove that 4»( lnscrt(s, k)) - T from 41)(s). 

Using the scheme (5). we have (Vs) ~s). 

with identity, as well as the intinitary induction rule (t). 

The following diagram summarizes the 'relationships among different subtheories 

and the full theoi;: 

Th(S) 
u 

IND(S) 
.u 

DS(S) 
u 

EQ(S) 

First Order Predkate Calculu~ + Infinite Jnducticm Rule 
,'.": ' < • • • , • 

+ lntiriite Induction :llule 

Four Rules of s' and the Sub'Stitution 'Rule or v 
The following theorem shows that the abti~e deductive 0systern is sound 
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Thm. 4.2 For any two ground terms e
1 

and e
2
• 

(i) if 'e
1 
= e

2
' E Th(S), then e

1 
and e

2 
are observably equivalent by S (i.e., observably 

equivalent in the models in f(S)), and 

(ii) if 'e
1 

ii. e
2
' E Th(S). then e

1 
and e

2 
are distinguishable byS. · 

Proof The theorem follows from the facts that (a) tlie "on~ogjca).axioms hold in the 

models in f(S) with = interpreted as the observable equival~nce relation, (b) the 
. . ·. 

obse-rvable equivalence relations are preserved by the functions inthe mo®ls in f(S). I 

4.2.6 Properties of a Specification 

We can define properties desirable of a specification by rcquiri~-g that various 

subtheories and the fulLtheocy derived from the specification. satisfy certain conditions. 

Guttag and Horning (28) have discussed the_ su,tlkient cQmpl~ten~ pro~rty for a 
' ' '. ~ _.;J;. > ! ; . ' ·, ~ . - • . 

restricted class of _specifications, which h~ ~en found useful. W,e state that property in 
: . - - _, , . . ' ': ,: ' _: ~- : ; ' , 

our framework. We extend it to specifications using auxiliary function~ and specifying 
-

preconditions for the operations. The sufficient completeness property captures the 

intuitive m>tfon' thut the behavior''of the obsmers •js"&fmpletely specified on intended 

inputs and that the result of. an observer QD_ an intended inptJl.qtQ be deduced by 
: . . - . . - . ~_: " 

equational reasoning. We relate this property to the behavioral completen~ property 

defined in the previous chaptefand show that stlfflcient completcncs is stronger than 

behavioraJ completeness{l)woremA.4) ~-Qel\ar~aJ Wl,llple~pnly requires that 

the behavior: of the observe~ be CORJpletetx sp~ifu,;g Q~ ~t~nde<l jf\J)µ!s, apd it does not 
- '.;,,. • • • ; ~ .: • • • ~ • • ~ '.' \ • a • : : •• • a .~ C ' : • •> • • 

say anything about what can be deduced from the specification. 

When specifications are used to prove properties of programs using the data types 

being specified, we often need to relate different constructor sequences. In that case, it is 

desirable to have a specification satisfy a stronger property than sufficient completencs, 

which in addition to the requirement that the behavior of the observers can be deduced by 

equational reasoning on any intended input, also requires that the equivalence of the 

observable effect of different constructors can be deduced by equational reasoning. We 

call this property the completeness property of a specification an~ define it precisely. We 
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later see that for a complete and consistent specification S, formulas in IND(S) can be 

proved using the Knuth-Bendix algorithm (see Subsection 4.2.7). 

Recall from Section 3.5 that for a consistent and behaviorally complete 

specification S, the models in f(S) are behaviorally equivalent w.r.t. { Pa I a E n }. 

Furthermore, if S does not specify any nontrivial precondition for the operations, the 

semantics of a specification Sis a single data type, a set of behaviorally equivalent algebras. 

In that case, for any two ground terms of type D, they are either observably equivalent by S 

or distinguishable by S An obvious question is whether the proposed deductive system is 

powerful enough to deduce this from a consistent and behaviorally complete specification. 

We show that it is not the case. But if a specification is consistent and complete, then the 

deductive system has this property. 

Since Sis hierarchical, S should preserve the specifications of the types used in S. 

S should only specify the behavior of the operations of D, and it should not specify the 

behavior of a type D' used in S that is not captured by its specification S'. Specifications so 

designed are modularly structured; they support the factoring and hierarchical structuring 

of the proof of correctness of a hierarchically designed implementation. We define the well 

dcfinedness property of a specification which captures this modularity requirement 

Before we discuss these properties, we prove 

Thm. 4.3 For a consistent S, for any two ground terms e
1 

and e
2 

of the same type, both 'e
1 

= e2' and 'e
1 

i: e
2
' cannot be in Th(S). 

ProorifS is consistent, then f(S) "= 0. 

Suppose for some e
1 

and e
2
, both 'e

1 
= e

2
' and 'e

1 
"= e

2
' are in Th(S). 'e

1 
= e

2
' E Th(S) 

implies that e
1 

and e
2 

are observably equivalent by S. Similarly, 'e
1 

i: e
2
' E Th(S) implies 

that e
1 

and e
2 

are distinguishable by S, which is a contradiction. I 
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4.2.6.1 Sufficient Completeness 

As was said earlier for constructors. for a specification specifying nontrivial 

preconditions for the operations. one is interested in ground t~rms in which the input to 
• • :.•• C • • • 

every occurrence of an operation symbol satisfies the associated precondition. This is so 

because an operation is not likely to be invoked with an input.not satisfying the specified 

precondition. Even if the operation is invoked on. such .an.input. we are interested in its 

behavior. Furthermore. if a specification uses auxiliary functions. ground terms in which 

auxiliary functions appear are also not of interest because they are not used in programs 

using the data type. Earlier we defined a legal constructor ground term (Def. 4.3); below, 

we extend the definition to a ground tenn. 

Def. 4.4 A ground term e is' called legal if and only if(i)-e does not have any occurrence of 

an auxiliary function. and (ii) for every subterm of e of the' form e
1 

· fT (e11, ...• e1
). 

where a € O, •p / e
11

, •••• e
10

) a T € EQ(S). I · 

For a specificatior. using auxiliary functions and specifying nontrivial preconditions, only 

legal ground terms are interesting. If such a specification .is consistent. and behaviorally 

complete. any two legal ground terms are either o~servably . equivalent by S or 
. •· 

distinguishable by S (see Section 3.5). 

In E28J •. Guttag ;ind Horning define the sufficient completeness property of 

specifications which do not specify a nontrivial preconcifiot\tfo, tfieopetntionf and do not · 

use auxiliary functions. We state their definition in our ~rt. 

Def. 4.5 A specification S is sufficiently complete if and·on1y if for every ground tenn e of 
. . 

type D' E 4, there exists -a theorem derivable from S of the tbrm • e = t ', where e is a 
ground term of type D' without any occurrence ofan operation syrnbol·ofD. I 

In (28], the deductive system to be used to derive a theorem is not specified. Guttag (33] 

requires that the equation · e = e' • be in the cquational subtheory EQ(S). 

The sufficient completeness property can be extended to specifications using 

auxiliary functions and specifying nontrivial preconditions for the operations. For auxiliary 

functions, there are two possible extensions: 
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(i) Consider only the ground terms expressed using the operution symbols, because only 

these terms can be used in a program, or 

(ii) consider all ground terms. thus requiring that auxiliary functions also be completely 

specified. 

We take the former approach; however, we recommend that whenever an auxiliary 

function is used, it be completely specified. 

Def. 4.6 A specification is sufficiently complete if and only i(for every legal ground term e 

of type D' E fl, a formula · e = e' • E EQ(S), where ~· is a legal ground term of type D' · 
t : ; , 

without having any operation symbol of Dor any auxiliary function. I 

For example, the specification of Set-Int' is not sufficiently complete. because for instance, 

a legal ground term Choosc(lnscrt(lnsert(Null, 1), 2)) cannot be related to any ground term 

of type Int that does not have any occurrence of an operation sym.bol ofSet·lnt'. 

The . fo11owing theorem relates sufficient completeness to behavioral 

completeness. The intuition behind this result is th~/ if the behavior ~f observers on 

intended inputs can be deduced by .equational reasoning from S, tlml the obseive~, must 

be completely specified by S. 

'. 

Thnt. 4.4 If a specification Sis sufficiently complete, then Sis behaviorally complete. 

Proof:· See Appendix III. I 

The converse of the above theorem however does, not hold. So, ,the sufficient. 

completeness property is strictly stronger than behavioral completeness, as there are 
,, . 

specifications which are behavioral1y comp1ete· but are ~ot sufficiently complete. This is so 

because. in the definition, of sufficient corilpleteness, o~ly, ~·, r:ag~ent, of the deductive 

system of first order predicate calculus is used to derive properties from the specificaoori. 

There can exist a legal ground term e,of ty~ D' t:" 41sdtlT tllttt wteannat derive· ea f! • for 

any e' of type D' not having any occurrence of an operation symbo1 Qf O,inthe equational 
' . - --

subtheory EQ(S). However, we can derive the above equation in Th(S) using other rules in 

addition to the rules of ·the equational subtheory. We illustrate this point osirig the · 

specification of Set-Inf. ' We add another axiom defining aioose' on 'sets of size ) I as 
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returning the maximum integer in the set. 

8. Choose(lnsert(lnsert(s, ii), i2)) = ir Size(s) = 0 tkeo.(if- ii = i2 then Max(il, i2)) . 
else (ir - il = i2 tl1e11 Max(Cboose(lnsents, ii)), il)else Choese(lnsert~ U))). 

The modified specification is not sufficiently complete, because Choose (lnsert(NuU, i)) is 

not directly specified. Nor can we deduce -by equational · reasoning that 

'Choose(lnsert(Null, i)) = i.' However, using the theorem of:Jnt. '·(i = j = T) =, i a j • 

derived using the induction rule for integers, the axioms 3, 4, and 7 of Set-Int', and case 
analysis, we can prove hy contradiction that 

Choose(lnsert(Null, i)) = i 
It should be obvious that with a minor modification of the proof of Theorem 4.4, we can 

prove the following generalization of Theorem 4.4: 

Thm. 4.5 Jf for every legal ground term e of type D' E A;ther.e exists a ground term e of 

type D' not having any operation symbol of D and auxiliary function such that ' e a e ' € 

Tb(S), then S is behaviorally complete. I 

lbeorem 4.4 can be derived as a CQrollary of the abcwe theorem. We conjecture that tne 

converse of the above theorem is also true, which says that the deductive -system is 

complete with respect to deducing th~ behavior of an observer on an intended input. _ 
> ' • • > <; 'f , <' 

Conjecture 4.1 (fS is behaviorally complete, then for every leg~) groµnd term e of type D' 
\ 1 _. , • 

E A, there exists a ground term e of type D' not having any operation symbol and auxiliary 

function such that • e a e · € Tll(S). 

We can prove the following partial completeness result about_ the deductive 
- : , , , ._ l ' 

system in proving the distinguishability oflegaiground terms of type D', D' E'.11 u { D }. 
. - . , ; .. '. ' . , 

Tluu. 4.6 For a consistent and sufficiently oompleteS. if aAY two legal ground terms e1 and 

e2 of type D ar~ distinguishable bys. then ''\ 16 e{ E DS(S); 

Proof See Appendix Ill. I 

If conjecture 4.1- is true, t_hen we qin prove a similar resu!t. a~ut l}eh~v,iorally COlllplete 

specifications: For a con~istent and behaviorally COfN>~te.spedfjcation S. if any two legal 



- 141-

ground terms e
1 

and e
2 
of type Dare distinguishable by S, then ·e

1 
=' e

2
' E Th(S). 

4.2.6.2 Completeness 

We cannot prove a similar result about the observabl~ equivalence of legal 

ground terms of type D, because we do .not have a rule analogous to proofby contradiction 

in the deductive system that enables us to p{9ve the ob~rvaple equiva.lence of ground 

terms unless explicitly specified by the no,,nlogi_cal ax.iom~ .. Different but equivalent 
_. • , < •, : • ~:. - " • - , • - _ _. ' 

specifications of the same data type can differ in the extent to which the observable 

equivalence relation of legal ground terms of D can be provea.ft@m the non logical axwms. 

For example, the terms lnsert(lnserl(Null. 2), 2) and lnsert(Null. 2) are observably 

eqLiivalent by Set-Inf, but 'lnsert{lltse~Nuft, 1)~ 1)st1nsei't(Notl, 2r t. Th(Set•lnt'). If we 

add the following axiom to the"specification of Set-lot': 

9. lnsert(lnsertts, if). l2)E ifil = i2 then: lnsett(s;il)else'lnsert(lnsert(s, i?):n,. 
then 'lnsert(lnsert(Nulf, 2), 2) = lnsert(NYIR, 2)" € £Q(Sef:'Int'). The semantics of the 

modified specitic:!tion is the same as·the~mantitsofthe·original specification ofSet·lnt'. 

The more a specification ofD captures the observable equivalence'relation on terms of type 

D, the more useful it is in deriving the theory of, D and 'hence in' proving properties of I 

programs using D. We define below a pr~r,ty,o~~ spec;if~fl r~iring it to:completely 

specify tqe observable eq_ui~lence rda\iOn., )Ve:,put a.str~ger requirem~nt: We want 

EQ(S), instead ofTh(S)~tohave a fqrmul~ 'e1.-,~\klfJW(? 1'pl,.grQuJ1d tclll)s,el' e2 if and 

only if e
1 

and e2 are observably equivalent by S. so that such formulas ~an be derived by 

purely equational reasoning (i.e., using the rules of= and the substitution rule for V) . 
. • ' 

Def. 4..,7 A sufficiently complete.specific:3tion S is.co!IJp/e,e.if 311d only if 3SSt1ming that the 

specification S' of each D' EA u A
1 

is complete, for any two legal grounds termS<e
1
,and e

2 

of the same type, 'e1 = ei.' E ~Q(S) if and o~ly if ~
1
,a,nd _e2 ~re observably equivalent by S. 

•. - . i t = - ,, ' ' 

I 

The completeness property of a specification should not be confused with the completen~ 

property of a theory of an algebraic structure as defined in Logic [16]. Using Theorems 4.4 

and 4.6, and the fact that for a consistent and behaviorally complete specification, any two 
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legal ground terms are either observably equivalent or distingu,ishable by S, we have 

Thm. 4.7 For a consistent and complete specification S. for any le~~) gro~md terms e1 and 

e
2 

of the same type, either 'e
1 
= e

2
' E DS(S) or "e

1 
~ e

2
' € DS(S). I 

Musser (61) has called a specification from which·either 'e
1 

. e
2
' or 'e

1 
'E. e~· can be 

derived in DS(S) to be fully specified, though his view of a specification is somewhat 

different. He views the operator ·=' as another operation of a data type, whereas we 

consider·=· as a predicate in the underlying logic used to construct formulas. 

4.2.6.3 Well Definedness 

We would like a specification S to be ~Jar, i.e., for.the spec;itication S' of each 

D' E A u At , Th(S) ll.(S') = Th(S'). This mcaµs thJit Th(S) does not have a formula 

expre~ed using symbols in L(S') that is not in Tb(S'). Only th~ properties which involve 

an operation symbol of D and/or auxiliary funeti9ns used i~ S ca11 be _proved from S; a 

fonnula not having any operation symbol of D or ~ auxiliary function in S and not in 

Th(S') cannot be proved from S. 

For a consistent and sufficiently complete specification. the following holds: 

Tltm. 4.8 For a consistent and sufficiently complete S, for any :legal ground terms e~. e; of 

type D' E A constructed using the symbols in L(S'), if neither '·e~ = e;' € 111(S') nor 

· ei '= ei · E Th(S'), where S' is a specification ofD', ·tie e; • t Th(S). 

Proof By contradiction. 

Suppose • ei E e; · E Th(S) meaning that ei and e; are distinguishable by S (as well as by 

S') (by Theorem .4.2). By Theorem 4.6, • ei '= e; · € 'Tll(S'), wlticrr is not the case. So the 

theorem. I 

However, we could have a specification S such that 'ei = e;· € Th(S) in the above case. The 

following property of a specification rules out such cases. 
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Def. 4.8 A specification Sis well defined if and only if for every D' E fl u At, assuming that 

S' of D' is well defined, Th(S) IL(S') = Th(S'). I 

We are usuaJly interested in wen defined and complete specifications. 

Behaviorally incomplete specifications are occasionally of interest. Set-Int' is such an 

example. 

4.2. 7 Automation of IND(S) 

Recently Musser [61] has discussed how to automate IND(S) when S satisfies 

certain conditions. If (i) S is consistent and complete, and (ii) the nonlogical axioms 

derived from S can be written as equations (possibly using if-then-else operator), then the 

Knuth-Bendix algorithm, which treats equational axioms as rewrite rules, can be used to 

derive an equational fonnula 'e
1 
= e

2
' in the inductive subtheory IND(S). The equation 

'e
1 
= e

2
' is input to the algorithm as a rewrite rule to get a new convergent set of rules 

having the added rewrite rule. There arc three possibilities: 

(i) The algorithm succeeds implying that the new equation is consistent with the 

nonlogical axioms and thus provable, 

(ii) an inconsistency, such as' e~-+ e;' where e~ and e; can be proved to be not equal, in 

paiticular 'T -+ F' or 'F -+ T,' is generated as a rule, implying that the equation is not a 

theorem, and 

(iii) the algorithm does not terminate implying that (a) an additional lemma be· proved 

first, which could be guessed from the set of new rules generated, (b) the specified ordering 

on tenns used by the algorithm does not work, and some other ordering needs to be tried, 

or (c) there does not exist a finite convergent set of rules to express IND(S). 

The basis of deducing from (ii) that 'e
1 
= e

2
' is not a theorem is the consistency of Sand the 

method of proof by contradiction; in fact 'e
1 

"fE e
2
' is a theorem in IND(S) in this case. The 

basis of deducing from (i) that 'e
1 
= e

2
' is a theorem in IND(S) is the completeness of the 

specifications: For a substitution of all variables in e
1 

and e
2 

by ground terms, the resulting 

ground tenns ei and e; have the property that either ' ei _ e; ' E IND(S) or 

' ei -:t e; ' E IND(S). 
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4.3 Theory of Exceptions Without Nondeterminism 

We now incorporate the exceptional behavior of data types into their theories 

with the assumption that specifications do not specify nondetcnninistic operations. New 

atomic fonnulas are introduced to express the exceptional behavior of the operations. We 

describe how the nonlogical axioms of Th(S) can be derived in this case from a 

spec_ification S. We discu~ how to construct EQ(S), DS(S). l~D(S), and Tb(S). New 

'JogicaJ' axioms characterizing the exceptional behavior of the operations are presented. 

We extend the properties of a specification discussed in the previous section to 

specifications specifying the exceptional bdlavior .. For illustration, 'we modify the 

specification of Set·lm' so that the operation Choo5' is required to signal no-element() on 

the empty set; let Set·lnt" stand for the modified Set·lat. -So. instead ofthe Restrictions 

component specifyjng a precondition for Choose, it specifies a required exception 

condition as follows: 

#(s) = 0 ~ Choose(s) signak no-element(). 

We also use the specificatioti of Stk·lat. 

Besides the operation symbols and auxiliary function,symbols, the language l(S) 

also includes the names of exceptions signalled by the. ~rations as specified in S. 

Exception tenns are constructed as discu~ in Chapter 2. using terms and exception 

names. There are two new sets of atomic fonnulas in addition tQ equations; 

(a) e sipals ext. 

where e is a tenn, ext is an exception term, and every variable -in exl is also in e; and 

(b) ext1 = ext~ 

where ext1 and ext2 are exception tenns. The predicate 'signals' is similar to= but its arity 

is (D u EXV) x EXV. 
. . 

As in the previous section, we first discuss the derivation of the nonlogical axioms 

ofTh(S) from S. Then, we discu~ the subtheories EQ(S), DS(S), and IND(S), and the full 

theory Th(S). In the last subsection. we extend sufficient completeness. completeness, and 

well detinedness properties. 
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4.3.1 Derivation of Nonlogical Axioms 

The non1ogical axioms of Th(S) are derived from the restrictions and axioms 

components of the specification S in a slight1y mfferent way -than discussed in 

Subsection 4.2.1. We first .discuss the restrictions, and later the formulas in the axioms 

component 

4.3.1.1 Restrictions Component_ 
' 

From a restriction specifying a required exception signa11ed by an operation a, 

Ri(X) ~ a(X) signa~ ext, 

we get the following no~logical ~iom: 

P 
0
(X) => (Ri(X) => a{X} signals ext), 

because the restriction holds only if the input X sati,sfies the precondition associated with 

a.5 For example, the rest~iction on the opera~<?" top in the specification ofStk·lnt. 

Empty(s) => Top(s) signals no·t-01( ). 

is a nonlogical axiom of Th(Stk·Int), as the precondition for Top is T. Similarly, from a 
-· . 

restriction specifying an optional exception signalled by an operation a, 

a(X) signals ext • O.(l'), 
J 

we get 

P a(X) ~ (a{X) signals ext~ Off)). 

as a nonlogical axiom. For example, the restriction on Push. 
' Push(s, i) signals overffow(s, i) ~·-#(s) ~--- ~ . 

is a norilogical axiom ofTh(Stk·lnt). 

5. Recall that the boolean tenn Ri(X) is an abbreviation for the fonnula Rll) = T. 
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4.3.1.2 Axioms Component 

The preconditions in the restrictions component are also used in consttocting the 

nonlogical axioms from the formulas in the axioms compoaent of S. As discl&ed in 

Chapter 3, a variable in a formula in the .axioms componenttannot be freely suhstituted 

When the exceptional behavior was not considered in Subsection 4.2.1, the substitution was 

conditional: The arguments to every operation in the axiom must satisfy the associated 

precondition. Now, there is an additional requiremette'1liesubstitution shouttfnot result 

in an operation signalling on its arguments. 

To expr~ the second condition, we introduce a unary auxiliary function 

N?0 ,: D' U EXV-+ Dool for every D' E ~ u { D} u Ar Ttic~~n.i~iliary fimctions are not 

used in a specification. Informally, N? separates a nonnal value of If from an exception: It 
' ~ ~ : .~; ..... ,•. ; . ~ ' ,' . i . ~ . ' -; 

returns T if its argument interprets to a normal value of D'; it returns F if its argument 
. . , ~ 

signals an exception. Furthermore. N?D~a(el' ... , e
0
)) is F ifN?D_(ei) is f~lse for any ~; 

. . . . . l . . 

this constraint on the behavior of N?0 . enabl~ us to get .a simple~ transformation of the 

restricted formula:s in the axioms component ofS. 

Using N?0 ,, we transform a.i:estricted formula in the m:ioms component to an 

unrestricted fonnula which serves as a nonlogical axiom of.'fh(S) .. lfa~~~atiqn ·e1 = e2' is 
'. f- . ' • ~ •. . , ~ ';c ... - ~ , • 

in the axioms component, where e1 and e2 are of type U'. then the correspo~~i11:g 
·.J .· / 

unrestricted axiom is · 

(N? D,( e1) A N? o,( e2)) => ((PC e1 ,A Pf: e.} • e1 = eJ, 
where PC e is a conjunction of conditions e,xpr~ing th~ ,c<>nstr.;iin! ,~at .1:he ,inpu~ to every 

: . . . ' ' ...... '::' ', ·-

operation invocation in a tenn e satisfies the ~iat~;d.,P~ppi,~o°-. Similar~. if a 
'j, c-••A ... , · .., • __ -

restricted fonnula is ·e
1 
= if b then e

2
,· then the corresponding unrestricted formula is 

(N?Hool(b) A N?D,(e1) A N?0~e2)) => ((PCb A PCe A PCe.) • ( b • e1 = eJ). 
l 2 

lf a restricted formula is 'e
1 
= if b then e

2 
else e3,' then the corresponding unrestricted 

formulas are obtained using the fact that this formula is equivalent to two conditional 

equations 

e1 = if b then e2 

e1 = if- bthen e3• 
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We illustrate the above transfonnation on.the foftowing equation in the axioms component 

of the specification ofStk-lnt: 

Replace(s. i) = Push(Pa,(s), I). 

The corresponding unrestricted axiom is 

(N?stk·Int<Replaee(s. i)) /\ N?stk·I.JPuslt(Pop(s), i))) =
( #Y Empty(s) ~ Replace(&, i) Ei J>ush(Pop(s). I)}. 

A specification ot D implicitly defines N?D and extends N? 0 , for every defining 

type D' of Das well as any auxiliary types D' used in S. N?D, is defined by the specification 

of D'. Since an operation a has the arity D
1 

· x ... ~ 0
0 

-+ D' u EXV, and N? D' has the arity 

D' u EXV -+ Dool, we need to introduce variables ranging over values of a type and 

exceptions to characterize N?0 ,. We have two'options: (i) Introduce two t'indsofvariabl~ 

- variables of a single type D. and variables of a union type D. ·u EXV', or (ii) introduce only 
I . ~ 

variables of a union type. If we a~opt the second a'ternative, the formulas expr~ing the 

normal behavior of the operations get Jong because we make the cond1tionaf use of the 

variables. Since we would mostly be using formulas expressing normafbehavior, we have 

adopted the first alternative. Often, we do not need to have a formula in which both kinds 

of variables are mixed. Except in the axioms for N? 0, ·· · and the axioms characterizing the 

geileral properties of the exceptional· behavior of' the' data type, we would rarely use 

variables of a union type. Terms as well as exception tenns are constructed using only 

variables ranging over a single type (except in '.the next section). Henceforth, we use xe, 

xe
1
, •••• xe •... , ye, ye

1
, ...• ye •...• ze, ze

1
, ••• , ze • etc., as variables of a union type, n- n n 

and exv, exvl' ...• exv
0

, ••• as variables of type UV. · .·. 

We now discu~ the axioms defining; N? D'· First of all, for a variable x of type D', 
' . 

we have the axiom 

N?0,(x) • f. 
For an operation a, let P 

0
(X) be its precondition. Let us assume that the restrictions 

component specifies for a, I required exceptions and m optional exceptions. For each 

1 S i < /, let Ri(X) be the condition on input X when a is required to signal an exception; 
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similarly. for each 1 < j S ffly let 0/X) be the condition when a has an option to signal. 

For every constmctor a of D, we have an axiom defini'llg N?·corresponding to.D, 

N?(XE) => ((P a(XE) A (- R
1
(XE) A • • • A - R~.M,E).)A · . · 

(- O
1
(XE) A ••• A - Om(XE))) =a, N?(.{XE))). 

where XE stands for the variables xe1 .... xe; xe. is a variable of-union type D
1 
U EXV. and 

· n I 

N?(XE) is an abbreviation for N?0 (x,1) A .... ••A N?0 (xeJ~ 
l D 

The above axiom captures the assumption in a specification that if (i) an input to a 

constructor a is normal, (ii) the input satisfies the preconditiott~iateiwith a~ (Ui) none 

of the conditions associated with a requir~d exception for a hol~s for the input. and (iv) the 

condition an input must satisfy in case ·a signals an exception specified to be op\ional. also 
·'; 

does not hold for the input. then o retutns a nonnal value. Jn other words, this assumption 
7 ~ ' ;: - • ~ 

states . that the exceptional behavior of th.e operations on their intended inputs must be 

completely specified by the Restrictions component 
. - . . ". . ,-: ,, ,· . . 

The extension of the definition of N? D', f<>~ every D' .E A is also captured by a 

similar set of axioms corresponding to every obsery~~ a. E o of ,result type D'. There is an 

axiom having the above structure correspondipg to every observer a in o. 
· ' •· ,... ' i: ··a,~· \ 

In addition to the above axioms. we have a ru~ fc;>r every operation an~ auJiliary 
. ,_ l. . . . :; 

function e~pres.5ing that if any argument to a function is n~ nonn~J. then the .result of the 
C < > • : j 

function invocation is also not normal. 
- : ~ 

(N?0 (xe1) .... F v ... v N?0 (xe) = F) .-,N:?o~,o(xe1, ••• , x,..)) = F. 
l Jt· , , . .,., , .. 

Note that there is, n~ axiom so far whic~ states the, ~~~~µqn .whe_~ ~? ~· ~ F. In the .next 

subsection on, equational · subtlteory. we iµtroduce. , ru,J~ characterizing such behavior of 
. .· . , : ·; .. :' , •; . 

N?o'· 
. We use the nonlogical axiQllls derived, fi;o~. the restri~tions and axiom.s 

,, :·d. , . , .. , · c· .. 

c01J1po~ents ofS, a.nd the axioms defming ~.1 Q' ;,J~&, -.yifh the ~dditiqn~I axioms,:.and rules 
- • ,, • -~ • .... - - • > 

characterizing the general properties about the exceptional behavior to build various 
. :•. 

· subsets of Th(S} and finally Th(S) itself. 
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4.3.2 Equational Subtheory 

As in case of specifications without nondeterminism .and without exceptional .. 
behavior, .we define the equatipnal Sf.Jbtheory EQ(S) as ~ ~t~of atomic formulas.. Beside., 

equations of the kind discussed in Subsection 4.2.2, we alSiQ i.ve the following atomic 

fonnulas: 

(a) e signals . .ext, and 

(b) ext
1 

a ext
2
• 

In addition to the rules eharactt!rizing = discussod in Sut>section~.2.2, we .use the 

substitution mle for v, and the mies characterizing 'signal~' and capturi1ui ;the observable 

equivalence relation on exception values. The substitutio1,),JJJ~:for..v, 

(V x) cl>(x) => cl>{x/ e). 

where xis a variable of type D', and,e is a term of:typeU',aad is ~ubstit,utible for x in •ll'li 
is modi tied to 

(V x) cl>(x) => ( N~8 ,(e,) iii T ~:~.1/4 ), , 

since xis a variabl~ ranging over normal ~IJJ\d 4;~ $ipal,an:~~tion . 

. · Rule (i) ~.lV ,say~ wheD ,N? 11. '5 ~SQ. w~ i9p ii ~.-~ pf Wpec.D~, signals an 

exception, then N?D' on thilttenn is false. ~•ki(ii} ~•"thtl::iftJWOJ411llS:at:e ~ly 

equivalent and on~ signals an exception, then<the,~tMfi~4'1J!MJls:~'~ ffltCeption. 

Rule (iii) states that ifa ~rm,sig~,tf{O,eJg:nt\q~~i~ tru;,;~~~~~,~ably 

equivalent Rule (iv) states how the observable equivalence relation on exception_vtlueitis; 

related to the ob!FveJe equiv,ale,aco ~~ptUfijrptJ ~~,.,~ • 

(i) xesipals exv.r N!0 ,(xq,s F • .. 

(ii) xe1 • xe'J! xei: sipals exv I- ~isip,t-',-#X.P. 

(iii) xe signals exv1, xe signals exv
2 

t- exv
1 
= exv

2
• and 

for every exception name ex or arity D~ x . . ~- · x D~; 

(iv) x11 = x21, ••• , x10 a x2n t- ex(x11, t1.••:..t1i),a1ta{~~.:~•x2n). 

It should be obvious that the above rules are sound u.nder the following interpretation: In a 
, ;1. ;,.;·~ ~ .~ ~~r ~ -,; ~: ; ~· , ~ .• . 

type algebra A. for a ground tenn e and a ground · exception term ex4 the formula" 

'e signals ext' is interpreted as: The interpretation ofiin A is the ex~tion y.alu,e that is the 
. ~ . '; ' 

interpretation of ext in A. For two ground exception terms ext1 and ext
2
• the fonnula 
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'ext
1 
= ext

2
' is interpreted as: The interpretation of ext

1 
is observably. ~uivalent to the 

interpretation of ext
2 

in EXV of A. 

We now show how to ~se the above rules along with the nonlogical axioms and 

the axioms and rules defining N'!0 ,, to prove some properties of data types. Since many 

nonlogical axioms and fommlas are conditional having the· tbnn 

(7) b ~ e signals ext, 

where bis a boolean term, we use a trick similar to the one used in Subseetion 4.2.2 to deal 

with such formulas so that they can be proved in EQ(S). We :introduce an auxiliary. 

function if-then : Dool x EXV x D' -+ D' u EXV Having the behavior defined by the 

following axioms: 

if-then(T, ext, e) signals ext 

if·then(F, ext, e) = e. 

Usingthe auxiliary function if·tllen. the rormula (7) is equivalent to 

e = if-then(b, ext, e). 

as for an instantiation of the variables in (7), if b ittterprets to J~· then (7) is equivalent to 

• e signals ext.· The boolean term b tnust not sigMl 
As • an illustration, we prove from the· nonlogical axioms of Stk·lnt that 

'Top(Null) signats ne-to,0' € EQ(Stk•lnl) in Figure 4.10. ·.Similarly, we can prove 

Top(POfl(Pusli(Nltll. i))) ~nals no--top(). 

Replate(PusflfftlsllfNuU, H};U), O)l• Pusll(Pos1t(Nu~ ni 13). 

However, 

Replace(Pusb101((Null, It •.• , JOI), 0) = Pilsli11n(ftNiiH,Ji. _.-. ~ 108); 8) 

is not derivable because we cannot derive 'N? Stk·llit(t.h.sJ $: T due to 1he optional 

exception specified for Push when its stact;argtimefttis of site> 100} Bot we can prove the 

Figure 4.1 O. Proof of ~Top(Null) signals no-top()' 

I. Top(s) = if-thcn(Empty(s), no-top(), Top(s)) 
2. F,.,nply(Nulf) = T 
3. if-thcn(Empty(NuJt), no-top(), Top(Null)) signals no-top() 
4. Top(Nult) signals no-top() · 

Restriction on Top 
Axiom4 

Axiom of if-then 
Substitutio~·in t and rule (ii) above 
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following formula: 

N?stk-lnt(Push101((Null, 1), ••. , JOI)) ~ 

Replace(Push101((Null, I), .... , IOI). 0) ■-P#sh101(ffNul1, I}, ••• , 100}, 8). 

The fonnula 

Pop(Null) """.' Null 

is not derivable because of the precondition on P..-. 
It would be interesting to investigate the conditions under which 

(i) an axiom of the fom1 • e si&nals exl can be treated as, a rewrite rule • e-+ ext' and the 

Knuth-Bendix algorithm be applicable to such'atioms. ,and 

(ii) a conditional formula .involving sipajs can be rewritten as an equation using the 

if·then and if-lhen·else operators so that the Kauth-Bendix algorithm ·is applicable to 

conditional fonnulas also. 

4.3.3 Distinguishability Subtheory 

As in case of specifications without nondetern1inism and without exceptior.al 

behavior, DS(S) is defined to be a set consisting of atomic formulas and the n~gaticins of 
('i~•t£ :,;:{ .. ;-> i,. ,; ,\" 

atomic formulas. DS(S) includes EQ(S) as well as formulas having the following structure: 

(a) e
1 

i6 e
2
, 

(b) ext
1 
~ ext

2
, and 

( c) e sigllals ext, 

where 'e sigllals ext' is an abbreviation for ·- (V XI' ••• ' ,tJJtfi~;~~,,efl r ~h ~at 

xr ... , X
8 

are aJI the variables in the formula 'e signals ext.' Besides the axioms and rules 

of inference of DS(S) discussed in Subsectioo .. ♦.2.3. ~ have the following. additional 

axioms and rules exp~ing ,praperties about the eiceptional :behavior.of data types which 

enable us to prove fonnula having, the,above struaure~ , 

(v} for every exception name ex: 0
1 
x ... x D

11
, 

( - x11 = x21 V • • • V - X18 = x2n ) f- - ex(Xi1, •••• x1) = el(x21, ••• , x2n>· 

(vi) for different exception names ex
1

: DI x ... x D
0 

and ex2 : Di X ... x D~ in L(S), 

- ex1(x11, ••• , x
18

) = ex
2
(x

21
, ••• , x~ 

(vii) for a union type D' U EXV, 
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N? l>~xe1) = T, N? l>~xe) = F t- ,., xe1 = xe2, 

where xe
1 

and xe
2 
are of type D' u EXV, and 

(viii) N?{Xi?)'= T t- N(v·exv)f xesipals~nf 

Ru1e (v) and axiom (vi) capture the distinguishability relation on exception values. Rule 

(v) is the opposite of ru1e (iv) given in the previous subsection; it staUs~that'twu etception 

va1ues having the same name are distinguishable! lfany of Ure arguments in one·value·is 

distinguishab1e from the corresponding arguitlent.in: the other V&llue~ ··Axiom (vt) states that 

two exception va1ues are distinguisbabte if their exception names nre different Rule (vii) 

states that two values are distinguishable if'N?0, Mtds'tbr-one and,,mes not flotd ·ror1the 

other~ Rule (viii-)saysthat it"N?0, holds tor a tenn.then it,cannotmgttal on exception. The 

above axiom and rulff are dearly solitld Note•••~these,;f\t'les toll he used to derive 

formulas having the structure ·- xe1 = xe/ which implies tlJat 'xe1 '•<t'2;.: -
We can derive from the nonlogical axioms ofStk-lnl using rule (vii) that 
(8) Top(Null) i6 ~ ' 1 :_ >:- -; -- n ;, ,- !: = • 

because "Top(Null) sipa~ ~-top(),' N!Int(,) = T~: ,and. 'N)._.(Top(Null)) = F E 

DS(Stk·lnt). The.formula 
~ " r- • • ' , • : ' 

overfiow(s, .i) • no•top() . _ 
', ' ' .--- < J , .( : ~, : ! - > 

is immediate from the axiom (vi) above. Using the theorem (8) in DS(Stk-lnt), we can 
,'; : ~ -~ 

prove by contradiction that 

Null~ Pusll(s;i). 

- . 

4.3.4' lnductrve ·subtheory 

. The•inductive subtheoryJND(S),can-be·~ arin Sutisection,4.2.4;:we 

can also use th~ ilbol'e ·atioms anf,rules di~g>.,aoopuunal behovi0r. The 

induction rule (t) in Subsection 4.2.4 hus4o ~ledHNtad ofi.-lfmrmg·that fore.er, 
constructor ground term e of type D, ca,(x,'"1 i>e deriv6bfe'tn:1he~f•e nnty ·need:to 

consider constructor groitnd-tennsfor which 4N?1i~ !f'f'T' ~tderivabl~. So, •e have: 
Modifled- litduttion R"'1e , •, 

Given a formu1a fl,(x) with a free variable~/oftype .D •. 

For every constructor ground term e of type D, N?0 (e) a T~~/ej, ~ (Y x) 4(x). 
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We can use the methods discussed in Subsubsection 4.2.4.3 to establish the infinitely many 

premises. 

As in Subsubsectiori 4.2.4.4, if.a specification S specifies nontrivial preconditions 

on constructors, then the above formula can be simplified to 

for every legal constructor ground term eoftype ~. N?0(e) = T =- ci,(x/e] 

J- (V x) fl,{x). 

b_ecause of the assumption about the semantics of a constr~1ctor on inputs not satisfying the 

associated precondition. discussed in Chapter 3. 

For example. for Stk·lnt. (he induction rule is: 

For every legal constructor ground term eoftype Stk·lnt. 

N?(e) = T =- ~sle] J- (Vs) ci,(s). 

The above rule can be simplified using the following theorem in a way similar to Sel·lnt' in 

the previous section: 

Tlun. 4.9 Every legal constructor ground. term e of type Slk~lnt such that 

'N?stk·lnt<e) = T' E EQ(Stk·lnt). _is equivalent by. equational reasoning to another legal 

constructor ground tenn e' having only Null and Pus~. L~ ... if 'N?Stk·lnt(e). :e T' € 

EQ(Stk·lnt). then ' e = e ' E EQ(Stk·lnt). 

Proof · By induction on the number of Po, and Re,lace in a ronstructor ground term e 

using axioms I and 3 in Figure 4.7. See the details in{Appendix ill.J. I 

The simplified induction rule is: 

(9) For every legal constructor ground tenn e of type Stk·Int having occurrences of 

Null and Push only, N?Stk·Int(e) = T ~ 9[s/e) t- (Vs) t(s). 

4.3.5 The Full Theory 

. The full theory Th(S) is also constructed in a sitnilar,way as for data types without 
- . 

exceptional behavior. For example. we can prove the normal form theorem using the 

simplified induction rule (9): 

s = Null() V (3 s', f) Is= Pusll(s', i')). 
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The diagram summarizing the relationships among ditferent subtheories for 

specifications not specifying exceptional behavior on p. 135 also holds in this case. 

For the extended deductive system. the folJowmg extension of Theorem 4.2 

holds: 

Thm. 4.10 (i) For any two ground tenns e
1 

and e
2 

of the same type, if 'e
1 
= e

1
' E Th(S), 

then e
1 

and e1 are observably equivalent by Sand if 'e
1 
a e; € Th(S), then e

1 
and e2 are 

distinguishable by S, 

(ii) for a ground term e and a ground exception tenn ext, if 'e signals ext E Th(S), then 

the interpretation of e in every model A in F{S) is the interpretation of ext in A. 

(iii) for two ground exception terms ext
1 

and extr if 'ext1 = ext; E Th(~). then ext1 and 

ext
1 

are observably equivalent by S, and if 'ext1 °" ext
1
' € Th(S), then ext1 and ext2 are 

distinguishable by S, and 

(iv) for any ground term e,· if 'N?(e) == T' E Th(S), then the interpretation of e in every 

model A in f(S) is a normal value. and if 'N?(e) = F € 111(8), then the interpretation of e 

in A is either an exception va)ue or undefined. · 

Proof The theorem follows from the facts that 

(a) the nonlogical axioms of~h(S) hold in every model in F(S). 

(b) the observable equivalence relation used a'the interpretation of a is a congruence. 

(c) the exceptional behavior of an operation is oompletely ·specified by the restrictions 

component ofS on inputs satisfying its preconditions. and 

(d) the axioms and rules defining N? and characterizing the exceptional behavior holds 

in every type algebra. I 

· We demonstrate how the full theory constructed frrim ,~, specification Scan be 
used to prove properties of programs using the data types specif~. by· S.' Figure 4.11 is 

another implementation of union procedure using Choose in a CLU-like language. In this 

implementation. an element of the first set argument to union is ~ively selected using 

the operation Choose, removed from the copy of the first argument, and inserted into ·the 

copy of the second argument until the operation Choose signals no-elelftfflt, indicating that 

the set is empty. The handler for no-element ~are<twith the loop is then invoked. In 
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Figure 4.11. Procedure Union· II 

union = proc(sl. s2 : Set-Int") returns (Set-Int") 
i: Int 
rl : Set-Inf' : = sl 
r2 : Set-Int" : = s2 

{ rl = sl A r2 = s2 } 
while true do 

{ (Sizc(rl) = 0 = FA IN(Removc(rl, Choosc(rl)). Inscrt(r2. Choosc(rl)), sl, s2)) 
V (Sizc(rl) = 0 = T /\ Rr~nion(sl, s2))} 

i : = Sct-lnt''SChoost'(rl) 
{ IN(Rcmovc(rl, i). lnscrt(r2, i), sl. s2)} 

rl : = Sct-lnt"$Rcmove(rl, i) 
r2: = Sct-lnt''$1nscrt(r2. i) 

f IN(rl. r2. s1, s!}} 
end except when no-clement : 

end 
{ Rr~nion(sl. s2) } 

return (r2) 
{R} 
end union 

IN(rl, r2, sl, s2) = !(Y j) (.(Has(sl,j) V l;las(s2.j)) t=t_ (Has(rl,.j) V J:IAs(('.l,j}) a T) A 
(Sizc(rl) + Sizc(r2)) < (Sizc(sl) + Size(s2)) iET A Sizc(r2) > 0 a T) 

1/0 Specification for union 

T => R, where It = RI A R1 and 

RI = (V i)( (Has(sl, i) 'V Mar(s2, i)) • Has(union(sl, s2),i) wi'T) 
R2 = Sizc(union(sl, s2)) s; Sizc(sl) + Size(s2)a T 

the code, we have included formulas within '{ }' that .e~pr~ relations among different 
: . . ' 

variables at that point in the code. The Floyd-Hoare inductijve assertion method for 
.'l'. • • 

proving properties of programs (17, 36, 55) can be extended tq, incorporate the exceptional 
. "' . ~ _;- ... - ,:r:: ·. . . 

behavior of programs. A statement in this case cap terminate in more than one way- either 
. ' : :,·~ ' ,'..;-.. ~ . ' ' 

normally or by signalling an exception. Corre.,x:,nding ~ .. every possible _way of 

termination of a statement, we associate an input fo(lllula for an output fonnula 

Fig.ure 4.11 includes the input-output specification of .union. We use the 

following notation for specifying a procedure F(X): Corresponding to every possible 
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outcome of Fon an input X. there is a formula relating the input totaeoutcome. Since .F 

can terminate normally or by signalling an exception, we specffy the weakest input . . .- - ... _. - - . . ~ 

condition for normal termination. as well as for every exception signalled by F~ 

TCit,¥) => F(X) signals ext
1 

TC (X) => F(X) signals ext m m 

TCm+l(X) => R(X, ,,, 

where TCiC,~') •...• TCm+
1
(X). and R are first order formulas, apd, r ·stands Jor a pos.gble 

result returned by Fon the input X. 'TCi(X) => F(l}sfgHafs'eiti:'J~cinterpreted as: The 
r ", ' 

weakest input condition for F to terminate by ·signalling" ext:
1
· ·is __ TC.(X). 

• J 

"TCm+
1
(X) => R(X, r)' is similarly interpreted as: The weakest--input condit~;~Jor F to 

terminate normally returning a value , such that R(X, 1' holds is TC · 1(X). If F is m+ 
deterministic, then such an , is unique for every X; otherwise~ there can be many Is such 

that R(X, 1' holds. lrrsteaciof~ng_ ras denot1ng-a'1~;r~urlted by 'ft on X, we can also 
. . ,. ' i;l <<,i,_~ - ~:~--~- .. ~ •. ,, ~-;; •_- Ji 

use F(X). 

The formula 'IN(rl, r2, s1, s2)' is used as an invariant of tl\~JWP in_th~,pr~ 
1- ~ ..... ,.s, ~, ' - . : ' - . ' ,_ . 

in Figure 4.11. Using the backward substitution semantics ofttiew11tro,I ~r~ctur~. we can 

generate the verification condition$ tl\di~ '1leJ·~iJed fQn»Jia1- toPt:-in/1}~~1-hat''). 
The partial correctness proof of union is completelf'we can show'that : · 

IN(rl, r2, sl, s2) ~ 

(( Size(rl) = 0 = FA IN(Removc(rl, Choose(rl)), Jnsert(r2, Choose(rl)~ sl, s2)) 
. . l ,- , 

To prove the above· formula. we need the theorem 

Size(rl) > 0 = T => Size(Remo~c(rl, Choose(rl))) + I :a Size{rl). 

The while loop terminates beca~se each time i~ ih/:1oop,' Sizc(rl) ·is reduced, and 

Choose(rl)signalsno-elementwhenSize(rl)=Oat~' ·, ,,. > ' 

An alternate approach -to the Floyd-Hoare method of reasoning about programs 
· ' • -• ;tr,,, 

is to use the first order semantics of control structu~ as sugpted by Cartwright and 
. - ,~, 
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McCarthy [8]. They have shown how reasoning about recursive programs can be 

comp]etely carried in first order logic. The definition of a recursive program can be 

considered as an axiom defining the function computed by the program with an 

appropriate condition on variabtes.6 The termination of such a program can also be proved 

by adding a min_imization scheme corresponding to its function. For example, the above 

iterative union program can be transformed to an equivalent recursive program,, and the 

axiom characterizing the function computed by the program is derived from the recursive 

program. Tb(Set·Int") is enriched by adding this axiom about union and a minimization 

scheme corresponding to union. The input output specification of union can then be 

proved as a theorem in the enriched theory. We use a similar approach in the next chapter 

in showing the correctness of an implementation. 

4.3.6 Properties of a Specification 

It should be dear from the discussion m the previous subsections that the 

following extension of Theorem 4.3 holds: 

Thm. 4.11 For a consistent S, 

(i) for any ground terms e1 and e
2 

of the same type, both • e
1 

= e
2
' and • e

1 
',E e

2
' cannot be 

in Th(S), and 

(ii) for any two ground exception terms ext
1 

and ext
2
, both 'ext

1 
= ext

2
' and 'ext

1 
'iE ext2' 

cannot be in Th(S), and 

(iii) for any ground term e, both 'N?(e) =rand 'N?(e) = F' cannot be in Th(S). I 

We extend the definitions of sufficient completeness, completen~. and well 

definedness properties discussed in Subsection 4.2.6 to the specifications specifying 

exceptional behavior. The results about these properties in Subsection 4.2.6 directly extend 

when the modified definitions are used 

6. The condition is that a variable is instantiated to a value of its type other than .L, which is used to denote 
non·tcnnination. 
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4.3.6.1 Sufficient Completeness 

Recall that the sufficient completeness property ~ defined in Subsection 4.2.6, 

requires that the behavior of the observers on any inte~d input should be deducible by 

equational reasoning. When a specification specifies data types hayj~ operations which 

signal exceptions, then the observable behavior of the ,opefiJtions ~so includes tlteir 
,-,.: ' , -

exceptional behavior. Two values of a data type ca~ also be. distinguis~t!d jn this case if ,a 

sequence of operations signals one exception on one val1i1e and does,not signal on the other. 
. . ~ , . . . - . - -

or if the sequence of opemtions signals different exceptions.oil different .values. In the 

extend~d definition of sufficient completene$, we want to cqpture the. intuition that in 

addition to the normal behavior of the observers, a suf)icient complete specification must 

also completely specify the exceptional behavior of the operations when their input satisfy 

the associated preconditions. 

If a specification has only required exception conditions for the operations. then 

the above amounts to requiring that 

(i) for any legal uound term e, either 'N?(e) = T E·[Q(S)'or 'N?(e) = F <: EQ(S), and 

(ii) (a) if 'N?( e) = T' € EQ(S) and e is of type D' € 11, then the~condition stated jn Def. f.6 
' .- :''- -. 

must be ~tisfied (i.e., there is a ground. term e not ,having ,any opet:ation symbol of D or 

auxiliary functions used in S such that 'e = e'' E EQ(S)), and · 

(?) if .'N?(e) = F E EQ(S) and for every subtenn e1 of e, 'N? 0 ,(e1) == T' € EQ(S). ,then 

the formula 'e signals ext' E EQ(S) for some ground exception term ext. 

If~ specifies optional exceptions also, then ;therJare 1,~ grouD4 _terms for which 

neither "N?(e) = T' nor 'N?(e) =Fis provable. For example, we can neither prove 

'N?1ot<T1)p(Push161((Nun, I), ..• , 181))) = T 

nor 
•. . · 101 · . . N?int(ToP((Push (((Null, 1), ... , 101))) = F 

from the specification of Stk .. Jnt. For such a specification, the definition of sufficient 

completeness· tnust include the condition , that for such a ground term, if we assume 

'N?1>'(e) = T,' then 'e = e' • is derivable using equational reasoning.· This condition is 

based on an $pect of the semantics of a specification, namely that nan operation does not 

signal on an input for which it had the option to signal, then the formulas in the axioms 
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component for the operation behavior must hold. 

Def. 4.9 A specification S is sufficiently complete if and only if 

(i) for every e of type D' E A. if 'N?(e) = r € EQ(S), then there is a theorem • ea e' € 

EQ(S) for some e', a ground term of type D' not having_an)t-.q>eration symbol of D and 

auxiJiary function in S, 

(ii) for every e ( = a(e
1
, ••• , en)) of type D' ·€ A U { D }, if 'l'l?(e) = F E EQ(S), and 

'(N?(e
1
) A ... /\ N?(e

0
)) = r E EQ(S), 'then there is a theorem •e signals ~xt E EQ(S) for 

some ground exception tenn ext, and 

(iii) for every legal ground term e of type D' EA u { D }. if neither 'N?(e) = T' E EQ(S) 

nor 'N?(e) = F' E EQ(S), then there e~~ ~~ e1 .<>fe ~ch t,hate1 ·= c,(e11, •.• , e10) 

and "O[x/e
11

, ••• , x/e
10

] = T' E EQ(S), where a is specified to optionally signal if its 

input satisfies O(x
1
, •. ·• , x

0
), and assuming ·M(e) = Tl ·there is' a theorem ' e = e' € 

EQ(S u { N?(e) = T }), where e is a.ground term:oftype D''.baving no eperation symbol·of 

D and audtiary function· used in S. I 

S u { f } stands for the nonlogical axioms derived fro~ S pJus the formula f. and 
.,, .:;·,.• .. .. ... , .. ···:1· , ... · . '• . . 

EQ(S u { f 1 > stands for the equ_ational sub~eory derived -~~ing_S 0 i r 1 as the nonlogical 
, _ : , , . · ,'~ - , ; __ :-t~:;::r. !.;J ,:?)\~~1} -i!: __ (j . · 

axioms. The condition (iii) above amounts to proving~~ theorem assuming 'N?(e) = T.' 
I ' I . . ' ': '·: ~-,, : " : : ' i : i. .'., ) ~; ~ l • ; • ' i 

For example, St~·lnt is suffici~ntly complete. '_Top(Null) signals no-top()' € 
. ·, . ._ i,::~·.-· .. --,,'. f,;:;- "'lrr',. '_-, ~;-~~-l't,: -~r., _,_,':,.. . . . 

EQ(S). As.suming 'N?lnt(Top(Push101((Null~ i), .':., IOI))) =·-- t· we can derive 

'Top(Push101((Null, I), ... , IOI)) = JOI' in EQ(S). 

The specification of Set-Int" is not sufficiently complete, because, for instance, 

though 'N?10t(Choose(lnsert(lnsert(Null, 0), 1))) = T' € EQ(S), there does not exist any 

ground term· e of type Int not having any operation symbol of Set-Int" such that 

'Choose(lnsert(lnsert(Null, 0), 1)) = e'' E EQ(S). 

The results discussed about specifications not specifying exceptional behavior in 

Subsection 4.2.6 directly extend to specifications specifying exceptional behavior when 

appropriately modified. We have 



-160-

Thm. 4.12 lfS is sufficiently complete, then Sis behaviorally complete. 

Proof See Appendix III. I 

The obvious analog to Theorem 4.5 a1so holds; its converse is a conjecture analogous to 

Conjecture 4.1. We a1so have 

Thm. 4.13 For a consistent and sufficiently complete S, if any two lega) ground tenns e1 

and e
2 
~ftype Dare distinguishable by S, then 'e

1
-.. e

2
",E DS(S). 

Proof See Appendix 111. I 

4~3.6.2 Cotnpleteness and Well De11nednesa · 

The completeness property of a spetjfication. can·be:.t:lefined in! this·case in the 

. same way as in Subsectien 4.2.6 .. Det:·4:7 in:.Subs1,ctioo 4~2.6 work$ for this~ .iso. 

Theorem 4.7 for this case can be proved in the same ffayc • -for- specifications ·without 

exceptional behavior. It can be shown that the speciftcatjon ofStk·Int js ~mplete, whereas 
. . .' ' - . 

the specification of Set-Intl' is not comp!ete. 

The weli definedness property is also defined in the same way as in case of 
.· •, . ' 

specifications without exceptional behavior. Det 4.8 in Subsection 4.i.6 is valid. It can be 

shown th~t the specificatio~s of Set~lat'; and Stk~l-.t ~e·w~lf &fined. 
C '• '~ > ~,.. • /"" - • 0 • :. ; : 0 ; ~ ,• 
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4.4 Theory of Nondeterminism 

In this section, we discuss specifications speci~ying nondeterministic operations. 

Again, we first discuss &J)ecitications without exceptional beqavior; later, we incorporate 

the exceptional behavior also. For the first part, we mo<Jify,,the specification of Set-lot' 

given in Figure 4.1 so that the operation Cboose is specified to be nondeterministic. Let 

Set-Int"' stand for the modified specification. In the seco.nd part, we use the specification 

of Set-Int given in Figure 3.1. 

We find it convenient to express properties of a data type with nondeterministic 

operations as formulas using nondeterministic operation symbols (which is also. the reason 

to allow a specification to have such formulas in .the axioms. component), QUt such a 

formula must be interpreted properly. A nondetenninistic function symbol docs not have 

the substitution property with respect to= unlc~ interpreted properly. We discussed this 

in the previous chapter; we will repeat the discussion here ... for: example, the formula 

'Choose(s) E s = T' in the specification is to. be interpreted as any integer returned by 

Choose on the argument s is in the set s. The formula 

sl = s2 => Choosc(sl) = Choose(s2) 

need. not hold if 'Choose(sl) = Cboose(s2)' is interpreted as an integer returned'.by Choose 

on sl is -the same as an integer returned by Ch• on s2, because different invocations of 

Choose on the same argument may return different iqtegers. However. if we interpret 

'Choose(sl) = Choose(s2)' as for every possible integecretumed by Choose on sl, Choose 

on s2 can return the same integer. and vice versa, then the ,formula 

sl = s2 => Choose(sl) = Choose(s2) 

holds. We adopt the latter interpretation, so that the substitution property continues to 

hold.7 The adopted interpretation is consistent with the definition of _observable 

equivalence on ground terms involving nondeterministic operations jflduced by S, given in 

Sections 2.2 and 2.3. 

7. As is discussed in the previous chapter, the reason for rejecting the fonner interpretation is that the 
formula 'O'(xl' ... , X

0
) = a(xl' ...• x

0
r fur a nondeterministic-symbol ti is ahnost always false under it. 
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We cannot however expr~ many interesting . f)foperties abo~t · a .data . type 

because in a fonnula involving a nondetenninistic OP.Cration symbQJ a, diff~rent 

occurrences of a tenn a( e
1
, •• ~ , e

0
) may result in different values. 'We often n~d to expr~ 

properties fo which different occurreno~ of the tefur a(el, ... en)'stiind for the same vafue. 

For example, consider another version of the union procedure given in :Figure 4.12, which 

is a slight modification of the version given in Figure; 4~ n .. · In; thfs bise, the while loop has 
the condition "- f#(s) = 0);' ·instead of ·true''in" rigure4.Il· In ·verifying this version of 
union. we must use the properties of i. a result returned by Choose~ ln such :a case~ we .. 

•troduce an auxiliary function a_p: 0
1 

x . ... X D~•:x D' --+ Dool corresponding to the 

nondeterministic operation a, which is the relation descnbing the behavior of a. 

(•) a_p(xl' ...• x
0

, y) ~ ST if a can return yasa posmble result on .t
1
, ••• , x

0
, 

l F otherwise 

For example, we introduce Choose_p for Choose and use aioose:..,-to expr~ a property of 

i, a result returned· by Cltoose. 

Since formulas in the axioms component of S are expr~d using 

nondeterministic operation symbols, we transform thern to equivalentfonnulas havingorily 

detenninistic symbols using the auxiliary functions ~ding to the' nondeterministic 

symbols. We discuss the transformation procedure TRbelow. US) now also include$ the 

auxiliary function a_p corresponding ·to, ~ery nondetermini$tic··bperation sytribol a. ™' 
transfonned formulas have a restricted interpretation just 8S' tbe original formulas in' die 
axioms component, so we derive unrestricted formulas from the ·tnmsrormed· fbmi'fll 
using the method discussed in Section 4:2 for specifications witft' detenninistic op"talilM: 
The precondition specified by a nondeterministic openition i is taken as"tffo precondition 

for the · corresponding auxiliary function a.:JI. So in the specification of· Set·_lnt''\' 

·- #(s) = o· is the 'precondition for Claoose_p. The unrestricted fotn1ulns serve as the· 

nonlogical axioms• of S. To prove a · formui~ / involving nondetermin~ic operation 

symbols, we first transform /using TR, and then prove TR(f) from the:no~fogical }IXiotns 
ofS. 

The transformation procedure TR must embed the semantics of S ~umed in , 

Chapter 3. Recall that the semantics. of S only requi~~ that for every data type in-0(8),. tbe 
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semantics of S, an operation specified to be nondeterministic must return an appropriate 

value on every input; the operation in every data type in D(S) need not have the maximum 

amount of nondeterminism specified by S. 

4.4.1 Transformation Procedure TR 

We first describe the procedure TR and later verify that TR(f) is semantically 

equivalent to f. Before describing the transformation procedure, we illustrate it using 

examples. Consider the following formula in the axioms component of Set-Int"': 

Choose(s) E s -:- T 

Figure 4.12. Procedure Union · III 

union = proc(sl. s2 : Sct-Inf")"rcturns (Set-Int' .. ) -
i: Int 
r I : Set· Int"' : = sl 
r2 : Set-Int"' : = s2 

{ rl = s1 /\ r2 = s2} 
while~ Set-lnt'"SSize(rl) = 0 do 

{ Choose_p(rl, i) = T /\ IN(Remove(rl, i), lnsert(r2, i), s1, s2)} 
i : = Sct-ln('SChoosc(rl) 

{ IN(Rcmovc(rl. i), lnsert(r2, i), s1, s2)} 
rl : = Sct-lnt ... $Remove(rl, i) 
r2 : = Set·lnt"'Slusert(r2, i) 

{ IN(rl, r2, si. s2)} 
end 
{ R,~nion(sl. s2) } 

rctum(r2) 
{R} 
end union 

IN(rl, r2, s1, s2) = (V j) [ (Has(sl,j) V Has(s2,j))- (Has(rJ,j) V Has(r2,j)) = T) A 
(Sizc(rl) + Sizc(r2)) < (Sizc(sl) + Sizc(s2)) s TA Sit:c(r2)) 0 = T 

//0 Specification for union 

T =:. R,. where R = Rl A R2, and 
RI = (V i) [ (Has(sl, i) V Has(s2, i)) - Has(union(s1, s2), i) = T] 
R2 = Sizc(union(sl, s2)) < Sizc(sl) + Size(s2}a T 
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The above formula states that every value returned by Choose is in the set s. The 

transformed formula obtained after applying the procedure would be 

( (v i) I Choose_p(s, i) = T ~ i E s = T ) A (3 i)Clloese_p(s, I) a T ) 

The second conjunct states that Choose returns at least one value on every input The 

unrestricted fonnula. which serves a nonlogical axiom; of Set~lnt)i', is obtained using the 

precondition for Choose; it is given below: 

( (V i) I- #(s) = 0 = T => (Choose_p(s, i) = T ==- i € s = T )I A 

(3 i) I - #(s) = O = T ==- Choose-J(s, i) a T) 

Let us consider another formula ' Cboose(sl) = Cboose(s2).' This states that for every 

value returned by Choose on sl. there is an observably equivalent value returned by 

Choose on s2. and vice ve~. TR transfonns this formula to 

-((vii) I Choose_p(sl, ii)= T => (3 i2) ( Cboo$e_p(~2, i~),A_i, -J2 JJ A 

(V i2) ( Choose_p(s2, il) i5 T => (3 ii) I Cboose_p(sl, ii) A ii a i2 ) I ) 
We now present the transfonnation procedure-TR, which is defined inductively 

making use of the structure of a formula. 

Basis /is an atomic fonnula 'e
1 

a e
2
.' 

(a) f does not have any occurrence of a nondete~c operation symbol: · 
TR(/) ~ / 

(b) both e
1 
and e

2 
have occurrences of nondeterministic~ sy~}x)ls: 

We wish TR(f) to roughly expr~ that for every instabct'pftlt~ rree-v~ri~bles in/, for 

every po&gble choice made about the invocations of the nondeterministie~"Operation 

symbols in er there are choices for the invocations of the nondetermiqistic operation 

symbols in e
2 

such that the instantiations of e
1 

and e
2 

return equivalent resu~ and vice 

versa. 

TR(' e
1 
= e2') has the following stnlcture: 

(V zr··· zm) [ c1 =>(3 Yr ...• yP) (SA e; a ti H /\ 
(v Yr .... yP) [ c2 ==> (3 z19 ••.• zm) [ c1 A ei = e;] 1 

where zr . . . • zm are new variables such that corresponding to ·each· occurrence of a 

nondeterministic operation symbol o in er say the occurrence -o(eu• ... ,' e~). there is a 

variable zi to stand for the possible result retumed by.er on its.input. The formula-~ is a 
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conjunction of the equations of the form 'a_p(e.
1
, • •• , e . • z.) = T\ stating conditions on z .. 

. I 1ft I I 

Similarly for e
2
, new variables Yp ... , y" are introduced, and c2 is obtained from e2• ei and 

e; are obtained from e1 and e2 respectively, by substituting zl' ... , zm and yl' ... , yP for 

subterms having nondeterministic operations as the outermost operation in e
1 

and e
2 

respectively. We discuss later how c
1 

and ei are constructed from e
1
, and c

2 
and e; are 

obtained from er 
(c) only one side of the equation 'e

1 
= e

2
' has occurrences of nondeterministic operation 

symbols. Without any loss of generality. we a$Uflle that on~y the: lh.s. has occurrences of. 

nondeterministic symbols. 

Construct c
1 

and ei from e
1 

as discussed above. Then, 

TR(' e1 = e2') = (V zl' ... , zm) [ c
1 

=> e~ = e2 ] A (3 z1, ••.• zrn) c1 

This completes the basis step of the definition of TR. The second conjunct is to ensure that 

there is at least one value returned by er 

I nduclive Step 

Since all other logical symbols can ~ expre~d in terms of A, V and v, we define . 
how TR works on formulas having these sym~. 

(a) if /is - /2, then TR(/) = - TR(fi) 

(b) if /is /2 A /2, then TR(/) = TR(fi) A TR([~ 

(c) if /is (V x) fi. then TR(/) = (V x) TR(fi). 

This completes the definition of]1l. 

For instance, a conditional equation 'b =$ e1 • e/ where b is a boolean tenn, is 

transfonned to 

b => TR(' e1 = e2 '), 

if b does not have any nondeterministic operatiOJl symbols. If b · has nondeterministic 

symbols, then the conditional equation is transformed to 

TR(' b = T) => TR(' e
1 
= e

2 
') 

= ((v z/, ... , z1) I c => b' = TI A (3 z/, ... , zt') b') => TR('e1 = e2'); 

Since such a b is assumed to behave detem1inistica1ly (See Section 3.1). i.e., for an 

instantiation of the free variables X in the conditional equatioQ. b, iaterpr~ts either to T or 

to F, the above formula agrees with the interpretation of a conditional equation assumed in 
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Section 3.2 on the semantics of a specification. 

We now describe how to construct c and e from a tenn e by induction on the 

number of occurrences of nondeterministic operation 'S)'Jtlbols in e. Let le stand for the 

number of occurrences of nondetenninistic operation symbols in e. 

Basis k = I 

Let e1 = o(~ •...• ~) be the subterm of e having the nondetenninistic operation o as 

its outermost operation symbol. Then C is 'o_p(~ ; ...• ~ •. tiJ ..... :r and e is obtained by 

replacing e1 in e by Zr The type of z1 is-the TIH1ge type of'o. 

Inductive Step Assume c and e' can be constructed if e has k' < k occurrences of 

nondeterministic symbols. Show fork. 

(i) If e has the subterm having k occurrences of nondeterministic operation symbols. 

Jct the subterm be e1 = u(el' ... , en)~ ~here c, is_ a. ~o~d~~~in~ic <?perati~n symbo~~ 
J ' , - ; ~ '!- ! ... J :: ' ·• -~ i > : 

Each ei has less than k .occurrences of nondeterministic operation symbols. ;By the 

inductive step, Jet cl' .•. , en be the formulas obtained by applying this procedure on 

er ... , en respectively, and let ~ •... ·~· ,~ be the terms obtaitted by replacing subterms 

having nondeterministic operation symbols by .tiew 1'ilriab1es in el' . : .• 'en respectively; 

Then 

c =·u_p(e~, ... , e;. zt) =TA c1 A ... A~n,' · 
and e' is obtained by replacing e1 in e by ~-

(ii) There is no such subterm of er Consider all outermost subtenns of e
1 

having' a 

nondeterministic operaumrsymbol as their outerinosf 1
~~

1let them be e1, •••• en. 

Each of these subterms has less than k number of occurrences of noncfetenninistic 

operation symbols. By inductive step, let cl' ... , en be thilonnu~ obtained by 

transforming er ... , en respectivefy, and let e~, .... e; ·be the terms-obtained by replacing 

subterms having nondeterministic' operation· symbo1s by new variables in el' ... , en, 

respectively. Then 

C = cl A ... A en. 
and t! is obtained_ by replacing er ... , en bye; •... , e; respectively. 

This completes the disctmion about how c and e are obtained'fium e. 
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Thm. 4.14 /and TR(/) are semantically equivalent 

Proof See Appendix III. I 

4.4.2 Th(S) 

The nonlogical axioms obtained as discussed above are used to prove properties 

about the data type. A nonlogicat axiom involves existential quantifiers in contrast to a 

non logical axiom of a specification specifying only deterministic operations. So, the whole 

machinery of first order predicate calculus is needed to prove ari arbitrary equation or an 

inequality involving nondeterministic symbols. So it is not meaningful to discuss the 

subtheories EQ(S), DS(S), and IND(S); we instead discuss the full theory Th(S). The 

formulas are proved in the same way as in case of specifications specifying deterministic 

operations only. 

As an illustration of the use of Th(S), we verify the version of the procedure union 

given in Figure 4.12. Note that the backward substitution semantics of the assignment 

statement 

i: = Set·lntSChoose(rl) 

is given as . 

{ Choose_p(rl, i') = T A_Pl,} i := Set-lntSChoose(rl) { P }, 

instead of 

{ Pbu,osc(rl) } i :_= Set-lntSChoose(rl) { P }, 

because different occurrences of the expr~n Cboose(rl) could.possibly return different 

results. For example, the. verification condition 

{ IN(Removc(rl, Clloose(rl)), lasert(r2, Choosc(d)),_sl, s2)} 

i : = Set-lnt$Choose(rl) { IN(Remowe(rl, i). lnsert(,2, i), sl, s2)} 

is not true, where as 

{ Choose_p(rl, i') =TA IN(Rcmove(rl, i'), lnsert(r2, i'), sl, s2)} 

i: = Set·lntSChoose(rl) ~ IN(Remo\'e(rl, i), lnsert(r2, i), sl, s2) } 

is true. In this case also, 'IN(rl. r2. sl, s2)' serves as an invariant of the loop. Using the 

backward substitution semantics of the control structures, we can generate the verification 
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conditions and show the required formulas to be in Tll(Set•lat"'). The paJtial correctnes., 

proof of union is complete if we can show that 

( - Size(rl) = 0 s TA IN(rl, r2, s1, s2)) ~ 

( Choose_p(rl, i) = T A IN(Remove(rl, i), Imert(r2, i), s1, s2)) 

To prove the above formula. we need the theorem 

Size(rl) > 0 = T ~ Size(Remove(rl, Choose(rl))) + I = Siu(rl). 

The termination is also ensured because:each time in the loop. Size(rl) is reduced. so the 

loop condition will eventually become false. 

We think that many properties of nondeterministic operations expressed as 

equations und inequalities can be derived from the untransforme(! nonlogical axioms (the 

nm1logical axioms obtained from the formulas in the Axi,0m,s. component of the 

specification before applying TR) using techniques employed for detern:iinistic operations. 
. . 

for instance, viewing equations as rewrite rules and. using K~uth-Bendi~ algorithm for 

deriving properties. We have not investigate<! the extent to w.-.ich this can be dQne. This 
, , ' ,< .• - • • - • • f - ' : ~ 

hypothesis is another reason for preferrin, to write specifications directly using 

nondetenninistic operation symbd'ls as compared to writing them indirectly using the 

relations corresponding to nondeterministic operations. 

4.4.3 Data Types with Exceptional Behavior 

We discuss the modifications required to incorporate the exceptional behavior 

specified by the specifications with nondettr'ih~~-" 'We: describe, hoW to 

derive· the nonlogical uidms from· a sped ticationi 1 We1 use tmf mginal q:,ecification of 

Set-Int given in Figure 3.1 for illustration; the~tiofft&Mpe&MI in•F'~ 4.13. 

-As before, an auxiliaty functicHl' tr;;Ji is mooiated'.wtt1,.1~ry .. iloftdetenhinistic 

operation symool ... o_p is Mt 1tfiot with respect4bHts lhst0aipfflltt~,, · 
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Figure 4.13. Specification of Set· Int 

Operations 

Null : -+ Set-Int 

Insert : Set-Int X Int - Set-Int 
Remove : Set-Int X Int -+ Set-Int 
Has : Set-Int X Int -+ Boot 

Size : Set-Int -+ Int 

Choose : Set-Int -+ Int 

-+ no-elementO 

Restrictions 

# (s) = O => Choose(s) signals no-element 

Axioms 

Remove(0, I) = 0 

as flJ 

as XzEX1 
as #(x1) 

11ondelmninistic 

Remove(lnsert(s, 11 ), i2) = if i1 = 12 then Remove(s, i1) else lnsert(Remove(s, 12), 11) 

1€0 = F 
11 E lnsert(s, 12) = if 11 = 12 then T else 11 E. • 
#(0) a 0 
# (lnsert(s, I)) = If t Es then # (s) else #'(s) + 1 
Choose(s) E s a T 

. (I : Dl X •• '. X o.-+ D' u EXV 

"-' : Dl X • • • X l)tl )(. {D'. u EXV) ,..... .hol.: 
o_p(Xi, ...• x

0
• ze) .·~ .T ifN?(,e)-. T emf• can retum ze 

as a .J)Q!j&ible re6U It 00. X1, ••• , X n' 

T if~)• Fanda:signals zeon xl' .• •. , x
0

, 

F otllefwi&e. 

Recall that ze is of union type. 

We extend the transformation procedure TRdiscussed in the previous subsection. 

Besides equations, we have two additional- kinds of -atomic formt:Jlas: 'e signals ext' and 

'ext1 = ext2'. TR for equatic,ms is sam~ as in the previous subsection exceptthat the new 

variables introduced in the transform~ are of uniQn type. 
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An exception name is treated like . a detenninistic operation symbol, so 

'ext1 = ext2' is treated Jike an equation 'e
1 
= e

2
'. TR is extended to treat 'e signals ext' as 

·e = ext.' TR is applied on 'e = ext.' In the transfonned.formula, a subforrnula of the form 

· e = ext' · wherever ext' is an exception term and e is a.·non-tvariable term, is replaced by 

the subformula • e' signals ext'.' Note that a transformed formula may involve tenns 

constructed using variables ranging over union types. 

The restrictions on a nondetenninistic operation a are transformed to get the 

nonlogical axioms as follows: A restriction specifying a required exception for o, 

R.(X) => a(X} signals ext, 
I 

is transformed to 

P a(X) => ( R.(.X) => a...,C:X, ext) s T). 

For example, from the restriction on Choose, 

#(s) = 0 => Cboose(s) signals no·elementQ, 

weget 

#(s) = 0 => Choose_p(s, no·elementO) !i T. 

A restriction specifying an optional exception for o, 

o(X) signals ext => O.(X). 
J 

is transformed to 

· P (X) => ( o_p(X, ext) = T => O.(X) = T) . 
0 J 

Axioms defining N?0 , are constructed the same way af'for the specification with 

deterministic operations except that there is ncf axiom due ta a nondet~hnirristic operation 

a because the range of the corresporiding auxiliary functieri •a--P is 'Hool and not 
' 

Bool u EXV. In addition to the axioms and rules e!xpr~ing general properties of the 

exceptional behavior of the operations discussed in the previous sections, we have another . 
rule. Recall that a nondeterministic operation can either signal an exception or has the 

choice to return one of many possible normal values. · An •o,etation ·does not have the 

choice between returning a normal value and signalling an 'exception on the -same input 

This property is captured by the following axiom for every ncmdetennin istic operation o: 

-((3 ze}"lo_p(X, ze) =TA N?(ze) = T) A (3 ze)fojl(X, ze)~·T'A N?(te) = FD. 
From the formulas in the axioms COl1lfJ(Jftetlt of s.· the nonlogical axioms are 
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derived as follows: We apply TR on a resvicted fonnula to replace nondeterministic 

operation symbol by the corresponding auxiliary functions. Since the restricted formula 

expresses the normal behavior of the operations. the new variables introduced in the 

transformation range only on normal values. So, we use variables of a single type instead of 

the union type. For instance, for an equation 'e
1 
= e

2
• having nondeterministic operations 

on both side, we get 

(V. zl' .. ' zm)[ c1 => (3 yl' ... , yP)[ c2 A ei = e;]] A 

(V y 1, ... , yP)[ c2 => (3 z1, ... , zm)[ c1 A e; = e;) i 
To get the corresponding unrestricted formula incorporating the. exceptional behavior of 

the operations and the preconditions, we must require that 

. (i) 'N? 1/ ei) = T' and 'N? 0 ,( e;) = T' hold, and 

(ii) every operation invocation in the formula mustsnrmy ffie associated precondition. 

The unrestricted formula for the above restricted formula is 

(V z1, • ., zm) I N?0 ,(ei) => (PCc
1 

=> (c1 => 

. (3 y1, ••• , J~) I N? 0 ,(e~) => ((PC c
2 

A PC ei A PC, e} => ( c2 A e~ = e~)) D)J A 

(V yl'"'' y )I N?0 ,(e~) => (PCc => (c2 ::$ 
p 2 

(3 z1, ••• , zm)I N?0 ,(ei) => ((PCc
1 

A PC~ A PC~)=> (<\I\ e; . e;)ll))I. 

A similar transformation can be obtained for a resmeted· formula of the fonn · 

'e1 = if btben e/ 
For example, the formula 

Choose(s) E s = T 

in the specification ofSet·Int is transformed first to the restricted formula using TR. 

((v i) (Choose_p(s, i) = T => i E s = T I A (3 i) fChoose..;.Jl(s, i) = T D. 
and later to 

((v i) I N? 0oo,<i E s) = T => (Cboose_p(s, i) = T ·,. (N? aeo,ff) = T => i e s = T)) l 
A (3 i) (Choose_p(s, i) = T D. 

which gets simplified to 

((v i) (Choose __ p(s, i) = T => i E s = T ) A (3 i) (Choose_p(5i,_i) :! TD, 

because 'N? Uool(i E s) = T' and 'N? ~T) = T·. are derivabJe. 
Figure 4~14 is yet another implementation of union using the nondeterministic 



-172-

operation Choose which signals on the empty set This v~ion is similar to the version 

given in Figure 4.11 except that Choose is oondetermieistic. It can also be verified using 

the properties in Th(Set·lat). 

Figure 4.14. Procedure Union· IV 

union = proc(sl. s2: Set-Int) ~turns (Set-Int) 
i: Int 
rl: Set-Jot:= 11 
r2. : Set· Int : = s2 

{ rl • sl A r2 • s2 } 
whl)qt,ac4'> 

{(Sizc(rl1 = 0: FA Choose_p(rl, i) ET A IN(Remove(rl, i), Inscn(r2,i), sl, s2)) 
V (Sizc(rl) = 0 s T A R,i"nion(sl, s2))} . 

i : = Sct·IntSChooec(rl) 
{ IN(Rcmovc(rl, i). lnscn(r2, i). sl, s2)} 

rl : = Sc.t'.";lndaCIRD~rl.i) 
r2: = Sct·hit$1nser1(r2, i) 

{ IN(rl, r2, sl, sl) } 
end except when no-element : 

end 
{ R,t-11. s2)} 

rctum(r2) 
{R} 
end union 

IN(rl, r2. sl,s2) = ((V j) [(Has(sl,j) V Ha9(s2.j))i-(Has(rl,j)_V tt.s(rl;j))'5 TJA
(Sizc(rl) + Sizc(r2)) < .(Sile(sl) + Sizc(s2)) a TA Si,.c(r2) > 0 = TI 

//0 Specification for union 

T ~ R. where R ·= RI A R2, and -

Rl = (V i) [ (Has(sl, i) V Has(s2, i)) • Has(union(sl, s2). i) a,T) 
R2 == Sizc(union(s1, s2)) S Sizc(sl) + Sizc(s2) a T 
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4.4.4 Properties of a Specification 

We can prove theorems analogous to Theorems 4.10 and 4.11 for specifications 

specifying nondeterministic operations and exceptional behavior, demonstrating the 

soundness of the axioms capturing general properties or data types. 
The definition of sufficient completeness property has to be modified 

significantly, because there is no meaningful definition ofthe equational subtheory for 

such specifications. Because of the semantics of Sas defined in Section 3.t it does not help 
. . 

to consider only the formulas involving deterministic operations lmd the auxiliary functions 

corresponding to nondeterministic operation symbols. Recal1 that· for a behavioraJly 

complete specification, for every ' input X to a nondeterministic operation, the 

corresponding auxiliary function is required to hold for at least one (X, ze), where ze is a 

possible result returned by a on X, and the axio~s do not precisely specify the values on 

which the auxiliary function holds. This incompleten~ is because the semantics ofS does 

not constrain an operation specified to be nondeterministic to have any fixed amount of 

nondeterminism (3ee Section 3.2). 

A plausible modification to the definition of sufficient completen~ is to require 

it to use the whole machinery of first order predicate calculus for deduction. Instead of 

~equiring a theorem to be in EQ(S). we require it to be in Th(S). In addition, the definition . 
of sufficient completeness.given in Subsection 4.3.6 must also be modified to ~eal with the 

~ when a legal ground term e involves nondeterministic operation symbols. For e of 

type D' EA, if ·N?0 ,(e)"= ·r E Th(S). it cannot usually be proved equivalent to a ground 

term of type D' having no operation symbol of D. as in case of 

Choose(lnsert(lnsert(Null, I), 2)) for example. Insteac;I we must prove that there exists a set 

of ground terms { e
1
, ••. , et } of type D' not having any operation symbol of D such that 

(3 z1, ••• , zm) ( CA ( e = e1 V e = e2 V . . . V e = ek) 1 
where c is the condition on z

1
, •••• zm generated due to e when we apply the procedure TR, 

and e is the term obtained from e by substituting zr ..•• zm for the subterms having 

nondeterministic operation symbols as their outermost operation. { e
1
~ ... , et} consists of 

all possible outcomes of e. (Since it is assumed that ·N? 0 ,(e) = T' E Tb(S), z
1 
•... , zm are of 

a single type instead of a union type.) For · · example, in case of 
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Choose(l~rt(lnsert(Null, I). 2)), we can show that 

(3 i) ( Choose_p(losert(luert(Null, 1). 2),J) e; T /\ (i = 1 vi - 2) J 
We have not investigated the relationship between the above definition of 

sufficient comp]eteness and the behavioraJ completeness property for such specifications. 

We conjecture that most of the results (Theorems.4~12. and .4.13 in particular) of 

Subsection 4.3.6, when appropriately modified, would hold fur such specifications also. 

The definition of well definedness given in Subsec.tion 4.l.6, directly extends to 

this case also. The definition of completeness~ . Jike the definition of sufficient 

completeness, must require in this case that for any two legal ground terms e1 and e2 of the 

same type, 'e
1 
= e

2
' E Th(S) if and only if e

1
, and e

2 
are observably equivalent. The 

definition 4.8 of well definedness· given in Subsection ,4.2.6 is, valid in this case also. 
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4.5 Strong Equivalence of Specifications 

In Subsection 3.2.6, we defined the equivalence on specifications; the definition 

required two equivalent specifications to have the same semantics. As discu~d in 

Subsection 4.2.6, two equivalent specifications can be different in what properties of a data 

type (a set of data types) can be deduced from them. Below, we define a stronger 

equivalence relation on specifications. which not only requires that the two specifications 

have the same semantics, but also that the same properties can be deduced from the 

sped fication~. 

Def. 4.10 Two specifications S
1 

and S
2 

are s-trongly equivalent if and only if assuming that 

for every type used in S
1 
and S

2
, we use the same"theory, 

(i) S
1 

and S
2 

are equivalent, i.e., LJ(S
1
) = 0(S

2
), and 

(ii) Th(S1)1 L(D) = Th(~2)1 L(D)· I 

If S
1 

(or SJ specifies a nondeterministic operation a, we assume that I..(D) includes the 

corresponding auxiliary function a_p in place of a. 
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5. Correctness of ln1plen1entation 

One of the main purposes of designing a specification of a data type is to have a 

standard that can be used to verify whether an alleged implementation of the data type is 

correct. In this chapter, we propose a correctness criterion for an implementation of a data 

type with respect to its specification, and discuss a method ·embodying the proposed 

correctness criterion. In this process, we also exhibit how the theory of a data type 

discussed in the previous chapter is used. 

An implementation of a data type Dis concerned with how to realize the behavior 

of D, in contrast to its specification where the main concern is to precisely state its behavior. 

Intuitively speaking, our correctness criterion is that a correct implementation with respect 

to a specification must have the same observable behavior as prescribed by the 

specification. 

Our approach for proving correctness of an implementation is similar to that of 

Hoare [37], lilies [76) and Guttag et al. (29], and is radically different from the ADJ group's 

approach (23). We separate the correctness method from the semantics of the host 

programming language in which an implementation is coded. We do not wish to concern 

ourselves with the issue of semantics of the control structures in the programming 

language, so we assume that the semantics of the procedures implementing the operations 

of D is already derived from their code. In contrast, the ADJ group does not seem to 

separate the correctness method from the semantics of the host programming language. It 

seems to be incorporating the semantics of the control structures used in implementing the 

operations into the correctness method, for instance, see their definition of deriver, which is 

a morphism from the specification algebra to the implementation algebra [23]. This makes 

its approach complex and restrictive. 

An implementation uses data types abstractly; it does not refer, to any particular 

implementation of a data type used in it. A recursive implementation of a data type D is an 

exception because a -reference to D in the recursive implementation is interpreted as the 

reference to the implementation itself. We discuss recursive implementations later in the 

chapter; until then, we assume that an implementation of a data type does not use the data 
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type itself. For the time being. we also rule out mutually recursive implementations of a 

collection of (recursive or non-recursive) data types in which an implementation I of a data 

type D uses a data type D' and an implementation -I' ofD' uses D. We discuss mutually 

recursive implementations later with recursive implementations. 

While deriving the semantics of the procedures implementing the operations of D 

in an implementation I, we do not use the semantics .of any particular implementation of a 

data type D' used in I. We instead use the theory constructed from the specification S' of 

D', abstracting from an correct implementations of D'. with ~ to S', The. proof of 

correctness of an implementation of D thus does not depend -Qll any property specific of a 

particular implementation of D'. It remains valid.even when an implementation of D' is 

modified or replaced, as .long as the new implem~nmtion of D' is ·correct with respect to the 

specification of D'. This separation of the proof of use-from the proof of implementation 

hierarchically structures.the correctness proof. reducing the coinplel.ity of the verification 

proc~[37]. 

In the first section, we discuss the corN:Ctncss,criterion and pr;esent an overview of 

different steps in the correctness meth~ In,-th.e::seoond section. we. discus the 

implementation ·StnJcture and the, semantics of. nrt implementation~- In :the third section. we 

describe in detail the method ior proving correctnesa ef: Q1t:implernentation with respect to 

a specification. ln--the fouRh SCGUOn,-we discuss·atcnsiobs-to-tlle-proposed method for 

proving comctness of recursive ond mutually reeunive illfplementatiiem. , 
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5.1 Correctness Criterion and Overview ofCorrectness Method 

As discu~ in Olapter 3, a specification S in general specifies a set D(S) of 
. . 

related data types. because the behavior of some of tbe operations is intentionally left 

unspecified on certain inputs. In an implementation, the behavior of the procedures 

implementing these operations must be defined oo aff inputs in their domains. becausean 

implementation in most programming languages rcali1.CS a single data type.1 The designer 

of an implementation must P,ick one data type from· the set D(S) of data types. 

If a specification specifies preconditions ,for the- Of)eration~ the designer of an 

implementation has the ffeedom to decide what the ·procec.lure implemenhftg such an 

openltion should do on an input not satisfying.its precondition. This.is because in defming 

the semantics of a specification, it is fml!med to be thefuser's responsibility to ensure that 

the mput to the procedure satisfies the specified precondition. If a precondition is specified 

for constructor. the procedure implementing the constructor could either signal or return a 

value of the, ,defined type. However\ the value· returned rnua: be eonstructible by a 

procedure imple1.ienting a COIIStrlK;tor using'' inputs ·'-.isfy.iJlg i&s precondition (see 

discussion on p. 89. for the elaboration-of this mumptioni · If-a preoonditionis•specified 

for an observer/the procedure implementing the observer C0lUld mum• value·ofits:range 

type. or signal. For -exanpJe, the-·<>perations:'8, ,and:..,..ef' oe:s111,Iat are specifieclto 

have ·- (Empty(s) ••"' •:the pn,mndition. Ai infplenientatiOlliof1Stk~ could have,• tbr 

example, the procedure implementing the constructor Pop either signal on an empty stack 

or return an arbitrary stack. 

For an operation specified to optionally signal exceptions, if the input to the 

procedure implementing the operation satisfies the BOciated condition, the designer bu a 

choice between signalling the specified exception and returning a normal result that 

satisfies the axioms. For example, if optional exceptions are used to specify the size 

requirement on the values of a data type, as in case of Stk·lnt. an implementation must 

decide the maximum size of the values. The procedure implementing the constructor Pusll 

1. We arc not considering parameterized implementations. 
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in an implementation ofStk·lnt could either signal o,ernow or return a stack constructed 

by pushing the integer argument on the stack argument. 

If a specification specifies nondeterministic opemtions, the requirement that an 

implementation of a nondetenninistic operation must have maximum amount of 

nondeterminism specified by the specification is too strong. (tn case-of the specification of 

Set-Int given in Figure 3.1, such a requirement would mean that the procedure 

implementing the operation Choose must be abteto nondeterministically pick any element 

of the set.) It is more appropriate to leave it to the designer ofan implementation to decide._ 

how much nondeterminism a procedure implementing a nondeterministrc operation should 

have: The procedure when viewed on ·abstract' values of the ,data type could be either 

detenninistic, returning a fixed result out of the many possibfe,chofces specified by the 
. . 

specification for an input, or it could exhibit limited-nondeterminism or maximum amoilnt 

of nondeterminism sped fled by S, returning a subset of the set of po.,-sibfetesutts. specified. 

For example, a correct implementation with respect t:o the speciffeation of Set-Int can have 

the procedure implementing the operation Choose return the maximum integer in the set, 

say, or it could have the pr()Cedure nondeterm111istical1y pick ·between the minimum and 

rttaximum integers in the set, etc. As is discussed later, a determi'tiistic procedur-e can aJso 

simulate nondeterministic behavior on ~abstrffct' values iby tletuming different values on 

different values of the rep representing the same •abstract~ value :df D; We call such a 

procedure pseudo-nondeterministic. 

5. 1 . 1 Semantics of an lmptementation 

By a procedure, henceforth, we mean a procedure in an implementation I of D 

_ implementing an ()peration of D, unless stated otherwise; by a constructor procedure and 

· an observer procedure, we mean a,procedure implementing a con~ructor and a procedure 

implementing an observer, respectively. We use the name of an operation ofU in S written 

in capital letters, as ~e name of the procedure imp1ementing the operation in I. Outside I; 
' • I • , 

we use an operation name instead of the name of the procedure implementing the 

operation to signify that the data type is being used abstractly. 

As data types are used abstractly in an implementation, the semantics of an 
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implementation I is a set of implementation algebras. These algebras can be constructed 

hierarchically as in Chapter 2; we use in the construction. the implementation algebras 

serving as the semantics of the implementations of the data t)'pes being used in I. Like a 

type algebra, an implementation algebra has a -domain corresponding to every defining 

type D' EA. which is defined by an implementation algebra of an .implementation I' ofD'. 

_ The domain corresponding to D is in .general a subset of a domain corresponding 

to the rep defined by an implementation algebra of an impleJnentatiOJl I~ of the rep. It 

consists of tbe values of the rep used to. represe11t the values of D. 'rbe subset is 

characterized by a formula lol'(r) with exactly one free variable , of the rep type. The 

formula lnw(r) represents the strongest unary relation on.the values of the rep preserved by 

the constructor procedures in I. It captures the minimality property of the implementation. 

namely that a value of.the rep that represents a value .of Daw be. constructeq by finitely 

a,any applications of the oonstruc;tor procedures and that tflqse vaw.es ~nstitute the 

smallest subset closed under the constructor pr~ 

Let ,=f(J) stand for the semantics of l. This set can be defined induaively. We 

assume that a set of primitive data types supported by the ~ programmi~_g language are 

implemented correctly "With r~ect to their specificati0ns ~)' ~ ~piler., Tile ~mantjcs 

of the specifications of such primitive types xrv,es -.IS, the .basis step _pf the inductive 

definition. If one wishes to prove ttie correc~ of ,U)e implem~tion of a primitive 

type, the primitive type of the language in which the compiler,isrod~ would then serve~ 

the basis. . 

In the inductive step, an implementation atgebra: A -in ~(1)-has the fol1owing 

structure: 

A = [ { v~} U {VD' f D' EA}. EXV: { la fa E O }]. 

v~ = {VIVE v:e, A lnv(v)}. where v!e_, is defined by an implementation algebra in 

f4(1rcp) for an implementation lrep of the rep. For each D' E A. V 0, is ·defined by an algebra 

in f'(l0 ,) for an implementation 10 , of D'.- The specification of the procedure 

implementing a is an abstract specification of i . 
ti 

· In the ~ext section, we discu~ how to construct ff(I) after the discusmon about 

the implementation structure and about lnY(~. 



-181-

5.1.2 Correctness Method 

If we consider specifications not specifying any nondeterministic operations, then 

the correctness criterion is simple: f'(I) t;, f(S). So •. to prove the correctness of, an 

implementation I, we need to show that every implementation algebra in, F'(I) is alw in 

F{S). which can be done using the method discussed jn Section 31 to show whether a type 

algebra is in f(S). Two main steps of this method are: 

(i) Construct the observable equivalence relation .on V~, as discussed in Sections 2.2 and 

2.3. using the observable equivalence relation on v1,,,oorresponding to each defining type 

D' E A and the observable equivalence relat10n on V dUKI . l'ep' 

(ii) interpret the axioms and restrictions in lhe. algebra. and show tl1at they arc satisfied. 

Since the set of observable equivalence relations is a congruence. the observable 

equivalence relations must be preserved by the procedures. the observable equivaJ·ence 

relation is the largest sucll congmence on the algebra. 

The above discussion is the format basis ofthe correctness method proposed by 

Guttag et al. [29] and Kapur: f40]: The observntsle equivalence relation on the domain 

cotresponding to D is Guttag et al:s equality' interpretation. The above method in fact 

extends the methods ih (29} and (40) · because it can handle procedures signalling exceptions 

as welt as nondetern1inistic ptocedures implementing detettriinistic operations. 2 

Note that if there exists a correct impl~mentation 'ror S. then S is consistent, 

because then F(S) is not empty. This· is the basis or Guttag and Homing's statement {28} 

that one way of showing consistency ofS is to design•tf"correcl1mpfementationl ofS. 

2. A nondctcnninistic procedure can implement a dctcnninistic operation if al1 , possible results of the 
procedure on every input arc observably cquiva1ent 
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5.1.2.1 Nondeterminism 

For a specification S specifying nondeterministic operations. the criterion that 

,=l(t) ~ f{S) is too strong as it mies out implementations with pseudo-nondeterministic 

procedures which ought· to be correct. In such -an: implementation, a nondetenninistic 

opemtion is implemented either as a deterministic proceduf'e or as a nondetenninistic 

procedure that does not preserve what should be the observable equivalence relation on the 

values of the rep. It returns different values when applied on different rep values 

representing the same 'abstract' value ,of D. but every value returned is -a possible result 

specified by Son the input; nondetenninistic behavior of an opemtion is realized in this 

way. If we take the largest equivalence retatidn on the rep.values that is preserved by the 

procedures as the interpretation of = in the _implementation (whjch, is so in case of 

specifications not specifying nondeterministic operations)~ the axioms and restrictions in S 
. . - , . ; - _- , ~ .,. 

may not hold for such an implementation. Hpwever_if an equivalenc~ rel~tion preserved 

only by the procedures implementing determiniS:tic Q_P;erations is ~ken as the observable 

equivalence relation, then the axioms atld restriction~,hold ill S., 

Consider for example, the implementation of Set·IIJt in a CLU-like language 

given in Figure 5.1. The procedure CHOOSE is deterministic a~ retum:5 ~e first element 
- ' .. · . ' : '~ ~ 

of the sequence value used to represent the set arguplent., 1J1~ lar,e,st ~uivalen~, relation 

on the sequences preserved by all the procedures is the, identity rel~tjoµ, and ,it can be 

shown that tbe axioms of the specif~o~ of,Set·lnt do,not hold if the identity relation is 
, :. • . ,, ' ~.; ·- , -

taken as the observable equiwile~ce relatioa, ~O\VC:Yer ifw~ ~e the.relatjpn 
. - . . _, ' ' ' - ,' - _. ' 

&jv(sl, s2) = ( S1$Size(sl) = S1$Size(s2)) A (Vi) ( IN(sl, i) ~ IN(s2, i) ), where 

IN(s, i) = (3 j) ( 1. < j < SISSize(s) A SISFetch(s, j) a i 1 
and SI stands for the data type Sequence of Integers, as the observable equivalence relation. 

then the axioms hold. The procedure CI IOOSE returns 1. for example. on the sequence 

Addh(Addb(New, 1), 2) and 2 on Addh(A~h(New, 2). 1). so CHOOSE behaves differently 

on members of the same equivalence class of sequences representing the same set value. 

CHOOSE is an example of a pseudo-nondeterministic procedure. 

·To ftitly illustrate the corr.ec~ methodt we discuss• two variations of the 

implementation in Figure 5.1 differing in the implementations of Choose. In the first, 
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Figure 5.1. An Implementation of Set-Int 

SEf-lNT = cluster is NULL, INSERT. REMOVE, HAS, SIZE, CHOOSE · 

rep = SEQUENCE-INT 

NULi. = proc() rerurns (cvt) 
return (rep$New()) 
end NULL 

INSERT = proc(s: cvt. i: Int) returns (cvt) 
if INDEX(s. i) < rcp$Sizc(s) then return (s) end 
return (rcp$Addh(s, i)) 
end INSERT 

REMOVE = proc(s: cvt, i: Int) returns (cvt) 
j: Int:= INDEX(s, i) 
if j :5; rcp$Sizc(s) then return (rcp$Remh(rep$Rep1acc(s,j. rep$Top(s)))) end 
return (s) 
end REMOVE 

HAS = proc(s: cvt, i: Int) returns (Dool) 
return ()NDEX(s, i) < rcp$Size(s)) 
end HAS 

SIZE = proc(s: cvt) returns (Int) 
rcrurn (repSSize(s)) 
end SIZE 

CHOOSE = proc(s: cvt) returns (Int) signals (no-element) 
if rep$Sizc(s) = 0 then signal no-clement end 
rcrurn (repSBottom(s}) 
cndCHOOSE 

INDEX = proc(s: cvt, i: Int) rcrurns (Int) 
c: Int:= 1 
while c < rcp$Size(s) do 

if"rcp$Fctch(s, c) = i then return (c) end 
c := c+l 

end 
rcrum(c) 
end INDEX 

Choose is implemented as a deterministic procedure CHOOSE• which returns the 

maximum integer in the nonempty sequence; the procedure CHOOS~ is given in 
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Figure 5.2. In the second, Choose is implemeate(J as a nondetenninistic procedQ~ 

CHOOSE'" which returns the maximum or minimum integer in the nonempty sequence. 

Cl IOOSE" is given in Figure 5.3. The construct Se/c~t in the code of Cl IOOSE" behaves 

nondeterministically: Select(SI. 82.-, Sn), where Si is a statetnent, arbitrarily picks one of 

the statements given as its arguments for execution. Note that neither of CHOOSE' and 

Cl IOOSE" is pseudo-nondeterministic. 

Figure 5.2. Cl IOOSE' 

CHOOSE' = proc(s: cvt) returns (Int) signals (no-clement) 
if rcp$Sizc(s) = 0 then signal no-clement end 
return (MAX(s)) 
end CHOOSE' 

MAX = proc(s: rep' returns (Int) 
m: = rcp$Bottom(s) 
for i: = 2 to rcpSSizc(s) do 
if m < rcp$Fctch(s, i) then m: = rcp$Fctch(s, i) end 

end 
retum(m) 
end MAX 

Figure 5.3. CHOOSE" 

CHOOSE" = proc(s: cvt) returns (Int) signals (~element) 
· if rep$Sizc(s) = 0 then signal no-clement end. 

Sclcct(rctum (MAX(s)), return (MIN(s))) 
end CHOOSE'' 

MIN = proc(s: rep) returns (Int) 
m: = rcpSHottom(s) 
for i: = 2 to rcp$Sizc(s) do 
ifm >·rcpSf'ctch(s, i)·thcn m : ::: rcpSJ,'cu:h(s, I) end 

end 
retum(m). 
cndMlN 
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5.1.2.2 Definition of Correctness 

We can now state the correctness criterion. It has two parts. The first part deals 

with implementations not having pseudo-nondeterministic procedures, and the second part 
, 

takes care of pseudo-nondeterministi,c procedures. In the ~ond part, the equivalence 

relation used on the rep is not required to be preserved by the procedures :ilillplcmentjng 

nondeterministic operations ~us allowing them to be pseudo~IK»ldeterministic;. the 

equivalence relation is only required to be preserved by the procedures impletnenting 

deterministic operations. 

Def. 5.1 An implementation I is correct with respect 10 a specification S if and only if 

assuming that every data type D' used in I has a correct implementation 11 with respect to its 

specification S', 

(i) f4(1) ~ f{S), or 

(ii) for every algebra A E ,=i(I), there 1s a set of equivalence relations, 

E = { E0 , ID' EA u {Dl} u EExv· such that: 
(a) for every defining type D' €. A,·E0 , is the equivalence relation on Vu, used to prove 

correctness of the implementation Ii/of D', and snnilar1y, E~ep is th~ equl\iarence relation 

on V,ep used to prove correctness of an implemeiJ~ 1..., W:tbe rep. 

(b) Env is the equivalence relation defined as JolloW:s: f'or an e~tion name ex of 

arity DI x ... x Dn. if <vi' v? E ED:, ...• <vn' v/.€ En , then <e.l(Y1•···•vn). ex( v;, .. .,,~)> € Etxv, 
1 n 

(c) E,.P ~ Eo , 
( d) E is preserved by the functions corresponding to deterministic operations in A, and 

(e) A/EE f{S) .. I 

A/Eis the quotient algebra of A induced by E except that E need not be a congruence; the 

function f' in A/E corresponding to f . in A that does not preserve E behaves a a 

nondeterministically. The formal characterization above is complex because an 

implementation of a defining type or the rep could also have pseudo-nondeterministic 

procedures. 

In the correctness method, we do not explicitly construct the set f"(I) of 

implementation algebras defined by I. We reason about the set as a whole by not using any 
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property specific to any particular implementation ofD' E A or of the rep, and by instead 

using the procedure specifications and the theories of the defining types and the rep. We 

show that the axioms and restrictions of S hold when interpreted in l by deriving them 

from the procedure specifications. 

Roughly speaking, the following steps need to be carried out to show correctn~ 

of an implementation: 

(i) Derive the specification of every procedure in the implementation as a function on 

rep values from its code. · 

(ii) Design a formula lnv(r) characterizing the subset of the rep values needed to 

represent the values of D. It must expr~ the strop~t unary ;r,elat«m preserved by the 

constructor procedures. 

(iii) Design the equivalence relation on the values of the rep satisfying Inv. The 

equivalence relation must be preserved by the procedures imp.lementing the detenniniaic 

operations. 

(iv) Interpret the restrictions and axioms using the,procedures in place of the,operations. 
C •• _, ~ • , ! ~• •' • • 

Replace for a variabl~ of type D. a. variable of the ~P ,,type-58tjsfyi.ng hn. Interpret a 

corresponding to J> as the equivalence relaljon Qf Slip (iii),;: __ . 

We discuss each of these steps in detail -in, the nex°l'"two -sections: The second section 

discu~ the first two steps; the rentaining steps and dtetorrectness' tnethod are illustrated· 

in the -third ~tion. We argue that a 4ormuta l.veatePthan kw often suffices;. furthermore, 

the equivalence relation needed in step (iv) is also often weaker than the strQRgest 

equivalence .relation preserved by the .procedures .:-implementing the . deterministic· 

proced~res. We also discuss what extra steps need to be performed if amiliary functions ·_ 

are ~sed in a specification. 

For recursive and mutually recu~ive implementations~ there isanadditional,~ep 
. . -".. ' - . ~ . 

in the correctness proof. We need '.to show that th~ rep (r~psjp c~ of mutually .. recursi".e 
' - . ' ' ; . - ' , ;;. . ' . ; 

implementations) defined by a recursive domain _eq~ation(~) is _non,empty, The rest of th~ 

proof is the same as in case of non recursive implementations. 
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5.2 Implementation Structure and Semantics 

Besides the procedures implementing the operations of D, an implementation I of 

D may include helping procedures needed in writing the procedures 1mplementing the 

operations. For example, INDEX is a helping procedure in the implementation of Set·lilt 

given in Figure 5.1. A helping procedure is not available outside the implementation, so 

we call it an internal procedure of I. Let I stand for the set of alt internal procedures used 
p 

in I. The procedures in I may also use types other than the rep and the defining types ofD, 

if need be: we call such types internal types of I and denote the set of internal types in I as 

le Note that the internal procedures and internal types of rin implementation I are 

different from the auxiliary functions and auxiliary types used in its specification S. 

In this' thesis, we do not wish to be concerned about the semantics of the· control 

structures used in coding the procedures. There are at ]east two approaches to avoid 

considering the control stmctures, which are discussed below. However, we illustrate the 

correctness method using only the translational approath. Wellave worked the correctness 

proofs using the uher approach; the proofs in that case are similar in flavor to the proofs 

using the translational approach. These proofs are not presented in the thesis. We believe 

that the correctness method would work using any approach for specifying the procedures. 

Most programming languages supporting user · defined data types provide a 

mechanism that encapsulates a collection of procedures implementing the operations of a 

data type and provides an abstract view of data ootside the mechanism, for example, 

cluster in CLU, form in ALPHARD, etc. The encapsulation mechanism constrains the use 

of the procedures. We discuss below the properties desired of an encapsulation 'mechanism 

that facilitate the correctness proof of an implementati~n. Finally, we discuss ho; we get 

the semantics of an implementation I as a set ff(I) of implementation algebras to complete 

the formal aspects of the correctness method. 
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5.2.1 Procedures - Approach I 

In Chapter 4, we discussed a method based on Floyd-Hoare approach for 

specifying a .procedure. In this method. a procedure is specified as a set of formulas 

relating its input to the result(s) returned by it. The ·procedures implementing the 

operations in .an implementation I can be specified in this way~ the specifications of 

internal procedures are not included if they are, not referred. in the specifications of the 

procedures implementing the operations. A procedure is specif.Jed~ a tr,.nsrormation on 

the values of the rep. To verify the correctness· of a procedure with respect to its 

specification, the theories of the defining types, the.rep. and the internal iY,pes are used. 

Figure 5.4 is the specification Qf the pr~dures in the implementation of Set·Jat 

given in Figure 5.1 using this method. It also has specifications of CUOOSE' and 

CHOOSE". Instead of using the pr~edure invocatio~ itself :to stand for the result (or a 
. . 

possible result in case . of a ,nondeterministic procedur~). we ha\le introduced, for 

convenience, a name .for the ,resulL For e~mple,, the specification of the procedure 

REMOVE µses r, .to stand for the r.esult. of REMOVE on inputs i•and. i. The specification 

captures that 

(i) if the integer argument i is in the sequen~ arguments. then r is,the SC9Uence obtained 

by first replacing the first c.x:currence of i in ~.by.the t.Qpm()st element in the sequence and 

then getting rid of the topanost,element; otherwise • 
. 

(1i} r ~ s itself. In ckrivin&these specif~ons, we have used the specification of the data 

type Sequence-Int given in Appendix IV. 

5.2.2 Procedures - Approach II 

We translate a procedure implemented in a rich imperative programming 

language to a simple applicative language simif~r to the spgcificatiotdang(iage proposed in 

Chapter 3 using the method suggested by McCarthy [56] (see (54) where the method is well 

explained). Use the translated procedures to prove the correctness of the implementation I. 

Guttag et al. [29] and Kapur [40) take this approach; they use a language supporting 

conditional expressions, composition, recursion, and the use of auxiliary functions. 
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Figure 5.4. Specification of the Procedures in the Implementation of Set·lnt Using Approach I 

NULLO: ( = r) 
r = rep$New0 

INSERT°(s, I) : ( = r) 
( ln'(s, i) => r = s) A ( ~ ln'(s, i) => r = rep$Addh(s, I)) 

REMOVE(s, i) : ( = r) 
(3 j) [ i s s{j] A (V j') [ j' < j => - I = s(j'] J A 

r = rep$Remh(rep$Replace(s, j, rep$Top(s)))] V (~ ln'(s, i) => r = s) 

HAS(s, i) : { = b) 
(bs T) - ln'{s, I) 

SIZE(s) : { = J) 
i = rep$Slze(s) 

CHOOSE{s) : (=I) 
rep$Size(s) = O ==> CHOOSE(s) signals no-etementO 
rep$Siie(s) > O => i = s(1) 

CHOOSE'(s) : ( = I) 
rep$Size{s) = O => CHOOSE'(s) signals no-eJementO 
rep$Size(s) > O => ( ln(s, i) A (V j) [ 1 < j < rep$Size(s) => s[J] < i ] ) 

CHOOSE"(s) : (=I) 
rep$Size(s), = O => CHOOSE(s) signals no•elelMntO . 
rep$Size(s) > O => ( ln(s, i) A ((V j) [ 1 < j < rep$Size(s) => s[j] S i ] 

V (V j) [ 1 < j < rep$Stze(9) ~ I < iOJJ), · 

where ln(s, i) = (3 j) [ 1 ~ j ~ rep$Size(s) A s DJ= iJ . 
ln'(s, i) = (3. j)( 1 S j S repl$ize(s) As Bl=l /\(V i'l[ j' (j => ~ i = sU'] J] 

We use an extended applicative language that has. a signal primitive and guarded 

expressions in addition to composition and recursion t\lechanisms. aQd the use ofauxiliary 

functions, so that the procedures signalling exceptions and exhibiting nondeterministic 

behavior can be specified. Conditional expressions can be simulated using guarded 

expressions. The translation method proposed by McCarthy can be extended to deal with 

th~ exception handling mechanism and the nondeterministic construct in a programming 

language. 

An expression is similar to a tenn; it uses procedure names implementing the 

operations, internal procedure names, the auxiliary procedure names introduced during ~e 
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· translation, and tenns. 

The signal primitive takes arbitrarily many (nonzero) ,argum~nts; its first 

argument is an exception name, and other arguments are expr~iont·of various types. Its 

syntax is signal(ex, e
1
, ••• , e.). where ex is an exception namewith'arity D1 X . .. x Dn 

and each e. is an expression of type D .. 
I I 

A guarded expression is similar to Dijkstra's guarded commands; its syntax is 

<guarded expression> :: = <expression> I (alternative> I I (alte,nati,e>). 

<alternative> :: = <condition> ==- <guarded expression> 

<condition> :: = <boolean expression>, 
• . '.C: ' .,. •. ' 

where [ X ] stands for zero or finitely many repetitions. and the symbol 'II' stands for 
. . 

nondetenninistic choice among var~J.J~ .aJtelll~iy~. .J.f~ ~r.d~ .e,tpr~l is simply an 

expression, then its semantics is that of an expression. Otherwise, ifa guatdetl ;expression is 

a collection of alternatives, then for an instance of its variab~ ;.i~ semantics is the 

semantics of the guarded exp~ibn of ~- atbitturily ·tf1osen afternative\vhose boolean 
~, • ' - -- .- f .;_; .; . (_ - --- - -

condition is T. If every alternative has its condition as F, then tl\e ~manti~ of the guarded ;: .. · .. '.;'}, . - _, , 

expre~ion is undefined. A guarded:e1pression exhibits noodererinin~::.beflavior because 

for an instance ofthe variables. ~ are in gener~tJlitDY alternativ~;wb~ condition is T, 

and one such alternative is arbitrarily chosen. 3 

We translate the procedlfres in the implementation ofSet•Int in FigureS.-1 to the 

above applicative language. Figure 5.5 is their ,!ransl~tion; we h11ve also included the 

translation of the procedures CHOOSE' and CHOOSE" as well as, of the internal 

procedures MAX and MIN. In translating the internal procedure'JNOEX. the auxiliary 

function· r is introduced to simulate die effect of die ~hile loop used· in INDEX. Similarly, 

3. An alternate approach to ifltroducing guarded cxprc$ions fbr $pedfyiag the .nondeterministic bcha.viorof 
a procedure OP is to specify its non-exceptional behavior using a dctcnninistic boof~an auxiliary function 
OP _P. similar to the function o _p corrcspnnding tu a nondMcm'linistic, operation · t, as discussed in the 
previous chapter. For an input on which the nondeterministic procedure returns a normal "~• ~the 
corresponding auxiliary function holds for all possible values returned by the procedure on that input and 
docs not hold for other values. 'lbtn the procedures can ·be specified 'UiinA condilto~l expressions and 
recursion. We have adopted the above approach for specifying the procedures, ~ausc it is direct and 
simple. 

C -- ~ I ~ ! . 
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the auxiliary procedures rand r' are introduced to simulate the/orJqop in MAX and MIN 

respectively. 

Cartwright and McCarthy's first order semantics of reci1rsivc programs [8] can be 
' ' T . ; 

used to prove properties about the procedt.tres w~tten in.the above ·applicative' language. 

The recursive definition of a procedw-e. is.cunsi~red<as :an .nxiom ,defining the function 

computed by the procedure.: Beca~se -~f the oon,~inistic behavior of a guarded 

expression~ we have to be careful in .,using, such. 411,3 ,~U)lft, ot we will run into 

inconsistencies. For a particular instantiation of va~:ifl,Jhe ·axiom ... we-use every . 

possible alternative whose condi&ion.is,T,.andweido1aflt!:re1Me any twonlte.rrmtives whose 

conditions are T. For example, for ClfOOSE'", :tfieri/~.:t·i~'ci al~rnatives, MAX(s) and 
. z ' ) ; : ' ':;..: , .: . ·. 1 

MIN(s), for the case(~ repSSize(s) = 0). We do not equate MAX(s) to MIN(s), as relating 

them can cause inconsistane,. The termination cf.a prooedwes is proved sepamtely either 
• - • C - ,-• .? ' • • f .... ".,,9.., \ :~ • (\ • •• • '<,_, ,_ ,i 

using the method suggested by Cartwright ·and 'McCiirtfiy,' or the method based on well 
' . t _; .-_ ·. .,.. ' ! •• - ' ~ •• • -, : - •• ' ' ~ y {\/ 

founded ordering [14). 

The translatibnal'. apprqacJt js 'pw:ely ! h~r~;~, .. the semantkt of 'the control 
'-· ' •. ' - • -·. ~JI ... - •-..;- .,.. ,_, -

structures of the host programmitrg~1attguage in'~:fflhe \>rimitives. of the applicative 

language incorporated into the translation metl'iod:"')T6e1~~h~ dft~i ty:pes"iWvolved in 

the implementation can be used in simplifying the resulting translations. 

5.2.3 Properties of the Encapsulation Mechanism 

As was stated earlier, in most of the prograntfflin:g llhAuages 'supporting user 

defined data types, an implementation of a data tfpe• a'IHWJaps\dation of the procedures 

implementin~ the PPflJltiO~ Jh~t jclj~1Jlli~~{~\t(~~-- ,:~~~~t~n )mplementation is 

protected: A procedure implementing an opeJllti~ J>ft~~, b~ Q~ct any. ar~itrary 

value of the tep as a representiition cit{ value at Q;:'raffi~~8n1y:'a- value of the rep 
, • al· ~ ,.f ~ -~<:,. ~ .. ' ' ,!;f :~~-•) :' 0 ii•·.~-~•·.'.,; __ ',~• \'. ( ,...· 

constructed earlier as a representation for a val1,1e.9f. P ,l>,x tb.e,COQ~tru~tqr, pR;>cedures 9f D r ~-- ··-·- :_1 .. :,··,;'..::: !~_:..,~·(-:,~ .: __ --~., ··- _, <~· ,~-' . 

can be passed. Every_value eftheitep'nte<hl&t:in getteral't,e'~-to-reprtsent a value ofD. 
; · - . i . . - _ • · ·_ - ,'\-~ '.) E- ~ -~-. r ..... , } /'. { i ; ~> ~ i ?~ t r·7 1 -; .... _, ---, -~ ·, 

The procedures are invoked only on those values of the rep which can be constructed by 

finitely many applications of the constructor procedures ofD. (For example, the procedure 

REMOVE in the implementation ofSct·Int in Figure 5.1 ~ never passed a sequence having 
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Figure 5.5. Translation ofthe Procedures In the Implementation ofSet·lnt 

NULL O Q rep$New0 

INSERT(s, I) ~ INDEX(s, I)< rep$Slze(s) ===>•I 
(-·IMDl!X(s, t) < repSSin(tJ)) - rep$Addh{s, I) 

REMOVE(s, i) ~ INDEX(s, ll <·rep$Slze(-, · • 
rep$Re(!'h(rep$~plac.•(•, JNDEX(s, i), rep$Top(1d)) I 

(- INDEXi•,·tJ S rep$Sfz41ft))-. a ·. . 

HAS(s, l) ~ INDEX(s, t} < rep$Slzefs) 

SIZE(~. n ~ . Jep$Slzet.l 

CHOOSE(s) . ~ rep$Siza(a)· = o ~ signalfn•etement).I 
(- rep$Slze<•> :. O),~ .. r,9$Bottom{11) Q' , .·•.· .... ,. ;- . , 

INDEX(s, I) - f(a, l, 1) 

CHOOSE'(&) ~ rep$Slze(Jl,: O ~: llilffat<no}' .. em.-t) I 
(- rep$Size(s) = 0) =t MAX(s>. 

MAX(a) ~ f'(~, rep$8ottorn(a), 2) . './ , . 

C,HOOSE' '(s) Q rep$Siz,e(s) 7 O ~ sign.al(flO•element) I 
·(N rep$Stzea) •:of•••Axar1· 
(-r~S~).: Q)=;t~, 

MIN(s) ~- f"(s, rep$Bqt•QQI(•), 2.) . 
.. , ' ' • ~ . f 

Auxiliary Functions 

f : rep X Int X Int -+ Int 
f' : rep X Int X Int -+ Int 

; f"_: rep x.a.t,~i..,_ ~ Jnt. 

f(a, iJc•e> ~· ~ c ~ iapSSr.e(s)): • ,e;I: · :·., 

(c ~ re~~-•z,(s)) ·" (r~pS,~etc:~~,. F) ~- I)'~ C •. . ' . 
·tc < repSSfi•(s) A"" (ntPIF&t~iit•/ct"= Jt• Ifs~· 1, c + 1) 

f'(s~ m, c) ~~- fN c < rey,f9fzeMl;_ ni t' · · 
((c < ~,$~~(~)) A "1; < rttp$Ftttqh( .. , ~) :~ f'~~' 1ep$Fetch(s, c.), c + 1) I . 
((c < rep$Slze(s)) A (,;.; m' < rep$Fetch(s, c))) ·=- f'(a, m, c + 1) 

f"(s, m1 c) ~ (-'c < t~$Srze(sJ)'i ,m •. ; ' 
.. Uc s,r.S~),Af,11>, ~~~--.~}»,,.t,t"(a, r•p$Fetch<., c). C+ HI 

((c < rep$Size(s)) A (- in > rep$Fetch(s, c))) -. f"(s, m, c + 1) 
. t; . 
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multiple occurrences of an integer, as such a sc.qu~nce ~onoi be.~~qst~UFte(i using NUL~. 

INSERT and REMOVE.) We are interested in the behavior of the procedures only on this 

subset of the va1ues of the rep, The subset is characteri~~d by th~ formula Inv(,) discussed 

in the previous section, which expresses the strongest unary relation _on the values of the 

rep preserved by the constructor procedures of D. Inv(,) is exprO'sed without alluding to 

any particular implementation of the rep type. 

Def. 5.2 A procedure OP implementing a constructor<a:: D
1
X. ~ ._ X Dn---+ D preserves In, 

if and only if 

whenever ((V 1 ~ i ~- 11) [Di = D =::. lnv[xi)) ) •. then 

(i) if0P(x
1
, ••• , x

0
) returns a normal value, lnv[OP(x

1
, ••• ,.x)I; ~rw.ise, 

(ii) ifOP(x,, •.. , x) signals e.x(el, •. -. , e,;>. then16r~crt trorfype'D, filvlAt.'' 
If OP is nondctcm1inistic, al1 possible results returned by OP must satisfy Inv. I 

For the implementation of Set-Int given in Figure 5.1, lnv(s) is 

(v i, j)· f U < i, J-~ rep~ize(s) f.. l ~'Jt~· ~ Ut-:1.· sflf'f~ .. 
where s[i] is an abbreviation Tor rep$Fetdl(s, i). ft din wrified that lnv(s) is preserved by 

the constructor procedures ofSet·lnt. Figure 5.6 is a proof that REMOVEpteserves'lttv(s). 

the most difficult runong the th tee cases. Any predicate 'Slronier :thah -thebne· above' is not 

preserved by the·constructor procedures. 
; 

Inv may be· difficult to deduce from a complex 'implementation, but the designer 

of an implementation usually has a good idea about what Im 'is. Tri tht(ct>rrectn~:pmof, 

Im is usually not necessary; a weaker property 'miij suffice. In· case Inv is available, a 

property of the representing values needed in the correctness proof can be deduced directly 

from Inv. Otherwise, if Inv is hot available, tlren the" i,roperty'can be' deduced by checking 

whether the property is preserved by the constructor procedures; since Inv is the strongest 

unary re1ation preserved by th'e constructor procedtlres. any,unilry rJiation _preserved by 

the constructor procedures is implied by In,. 

If a modu]e implementing an abstract data type in a programming language is not 

protected, as would be the case if abstract data types are simulated in PASCAL or PL/I. 

say. then 
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Fagure 5.6. Proof of REMOVE Preserving Jn, 

Assume lnv(s) holds. To show that lnv(REMOVE(s. i)) holds. 
If type name is not included in the operation names below. we assume that the operation arc of type rep. 
1bcre arc two cases. 

Case l:. JNDEX(s, i) S Size(s) 
Sizc(s) > 0 < = = > T. from lhc specification of INDEX 
lnv(REMOVE(s, i)) - lnv(Remh(Replacc(s. lNDEX(s, j)/fop(s)))~ from the specification of REMOVE 

It can be shown using the specification of INDEX and the theory of Sequenc~lnt that 

(i) {-lnv(s) A-O<;k < Sir.cts) As:= Rcplace(~~j) )• ·, i • 

(( (V kl)[ 1 < kl < Size(s) A - k = kl J ::$ slkl] = s(kl]) A s(k] a j) 

(ii) (Sizc(s) > 0 As' = Rcmh(s)) => (V k) ( (1 < k < Si~s')) ~ (s'(lt] e sfk) A Sizc(s') = Sizc(s) -1)] 

Using (i) and (ii). we have lnv(REMOVE(s. i)) .. T 

Case 2: - INDh'X(s. i) < Sire(s) 
lnv(REMOVfJs.i)) c=> ln\'(s). {rom \be sped(icc,ltion of REMOVE 
..,.T 

(i) restrictions must be i~d_on,the glQb~I va~.jf"f}Y. ¥ well~oo the use of the 

procedures implern~pting the operµ.tions .to ensv.r~: d:l;e .,mi~i.~li!Y, i,roperty of the . . 

implementation. and 

(ii) lnv must be preserved wh~rev~r a procedure imp!~m~~~ ~ oper~tioq is invoked 

Such a proof is likely to be global and complex. (Guttag [31] discu~ res~tions on the 

Euclid implementation module _tp. eosllfe that the mod~e sat~fy .~ .minim~Jjty, property.) 

In the following diSCU$ion, we assume that ~.semaut~.Pf a.'.mt!Cn~nisi:n encap~lating 
. ·' 

the procedures implementing the opera~; of a data type ensures. the ~inim~ty 

property. 

It is not ~ry for the proc~dures to ~nninate over .their entire input dopiain . . . . : . . ' . . . ; ,; - . .. -~ .' . ' - . ·. . ... 

if Inv(,) is other than T .. To prove total corr.ec~ of an implementation, it. is sufficient 
r_ • : ~ . ' • - • • '~. -

that a procedure irnplem~nting an ope~ion 11 ~ has)~ i-th)•rgmnent xi to be of type D 

terminates whenever lnv[x) holds. 
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5.2.4 Semantics of an Implementation 

Now that we have the procedure specifications, we can construct the 

implementation algebras of I using them. Since procedures specifications may use internal 

types and internal and auxiliary procedures, we first construct the extended 

implementation algebras and then derive the implementation algebras from them. For 

every possible implementation I' of a type D' used in the implementation I, we have the set 

of its implementation algebras. In an implementation algebra of I, the domain 

corresponding to D' is the domain defined by an implementation algebra of I'. An 

extended implementation algebra A 1 ofl has the following structure: 

A 1 = [ { V Ii)} U {Vo· 1 D' EAU It}, EXV; { i(J I a E OU Ip}]. 4 

Vui ={ vi v EV /\ lnv(v) }. The function i is the interpretation of the specification of rep a 

the procedure corresponding to a in A 1. From A 1, we get an implementation algebra A 

A = [ { V ~ } u { V 0 , ID' EA}, EXV; { ia I a E O} ], 

4. In addition to the internal procedures, I is assumed to include the auxiliary procedures needed in the 
. p 

translation of the procedures into the applicative language discussed above. 
\ 
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5.3 Correctness Method 

We describe the remaining steps of the correctness method outlined in 

Subsection 5.1.2. For completen~. we repeat the steps discussed ·in the previous section 

about the termination of the procedures and the preservation of the formula Inv. For a 

specification specifying nondetenninistic operations. we discu~ the method for three cases: 
An implementation of a nondeterministic operation is (i) a deterministic procedure, (ii) a 

nondeterministic procedure, and (iii) a pseudo-nondeterministic procedure. We first use 

the implementation of Set-Int given in Figure S.1 with CHOOSE replaced by CHOOS~ 

for il1ustrating the method tbr the deterministic case. Later. we use CHOOSE" as the 

implementation of Choose to illustrate lhe method for the ·nondeterministic case, and 

finafly, we use:CHOOSE to illustrate the method .for the ~uwnondeterministic case. 

5.3.1 Auxiliary Functions in a Specification 

Jf a specification S uses auxiliary functions and auxiliary types, we extend an 

implementation I to include the implementations of the auxiliary functions in the 

correctness proof. We include in the specifications of the procedure ofl, the specifications 

of the implementations of the auxiliary functions. For showing the correctness of I, we use 

the extended implementation, instead of I in the following steps; an auxiliary functions is 

treated like an operation. In the following discussion, whenever we say I, we mean the 

extended implementation ifS uses auxiliary functions. 

5.3.2 Preservation of Inv 

If the formula Inv(,). which characterizes the subset of values of the rep used to 

represent the values of D, is available, verify that lnv(r) is preserved by every constructor 

procedure. We showed in the previous section that for the implementation of Set-Int in 

Figure 5.1, its Inv is preserved by every constructor procedure. 

lflnv(r) is not available and cannot be guessed easily, we temporarily assume that 

every value of the rep is being used to represent_ the values of D .. ln the derivation of the 

axioms and restriction of S from the procedure specifications, in case we need any property 
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P(r) of the rep values, we deduce P(r).by showing that P(r) ispres~rved by the constructor 

procedures of D, as in that case Inv(,) would imply P(r). 

In the derivation of an axiom or a restriction in S from the procedure 

specifications, a variable oftype Dis instantiated tcfa,value,ofthe rep satisfying ln,(t) {or 

P(r) if lnv(r) is not available). 

5.3.3 Termination o( Procedures 

; > ~ 

Prove that every procedure in I is total on the arguments it can expect, i.e .• if an 

argument to a procedure is of type D, prove that the proc~dure tem:iinates if these 
' ~ "' . 

arguments are values of the rep satisfying In,(r). 

s.·3.4 Proving Restrictions and Axioms 

Show that every restrictio~ in S s~ecif ying the ~~eptional behavior and every 

~mm in S specifying the normal behavior can be. derived .from the specificatiQl)S of 
, >. ' • - •• .- • • -- (- ' :~ ' • ; • : ' 

procedures in I. The operation syropqls ancl_th~ ijuxjliary ,fu!lction symbo~ in t,he ~Joms 

and restricti9ns are repl?ced by th;· nam~·Qf pr~e,dures 'µnplem~~ungJh~~: The th~ries 
- . . \ ; ' . ' ' - . - ,' .. i ~. -~ ' . : 1 ~ 

derived from the specifications of the defining types. theJeP,~ and ioteroal ty~ can .be 
' _. ;' , ~ .' : < " - j , 

used in the derivations. 

The symbol = in S is interpreted as the o~~rvable equiv?lence relation. =o is 
. . - . ~ ~ ·~ ' 

usuaHy interpreted as the largest equiv~tence relatiOf!Qll the val\les ~fth~ r~p satisfyin,g In,, 

p~eserved by the procedures. _The e~eptio,n ,is th~,~, w~~n. a. non<Jei~m,,i_ni~ti~ qpeP;ltion 
. ,,, .. ;., ' - ; . . 

is implemented as a pseµdo-;110ndeterministic pr~~ure ... The~,;tJl.F A~Sef\'.ab~ qi_uiva)ence 
'. ' . - ,- .. ,-e • ' ," ' ~-' - ~ ,, • ,. : . • • 

relation serving as the interpretation of, =u, ~ . req~ired to ~ preserved only by the 

procedures implementing dete~!,nistic. op(?ratioos. ~4 jt n~~ n.ot be tlie l~rgest such 
. . ..... ·- - ,- ,, 

equivalence relation. 
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5.3.4.1 Preservation of Equivalence Relation 

A detenninistic procedure OP irnplemend~ an operation " : D1 x ... x Dn--+ D' 

preserves an equivalence relation on the rep values. .e»presed:as. a rust order Jonnula 

Eqv(s
1
• s}. where s

1 
and s

2 
are of rep type. and are the only free:variables in the formula. if 

and only if for each 1 <i<n. ( [ Di = D ::$> F.qY(xi. yi)] A [ Di -:J; D => xi = yi] ). either 

(i) ·oP(x
1
,. .. , x

0
) signals ext/ holds and 'OP(y

1
~:;; Ji] sflnils e.xt

2
' "holds such that 

'ext1 = ext
2
' is provable. In addition to the rules disc~d in the previous chapter, we 

have: For an exception name ex of arity Di x ... x o.;_. if for every n; = D, F.q,(x;. ,;). and 

for every D'. -:J; D, x'. = .V:. then ex(;1• ••••• x') = ex(y
1
' ••••• y').is pro. vable. Or. 

I I I m . 1111 

(ii) If D' = D. then 'F.qv(OP(x
1
, .••• x ). OP(,,

1
. ~: ••• · Y, ))" "~ provab.le, and if D' -:J; D then 

D D · 

1f OP is nondetenninistic then (ii) above is modified to be: ·1f D' = D, then for every 

~ble result' r1 returned by OP(x
1
, ... , x). OP(y

1
~ ..• y )can return ,

2 
such that Eqv(r1, rJ is 

. ~ . . 
provable. and vice versa. and ifD• -:J; D, fcir"e~ery\;tetumed'~y OP(.tl' ...• xn~• OP(yl, ... ,y)' 
can return ,

2 
such that ·,

1 
=o; ,

2
• is provable and vice versa. 

. For example, F.qv(sl, s2) fot the· il1lJ)1elilentation of Set-Int in Figure 5.1 with 

CHOOSE• replacing CHOOSE is 

(SIS.Size(sl) = S1$Size(s2)) A (Vi) ( IN(sl,. i) = IN(s2, i)). where 

IN(~ i) = '(lj}:( 1 < j < Sl~s) A •• ~11r · · ,. 
It relates ,sequences that are pennutations of ciicff . other. Eqv is preserved by every 
procedure implementing an operation . or Set·lilt. · Figure S.T has:; the, proofs f'or the 

procedures INSERT mid HAS. E4,(sl, s2) is'the:largest eqtiiv~lente reiation; preserv~ b{ 
the procedures. Any equiva1ence relation sirooitr lliafi'F.qv\vouldhave to relai~ sequences· 
that are not penhtitations, and is thus not preserved b)tllAS.' .. : 
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Figure 5.7. Proofs that INSERT and HAS Prese~eEqv 

For INSERT 

assume Eqv(sl. s2). to show that (V i) Eqv(INSERT(sl. i), INSERT(sl.i)) 

Ca~ 1: INDEX(sl. i) :S Sl$Sizc(sl).a T 
Using Eqv(sl, s2). we have INDEX(s2. i) $ Sl$Sizc(s2) = T, so 
INSHR't'(sl. if= sl. 1NSER~nai •. i). cS1, so F.qv(INSRRT(sl. t), INSERT(s2, i)) ~ T 

Case 2: INDEX(sl. i) :S S1$Sizc4$2) a F 
Using Eqv(sl. s2). we have INDEX(s2. i) < SI$S~c(s2) = F. so 
INSERT(sl. i) = Addh(sl. i), INSERT(s2, i) = A<fdt,(s2, i), so 
faJ\'(INSHtrHsl. 1~-INSER'll$2. i))- Eqv(A<ldh(sl, i~Addh(sl;i)) .- T 

For HAS 

Fmm the semantics of INDb,C, we have 
(i) INDEX(s. i) > 0 - T, 
(ii) INDEX(s. i) :S SI$Sizc(s) ~ s [INDEX(s, i)J = L 
(iii) INDEX(s;i} > S}.16tae(s) ~ ((V j).(I S j < S1$Si,;e(s))~ ~s(jta,iJ 

assume Eqv(s) •. s2). Jo show (Vi) HAS(sl. i) = HA~ •. i) 
HAS(sl. i) = INDEX(sl, i) < SISSize(sl) . . 

Case l: INOEX(sl, i) S SISSizc(sl) ii T 
s11l~DHX(sl. i)tm i . 
Usjng Eqv(st s2). we get (3 j) [ (1 < j $ S1$Size(s2)) A s2 Ul = i 1 so 
INIJHX(s2. i) < S1$Size(s2): T . . . . 

HAS(sl, i) = HAS(s2, i) • T 

Case 2 INOEX(sl. i) < S1$Sizc(sl) = F 
Using Eqv(sl, s2) and the above facts about INDEX, we get 
INOEX(s2,i),S Sl$Sizc(s2).m F, to 

HAS(sl, i) = HAS(s2, i) = F · 

5.3.4.2 Restrictions 

For a restriction specifying a required exception condition of a, 

R1 (X} ~ a(X)signals ext · 

show that whenever P .,(X) and Rft') interpreted in I hofd, the procedure OP 

implementing u must signal ext. For example, the specification of Set·lnt specifies the 

following required exception condition for Choose in its restrictions component: 

#(s) = 0 ~ Choose(x) signals no-clementO. 

So the procedure CHOOSE' must signal no·elementO when SIZE(s) - 0 
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(- SISSIZE(s) = 0) holds. which is indeed so (the precondition specified for Choose is T). 

For a restriction associating an optional exception condition with"• 

a(X) signals ext ~ OjX), 

show that whenever the procedure OP implementing ": sig~als exl,. P "(X) an~ OiX) 

interpreted in I hold. For example. the specification of Stk-lftt given in Figure 3.2 specifies 

· the following optional exception condition for the operationPasll~ 

. Push(s, i) signals overflow(s, i) ~ #,(s) > UNI . . · 
ln an implementation ofStk·lnt~ iftheprocedure·implementing Push•signals overflow~ then. 

the size of the input stack must be > 100. 

We must also show that (i) if an input to a procedur,e OP implementing an 

operation a satisfies its precondition. does not S?t.isfy ,lJ;le e.oudition. for ptiy (lf its r~uired 
•; ,: I o ;, ' • , ' - •- ,' '-_ , • ' 

exceptions or optional exceptions~ then the·procooure ttrminates-11ormal1y: Let 

C(X) = ( p ,,<,n /\ ( - Rl(X) /\ ... /\ - R~X}} 0A (N·Ol(~C::-:; ". -Oarff))). 

where for 1 <i~I. R, is the condition when a is required to,sigtJ~ exi. -~ .and for 1_~$m, 0. is 
I . ·.·· ''·" t.-\, .J , ··• ' J 

the condition when a has the option to signal an excep~?-~ extr _. We show th~ Qllimplies 

TC norma1(X), where TC norma1(X) is tht weiltest input C(jriaitfun for QP-~ t~rmiru,Jte nOQtlaijy. 

For example, for every procedure in the implementations of Set-Int, -the above condition is 

satisfied. 

Jf a nontrivial precondition P is specified for a conaractor a, then the procedure 
Cl . . , , ,· . . ' 

OP implementing '1 either signals on input X not satisfying p Cl • or returns a rep value 

which can be constructed _ by a constructor procedure using an input satisfying its 

precondition. For example, a correct implementation of Stk·Int can b~ve the procedl!~ 
"'~ - . ~ -·~; ~ ·~ .' . . .' -

implementing Pop return a stack when applied on an empty stack. If the procedure 

implementing Push signals ov¢1«>w on a~ ,of size· 1~ say, then the procedure 
' ,., . .. . - .. . ; ' . .. 

implementing Pop can only return any stack of size ~ J.28. , Ji, tanf\01 reJ.urn ,a stack of size 
- ? ~ I • _,. ~. •. • • .• " ~ • 

1009, say; allowing it to do so wou Id be meaningless. 
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5.3.4.3 Axioms 

Jn the derivation of an axiom, we ensure that (i) for every occurrence of a 

procedure name OP implementing the operation a, the input to OP must satisfy the 

precondition P associated with a, and (ii) no subexpression signals any exception. 
a . . , , . _- --~ : - ~ , ~ --- -~ , ~ , .... ·. " 

Jf an axiom is an equation of the fonn 'e
1 
= e/ we prove that its i~terpretation in 

l is derivable. ' If e
1 

and e
1 

are of type D, = is interpreted as Eqv; otherwise, the 

interpretation of el = e2 in I can be derived using the th~;ies constructed from the 
• . ,._ ' I ~ • ; • • , ' '{ t .~ 

specifications of the rep, the defining types, and internal types. 
l 

]fan axiom is of the form 'el = if b then e/ wehave to prove that 'b => el = e2' 

when interpreted in I is derivable. Similarly, for ~i~~rp ·~
1 

'17 i,r /J,t .. en e1 c~ ev.' we mµs,t 
prove that 'b => e

1 
= e

2
' and•- b ~ e

1 
= e

3
' are derivable in I. Recall that the condition bis 

a~umed to behav~ detenpiru$icaffy even-_when it mNohes nondeterministic operation 

symbols.· Figure 5.8 is a proof that the tbeni pan of the axiont. 

Remeve,l~ert(s. ii), i2)-_ • ifil-=i:: i2 Thetl,Rt••M(s.. i2) ehe,lt1Sert(Be111ove(s, i2), il) •. 

is derivable.• The derivation oftbe else clause,· 

.. (- i1 :;=- i2) • Rem~t(11Jseltts, H),i2).,a!! lttstWtfllellNlYets. i2t. il). 
uses a property .of tbe repr~ting values that 

(VA) ( { repSSiu(s)> 0 A la(~~ =o (llj) ('l•SJ~ re,SSwt(s),Astili!,il L 

Fi&ure S.8.' Proof that alt Axiom or Set~lnt is Demable 

i1 = i2 ~ Rcmcnc(lnsert(s, ii), i2) = Rcmo,e(s, i2), 

Asmme il = i2, to show Eqv(RE~OVE(INSERT(s, il), i2). REMOVE(s, i2)) . 

Case I: INDEX(s. il) < rcpSSizc(s) = T 
INSERT(s. il) = s, so the above holds. 

Case 2: INDEX(s. ii) < rcpSSizc(s) = F 
Let r = INSER'ns. il) = Addh(s, ii) 
Using ii = i2, INDEX(r, i2) = rcp$Sizc(Addh(s, il)), so 
REMOVF{r, i2) = s, and 
REMOVF__(s, i2) s s, so the above holds. 
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which is preserved by the constructor procedures. 5 

The axiom ·choose(s) E s = T' under the condition ·- Size(s) = o; when 

interpreted in I is ·1-1~S(CHOO.SE11(s), s) a T.' · This is derivable, ~use 

'INDEX(MAX(s), s) < re~ize{s) = T' is derivable. The remaining axioms in the 
. ' 

specification of Set-Int can also be ~own to be derivable. 

The above five steps constitute the. correctn~ method. )f an implementation I 
- . •· . - ~ . -

can go through the above steps, it ~s correct , wi~ . respect to S. , For example, the 
. -,·. " . 

implementation of Set-Int given in Figure 5.1 with CHOOSE repJaced by CHOOSE9 goes . 
',- . . ~ ~ /~ " \ ~: ... - .- , 

through the above steps. and is thus correct.! 

5.3.5 Nondeterministic Procedures 

We . now consider the case when ·an implelRentation has a · nondeterministic 

procedure implementing an operation spedfied' ,fOi ,beinondetenninistic by S. We have 

already discussed the conditi01$ ti; a ~rtriimsfit ·prcididuret te ~e flri·-and tile 

equivalence relation F.q,. Various
1
steps in the,aN"f-~proof ttmusie,f' above,remain 

the same except that ifah a»iomimdwsithe\\ond.tetinua .. ,rboredu~ we'tnust ..-the 

interpretation of formulas involving nondetettnDlillit J\JnctkM l .symbols•:. discuflled ·· in 

Chapter 4. ln aoditioo, if·mustd,e ensured! ti~ for0 ahy, inpot;,thb:noml;ttrmlnmc 

procedure does not have a choice of signalling as well as terminating normally. 

For example. if we consider the implementation of Set-Int in Figure 5.1 with 

CHOOSE repl~d by CHOOSF', most of1he-above proof remains valid~ We have 10 

show that the axiom 'Choose(s) € s =-: r is,°'riy~~,~r ~ ~i~,:..,. &i~s) ,;;. ,~/; 

That is. jf 're~ize(s) > o· holds, then 
HAS(s, CHOOSE'"(s)) a T . (•r ,.,~.:,,,,, ' : . : --.'. . 

is derivable. Cl IOOSE'"(s) ca~· eithe~ ,~tum MAX(s) ~ MIN(s). F9r bQth. ~ibilities, (*) 
'.:.:' ; .. •L, '. ;,. . . ; ; ,, . . 

is derivable. as 

INDEX(MAX(s). s) < re~ize(s) a T 

S. (3 I j) stands for 'there exists a unique j such that.' 
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is derivable from the specifications of MAX and INDEX, .and 

INDEX(MIN(s), s) ~ replSize(s).= T 

is derivable from the specifications of MIN ,and INDEX. Note that CHOOSE" preserves 

the equivalence relation Eqt. 

The implementation of Set-Int m Figure 5.1 with ; CHOOSE replaced by 

CHOOSE" is also correct 

5.3.6 Pseudo-Nondeterministic Procedures 

A pseudo-nondeterministic procedure (which could be either deterministic or 

nondeterministic) is not required to preserve the' equivalence relation · Eqv.6 The 

correctness proof in this case also is carried as above dep~nding ori wheth~r the procedure 
. . 

is deterministic or nondeterministic. However, we must ensur~ that if the procedure 

terminates normally for any input X, then it must cio-~ for ~II input equivalent to X, and if 

it signals on an input X, then it must signa_l equivalent exceptions for all input equivalent to 

X. This ensures that a pseudo-nondeterministic procedure does not have a choice of 

signalling as well as terminating normally on equivalent rep values. 

We now take the implementation of Set-Int in Figure 5.1. CHOOSE is 
.. 

deterministic; it returns the bottom element of the nonempty sequence. Eqv is not 

preserved by CHOOSE. If the axiom 'Cboose(s) € s = T' is derivable under the condition 

that 'Size(s) -:I: 0, · then this implementation is also correct. The proof of the axiom is 

straightforward: Jf 'repS.Size(s) > O' holds, then 

HAS(s, CHOOSE(s)) = T - HAS(s, Bottom(s)) .,.. T 

When an implementation doe~ not have any pseudo-nondeterministic procedures, 

then the interpretation of = in I is the largest equivalence relation preserved by the 

procedures. However, a weaker equivalence relation preserved by the procedures may 

suffice to show that the restrictions and axioms ofS hold in I. 

6. For example, a procedure CIIOOS•:"' which nondctenninisticalJy picks between the top (last) and the 
bouom (first) clement of the sequence is nondctcnninistic and docs not preserve the equivalence relation Eqy. 
So, CHOOSE"' is also pscudo-nondetcnninistic. 
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Though the designer of an implementation usually has an idea of what the 

observable equivalence relation is, sometimes it may OOl' ·t>e·lnown. In that case, we will 

not know what procedures are pseudo-nondeterministic. Then, we choose an equivalence 

relation preserved by the procedures implementing the determiniStic operations, and-using 

it as the interpretation of :ai we attetnpt to ffioW !fiat every axiom as int~rpr-eted in I is 

derivable. If successful, the implementation I is correct; otherwise, ,a stronger'equivalence 

relation is chosen and the above process is repeated. If the correctness of I cannot be 

established even when- the strongest equivalence relation preserved· by the procedures 

implementing the deterministic operations is c~osen, then I is. in~orrect 

Another way to view the above correctness method is to consider the specificatipn 
' ' . ' . :, . . ' -

of the procedures in an implementation I as, axioms of _the theory of I, de_~r:ijng the 

functions computed by the procedures, and show that every nonlogical axiom of Tb(S) is in 
• < -~ .' - •• •• < : • ~ : /' ; : ". • • ' 

the theory of I. The theory of I also includes the theories of_t~e types.used in I. Nakajtma 

et al (62] take a similar view. 
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5.4 Recursive and Mutuat1y·Recursive Implementations 

Def. 5.3 An implementation I of D depends on a d~ta type D' iffonly if 

(i) D' is used in I , or 

(ii) a data typeD" used in I depends on U'. I 

In Def. 5.3 above, it is assumed that data types other thit'n Dare abstractly used in 

an implementation I of D. In the correctn~ method-discussed in- the .previous two 

sections, we have assumed that 

(i) an implementation I of D does not depend on D, and 

(ii) an implementation of a data type D' used in I does not depend on I)., 

We relax these constraints. We call an implementation I of tftetrirstve'if and.pnty if the 

rep used in I depends on D. We call an implementation I of D and another 

implementation I' ~f D' mutually ,~cursive if.and 04)l)' if)'de~·bn D; andl' ;d.e~ds on 

D. We assume that recursion is not due to internal types used in I. Jt shouldbe1rioted that 

if the implementations of a set of data types are mutMlly. re(!JJIJi.y~. that~: not m~n that 

data types are also mutually rec1irsive (mutually recursiv~. dA~ ty~ we .disc,~§sed in 
,;;;,. ;.'-i• ' '~ ·'- . ' - • < A • 

Section 2.4). We first discuss how the method proposed in SectkMi'~ . .J 1'e'1llodiftoo'to deal 

with recursive implementation, later we consider mutually recursive implementalia,n. .. 

5.4.1 Recursive Implementations 

In proving correctness of a recursive implementation •. we·consider a· ref~rence to 

Figure 5.9. An Uninteresting Recursive Implementation oftf. , . 
D = cluster is OP1 , OP2 , -· 

rep= D 
OP1 = proc( ... ) returns. ... 

return (DSOf 1 ( ... )) 

cnd0P1 
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D in I as a reference to its rep and an invocation of an operation ,, of D as a call to the 

procedure OP implementing "· The equate defining the rep inside I is considered as a 

recursive domain equation, as the construction of the rep depends on D itself. For 

Figure 5. IO. hnplementatioa of List-lat 

LIST-INT = cluster is NIL. CONS, CAR, CDR. IS_IN, IS.J:3MPTY 

rep= oneof[ empty: NuH, pair: Pair) 
P-.tir = struct [ car: Int. cdr: List-Int] 

Nit = proc() returns (cvt) 
return (rcp$make_cmpty(nil)) 
end NIL 

CONS = proc(i: Int. J: List-Int) returns(cvt) 
return (rcpSmake_pair(Pairt{car:i~ cdr:I})) 
end CONS 

CAR = proc(I: cvt) retums(lnt)signals(cmpty) 
tagcasel 

tag pair (p: Pair): return (p.car) 
tag e,npty: signal aapt,() 
end 

endCAR 

CDR = proc(J: cvt) returns (List-Int) signals (empty) 
tagcasel 
tag pair (p: Pair): return (p.cdr) 
tag empty: sipahmpty() 
end .. 

endCDR 

IS_IN = j)roc(i: Int, I: cvt) returns (Dool) 
mgcase I . , 

tag pair (p: pair): if p.car = i then return (true) 
else return (List-lntSisJn(i, p.cdr)) end 

tag empty: return (false) 
end 

endlSJN 

IS_EMPTY = proc(I: cvt) returns (Dool) 
return (rep$is_cmpty(I)) 

cndJS_EMYIY 
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example, consider the implementation of a data type list of imegers, deooted by List••nt, 

given in Figure 5.10; its rep is a recursive domain equation. A recursive domain equation 
. ' . . . 

can be solved by defining an ordering on type algebras and using Kleene's Recursion 

Theorem. The rep is the ]east fixed point solution of the eq~~tion (see.[3tfpr details ~wt 
such an ordering). 

t 

For a correct implementation I, the type algebra$, of.,the rep sll9uld have a 

nonempty principal domain. This property is trivially ensured if fep is nonrecursive. For 
. r"( , : .. ; : . ~ ,. . ; , ,_ ; 

some recursive implementation such as the one given in Figure ~~jthe least fixed poiot,is 

the empty algebra, an algebra having no domain and no functi9ns. _ For well founded rep 

equates such as in case of List-Int, the algebras are nQQe'llJ>,t~: Jf.the TfP can_ be, prpx~cJ W 
• t_ . ·• - • ~ f , ..• ~ ·• . -:: .- • '). . • 

be nonempty, the method proposed in the previous section:am J,tn1sed. -The proof that ttte 

least fixed point of a domain equation defining the rep is nonempty is the only additit'mll 
step in proving the correctness of a recursive implementation. 

Figure 5.11 has specifications of the procedures in the implementa1:!6h tjf ~4't~~; 
. ; ' : f ~ . • ;~ ,. ,;:· 

(fhe specifications of Null, Struct [n
1
:0

1
y ••• ycnk:,Dt), aM One·t.rf"t: De·:, •. ~; n~: Dtl~ 

' -~- ~ ,,_ -.. ~: ., J;(·; __ Y.'• .i-;·- .. 

given in Appendix IV.) Figure 5.12 is a specification of List-Int. W~ giv~)\)e~ta:-

of various steps in the correctness proof of the implementation of List·lnt given in 

Figure 5.10. 

Figure 5.1 I. Translation of the Procedures orList·lnt 

rep = oneof [ empty: Nult, palr: Pair) 
Pair = struct {' car: Int, cdr: Llst-fnt] 

NILO ~ repSmake...:empty(ttff) 

CONS(i, I) -~: rep$me1(e_pitirlPalt$(c-ar: I, cdt: I}) 

CAR(I) Q rep$is_paif(I) =- Pai""t_car(..-p$Nlue_pait(IJJ I 
- rep$is_palr(I) => ~ignal(emp~~) 

CDR(I) A rep$is_pair(I).=> PairS~_et_cdr(_~e~~value.J)alr(I)) I 
-rep$is_pah0t=:!> stgnatfempt,J· · '· · 

_ IS_IN(i, I) A rep$is_pair(I) => (i = Pair$get::!~arfrepSvahie.;.patr(I)) V 
IS_IN(i, Pair$get_cdr(rep$val.ue_pairO»>I ·, 

- rep$is_pair(I) => false · · · 

IS_EMPTY(I) Q rep$is_empty(I) 



Figure 5.12. Specification of W·lnt 

Operations 

Nil : -+ Ust-,nt 
Cons : Int X Llat-tnt -+ List-Int 
Car : List-Int-+ Int 

-+empty() 

Cck : list-Int-+' llsUnt 
-+ empty() 

ls_ln : Int X List-Int-+ Bool 
ls-1:Mpty : llsl•lnt _.· a.at 

Restrictions 

ls-Empty (I)~ Car(I) signals empty () 
1e .. £1NKy,CI) ~ ectr(I) sign.,_ empty () 

Axioms 

Car(Cons(I, I)) a I 
Cd,(«;cmsll, 1)):a I 
ls-In (I~ NII) a F 
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la4ti(l1, ~•02. I)) ii if 11 • ,12 tMl'I t •tse la-In (l1 ·~ I) 
ls-Elnpty{NH) s T 
, • .c.ptyrcons<t, o>. r= 

(i) the least fixed point of the recursive. domain.equa&ioo is nooempty. For any model of 

Int, the approximations to the rep can be coqstructe4 : : ~ . ~ ..-;-~. > -; j ~._; :.: , ~ 

(ii) lnv(s) is T. 

(iii) The termination of procedures other than ISJN _JS'obviQus~. ~utrii~. that .tbe l': r, >. ~ .~~..J • : : ., .: • ;- . - • • ~ ~ -:-- , ~' • 

tagcase, and the operations of one-of tenninate. For •~~t~~~-,~,.P.re~e .te"'1inatipn 

using McCarthy and Cartwright's app~_. .Pf:,.QJ~IW,;~_Jic.t~ the rep.il·•well 

founded with respect to the enlerin& I< ~fpau:_:,K'll';;L•-Cdr~ :JI-, any iand L · · 

(iv) the equivalence relation on the rep is the tflntif{relation.: ,, 
(v) The procedures return normally on'an '.ifip~iRQ;,\v1{ij;lLht~-~~ component does 

not.specify thecorr~.g_ope01tion.io~. ·:. 

( vi) Every restriction is derivable:· 

(vii) Every axiom is derivable. 
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5.4.2 Mutually Recursive Implementations 

We prove the correctness of :mutually J;ecursjve implementations iq. a way similar 

as m case of a recursi~e implem~ntatiqn. 1be correctn~ of mutu~lly recursive 

implementations .must .be J.)roved tQgether.. The reps of,tbe_ two inJpl~ons are 

specified as mutu~lly recursive do°'ain eqµatiQn~;, .the. ~•uiion. Qf ~ese equations are .the 
'\. . ' . . . " . . . , ,;; ' . . , . ~ . '· '"' . - . . . . . 

least fixed poiJats.which serve ai tl:l~, re~ of I;) and ~ :rep ofJ;>:'. For the ;impJe:mentations I 

and I' to be correct, both rep~ must be nonempt;y. ~,re$1.of~:Pf~fissameas in g1Se Qf 

nonrec_ursive im plementatiqns \v.ith th~ except~ th;:it, tl;l~ ~f!~tn~ proofJor aU mutually 

recursive implementations is done together. The implem~\9,1\s· I .ocl I' have to be 
' "- .. ,. • t • j ?"' .,. ~ . . - '. 

shown to satisfy the restrictions and axioms in Sand S'. The invocation of an operation of 

D' in J is considered as a can to the procedure itf:r, unf)ferniMing t\e epemtmn~' ahd, the . 

invocation of an operation of D in )' is considered as a call to the procedure in I 

implementing the operation. ' 

The correctness proof ·cannot be hier~rchicaliy sttuctilred ·'in case of mutualfy 

recursive imp1etnentations. because their correetness"flas io:be proved together. For this 
reason, we do not recommend that hierafcf1icitlty stfuctured {ttbn~ecursive) data types be 

implemented mutually recursively .. However, for'a ~- of milti(411y'!recursive data types, 

their implementations have to be proved · correct tbgethet , 86. :·ti,ese,. data . type caii'. be "'·.• 

implemented mutually recursively without adding ttr die complexity of the_ correctn~ 
proor. 
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6. Conclusions 

We have presented a rigotous·framework for abstract data types, and studied four 

important aspects of abstract data types, namely definition. specification, theory, and 

implementation correctness, within this framework. An ovetview·ofthe approach ·taken in 

studying these issues is given in Chapter 1. The framework has provided a base from 

which to to ask many interesting and important questions about data types. Some of these 

questions have been answeted in the thesis, while others· suggest directions for further . 

research. Below, we first summarize the contribbtion's·'ofour work rind then indicate areas 

where further wort is required. 

6.1 Summary of Contributions 

We have made a dear distinction between a data type and i~ spe~ificatjo11(s) in 

our research. The behavioral approach for defining a data t)'pe ;.developed in the thesis 

embodies the view of a d~ta type ~ken in. pro$fammini hlngµag~. It considers only the 

input-output behavior of the operations. lta~racts from the representational structu~e of 

the values and the opera~ions of a data type~ weU 1as frpni .multiple lepresentations of 

values for a particular representational structure. Qur~tlpitionalmethod ~n bapdle data 

types with nondeterministic operations and. witb oper'1lio.n~ exbibiting ,exceptional 
- ' . ";: ;,,. , ' ' • ! ·a-.' ~ r- ' c.;. ;. · ' i ' ' · ; - •- '. · '. 

behavior. It is independent of specification methods for data types. Speciticati,W.t, 

languages other than the one proposed in the thesis can also be developed based on it It 

can be used to give the semantics of existing specification languages. In [43), we have 

· studied and compared the expr~ive power of various specification languages for data .· 

types. Using the definitional method, we have been able to characterize computability over 

the values of a data type, and study the expr~ive power of the operation set of different 

designs of a data type [42). 

The specification language proposed in the thesis is structured and flexible. The 

normal behavior and the exceptional behavior of the operations are specified separately. 

The language provides mechanisms to specify (i) nondeterministic operations. (ii) 

preconditions for operations stating what portion of the input domain of an operation is 
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interesting, (iii) exceptions which must be signaffed'by the operations, ·and (iv) exceptions 

which the operations can optionally signal. In designing the specification language, one of 
, > C • ~ ' 

the goals has been to facilitate writing specifications as well as proving properties of data 

types from their specifications without having to . express the properti~s that can be_ 

deduced. The semantics of a ~pecification is given as a set of data types. Equivalence 

among specifications is defined. 

We have proposed a deductive system for abstract' data types and studied its 

different components. A first order theory of a data type is d~fined, whi~h, is ~onstructed 

from its specification using the deductive system. The well definedness, sufficient 
' ' ' - _' - . . llil .' ! . • . , ~' - ' -~ - . ' ; . ,' .• 

completeness and completeness properties of a specification are defined based o~ what can 

be deduced from it. These properties are related iJ·. the 'm~el \he~retic properties of a 

specification. A clear distinction is made between the model th~or~tic 'and proof theoretic 

properties of a specification. 

We propose a correctness criterion 'rot an implementation of a. data type with 

respect .• to 'its specification, independent of implementation . correctness methods and 
•~ - I • 

• ~ - .t . ·. ' '. . ' . ~' ij ; ,. ' ' ; .· . - ' . . ; , ' • • • 

specification methods. Many implementat10n corre<:tness methods can be developed 

embodying this criterion. We develop a correctness meih~d Jhich ~'simple and natural 
-·: ~ 

for a wide class of specifications. 

Throughout this research, we have empha~ized modularity 3:nd hierarchical 
' > ' 

structure, be it the definition, specification, deductive system. or'implementation of a data 

type. 

The development of the framework has also provided useful insights into data 

type behavior and th~ programming language feature(· :~~h 
I as' th~ adv'antage of having a 

protected encapsulation mechanism for implementing a datatype, separation of the 

exception handlers from the type behavior, significance or'ih~erarchical structure and 

modularity. etc. 
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6.2 Directions for Further Research· 

We first discuss topics of further research emer~ng fro~ the discussion in various 

chapters. We later discuss other aspects of data type behavior .not studied in the thesis, and 

finally, the topics in which the assumptions ·made about data type beh~vior in tbe thesis are 

relaxed 

.We have not investigated how easily the deductive system proposed in Chapter 4 

can be automated or incorporated into an existing automatic data type deduction system 

such as AFFIRM. We do not anticipate any majpr prnblems in incorporating the 

subsy_stem for reasoning about the exceptional behavior of a data type, because the axjoms 

describing the exceptional behavior are similar to equations and can be transformed to 
• I ~ - • '. • 

rewrite rules. However, the subsystem for reasonjng about non.~(terministic operations 
• - > • ' .- l • • F ' • . . . ~ ; . . < 

involves axioms using existential quantifiers. A verification system ~sed on first order 
- ·:; ' 

predicate ~alculus can in principle incorporate this subsystem .. We feel that the full power 

of first order predicate calculus with its ·complexity_ i~ not required.. An approa~h for 
. ~ · • • · -. ·. · i : ~ } t ; ~ " f • ', •: ~ :- ·. • r · ' · ; 

untransformed axioms (in which properties are expressed using n90deterministic symbols) 

similar to rewrite rules for cquational axioms needs to be in'c'estigated. 
' . ' ~ , 

The implementation correctness method discussed in Chapter 5 uses an 
, . . . 

equivalence relation on the values of the rep (representing· tY,pe), and requires. that the 
,,. .• , • ->; • • ; 

implementation be extended to include the definitions of auxiliary. functions· used in a 
' . - , -· ,- .. J ·. --, ' ~ ; : : ' ,. . , '• 

specification. if any. It would be useful to develop a method that can derive this 

information from the specification and the implementation. We do not anticipate any 
' - . ' . - ...: ~ ... : ~, " -

problems in automating the remaining steps of the meUlod; however, the interface between 
• - _1'>' 

a -verification system embodying proof rules for control stru~tures and a data type 
. ' . ' - . ' ' . 

deduction system may need to be analy;zed. We are invcsH~~ing another method that does 
, ' '•, ; s - ·- • :· , 

not require the equivalence relation and the definitions of auxiliary fun~tjons for an 
. -rJ·: _.; . ', 

implementation. It is based on the behavioral equivalence relation on models: For every 

computation.having an observer as its outermost operation. if the specification prescribes a 

result. a value returned by the computation when interpreted in the implementation must 

be one of the possible results prescribed by the specification. 

The proposed implementation correctn~ method tells whether an 
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implementation is correct with respect to a specification. lt would be interesting to extend 

it so that the bug(s) in a incorrect· implementation can be located; this would help in 

debugging the implementation. 

Another complimentary area- for further study is that of systematic testing for 

enhancing confidence in a piece of software. In itdditiori to using it for testing programs 

using the data type, a specification ofa data type d1n1>e'usecfto"design a set oftest Cb~ for 

checking the implementations of the data type. Gannon et ttl. [19] discuss a system in 

which a specification of a data type as a set ofc&hdttioha11 equations is presented along with. 

a set of test cases which can be executed using· the' irrtpfeltlentation td · test for the 

consistency of the implementation with the sp·ecificahon: A htcthodotogy for designing ttn 

'adequate' set oftest cases from a specification woOld be very usefiil'for such a system. 

Specifications are oftett hnrd 1o write: itmf ~bciatftttii!"writing ofan 'algebraic' 

specification has been found tobe hard [4( 3]. We·are investigating fr method fdr writing a 

specification in a systematic nmnner;·· usirig 'this methiid. we· fotve·-been able ·to. write 

specifications of data types such. as traversable uk f41k'Jftte ·f-121.; etc. A system that 

embodies such a metnod and helps a· desigrief·fn·writing a ~cifkatiorl would be very 

useful. It should assist · the desi~er. in ahalyzing "a" specificaoon so: as to enhance his 

confidence in the specification:' ft mould' check 'for'·g,Jnt!rld structun1f-properties of a 

specitkation such · as welt dtflnedness aild completeness; wJ\ith. ensure proper relations 

among different componettt:s of the specification. The undecidabifity.·or completeness and 

well definedness can be shown by reducing them to the Posf Correspon'<lence problerii 158] 
in Post systems. However, sufficient conditions on axioms and restrictions which guanintee 

weH definednes~nmd.;cdmpfcten~ of a specift'clltion ;n~d•to'f>e'inv~1gated:· ·111e results of 

Guttag and ;Horning •(igfand Polajnat (67} wilt prot>atlty be. htJJjfuf in arriving at these 

conditions. 

It is equaUy important to ensure that a spcdfication'indeed captures the intent of 

the designer. This can be checked in severnt'ways, ~&of which.are complimentary: The' 

designer can express 'additional properties that a data type should satisfy. He then attempts 

to' prove· these properties from its speclfitation using tht deductive system. Another 

approach is for the designer to come up with a model ofttie1data type and then ctreclc that 
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the axioms and restrictions hold in that model. Third approacp can be similar to program 

testing: the specification can be validated on a set of test ca:aes. 
. ' f ; . ~ 

Guttag and Horning [32] have suggested how formal specifications can be used as 

a tool for designing software. Our specification Jangw,ge ca~ ~ used to aid. the, design of 

the data component of SQftware. For it to be. used for writing specifications of general 
~ ' > '-,. 

software, it must be exteeded to include mechanisms for sp~ifying mutable behavic;>r. 

procedural abstractions, other control abstractions-. etc. · . · 

An important aspect of data tYNS ,Q.Ot stll;died in otJr framework is the 

reJationship,s among different data types. 0~ U,nportant re,atiq~ship is among the set of 

data types defined by a type scheme (also called ~-.~~m.eteriz~cJ. type). Data types in the 
- • • • - - • < ~ • i . " - . 

set defined by a type sch~me have similar b~havior ~«;~pt :tllat the values of these . .data. 
types may have their constituents .bel~ng to ditle(ep~ W~ and the v~lues may have 

different structural constraints. for. example, differ~t upper bounds on the size of the 

values, etc. This variation. in the.behavior of diffeyent typ~Js ~X,Pf~d using two kinds of 

parameters: Con slant paiam,ters ranging .ov~i:. th~ J~<i$. gf a data, type, often, used to 

express the structural constraints oo the.,values. such~ botua.ds <m uie size ofthe values, 
. - .. - - - - - • - . i • ' • - . ::. • , ;.._ , - < - : ' - • 

and type parameters stating the type of the constituents Qt: the v,a.lu~ For-example, a n,pe 
. •· . . ! o • - , • J f - ', • ;' ; ;, : • • -, · , • " _.. · V ~ • '.: ' • - ' -

scheme Stkln : Int •. t : Tj,pesJ defines, a set of da~JY.~ th~t ~av~. the behavior of stacks. 
and that differ in the type .qf the elements. ,of ~~ a,lff .. #)~ ¥J)~r bpun<I pn ~e $le. of 

stacks. Types ~ds for the St;t of all data types. and. is itself llot a qat;a type •. 1);1~ d~ type 
'• - . .· '.~- ' • 1~ -~ --~ _,c., .. ~-•·' ·/, .• - . 

Stk·lnt-100. for example. is an instance e>f ,'¥ above. type. ~~~9lt!. ~(~ n = IOQ". and, 

I= lnt. 

· A type scheme is in. general ~ p~ funaion fa:om ~ .. qlltesuµi .proquct of the 
i ' ,~ ' ' • ' ' ." : T ' , " • " • • • • >, .•; ·. ~ .. • .. . : . • -. o • 

domains of its paramet~~ t,o th~ set of all types~ Tx~. ,f Ofl ~ ~~~•~ set of paµun~rs, 
. - . ,_.. - ;... ·. 

this function either returns a data type or is undefined. For example, the type scl)eme &~ 
' .. -··· 

is a function from Jqt. ~. TJpes, to .. Ty~. ~~t is: .~fi.ned. Jo.r. ~very .. ~ pf parameters. 

However, if parameters of a Jype .scheme ar~ ~\!(lllire4. to:sa~fy, .~~in pr~t!S. the1J£ the 
. ',' .. ·- .. - . .;- .. - ....... --.•-·t·. . <-••.. ' 

function returns, a data type only if the par~te~ satisfy ,the desired properties. For 
• • - ' C •: • : - • - • • 

example, in case of ~e type scheme Setf t : Ty~J. jts, ty~ ,pammeter must have. an .equal 

operation with ~dard properties. 
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The specification language proposed in Chapter 3 can be easily extended to 

specify type schemes. A specification should have' an: additional component, called 

Requires, stating conditions on the parameters ranging over types. The Requires 

component can specify both the operations that the,type 0r,ammeter must have and their 

properties. The semantics of such a specification can be easily; given. · How the deductive 

system proposed' in Chapter 4 can be extended to type schema woutd · need further 

investigation. · · 

Apart from a type scheme, thete ar~ othtr-interest:ing reladohs amcmg different 

data types. There are standard mathematical relations, such as the relation between a 

cartesian product of data types and its components; the relation between discriminated 

unfons and its components; etc. Some of these relations can be expressed as type schema. 

The notion of a subtype of a type needs investigation. For example, what relations exist 

between integers, rationals, and algebraic reals? How do sets, multisets, ordered sets, and 

sequences relate, and how do stacks and traversable stacks relate? 

Our framework is limited in three respects. Firstly, the definition of a data type 

only incorporates the input-output behavior of its operatfons. It does not consider another 

aspect of the operations, namely how efficiently these operations can be performed. It is 

not even clear whether the computational complexity of the operations should be included 

in a definition of a data type, or whether it is an orth0gonal constraint on the 

implementations that should be included in a specification. We think that the input-output 

behavior of the operations of a data type should be kept separate from their computational 

complexity, but a specification should have another component stating the perfonnance 

requirements on the implementations of the operations. 

Secondly, we have assumed a simple mode) of nondeterminism in analyzing the 

input-output behavior of the operations. For an input on which a nondeterministic 

operation can return many possible results, we have not considered how these results are 

scheduled. It would be interesting to incorporate the scheduling infonnation and extend 

the definitions of observable behavior and distinguishability of values. lt would also be 

interesting to investigate how our formalism is affected if we relax the assumption that a 

nondeterministic operation cannot have the choice of signalling as well as terminating 



- 216-

normally on a particular input 

Thirdly. the definitional method handles only. immutable data types. As is 

discussed in Appendix I, for a wide class of mQtable data types, the states of.their objecis 

can be modeled as the values of an immutable data t)!pe. However,, the framework needs-to 

be extended to handle arbitra_ry mutable data ty~ including data types having objects 

whose state is also mutable, for example, ~e datatype /iSlin MA~LISP~ l}be specification 

language and a deductive system based on the extended framework need to be dereloped. 

Berzins's work {3] can be,useful in studying this ~xteQ'6<>1\. 
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Appendix I - Elaboration of Scope anCll,Assumptioqs 

Jn this appendix. we elaborate on the scope of the thesis and the ~mptions 
. ' ; .:, ~ ' . . -

made about abstract data types and their operations. 

1. lmmutab1e andMutabfe Data Types-· 

We adopt the commonly accepted informal view of a data type as_ a collection of 

objects with a-tinitc!collection of-operat~-tomanipu~ .these ob~ts. l11eobjects by 

themselves are not mcaniflgfctl. and the opeta(iOfts.; ·are .· the only way to co11struct. 

manipulate and observe th,e object$ as w~l1 as to ex,tr:~c:tj9fo{JJl;ttiqn stpred in them. 
--;- ·. ··::: ·,, _ .. - ~~·; :- ·,•~·-~.--~i;.!·,'·:~.-~- ~ 

Data types can be classified based om~(lb~t blftl~io1}t An,d,ject ofa data 

type may or may not exhibit time varying bcha~ior. An object exhibiting time varying 

behavior is called a ~1u1able object. ,~er~ a~ :9b~ ~I\~ ,~IW,vi9~. d~ pot~hange is 
- ' ,- . , - ; . - --~. . . ; ' ' . . . . -· . ' ' . 

called an immutable object [49]. We also callan.~ble ~jecta. wJ/~e. A data type 

having only immutable objects is called an immutable data type: otherwise. a data type is 
. - .·_ .·,, '~ :.; '< - _.} :~_: ► > j _.s,; 

called a,mu1able data type. A mutable d~-t>;pe .ll}llf-a~ .ha\'.e immutable ()bjec~ but at 
" · " , · ._ , , l _! • '·-" , • i , . _ ,'.' , , , . -_. . f • l . 

least one of its objects must be mutable .. , A mµ.-Me objttUadr be 1factored into two 

components: (i) identity, and (ii) stale [47]. A mutable data type has at least one op~ration 
.; ·, \ ~' . : - - ; - ' :·: - ·_::;. 1·.: ;: ~ ...,, .. -. ; .' . . ' 

constructlng new Qb~ts-; lts ~ti_QnS;JWl.Y ch~-tb~.~te,ofa:cmµtable object ~jthout 
,._.:,, • • • , • ./ •• • _ ~ < - ; , • ', t . I ~ J • _}, __ ,,, • -. •• ,' . •. : -. • ' • .> 

affecting the object identity. At a given point in¼i::tompotation..;there can exist :many 

different m1Jtable objects havi_ng ~e same state. For a wide class pf mutable ~ta ty~. the 
• ; . ~ ~ ;· '. . - ~ , .. ' • . ·. • . ? ' '. '; ' ~ - . , .. . 

state component of the mutable objects can be desetibed • an immutaQle,dllf:atype. , 
--. • :- ' ,f .• -~ ~ •• 1 : •• • . ·- ~, "' - ~.- ,.. •. ··• • - .+ • 

· Jn this thesis, we have considered only immutable data types with a finite set of 

computable operations. We have not considered immutable data types with iterators (49] 

nor data types involving streams and lazy evaluation [18). 
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2. Exceptional Sehavio,r 

During the design and construction of reliable softwar~. there is often a need to 

have data types with operations exhibiting exceptional behavior. (See [24, 46, 52, 50] for a 
;; 

discussion on the need for an exception handling mechanism in a programming language.) 

It is only meaningful to apply such operations on a subset of their domains. If an input 

falls ,outside t11e subset. such operations notify their callers. indicat,ing, tbat the input is not 

'gO()d,' by sign,alling exceptions. An exception is ~umed tQ have .two component,s, a 

descriptive name and a possible set of arguments which carry iJ:l;formation from the point 

where the exception is signalled, to its. hµndlers~ 

We assume that every operation ofa da~1 type termijnate~ on every input in its 

domain: it either terminates normally by returning a value of its raoge_ type or terminates 

by signalling an exception. We. think it is not a gqQd,pn,ctice to design· data types having 
: • ' • ~. • C' ' S 

operations that do not terQl-inate on some i11p,uts.,, ,r a partial .• functipn.p.n the values of a 
' ~ ' ~ ' . . . . ,. . - . - . 

data type needs to \}e,realized, it, can be, programmed in tcr,m~ o(,the, operation~ o(the data 
. ' - . ,. 'i' .. ·> -· :· \.' ..• ,,. 

type in a host programming language supporting the Jata type mechanism. 

The assumption.of tb.e operatiOJ!~,,l?~i~JptaL~iirp.lif!m m~- f9rmaijsm. developed 

in the thesis. Our fonnalism can be ex.ten'1ed 14) partial QP~m.tiQQs,withot1t much wtliculty 
. . , . - ..,. - • ' ' . ' , ' ' ,_ - •' ,, .•' ~ ; : ; - - ~ ' ; ~. : ' - , ' 

b>7 introducing a spec41) value 'un~ftlled' fQf ev.~cy ~~: JYJ?F ,sue~ that if a parti~ 

operation is not defined on an input, then it r~tums '4paef1Pe4; pn .that input 

3. Nondeterminism 

There are data types some of whose operations exhibit nondeterministic behavior. 

These operations return one of many possible values for a given input.· For example, the 

Choose operation of the data type finite set of integers. which returns any element of a 

given nonempty set, is nondeterministic. Similarly, the lnclex operation of the data type 

finite sequence of elements, which returns a position of a giv~n element in a given sequence, 

is also nondeterministic because the sequence can have more than one occurrence of the 

same element All prior work on data types has assumed the operations to be detenninistic. 

We feel that a formalism for data types must be capable of handling data types with 
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nondeterministic operations, as nondeterminism is a powerful and elegant abstraction 

mechanism for designing programs- (13, 9). Furthermore, allowing nondeterministic 

operations permits the handling. of data types with operations implemented in a parallel 

environment 

We assume that a nondeterministic operation has only finitely many choices on a 

particular input · We rule out data types having operations -with 'infinitely many choices. 

Such an operation can be used to write programs having unbounded nondeterminism (13). 

There is a controversy- about the the · realizat>itity of programming constructs having · 

unbounded nondeterminism and nbout the limitat-ion-of the expr~ive power of a language 

that rules out programs with unbounded nondetetrtiir'iisnf (35}.' Using our formalism, it is 

possible to define a data type whose vaiues are '"infinite' {e.g., -•infinite· sets, 'infinite' 

sequences, etc.,) insofar as these values can be finitely constructed using the operations; 

but, nondetenninistie operations on these valnes that hnve infitiitefy many choices are ruled 

out. Our formalism wouki however extend without much ctifflculty to.the case where the 

constraint that a nondeterministic operatioh has only f'rriitely·rlt~'ny cndices ·on an input, is 

dropped. 

We also assume that if a nondeterministic 01>'eration signals '.an exception on an 

input, then the operation behaves: detem1inisticttlff orr the ffiput· :"Httrs a nondeterininistic 

operation is not: ailowed to have a choice .betw~eri 'Signalling' tmd terminating nonnally ~ 
any particular input This assurttption leads td n sim'pter·and1inodll1ar ctraracterization or 
the observable behavior of the data type than would otherwise be po$Sible. 

- ," ~··- . 
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' Appendix II - Definitions of Algelu:aic Concepts and Proofs of 

Theorems in Chapter 2 

In the first section, we extend the definitions of congrnen<:e, homomorphism, and 

isomorphism to extended heterogeneous algebra, Juiving ,nontfete,ministic ftfflctions. In 

the second section, we present the proof of Theorem 2.2. In the tftird section; we explain 

how the Definition 2.12 of behavioral equivalence on type' ~tbris ~es ttie,-desifed 

property that a computation (i.e., an interpretation of a gro"'1d ~RU) rest:Jlts fo equivalent 

values in two behaviorally equivalent type algebras. . , ,, 

1. Congruence, Hom()morphism, and ,som'Qfphijsm 

Def. A2.1 A congruence R on a conven:tional ·heterogeneous algebra · 

A= [{V0 ,ID'ta'·};;{falo€O}f '· 

in which each f O is -a total deterministic function, is_ a famil,y. o( equivalence relations 

{ Rn, I D' E /:,.' J such that 

for every a€ 0, a : D1 X ... X Dn ~ D', 

for au vl E V DI • . ••• vn € VD n 

vl Rol Vi •...• vn Ron v~ =:> f1J(vp~ .•• vn) Kttfct<l'it •.•• v:). (*) 

We also say that R has the substitution property. 

In an extended heter~neous algebra having nondetennioistic functions, when fa 

is a nondeterministic total function. then(*) is~itiocho .. . · 

v1 R01 
vi . .... v

0 
R0 • v~ ~ ( v yE { f/v1, •• '., vJ))} 3 z€ { ra<vi, .. ~ ._:v~)} [yRJ), z] 

A V z € { fa( vi, . .. , v~)} 3 y E { f / vl' ... t v ~ f.{ { ~l)' z] ). 

If R0 , is the identity relation (equality), then the above reduces to 

_ { f.,(vJ' •.. , vn)} :::: { f.,(vi,.,., v~)J. 11 "· .: , 

Congruences: on an :extended'. heterogeneous.: ptgetwa; A 'cAn · also •be parriaffy 

ordered in the same way as in case of a conventional heterogeneous algebra: 

Given two congruences E1 and E2
, E2 is larger than E1

• expre~d as E1 < E2
• if and only if 

for each D' E 11', Eu¼~ En~. 
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C.Ongruences form a lattice with respect to <. and hav~ the least element (the identity 

congruence) and the greatest element (the universal congruence). 

Def. A2.2 Let A
1 

and A2 be 

A1 = [{ V ~•ID'€ A' J ; {f! I• E O}) 

A2 :;:: ( ~ V ~• I D' € A' } ; { f _; I a € 0 } L 
A family of total {de.l?nuinistic) fuflCtions ,.- = f•ii' .:. VA,-. ·VJ, JD' EA' l is called a 

homomorphism from Al toA2 if 

for each o: D
1 
x ... x D ..... D', . n 

- ... • 1 - . 
for each v

1 
of type D

1 
(1.e., v

1 
E V0 ), .. q v~ ofty_pe D

11
• 

1 

(i) if f 1 is deterministic. then r' is also deterministic and 
u . - u . . . ; - - .. . ' ' . . 

•n· ( f!(,,l' ...• v
0
)) ·=, r;<·•u -(v

1
) •. ·:,. '♦D (v

0
)J, and' 

I n 

(ii) if f ! is nondeterministic, .then (~.is _either noqd~inisµe: or deterministic. and 

•n· ( { f!(vr .... v
0
)}) = { r; ( •n (v1) ••.•• ·•u (N)-~ },, I. , , 

1 n,, 

(Case (ii) above covers tase(i) also~) We ca.It• an:onto lromOOiorphism.from A
1 

to A2 if 

every function in • is onto; in that' case, A2 is called a homomorpllic imagi?. of'Al . ·1r every 
function in • is a bijection. then • is an isomofJJhtsm ~ A 

1 
·;to' A2 • and · A 

1 
and A; are 

isomorphic. Note that, if A1 and A2 are isomorphic non<ieterinihistic algebras.. then they 

have the same amount of. ;nondetetaninish1.; :which it~nofnetessatily ·the case ifA2 is a 

homomorphic image of Ar ·· "-

It can be shown that the results from· conventional hettrogefteOOs algebras in [4] 

extend to the extended heterogeneous algebras. In puticalar. we can show that 

Prop. A2.1 If Risa congruence ~nan extendetl heterogeneous algebra A, then there exists 
. . ' 

an onto homomorphism from A to· AIR. I 

Prop. A2.2 If• is an onto homomorphism:1from ,A1 to A
2 

then the;kern~I R of♦ on A
1
• 

where R ::=;_ { RD' ID'. E 4'} and llot;: {<r. v,>t•n.tl'l _:::;: •uAl")J. is.a congruence on Al. 

I 
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The following diagram in which • is an onto homomorphism from A 1 to A2 • R is 

the kernel of 4> on A·1, His the homomorphism induced by R from A
1 

to A/R, and ez>' is an 

isomorphism from A/R to A2 , comm.utes. i.e .• • = ♦' • H. 

2. Proof of Theorem 2 .. 2 

Thm. 2.2 Assuming that E800l, is the largest congmence on a model of Bool, Eis the 

largest congruence on A. 

Proof By induction on type algeb~ 

Basis: A = 0, the null set 

(i) Dool - the statement holds because of the assumption. 

(ii) D other than Bool - since every val~e in V 8 is 9,Q~rv~~~Y equivalent to every other 

value, the statement is true. 

Inductive Step: tJ. I= fl!, 
Assume that the statement holds for each D' € A. 

To prove the statement for D, we must show that fo is the largest ~uivalence relation 

such that Eis a congruence on A. We prove this by cohtradiction. 

Suppose E0 is not the largest equivalence ~\at!))l and E' 0 is a ,~Jgtr~ equivalence 
r ~~ ·¥ .-.- :" ! 

relation containing E0 such that E' = { Eu, I I:>- E i} u { E' D } is a ~ongruence on A. 

TI1ere exists <v, v'> E E'u such that <v. v'> l. Eu. So, ttl!re is a c(x) of ty~ D' ·EA such that 

there is an interpretation of c[xh·] in A distinguishabJ~ from e~ery iriten,refulion of c[x/v'] 
_,,.~.., 

in A or vice versa. But. this is contradictory to E' being a congruence. which requir~ that 

for every interpretation vl of c[x/v] in A, there is:.a~· i~~~rpr~tati~~ 'Vi ~f ~x/rJ in A such 
• "; i ~ ., ~. 

that <v1, v? E E0 '., and vice versa. So, E0 is the largest ~uivalence relation. I 
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M«liflClltion for type algebras having an exceptlot1 clmndln 

The proof has the same stmcture as,alk':Ne. except that we also· have to consider 

the case when <v. v'> I.. E0 implies that v and-v'· af"e,diwtingt.;sttabfei~use ·o computation 
c(x) (i) signals on v and returns a normal value on l. or --vice versa, or (ii) signals 

+~; 

distinguishable exceptional values on v and -v. Ja the .basis. ~p. for the .case of n other 

than Dool. E0 need not be the universal relation on ~p . 
,.,. ; ~ 

3. ~laboration of the -Definition of Beh3¥Jota1 Equivalence and 
:•f · .. ,,,~; 

Proofs of Theorems 2.5 and 2.6 

In Section 2.2, we defined two type algebras to ~.bch'f\i1tMi1fyrb4uWafet,eii'iheir 
· reduced algebras are isomorphic-Jlly equivalent. , We further ~aborate on this ~finitiop. 

. - . . ~, :; -,,:'. --~::.1'_· _: .... -·.:;_; .. ; .. ~di~. _.-._.-,n': -,-d~ :1 - :' ••• : ·"",~ ;n .... ~:· 
We prove Theorems 2.5 and 2.6 of Section 2.2. The discu~bft' and theorems of this section 

.Ji . ' ) '..: >. '''. ·:' .. ' ,·_;, '·· 
extend to modified type algebras having the exception domain. The set of mappings from 

a modified type algebra A to another modified type -firlJ\iJliitludes·a ttl~pp1t\k-&othl 
the exception do1:1ain of A to the .exception domain of A' ltifricH gttl' &fine'll 6y"'fbe 

.-, ~, 

mappingsonthenonnaldomains:"·,,, .• ";r;i,• _:.,,.(;._:, · ,: ·:_;-, · · ~":' 

As is di~d •in sdbsecti6fl 0

2.!iS, thebdiavioral equivaii;rice or type algebras Al 

and A
2 

can be expr~ as 

. . . -

such that th~ abQve diagram commutes, i.e., 
·. . . . 

•·H1 Hl•'t, (t) 
' , V } f • 

where A/E1 and A/E2 are the reduced algebras Ct>rresponding to A
1 

and"A
2 

respectively 
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and «I> is the isomorphism defined by the isomorphic etJttivatence of A /E
1 

and A/E2 . The 

equation ( t) above defines the set '+' of ntatly to Many ma~irigs, where 

'11 = { 'fin, : V1~,- V ii•I D' EA u {D }}. 

We first discuss how for two,isomorphicaftiy equivalent algebras A
1 

and A2, the 

bijection «l>n in an isomorphism «I> can be constructed, and show that the interf)retations ofa 

ground tenn e in A1 and A2 are 'equivalent.' Later, we discuss these properties for 

beha.viornHy equivalent algebras. 

3. 1 Isomorphically E,qµivalf;Ult Type Alg,;,b,ras 
. ~ . . . ~. ' . 

For the case when the deterministic constructors of a data type D can generate aU 
T , : • 

the values of D, we have 

Thm. A2.J If A1 and /42 are isomorphically equiv11l~nt. then\ { •n· 11)' EA} uniquely 

· determines the bijection 4>0 . 

Proof By definition of isomorphic eqttivalence, there exists ~·ibljedtiorf ♦0 : ·Vb -+ V~ 

such that 4> = { «l>o, ID' EA'} is an isomorphism. We prove the· st:aremertt. by 

contradiction. Let us ~urneJhat 4>g, is not Jl~i~~ .i~~a(i, ~~re Jlfe, two biject\C)ns t6 
E\Od ,~~uch tbqt 4>

1 
;= { 4>1l' JD' E 4} U.{ •~} ~d ~2 = f•o· 10'. EA} U { 4>QJ are. 

isomorphisms. 

Since•~ and «l>ii are different, there exists v EV/>, •~(v) -:/:. •iiv). We pick av 

that can be constructed by the minim~~. ,n~~hfL (~Y, ~ k) qf: ; app~i~~tio~~ of the 

deterministic constructors and on which·~ and'.~i d~fTer. We ~~e V = r;(vl, ' ...• vD) for 

some a, and if D. = D, V. can be constructed
1

,by' t·:·< k ri~~~~ or' applications of 
I I , i .' , : 

constructors;· thus, •~( v) = •1~( vi). , 

By the definition of isomorphic equivalence, 

4>~(v) = r;(4>
01

(v1), ...• • 1~(vi), ...• •u}v
0
)). and 

•i(v) = r;<•n/v1), ... , 4>ii(vi), ...• 4>n}v~), 

meaning that•~( v) = •'ti v), which is a contradiction. 

So, there are not any vsuch that 4>µ(v)~ ♦i(v). 

Hence the proof of the theorerrt: I 
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We can oonstruct the bijection •n as follows: 

For every constructor .: D
1 
x . . . x D

O 
➔ D 

(C,l)
1
(v1) = v; I\ ... A •n}V

0
) = v~) ~ c,0(f!(v1, .. .', v

0
)} = f;(v;, ... , v; ). 

The case of c,s not taking any argument of :type. D serves as the -basis step in the 

construction of •o . 
The above theorem holds in case A 

1 
and A

2
. are ~duced even if some of the 

values of D cannot be constructed without using a nondeten11inistic ronstrudor. However, 

it does not hold in general; for example, consider a variation of the type algebra A;1 for 

· Set-Int denoted by_A;i • having everythi~e1se-~:saffie1~'1H1'1!i 'ext\!plthat Ins; the 

interpretation of .the op~ration Insert, is a non~cterministic functi~n. which appends the 

integer being. in~rted to the bcgin~ing, of the ~q~~~ce re~-resenting·th; given set or at the 

end of the sequence. 

·ID5·((i1, ••• , im)• I) ~ · ~ (i1, ••• , I > · . 1 , 3<1 <J' .<"'m• /., = i. 
m - - J 

(i1, ••• , im' 1> or <i, ii' ...• im> otherw~~ ;. 
As. 

at is clearly :~mo~lly equivalen_, to i~ apd:.the~r f$. ~--than ~e. ~morph~ 

from A~1 to itself. 

nm. A2.2 Given two isomorphically equivalent ~iie'algeh A
1 

and A
2 

defnri'ng an 

isomorphism •• a value voftype Din :Al hastne saint~'""-~ behaVidt1n A'l'as•o(v) 

in A
2 

in the sense that for every term c(x) oftype.D" E (D)• with on~ free vanable,6flype 

D, 

• 0 ;, ( { c(x/v) I AJ } ) = { c(xl•0~v)Jf A
2 

}. 

Proof By induction on f:l)e depth of l in c(,x). 

depth(x) = 0. 

dcpth(a(e
1
, •••• e

0
)) = max(depth(e

1
), •••• depth(e)) ~ 1, 

where e. has x as a variable. I . 

Basis depth(c(x)) = 0. 

So, c(x) is X, and the statement of the theorelll trivianx; ~~ 

Inductive Step A~me the stateme_nt . of the theorem, _ for the case when 

depth(c(x)) < k > 0, to show for the case when dep~c(x)) :;= k. . Let 
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c(x) = a(e
1
, •••• e

0
). 

where e. is of type D .. We assume that the statement holds for each e .• so 
I I I 

ct>l>i( { eJx!v]I A1 } ) = { ei[x/cr,o(v))IA2 }. 

ct»I>,,( { cfxlv)I A
1
·}) = ca,0 .. ( {J! ({e1{x/v)I A

1 
} •... , {e

0
{x/,fl A

1 
}) } ) 

= { r;(cr,1)1({ el[x/v]I Al}), ... , c()n}{ eJx!v)I Al)})} ·(since 4) is an isomorphism) 
2 . . ' . . . 

= { f
0

( {e
1
[x/cr,0 (v)]I A

2 
}, ... , { e

0
[x/cJ>u(v)D A

2
})} 

= { a(e1, ... , e
0
)[x/cr,D( v)]I A

2 
} = { c[x/~D( v)Jl ,._

2 
}. I 

For the case of modified type algebras.. we are interested in t¢nns that such. that cf xi v)I A 
1 

and c[x/ct>u( v)]I A are not undcfine<;i. 
2 

3.2 Behaviorally Equivalent Type Algebras 

Thm. A2.3 If A
1 

and A
2 

are behaviorally equivalent, 

then <v. v'> E ♦n-~ <fti, [v']) E •o. 

Proof Obvious from the diagram. Since 4> • H1 = H2 • -.Jr, from <v, v'> E +0 • we get 

• ail vJ) = [ v'J. 1 

We now present the proofs of Theorems 2.5 and 2.6 of Subsection 2.2.S. 
, "'• 

Thm. 2.5 For behaviorally equivalent A1; and A2, ,_for. e\'.~la!)JOund term· e of. type . •', . " 

D" E (D) . for every f E { ti A
1 

} , there is ii v' € { el ~ ~ SJ)(:b th~t < [ ~ ]. I v' ]> E •»"'. and 

vice versa. 

Proof By induction on the structure of type algebras. 

I.Basis 4 = e 
(i) D is Boot: Since all behaviorally equivalent algebras are isomorphic and the 

observable equivalence relation is the icJentityrcl~11#le aboye is true. 

(ii) D is other than ·Dool: Since the observable cquivailen~ relation .i.s the universal 

relation. th~ above is true. 

I. Inductive Step A -J; f/J 

Assume that the above statement holds for all ground terms o_f type D" ,E (:0) + not 
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having any operation symbol in o. (1) 

To show for a ground tenn e by induction on number of operation sympol. from. 0- in e. 

2. The basis step holds beca~se of the assumpti()n.:, _ 

2 Inductive Step Assµme fore-having r < k-0eeurrences of operation symbols fr.om o, 

to show for e having k ~urrences; (2) 

This is also proved by induction on lbe depth 9f the putennost 9peration symbol . ' - ;- "• ' ' 

from o in e. 

depth(o(el' ...• e
8
)) = 0 ifa € O, and 

dcpth{o(e1, ..•• e
0
)) == min(depth(e

1
) •.•.• depth(~J) +·1 · . ifa t 0 . 

. l Basis depth(e) = 0, i.e .• e = a(el' ...• e
0
}, and ct~U~ · ,,;,,, · 

So, an e. can have at most k-1 occurrences of opemtions from_ o ... 
I .: __ ·, "°~~ .:~ ;;;- f /. .. ;- f; y ~ } :~~ ~? ~ .[ \.f :t '~ : "" ,f . · · 

We prove the statement of the theorem in one direction; the proof in the other 

direction is the same except that vis to~-~•~ Kori •. ·_-
, • • ~ , • .] ; •• • • e .> • 

If v E { el A
1 

}, i.e., if [v] € { e I A/E
1 

}. th~~~ ~~Jl~of&!, 1 Jhe mterpretation of a 

in A/E1! such that ~ _ 

(v] = 1!([v1], .••• (vJ). where [v) € { ei I A/E/ for each 1 ~i ~ n. 

By inductive hypothesis (2), for every [v) E { eil A /E }, there is a [v~ € { eil A /E } such 
. . · ,' . . . c;i · 2 : . .• . . , , .. , , .. _ ? · 2 

that •o. ([ V)) = [ v~. 13ecause • is an isomorphism, there. is a choice of&!; such that 
J 

Ctt,•~f "'.l): ::'.(fl= al<fl'i) •. ;.,{,,meaning thatrv1ct'{ ef A :}~ - · 
' 2 . . 

1. Inductive Step A~me for I! having depth{~)< m1> 0,. to'Shbw fore having 

depth( e) = m. (3) 

e = a(er .... e) a l. 0. 

The proof goes the same way as for the basis step except that w~ use the models 

ofthe data type D' that has the operation a. I 
, ' ' • • • • > ~ • 

For modified type algebras. we areinterested'irrgroundtetms whose interpretations ate not 
undefined. lt can be.shown· for· behaviorally ,eqtrivalenf type ntgebias A 

1
: and' A

2 
that if for 

some ground term e, el A is undefined, then el A is also undetinecf imd vice versa. I · 
1 2 

•, 

Thm. 2.6 For behaviorally equivalent A
1 

and A2, for any ground terms e1 and e
2 

of type 
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D", { [c1 I A l } = { [e2 I A l } = { [e1 I A l } = { [e2 I A l }. 
1 1 2 2 

Proof From the above two theorems and the fact that A/E
1 

and A/E
2 

are isomorphically 

equivalent, the statement is immediate. I 
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Appendix Ill - Proofs of Theorems in Chapter 4 

This appendix contains proofs of various theorems in Chapter 4. 

1. Specifications without Nondeterminism and without 

Exceptional Behavior 

Thm. 4.1 Every constructor ground term e of type Set-Int' is equivalent by equational 

reasoning to a ground tenn e' not having any occurrence of Remove. i.e .• the equation 

• e = e' • E EQ(Set·lnt'). 

Proof For every constructor ground term e of type Set-Inf. there is a constructor ground 

term e' such that 

(*) 'e = e'' E EQ(Set·lnt') A #re(e') = 0, 

where #n.'(e) gives the number of occurrences of the operation symbol Remo,e in e. 

Similarly. the fun~ion #in gives the number of occurrence of the operation symbol Insert 

in a term. We show(*) by induction on #re(e). 

Basis #re(e) = 0, 

The above statement trivial1y holds, because e' is same a, e. · 

Inductive Step Assume the statement holds for esuch that #re(e) < k. 
show for #re(e) = t. 

Consider the outermost subtenn e
1 

in e such that e
1 

= Remove(e
11

, il). Oearly, 

#re(e
11

) < k, so there is a subterm e;1 such that 'e
11 

= e;
1 

• E EQ(Set·lnt') and 

#re(e~
1

) = 0. Thus we have 'e
1 
= Remove(e;

1 
• il)' E EQ(Set·lnt'). We show that(*) 

holds for Remove(e~l' il) by induction on #in(e;1 ). 

Basis #in(e;
1

) = 0. 

'e
1 
= Remove(Null, ii) 

= Null' E EQ(Set·lnt') using Axiom 1. 

e is obtained by substituting Null for e
1 
in e. 
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Inductive Step Assume the above holds for # in(e~
1

) < m, 

to show for e~
1 

having m Insert's. 

e~
1 

= Insert(e
21

, i2), so 

'e
1 
= Rcmovc(lnsert(e

21
, i2), il)' E EQ(Set·Int'). 

171ere are two cases. 

Case I il = i2 

· 'e
1 
= Remove(e

21
, il)' E EQ(Set·Int'). Axiom 2. 

By the inductive step, there is an e;
1 

such that 

'Rcmove(e
21

, il) = e;
1 

• E EQ(Sct·lnt') and #re(e;
1

) = 0. 

So, 'e
1 
= e;

1 
'·E EQ(Sct·Int'). 

We get e' by replacing e
1 

by e;
1

. 

Case 2 ~ il = i2 

·e
1 
= lnsert(Rcmove(e

21
, il), i2)' E EQ(Sct·Int'). 

By the inductive step, there is a e;
1 

such that 

Axiom 2. 

'Remove(e
21

, il) = e;
1

' E EQ(Scl·lnt'), and thu:.; 'e
1 
= lnsert(e;

1
, i2)' E EQ(Set·lnt'). 

We get e' by replacing e
1 

by lnsert(e;
1

, i2). I 

Thm. 4.4 If a specification Sis sufficiently complete, then Sis behaviorally complete. 

Proof IfS is inconsistent, then since F(S) = 0, so Sis trivially behaviorally complete. 

If Sis consistent, we show that a sufficiently complete Sis also behaviorally complete by 

contradiction. 

Suppose Sis not behaviorally complete, so there exists two reduced algebras A
1 

and A
2 

in 

F(S) that are not isomorphically equivalent w.r.t { P Io E o }. Without any loss of 
(1 

generality, we can assume that A
1 

and A
2 

share the same domain corresponding to a 

defining type, so for each D' E !::., <l>u, is the identity function. Since every constructor is 

deterministic, there js a unique mapping <l>u: v1;- V1~ which can possibly satisfy the 

following for every o in 0. 

for each set of values v
1
, ... , v, such that P [x

1
/v

1
, ... , x Iv ]I A = T, 

n a n n 
1 

(*) <l>o,(f~(vr··· vn)) = f~(ct>o/v1), · · · 'ct>o/vn)). 



ff A
1 

and A2 are not isomorphically equivalent w.r.t {Pu I a€ o }. this means that there 

must exist an observer a and a set of values v
1 
••••• , such 'that :P [x

1
/v

1 
••••• x Iv JI A 

n a n n l 

holds and (*) is not satisfied. 

Using the minimaJity property, we can construct a legal ground term o(el' ... e
0

) of 

type D' .€A.where D' is the range of a. and for each 1 <i < n, ei is the ground tenn whose 

interpretation is vi in Ar Since S is sufficiently complete. there exists a ground term e of 

type D' not having any operation symbol of D and.:auxiliafy fundion used:inS such that 

.• a(el, . .. ' en)= e. E EQ(S). This means that.· 

•. f!(el, ... 'en)I Al = r;(e, ..... e~)I A2 = el Al 9 

because A
1 

and A
2 

are reduced-algebras. This is in contradicdoft,to'(*) not being satisfied. 

Hence the result. I 

Thm. 4.6 For a consistent and sufficiently complete S. if ~ny two legal gro~nd terms e1 and 

e
2 

of type Dare distinguishable by S. then ··e
1 

ie. e/ € ffi(S{ · - · 

Proof: e1 anp ~ are distiDWf~ble J:>y S. mewis, ~tlor "Y A E_.f(S),- e11 A _and eJA are 

distinguishable, i.e., there exists a·term e(i) of type Jr E; .. ~til ~Jree varia,ble xoftype 
~- . ' ~ ..... ,, . 

D such-that c(x/v1] I A is distinguishable from c(x/v
2
] I A in A. 

Using the above fact, we prove the theorem by induction on specifications. 

Basis Specifications with no defining types. 

Case l Dool 

'T • F € DS(Bool). Every ground. term of type Boot is equivalent to either T or F. so 

the theorem holds. 

Case 2 D other than Bool 

AH ground terms are observable equivalent. so the theorem holds. 

Inductive Step As.5ume the above statem~nt for tl)c speci(acation S of a data type D' used in 

the specification S of D. To show for S. 

We can prove by contradiction that 'e
1 
a e

2
' € DS(S) as follows: 

Asmime e
1 

s e
2 

then c(x/e
1
] e c(xleJ, 



-239-

since Sis sufficiently complete, there exists,ground tenns ei and e; of type D' such that 

e~. e; do not have any occurrence of an operation symbol of D, and ' e
1 

s_ e~ ' E EQ(S) and 

'e2 = e;' E EQ(S), so we have 'ei = e;· E EQ(~):, Si~c:e. e;. e; are distinguishable by S', by 

inductive hypothesis, ' ei .J:. e; ' E DS(S'), so ' ei ~ :ei' _i~ plW. in DS(S). This is a 
I '. ~ ••• .c 

contradiction, as Sis consistent So, 'e
1 

-1:. e
2
' E DS(S)~ I 

2. Specifications with Exceptional Behavlor and without 

Nondeterminism 

Tllm. 4.9 Every legal constructor ground tenn e of type Stk·lnt .such that 

'N?Slk·lnt(e) = T' E EQ(Stk·lnt), is '1Q~iv~l-~,at ;b~ ~_gu~onal,:t:1-!~lli{\g to_ 4110tpet legal 

constructor ground tcnn e' having only Null and Push, i.e., if 'N?Slk·lnt(e) = T' E 

EQ(Stk·lnt), then ' e = e' ' E EQ(Stk·lnt). 
, 

Proof Proof is similar to that of Theorem 4.1 above. 

Let #po ·and #rep be the fcinctions on terms computing riotnbeiof occurrences of Pop 

arid Replace respectively. We sh6wbyinduction on #'po(e) +· #rep(e)that . 

(*) if 'N?stk·lnt<e) = T' E EQ(Stk·lnt), then there exists an e' such that • e = e'' € 

EQ(Stk·lnt) and #po(e) + #rep(i) :::: 0~ · : · · '· · 

Bas~ #po(e) + #rep(e) = 0, 

e serves as e'. 

I nduclive S1ep A~ume (*) above for the case # ,o(e) + ti~)< k, 

to show for #po(e) + #r-ep(,e) = k. 

Consider. the outermost subtenn e
1 

in e havmg Pop or Replace m; the outermost 

operation. It is obvious that if 'N?stk-lnt<e) e T' £,EQ{Stk .. lnt).,then fflstk·fdt('e1) :ii r 

€ EQ(Stk·lnt). 

Case I e
1 
= Po,Ce11) 

Since 'N?stk·lnt(e11) = T' E EQ(Stk·lnt}.,,by iridllctivc &tep, there exists an ei1 such 

that' e11 = ei1 • E EQ(Stk-lnt) and #po(ei1 ),-f., #ttfte11 ) = 0. 

Since 'N?stk-lnt(e1) = T' E EQ(Stk·lnt). eh is not Nul~ and so e11 = Pusb(e21, i). 

Thus 'e1 = Pop(Push(e21' i)) = e21' E EQ(Stk·lnt) ., ,Axiom!. 
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By replacing e
1 

by e
21 

in e, we get the required e. 

Case 2 e
1 

= Replace(e
11

, il) 

Since 'N?SUc·lot(e11) = r E EQ(Stk·lnt). by inductive step, there exists an e;1 such 

that· e11 = e~1 • E EQ(Stk~lnt) and #Po,(e;_.) + #~e~1 ~ . 0. · 
Since 'N?stk·lnt<e~) = T' E EQ(Stk·l~t). e;l ·is oot Nuil, and so e;l = Push(e21' i2). 

Thus ef = ,eplac.CPuslt!en, i2). il) 

= Push(Pop(Push(e
21

, i2)), il) Axiom 3 

= Push(e21, il) Axiom 1 

So 'e1 = fusll(e21, .il}' ( F~stk·lat). 

By replacing e
1 

inoeby Pusla(e~i· il), we get tfle'required e. 1' 

Thm. 4.12 If a specification S is sufficiently complete, then_ S is _behaviorally complete. 

Proof If S is inconsistent. ,lleo ~e as) :-. f/J, so. S ~ trivially. .belu)viof?Uy CQlllPlete. 
, - . • • ! • ' ' • - '. · '. • 4 ~ > - •· ! · ' e ~ • • - • 1 • • ~ • -

If S is consistent, we sbow that~fficientlyi.w1,J1kle,Sj1J beha~ioQilly co~~ .by 
' • • •-,•••~- ~, • • ••,~;• 'rf • J • <. "" ••• -• • 

contradiction. . . _ , . , .. , , __ ; ; ,/ . , J : 

Suppose S is not· behaviorally complete •. so lll.&rf ~ists two reduced algeb~,.Ai 
and A

2 
in f(S) such that for every D' EA, the domain corresponding to _D' in A

1 
and A

2 
are 

'._ ~ ~ ; 1\-:,·~,.~ <~~•., \, •~ .<: !: ; ::, ; :. 'r~, 

defined by isomorphically equivalent algebras in f(S'), where S' Is a specification of -W. 
and A

2 
is not partiaJly isomorphically embeddable w.r.t S in Ar Withou{;i~y .km of 

generality, we can assumc-:-tJliat •
1 

aftd,'41\share1the·same~ddltlaillicorresponding:to ·a 

defining type, so for every D' € A, •o· is the ideiltity 6'Mdoa. 5iltce:-,every-,oonstructor is 

detemi.nistic. there :are unique··: one ,to one partiaJ:dfvnelions :•0 ,: -V1~ ~,v~ · and 

.,:xv: E¥V - DV whicll;:ean ~ly sausfy'.,~-~-Jor -A2 to,be-patually 

isomorphically embeddable in A
1 

(see Def. 3.13 of isomorphic embtddalititj) ·in 

Section 3.5). The first two requirements there can be easily saeisfied. · Thel tllird 

requirement iswmplex and is restated bekl,w;. · 

For every operation ,, € 0~ for-ever, set of valuea~,1~-•• ;.,Y. snm:tbat •o<~.) is defined 
. D . I 

I 

for each l < i < n, and P ,,lx/•r .... x/vJ•A, :::· I'> · 
. 1 - . 

(a) if f! signals an exc~tion value e.x(vi, ;· .. ,'v_;),spec1liedctb ·1,e optional by S on the 
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input v1, .•• , v
0

, then the associated condition O(x
1
, .. , x/hokls for vP • .. , vn, and 

r;(c1>n/v1), •.. , «1>0}v
11
)) either signals ex(♦0~(v~) •... , •o~(v~)) or returns «l>u,(v') for 

some v', or 

(b) if •o/vi), ... , •u~(v~) are defined and r; signals an exception value 

ex(•n;<vi), ... , •o}v~)) specified to be optionalby Son ,the input •o/v1), ..• , 4>0}v
0
), 

then the associated condition O(x1, .. , x
0

) holds for ♦01(v1), •••• •o} v ), and 

f1
( v

1
, •• •• , v ) either signals ex( v

1
' •... , v') or returns v'; otherwise, a n m 

(c) 4>1if!(v
1
, ... , v

0
)) = f~(4>n/v

1
), ..• , cf>D (v

0
)) (•). 

n , 
For A

2 
not to be partially isomorpbically embeddab1e in A

1
, at least one of the 

above conditions is not satisfied. Supposingly if the condition (a) is not satisfied, we have 

f;(•11i<v1), ... , cf>un(vn)) ~ ex(cl>Di(v;), ... '«l>n~(vJ), 

meaning that A2 does not satisfy the optional exc;~ptiQU ~oodition for a in S, which is 

contradictory to the assumption,d\at A
2 

€ f{S). So., the c;ondjtjor,i (a) could not have been 

violated. Similarly, it can be shown that the condi~io,,n (b) c9uld, not ha~e been violated, 

The violation of condition (c) is then the only possibilit;. In that case, for so1:1e 

a E 0, 

(i) exactly one of the two sides of the,equation (*) Sigi:ials an ~~ceptio~ 

(ii) different sides signal different exceptions, or 

(iii) different sid¢s ~eturn different values. 

Using minimality property, we can construct a legal ground term e = a(e
1
, •• , e

0
) of type D', 

where for each 1 <i < n, ei is the groun~ tel11' wh~, i~terpret:ation is vi in Ar The 
> ~ 6 • '. O + .... i • i ~ ,' S 

possibilities (i) and (ii) above are ruled out because of the following reasons: 
. ~ - f. 

. ' 

For both (i) and (ii), the exception signalled by either side _mµst be different from the 

optional exception. Since S is sufficiently complete, eithe;'.,'_N?0~e{~ T' E EQ(S), or 

·N?u,(e) = F E EQ(S). If ·N?0 ,(e) = T' E EQ(S), th~n none 'of elA
1 

and elA
2 

can be~ 

exception .value, ruling out (i) and (ii). If ·N? 0 ,(e) = F' E EQ(S), then ·e signals ext' E 

EQ(S) for some ext meaning that 

elA = elA =,ex~A 
. 1 2 1 

again ruling out (i) and (ii). 

The only possibility is (iii). 'lben e must be type D' € A, as if e is of type D, then 
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the dcfinitioo of 4>0 ensures that the equation (*) is satisfied. We have eith~ 'N? 0 ,(e) a r · 
E EQ(S) or neither "N?D,(e) = T' E EQ(S):~ •Nf0l(~)=· F € [9(S). lf"N?0,(e) a T E 

EQ(S), then there is a ground term e without any operation symbol of D and auxiliary 

functions used in S such that• e.....: e' ~ <€ ~1$0 eti :;:,elAi ·:; e·~A rulifl&oot (iii). If 
1 ·, l 1 

neith~r: "N?0,(e) :e TE F.Q(S) nor 'N?tr<e}i•-~ E EQ(S).lhffl,,alsp,1h~re exists·a grpuud 

term e' without any operAtion symbol of D alid, au~il~ imolio8s .useddn'.S such. dlat 

'e = _e' E EQ(Su { N?u(C) a T }), .which again mies qut (iu,~,~.,~- of the r~ns 
1 - ·-

similar to the ones disc~d abovo. 

The above th~s implie5 that A2 is pa~~ .. ~~~~fly ~m~~dable in~A1• 

Hence tile ~It. I 

Tinn. 4.13 For a consistetlf' and sufficientlyrompleteiS, it any two legal ground terms~ 

amle
2 
ofrype Dare distih8\lisl\able t,jS, thefr!e;· Iii~'- E,IJS(S)1 :,· ·) ·; 

. , I _-, , ; - '. . . - , . : ~ ~; ~ ' .,. , ·. - - ;('.' • _·: ~. _; , - , .• 

Proof: e
1 

and e2 are distinguishable by S. means that for any A € f,{S), e1] A and e21 A are 
• • J- - ' • : .- - j -· " - ' ' ' • t ~ • ~ . • .: .,.-" ~ • : ~ J ' ' , ; ' 

distinguishable, i.e., 

(a) e11 A is an exce~tion value ~n,~ ~ii A' j~ ~,~al val,~~ __ 
1 

' . ' '. . - - .: ,..:.1 ! • -~ ~- ·, ~ ! ! .; .,:; ~-' >,.-:- "' ~.:. ~ I'.. , 

(b) e11 A and e21 A' are distinguishable exception values. or , _ . . 

(c) e
1
1 A and e

2
1 A' are normal values and' tfi;i-e' d~ a. ~~-i~~f ~fty~ D' ·€ Ii u { D} 

with one free variable xoftype D suc_h thatc(x/vJ(;'is
1d~,t~a,~J~~',~~;c[~/vil A in 

A. ' . ' . ,- \,':,'., l" 1 ,•'f'-" ~ ,., , -'f . . -, 

Since S is sufficiently complete~ it can be shown that if . ; ·• ~ - . 
_S. f .. ·• r : ,- i. ~ • j • -~; • • -. ~ I • • ~ • • 

(i) a ground term e_inierprets to M exception value in. every algebra" A € f(S). then. 

·N? 0,( e)_ = F" ;€ ~S). an~ ;..so 

__ (ii) if ;,e interprets to a ~rmal value in every algebra· A ~:. f{S)~ · then 'N? 0,( e) == T' £ 
EQ(S). . ; :. . . . \ 
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Using the above facts, we prove the theorem by induction on specifications. 

Basis Specifications with no defining t:,pes. 

Case 1 Boot 

'T '£ F E DS(Bool). Every ground term of type Deol·<irequivatent to either T _or F, so 

the theorem holds. 

Case 2 D other than Dool 

Subcase I S does not specify any operation to signal, 

AJI ground tenns are observable equivalent, so the theorem holds: 

Subcase 2 S specifics operations to signal · 

Assume e
1 

-and. e
2 

are distinguishable· by S, so, there. is one of the above three 

possibilities. We show in each case how 'e
1

" e
2
' can be derived in DS(S). 

(a) Since Sis sufficiently complete, 'N?1ic1
) = F' E EQ(S) and-'N?n~e

2
)a T' E 

EQ(S), and by the axiom (vii) in Subsection 4.3.3, 'e
1

" e
2
' € DS(S). 

(b) by sufficient completeness of s. usirigthe axforti' {vi)' in Subsection 4.3.3 and 

repeatedly using the argument in c~e 2, we get · e
1 

" ~
2
• € DS(S). 

(c) By the substitution property of the operations, and the sufficient 

completeness ofS, we get 'e
1

" e
2
' E DS(S), by the method of proof by contradiction. ' 

Inductive Step Assume the above statement for the spccificatfon S' of a data type D' used 

in.the specification S of D. To show for S. 

Assume e
1 

and e
2 

are distinguishable by S. · For the possibilities (a) and (b ), the argument 

used in the basis step applies. For the third possibility, in ·addition to the case considered in 

the basis step, we have the case when the interpretations of e
1 

and e
2 

are distinguishable in 

A because of a computation c(x) returning distinguishable results of type D' · E 11. For this 

case also, we can prove by contradiction that 'e
1 

E e
2
' E DS(S) as foHows: 

' Assume e
1 

s e
2 

then c[x/e
1
) = c[xleJ, (*) 

We have three subcases: 

Su beast J Both sides of(*) interpret to a normal value in A. 

Since S is sufficiently complete. there exists;ground,tenns ei and e; of type D' 

such that ei, ei do not have any occurrence of an.operation ~ymbol of D. and' e1 a ei ', 
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· e
1 
= e;' E EQ(S), so we have •ei = e;• € EQ(S). Since ei, e; are distinguishable by S', by 

inductive hypothesis, • ei 5' e;' E DS(S'), so 'se; ·-' et is-· also in DS(S). This is a 

contradiction, as Sis consistent So, ·e
1 

5' e
1
' € DS(S). 

Subcase 2 · One of the tw~>: side&ef (*) interprets to: a normal value. 

Without any Joss of generality, ~ume l.h.s. interprets to a nonnal value. By 

sufficient completeness of S, there is a e; such that ·e
1 
= e~• EcEQ(S),' and there is an 

exception ground term ext such that ·e
1 

signals ext E, EQ(S)~ s, again, we have using the 

axioms, ·e
1 

5' e
1
' € DS(S). 

Subcase 3 Both sides of(*) interpret to distinguishable exception values. 

. Using the sufficient completen~ ofS,,we cu,show using:a similar argument that 

'e
1 

"= e
1
' E DS(S). 

Htnce the theorem. I 

3. Specificatio_ns with .. · Excepti9n~ . Behavior and 

Nondeterminism 

Thm. 4.14 /and TR(f) are semantically equivalent. 

Proof By induction on structure off. We only need to sho\V_the basis st~p; the inductive 
,, 

step is straightforward because the symbols-. v. and Y have the.same,interpretation. _S<>. 
,· •• • j - . 

we have/ as · e1 - e2.' Consider ~n extended type algeb[~ A of D_in which/ and TR(.Q QlJl 
• ; • ,.I •• ' • 

be interpreted (i.e., A has an interpretation for every nondeterministic operation symbol a 

and the corresponding auxiliary function symbol _ "-' such ~at_ the interpretation of the 

auxiliary function is the relatlon computed by the interpretation- of the nondetermi11istic 

operation symbol). 

Case (a). /does not have any occurrence of a nondeterministic operation symbol. 

TR(f) = f. so the statement trivially holds. 

Case (b ). Both e
1 

and e
1 

have occurrences or nondeterministic symbols: 

It is obvious from the description of the procedure 'FR 'm Subsection 4.4.l that the 

interpretation of' e
1 
= e

1
' is equivalent to the interpretation ofTR(f). 

Case (c) Exactly one or e
1 

and e
2 

has occurrences of no~deterministic symbols: Again from 
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the description of TR in Subs1:ction 4.4.1, the interpretation of 'c
1 
= c

2
' is equivalent to the 

interpretation of TR([). I 
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Appendix IV - Specifications of Data TYYJeS used in Chapter 5 

In this appendix, we give specifications of the data types Null, 

Struct (n
1
: D

1
, ••• , nk: Dk). Oneof (n

1
: D

1
, ••• , nk: Dk), and_ Sequence-Int used in Chapter S. 

Struct, !nd Oneof are type schema. Below,. we specify an instance of these schema 

assuming fixed but unspecified parameters, i.e., k as well as D
1
, ••• , Dt are fixed. Since the 

specification is given for an arbitrary k, we have used the· .. : notation. The specification of 

any particular instance, such as Oneof(empty: Nul'9 pair: Pair), 

Struct (car: Int, cdr: List-Int) used in Chapter 5, can be given without using the • .. .' 

notation. 

F1111re A4.1. Specification of NuD 

Operations 

Nil : - Null 
Equal : Null X Null -+ Bool 

Axioms 

Nil=NilaT 

as x1 = x2 
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Figure A4.2. Specification of Struct (n1: D
1
, ••• , nt: Dtl 

Struct [n1: Dl' ... , nk: Dk] as D 

Operations 

Create : D 1 X ... X Dk-+ D 
Fetch_n1 : D -+ D1 • 

Fetch_nk : D -+ Dk 
Replace_n1 : D X D 1 -+ D 

Replace_nk : D X Dk -+ D 

Equal : D X O -+ Bool 

Axioms 

Fetch_n1(Create(x1, ... , xk)) = x1 

as x1 = x2 

Fetch_nk(Create(x1 , .... , xk)) = xk 

Replace_n1(Create(x1, ... , xk}, y1) = Create(y1, ... , xk) 

Replace_nk(Create(x1, ... , xk}, yk} = Create(x1, ..• , yk} 
Create(x1, ... , xk) = Create(y1, ... , yk) = (x1 = y1) A ... A (xk = yk) 
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Oneof [n1: Dl' ... , n": Dt] as D 

Operations 

Make_n" : D1c. -+ D 
Value_n1 : D -+ D1 

-+ wrong-tag 

Value_nk. : D -+ D1c. 
-+ wrong-tag 

ls_n1 : D -+ Bool 

ls_n11 

Equal 

: D-+ Bool 

:DXD-+Bool 

Restrictions 

-1s_n1c.<•> => Value_nt(x) signals wrong .. ta1 

Axioms 

Value_n1c.{Make_nt{xk)) = xk 

ls_n1{Make_n1(x1)) = T 

as x1 = x2 



ls_nk(Make_nk(xk)) = T 

Make_n1(x1) = Make_n1(y1) _ x1 = y1 

Make_nk(xk) = Make_nk(yk) - xk = yk 

X=Y=Y=X 
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Figure A4.4. Specifacation of Sequence-Int 

Sequence-Int as SI 

Operations 

New : -+ SI 
Addi : SI X Int -+ St 
Addh : SI X Int -+ SI 
Concat : SIX SI -+ SI 
Subseq : SI X Int X Int -+ SI 

-+ bounds 
-+ negative-size 

Fill : Int X Int -+ SI 
-+ negative-size 

Fetch• : SI X Int -+ Int 
-+ bounds 

Bottom : SI -+ Int 
-+ bounds 

Top : SI -+ Int 
-+ bounds 

Reml : SI --+ SI 
-+ bounds 

Remh : SI --+ SI 
-+ bounds 

Size : SI -+ Int 
Empty : SI -+ Bool. 
Replace : SI X Int X Int -+ SI 

-+ bounds 
Index : SI X Int -+ Int 

-+ element-not-In 
Member : SI X Int -+ Bool 

as x1 • x2 

as l([I] 

Equal : SIX SI -+ Boot as x1 = x2 

Restrictions 

(i1 < 1 V i1 > (Size(s) + 1)) => Subseq(s, 11, i2) signals bounds 
(- 01 < 1 V 11 > (Slze(s) + 1)) A (12 < O)) => Subseq(s, 11, 12) signals negative-size 
i < O => Fill(i, j) signals negative-size 
(i < 1 V i > Size(s) ) => Fetch(s, I) signals bounds 
Size(s) = O => Bottom(s) signals bounds 
Size(s) = O => Top(s) signals bounds 
Size(s) = 0 => Reml(s) signals bounds 
Size(s) = O => Remh(s) signals bounds 
(i < 1 V i > Size(s) ) => Replace(s, i, j) signals bounds 
- Member(s, j) => lndex(s, j) signals element-not-In 

Axioms 

Addl(New, j) = Addh(New, J) 
Addl(Addh(s, j 1 ), j2) = Addh(Addl(s, j2), j 1) 



s •New= s 

s 1 • Addh(s2, j} = Addh(s 1 • s2, j) 
Subseq(s, i1, 0) = New 
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Su bseq(Addh(s, j}, i 1, i2 + 1} = if (i 1 + i2} < (Size(s} + 1} then Su bseq(s, i 1, i2 + 1) 
else if (i1 + i2} = (Size(s) + 1} then Addh(Subseq(s, i1, i2}, j) 

else Subseq(Addh(s, j), i1, Size(s) - i1 + 2) 
Fill(O, j) = New 
Fill(i + 1, j} = Addh(Fill(i, j), j) 
Fetch(Addh(s, j), i) = if i = Size(s) + 1 then j else Fetch(s, i) 
Bottom(s) = Fetch(s, 1) 
Top(s} = Fetch(s, Size(s)) 
Reml(s) = Subseq(s, 2, Size(s)-1) 
Remh(s) = Subseq(s, 1, Size(s)-1) 
Size(New) = 0 
Size(Addh(s, j}} = Size(s} + 1 
Empty(New} s T 
Empty(Addh(s, j}) = F 
Member(New, j} = F 
Member(Addh(s, j1 }, j2} = if j1 = j2 then T else Member(s, j2) 
Replace(Addh(s, j1}, i, j2} = if i = Size(s} + 1 then Addh(s, j2) else Addh(Replace(s, i, j2), j1) 
Fetch(s, lndex(s, j)) = j 
x=x=T 
X=Y=Y=X 
New = Addh(s, j) = F 
Addh(s 1, j 1} = Addh(s2, j2) = (j 1 = j2) A (s 1 = s2) 


