
 

 DATA-DRIVEN DECISION MAKING IN OPERATIONS 
MANAGEMENT 

  

by  

XIAOYUE GONG 

BACHELOR OF SCIENCE IN HONORS MATH, NEW YORK UNIVERSITY (2017)  

BACHELOR OF SCIENCE IN INTERACTIVE MEDIA ARTS, NEW YORK UNIVERSITY (2017)  

Submitted to the Sloan School of Management in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY IN OPERATIONS RESEARCH  

at the  

MASSACHUSETTS INSTITUTE OF TECHNOLOGY  

JUNE 2023  

©2023 XIAOYUE GONG. All rights reserved. 

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license to exercise any and 

all rights under copyright, including to reproduce, preserve, distribute and publicly display copies of the thesis, or 

release the thesis under an open-access license. 

Signature of Author …………………………………………………………………………………………  

Sloan School of Management  

MAY 03  

Certified by…………………………………………………………………………………………………..  

DAVID SIMCHI-LEVI  

PROFESSOR OF ENGINEERING SYSTEMS 

Thesis Supervisor  

Accepted by………………………………………………………………………………………………….  

GEORGIA PERAKIS  

WILLIAM F. POUNDS PROFESSOR OF MANAGEMENT SCIENCE 

Co-director, Operations Research Center  



2



Data-Driven Decision Making in Operations Management

by

Xiaoyue Gong

Submitted to the Sloan School of Management
on May 2, 2023, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Operations Research

Abstract

Encouraged by the plethora of advances in artificial intelligence (AI) in the past
decade, this thesis studies the length to which we can push various business oper-
ations with new technologies, in our theoretical understanding and practical per-
formance alike. Towards this goal, this thesis develops data-driven decision-making
methods for a selection of challenging emerging problems in supply chain and other
business operations.

In the first module of the thesis (Chapter 2 and 3), we invent reinforcement
learning methods with provable optimality guarantees for inventory management
problems. The challenge in the inventory problems that we are interested in is that
the demand distribution varies over time according to some natural cyclic patterns
(such as weekly sales cycles), and we are in the online setting where we do not have
prior knowledge of the demand distribution or access to prior data. Solutions to these
inventory models have been carefully studied for decades in the offline setting where
the cyclic demand distribution is known beforehand; however, very few results have
been attained in the online setting. The complexity of the problem motivated us
to introduce reinforcement learning into the picture. Our design of a reinforcement
learning algorithm has an optimal Õ(

p
T ) regret bound for a number of inventory

models with unknown cyclic demands that we study in these chapters.
In the second module of the thesis (Chapter 4), we study online assortment op-

timization for reusable resources. E-commerce platforms like Amazon and Expedia
constantly endeavor to recommend more favorable assortments of products and ser-
vices to their customers. The choice of assortment influences customer purchasing
decisions, and can thus significantly impact the platform’s revenue. We consider
assortment optimization with reusable resources, which means that the product re-
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turns to the inventory once the customer has finished using it. Reusability arises
in major applications including cloud services, physical storage, and make-to-order
service. The unpredictability of the usage times means that planning ahead becomes
more challenging. We show that a simple greedy policy is 1/2 competitive for online
assortment optimization with reusable resources. This means that on average, the
greedy policy earns at least half the revenue of a clairvoyant optimal policy which
has access to much more information. This result is surprising because the greedy
policy does not take into account the customer or usage time distributions, both of
which are necessary to solve for the optimal policy.

In the third module of the thesis (Chapter 5), we develop practical solutions for
the cloud service supply chain at Microsoft Azure. The cloud computing industry
boomed in the past few years as digitization continues to take place globally and
as remote work becomes more of a norm. A main challenge faced by cloud service
providers is to deploy cloud server hardware under demand uncertainty, without in-
curring unnecessarily large operational costs. We formulate the underlying optimiza-
tion problem as a two-stage stochastic program. We then develop exact Benders-type
algorithms that exploit the structure of the second stage problem. We test our pro-
posed algorithms with numerical experiments based on real production traces from
Microsoft Azure, which demonstrate noticeable advantages of our algorithms over
existing heuristics used in production. Given the large scale of the problem, our
deployment policy could potentially lead to savings of hundreds of millions of dollars
per year.

Thesis Supervisor: David Simchi-Levi
Title: Professor of Engineering Systems
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Chapter 1

Introduction

The plethora of advances in artificial intelligence in recent years have brought forth

exciting opportunities in various domains. This thesis studies to what extent we

can push business operations with new technologies, ranging from theoretical under-

standing to practical performance improvements.

The first module of the thesis (Chapter 2 and 3) invents reinforcement learning

methods with provable optimality guarantees for inventory management problems

where the demand distribution varies over time according to some natural cyclic

patterns (such as weekly sales cycles), and we are in the online setting where we do

not have prior knowledge of the demand distribution or access to prior data. The

complexity of the problem motivated us to introduce reinforcement learning into the

picture. The second module of the thesis (Chapter 4) studies online assortment op-

timization for reusable resources. E-commerce platforms like Amazon and Expedia

constantly endeavor to recommend more favorable assortments of products and ser-

vices to their customers. The choice of assortment influences customer purchasing

decisions, and can thus significantly impact the platform’s revenue. We consider as-

15



sortment optimization with reusable resources, which means that the product returns

to the inventory once the customer has finished using it. Reusability arises in major

applications including cloud services, physical storage, and make-to-order service.

The unpredictability of the usage times means that planning ahead becomes more

challenging. Finally in the last module (Chapter 5), we develop practical solutions

for the cloud service supply chain at Microsoft Azure, to deploy cloud servers under

demand uncertainty, without incurring unnecessarily large operational costs.

The rest of this section outlines these modules and our main contributions in

each.

1.1 Overview of Module 1 (Chapters 2 and 3)

Chapter 2. Inventory management is one of the most fundamental problems in

supply chain optimization (Zipkin (2000)). In this problem, at every time period,

the retailer reviews her on-hand inventory and orders replenishment based on cur-

rent inventory and constraints, with the goal of minimizing the total costs over the

planning horizon.

Cyclic demands is a popular term used in literature to refer to stochastic demands

whose distribution follow some cyclic pattern. This corresponds to the intuition that

for many products, there are natural sales cycles, e.g. weekly cycles where the demand

distribution on Wednesday can be very different from Saturday. Solutions to these

inventory models have been carefully studied for decades in the offline setting where

the cyclic demand distribution is known beforehand; however, few results have been

attained in the online setting. The only existing result prior to our work is by Huh

and Rusmevichientong (2014) which applies their algorithm to the episodic inventory

model with unknown cyclic demand distributions. The episodic models is defined
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by its strong assumption that inventory is assumed to be discarded at the end of

every demand cycle. In this chapter, we invent reinforcement learning methods for

the episodic model. In Chapter 3, we invent additional machinery that allows us

to remove this unreasonable assumption, and go from the episodic model to the

non-discarding model.

Contributions in Chapter 2 (Gong and Simchi-Levi (2021))

• We prove that the regret of our policy, Elimination-Based Half Q-Learning

(HQL), is upper-bounded by Õ(
p
T ) regret for the online episodic lost-sales

model with unknown cyclic demand distribution.

• We show that the regret for any algorithm on the inventory problems with

unknown cyclic demand distributions is lower-bounded by O(
p
T ), thus proving

the optimality of HQL (up to an O(
p
log T ) factor).

• Compared with Huh and Rusmevichientong (2014), we are able to reduce the

regret dependence on the cycle length from exponential dependence in their

paper, to a low polynomial dependence in this chapter.

• Compared with existing reinforcement learning methods, we are able to remove

the regret dependence on the cardinality of the state and action space from our

regret bound for the inventory problems.

We design provably efficient reinforcement learning (RL) algorithms that leverage

the structure of inventory problems. We apply the standard performance measure in

online learning literature, regret, which is defined as the difference between the total

expected cost of our policy and the total expected cost of the clairvoyant optimal

policy that has full knowledge of the demand distributions a priori. This chapter
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analyzes, in the presence of unknown cyclic demands, the lost-sales model with zero

lead time, and the multi-product backlogging model with positive lead times, fixed

joint-ordering costs and order limits. For both models, in this chapter, we first

study episodic models where inventory is discarded at the end of every cycle. Our

RL policies HQL and FQL have Õ(
p
T ) regret bounds for the episodic lost-sales

model and the episodic multi-product backlogging model, matching the regret lower

bound that we prove in this chapter. The episodic models were first studied by Huh

and Rusmevichientong (2014). In comparison, we are able to reduce the exponential

dependence on the cycle length in their regret bound to a low polynomial dependence

for our regret bound.

Chapter 3. The results in Chapter 2 are not entirely satisfactory to us because

the assumption that inventory is discarded at the end of every demand cycle is

unreasonable. To remove this assumption, i.e., to be able to work with the non-

discarding models, we construct a bandit learning algorithm on top of the previous

RL algorithms, named Meta-HQL.

Contributions in Chapter 3 (Gong and Simchi-Levi (2021))

• We prove that the regret of Meta-HQL is upper-bounded by Õ(
p
T ) regret

for the online non-discarding lost-sales model with unknown cyclic demand

distribution.

• Our regret bound is again unaffected by the cardinality of the state-action

space.

• The design of Meta-HQL allows easy extension to some variants of the inventory

model, such as when the cycle length is unknown beforehand, or when we are

18



only allowed to order a fixed number of times during a cycle, etc.

• We conduct numerical experiments using a real sales dataset from Rossman,

which show the superiority of our algorithms over algorithms that assume de-

mand is independent and identically distributed over time.

1.2 Overview of Module 2 (Chapter 4)

Chapter 4. In this chapter, we consider an online assortment optimization problem

where we have n substitutable products with fixed reusable capacities. In each period,

a user with some preferences (potentially adversarially chosen) arrives to the seller’s

platform who offers a subset of products from the set of available products. The user

selects a product with some probability given by the preference model and uses it for

a random number of periods. The usage time is distributed i.i.d. according to some

distribution that depends only on j. This selection generates a revenue for the seller.

The goal of the seller is to find a policy that maximizes the expected cumulative

revenue over a finite horizon T .

Contributions in Chapter 4 (Gong et al. (2022))

• Our main contribution is to show that a simple myopic policy (where we offer

the myopically optimal assortment from the available products to each user)

provides a good approximation for the problem. In particular, we show that

the myopic policy is 1/2-competitive, i.e., the expected cumulative revenue of

the myopic policy is at least half the expected revenue of the optimal policy

with full information about the sequence of user preference models and the

distribution of random usage times of all the products.
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• We prove that in the case that the usage time distributions can depend on

the type of each user, then there is no online algorithm with a non-trivial

competitive ratio guarantee.

• We perform numerical experiments to compare the robustness and performance

of myopic policy with other natural policies.

1.3 Overview of Module 3 (Chapter 5)

In the last chapter, we develop practical solutions for the cloud service supply chain

at Microsoft Azure. With rapidly increasing demand for cloud services in recent

years, it is of growing importance for cloud service providers to ensure that their

data centers are ready to accommodate the demand for computing resources. The

main challenge faced by providers is to deploy cloud servers under future demand

uncertainty, without incurring unnecessarily large operational costs. In this chapter,

we introduce the cloud server deployment problem. We formulate the underlying

optimization problem as a two-stage stochastic program.

Contributions in Chapter 5

• We develop exact Benders-type algorithms that exploit the special structure of

the second stage problem.

• We test our proposed algorithms with real production traces from Microsoft

Azure, and quantify the advantages of our algorithms over existing heuristics

used in production.
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Chapter 2

Reinforcement Learning for Episodic

Inventory Management with

Unknown Cyclic Demands

2.1 Introduction

Inventory management is one of the most fundamental problems in supply chain op-

timization (Zipkin (2000)). In this problem, at every time period, the retailer reviews

her on-hand inventory and orders replenishment based on current inventory and con-

straints, with the goal of minimizing the total costs over the planning horizon. For

decades, various inventory models have been of tremendous interests to practitioners

and researchers, and the theory under full knowledge of the demand distribution is

well-studied.

However, in real applications, rarely does a retailer know the true demand dis-

tributions a priori. More often than not, the retailer must make decisions in an
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adaptive online manner, which assumes that no data is available beforehand and

that data can only be collected as decisions are made. Time and again, we have

seen that being able to do so efficiently is critical for businesses, especially for busi-

ness expansions and for new product introductions. This is evidenced by the famous

case of Target’s failed expansion into the Canadian market in 2013-2015, which was

largely due to over-optimistic inventory planning decisions made based on U.S. sales

history (Lim (2016)). Moreover, trends and large events can also impact the reli-

ability of past data. During the Covid-19 pandemic, various sectors have observed

drastic changes in consumer behavior and consumption, rendering past demand data

impractical. Even with plentiful valid past data, the most appropriate characteriza-

tion of demand distributions remains ambiguous. Perakis and Roels (2008) find that

this ambiguity can lead to confusion about the optimal inventory policy and incur

large extra costs.

All these challenges call for adaptive online inventory decision models. Large

swathes of research effort has achieved exciting results in pursuit of this goal, see,

for example, Huh and Rusmevichientong (2009a), Agrawal and Jia (2022), Zhang

et al. (2020) and Yuan et al. (2021). A notable caveat is that the vast majority

of existing online inventory models make the strong assumption that demands are

identically distributed across the time horizon, which is often far from reality. Real

demand distributions are often time-varying and have cyclic patterns that correspond

to natural customer behavior. Some commonly observed cyclic demand patterns

include weekly, monthly and yearly (seasonal) patterns. Ehrenthal et al. (2014)

analyze real data to show that ignoring seasonality in demand modeling can lead to

a large profit loss.

Cyclic demands is a popular term used in the literature to refer to stochastic

demands whose distributions follow a cyclic pattern. This corresponds to the in-
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tuition that for many products, the demands on Tuesdays are generated from one

distribution, and the demands on Sundays are generated from a very different dis-

tribution. Cyclic demand modeling has been extensively studied in traditional in-

ventory literature where demand distributions are known beforehand. Among those

studies, Zipkin (1989) notes that techniques used to obtain the optimal policy for

i.i.d. demands no longer work and new methods must be developed. Unfortunately,

in the online setting, where demand distributions are unknown, incorporating cyclic

stochastic patterns into demand modeling presents significant additional challenges.

For example, the learning algorithm that combines stochastic gradient descent with

bandits in Yuan et al. (2021) is able to achieve Õ(
p
T ) regret for the lost-sales model

with fixed costs with i.i.d. demands against the clairvoyant optimal policy, but can-

not be applied to the lost-sales model with cyclic demands even if there is no fixed

cost. One reason is that their analysis relies on the fact that for (s, S) policies, after

some transformation, once one coordinate of the decision space is fixed, the remain-

ing coordinate is a convex optimization problem and stochastic gradient descent can

be applied. This convexity no longer exists when the demand is cyclic instead of

i.i.d., even when there are no fixed costs. Another difficulty is that for i.i.d. de-

mands, the expected average cost for holding a fixed amount of inventory does not

depend on time, but when demands are cyclic, this average cost is highly sensitive

to time. These difficulties dismantle the analyses in prior works, leaving a gap at the

intersection of online inventory management and cyclic demands.

Motivated by this long-standing gap between inventory theory and practice, we

study online periodic-review inventory models with unknown cyclic stochastic de-

mands. We design provably optimal bandits-atop-reinforcement-learning algorithms

that cater to the structure of inventory problems. Our inspiration comes from the

fact that many of the challenging properties of cyclic demands, such as the previ-
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ously mentioned non-convexity and sensitivity to time, fall nicely into the regime of

Markov decision processes (MDP), which can be analyzed under the framework of

episodic reinforcement learning (RL).

We apply the standard performance measure in online learning literature, regret,

to evaluate our algorithms. The regret of a policy is defined as the difference between

the total expected cost of the evaluated policy over the planning horizon and that

of the clairvoyant optimal policy with full information of the demand distributions

a priori. Regret is also the performance measure used in prior online inventory

literature (Huh and Rusmevichientong (2009a), Agrawal and Jia (2022)). We show

that our policies are optimal for a number of models by proving matching regret lower

bounds. By leveraging the structure of inventory models in reinforcement learning,

we remove the regret dependence on the cardinality of the state-action space in our

policies, which is a considerable improvement over existing RL algorithms.

In addition to theoretical guarantees, we test the practical performance of our

policy with real sales data from one of the largest drugstore chains in Europe, Ross-

mann. We observe that our policy converges rapidly to the clairvoyant optimal

policy. Our policy and the clairvoyant optimal policy dramatically outperform the

best policy that models the demands as i.i.d. instead of cyclic, which manifests the

practical impact of modeling cyclic demands.

Furthermore, our policies allow the input of expert advice to further improve

performance in practice. We broadly define expert advice as any reasonable prior

knowledge about either the cyclic demand distributions or the optimal policy, that

can come from domain knowledge, experience or existing data. This also connects

our online policies to offline learning. We demonstrate the benefit of this capability

in our numerical experiments conducted with the Rossmann dataset. Importantly,

some of our algorithms apply more generally to operations research problems beyond
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inventory management. Example applications include airline overbooking policy,

portfolio optimization and online repeated second-price auctions, as discussed in

Section 3.4.

2.2 Lost-Sales Problem Formulation

We formally describe a discrete-time finite-horizon periodic-review inventory problem

for a single product under lost sales and censored cyclic stochastic demand. The

horizon consists of a sequence of cycles of the same constant length H that partitions

the T periods, where H = O(1). Let K denote the number of cycles in the horizon,

K = T

H
= ⇥(T ). As an example, a horizon of 5 years is K = 261 cycles of H = 7

days.

At the beginning of period t, the retailer reviews the current inventory xt, and

places an order that raises the inventory level up to a level yt � xt. The purchasing

cost is assumed to be zero without loss of generality (for proof see Appendix A.4).

Replenishment of yt � xt units arrives instantly with zero lead time, after which an

unobserved random demand Dt from unknown distribution Ft is realized. The de-

mands are independent, but not necessarily identically distributed: the distributions

within a cycle can be arbitrary. In mathematical terms, all demands Dt can be par-

titioned into H subsets based on the remainder of t mod H, and demands in the

same subset are independently generated from the same distribution.

The retailer applies the on-hand inventory, which is defined as the sum of the

current inventory xt and the instant replenishment yt � xt, to satisfy the realized

demand Dt. If the demand does not exceed the on-hand inventory, the retailer pays

a holding cost ot > 0 for each unit of leftover inventory at the end of period t. The

starting inventory for the next period is the leftover inventory xt+1 = (yt � Dt)+.
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If the demand exceeds the on-hand inventory, the retailer pays a penalty of pt > 0

for each unit of lost demand. However, the retailer is not aware of the amount of

lost-sales penalty she pays because the lost part of the demand is unobserved. The

starting inventory for the next period is then xt+1 = 0.

In summary, the cost function of period t is:

Costt(yt) = ot(yt �Dt)
+ + pt(Dt � yt

�+ (2.1)

which is unobservable because (Dt � yt)+ is the lost part of the demand.

Now we discuss the difference between the episodic model and the non-discarding

model.

• Model 1: Episodic Lost-Sales

The episodic model is defined by the following assumption:

Assumption 1a: At the end of each cycle, excess inventory is discarded or

salvaged at some arbitrary fixed price.

In the case of salvaging, we subtract the salvaging revenue from the cost of the

last step in a cycle so that Equation (2.1) holds for all h 2 [H].

Even though we mainly use the episodic model as a building block for our

analysis of the non-discarding model in Chapter 3, the episodic model itself is

applicable to products or services that perish at the end of every cycle. This

model was first introduced in Huh and Rusmevichientong (2014).

• Model 2: Non-Discarding Lost-Sales

26



This model is consistent with the inventory literature for non-perishable prod-

ucts: we never discard inventory. The leftover inventory at the end of a cycle

always carries over to the next cycle. Instead of Assumption 1a for the episodic

model, we have the following alternative Assumption 1b for the non-discarding

model:

Assumption 1b: The expected time to deplete 1 unit of inventory is �.

This is an often-used assumption in the literature (see for example Agrawal

and Jia (2022)). In our chapter, � can be as large as O(
p
T ). Note that our

policy does not need to know �. This assumption is only used in the analysis.

In this chapter, we study Model 1. Model 2 is studied in Chapter 3. For both the

episodic and the non-discarding lost-sales models with zero lead time, we consider

the following class of policies:

Cyclic base-stock policies/order-up-to policies are the class of policies that

can be characterized by H key values, one for each time step in a cycle. For the

same time step h 2 {1, 2, . . . , H} across cycles, the retailer always orders quantities

that bring the inventory position to the hth key value known as the base-stock level

for time step h, unless it is infeasible to do so based on the current inventory (i.e. the

inventory is greater than the base-stock level). This base-stock level may be different

for each time step in a cycle, but it is the same for the same time step across cycles.

Remark 1 We consider only base-stock policies for the episodic and the non-discarding

lost-sales models with zero lead time because they can be proven to be optimal for these

models (Porteus (2002)).

Assumptions 2: The range of the base-stock level we consider is [m,M ], where

M is often associated with the warehouse capacity.
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Assumptions 3: The retailer knows the cycle length H, but has no prior knowl-

edge of the demand distributions except that they are cyclic.

Assumption 2 is commonly made in theory and in practice. As for Assumption

3, it is quite reasonable to assume that the cycle length is known because the cyclic

patterns that real-life demand often follow are weekly, monthly or yearly (seasonal).

The objective of the retailer is to minimize the total expected cost over the entire

horizon, or equivalently, to minimize the regret of her policy. The notion of regret

from online learning is a widely adopted performance measure that is defined as the

difference between the total cost of a feasible policy and that of a clairvoyant optimal

policy OPT that knows the true demand distributions a priori.

For a feasible learning policy ⇡, the regret of ⇡ over T periods is

Regret
⇡
(T ) = E

"
TX

t=1

Cost⇡
t

#
� E

"
TX

t=1

CostOPT

t

#
.

One problem with the regret formulation above is that the retailer cannot observe

the realized cost function for the lost-sales models because demands are censored.

To overcome this challenge, we use the following observable pseudo-cost (for both

OPT and ⇡), which does not change the regret of any policy (see Agrawal and Jia

(2022)):

Pseudo-Costt(yt) = ot(yt �Dt)
+ � pt min(yt, Dt). (2.2)

We allow the unit holding cost and the unit lost-sales penalty to be time-varying

as long as they are cyclic in sync with the demand distributions. It follows that

both the cost and pseudo-cost functions are also cyclic, so for notation, we will

often replace the t subscript with the corresponding step h subscript, h = 1, . . . , H.

Furthermore, we will use superscript k to denote cycle k when necessary. The pseudo-
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cost for step h in cycle k is:

Pseudo-Costh(y
k

h
) = oh(y

k

h
�Dk

h
)+ � ph min(yk

h
, Dk

h
). (2.3)

The reason why using this pseudo-cost does not affect the regret analysis of any

policy is because the difference between the pseudo-cost and the cost is a term that

is independent of the policy action yt. Therefore,

Regret
⇡
(T ) = E

"
TX

t=1

Cost⇡
t

#
� E

"
TX

t=1

CostOPT

t

#

= E

"
KX

k=1

HX

h=1

Pseudo-Costk
h

⇡

#
� E

"
KX

k=1

HX

h=1

Pseudo-Costk
h

OPT

#
.

Key Observation 1: At any step h, after we choose action yh that is a base-

stock level, once the demand is realized, we can deduce what the pseudo-cost and

leftover inventory would be for all possible base-stock levels that are lower than our

chosen action because we can observe the pseudo-cost oh(y0h�Dh)+� ph min(y0
h
, Dh)

for all y0
h
 yh. This property of the lost-sales model is called the one-sided-feedback

structure, which is used by Yuan et al. (2021) for the lost-sales model with fixed

costs when demands are i.i.d.

More formally, a model possesses the one-sided-feedback structure if whenever an

action y is taken at time t, once the environmental randomness is realized, we can

learn what the outcome would have been for any action at that time step that lies

on one side of y, i.e., all y0  y for the lower -sided-feedback structure (or all y0 � y

for the higher -sided-feedback structure), given that single sample of the environment

randomness. This structure is also present in several other applications beyond
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inventory management; see Section 3.4.

2.2.1 Preliminaries

Without loss of generality, we transform1 the pseudo-costs to “rewards” so that the

reward of any policy in any time period is bounded by [0, 1]. The goal of minimizing

the total expected cost is equivalent to maximizing the total expected reward.

We formulate the episodic lost-sales model as an episodic MDP(S,A, H,P, r),

where S is the set of states that denote current inventory levels with |S| = S, A is

the set of actions of base-stock levels with |A| = A, H is the episode length, P is

the unknown transition matrix of the distribution over states for state-action pairs,

and rh : S ⇥A! [0, 1] is the random reward function at step h that depends on the

realized demand. Recall that the action space contains only base-stock levels because

base-stock policies are optimal for the episodic lost-sales models with zero lead time.

If a base-stock level y is lower than the current inventory x, we say that action y is

infeasible to state x. We discretize [m,M ] with step-size M�m

T 2 , so the action space

size A = T 2. In Lemma 2, we show that this discretization incurs O(M/K) total

error. Recall K = ⇥(T ), so this error vanishes as T grows.

We introduce the following Q-learning setup, which shares many of the same

notations with the setup in Jin, Allen-Zhu, Bubeck and Jordan’s work (Jin et al.

(2018)).

A policy ⇡ is a collection of functions {⇡h : S ! A}h2[H]. We use V ⇡

h
: S ! R to

denote the value function at step h under policy ⇡, so that V ⇡

h
(x) gives the expected

sum of remaining rewards under policy ⇡ until the end of the episode, starting from

1
For the single-product lost-sales model, we take oh and ph to be their own additive inverses

�oh and �ph, and then normalize the negated unit costs down by a factor of ⇥
�
M max(|oh|, |ph|)

�
.

Then we shift the per-period reward to the right by 1 so that it is bounded by [0, 1].
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xh = x:

V ⇡

h
(x) := E

h HX

h0=h

rh0
�
xh0 , ⇡h0(xh0)

����xh = x
i
.

We use Q⇡

h
: S ⇥A! R to denote the Q-value function at step h, so that Q⇡

h
(x, y)

gives the expected sum of remaining rewards under policy ⇡ until the end of the

episode, starting from xh = x, yh = y:

Q⇡

h
(x, y) := E

h
rh(xh, yh) +

HX

h0=h+1

rh0
�
xh0 , ⇡h0(xh0)

����xh = x, yh = y
i
.

For the cyclic base-stock policies, it is easy to see that conditioning on the same

feasible base-stock level, the reward and leftover inventory do not depend on the

current inventory. Therefore, for the episodic lost-sales model with zero lead time, we

can simplify the notation Qh(x, y) to Qh(y). We must emphasize that the feasibility

of an action y still depends on the current state x.

There exists an optimal policy ⇡⇤ on the finite MDP that has the highest reward

and the smallest regret with respect to the clairvoyant optimal policy OPT in the

original undiscretized problem. The optimal value functions are given by V ⇤
h
(x) =

sup
⇡
V ⇡

h
(x) for any x 2 S and h 2 [H]. The Bellman equations are:

8
>>><

>>>:

V ⇡

h
(x) = Q⇡

h
(x, ⇡h(x))

Q⇡

h
(x, y) = Ex0,rh⇠P(·|x,y)

⇥
rh + V ⇡

h+1 (x
0)
⇤

V ⇡

H+1(x) = 0, 8x 2 S

8
>>><

>>>:

V ⇤
h
(x) = maxy Q⇤

h
(x, y)

Q⇤
h
(x, y) = Ex0,rh⇠P(·|x,y)

⇥
rh + V ⇤

h+1 (x
0)
⇤

V ⇤
H+1(x) = 0, 8x 2 S

Recall the definition of the regret of a policy ⇡. Because of discretization, in the

episodic model, the total regret Regret
total

is the sum of the regret of ⇡ against ⇡⇤
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and the regret of ⇡⇤ against OPT,

Regret
total

= Regret
MDP

+Regret
gap

,

where

Regret
MDP

(T ) = E

"
KX

k=1

HX

h=1

rk
h

OPT

#
� E

"
KX

k=1

HX

h=1

rk
h

⇡k

#

=
KX

k=1

⇥
V ⇤
1

�
xk

1

�
� V ⇡k

1

�
xk

1

�⇤
.

(2.4)

and xk

1 denotes the starting state that the adversary picks for episode k = 1, . . . , K,

and ⇡k denotes the policy the retailer chooses before starting the kth episode.

2.3 Related Literature

Our work stands at the intersection of several prominent areas. We discuss three

streams of literature below. The first stream of literature is inventory management

that relates to either online learning or to cyclic demands. The second stream is

Q-learning, and the third stream is the rich feedback literature, where we also briefly

juxtapose our work to cross-learning in contextual bandits.

2.3.1 Related Inventory Literature

A large amount of research has been conducted on offline learning for inventory mod-

els; we focus on discussing online inventory models. The earliest online inventory

literature is Huh and Rusmevichientong (2009b), which analyzes both the perish-

able and non-perishable products for the lost-sales model with i.i.d. demands, and

achieves O(
p
T ) regret against the newsvendor benchmark. Huh et al. (2009) achieve
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O(T 2/3) regret against the optimal base-stock policy for the lost-sales model with

i.i.d. demands and a positive lead time. Zhang et al. (2020) achieve O(
p
T ) regret

against the best base-stock policy (which is not necessarily optimal) for the lost-

sales inventory model with i.i.d. demands and positive lead time L. Agrawal and

Jia (2022) achieve Õ(
p
T ) regret bound with probability at least 1 � 1

T
. for the

same model with respect to the same benchmark, the best base-stock policy. Yuan

et al. (2021) study the lost-sales problem with i.i.d. demands and a fixed ordering

cost K and achieve Õ(
p
T ) regret against the optimal policy. Other online inventory

research include Huh et al. (2011), Davoodi et al. (2019), and Chen and Shi (2019).

The aforementioned literature assumes that demands are i.i.d. across the horizon.

However, we are interested in a more general scenario in which demand can have

arbitrary distributions that follow a cyclic pattern. Moreover, costs and constraints

can also be cyclic. In 1960, Karlin first proposed the offline stochastic inventory

problem with demands from known periodic distributions (Karlin (1960)). Examples

of follow-up papers on cyclic inventory models include Zipkin (1989) and Aviv and

Federgruen (1997). Among these studies, Zipkin (1989) points out that techniques

used to obtain the optimal policy for i.i.d. demands no longer work and new methods

were developed for the offline setting.

However, managing inventory in the online setting with unknown cyclic demand

distributions presents significant additional challenge. As previously discussed, the

difficult properties of the cyclic demands problem, such as non-convexity and sen-

sitivity to time, dismantle the analyses in prior works that model i.i.d. demand,

leaving a blank at the intersection of online inventory management and cyclic de-

mands. Since Yuan et al. (2021) uses a method that combines stochastic gradient

descent with bandits, it is natural to wonder if a similar stochastic gradient descent

approach can be applied to the cyclic demand problem. Unfortunately, no straight-
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forward way exists to adapt their algorithm for the cyclic demand problem, because

their policy relies on the partial convexity of the cycle pseudo-cost after fixing one

parameter. This approach is not possible in the cyclic demand case. Furthermore,

their technique of waiting for demand to accumulate sufficiently to in some sense

“restart” works only for i.i.d. demand.

There is a small amount of online inventory literature that does not model de-

mands as i.i.d. In Chen (2019), the demand distribution is allowed to change O(log T )

times; however, cyclic demands require the demand distribution to change ⇥(T )

times. Huh and Rusmevichientong (2014) study the cyclic demand problem for only

the episodic model and have exponential regret dependence on the cycle length H,

while our policies only have polynomial dependence. Their regret dependence on

T for the episodic model is the same as ours for the episodic model (up to a log T

factor). They do not have a result for the non-discarding case. In Chen (2019), the

demand distribution is allowed to change O(log T ) times; however, cyclic demands

require the demand distribution to change ⇥(T ) times. Cheung et al. (2020) studies

non-stationary RL with the inventory problem as an application. They study a non-

stationary environment in which the change in the demand distribution is limited by

a given variation budget. In our setting, demand distributions are cyclic with no other

assumptions on the distributions; hence arbitrarily large variation occurs within a

cycle, but no variation (in terms of distributions) occurs across cycles. Therefore,

their work is not applicable to the cyclic demands setting either.

2.3.2 Q-Learning Literature

To the best of our knowledge, our chapter is the first to apply Q-learning to inven-

tory management with theoretical guarantees. Q-learning is a popular model-free
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Table 2.1: Comparisons of Q-learning-based algorithms on applicable episodic MDPs.

Algorithms Regret Time Space
Q-learning with optimism bonus in
Jin et al. (2018)

Õ(
p
H3SAT ) O(T ) O(SAH)

Aggregated Q-learning in Dong
et al. (2019)

Õ(
p
H4MT + ✏T ) O(MAT ) O(MH)

FQL (our algorithm) Õ(
p
H4T ) O(SAT ) O(SAH)

HQL (our algorithm) Õ(
p
H6T ) O(SAT ) O(SAH)

Here M is the cardinality of the aggregate state-action space; ✏ is the largest
difference between any pair of optimal state-action values associated with a common
aggregate state-action pair. H,A, S, T are as defined in Section 2.2.1.

reinforcement learning method that does not require estimating the huge transition

matrix in a large MDP (see Watkins and Dayan (1992)). The work most relevant

to our chapter is Jin et al. (2018), which proves the optimality of Q-learning with

optimism bonuses in tabular MDPs. Dong et al. (2019) improves upon Jin et al.

(2018) when a good aggregation of the state-action pairs is given beforehand. Our

algorithms substantially improve the regret bounds for the subset of problems that

have full feedback/one-sided feedback (see Table 2.1).

Because our regret bounds are unaffected by the cardinality of the state and ac-

tion space, our Q-learning algorithms can handle a large state-action space and even

a continuous state-action space in some cases, which is the conventional setting in

inventory problems. Meanwhile, if we discretize the state-action space optimally for

Jin et al. (2018) and Dong et al. (2019), then applying Jin et al. (2018) to the sim-

plest episodic backlogging inventory model gives a regret bound of O(T 3/4
p
log T ).

Applying Dong et al. (2019) with optimized aggregation yields us O(T 2/3
p
log T ). In

comparison, our algorithms HQL and FQL still have a regret bound of O(T 1/2
p
log T )

after discretization because our regret bounds are independent of the cardinality of

the state-action space. See detailed derivations in Appendix A.2.
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This chapter is not concerned with optimizing the space needed to store Q, V-

values, especially since the space we need does not exceed existing Q-learning al-

gorithms. However, if storage space is of concern, then adaptively discretizing the

state-action space could potentially help reduce the space needed to store Q, V-

values. See for example Sinclair et al. (2019) on Q-learning with adaptive discretiza-

tion of continuous space.

2.3.3 Rich Feedback Literature

Rich feedback structures have been studied in the bandit setting. For example,

Zhao and Chen (2019) study bandit learning in problems with one-sided feedback.

However, our episodic MDP setting presents new challenges. Our algorithm HQL

can solve the setting in Zhao and Chen (2019) as a special case. Yuan et al. (2021)

utilizes the one-sided feedback for an i.i.d. demand problem and is also located in

the bandit setting.

The recent work of Dann et al. (2020) studies the regret of their reinforcement

learning algorithm in general feedback graphs. However, they obtain worse regret

bounds than those in our chapter on the families of problems that we consider. Their

result matches the regret bound we obtain for the full-feedback setting, but it cannot

recover our regret bound for our problems with the one-sided-feedback structure. The

two works are largely complementary.

It is natural to associate our setting with the contextual bandit setting, where

we think of each time step in an episode and each state as a different context. In

particular, Balseiro et al. (2018) study cross-learning for contextual bandits. How-

ever, in our episodic MDP, the action chosen determines the next state, and the

state, in turn, determines which actions are feasible. This dependence of the feasible
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action set on the state results in a genuinely sequential problem, so it fits well in

the MDP framework and is not subsumed in contextual bandits. In comparison, for

contextual bandits, the contexts (which correspond to states in our model) must be

chosen adversarially at the beginning of the game or drawn independently from some

distribution in each round. In other words, the context cannot depend on the actions

chosen.

The full-feedback setting shares similarities with the generative model (Sidford

et al. (2018)). However, the generative model is a strong oracle that can query any

state-action transitions, while the full-feedback model can only query for a time step

after having chosen an action from the feasible set based on the current state while

accumulating regret.

Note that our definition of full feedback is different from the full information

feedback in the non-stationary MDP literature such as Abbasi-Yadkori et al. (2013).

In these works, the feedback allows observation of the complete transition probability

for the next state, which includes the randomness that we refer to as “environmental

randomness”. By contrast, we are able to observe only one realized sample of the

environmental randomness. In the inventory management case, this means that they

assume that they would be able to observe the demand distribution as well, while we

assume we are able to observe only one sample from the (partial) demand distribution

for that time step. In inventory applications, it would be unrealistic to assume that

we can observe the demand distributions.

2.4 Algorithm for the Episodic Lost-Sales Model

To utilize the one-sided-feedback structure, we want to choose high base-stock levels

because they allow us to observe more information–this is exploration. On the other
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hand, we accrue regret as we choose each action. A higher base-stock level might

lead to a higher starting inventory for the next time period and thus a smaller

feasible action set for the next time period; therefore, exploration could negatively

impact our exploitation in future periods. Our Algorithm 1 Elimination-Based Half-

Q-Learning Algorithm (HQL) is designed in line with the key design principle of an

effective learning algorithm: to delicately balance the trade-off between exploration

and exploitation.

Define constants ↵t =
H+1
H+t

, t 2 {1, 2, . . . , T}. We define CB1 (confidence bound

1) to be 8p
k�1

(
p
H5◆), where ◆ = 9 log(AT ). For notation, we use r̃h,h0 to denote

the cumulative reward from step h to step h0. We use x0
h+1(x, y, D̃

k

h
) to denote the

(hypothetical) next inventory level given x, y and D̃k

h
at time step h, where D̃k

h

denotes the realized demand at step h of episode k. Similarly, x0
⌧
k

h
(x,y)

() denotes the

(hypothetical) inventory level outcome at time step ⌧ k
h
(x, y) given the realized partial

demand samples between time step h and time step ⌧ k
h
(x, y). The notation ⌧ k

h
(x, y)

will be defined below.

Main Idea of HQL: At any episode k, we keep a “running set” Ak

h
of all the

actions that are possibly the best action for step h. We would like to continue

observing the rewards and transitions for all actions that are still in the running set

to obtain increasingly accurate estimates of these possibly best actions while keeping

the regret of our actions small. To maximize the utility of the lower-sided feedback,

we always select the largest action in Ak

h
, letting us observe the most feedback.

Sometimes, we might have so much inventory that we cannot choose from Ak

h
; in

that case, we order no new inventory. It follows by backwards induction that all

Q, V -value functions for a time step are concave in the inventory level; therefore,

ordering no inventory is with high probability the optimal action in this state and is

larger than the largest action in Ak

h
, which allows us to still observe the alternative
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ALGORITHM 1: Elimination-Based Half-Q-Learning
Initialization: Qh(y) H, 8(y, h) 2 A⇥ [H]; A0

h
 A, 8h 2 [H];

Ak

H+1  A, 8k 2 [K];
for episode k = 1, . . . , K do

Initiate empty partial-demand list Dk = [ ];
for time step h = 1, . . . , H do

if xk

h
< max{Ak

h
} then

Set base-stock level yk
h
 max{Ak

h
};

else
Order no new inventory yk

h
 xk

h
;

end if
Observe realized partial demand min(yk

h
, D̃k

h
) and append to Dk;

Update xk

h+1  x0
h+1(y

k

h
,min(yk

h
, D̃k

h
));

end for
for time step h = H, . . . , 1 do

for action y0 2 Ak

h
do

Simulate trajectory x0
h+1, x

0
h+2, . . . , x

0
⌧
k

h
(x,y)

as if we had chosen action y0 at
step h using stored list Dk until we find the next stopping time ⌧ k

h
(x, y0);

Update Qh(y0) (1� ↵k)Qh(y0) + ↵k[r̃h,⌧k
h
(x,y) + V

⌧
k

h
(x,y)(x

0
⌧
k

h

(xk

h
, y0,Dk))];

end for
Update yk⇤

h
 argmax

y2Ak

h

Qh(y); Update Vh(x) maxfeasible y given x Qh(y);
Update Ak+1

h
 {y 2 Ak

h
:
��Qh(yk⇤h )�Qh(y)

��  CB1};
end for

end for

rewards and transitions for all actions in the running set.

During each episode k, we act in real-time and keep track of the realized envi-

ronmental randomness that we can observe, which is the realized partial demand

min(yk
h
, Dk

h
). At the end of the episode, we simulate the trajectories as if we had

taken each action in Ak

h
for h = 1, . . . , H, and update the corresponding Q, V -value

functions to shrink the running sets using confidence intervals. While we simulate

the trajectories, we use the notion of a stopping time ⌧ , where ⌧ k
h
(x, y) denotes the

next time the starting inventory allows the retailer to choose from a running set
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again in episode k (meaning that inventory is sufficiently low), starting from time

step h, state x and action y. The stopping times are important because we have

frequent updates to the Q, V -values only for actions in the running sets. When a

stopping time is reached, the algorithm has a well-estimated value function at the

current state. This value function is then used to update previous-state value func-

tions using a delayed form of the Bellman equation. Note that the last stopping time

⌧ for every episode is always H + 1, because Ak

H+1 is defined to be the entire action

space.

Figure 2-1: Application of HQL for an example episodic lost-sales problem.

Figure 2-1 illustrates HQL’s behavior for an example episodic lost-sales problem

where episode length H = 4. The yellow lines represent the real trajectory of the

inventory level. The gray dashed lines represent one of the simulated trajectories

that HQL produces at the end of Episode 2 to update the Q, V -value functions and

the running sets. For the simulated trajectory between t = 7 and t = 9, we can

choose from the running set again only after Episode 2 ends (after t=8). Therefore,
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⌧ 23 = H + 1 = 5 by definition of Ak

H+1.

2.4.1 Regret Upper Bound of HQL

Let OPT denote the optimal policy for the episodic lost-sales model that knows the

demand distributions a priori.

Theorem 1 The total expected regret of HQL against OPT is

O
�p

T log T ·H3M max(|oh|, |ph|)
�

for the episodic lost-sales model with zero lead time.

We briefly outline the proof of Theorem 1 here. The detailed proof can be found

in Appendix A.1. To remove the regret dependence on the state and action space, our

analysis incorporates the one-sided feedback into the analysis from Jin et al. (2018)

and applies additional regret analysis techniques such as shortfall decomposition in

Sutton and Barto (2018). To remove the regret dependence on the cardinality of

the state-action space in the one-sided-feedback setting, we cannot adopt the main

analysis in Jin et al. (2018). In comparison, when we discuss the multi-product

backlogged model in Section 3.3, the presence of full feedback will allow us to more

directly adopt the main techniques in Jin et al. (2018).

We first define a sequence of positive real values {�h}H+1
h=1 via the following back-

wards recursion. This sequence of positive values is useful in a proof by induction to

give performance guarantees on HQL’s actions inside and outside the running sets.

�h = H + (1 + 1/H)�h+1 + c
p
H3◆, 8h 2 [H],

�H+1 = 0
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for some constant c. We know {�h}H+1
h=1 is a decreasing sequence, and �h  4

p
H5◆

(Appendix A.1.5). The following Lemma 1 gives performance guarantees on HQL’s

actions inside and outside the running sets. The proof is provided in Appendix A.1.8.

Lemma 1 For any (h, k) 2 [H]⇥ [K]:

1. {�h}Hh=1 is a sequence of values that satisfy

max
y2Ak

h

|(Qk

h
�Q⇤

h
)(y)|  �h/

p
k � 1 (2.5)

with high probability of at least 1� 1/(AT )5.

2. The optimal action y⇤
h

is in the running set Ak

h
with probability of at least

1� 1/(AT )5.

3. Any time HQL takes an action in Ak

h
, the optimal Q-value of that action is

within 3�h/
p
k � 1 of the optimal Q-value of the optimal policy’s action, with

probability of at least 1� 2/(AT )5.

4. Any time HQL cannot choose from Ak

h
, its action to order no new inventory is

the optimal action with probability of at least 1� 1/(AT )5.

The natural next step is to partition the time steps h = 1, . . . , H in each episode

k into two sets, �k

A
and �k

B
, where �k

A
contains all the steps h where we are able to

choose from the running set, and �k

B
contains all the steps h where we are unable to

do so. Therefore, �k

A
t �k

B
= [H], 8k 2 [K]. Then we bound the per-episode regret

by bounding over �k

A
and �k

B
. The difference between the expected total reward of
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HQL and that of the optimal policy ⇡⇤ is:

Regret
MDP

(K) = (V ⇤
1 � V ⇡1

1 ) (x1
1) +

KX

k=2

(V ⇤
1 � V ⇡k

1 ) (xk

1)

 H +
KX

k=2

⇣ HX

h2�k

B

H

A5T 5
+

X

h2�k

A

�hp
k � 1

+
X

h2�k

A

H

A5T 5

⌘


KX

k=2

O(
p
H7◆)p

k � 1
 O(H3

p
T ◆).

We have obtained an upper bound on the total regret of HQL against the optimal

policy ⇡⇤ on the MDP, which is denoted by Regret
MDP

. Now we bound the additional

regret incurred by discretization, denoted by Regret
gap

:

Lemma 2 The cumulative regret of the optimal policy ⇡⇤ on the MDP against OPT

(the optimal policy on the original problem) is O(M
K
), where we recall K = ⇥(T ).

It follows that the total expected regret of HQL against OPT is

Regret
total

(K) = Regret
MDP

(K) + Regret
gap

(K)

= O
⇣
H3
p
T ◆+M/K

⌘
= O

⇣
H3

p
T log T

⌘
.

Finally, we multiply Regret
total

(K) by the factor O
�
M ·max(|oh|, |ph|)

�
because

we previously scaled the reward in Section 2.2.1. This implies a regret upper bound

of

O
�
H3M ·max(|oh|, |ph|)

p
T log T

�
.
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2.4.2 Regret Lower Bound

We prove a regret lower bound for the episodic lost-sales model with zero lead time

by constructing an example that can be reduced to a bandit problem.

Theorem 2 The regret of any (randomized or deterministic) policy against OPT

for the episodic lost-sales model with zero lead time is lower-bounded by

⌦
�p

HTM max(|oh|, |ph|)
�
.

Proof: We prove by constructing an instance. Even though the model is a lost-sales

model, we assume that the algorithm is given the knowledge of what the demand is

after it is realized for each time step. This only makes the problem easier and gives

us a stronger lower bound.

Let ⌘ > 0 be a small absolute constant. Suppose for any step h in an episode

that the demand distribution is h + 100 units w.p. 0.5 ± ⌘p
K

, and h + 200 units

w.p. 0.5⌥ ⌘p
K

. This difference between these two probabilities is not constant since
1p
K

= ⇥( 1p
T
) ! 0. Suppose the unit holding cost and the unit lost-sales penalty

are the same, and suppose we are provided with the correct prior for the demand

distribution as specified above.

All actions larger than h + 200 units and actions smaller than h + 100 units are

worse than these two actions. Therefore, we can assume the base-stock levels are at

most h+200. Note that after satisfying the demand of a previous period, the leftover

inventory will be smaller than h + 100 units. Therefore, these two base-stock levels

are always feasible.
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The best base-stock level is one of these two actions (h + 100 units and h + 200

units) because the median demand is the optimal base-stock level. Therefore, the

goal of any learning algorithm is to learn what the median demand is. If the algorithm

uses a base-stock level h + 100 + 100p for p 2 [0, 1], this is equivalent to choosing

h+100 with probability 1�p and h+200 with probability p. Therefore, at each step

h, the algorithm is solving a standard bandit learning problem on two actions. It is

a well-known result that in this case, each step h will incur at least a ⌦(
p
K) regret

across the K episodes. Specifically, at any step of any episode, the probability of

any algorithm choosing the wrong action is lower-bounded by 1
12 - roughly speaking,

this is because the demand distributions are within O(1/
p
K), so O(K) samples

are insufficient to distinguish (with high probability) between them. This intuition

can be formalized using the Kullback-Leibler divergence to quantify the information

gained per-sample; details can be found as (Slivkins, 2019, Corollary 2.9). (Note

that our algorithm receives twice as much feedback as a usual bandit algorithm; this

only changes T to 2T in the context of (Slivkins, 2019, Corollary 2.9), which can be

pushed onto the choice of small ⌘ above.)

The conclusion is that at each time step, the algorithm incurs at least ⌦( 1
12

p
K
)

expected regret. This regret at step h across the K episodes sums up to ⌦(
p
K)

expected regret. Since there are H time steps with demand distributions inde-

pendent from each other, the total regret of this example is lower bounded by

⌦(H
p
K) = ⌦(

p
HT ). Then we put back the ⇥

�
M · max(|oh|, |ph|)

�
factor be-

cause in the preliminaries we scaled the costs down to have the reward for each step

bounded by 1. ⇤
This regret lower bound shows that our algorithm HQL is optimal in terms of T

dependence for the episodic lost-sales model with cyclic demands when the lead time

is zero.
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Chapter 3

Reinforcement Learning for

Non-Discarding Inventory

Management with Unknown Cyclic

Demands

3.1 From Episodic to Non-Discarding: Bandits atop

Reinforcement Learning

To go from the episodic inventory models to the non-discarding inventory models,

we propose an algorithm, Meta-HQL that builds a bandit learning algorithm on top

to govern multiple copies of the previous policy HQL.

Our key observation here is that if the first time step of each cycle happens to

have the highest base-stock policy, then given zero lead time, as long as we set the

purchasing cost and discarding cost to be zero, discarding or not at the end of the
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last cycle does not change the cost. Note that the purchasing cost and the discarding

cost can both be set to zero. The former is done without loss of generality because of

a standard reduction, while the latter is because there is no discarding cost allowed

in the non-discarding model; thus, we can set an arbitrary discarding cost for our

hypothetical algorithm that allows discarding at the end of the cycles.

We state this insight more formally in the following proposition.

Proposition 1 (Key Observation 2) Consider a sequence of periodic demand dis-

tributions D1, . . . , DH , D1, . . . , DH , . . . . The infinite horizon problem has an optimal

solution given by base-stock levels B1, B2, . . . , BH , B1, . . . , BH , . . . for some constants

B1, B2, . . . , BH . Furthermore, if time step hmax 2 argmax
i2[H] Bi, then the episodic

problem with the sequence of demands being Dhmax , . . . , DH , D1, . . . , Dhmax�1, . . . (with

indices modulo H) has an optimal solution given by the same base-stock levels

Bhmax , . . . , BH , B1, . . . , Bhmax�1, . . . .

The proof is obtained by combining and adapting several results in Zipkin (1989)

and is presented in Appendix A.3. The intuition is that if we want to choose a

higher optimal base-stock level in the second time step than in the first time step,

then either the leftover inventory from the first time step can be discarded and we

order replenishment for the second time step or the leftover inventory can carry over

to the second time step and we order less replenishment to make up the difference.

Recall the purchasing cost and discarding cost are set to zero, so these two scenarios

are equivalent in cost.

We prove in Appendix A.3 that the regret of the optimal policy for the infinite-
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horizon problem, when applied to the finite-horizon problem, is upper-bounded by

a constant additive difference with respect to the regret of the optimal policy for

the finite-horizon problem. Then Proposition 1 implies that, hypothetically, for the

finite-horizon problem, if the retailer knows a priori which time step hmax has (one

of) the largest optimal base-stock levels in a cycle, then she could apply an hmax-

shifted copy of HQL to the non-discarding model to learn the optimal base-stock

levels. However, we assumes that the retailer has no information of the demand

distributions beforehand (at least until we discuss incorporating expert advice in

Section 3.2). Thus, the retailer must learn what hmax is and what the optimal base-

stock levels are simultaneously. Both pieces of knowledge help inform each other

and require each other. Meta-HQL balances the exploration-exploitation trade-off so

that both pieces of information can be learned together.

Main idea of Meta-HQL: Meta-HQL treats the non-discarding problem roughly

as a bandit problem with H arms. Each arm w = 1, . . . , H corresponds to a w-shifted

copy of the original episodic problem. A w-shifted problem means that each cycle

begins at step w and ends at step w� 1. For example, if a cycle is a week that starts

on Monday, then a 5-shifted problem means that now we consider a week to start

on Friday and end on the next Thursday. When we pull an arm w, it means that we

apply the corresponding w-shifted version of HQL for an episode (H time periods).

The w-shifted HQL is defined as a version of HQL that treats time step w as the

beginning of an episode. In addition, the w-shifted HQL trims the running sets of the

other time steps of each episode such that the upper bound of the running sets of the

other time steps is never higher than the upper bound of the running set for step w.

Note that this trimming does not affect the performance of the w-shifted HQL in the

case where w is correctly identified as a time step with the highest optimal base-stock

level. For the incorrect arms w where w in fact has a low optimal base-stock level,
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the trimming might cause the per-episode reward to decrease further.

How much time is spent exploring each arm is controlled by a phase counter j. At

each phase j, we maintain an arm set Wj that contains all the remaining arms that

have not been eliminated by the time the phase counter reaches j. We begin with

j = 0 and no arms eliminated: W1 = [H] := {1, . . . , H}. When the phase counter

reaches j, we play each remaining arm in Wj for tj = 2j more episodes. Once we

finish iterating through the remaining arms in Wj in this way, we enter the next

phase where the phase counter is increased by 1. We eliminate an arm from the arm

set after the j-th phase if its estimated per-episode reward is much worse than that

of the best performing arm. We continue this process until the horizon ends.

Figure 3-1: Example of Meta-HQL for a non-discarding lost-sales problem.

Switching between arms: To switch from playing an arm w 2 Wj to another

arm w0, at this time we have already played arm w for 2j episodes, which finishes with

time step w�1 of some episode k. Playing the next remaining arm w0 begins with time

50



step w0 of some episode k0 > k. During the in-between time steps w,w + 1, . . . , w0,

we do not order any new inventory and let the inventory decrease until it is below

the base-stock level that w’-shifted HQL would choose for the next w0 time step.

In Algorithm 2, for each arm w, we keep a different set of Q-value Q(w) and

V-value V (w) estimates. Let CB2(Kj) = 2C2 ·
p

H7 log Tp
Kj

denote the confidence bound

used to update the arm set.

ALGORITHM 2: Meta-HQL
Initialization: Wj = [H], 8j = 1, . . . , log T

H
.

Q(w)
h

(x, y) H, 8(w, y, h) 2 Wt ⇥A⇥ [H].
for j = 0, 1, . . . , do

for arm w in Wj do
Once possible, play arm w for 2j rounds. Specifically, order no
replenishment until the next time step w when inventory is sufficiently low
to apply the w-shifted HQL for 2j ⇥H time periods. Update Q(w)

h
and V (w)

h

according to the w-shifted HQL. No discarding inventory.
In each round, eliminate all the arms w in Wt s.t.
V (w⇤)
1 � V (w)

1 � 2 · CB2(Kj), where w⇤  argmax
w
V (w)
1 and Kj is the total

number of rounds played for arm w so far.
end for

end for

3.1.1 Regret Upper Bound of Meta-HQL

In Theorem 3, we state the main theorem of this chapter.

Theorem 3 Meta-HQL achieves O
�
H3.5M ·max(|oh|, |ph|)

p
T log T

�
regret for the

non-discarding lost-sales model with zero lead time.

The proof of Theorem 3 relies on a number of lemmas that bound the different

parts of the regret that might occur in Meta-HQL: the part that is accumulated
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during the time periods when we are pulling some arm, and the part that occurs

during the time periods when we are switching arms.

Lemma 3 The total regret accumulated during switching between arms is upper-

bounded by O(H� log2 T ).

The regret bound in Lemma 3 is attributed to our design that the length of each

phase j is 2j, meaning that there are at most H log T switches between arms during

the entire horizon.

Lemma 4 With probability at least 1 � T�4, Meta-HQL never eliminates the best

arm.

This is because our estimated per-episode reward of each arm is close to the true

optimal per-episode reward for that arm, especially for the correct arm that dictates

the time step with the highest optimal base-stock level as the beginning of each

episode. For incorrect arms, trimming causes the estimated per-episode reward to

decrease further, which only helps matters.

The proof for Theorem 3 is provided in Appendix A.3.

3.1.2 Regret Lower Bound for the Non-Discarding Lost-Sales

Model

We provide a regret lower bound for the non-discarding model by slightly modify-

ing the instance we constructed for Theorem 2 such that the episodic example is

equivalent to a non-discarding example by means of Proposition 1.

Corollary 1 For any algorithm (randomized or deterministic), its expected regret

against OPT for the non-discarding single-product lost-sales model with zero lead

time is lower-bounded by ⌦
�p

HTM max(|oh|, |ph|)
�
.
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Proof: We slightly modify the instance we constructed for Theorem 2.

Suppose for any step h in an episode, the demand distribution is 500⇥(H�h)+100

units with probability 0.5 ± 1p
K

, and 500 ⇥ (H � h) + 200 units with probability

0.5⌥ 1p
K

. Note that the first time step in each episode has the highest optimal base-

stock level. Therefore, by Proposition 1, we know that this problem is equivalent

to an episodic lost-sales problem. Then the same reasoning and proof of Theorem 2

provide us with the same regret lower bound. ⇤
Again, this regret lower bound shows that our algorithm Meta-HQL is optimal

for the non-discarding lost-sales model with cyclic demands when the lead time is

zero.

Remark 2 In this chapter, we assume that the cycle length is given. Fortunately,

the design of having a bandit learning algorithm as a meta algorithm on top of re-

inforcement learning algorithms bestows upon us additional power to give convenient

solutions to some variations of the inventory models. One example is the variation

where we can only make a fixed limited number Z of replenishment orders in a cycle.

For the meta bandit problem, we include H ⇥
�
H

Z

�
arms instead of H arms. Each

arm represents a pair of a time step in the cycle and a choice of which Z time steps

in a cycle to order. Recall that originally, each arm only represents a time step in

the cycle. Then we have the same regret bound multiplied by
�
H

Z

�
.

Another example is the variation where the cycle lengh is not known a priori.

Then it is often more important to get the cycle length right. Fortunately, the design

of Meta-HQL allows us to identify the cycle length simultaneously as we find the

optimal policy. There are at least two ways for us to achieve this goal. Let H denote

an upper bound on the true minimal cycle length. The value of H should be known,

or we can choose a large constant to be the upper bound.
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An inefficient way: we know H! must be an integer multiple of the true cycle

length. This means that H! can also be considered as the cycle length. (This is the

same idea that was used in our Mimic-QL algorithm). Then we will just treat H!

as the cycle length H in Meta-HQL, and we immediately get the same regret bound

where H is replaced by H!.

A more efficient way: in Meta-HQL, for the bandit problem, we include H
2
/2

arms instead of H arms. Each arm represents a pair of a cycle length and a time

step in the cycle. Recall that originally, each arm only represents a time step in the

cycle. Then we have the same regret bound where H is replaced by H
2
/2.

3.2 Numerical Experiments

For our numerical experiments, we use two dataset: one synthetic dataset and one

publicly available sales dataset for 1,115 Rossmann stores from Jan 1, 2013 to July 31,

2015. Rossmann is one of the largest drugstore chains that operates over 4,000 stores

across Europe. In 2019 Rossmann had more than €10 billion turnover in Germany,

Poland, Hungary, the Czech Republic, Turkey, Albania, Kosovo and Spain. This

dataset contains the daily sales of over 1,115 stores (Kaggle (2015)).

For the synthetic dataset We construct an instance of a non-discarding lost-

sales problem with zero lead time, where Meta-HQL observes only the pseudo-costs

while accumulating costs. The horizon is of length T = 5000, with demand cycle of

length H = 5. The demands are randomly generated to have cyclic distributions:

D = [9, 4, 1, 0, 6] with independent noise generated from a discrete uniform distribu-

tion Unif[�1, 1], with step-size 1
10 . The holding cost and the lost-sales penalty are

both 1 per unit. We consider base-stock levels in [0, 10] with step-size 1
10 .

We evaluate the performance of Meta-HQL with respect to a stronger benchmark
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than the clairvoyant OPT. This benchmark is the optimal cyclic base-stock policy

that has knowledge of all the realized demands a priori. We refer to this benchmark

as “Lower Bound on OPT”.

We also compare with the best offline policy in hindsight that models the demand

distribution as i.i.d, which is a single base-stock level for all time periods. This policy

is the policy that incurs the least inventory cost among all such policies, and can be

obtained by gradient descent or binary search. We refer to this benchmark as “Best

i.i.d. Base Stock Level”. Note that this policy in principle should outperform all

existing inventory methods in related literature, as they also model demand as i.i.d.

(a) Total Cost Comparison. (b) Average Cost Comparison.

Figure 3-2: Performance comparison of Meta-HQL and OPT on synthetic data.

Figures 3-2a&3-2b show that the average cost of Meta-HQL per time step rapidly

converges to the optimal average cost, and dramatically outperforms the best offline

policy that models demand as i.i.d. instead of cyclic once Meta-HQL gets past the

initial exploration-concentrated phase. The best offline policy that models i.i.d. de-

mands is far off from the performance of the policies that model demand distributions

as cyclic.

For the Rossmann sales dataset This dataset is publicly available on Kaggle
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(see Kaggle (2015)) and contains daily sales of 1,115 stores from Jan 1, 2013 to July

31, 2015. We use the sales data from one of the stores. The dataset contains the daily

turnover and does not contain product information. We use the turnover amount for

each day divided by 20€ as a proxy for the demand for that day.

With real data, it is more difficult to compute the offline optimal policy that

is a cyclic base-stock policy. Therefore, we find a near-optimal cyclic base-stock

policy, referred to as “Near OPT”. We evaluate the performance of Meta-HQL with

respect to this near OPT benchmark, as well as the best offline policy that models

the demand distributions as i.i.d.. The holding cost and the lost-sales penalty are

both 1 per unit. For our policy Meta-HQL, we consider base-stock levels in the range

of [0, 500], with step size 1.

(a) Total Cost Comparison. (b) Average Cost Comparison.

Figure 3-3: Performance comparison of Meta-HQL and OPT on real Rossmann sales
data.

The relative behavior of the three policies on the real Rossmann sales dataset

remains very similar to that on the synthetic dataset. Figures 3-3a&3-3b show that

the average cost of Meta-HQL per time step rapidly converges to the near optimal

average cost, and outperforms the best offline policy that models demand as i.i.d.
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instead of cyclic once Meta-HQL gets past the initial exploration-concentrated phase.

A practitioner might be concerned about the performance of Meta-HQL at the

beginning of the horizon. Note that the large costs incurred at the beginning of

the horizon are caused by the unnecessarily large initial base-stock range (up to 500

units) that we ask Meta-HQL to explore. These large costs can be avoided by having

a more modest set of initial base-stock range of inventory level.

For example, although unnecessary for the regret analysis, our policies allow the

additional input of expert advice in case the retailer possesses (partial) knowledge

of the demand distributions beforehand to further improve the performance of our

algorithms in real applications.

Suppose the retailer has the following knowledge of the demand distributions in a

cycle: the historical demand for Saturdays has never been larger than 247 units; the

historical demand for Thursdays has never been larger than 427 units; the historical

demand for Fridays has never been larger than 378 units. Then we can adjust the

starting running sets in Meta-HQL to incorporate this mild expert advice.

Figure 3-4: Performance of Meta-HQL with expert advice on real Rossmann sales
data.

Figure 3-4 shows that with this mild expert advice, the performance of Meta-
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HQL significantly improves, especially in the short term. This ability to incorporate

expert advice is beneficial for real applications of our policies, and connects our online

learning policies to offline learning.

3.3 Multi-Product Backlogging Models

In this section, we extend the results in the previous sections to multi-product back-

logging models, where the extra demand is backlogged and not lost when it exceeds

the on-hand inventory.

The retailer has N products, each with a different inventory. At the beginning of

step h, the retailer reviews the starting inventory, which is a vector denoted by xh that

includes the current inventory and replenishment in the pipeline. The retailer orders

replenishment at a purchasing cost of ci,h per unit of product i. If any replenishment

is ordered, a fixed joint-ordering cost Fh is incurred. Let yh denote the vector of

ordered replenishment units for the n products at step h. A replenishment order

arrives after a deterministic lead time, which can be product-dependent. For ease of

presentation, we use a common lead time L for all products.

The retailer receives the replenishment yh�L that was ordered L steps ago. This

replenishment yh�L plus the current inventory is the on-hand inventory at time step

h, which the retailer uses to satisfy the demand in time step h. Let Ih 2 Rn denote

the vector of the on-hand inventory of the n products at time step h. Let Di,h denote

the random demand from unknown distribution Fi,h that is realized during step h

for product i. For each product i, the demand distributions are cyclic.

If demand exceeds the on-hand inventory of product i, unmet demand carries over

to the next time step as negative inventory. The retailer pays a backlogging cost bi,h >

0 for each unit of unmet demand for each product i. If for some product i, demand is
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less than the on-hand inventory, the retailer pays a holding cost oi,h > 0 for each unit

of leftover inventory. At the end of step h, the possibly negative remaining inventory

and the updated replenishment in the pipeline become the starting inventory xh+1

for the next step.

If the application calls for it, this model can add in the constraints order limits,

which requires that for any time step h, the replenishment for each product i ordered

in that time step has to satisfy that uh,i  yh,i  `i,h for any i, h. The order limits

can apply to combinations of products as well.

All the cost parameters can be time-varying as long as they are periodic in cycles

of H time periods. For ease of presentation, we use the following cost function, but

our proof remains valid if additional terms exist.

Costh = Fh · 1{yh 6= 0}+ c>
h
(yh) + o>

h
(Ih + yh�L �Dh)

+ + b>
h
(Dh � Ih � yh�L)

+.

Now we discuss the difference between the episodic model and the non-discarding

model.

• Model 1: Episodic Multi-Product Backlogging

Similarly to the episodic lost-sale model:

Assumption 1a: At the end of each cycle, excess inventory is discarded or

salvaged at some arbitrary fixed price.

In the case of salvaging, we subtract the salvaging revenue from the cost of the

last step in a cycle so that Equation (3.3) holds for all h 2 [H].

The preliminaries are similar to those in Section 2.2.1 and are thus relegated

to Appendix A.5. We emphasize that we no longer simplify notation Q(x, y) to

Q(x) because we consider general policies.
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• Model 2: Non-Discarding Multi-Product Backlogging

This model is consistent with inventory literature for non-perishable products:

we never discard inventory. The leftover inventory at the end of a cycle always

carries over to the next cycle. Instead of Assumption 1a for the episodic model,

we have the following alternative Assumption 1b for the non-discarding model:

Assumption 1b: The expected time needed to deplete 1 unit of inventory is

at most �.

This is an often-used assumption in literature (see for example Agrawal and

Jia (2022)). Note that our policy does not need to know �. This assumption is

used only in the analysis.

The objective is to minimize the expected total cost. Note that for both the episodic

and the non-discarding multi-product backlogging models, the decision variables yh

for the multi-product backlogging model are not restricted to cyclic base-stock poli-

cies, because cyclic base-stock policies are not necessarily optimal for this model.

3.3.1 Algorithm for the Episodic Backlogging Model: FQL

Full-Q-Learning (FQL) is a simple variant of HQL, designed for the multi-product

backlogging problem. This method allows for a more general policy space than HQL:

our action space is no longer restricted to cyclic base-stock policies because they are

no longer the optimal class of policies for the multi-product backlogging model. FQL

achieves optimal O(
p
T ) regret because there is richer feedback in the backlogging

model than in the lost-sales model.
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Key Observation 3: at any time step h, after the retailer takes an action, once

the demand is realized, we can deduce the reward and the leftover inventory for any

other replenishment decision as well. This is the full-feedback structure, a stronger

case of the one-sided-feedback structure.

ALGORITHM 3: Full-Q-Learning
Initialization: Qh(x, y) H, 8(y, h) 2 A⇥ [H].
for episode k = 1, . . . , K do

Initiate empty demand list Dk = [];
for time step h = 1, . . . , H do

Order new inventory yk
h
 min{ argmax

feasible y given x
k

h

Qh(xk

h
, y)};

Observe realized D̃k

h
and append to Dk; Update xk

h+1  x0
h+1(x

k

h
, yk

h
, D̃k

h
);

end for
for time step h = H, . . . , 1 do

for state x 2 S and action y 2 A do
Update Vh+1(x0

h+1(x, y, D̃
k

h
)) max

feasible y’
Qh+1(x0

h+1(x, y, D̃
k

h
), y0);

Update Qh(x, y) (1� ↵k)Qh(x, y) + ↵k

⇥
rh(x, y) + Vh+1

�
x0
h+1(x, y, D̃

k

h
)
�⇤
;

end for
end for

end for

Theorem 4 FQL achieves O
⇣p

T log T · H2nmax
�
M |oh|,M |bh|, |F |

�p
n(L+ 1)

⌘

regret against the optimal policy for the n-product episodic backlogging model with

fixed joint-ordering cost F , lead time L and order limits.

In the case of FQL, for the sake of continuity we use similar notations and anal-

ysis as in Jin et al. (2018) but adapted to our full-feedback setting. The proof is

simpler than the proof for HQL and is done by making a few moderate modifica-

tions to the analysis in Jin et al. (2018); see Appendix A.6. Because FQL leverages

the full feedback, it shrinks the concentration bounds much faster than do existing
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algorithms, resulting in a significantly lower regret bound that is unaffected by the

state-action space.

The regret lower bound (Theorem 2) applies to the episodic backlogging model

as well.

3.3.2 Algorithms for the Non-Discarding Backlogging Model

For the non-discarding single-product backlogging model with zero lead time, we can

easily see that Meta-HQL applies to this model as well and achieves the same regret

bound. However, we can do better by utilizing Key Observation 3–the full feedback

of backlogging models again to simplify the process of determining the correct shift

of cycles. We can use FQL instead of HQL for the shifted copies of algorithms that

are governed by the top bandit learning algorithm. This method reduces the regret

upper bound down by a factor of H. The proof is an easy modification of the proof

of Theorem 3 and is thus omitted.

For the non-discarding multi-product backlogging model, we cannot apply Meta-

HQL because the base-stock policies are not necessarily optimal for this very general

model. We take a different approach by utilizing the following observation:

Key Observation 4: even though the cycle length of demand distributions is

fixed, the cycle length used in the retailer’s policy is a variable that can be optimized

to morph the episodic models to non-discarding models. This process is possible

because a sequence of demand distributions that is cyclic in H is also cyclic in any

integer multiple of H.

To utilize Key Observation 4, consider an intermediate MDP that has J as the

episode length and discards inventory after every J time steps, where J is an integer

multiple of the true cycle H. Specifically, we take J to be the closest integer multiple
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of H to T 1/6 (see details in Appendix A.7). The number of cycles is K = T

J
. We use

an underline on notation related to the intermediate MDP. For example, we use OPT

to denote the optimal policy for the intermediate MDP, while OPT is the optimal

policy for the original non-discarding model. Cost denotes the total expected cost

of a policy in the intermediate MDP. The rest of the setup is consistent with the

original non-discarding problem: the fixed joint-ordering costs and the unit holding

and backlogging costs of the intermediate MDP are the same as those in the non-

discarding model. We set the discarding price for the hypothetical intermediate MDP

to zero. Discarding at the end of a cycle can make Cost either higher or lower than

the Cost of the original problem due to the positive lead time. Recall that our actions

are not limited to base-stock policies. According to Key Observation 4, FQL applies

to the intermediate MDP and achieves Õ(J2
p
T ) regret with respect to OPT.

We propose a policy Mimic-QL for the non-discarding multi-product backlogged

model. Mimic-QL simulates FQL for the intermediate MDP on the side, and mimics

FQL when possible. In Algorithm 4, xk

h
[i] denotes the state vector of inventory and

replenishment of product i that FQL is in on the intermediate MDP at step h in

episode k. We use yk
h
[i] to denote the amount of replenishment of product i that

FQL would order given xk

h
. For any vector v, we use function sum(v) to denote the

sum across all coordinates of v. We use x0
h+1[i]() to denote the function of leftover

inventory for the non-discarding model and x
0
h+1[i]() to denote the function of leftover

inventory for the intermediate MDP.

Main Idea: Mimic-FQL solves the non-discarding model by mimicking FQL for

the intermediate MDP, which Mimic-FQL simulates on the side. FQL always starts

an episode with less inventory than Mimic-FQL because of discarding. For each

product i, as long as FQL has less total summed inventory of product i (including

replenishment in the pipeline) than Mimic-FQL, Mimic-FQL does not order any
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ALGORITHM 4: Mimic-FQL (MimicQL)
Initialization: Qh(y) H, 8(y, h) 2 A⇥ [H]; A0

h
 A, 8h 2 [H];

Ak

H+1  A, 8k 2 [K];
for k = 1, . . . , K do

Initiate empty demand list Dk[i] = [ ] for each product i;
for h = 1, . . . , H do

for product i = 1, . . . , n do
if sum(xk

h
[i]) sum(xk

h
[i]) then

Order new replenishment yk
h
[i] sum(xk

h
[i])� sum(xk

h
[i]);

else
Order no new replenishment for product i;

end if
end for
Observe realized demand D̃k

h
[i] for each product i and append to Dk[i];

Update xk

h+1[i] x0
h+1[i](x

k

h
[i], yk

h
[i], D̃k

h
[i]), 8i;

Update xk

h+1[i] x0
h+1[i](x

k

h
[i], yk

h
[i], D̃k

h
[i]), 8i;

end for
Update the Q values and V values using Dk[i] in the same way as FQL.

end for

product i. The moment the total summed inventory level of product i of FQL

becomes greater than or equal to that of Mimic-FQL, Mimic-FQL orders an amount

of replenishment such that given the same demand for product i in that time step,

the total summed inventory of product i of Mimic-FQL and FQL will be the same

at the beginning of the next time step.

Mimic-FQL continues ordering in this manner for all products for at most L

time periods after the beginning of each episode before the inventory vector and

the replenishment pipeline vector of Mimic-FQL and FQL are synced. From this

point on, Mimic-FQL completely follows the actions of the simulated FQL until the

beginning of the next episode, where the inventory levels of Mimic-FQL and FQL

might differ again because of discarding.
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Theorem 5 MimicQL achieves Õ
⇣
H5/2T 5/6

⌘
regret for the non-discarding multi-

product backlogging model with fixed joint-ordering cost, lead time and order limits.

We provide the detailed proof of Theorem 5 in Appendix A.7.

3.4 Conclusion and Discussions

3.4.1 Full Feedback vs. One-Sided Feedback

We observe the full feedback structure in the multi-product backlogging model, and

the one-sided feedback in the lost-sales model. In Appendix A.8 we give more formal

definitions of the one-sided-feedback structure and the full-feedback structure.

When full feedback is present, for the episodic model, it is “easy” for us to design

an efficient reinforcement learning algorithm that removes the regret dependence on

the cardinality of the state-action space. There is no trade-off between optimizing our

action and the amount of feedback we can observe. We only made small modifications

in Q-learning algorithms to take advantage of the full feedback. We do not need

optimism bonuses such as the UCBbonus (see Jin et al. (2018)) for exploration

either. The regret bound for the episodic model is O(H2
p
T ) without dependence

on the state-action space.

In contrast, one-sided feedback does not guarantee much benefit. If the replen-

ishment decisions are not chosen carefully, one-sided feedback might give very little

additional information. There is an additional trade-off between ordering more to use

the one-sided feedback and ordering less to save on costs. The existing machinery

in reinforcement learning cannot readily take advantage of the one-sided feedback

structure. That is the reason why we have to devise a new algorithm HQL that uses

65



stopping times and running sets to fully take advantage of the one-sided feedback.

The regret bound of HQL for the episodic lost-sales model is O(H3
p
T ) without

dependence on the state-action space.

Assuming our goal is to eliminate the regret dependence on the state-action space,

then for the episodic models, full feedback makes the problem much simpler than one-

sided feedback. Therefore, we can deal with very general complicated backlogging

models, while for the lost-sales model, our algorithms can only deal with the simplest

lost-sales model.

To transition from the episodic models to the non-discarding models, Meta-HQL

uses the optimal policy structure for the simplest lost-sales model to obtain a regret

bound of O(H3.5
p
T ). However, this structure is not optimal for the very gen-

eral multi-product backlogging model that we introduced, so we gave some other

ideas and techniques that obtain suboptimal regret bounds for the non-discarding

multi-product backlogging model. If not for our ambition to deal with very general

multi-product backlogging model, Meta-HQL would solve the non-discarding single-

product backlogging model with the same regret bound (with a simple modification

of the cost function). However, we consider it more useful to the readers to discuss

the general multi-product backlogging model, because the full feedback structure

present in the problem has a lot of potential for future research on complex models.

Now we provide a few example problems that are important in operations research

or finance and possess either the one-sided-feedback or the full-feedback structure.

Airline Overbooking Policy: Overbooking or overselling is the sale of a good

or service in excess of actual supply. This is a common and legally allowed practice in

the airline, hotel, and rental car industries in many countries, in which no-shows or

cancellations frequently occur, allowing for significant additional revenue (Chatwin

(1998)). Substantial compensation is offered to customers who are denied due to
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excessive overbooking even though they have a ticket. The goal of the agent is

to navigate the trade-off between the additional revenue and the penalty. Often

in reality, the demands and customer behavior (no-shows or cancellations) follow

a strong weekly pattern. Specifically, the distributions in these industries for the

weekdays differ significantly from the distributions for the weekends.

Using the airline industry as an example, the agent must decide the overbooking

ratio that the airline will allow for each time period. Suppose the airline has 10 seats

available every day. If the agent sets the overbooking ratio to be 10% for Monday,

then the airline will allow at most 11 customers to purchase a seat for Monday. If a

12th customer arrives and wants to purchase a seat for Monday, that customer will

be unsuccessful and the agent does not observe this additional demand: the demand

is therefore censored.

The overbooking problem possesses the lower-sided feedback structure: once the

agent chooses an overbooking ratio for a time period, the agent observes the part

of the realized demand that does not exceed the allowed number of bookings, and

the reward for this chosen overbooking ratio. At the same time, using the observed

part of the demand, the agent can also deduce the reward for any overbooking ratio

lower than the chosen one. The assumptions needed in Appendix A.8.2 are satisfied

as well.

Online Second-Price Auctions: A second-price auction is an auction mecha-

nism where the highest bidder receives the item and pays the second-highest bid as

opposed to the highest bid. This is considered to be a more “ideal” auction mecha-

nism than first-price auctions because it is incentive-compatible, meaning that it is

in each bidder’s best interest to bid truthfully according to their true valuation of

an item. The online second-price auction is used in different markets for financial

products and online ads placements.
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We consider repeated online second-price auctions where the auctioneer also sub-

mits a bid at each time period to prevent the item from selling below what the

auctioneer thinks it is worth. This bid by the auctioneer is also called the reserve

price. The auctioneer must decide the reserve price for the same item in each round,

and each bidder draws a value from its unknown distribution.

Each bidder submits a bid only if its valuation of the item is not lower than

the reserve price. The auctioneer observes the bids, gives the item to the highest

bidder, if any, and collects the second-highest bid price (including the reserve price) as

profit. In this case, we have the higher-sided-feedback structure. Once the auctioneer

announces the reserve price and bids are submitted, the auctioneer can deduce what

bids, and thus what profit, she would have received if she had set any reserve price

higher than the announced reserve price. The assumptions needed for the one-sided-

feedback setting in Section A.8.2 are satisfied as well. Note that the feasibility of the

actions does not depend on the state in this model.

If the bidders submit their bids regardless of whether their values are lower than

the reserve price, then this problem becomes a full-feedback problem because the

auctioneer can now deduce the alternative profit for any reserve price.

Portfolio Management: is the classic problem of allocating a fixed sum of

cash to a variety of financial instruments Markowitz (1952). In each time period, the

manager collects the increase in the portfolio value as the reward and is penalized

for any decrease.

We assume that the total volume of the portfolio is not sufficiently large to have

a noticeable effect on the market prices of the financial instruments. This is a full-

feedback problem because once the returns of all instruments become realized for

that day, the manager can deduce what his reward would have been for all feasible

portfolios.
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The episodic MDP model is suitable when the returns of the financial instruments

we consider have periodic or seasonal distributions, e.g. futures contracts.

3.4.2 Conclusion

We fill a theoretical gap in inventory theory for online inventory control with unknown

cyclic stochastic demands. We design reinforcement learning algorithms that cater

to the special structures of inventory models. Specifically, we construct a bandit

learning algorithm on top of multiple copies of our reinforcement learning algorithms

to achieve the optimal regret bound for the online lost-sales model under unknown

cyclic stochastic demands.

Our algorithm works well for both synthetic data that are generated to have

cyclic demand distributions and the real sales data of Rossmann drugstores. Our

policy, Meta-HQL, drastically outperforms the best policy under the i.i.d. demand

assumption and rapidly approaches the clairvoyant optimal policy.

We expect that future extensions of our work in customizing reinforcement learn-

ing and other advanced machine learning methods to more varied operations prob-

lems could be very fruitful.
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Chapter 4

Online Assortment Optimization for

Reusable Resources

4.1 Introduction

Assortment optimization is an important problem that arises in a broad set of ap-

plications including online advertising, recommendations and e-retailing. In these

applications, the goal of the decision-maker is to select a subset of products from

the available universe to offer to the user to maximize the expected revenue or re-

ward. For any given subset S of offered products, the selection of the user depends

on his or her random preference over the set of products including the no-purchase

or exit option. We model this random selection using a choice-model that for any

offer set S, specifies the probability, that the user selects product j 2 S [{0} (where

0 refers to the no-purchase or exit option). Several parametric choice models have

been studied in the literature including multinomial logit (MNL) model Luce (1959);

Plackett (1975); McFadden (1973), the nested logit model Williams (1977); McFad-
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den et al. (1978); Davis et al. (2014); Gallego and Topaloglu (2014), Markov chain

based model Blanchet et al. (2016) and the mixture of multinomial logit model Mc-

Fadden and Train (2000) (see Train (2009); Kök et al. (2015); Berbeglia et al. (2018)

for a detailed overview of these models).

In this chapter, we consider an online assortment problem where we are given

n substitutable products with fixed capacities or inventories c1, . . . , cn. Users with

different choice models arrive sequentially. For each user, the seller offers a subset

S of the available products satisfying certain constraints, the user selects a random

product j 2 S [ {0} with probability given by his or her choice model and uses it

for a random amount of time, t̃j and returns it to the platform, generating revenue

rj(t̃j) for the seller. The goal of the platform or the seller is to design a policy to

offer assortments to the user so that the expected revenue is maximized.

Our main contribution is to show that a simple myopic policy (where we offer the

myopically optimal assortment from the available products to each user) provides a

good approximation for the problem. In particular, we show that the myopic policy

is 1/2-competitive, i.e., the expected cumulative revenue of the myopic policy is at

least half the expected revenue of the optimal policy with full information about the

sequence of user preference models and the distribution of random usage times of all

the products. In contrast, the myopic policy does not require any information about

future arrivals or the distribution of random usage times. The analysis is based on

a coupling argument that allows us to bound the expected revenue of the optimal

algorithm in terms of the expected revenue of the myopic policy. We also consider

the setting where usage time distributions can depend on the type of each user and

show that in this more general case there is no online algorithm with a non-trivial

competitive ratio guarantee.

This model fits the setting of classical online product allocation and revenue
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management. However, unlike traditional settings where the capacity or inventory of

any product decreases permanently whenever user selects that product, the products

are “reusable” in our setting, meaning that upon allocation they come back into the

inventory after some period of time and may be allocated several times over the

planning horizon. Such a setting arises commonly in many applications including

cloud computing, physical storage, make-to-order service and other sharing econoy

applications. For example, consider modern cloud platforms such as Amazon Web

Services, Google Cloud, and Microsoft Azure. Among other services these platforms

commonly support large scale data storage, a service that is widely used by online

video platforms such as YouTube and Netflix. Given the large scale of these networks

and huge volume of data, a given data file is stored in a subset servers that are

part of the cloud. Thus, a typical user request for data can only be sent to the

subset of servers with the required data. Additionally, each server can concurrently

serve only a limited number of requests while meeting the stringent low latency

requirements on such platforms. Our online assortment model captures this setting

as a special case where products correspond to servers in the cloud and starting

inventory corresponds to capacity of servers. Customers correspond to user requests

that arrive sequentially over time and each customer must be irrevocably matched

on arrival to at most one product out of a given subset that is revealed when the

customer arrives. Interestingly, several recent works in the queuing theory study a

similar setting with the objective of latency minimization on a bipartite networks, for

instance Weng et al. (2020); Budhiraja et al. (2019); Mukherjee et al. (2018); Cruise

et al. (2020). Our model ignores the queuing aspect and provides a complementary

perspective from the point of view of maximizing the number of successful matches

in a loss system (where the latency of accepted jobs is zero).

Settings similar to ours have previously been considered in the literature on online
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assortment planning for non-reusable products as well as reusable products. Golrezaei

et al. (2014) consider the online assortment problem with fixed product capacities

for the case of non-reusable products (i.e. inventory of a product decreases whenever

any user selects that product). They give an inventory balancing based algorithm

that is (1 � 1/e)-competitive for adversarial arrivals in the limit of capacities going

to infinity. For the case of all capacities being equal to one, their algorithm is 1/2-

competitive. Ma and Simchi-Levi (2020) consider a more general setting where the

seller can make joint assortment and pricing decisions, and obtain guarantees with

adversarial customer arrivals for the case of non-reusable products.

While the above results pertain to non-reusable resources, most closely related

result to our setting of reusable resources is in the work of Rusmevichientong et al.

(2020). They consider this problem in the setting of stochastic customer arrivals

where the distribution of user types is known in advance. Using this distributional

knowledge one can write the optimal algorithm in this case as a dynamic program

(DP), but this DP suffers from the curse of dimensionality. Rusmevichientong et al.

(2020) give an algorithm based on approximate dynamic programming and show

that it is a 1/2-approximation to the optimal DP for the problem. Earlier, Dickerson

et al. (2018) considered the problem of online matching (instead of assortments)

when resources are reusable and the distribution of customer types is known. They

proposed a simulation and LP based approach and showed that it is 1/2 competitive

against an offline LP benchmark (which is a stronger guarantee).

In contrast, we assume no advance knowledge of the user type distribution and

consider an adversarial model for the sequence of user types. Recall, user type refers

to the choice model of the user, which is revealed to the platform when the user

arrives. Let �z be the choice model for user type z and �z(i, S) the probability that

user type z selects product i given assortment S. We make the following assumptions

74



about choice probabilities and usage time distributions.

Assumption 1 For any user type z, assortment S ✓ T 2 S and i 2 S, we have

�z(i, S) � �z(i, T ).

This is a mild assumption and without much loss of generality. In fact, all random

utility based choice models including multinomial logit (MNL), nested logit and

mixture of MNLs satisfy Assumption 1.

Assumption 2 For every product j, usage time distribution depends only on j and

not on the user type.

For settings where this assumption does not hold we show that it is impossible to

obtain any constant factor competitive algorithm for adversarial arrivals. In gen-

eral, Assumption 2 is reasonable in various settings where the choice of the product

depends on the user type, while the usage time depends only on the product. In

the setting of cloud computing this translates to the assumption that the time taken

to fulfill a user request depends primarily on the characteristics (processing power,

memory) of the server that a request is assigned to. While imperfect, this assump-

tion is commonly employed in related literature (Weng et al., 2020; Budhiraja et al.,

2019; Mukherjee et al., 2018; Cruise et al., 2020). As another example, consider a

make-to-order setting where user selects a product from the offered assortment. Once

the user makes the selection, a dedicated machine (resource) makes the product for

the user. In such a setting, the busy time of the machine (resource) depends only

on the product. Make-to-order settings also involve non-reusable resources in the

form of raw materials. However, in a typical setting the machines are the bottleneck

resources as they are often much more expensive than the raw materials. It is also

worth noting that in many scenarios making a product may require the use of several
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machines either in parallel or in a given sequence. This presents new challenges that

are not captured in the model we consider here and could be an interesting direction

for future work.

The revenue to the seller, rj(t̃j) when product j is used for some random time,

t̃j, could be a general function of the usage time. In particular, we can model fixed

revenue for every use, as well as revenue which is an affine function of usage time with

fixed component and per-unit usage time component. Let rj denote the expected

revenue of product j where the expectation is taken over the random usage time of

product j, i.e.,

rj = Etj⇠Fj
[rj(tj)],

where Fj is the cdf of usage time distribution of product j.

Mathematical Formulation We are given n substitutable products with reusable

capacities c1, . . . , cn 2 N. Each product i has a price ri 2 R+. In each period t over

a horizon of length T , a customer, denoted by customer t, arrives to our platform.

The customer’s choice model �t becomes known to us upon arrival. We want to offer

a subset of products St to this customer, from the set of available products at time

t. The expected revenue of any assortment S is
P

i2S ri�
t(i, S).

For any given subset St, user at time t selects a product or no-purchase according

to their choice model �t. If user t selects a product j, he uses it for a random number

of periods, t̃j that is distributed i.i.d. according to some distribution that depends

only on product j. This purchase generates a revenue rj(t̃j) for us before the product

comes back into the inventory. Full revenue is collected regardless of the end of the

horizon. At the end of the horizon no further customers arrive but the revenue is

still collected from resources in use until they are returned.

We assume Assumptions 1 and 2. The arrival sequence of customers and their
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respective preferences can be adversarially chosen, but the adversary is oblivious. In

other words, we make no assumptions (distributional or otherwise) on the arrival

sequence and allow it to be completely arbitrary (periodic or aperiodic/continuous).

The goal of the seller is to find a policy that maximizes the expected cumulative

revenue over a finite horizon T :

max E
h TX

t=1

X

j2St

rj�
t(j, St)

i

where the expectation is over product choices and realizations of usage times.

We take the perspective of competitive analysis on our policy, where we measure

the worst case performance of a policy against a clairvoyant optimal policy that is

computed with the complete knowledge of arrival epochs, the choice models of all

customers and all the usage time distributions. Note that OPT does not know the

realizations of product choices and usage times beforehand. We compare the worst

case expected revenue collected by our policy with the optimal expected revenue

collected by the optimal policy, where the expectation is again over product choices

and realizations of usage times.

Our Contributions. Our main contribution is to show that a myopic policy pro-

vides a good approximation for the online assortment optimization problem with

reusable products.

Myopic Policy. For each user, the myopic policy offers an assortment S 2 S from

the set of available products that maximizes the expected revenue from that user.

More specifically, suppose user at time t has type zt and let It be the set of products

available to the myopic policy at time t. Then the myopic policy offers assortment
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St where,

St 2 argmax

(
X

i2S

ri · �zt(i, S)

����� S ✓ It, S 2 S
)
,

where recall, �z is the choice model for user type z, �z(i, S) is the probability that

user type z selects product i given assortment S and rt is the expected revenue when

product i is selected where the expectation is taken over the usage time of product i.

Recall that we assume the usage time distribution only depends on the product and

is not dependent on user type. Therefore, the myopic policy only needs the expected

revenue rj from product j if it is selected and does not need any further information

about the usage time distribution. Further, the optimal set St can be found using

any black-box algorithm for static assortment optimization.

We show that this myopic policy is 1/2-competitive. In other words, the expected

revenue of the myopic policy is at least 1/2 times the expected revenue of an optimal

policy that has full information about the sequence of user types and product usage

distributions (although not the choice realizations and the realization of usage times).

We refer to this as the clairvoyant benchmark. More generally, when the (possibly

constrained) static assortment optimization problem at each stage can only be solved

up to within an ↵ factor of the optimal, our myopic policy is ↵/(1 +↵)-competitive.

We would also like to remark that even for case of non-reusable items, which is

a special case of our setting, there are instances where the myopic policy achieves

exactly 1/2 the value of clairvoyant (for examples, see Golrezaei et al. (2014); Karp

et al. (1990)).

Impossibility Result for User Type Dependent Uage Distributions. We

also show that if the usage time distribution depends on the user type, then there

is no online algorithm that can obtain a constant factor competitive ratio as com-

pared to our clairvoyant benchmark for the case of adversarial arrivals. This result
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holds even in the large capacity case. We would like to note that Rusmevichientong

et al. (2020) consider the case where usage time distributions can depend on the user

type. However, they consider the setting of stochastic arrivals with known distribu-

tion of user types and give a 1/2-approximation compared to the optimal dynamic

programming solution as opposed to the clairvoyant benchmark.

Challenges and New Techniques. We would like to note that even with full-

information about the sequence of users and the usage time distribution, computing

an optimal policy is intractable due to the curse of dimensionality. Golrezaei et al.

(2014) use an LP-based upper bound as a benchmark for the case of non-reusable

products. One of the challenges in extending the results to the case of reusable prod-

ucts is the lack of a good LP-based upper bound. The LP formulation in Golrezaei

et al. (2014) has an unbounded gap since it does not account for reusability and

therefore, is not a useful benchmark for the problem. On the other hand, LP upper

bounds of the form proposed in Dickerson et al. (2018) naturally capture reusability,

however, it is not immediately clear how to perform a primal-dual type analysis with

this more involved LP. Part of the reason is that due to reusability, the remaining

capacity of products non-monotonic (capacity decreases when product is used but

increases when used units return). But more importantly, this non-montonicity is

inherently stochastic due to the uncertainty in usage durations and this makes it

non-trivial to dual-fit in the way of Golrezaei et al. (2014); Devanur et al. (2013).

In order to prove the competitive ratio bound, we design a novel queue-based

coupling that allows us to upper bound the expected revenue of an optimal algorithm

with full information in terms of the expected revenue of the myopic policy, for any

usage time distributions.

Further work: Since a version of this chapter appeared online, there have been
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several developments in these settings, especially in the large capacity regime. In

case of adversarial arrivals, Feng et al. (2019) show that the inventory balancing

algorithm of Golrezaei et al. (2014) is (1 � 1/e)2 ⇡ 0.4 competitive for large capac-

ity. For the special case of deterministic/fixed usage durations, they show the best

possible performance guarantee of (1 � 1/e) in the large capacity regime. In con-

trast, Goyal et al. (2021) (merging two earlier papers Goyal et al. (2020a) and Goyal

et al. (2020b)) demonstrate that the general case of stochastic usage durations is fun-

damentally different and inventory balancing may not be sensitive enough to address

reusability even for simple two-point usage distributions. First, they propose a new

ranking based allocation scheme and show that it achieves the best possible guaran-

tee of (1 � 1/e) for large capacities when the usage distributions are IFR (roughly

speaking). Building on this insight they develop a fluid guided algorithm that is

(1� 1/e) competitive for arbitrary usage distributions when the capacities are large.

To analyze these algorithms they introduce a new LP free analysis approach inspired

by the primal-dual analysis of Devanur et al. (2013) and its path-based generaliza-

tion in Goyal and Udwani (2020). Beating the performance of the myopic algorithm

without the large capacity assumption remains open.

In the stochastic arrival setting, Feng et al. (2019) show a competitive ratio of

1/2 against a stronger LP benchmark and with a different simulation based policy

(recall that Dickerson et al. (2018) showed such a result for the special case of online

matching of reusable resources). In concurrent work, Baek and Ma (2019) gave a

1/2 competitive policy against the LP benchmark more generally for network revenue

management with reusable resources. Finally, Feng et al. (2020) show a near optimal

result in the stochastic arrival case for large capacities.
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4.1.1 Related Work

There is a considerable amount of literature on dynamic assortment optimization

problems with non-reusable products starting with Bernstein et al. (2015), which

studied the problem of dynamic assortment optimization for a stochastic arrival

model where users choose according to a multinomial logit choice model (Talluri and

Van Ryzin (2004); Liu and van Ryzin (2008); Gallego et al. (2004); Topaloglu (2013))

and the user type is drawn i.i.d. from a stationary distribution. Chan and Farias

(2009) considered a stochastic depletion framework for non-stationary environments

which includes the assortment planning problem under random arrivals. They gave a

1/2-competitive myopic policy for this general framework. More recently, Stein et al.

(2018); Wang et al. (2018) consider other closely related models for online product

allocation with stochastic arrivals. We refer the reader to Golrezaei et al. (2014) for

a more detailed review.

For revenue management with reusable products and random usage times, Levi

and Radovanović (2010) first studied a product independent demand model where

the users do not exhibit any choice behavior and the goal is to design a policy to

maximize the average revenue in an infinite horizon setting. Owen and Simchi-Levi

(2018) extend this model to include user choices and also study the infinite horizon

setting. Chen et al. (2017) consider a related problem of control admission for a

system with multiple units of a single product which can be reserved in advance

for time intervals determined by users arriving according to a multi-class Poisson

process.

Product allocation problems also closely relate to online matching problems and

often generalize the classical online bipartite matching problem of Karp et al. (1990).

In this seminal work, they showed that matching arriving users (the unknown ver-
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tices) based on a random RANKING over all products (vertices on the known side

of the graph) gives the best possible competitive guarantee of (1� 1/e).

We refer the interested reader to Mehta et al. (2013) for a more detailed review

of work on online matching and its variants/generalizations.

4.2 Competitive Ratio of Myopic Policy

In this section, we show that the myopic policy is 1/2-competitive for general usage

time distributions and general revenue functions (as functions of usage times). Before

proceeding, we discuss useful notation and introduce an important simplification.

Notation. Let N = {1, . . . , n} be the set of products available to the platform with

capacities c1, . . . , cn. Let us refer to the myopic policy as ALG and the clairvoyant

optimal as OPT. Recall, we let S denote the set of feasible assortments. Let Z

denote the set of user types. For any z 2 Z, S ✓ N , i 2 S [ {0}, let �z(i, S)

denote the probability that user type z selects i when offered assortment S. The

choice probabilities satisfy Assumption 1. Also recall, rj is the expected revenue

to the seller when j is selected by any user and Fj is the cdf of usage duration for

product j. R(S, zt) =
P

i2S rt · �zt(i, S) is the expected revenue of assortment S for

user type zt. Let ! denote the sample path that specifies the random preference

realizations of all users z1, . . . , zT and the random usage times. Let It(!) denote the

set of available products in ALG at time t on sample path !. Also, let St(!) (S⇤
t
(!)

respectively) denote the assortment offered by ALG (OPT respectively) at time t to

user type zt. Here recall St(!) = argmax
S2It(!) R(S, zt). Let jt(!) 2 St(!) [ {0} be

the product selected by user zt in ALG, and let j⇤
t
(!) 2 S⇤

t
(!) [ {0} be the product

selected by user zt in OPT at time t on sample path !. Note that product 0 refers
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to the do-nothing or exit option.

From arbitrary to unit inventory: We now argue that one can safely assume

cj = 1 for all j, since a guarantee for the case of unit inventory leads to a stronger

result that generalizes to the case of arbitrary inventories. This allows us to perform

a simpler and crisper analysis without loss of generality (w.l.o.g.). We note that

such a property is commonly used in the online matching literature for non-reusable

resources (Mehta et al., 2013), and we show this also for our assortment setting with

reusable resources.

Given a setting with arbitrary inventories {cj}j2N . Consider a unit inventory set-

ting where for each j we have cj identical products (with the same usage distribution

as the original product), instead of cj units of product j in the original instance. We

refer to this as the unit setting. In the unit setting we index the products as (j, kj),

where kj 2 [cj] for every j 2 N . For any given assortment Su in the unit setting, we

let S denote the set of products in the original instance with j 2 S if there exists

some kj 2 [cj] such that (j, kj) 2 Su. Now, given an arrival with choice model � on

the original product space, define the following choice function �u in the new space

of products:

�u ((j, kj), Su) =

8
><

>:

�(j, S) if for every k < kj, (j, k) 62 Su,

0 otherwise.

Further, we couple the customer choice between the two settings so that when

customer chooses product j 2 S in the original instance, the unique product (j, kj) 2

Su such that �u ((j, kj), Su) = �(j, S), is chosen in the unit setting and vice versa.

Note that if choice model � satisfies Assumption 1 then so does the unit setting

choice model �u. Given an arrival sequence in the original setting, we construct
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an arrival sequence for the unit setting using this transformation. The following

proposition shows that the expected revenue of OPT (and ALG) does not change

when we perform this transformation.

Proposition 2 Given an instance of the problem with arbitrary inventories {ci}i2N ,

the expected total revenue of OPT and ALG remains unchanged in the transformed

instance with unit inventories.

Proof: Consider an arbitrary arrival sequence in the original instance and its equiv-

alent sequence (as given by the transformation) in the unit setting. Given an optimal

algorithm (OPT) for the original instance, we construct an algorithm for the unit

setting with the same expected revenue.

For every product j, whenever OPT includes j in an assortment for the original

instance, we include exactly one available product (j, kj), for an arbitrary kj 2 [cj], in

the unit setting. This defines a policy for the unit setting but to make this definition

meaningful we need to ensure that whenever j is available in the original instance,

some product (j, kj) is available in the unit instance. This is true at the first arrival.

Inductively, following the defined policy while using the same realization of usage

times for both settings and coupling the customer choice as described earlier, we

have that if product j is available in the original instance at arrival t then we are

guaranteed some kj such that (j, kj) is available in the unit setting at t. Therefore,

we have a well defined policy for the unit setting with expected revenue exactly as

much as OPT in the original setting.

The reverse is also true. Given the optimal algorithm for the unit setting, when-

ever a product (j, kj) is included in the assortment, we include product j in the

assortment for the original instance. Once again due to the coupling between the

choice models and using the same realizations of usage durations, whenever a product
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(j, kj) is available in the unit setting at least one unit of j is available in the original

setting. This leads to a policy for the original setting with the same expected revenue

as the optimal policy for the unit setting.

Therefore, the optimal value of clairvoyant is the same in both instances. In fact,

using the same argument the expected revenue of ALG is also identical in the two

settings. ⇤
In the rest of this section we will show that on every unit inventory instance

the expected revenue of ALG is at least half of OPT. The above proposition then

gives us our general result for arbitrary inventories. Note that, while the number

of products in the unit setting can be much larger, this is only for the purpose of

analysis and has no impact on the actual run time of the myopic policy (which is on

the original space of products and choice models).

Theorem 6 Suppose for every product j, the usage time is distributed according to

a distribution that only depends on the product j itself. Then for any sequence of

user types z1, . . . , zT , the expected cumulative revenue of the myopic policy is at least

1/2 times the expected cumulative revenue of the clairvoyant optimal that knows the

full sequence, i.e.,

E!

"
TX

t=1

R(St(!), zt)

#
� 1

2
· E!

"
TX

t=1

R(S⇤
t
(!), zt)

#
.

Proof: The proof proceeds by decomposing the revenue E![R(S⇤
t
(!), zt)] of OPT

into two parts, one corresponding to the products in S⇤
t
(!) that are available in ALG

at time t and the other corresponding to products in S⇤
t
(!) that are unavailable in

ALG at time t. We upper bound the former by the revenue E![R(St(!), zt)] of ALG

for the same arrival. The key challenge is to bound the total expected revenue in
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OPT from products that are unavailable in ALG at the time they are offered in OPT.

We do this subsequently in Lemma 6. Formally,

E!

"
TX

t=1

R(S⇤
t
(!), zt)

#
= E!

2

4
TX

t=1

X

j2S⇤
t
(!)

rj · �zt(j, S⇤
t
(!))

3

5

= E!

2

4
TX

t=1

0

@
X

j2S⇤
t
(!)\It(!)

rj · �zt(j, S⇤
t
(!)) +

X

j2S⇤
t
(!)\It(!)

rj · �zt(j, S⇤
t
(!))

1

A

3

5

 E!

2

4
TX

t=1

X

j2S⇤
t
(!)\It(!)

rj · �zt(j, S⇤
t
(!))

3

5+ E!

"
TX

t=1

R(St(!), zt)

#

 E!

2

4
TX

t=1

X

j2S⇤
t
(!)\It(!)

rj · �zt(j, S⇤
t
(!) \ It(!))

3

5+ E!

"
TX

t=1

R(St(!), zt)

#

 2 · E!

"
TX

t=1

R(St(!), zt)

#
,

The first inequality follows from the claim, E!

hP
T

t=1

P
j2S⇤

t
(!)\It(!) rj · �

zt(j, S⇤
t
(!))

i


E!

hP
T

t=1 R(St(!), zt)
i
, which we show in Lemma 6. The second inequality follows

from Assumption 1. The final inequality follows from the definition of St(!), which

is a subset of It(!) that maximizes the single period revenue for user type zt. ⇤

Queue Coupling Technique. In order to bound the total expected revenue in

OPT from products that are unavailable in ALG at the time they are offered in OPT,

we introduce a new coupling between the usage times in ALG and OPT. In particular,

we introduce coupling queues to specify the coupling of usage times between sample

paths in ALG and OPT. For each product j, we maintain a queue, Qj. Initially Qj

is empty.

Whenever product j is selected in ALG by any user, we generate an i.i.d. sample
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from the usage time distribution Fj and insert the sample at the rear of the queue,

Qj.

Whenever product j is selected in OPT by any user, we get the first element of

queue, Qj and use it as a usage time sample for product j in OPT (we also remove

this element from the queue). So we use the samples in Qj in a FIFO order. This

couples the usage distributions of ALG and OPT. In case Qj is empty, we generate

an i.i.d. sample from Fj.

Lemma 5 For any time t = 1, . . . , T and any product j = 1, . . . , n, whenever a user

selects product j in OPT the usage time distribution given by the above coupling is

i.i.d. according to the usage time distribution for product j.

Proof: The interesting case is when Qj is not empty. Then the sample that is

used by OPT and removed from the queue, denoted by L̃j, was originally picked

independently from all previous samples and added to the queue unconditionally.

Any other samples that might have been added to the queue subsequent to adding

L̃j, do not affect L̃j. All samples in a queue have the same probability of being the

front of the queue. Therefore, the samples obtained from the queues by selection of

the product in OPT are i.i.d. according to Fj. ⇤
We are now ready to bound the total expected revenue in OPT from products

that are unavailable in ALG at the time they are offered in OPT. In particular, we

have the following lemma.

Lemma 6 For any usage time distributions, and sequence of user types z1, . . . , zT ,

E!

2

4
TX

t=1

X

j2S⇤
t
(!)\It(!)

rj · �zt(j, S⇤
t
(!))

3

5  E!

"
TX

t=1

R(St(!), zt)

#
.
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Proof: Consider any ! such that j⇤
t
(!) 2 S⇤

t
(!) \ It(!). Let us refer to j⇤

t
(!) as j⇤

t

for brevity. At time t, j⇤
t

is not available in ALG on sample path !. Therefore, it is

in use at time t and must have been selected in ALG at some previous time period,

say t � ⌧ for some ⌧ � 1. Let L̃ be the random usage time that ALG sampled for

j⇤
t

at time (t� ⌧) and inserted in the queue Qj
⇤
t

corresponding to product j⇤
t
. Since

j⇤
t

is still in use by ALG by our coupling, we get L̃ � ⌧ . Using this and the fact

that OPT is able to select j⇤
t

at time t, we have that the sample L̃ must exist on the

queue up to time t (but may be popped at t). Therefore, Qj
⇤
t

is non empty before

user arrives at t.

Hence, when OPT selects j⇤
t

at time t, we get a sample from Qj
⇤
t
. Suppose the

sample used by OPT was generated for ALG at time t0  t � ⌧ . We charge the

revenue earned by OPT for this selection to the revenue earned by ALG for using

j⇤
t

at time t0. Observe that the charging is unique since each sample on the queue

is used at most once by OPT, and we only charge to ALG when the corresponding

sample is used by OPT. Therefore,

E!

2

4
TX

t=1

X

j2S⇤
t
(!)\It(!)

rj · (j = j⇤
t
(!))

3

5  E!

"
TX

t=1

rjt(!)

#
= E!

"
TX

t=1

R(St(!), zt)

#
.

(4.1)

We would also like to note that the revenue from a product can now even depend
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on the usage time duration of the product. Simplifying as before, we get
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3
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 E!

"
TX

t=1

R(St(!), zt)

#
,

where the first inequality follows from Assumption 1 and the last inequality follows

from (4.1). ⇤

Generalizations and Extensions

The following results follow as a direct consequence of out main result.

Corollary 2 Given an ↵-approximation algorithm for solving the (possibly constrained)

static assortment optimization problem at each stage, our myopic policy is ↵/(1+↵)-

competitive.

Proof: Recall the proof of Theorem 6 where we split the revenue of OPT into

two parts, one corresponding to the products in S⇤
t
(!) that are available in ALG

at time t and the other corresponding to products in S⇤
t
(!) that are unavailable in

ALG at time t. The latter term is still bounded as before since Lemma 6 holds

even if the static assortment optimization problem at each stage can only be solved
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approximately. However, the former is now bounded as follows,

E!

2

4
TX

t=1

X

j2S⇤
t
(!)\It(!)

rj · �zt(j, S⇤
t
(!) \ It(!))

3

5  1

↵
· E!

"
TX

t=1

R(St(!), zt)

#
.

Resulting in a competitive ratio ↵/(1 + ↵). ⇤
The following corollary addresses situations where the revenue from each product

is non-stationary and varies across time.

Corollary 3 Letting � denote the ratio of minimum to maximum revenue of any

product across all arrivals, the myopic policy is �

2 - competitive.

The proof follows directly by considering the worst case scenario where the revenue

collected by our myopic policy is always with maximum markdown, while none of the

revenue collected by OPT is discounted. As an example application of the corollary:

if the maximum markdown on products over the entire planning horizon is 10%, then

� = 0.9 and the myopic policy guarantees a total revenue at least 0.45 times that of

the clairvoyant.

Tighter result using booking limits: This result above is arbitrarily bad

when � ! 0 i.e., when products may be sold to customers at a steep discount. In

this case we can do better by setting random booking limits. This idea is inspired

by a similar notion in Ball and Queyranne (2009) for a setting with non-reusable

resources. It generalizes naturally to the reusable case and leads to a worst case

guarantee of 1
4 .

Formally, for any product j, let rj denote the normal price of the item and let

rjd denote the discounted price. We treat each product as two separate products

and assume that the choice model for every arriving customer dictates (possibly)

different probabilities based on prices.
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Recall that � = minj

rjd

rj
. The new myopic policy works as described next. In the

beginning, we randomly decide whether to offer products at a discount. Specifically,

with probability 0.5 we consider both the discounted and normal versions all products

when finding optimal assortment for customers and with remaining probability of 0.5,

we do not include the discounted version of products in any assortment. This protects

against the possibility of selling products at steep discounts when future arrivals

would have chosen the same product at higher prices. After randomly pruning the

discounted products at the start of the planning horizon, to each customer we offer

the revenue maximizing assortment.

Lemma 7 The myopic policy with random booking limit is 1
4 competitive even for

� ! 0.

Proof: On each sample path !, let It(!, d) denote the set of products available at

t in ALG when discounted products are included. We write It(!) to denote the set

of available products when discounted products are blocked. Let S⇤
t
(!) and S⇤

t
(!, d)

denote the subset of normal price products and the subset of discounted products

offered to arrival t in OPT. Let St(!) denote the assortment offered to t in ALG

when discounted products are excluded and let St(!, d) denote the overall assort-

ment when discounted products are included in ALG. Finally, let ALGd denote the

expected revenue of ALG given that discounted products are included and simi-

larly, ALGn denotes the expected revenue given discounted products are excluded.

Overall, ALG = 0.5(ALGd + ALGn). Now,

E!
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TX
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Applying the decomposition used in proving Theorem 6 and using the coupling ar-

gument from Lemma 6 it follows that,

E!

"
TX
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 E!
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#
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Similarly,
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= 2ALGd.

Combining the inequalities, we have OPT  4ALG, as desired. ⇤

4.3 User Type Dependent Usage Times: Family of

Bad Examples

We now consider the case where the product usage time distributions could depend

on the user type and show there is no online algorithm with a constant competitive

ratio in the adversarial arrival model. The result holds even in the high capacity

regime where the capacities of all products goes to +1. It will suffice for us to

consider a single product. For a user arriving at time t, let dt denote the random

usage duration. Even for this special case with a single reusable product we have the
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following upper bound on the competitive ratio of any online algorithm.

Theorem 7 For online matching with a single reusable product and arbitrary prod-

uct capacity, if the random usage durations depend on the user, no online (random-

ized) algorithm can have competitive ratio better than O
�
log T
T

�
, where T is the number

of users.

The proof is provided in Appendix B.1.

Remark: Subsequent work Goyal et al. (2021) shows that no meaningful com-

petitive ratio result is possible even in the case of deterministic user type dependent

usage durations.

4.4 Computational Experiments

We compare the performance of our myopic policy against the approximate dynamic

program based algorithm (the DP-based policy) in Rusmevichientong et al. (2020),

and the inventory-balancing policy (the IB policy) in Golrezaei et al. (2014).

Experimental Setup.

We consider N = 5 products indexed by N = {1, . . . , 5} and M = 5 customer

types. We consider a selling horizon of T = 300 periods. In each period, a random

customer from a known distribution over M types arrives. We offer an assortment to

each customer when they arrive, who in turn either purchases a product in the offered

assortment, or leaves the platform without making any purchase. We experiment

with three different levels of starting inventory for all products: i) scarce inventory:

1 unit per product, ii) moderate inventory: 5 units per product and iii) abundant

inventory: 20 units per product, to demonstrate the performance of the algorithms

at different levels of abundance of products.
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We first experiment when the price and usage time distribution for each product

is fixed. In the later part of this section, we change the setting parameters to further

investigate the performance of the myopic policy when these assumptions do not

hold. We select prices for the products to be evenly spaced in [15, 30]. Revenue

ri is collected whenever a product of type i is chosen by a customer. The usage

time distribution for each product i is a geometric distribution with parameter pi 2

[0.05, 0.07] and expected usage time between 14 and 20 days (until we remove this

assumption later). In particular, for product type i, the parameter is pi = 1
20�i

.

Therefore, type 1 product is the most expensive and has the longest expected usage

time, and type 5 product is the least expensive and has the shortest expected usage

time.

We follow the MNL model with consideration sets in the computational exper-

iments as in Golrezaei et al. (2014) and Rusmevichientong et al. (2020). For any

j 2 [M ], customers of type j have the consideration set Cj = {1, . . . , j}. Each cus-

tomer makes a choice among the assortment they are provided according to the

multinomial logit model. A customer of type j associates the preference weight wj

i

with product i and the preference weight wj

0 with the no purchase option. When

offered assortment S, a customer of type j chooses product i 2 S with probability

�j

i
(S) =

w
j

i

w
j

0+
P

`2S
w

j

`

. The weight wj

i
over product i of type j customers is generated

uniformly randomly from [0, 1] for all j and for any product i in the customer’s consid-

eration set. We calibrate the preference weight of the no-purchase option so that for

any customer type, if we offer all the products to the customer, the probability of the

customer leaving without making a purchase is 0.1, i.e. wj

0/(w
j

0 +
P

`2[N ] w
j

`
) = 0.1.

We experiment in a scenario that is less favorable to our myopic policy. More

specifically, our setting generates customer arrivals so that the pickier customers

are more concentrated in the later part of the selling horizon. Therefore, being
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myopic can be harmful in this setting. We choose equally-spaced time periods ⌧N 

⌧N�1 · · ·  ⌧ 2  ⌧ 1 over the selling horizon as in Rusmevichientong et al. (2020).

The probability pt,j that a customer of type j arrives at time period t is proportional

to e�|t�⌧
j |. So the arrival probability for a customer of type j peaks at around time

period ⌧ j. Because ⌧N  ⌧N�1 · · ·  ⌧ 2  ⌧ 1, as  ! 1, we obtain an arrival

process where customers of type 5 arrive first, followed by customers of type 4. As

! 0, we have pt,j ! 1/M , in which case, different customer types arrive with equal

probability at each time period. Thus, we can control how much the arrival order

for the customer types deviates from the equal probability distribution through the

parameter . For our experiments, we use  = 0.5.

Algorithms and Benchmark.

We evaluate the performance of our myopic policy as well as the DP policy and

the IB policy. Note that we compute the DP policy assuming the knowledge of the

distribution of arrival types, while our policy and the IB policy are agnostic to the

arrival distribution. We also compare the performance of our myopic policy with the

DP-based policy when the realized distribution of arrivals is slightly perturbed. In

particular, we consider the following notion of “noise”:

We use a scalar � to control the noise or perturbation from the assumed distri-

bution as follows: at any time t, with probability 1 � �, the arrival customer type

is chosen according to the original distribution (where pt,j / e�|t�⌧
j |, 8j); and with

probability �, the arrival customer type is chosen from the uniform probability dis-

tribution where pt,j = 1/M . Therefore, when � = 0, the DP-based policy has fully

accurate distributional knowledge. We evaluate and compare the performances of

our myopic algorithm, the DP-based algorithm, and the IB algorithm for different

noise levels.

LP Upper Bound: We use a natural adaptation of the LP upper bound in Dick-
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erson et al. (2018) as a benchmark. This LP imposes inventory constraints in expec-

tation over randomness in rental times:

maximize
yS,t

TX

t=1

X

S2S

nX

i=1

ri�
zt

i
(S)yS,t

subject to
tX

⌧=1

X

S2S

�
1� Fi(t� ⌧)

�
�z⌧

i
(S)yS,⌧  ci, i 2 [n], t 2 [T ],

X

S2S

yS,t  1 , t 2 [T ]

(4.2)

The decision variables {yS,t} correspond to the probability that assortment S is

offered to the customer arriving at time t.

Results. For each experiment setting described above or later in this section, we ran

the LP benchmark and each algorithm 1000 times over randomly generated customer

preference weights, customer arrivals, usage times and purchase choices for statistical

significance.

Table 4.1 shows our computational results in the basic setting under different

levels of noise (�) added to the customer arrivals. The columns corresponding to

each algorithm give the ratios of the average revenue of the algorithm (over 1000 in-

stances) divided by the average revenue of the LP upper bound (over 1000 instances)

under low, moderate and high inventory scenarios. The standard deviation of the

algorithms are very similar and therefore omitted.

Table 4.1 shows that our myopic algorithm achieves comparable optimality with

the other two benchmark algorithms in Rusmevichientong et al. (2020) and in Gol-

rezaei et al. (2014) in practice when the customer arrivals are stochastic and not

adversarial, even though our policy is myopic. The myopic policy slightly outper-

forms the other algorithms when inventory is abundant.
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Myopic Alg IB Alg DP-based Alg
� C=1 C=5 C=20 C=1 C=5 C=20 C=1 C=5 C=20
0.0 0.949 0.927 0.996 0.950 0.927 0.994 0.948 0.937 0.975
0.2 0.908 0.913 0.995 0.909 0.911 0.996 0.913 0.931 0.973
0.5 0.909 0.895 0.994 0.908 0.893 0.992 0.926 0.917 0.970
1 0.910 0.855 0.993 0.914 0.857 0.994 0.919 0.884 0.970

Table 4.1: Comparison under different levels of noise (higher � implies more noise)
added to the customer arrivals, with inventory levels C = 1, 5, 20, and arrival dis-
tribution parameter  = 0.5. An entry represents the average performance of the
algorithm divided by the average value of the LP upper bound. The standard devi-
ations of revenue for the three algorithms in the 1000 repeated experiments for each
inventory level are very similar and therefore omitted.

Next, we examine the performance of the myopic policy in more general settings

where the analytical guarantee does not hold. Table 4.2 compares the cumulative

revenue of the three algorithms and the LP upper bound when the usage time depends

on the users. In particular, every time we run the experiment, for each product-user

type pair, with probability 0.5 the usage time distribution is a geometric distribution

as before and with remaining probability 0.5 this user type never returns this product

type. The DP and LP benchmarks incorporate the knowledge of the user-type-

dependent usage time distribution in rewards while the myopic policy does not.

Myopic Alg IB Alg DP-based Alg
� C=1 C=5 C=20 C=1 C=5 C=20 C=1 C=5 C=20
0.0 0.522 0.480 0.666 0.514 0.479 0.664 0.521 0.487 0.709
0.2 0.376 0.436 0.694 0.377 0.435 0.694 0.382 0.443 0.737
0.5 0.318 0.405 0.707 0.313 0.404 0.708 0.328 0.413 0.743
1 0.315 0.397 0.750 0.314 0.396 0.750 0.317 0.408 0.780

Table 4.2: Comparison when usage time depends on the customer type, with C =
1, 5, 20. The standard deviations of revenue for the three algorithms in the 1000
repeated experiments are very similar.

Table 4.2 shows that the DP-based algorithm noticeably outperforms the other
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two algorithms when the usage time depends on the user type. The ratio between

any of the three algorithms and the LP upper bound drops significantly. As we can

see, removing the assumption that the usage time for each product is independent

of customer type leaves the myopic policy at a disadvantage compared with the

DP-based algorithm. However, the difference is not enormous.

Table 4.3 compares the cumulative revenue of the three algorithms and the LP

upper bound when the revenue collected for each product depends on the users.

In particular, every time we run the experiment we generate a uniformly random

discount factor for each user type from [0, 1], and the revenue we collect from each

user is discounted by the user’s discount factor.

Myopic Alg IB Alg DP-based Alg
� C=1 C=5 C=20 C=1 C=5 C=20 C=1 C=5 C=20
0.0 0.936 0.924 1.000 0.941 0.924 1.000 0.929 0.931 0.982
0.2 0.794 0.893 0.989 0.790 0.896 0.991 0.801 0.909 0.970
0.5 0.769 0.868 0.974 0.774 0.867 0.972 0.780 0.892 0.951
1 0.752 0.840 0.970 0.748 0.840 0.969 0.770 0.868 0.947

Table 4.3: Comparison when revenue depends on the customer type, with C =
1, 5, 20. The standard deviations of revenue for the three algorithms in the 1000
repeated experiments are very similar.

The performances of the three algorithms stay comparable even with customer

dependent product revenues. Overall, the DP-based algorithm has an advantage over

the other two algorithms. However, this advantage diminishes when the inventory

level is abundant. We remark that other types of revenue dependence on user types

could potentially lead to varied results.
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4.5 Conclusions

In this chapter, we consider an online assortment optimization problem with reusable

resources or products under an adversarial arrival model. Under the assumption,

that product usage time distributions do not depend on the user type, we show

that the policy that offers a myopically optimal assortment to every user from the

set of available products achieves an expected revenue that is at least 1/2 times

the expected revenue of a clairvoyant algorithm that has full information about

the sequence of user types. For the case of reusable capacities, we do not have a

good upper bound (LP based or otherwise) for the clairvoyant optimal which makes

the comparison with the benchmark challenging. The main contribution of this

chapter is a queue-based coupling technique that allows us to relate the expected

revenue of the clairvoyant optimal to the expected revenue of the myopic policy.

This coupling is algorithmic and might be of independent interest. The assumption

that product usage time distribution does not depend on user type is fairly reasonable

and satisfied in many settings. We also show that if the assumption is not satisfied,

there is no online algorithm that can be constant-factor competitive as compared

to our clairvoyant benchmark. Therefore, the assumption is necessary to get any

non-trivial performance guarantee for the case of adversarial arrivals.

Our myopic online algorithm is easy to implement, and achieves comparable

optimality with the DP-based algorithm in Rusmevichientong et al. (2020) and the

inventory-balancing algorithm in Golrezaei et al. (2014) in synthetic experiments,

even when some of the assumptions we make in this chapter do not hold.

An interesting open question is to study whether we can obtain stronger results

analogous to the online assortment problem with non-reusable and large capacities.

In particular, a (1 � 1/e)-competitive algorithm in the adversarial arrivals model
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and a near optimal result in the stochastic arrivals model. The first of these open

questions was subsequently resolved in Goyal et al. (2021) (which merges Goyal et al.

(2020a) and Goyal et al. (2020b)), and the second in Feng et al. (2020).
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Chapter 5

Fast and Exact Cloud Server

Deployment Under Demand

Uncertainty

5.1 Introduction

The boom of the cloud computing industry in the last decade (Statista, 2021) is

nowhere near to stopping, as digitization continues to take place globablly and re-

mote work becomes more of a norm. A Gartner, Inc. report from April 2021 (Gart-

ner, 2021) estimates that world-wide end-user spending on public cloud services will

reach 397 billion U.S. dollars in 2022, up 47% from 270 billion U.S. dollars in 2020.

Part of the recent acceleration in public cloud adoption has been attributed to the

COVID-19 pandemic (Luxner, 2021) as more activities move online, and many of

these changes are expected to become permanent even after the pandemic impact

diminishes (LaFleur, 2020).
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Publicly available cloud services such as Microsoft Azure and Amazon Web Ser-

vices enable businesses to scale up without incurring large capital and operational

expenses. Cloud customers may reserve cloud capacity ahead of time or rent it on

demand, shifting the risks of demand volatility to the cloud providers.

To satisfy these resource requests from customers in a timely manner, a main

challenge is to deploy new cloud server hardware under demand uncertainty, without

incurring unnecessarily large operational costs. Towards that end, cloud providers

needs to frequently make hardware deployment decisions, taking into account many

cost considerations (shipping, depreciation, building, etc.) and operational con-

straints (compatibility, capacity, inventory, throughputs, etc.). The minimal hard-

ware unit used to satisfy each demand is a cluster - a set of servers (usually in the

order of tens) that is jointly installed in the data center. Each cluster is compatible

with one of the service genres offered by the cloud provider (e.g., storage, database

as a service, analytics and machine learning services, and other SaaS applications).

Given the heterogeneity of their operations, demand characteristics vary substan-

tially across different services.

Deploying a new piece of hardware into production is a complex process that

takes weeks to finish. In order to successfully deploy a cluster, the cloud provider

must first prepare the row in the data center to receive the cluster. This process

is referred to as building a row, which includes setting up power supply, networking

equipment and necessary cabling among other preparation work at the location. The

provider must then select the supplier and the date from which the cluster will be

acquired.

In production, there are usually dedicated teams to create demand forecasts that

are used as an input to the deployment decision process. While some demands

can be estimated with high accuracy (hence regarded as deterministic for practical
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purposes), demands that would be materialized farther into the future are prone to

estimation errors. Existing methods might consider a myopic approach where the

cloud provider optimizes deployment periodically only for deterministic demands. In

this work, we study how we can improve the provider’s hardware deployment process,

fully acknowledging the stochasticity of the demands.

5.1.1 Contributions

We formulate the underlying optimization problem as a two-stage stochastic mixed-

integer optimization problem, which is notoriously hard to solve (Birge and Louveaux

(2011)). To tackle this problem, we identify the network flow representation of

the second-stage problem to solve it quickly via Linear Programming relaxation.

Then we design a cutting-plane scheme that leverages this relaxation and Benders

decomposition (Benders (1962)). We further accelerate the scheme with ideas from

the Level method in Lemaréchal et al. (1995), in order to efficiently generate an initial

set of cuts, which addresses the bottleneck for the Benders decomposition scheme

for our problem. We prove that our algorithm is exact, i.e., it terminates with an

optimal solution, under common assumptions.

5.2 Motivation and Literature

Now we describe the cloud service deployment operations in more detail and survey

the literature that share similarities with our problem.
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5.2.1 Overview of Cloud Deployment Operations

A cloud provider operates a fleet of data centers around the world, which are parti-

tioned into sets of co-located data centers, called regions.

At a high level, the process of deploying new hardware in a data center consists of

two main steps: (i) building the row in the data center, which is the preparation work

that includes setting up the required infrastructure, such as networking equipment

and cabling1, and then (ii) shipping and placing the cluster on top of a (ready) row.

Data center architecture. Each data center consists of rows (physical locations)

on which clusters (computing hardware) can be deployed. Building a row is a time-

consuming operation, which takes longer than the shipping of a cluster. As a result,

the preparation of a row should begin before the cluster arrives in the data center,

and often before a particular cluster is assigned to the row.

Suppliers. The cluster inventory is available from multiple suppliers that are spread

in different geo-regions. Without loss of generality, we assume that each supplier

holds an inventory of a single cluster type (a supplier that has multiple cluster types

can be split into multiple sub-suppliers, each corresponding to a different cluster

type); we refer to the amount of available clusters as the supplier inventory. Shipping

a cluster incurs a fixed shipping cost, which depends on the locations of both the

supplier and the target region. For simplicity, we assume that the shipping lead

times are deterministic.

Demands. A demand is a request for a cluster that has to be deployed in a particular

region. Each demand can be deployed in any of the data centers of its target region,

provided that there is sufficient capacity. The demand specification includes the

cluster type and an ideal dock date. Docking outside the ideal dock date incurs a
1
The shipping and handling of infrastructure equipment is handled separately, and typically not

a bottleneck. Hence, this aspect is not included in our problem description.
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penalty. In particular, we assume a per-day delay penalty for docking the cluster after

the ideal date. We further assume a per-day idle penalty for docking a cluster ahead

of time; this penalty may reflect operational overheads (e.g., electricity, cooling) as

well as depreciation of the hardware. Typically, the delay penalty is larger than the

idle penalty for a given demand. The magnitude of the penalties can be used to

model prioritization across different demands.

Operational throughput. The number of clusters that can be deployed in each

day is upper-bounded by the throughput of the data centers. The throughput reflects

limitations imposed by personnel availability and physical constraints in the data

centers (e.g., number of unloading docks for trucks that transfer the clusters). A

throughput constraint may apply to a single data center or a set of co-located data

centers within a region. For instance, each of two nearby data centers may have

its own personnel constraints, but the two may also share unloading infrastructure

with fixed capacity. More generally, the throughput constraints form a hierarchical

structure – namely, the sets of data centers that are involved in any two throughput

constraints cannot have partial overlaps; see Section 5.3 for more details.

Execution plan. Building rows and shipping clusters are operations that have

rather long duration. Accordingly, cloud providers typically make execution decisions

at relatively slow time scales (say, every day or week). We refer to every decision

point of the provider as a decision instance, or in short, an instance. Our goal in this

chapter is to solve the optimization problem for an instance, whose output is a set

of decisions that are carried out until the next instance. We refer to this set as an

execution plan. An execution plan consists of two classes of decisions:

1. Cluster assignment. The planner makes the following decisions for each de-

mand: (i) supplier; (ii) dock date (which determines the shipping date); (iii)
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target data center.

2. Row building. For every data center, the planner decides how many rows should

be built.

These decisions use as input both deterministic demands as well as projections

of future demands. As we elaborate in Section 5.3, this would give rise to a stochas-

tic optimization approach. The goal of the provider is to minimize the total cost,

consisting of delay, idle, shipping, and row-building costs, as well as penalties for

unfulfilled demands. A precise formulation is given in Section 5.3.

5.2.2 Related Work

Cloud resource management. Cloud resource management entails numerous

challenges; see Armbrust et al. (2009) for a general overview, and Chen et al. (2020)

for a survey from an Operations Management perspective. One way to classify the

different works in this area is by referring to the time scale in which the resource

management operates.

Management decisions that take place at a fast time scale (e.g., milliseconds)

include cloud network routing, and container or Virtual Machine (VM) scheduling

Maguluri et al. (2012); Stolyar and Zhong (2013); Buchbinder et al. (2021); Hadary

et al. (2020). The VM allocation problem is online in nature and has similarities

with the online dynamic bin packing problem.

In this work, we focus on a set of decisions that take place at a much slower time

scale – planning for capacity expansion to accommodate increasing demand. Capac-

ity planning includes a variety of operations, ranging from procurement and sourcing

of hardware to the actual hardware deployment Chen et al. (2020). These opera-

tions have not drawn as much attention in the literature as the previously discussed
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topics. Arbabian et al. (2021) consider the expansion of CPU and RAM capacity in

data centers via the deployment of servers in preconfigured “bundles”, each with a

fixed ratio of CPU and RAM. The authors focus on the setting with two available

preconfigurations and study capacity expansion policies assuming deterministic de-

mand over a finite time horizon. Our work differs from these prior works in cloud

resource management. First, in the cloud service deployment problem, for each de-

mand request, we have a set of compatible suppliers, each of which can be used to

offer the required capacity under supply availability constraints. Second, our goal is

to optimize the broader deployment process: we decide in which data center each de-

mand will be placed taking into account constraints such as data center throughput,

and also account for the preparation of the data center rows. Finally, we study the

server deployment process under demand uncertainty in order to account for demand

variability, which contrasts with the deterministic nature of Arbabian et al. (2021).

Capacity Expansion. The main focus in the capacity expansion problems is to

decide the right size, type, timing, and location of additional capacity that has to

be acquired for satisfying future demands (see Manne (1967) and Luss (1982) for

surveys on this topic). For instance, the owner of a manufacturing facility may

wish to expand the size of a plant in order to increase its production capabilities;

depending on the setting, these decisions may include multi-location, multi-type, and

multi-period elements. Applications of this problem can be found in many industries

(e.g., the automobile industry Eppen et al. (1989), telecommunications Chao et al.

(2009)).

Similar to our problem, demand is often not fully known during planning, so dif-

ferent approaches have been proposed to deal with this uncertainty. Bean et al. (1992)

consider a capacity expansion problem under certain assumptions on the stochastic

demand process, and show that it can be formulated as a deterministic dynamic
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program. Eppen et al. (1989) propose a Mixed Integer Programming formulation

based on a set of scenarios that capture the demand uncertainty, and discuss how

risk can be taken into consideration. In Ahmed et al. (2003), the authors also use

scenarios and formulate their problem as a multi-stage stochastic integer program.

They then exploit a useful substructure which allows them to extent a well known

tight reformulation that leads to fast convergence as part of a branch and bound

algorithm. A survey of capacity expansion problems under uncertainty is provided

by Van Mieghem (2003).

Our cloud server deployment problem resembles a capacity expansion problem

at first glance. However, due to the long-lasting nature of cluster deployments, we

consider each unit of “capacity”, which is an available row, to be consumed by a

demand, instead of to be merely “utilized” temporarily by a demand and reusable

in the future by another demand. This is also one of the main differences between

capacity expansion and inventory management problems, which we discuss next.

Inventory Management. A part of our cloud server deployment problem con-

tains a multi-source inventory management problem, as we need to choose from the

available cluster supply to satisfy the demand. Multi-source inventory management

is the problem of deciding how to replenish inventory using multiple suppliers to

minimize the operational costs, see for examples Song and Zipkin (2009); Song et al.

(2021); Xin (2022). A better-understood special case of multi-source inventory man-

agement is the dual-sourcing inventory problem, where there are two possible sources

of supply that may differ in their lead times and purchasing prices. Sheopuri et al.

(2010) propose two new policy structures for the periodic-review dual-sourcing prob-

lem with stochastic demands; Xiong et al. (2022) study the dual sourcing problem

with uncertainties in the demand and also in the purchasing price; finally, Song et al.

(2017) identify the optimal policy structure for a dual-sourcing problem with Poisson
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demand and stochastic lead times.

To manage inventory from a robust optimization perspective, Bertsimas and

Thiele (2006) show that the optimal policy for a robust optimization formulation

of the inventory problem has base-stock policy structures. These base-stock struc-

tures were further characterized by Bienstock and Özbay (2008). Other works that

take a robust optimization approach at inventory problems include Ben-Tal et al.

(2005); Solyalı et al. (2016); Gorissen and den Hertog (2011); Ardestani-Jaafari and

Delage (2016); Sun and Van Mieghem (2019); Dillon et al. (2017). Among these,

Sun and Van Mieghem (2019) study a robust dual sourcing inventory problem.

Our problem shares similarities with the inventory management literature. How-

ever, the problem we study is more complex as we have multiple data centers for

which we need to also make infrastructure building decisions in the first stage, while

satisfying additional constraints such as the daily throughput limits.

Stochastic Programming. Stochastic programming is a mathematical optimiza-

tion model for decision making when the uncertainty is characterized by random

scenarios (or events), where the scenarios are assumed to be generated according to

a probability distribution. Stochastic programs aim to find the best decision for a

given preference to the scenarios. The extensive literature has considered both risk-

neutral and risk-averse settings, see, e.g., Artzner et al. (1999); Shapiro et al. (2014)

and references therein. Of particular relevance to our work is the class of two-stage

stochastic programs, where the decision maker makes an initial set of decisions be-

fore any scenario is realized, and later on makes a new set of decisions tied to the

observed scenario Birge and Louveaux (2011).

Our cloud server deployment problem is a two-stage stochastic programming

problem, where we show in Section 5.4.1 that we can construct a minimum cost flow

representation for the second stage problem. Bertsimas and Sim (2003) were the
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Figure 5-1: Basic two-stage setting for the problem.

first to study static two-stage robust network flow problems. Atamtürk and Zhang

(2007) study the two-stage robust network flow and design problem with uncertain

demand. Bertsimas et al. (2013) develop approximate solutions to the two-stage

robust maximum flow and minimum cut problems where the nodes and arcs might

fail. Finally, Simchi-Levi et al. (2019) propose exact algorithms for the two-stage

minimum cost flow problem with general polyhedral uncertainty set.

5.3 Problem Formulation

We first outline the temporal aspects of the problem below. See Figure 5-1 for an

illustration.

The time horizon. Let T denote the horizon considered by the optimization of

an instance. We refer to T as the length of the instance. The time at which the

optimization takes place is defined as t = 0. At time t = 0, the provider is given

a set D1 of deterministic demands that needs to be satisfied at different times in

the horizon. Throughout the horizon, the provider may receive additional demands,

which are stochastic demands from a known distribution. A demand that needs to
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be docked very soon is typically a realized demand. Therefore, we assume that there

exists a time T1 < T such that all the demands with ideal dock dates prior to T1

are deterministic. The demands with ideal dock dates after T1 may be stochastic

demands that arrive after t = 0, or as outlined above, they may be from the deter-

ministic set D1 given at time t = 0. We use D2 to denote the set of demands that

arrive after t = 0.

Building lead time. Recall that the cloud provider has to make two classes of

decisions: (i) row-building decisions, and (ii) cluster assignment decisions. Building

a row is a process that requires weeks to complete. We refer to the corresponding

lead time as the row-building lead time and denote it by L. Due to this non-negligible

lag, when making row-building decisions, the provider has to account for both the

known, deterministic demands in the near future, as well as for the farther away

stochastic demands.

For simplicity, we assume for now that the row-building lead time

L = T1. (5.1)

This implies that the demands that need to be docked before the new rows are ready

are all from the deterministic demand set. We relax this assumption on the lead

time in Appendix C.6.1.

The lag between the decision to build a row until it is ready, together with

the stochastic nature of demands, motivates the formulation of the single instance

optimization as a two stage stochastic optimization problem that we describe in

Section 5.3.1.

Costs. We use cd,t to denote the cost of deploying demand d on day t; this captures

the idle/delay costs associated with that deployment based on the ideal dock-date of
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the demand. If a demand d is not fulfilled, then it incurs a penalty ud. The unit cost

of shipping supply s to fulfill demand d is denoted by hd,s, and the cost of building

a new row in data center ` by b`.

Capacity and Throughput Constraints. For each data center ` 2 L, capacity

⇣` denotes the maximum number of rows that can exist in that data center.

In addition to the capacity of a data center, in cloud service operations, data

center has a maximum throughput for docking for each day. Let H denote the

set of throughput constraints. Instead of thinking of a throughput constraint as a

limit on an individual data center, for practical operations of cloud services, this

chapter considers a more general form of throughput constraints where we can place

additional total throughput constraints on collections of data centers and vary over

different days. In particular, each throughput constraint is denoted by (p, t), where

p is a set of data centers p and t denotes the day for the constraint. We assume the

following two properties of the throughput constraints:

Property 1 The throughput constraints satisfy the following tree structure:

For any (p1, t), (p2, t) 2 H, either p1 \ p2 = ? or p1 ✓ p2 or p1 ◆ p2.

Property 2 For any throughput constraint (p, t) 2 H, if a demand d is compatible

with one of the data centers in p, then demand d is compatible with all the data

centers in p, i.e.,

For any d 2 D and any (p, t) 2 H, either L(d) \ p = ? or p ✓ L(d).

Property 1 and 2 are consistent with the fact that the throughput constraints on

collections of data centers are often related to limited availability of professional
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(a) Hierarchy not valid for p1 = {A,B} and

p2 = {A,C}. (b) Valid throughput hierarchy.

Figure 5-2: Illustrative example of the throughput hierarchy on five data centers;
each oval shape reflects a throughput constraint at some given time t.

labor and tools in the same region. Later we discuss possibilities of further relaxing

our throughput constraints to even more diverse structures in Section 5.4.2.

An illustration of this property on an example of five data centers is provided in

Figure 5-2.

5.3.1 A Two-Stage Stochastic Programming Formulation

In this section, we present a two-stage stochastic programming formulation for the

problem. In the first stage, we make docking decisions for the near-future determin-

istic demands and decide how many new rows to build. In the second stage, we make

docking decisions for the additional demands that arrive after t = 0.

Per standard stochastic programming terminology, the variables are split into two

categories : state and stage variables.

State variables. The state variables capture the state of the system at the beginning

of each stage. Initially, the state of the system is reflected in the currently available

rows in each data center ` (denoted by ⇢`), the available inventory of each supplier s

(denoted by �s), and the throughput in each set p of data centers (denoted by �p,t)

which expresses the total number of demands the set p of data centers can deploy at
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time t. To distinguish between the two stages, we use subscripts 1 and 2 to indicate

the stage of the state variables. Therefore, the system state at the first stage is

given by ⇢`,1, �s,1, �p,t,1 and fixed, while the state at the beginning of the second stage

is represented by the state variables ⇢`,2, �s,2, �p,t,2, which depend on the first-stage

actions. Let ⇢2, �2, �2 denote the corresponding vectors of these state variables.

Table 5.2 summarizes all the input parameters of the problem.

Stage variables. The stage variables capture decisions within a stage. We have

three stage variable sets. For building new rows, each decision variable x` 2 Z+

indicates the number of new rows to build in data center `. Row building decisions

only happen in the first stage, so variables x` only appear in the first stage optimiza-

tion. For assigning demands to clusters, each decision variable zd,`,t 2 {0, 1} indicates

whether demand d is docked in data center ` on day t, and wd,s 2 {0, 1} indicates

whether demand d is fulfilled using supplier s. Cluster assignment decisions happen

in both the first and the second stages, so these variables appear in both stages. See

Table 5.1 for a summary of decision variables used in the formulation.

Variable Scope Interpretation
zd,`,t stage Demand d docks at data center ` on day t or not
wd,s stage Demand d uses a cluster from supplier s or not
x` stage Number of rows to build in data center ` during the first stage
�s,2 state Available units of supply s at the start of stage 2
⇢`,2 state Available number of rows in data center ` at the start of stage 2
�p,t,2 state Available number of demands the set of data centers p can

deploy on day t in stage 2

Table 5.1: Decision variables in the formulation

Formulation. Let D1 denote the set of deterministic demand requests, S the set of

suppliers, and L the set of data centers. For a demand d, let S(d) denote the set of

its compatible suppliers; and let L(d) denote the set of its compatible data centers.
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Parameter Interpretation
D1 Set of demand requests
L Set of data centers
L(d) Set of data centers compatible with demand d
S Set of suppliers
S(d) Set of suppliers compatible with demand d
T1 Set of time periods of the first stage
T2 Set of time periods of the second stage
T Set of time periods of the full planning horizon, T = T1 [ T2

H Set of throughput constraints
cd,t Cost of docking demand d on day t due to delay or idling
ud Cost of not fulfilling demand d
hd,s Cost of shipping a unit of supply s to fulfill demand d
b` Cost of building one new row at data center `
⇣` Capacity of data center `
�s,1 The supplier inventory from supplier s in the first stage
⇢`,1 The number of available rows at data center ` in the first stage
�p,t,1 The total throughput limit on the set of data centers p

can deploy on day t

Table 5.2: Input parameters used in the formulation

We use Q(·, ⇠) to denote the optimal value of the second stage problem as a func-

tion of the state variable vectors �2, ⇢2, �2, where ⇠ is the random vector associated

with the stochastic demands and is explained below.

Let R denote a risk measure that the cloud service provider adopts to evaluate

the cost of the second stage program in relation to the first stage costs. In this

work, we allow some amount of flexibility over the choice of the risk measure, under

the assumption that it is well-defined for any possible realized �2, ⇢2 and �2. Some

example risk measures in our consideration are Expectation, Conditional Value-at-

Risk, and Mean-Deviation. Our optimization problem is of the following form:
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min
X

d2D

2

66664

idle costz }| {X

`2L(d)

X

t2T

cd,tzd,`,t +

cost of missed demandz }| {

ud

0

@1�
X

`2L(d)

X

t2T

zd,`,t

1

A+

shipping costz }| {X

s2S(d)

hd,swd,s

3

77775

+

building costz }| {X

`2L

b`x` +

cost of the second stagez }| {
R[Q(�2, ⇢2, �2, ⇠)] (5.2)

s.t.
X

`2L(d)

X

t2T

zd,`,t  1 8d 2 D1 (5.3)

X

`2L(d)

X

t2T

zd,`,t =
X

s2S(d)

wd,s 8d 2 D1 (5.4)

�p,t,1 �
X

d2D1

X

`2p\L(d)

zd,`,t 8(p, t) 2 H : t 2 T1 (5.5)

�p,t,2 = �p,t,1 �
X

d2D1

X

`2p\L(d)

zd,`,t 8(p, t) 2 H : t 2 T2 (5.6)

⇢`,1 �
X

d2D1:`2L(d)

X

t2T1

zd,`,t 8` 2 L (5.7)

⇢`,2 = ⇢`,1 + x` �
X

d2D1:`2L(d)

X

t2T

zd,`,t 8` 2 L (5.8)

⇣` � ⇢`,1 + x` 8` 2 L (5.9)

�s,2 = �s,1 �
X

d2D1

wd,s 8s 2 S (5.10)

⇢`,2, �p,t,2, �s,2 � 0, (5.11)

zd,`,t, wd,s 2 {0, 1}, x` 2 Z+. (5.12)

In constraints (5.3), at most one data center and day is selected for each demand,

while (5.4) ensures that a demand docks if and only if a compatible supplier has
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been selected. The throughput constraints for each set of data centers p during T1

are enforced in (5.5), while (5.6) makes any remaining throughput capacity during

T2 available in the second stage. According to (5.7), only the existing rows can be

used to dock demands during the first stage; any remaining rows and the newly

built ones become available in the second stage to deploy the unseen demands (5.8).

The total amount of rows in each data center is limited by the data center capacity

in (5.9). Finally, (5.10) enforces the supplier inventory constraints, and makes the

remaining supplier inventory available to the second stage. The objective function

(5.2) consists of the delay/idle costs of the demands, penalties if demands are not

fulfilled, shipping costs, and the cost of building new rows.
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Q(�2, ⇢2, �2, ⇠) = min
X

d2D2

2

66664

idle costz }| {X

`2L(d)

X

t2T2

cd,tzd,`,t +

cost of missed demandz }| {

ud

0

@1�
X

`2L(d)

X

t2T2

zd,`,t

1

A+

shipping costz }| {X

s2S(d)

hd,swd,s

3

77775

(5.13)

s.t.
X

`2L(d)

X

t2T2

zd,`,t  1 8d 2 D2 (5.14)

X

`2L(d)

X

t2T2

zd,`,t =
X

s2S(d)

wd,s 8d 2 D2 (5.15)

�p,t,2 �
X

d2D2

X

`2p\L(d)

zd,`,t 8(p, t) 2 H : t 2 T2 (5.16)

⇢`,2 �
X

d2D2:`2L(d)

X

t2T2

zd,`,t 8` 2 L (5.17)

�s,2 �
X

d2D2

wd,s 8s 2 S (5.18)

zd,`,t, wd,s 2 {0, 1}. (5.19)

In the second stage, the cloud service provider can no longer make decisions to

build more rows. The randomness associated with ⇠ is the set of stochastic demands

D2 and parameters cd,t, ud, hd,s of each demand d 2 D2. Deviating from the conven-

tional modeling, the second stage problem is a mixed integer linear program with no

fixed dimension, because we do not cap the number of demands that may appear.

Note that Q(·, ⇠) has a practical meaning only on the nonnegative integral vectors.

Due to (5.14) and (5.15), a single data center, day, and supplier are chosen for the

demands that dock successfully. The throughput constraints are enforced in (5.16),
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the row availability constraints in (5.17), and the supply availability in (5.18).

Since
P

d2D2 ud is constant, for any translation-invariant risk measure R, we can

subtract
P

d2D2 ud from Q(�2, ⇢2, �2, ⇠) without affecting the solution for our entire

problem. For risk measures that are not translation-invariant, we omit subtracting

this constant from Q(�2, ⇢2, �2, ⇠) above, and all the theoretical results still hold

with slight modifications. Since all the risk measures discussed in Section 5.5.2 are

translation-invariant, we go ahead with the subtraction for simplicity:

Q(�2, ⇢2, �2, ⇠) = min
X

d2D2

2

66664

idle costz }| {X

`2L(d)

X

t2T2

cd,tzd,`,t +

cost of missed demandz }| {

ud

0

@�
X

`2L(d)

X

t2T2

zd,`,t

1

A+

shipping costz }| {X

s2S(d)

hd,swd,s

3

77775

(5.20)

s.t. constraints (5.14)-(5.19) hold. (5.21)

When the risk measure R is taken to be the expectation operator E, the formula-

tion is risk neutral; that is, the outcomes of Q(·, ⇠) are summed/integrated according

to the distribution of ⇠. When R is some other risk measure, it may shift more weight

to bad outcomes, i.e., outcomes having relatively high values. These formulations

are risk averse, as they in some sense penalize solutions with more bad outcomes.

The monotonicity and convexity of risk measures plays an important role in com-

putation, since the composition R[Q(·, ⇠)] is convex whenever Q(·, ⇠) is convex for

each outcome of ⇠. We present some examples of popular monotone and convex risk

measures in Section 5.5 and demonstrate their effectiveness in numerical experiments

in Section 5.6.
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5.4 A Convex Approximation

Cutting plane methods as a family of algorithms has proven to be efficient for solving

large scale stochastic optimization problems (Birge and Louveaux, 2011). In our case

however, the function Q(·, ⇠) is in general nonconvex and discontinuous, which does

not allow applying cutting plane methods directly. A possible workaround is to find

a good convex approximation of Q. For our problem setting, we show in Section

5.4.1 that the LP relaxation of the second stage problem associated with Q yields

the same optimal value when the state variables �p,t,2, ⇢`,2, �s,2 are integral. Let

us denote Q̃(·, ⇠) to be the optimal value of the LP relaxation of the second stage

problem, then, for each outcome of ⇠, the function Q̃(·, ⇠) is convex and it coincides

with Q(·, ⇠) on the integral vectors. In Section 5.4.2, we study the generalization

of our problem where either Property 1 or Property 2 does not hold; we prove two

hardness results in this case showing NP-hardness and the existence of an integrality

gap respectively.

5.4.1 Tightness of LP Relaxation

Before we show the tightness of the LP relaxation, let us first recall the settings

of minimum cost flow problems which will play an important role in obtaining our

results.

Definition 1 (Korte and Vygen (2018)) Given a digraph G, capacities  : E(G)!

R+, and numbers b : V (G) ! R with
P

v2V (G) b(v) = 0, a b-flow in (G,) is a

function f : E(G) ! R+ with f(e)  (e) for all e 2 E(G) and
P

e2�+(v) f(e) �
P

e2��(v) f(e) = b(v) for all v 2 V (G). A b-flow with b ⌘ 0 is a circulation.

Given weights c : E(G) ! R, the minimum cost flow problem is to find a b-flow
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f that minimizes
P

e2E(G) f(e)c(e) or decides that none exists.

Theorem 8 (Korte and Vygen (2018)) Let (G,, b, c) be an instance of the min-

imum cost flow problem, where  and b are integral. If there exists a b-flow in (G,),

then there exists a minimum cost b-flow which is integral.

Representation Network: For any program in the form of Q(�2, ⇢2, �2, ⇠), we

create a representation network G as follows: the node set V (G) contains a node

for each supplier s, a node for each data center `, a source node, a sink node, a

pseudo-node for each demand d, and a pseudo-node for each throughput constraint

(p, t). The pseudo-node for demand d consists of two nodes that represent the head

and tail of the demand d, connected by an edge of capacity 1 and with a unit cost

of �ud. The pseudo-node for throughput constraint (p, t) consists of two nodes that

represent the head and tail of the throughput constraint (p, t), connected by an edge

of capacity of �p,t,2.

The arc set E(G) of the network contains directed arcs from:

• the source to each supplier s, with a capacity of �s,2;

• each supplier s to each compatible demand d, with a unit cost of hd,s;

• each demand d to each throughput (p, t) if demand d is compatible with all

data centers in p and @(p1, t) 2 H such that p1 � p. The unit cost of the arc is

cd,t;

• each throughput (p, t) to each throughput (p0, t), if p � p0 and @(p00, t) 2 H

such that p � p00 � p0;

• each throughput (p, t) to each data center ` if ` 2 p and @(p0, t) 2 H such that

` 2 p0 ⇢ p;
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• each data center ` to the sink, with a capacity of ⇢`,2;

• the sink to the source.

source suppliers

s

demands

d
throughput

(p, t)

data center

`

sink

1

2

3

4

d5

d4

d3

d2

d1

23

24

25

29

capacity �s,2

cost hd,s cost cd,t
capacity ⇢`,2

node
pseudo-node

Figure 5-3: An example of a representation network for the second stage program.

Note that our construction of the representation network assumes Properties 1

and 2. The construction of the demand pseudo-nodes makes sure that at most 1

unit of flow can pass through any demand node, and there is a cost associated with

any flow that passes through the demand node. The construction of the throughput

pseudo-nodes makes sure that at most �p,t,2 unit of flow passes through the through-

put node for (p, t).

Lemma 8 Consider the above network (see Figure 5-3). For any C � 0, any feasible

solution of the LP relaxation of cost C can be mapped to a feasible flow of the same

cost C. Reversely, any feasible flow of cost C can be mapped to a feasible solution of

the LP relaxation that has the same cost C.

See proof in Appendix C.2. Now we are ready to show that the LP relaxation

Q̃(·, ⇠) of the second stage problem produces a good convex approximation of the

function Q(·, ⇠).
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Theorem 9 For any given outcome ⇠, the LP relaxation Q̃(·, ⇠) is a convex function

that agrees with the second stage problem Q(·, ⇠) on the integral vectors.

Proof: The LP relaxation of the second stage problem is a partial linear min-

imization given the state variables �p,t,2, ⇢`,2, and �s,2, thus Q̃(·, ⇠) is convex in

(�p,t,2, ⇢`,2, �s,2). Since �p,t,2, ⇢`,2, and �s,2 are integers for our application, we in-

voke Theorem 8 to obtain an optimal integral flow of the corresponding minimum

cost circular flow problem. Note that the arcs with infinite capacity can be modified

to have capacity of some large integers so that it would not alter the optimal solution.

By Lemma 8, an optimal integral flow can be mapped to an optimal integral solution

of the LP relaxation, which implies that Q̃(·, ⇠) agrees with Q(·, ⇠) on the integral

vectors. ⇤

Remark 3 Note that a sufficient condition that is often used to show tightness of

an. LP relaxation is the constraint matrix of the formulation being totally unimodular

(Korte and Vygen (2018)). However, that property does not necessarily hold in our

problem. We show this in Appendix C.1 by constructing an objective function where

the optimal solution can only be fractional.

Since the parameters can only take integral values in our problem, the func-

tion Q(·, ⇠) can be safely replaced by its convex approximation Q̃ for computational

purposes. This enables solving the second stage efficiently by either using a polyno-

mial time algorithm for the corresponding minimum cost flow problem (see Schrijver

(2003); Chen et al. (2022)), or solving the LP relaxation directly. In our implemen-

tation, we choose to solve the dual of the LP relaxation , because the dual optimal

solution is useful for generating cutting planes (see Appendix C.5). The overall

formulation now becomes a mixed integer convex program, which is in general com-
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putationally easier and allows us to employ Benders decomposition (Benders (1962))

for the large-scale problem.

5.4.2 Two Hardness Results

As stated in Section 5.3.1, this chapter considers more general throughput constraints

than the traditional throughput constraints on individual facility locations. In partic-

ular, we allow any time-varying throughput constraints on collections of data centers

as long as they satisfy Properties 1 and 2, which are compatible with the typical lo-

cal/regional professional labor and tooling limits that a cloud service provider might

work with. Now, one may ask, can we further generalize the throughput constraints

in our model formulation?

In our investigation, we find out that the LP relaxation approach is not effective

in the absence of either Property 1 or Property 2. In this section, we establish two

hardness results regarding the second stage problem. We provide the proofs for the

following two lemmas in the Appendix.

Lemma 9 With only Property 2, the second stage problem is both NP-hard and hard

to approximate (i.e., there exists no efficient constant-factor approximation algorithm

unless P = NP ).

Basically, Lemma 9 says that solving the second stage problem alone is very

difficult when the hierarchical structure of the throughput constraints is missing. The

stochastic optimization setting further aggravates the situation, since we need to solve

at least one instance of the second stage problem for each outcome ⇠. Nevertheless,

such structure alone does not guarantee the tightness of LP relaxation.

124



Lemma 10 With only Property 1, the integrality gap of the second stage problem

(without removing the constant in the objective) is at least 4
3 .

The proofs for the above two lemmas are provided in Appendix C.3 and C.4.

5.5 Algorithm

Substituting Q with Q̃ enables us to design an efficient cutting-plane algorithm (Sec-

tion 5.5.1) that exploits methods from convex optimization to solve the problem

efficiently for a variety of risk measures. We conclude this section by describing

three concrete risk measures (in Section 5.5.2) that will be used in our evaluation in

Section 5.6.

5.5.1 Hybrid Level-Benders Algorithm

Main ideas. The core of our algorithm is a cutting plane scheme that is guaranteed

to obtain the optimal solution within a finite number of iterations. To design the

scheme, we consider the following problem MasterIP which is derived from the

stochastic formulation (5.2)-(5.12) by replacing R[Q̃(�2, ⇢2, �2, ⇠)] with a variable ✓.

(MasterIP) min
X

d2D1

"
X

`2L(d)

X

t2T

cd,tzd,`,t + ud

0

@1�
X

`2L(d)

X

t2T

zd,`,t

1

A

+
X

s2S(d)

hd,swd,s

#
+
X

`2L

b`x` + ✓ (5.22)

s.t. constraints (5.3)� (5.12). (5.23)
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Our algorithm is an iterative algorithm that starts with the MasterIP and

proceeds by generating cuts, i.e., additional constraints that reduce the size of the

feasible solution set without excluding the optimal solution of the problem. In our

particular case, the cut generation process will ensure that, in the optimal solution,

✓ is always a lower approximation of the function R[Q̃(·, ⇠)]. The algorithm keeps re-

fining that lower convex approximation and eventually finds a (near) optimal solution

when the approximation is good enough.

To generate the cuts, in each iteration i, we select a trial point (�i2, ⇢
i

2, �
i

2) corre-

sponding to a set of decisions for the state variables. By the definition of convexity

of R[Q̃(·, ⇠)], we have

R[Q̃(�2, ⇢2, �2, ⇠)] � R[Q̃(�i2, ⇢
i

2, �
i

2, ⇠)] + (ri)|(�2 � �i2, ⇢2 � ⇢i2, �2 � �i

2) 8�2, ⇢2, �2,

(5.24)

where ri is a subgradient of R[Q̃(·, ⇠)] at (�i2, ⇢
i

2, �
i

2) and R[Q̃(�i2, ⇢
i

2, �
i

2, ⇠)] is the

value of the function R[Q̃(·, ⇠)] evaluated at (�i2, ⇢
i

2, �
i

2). Hence, our algorithm pro-

ceeds iteratively by generating a cut in each iteration i, given by

✓ � R[Q̃(�i2, ⇢
i

2, �
i

2, ⇠)] + (ri)|(�2 � �i2, ⇢2 � ⇢i2, �2 � �i

2), (5.25)

and adding the cut to the MasterIP. Note that at any point of the algorithm, the

lower approximation of R[Q̃(·, ⇠)] is given by

max
i

n
R[Q̃(�i2, ⇢

i

2, �
i

2, ⇠)] + (ri)|(�2 � �i2, ⇢2 � ⇢i2, �2 � �i

2)
o
8�2, ⇢2, �2. (5.26)

The sequence of trial points (�i2, ⇢
i

2, �
i

2) based on which the cuts are generated

can have great impact on the quality of the cuts, which directly affects the number
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of iterations required for the algorithm’s convergence. At the same time, the speed

of generating cuts is important, as slow cut generation makes each iteration of the

algorithm more time consuming, affecting the overall run-time. To address this

quality-performance tradeoff, we design a hybrid strategy to obtain the sequence of

trial points. Although fractional solutions are not feasible for our original problem, we

initially allow the trial points to be fractional. This enables generating an adequate

set of cuts quickly, without solving a time-consuming MIP. Once this initial set of

cuts has been generated, we switch to enforcing the integrality constraints and obtain

additional cuts until the optimal solution for our original problem has been found.

Algorithm details. As described above, our algorithm has two main steps, corre-

sponding to different methodologies for obtaining trial points. The first step follows

the Level method (Lemaréchal et al. (1995)), hence termed LevelStep; the second step

follows the Benders decomposition (Benders (1962)), hence termed BendersStep. Ac-

cordingly, we refer to our entire algorithm as the Hybrid Level-Benders Algorithm.

We provide below the details for the two steps (note that each of the steps is an

iterative process).

ALGORITHM 5: Hybrid Level-Benders Algorithm
1 Initialize MasterIP (5.22)-(5.23).
2 LevelStep: Relax the integrality constraints in MasterIP and use an

auxiliary problem based on the Level method (Lemaréchal et al. (1995)) to
generate cuts until the LP relaxation of our problem is solved to
✏-optimality. Add the cuts to MasterIP.

3 BendersStep: Continue generating cuts for MasterIP focusing on solely
integral trial points based on Benders decomposition. Terminate when the
optimal solution for our original problem has been found.

LevelStep: We consider the LP relaxation of our problem and define the MasterLP
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by relaxing the integrality constraints of MasterIP as follows:

(MasterLP) min
X

d2D1

"
X

`2L(d)

X

t2T

cd,tzd,`,t + ud

0

@1�
X

`2L(d)

X

t2T

zd,`,t

1

A

+
X

s2S(d)

hd,swd,s

#
+
X

`2L

b`x` + ✓ (5.27)

s.t. constraints (5.3)� (5.11)

zd,`,t, wd,s, x` � 0.

Note that an upper bound of 1 is not required in the relaxation for the binary

variables as it is implicitly enforced via the remaining constraints. Starting with

MasterLP, we utilize ideas from the Level method (Lemaréchal et al. (1995)) to

generate a set of cuts that eventually solve the LP relaxation of our problem to (near)

optimality. At each of its iterations, the method tries to keep the next trial point

close to the current trial point, to maintain adequate lower approximation for the

function R[Q̃(·, ⇠)]. This is achieved through the use of an auxiliary Level problem

that penalizes trial points that are further away. This step terminates once an ✏-

optimal solution has been found for the LP relaxation of our problem; at this point,

the set of cuts that has been generated for MasterLP is being added to MasterIP.

BendersStep: This step is based on Benders decomposition Benders (1962). Now,

we focus on obtaining solely integral trial points. In each iteration, we obtain the

next trial point by solving MasterIP to optimality. In contrast to classic Benders

decomposition, which typically starts with a problem of the form (5.22)-(5.23), our

MasterIP has already been enhanced by a set of cuts during the LevelStep when this

step begins. This step terminates with an optimal solution for our original problem.
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Subgradients: To complete the description of our algorithm we need to describe how

the subgradientsri in (5.25) are derived for the different risk measures; see Appendix

C.5 for the details.

Optimality. We have the following guarantees.

Theorem 10 For convex risk measures R, the Hybrid Level-Benders Algorithm con-

verges to the optimal solution in a finite number of iterations.

Proof: Here we provide a proof sketch: since Q̃(·, ⇠) is convex, for convex risk

measures R the composition R[Q̃(·, ⇠)] is also convex. As a result, the subgradient

exists and, by definition of convexity, adding cuts of the form (5.25) in MasterIP

results in a lower approximation of R[Q̃(·, ⇠)] (5.26). By construction, these cuts

are valid on both fractional and integral trial points and in both cases provide a

lower approximation of R[Q̃(·, ⇠)]. As a result, the cuts that are generated for the

LP relaxation during the LevelStep are valid cuts when we restrict R[Q̃(·, ⇠)] to only

integral values of the state variables.

We now need to show that the algorithm converges to the optimal solution in a

finite number of iterations. The convergence of the LevelStep is obtained directly by

the convergence guarantee of the Level method. Similarly, for the BendersStep, it can

be shown that the Benders decomposition never visits a suboptimal solution twice.

Note that the first stage decision variables in our problem are bounded and integral,

hence the procedure finds an optimal solution in a finite number of iterations. Finally,

recall that in Section 5.4.1 it was shown that Q̃(·, ⇠) has the same value as Q(·, ⇠)

when the state variables �p,t,2, ⇢`,2, �s,2 are integral. As a result, the optimal solution

obtained through this algorithm that considers the relaxation Q̃(·, ⇠) is also optimal

for our original problem with Q(·, ⇠). ⇤
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5.5.2 Risk Measures

We now present some concrete risk measures that will be used in Section 5.6 for the

numerical experiments. We consider three monotone and convex risk measures R:

expectation, conditional Value-at-Risk, and mean-deviation risk measures of order

1. Let (⇠1, . . . , ⇠N) denote the N demand scenarios, and let fi(x) = Q̃(x, ⇠i) for each

i = 1, . . . , N .

Expectation. The expectation is given by E[Q̃(x, ⇠)] = N�1
P

N

i=1 fi(x). Expecta-

tion is a common measure when users are risk neutral.

Conditional Value-at-Risk (CVaR). The CVaR metric stands for the expected

loss (or cost) at the tail, namely the expected loss of the “worst” scenarios Rock-

afellar and Uryasev (2000) (i.e., the ↵-percentile of scenarios with the highest cost).

Formally, for a threshold ↵ 2 (0, 1), the Conditional Value-at-Risk is defined as

R↵(Z) = ↵�1

Z 1

1�↵

V aR1�t(Z) dt,

where

V aR↵(Z) = inf{t : Pr(Z  t) � 1� ↵}

is the Value-at-Risk. Then, for the composition ⇢↵(x) = R↵[Q̃(x, ⇠)] we have:

⇢↵(x) = R↵[Q̃(x, ⇠)] =
1

↵N

b↵NcX

i=1

f(i)(x) +

✓
1� b↵Nc

↵N

◆
f(b↵Nc+1)(x),

where (i) is an ordering of 1, . . . , N (depending on x) such that f(i1)(x) � f(i2)(x)

whenever i1 < i2.

Mean-deviation risk measure of order 1 (MeanDev). Balancing expectation

and deviation, the mean-deviation risk measure allows users to optimize the average
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and the average absolute deviation at the same time (Shapiro et al., 2021, Chapter 6).

For a threshold c 2 [0, 1/2], consider

Rc(Z) = E[Z] + cE|Z � E[Z]|.

The composition ⇢c(x) = Rc[Q̃(x, ⇠)] is then

⇢c(x)

= N�1
NX

i=1

fi(x) + cN�1
NX

i=1

�����fi(x)�N�1
NX

i=1

fi(x)

�����

= N�1
NX

i=1

fi(x) + cN�1
NX

i=1

max

 
fi(x)�N�1

NX

i=1

fi(x), N
�1

NX

i=1

fi(x)� fi(x)

!

= max
b2{±1}N

N�1
NX

i=1

 
fi(x) + cbi

 
fi(x)�N�1

NX

i=1

fi(x)

!!

=: max
b2{±1}N

gb(x).

It can be verified that each gb is a convex combination of f 0
i
s, so gb is also convex.

A lower c value results in more emphasis in minimizing expectation, and a higher c

value results in stronger preference over minimizing deviations.

5.6 Numerical Experiments

We conduct numerical experiments to evaluate our algorithms under a variety of risk

measures, using real data from a large cloud provider, Microsoft Azure.
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5.6.1 Dataset

Our raw data consists of historical demands and projections of future demands over

time from Microsoft Azure. Projections take place at regular time intervals (e.g.

every hour), and capture the expected demand over the planning time-horizon (e.g.

three months). How these future demand projections are generated will not be

revealed; however, it is known that a good number of methods, such as Sample

Average Approximation (SAA), could obtain a reasonably good projection under

some conditions (Kleywegt et al. (2002)). Naturally, for a given time, we use the

realized demands by that time as the deterministic demands, and use the projected

demands to form our knowledge of the stochastic future demand.

We think of each time series of projected demands as a scenario, i.e., a possible

demand realization for the next few months. We gather all time series of projected

demands to form an empirical distribution of scenarios. We are working towards

releasing this dataset to be available to the research community.

5.6.2 Setup

All algorithms were implemented in Python, and all experiments were run using

Gurobi 9.5.1 on a Desktop with 2.6GHz CPU. In our implementation of the Hybrid

Level-Benders Algorithm, the LevelStep terminates when an ✏-optimal solution has

been found for the LP relaxation with ✏ = 1. Unless otherwise specified, we use the

default threshold values of ↵ = 0.5 for the CVaR and c = 0.5 for the MeanDev.

5.6.3 Benchmarks

We compare the performance of our algorithm against two benchmark algorithms.

The first benchmark algorithm Deterministic Baseline Algorithm is closely related
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to the current approach in production by Microsoft Azure. The second one Scenario

Based Algorithm is an adapted version of the former that take into consideration the

stochastic nature of the demands.

Deterministic Baseline Algorithm (DBA). DBA is a popular approach that

obtains the optimal deployment plan for each instance assuming that the demand

is fully deterministic. In our experiments, DBA selects each scenario as its belief

about the future demands, and optimize the two-stage mixed integer program based

on this deterministic belief. We evaluate the quality of the first stage decisions on

all of the other possible scenarios, and then aggregate the resulting costs according

to the different risk measures under consideration. For statistical significance, we

repeat the above procedure where DBA takes each of the scenarios as its belief, and

output the average cost over all these scenarios.

Scenario Based Algorithm (SBA). In contrast to DBA, which assumes a single

deterministic scenario for future demands, SBA is an adaptation that assumes access

to the full set of scenarios. SBA selects the scenario that leads to the minimum overall

cost as its belief on the future demands. In short, SBA is the top-performing DBA.

We provide the pseudo-code for both DBA and SBA in Algorithm 6.

ALGORITHM 6: Benchmark algorithms DBA and SBA
1 for each scenario i do
2 Set i as the ground truth scenario; ⇠G := i
3 Solve (5.2)-(5.19) with the single scenario ⇠G in the second stage; let

(�⇤2, ⇢
⇤
2, �

⇤
2) denote the optimal values of the state variable vectors.

4 Calculate the total cost (5.2) with the risk measure now applied to the
full set of scenarios R[Q(�⇤2, ⇢

⇤
2, �

⇤
2, ⇠)]; let Vi denote this total cost.

5 end
6 return E[{Vi}i] for DBA or min

i

Vi for SBA

Performance Measure. For each experiment point, we compute the percentage
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improvement of our algorithm over DBA and SBA, defined by

improvement :=
benchmark algorithm’s cost� our algorithm’s cost

benchmark algorithm’s cost
· 100%.

Performance Under Uncertainty and Scarcity.

In the first set of experiments, each experiment point that we evaluate our algorithm

on varies in degree of uncertainty and the degree of supply availability.

In terms of the degree of uncertainty, we vary the percentage of the demands that

are in fact not deterministic. We consider three levels of uncertainty: low, medium

and high with 45%, 60% and 72% of stochastic demands, respectively.

In terms of the degree of supply availability, we conduct all experiments on two

levels of supply availability: standard and scarce. The standard supply are the

typical amount as shown from our production traces. The scarce supply mimics in-

ventory crunch situations, where we only have half of the standard supplier inventory

available.

The results of our numerical experiments are shown in Table 5.3 and 5.4.

Instance Improvement Over DBA
Uncertainty Supply Expectation CVaR MeanDev

Low Standard 72.74% 72.82% 61.54 %
Low Scarce 18.33% 19.47% 14.09%

Medium Standard 70.89% 68.65% 59.68%
Medium Scarce 26.77% 27.63% 16.34%

High Standard 64.86% 62.02% 53.81%
High Scarce 18.97% 19.82% 12.76%

Table 5.3: Cost improvement of our algorithm over the two benchmark algorithms
DBA.
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Instance Improvement Over SBA
Uncertainty Supply Expectation CVaR MeanDev

Low Standard 57.04% 58.75% 44.91%
Low Scarce 9.28% 9.30% 5.96%

Medium Standard 56.34% 54.54% 43.63%
Medium Scarce 14.13% 15.36% 3.12%

High Standard 50.40% 48.58% 37.52%
High Scarce 11.72% 13.12% 4.46%

Table 5.4: Cost improvement of our algorithm over the benchmark algorithm SBA.

Results. We observe that our algorithm significantly outperforms both baselines

for all settings and risk measures. In particular, we see the greatest gains in the

instances with standard supply ranging from 53% to 73% for DBA and from 37%

to 59% for SBA; as expected SBA performs better than DBA, but still far from our

algorithm.

For the scarce supply experiments, we observe smaller, yet still noticeable gains

(12% to 28% for DBA, 3% to 16% for SBA). This is attributed to the fact that a

large number of demands are inevitably unfulfilled due to supply scarcity for any

algorithm. These unmet demands incur a large penalty that dominates the smaller

differences between the different algorithms, thus making the improvement seemingly

smaller.

Robustness in the Number of Scenarios.

In practice, the empirical distribution may contain a large number of scenarios. To

save on time and computing resources, the cloud service provider may sometimes

prefer to consider only a subset of the scenarios for deployment optimization. We
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Figure 5-4: Trade-off of total cost and running time as the number of scenarios varies.

thus investigate how this behavior affects the quality of our deployment solution. In

each run, we obtain a subset of the scenarios (of size 1, 5, 10, 30, 50, 100, or 200

scenarios) by sampling uniformly at random. We then run our algorithm using the

subset of scenarios, and evaluate the resulting decisions on the full scenario set.

Results. We observe that for most risk measures, 50 scenarios are sufficient to

obtain good quality solutions (with gap < 5% to the optimal solution). Reducing

the number of scenarios leads to faster total running times, as expected. In particular,

we can save 50% - 70% of the original running time by randomly selecting only 50

scenarios out of the 200 scenarios.

5.7 Conclusion

In this chapter, we introduce the server deployment problem which is critical for

cloud supply chains. We propose a new class of algorithms based on stochastic

optimization, and show their merits using real production traces. In particular, our
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algorithms clearly outperform other heuristic approaches (including the one used in

production) with respect to the actual cost savings. Furthermore, by combining a

variety of techniques, we are able to scale to large problem instances in adequate

running times. There are several interesting directions that are left for future work.

First, we are exploring additional techniques to further improve the running times

of our algorithm, such as including only the most “meaningful” scenarios in the

subgradient generation. On the modeling side, there are several intriguing directions,

such as multiple demand sizes, and modern data center architectures that embed

additional combinatorial constraints (Zhang et al. (2021)).
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Appendix A

Appendix for Chapters 2 and 3

A.1 Regret Analysis for Elimination-Based Half-Q-

Learning

Recall the coefficients ↵t :=
H+1
H+t

used in Algorithm HQL. We define related weights

↵0
t
:=

Q
t

j=1 (1� ↵j), and ↵i

t
:= ↵i

Q
t

j=i+1 (1� ↵j) as in Jin et al. (2018) and in Dong

et al. (2019). Below are useful properties of these weights:

Lemma 11 The following properties hold:

1.
P

t

i=1 ↵
i

t
= 1 and ↵0

t
= 0, 8t � 1;

2.
P

t

i=1 ↵
i

t
= 0 and ↵0

t
= 1 when t = 0

3. maxi2[t] ↵i

t
 2H

t
and

P
t

i=1 (↵
i

t
)
2  2H

t
, 8t � 1

4.
P1

t=i
↵i

t
= 1 + 1

H
for every i � 1

5. 1p
t

P

t

i=1
↵
i

tp
i
 1+ 1

Hp
t

for every t � 1
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Remark: The last property is tighter than the corresponding bound in Lemma

4.1 in Jin et al. (2018). See Appendix A.1.1.

We state the fact that base-stock policies are optimal for the episodic lost-sales

model with zero lead time in the following Lemma 12. Lemma 12 can be obtained

by applying classical results in Porteus (2002). For completeness, we provide a proof

in Appendix A.1.2.

Lemma 12 Base-stock policies are optimal for the episodic lost-sales model with

zero lead time.

For any base-stock policy, the reward and the leftover inventory level only depend

on the base-stock level and do not depend on the state, even though the feasible

action set depends on the state. Therefore, in this setting, we can simplify the

Q-value functions: Q(x, y) = Q(y), 8x 2 S.

Recall for any (x, h, k) 2 S ⇥ [H] ⇥ [K], and for any base-stock level y 2 Ak

h
,

⌧ k
h
(x, y) is the next time step after time step h in episode k that our policy lands on

a simulated inventory level xk

⌧
k

h
(x,y)

0 that allows us to take an action in the running

set Ak

⌧
k

h
(x,y)

. Therefore, ⌧ k
h
(x, y) is a stopping time. The time steps in between are

“skipped” in the sense that the Q, V -values for those time steps never appear on the

right hand side of Equation (A.2) when we update value functions. If no skipping

happened, then ⌧ k
h
(x, y) = h+ 1, and we have the original Bellman equation (2.2.1).

Using the general property of optional stopping that E[M⌧ ] = M0 for any stopping

time ⌧ and discrete-time martingale M⌧ , our Bellman optimality equation becomes

the following delayed form of the Bellman equation:

Q⇤
h
(x, y) = Q⇤

h
(y) = E

⌧
k

h
,r̃

⇤
h,⌧

k

h

,x
0
⌧
k

h

[r̃⇤
h,⌧

k

h

+ V ⇤
⌧
k

h

(x0
⌧
k

h

)] (A.1)
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where we simplify the notation ⌧ k
h
(x, y) to ⌧ k

h
, and recall r̃h,h0 denotes the cumulative

reward from step h to h0.

Using the stopping times and simulated trajectories, HQL updates the Q-values

backward h = H, . . . , 1 as follows:

Qk+1
h

(y) (1� ↵k)Q
k

h
(y) + ↵k[r̃

k+1
h,⌧

k+1
h

+ V k+1
⌧
k+1
h

(x0
⌧
k+1
h

)]. (A.2)

where Qk

h
, V k

h
denotes the Qh, Vh functions at the beginning of episode k respectively.

Then by Equation (A.2) and the definition of the weights ↵i

k
’s,

Qk

h
(y) = ↵0

k�1H +
k�1X

i=1

↵i

k�1

h
r̃i
h,⌧

k

h

+ V i+1
⌧
k

h

⇣
xi

⌧
k

h

⌘i
. (A.3)

which naturally gives us Lemma 13, where we bound the difference between the

optimal Q-value of a state-action pair and our estimated Q-value. The proof of

Lemma 13 is provided in Appendix A.1.3.

Lemma 13 For any (x, h, k) 2 S ⇥ [H]⇥ [K], and for any y 2 Ak

h
, we have

�
Qk

h
�Q⇤

h

�
(y) =↵0

k�1 (H �Q?

h
(y)) +

k�1X

i=1

↵i

k�1

h ⇣
V i+1
⌧
i

h

� V ⇤
⌧
i

h

⌘
(xi

⌧
i

h

) + r̃i
h,⌧

i

h

� r̃⇤
h,⌧

i

h

+
⇣
V ⇤
⌧
i

h
(x,y)(x

i

⌧
i

h

) + r̃⇤
h,⌧

i

h

� Er̃⇤,x0,⌧ i
h

⇥
r̃⇤
h,⌧

i

h

+ V ⇤
⌧
i

h

(x0
⌧
i

h

)
⇤⌘ i

.

Then by identifying the martingales in the right-hand side of Lemma 13, we

bound the difference between our Q-value estimates and the optimal Q-values in the

following lemma:

Lemma 14 For any (x, h, k) 2 S ⇥ [H] ⇥ [K], and any y 2 Ak

h
, let ◆ = 9 log(AT ),
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we have:

���(Qk

h
�Q⇤

h
)(y)

��� ↵0
k�1H +

k�1X

i=1

↵i

k�1

����
⇣
V i+1
⌧
i

h

� V ⇤
⌧
i

h

⌘
(xi

⌧
i

h

) + r̃i
h,⌧

i

h

� r̃⇤
h,⌧

i

h

����+ c

r
H3◆

k � 1

(A.4)

with probability at least 1� 1/(AT )8, for some c � 2
p
2.

The proof of Lemma 14 is provided in Appendix A.1.4.

We review shortfall decomposition below. For proof and reference, see Appendix

A.1.7.

Lemma 15 (shortfall decomposition) For any policy ⇡ and any episode k, the per-

episode regret is:

�
V ⇤
1 � V ⇡k

1

�
(xk

1) = E⇡

⇥ HX

h=1

�
max
y2A

Q⇤
h
(xk

h
, y)�Q⇤

h
(xk

h
, yk

h
)
�⇤
.

Shortfall decomposition allows us to calculate the regret of our policy by summing

up the difference between the optimal Q-values of our action and those of the optimal

action from the same state. We then find high-probability upper-bounds on the sum.

Proof: Proof for Theorem 1

Recall that we partition the time steps h = 1, . . . , H in each episode k into two

sets, �k

A
and �k

B
, where �k

A
contains all the steps h where we are able to choose from

the running set, and �k

B
contains all the steps h where we are unable to choose from

the running set.
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Then by shortfall decomposition, we have that the per-episode regret is

�
V ⇤
1 � V ⇡k

1

�
(xk

1) =E
h HX

h=1

⇣
max
y�x

k

h

Q⇤
h
(y)�Q⇤

h
(yk

h
)
⌘i

E
h X

h2�k

A

max
y�x

k

h

⇣
Q⇤

h
(y)�Q⇤

h
(yk

h
)
⌘i

+ E
h X

h2�k

B

max
y�x

k

h

⇣
Q⇤

h
(y)�Q⇤

h
(yk

h
)
⌘i

.

Recall Lemma 1 and that we define {�h}H+1
h=1 to be a list of values that satisfy the

following recursive relationship:

�h = H + (1 + 1/H)�h+1 + c
p
H3◆, 8h 2 [H],

�H+1 = 0

where c is the same constant as in Lemma 14.

By Lemma 1.3, we can bound the first term on the right-hand side:

E
h X

h2�k

A

max
y�x

k

h

⇣
Q⇤

h
(y)�Q⇤

h
(yk

h
)
⌘i

 E
⇥ X

h2�k

A

3�hp
k � 1

⇤
P
⇣
max
y�x

k

h

�
Q⇤

h
(y)�Q⇤

h
(yk

h
)
�
 3�hp

k � 1

⌘

+
X

h2�k

A

H ·P
⇣
max
y�x

k

h

⇣
Q⇤

h
(y)�Q⇤

h
(yk

h
)
⌘
>

3�hp
k � 1

⌘

 O
⇣ X

h2�k

A

�hp
k � 1

⌘
+O

⇣ X

h2�k

A

H

A5T 5

⌘
.

By Lemma 1.4, we can bound the last term

E
h X

h2�k

B

max
y�x

k

h

⇣
Q⇤

h
(y)�Q⇤

h
(yk

h
)
⌘i
 0 · (1� 1

A5T 5
) +

X

h2�k

B

H · 1

A5T 5


X

h2�k

B

H · 1

A5T 5
.
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Then the difference between the expected total reward of HQL and of the optimal

policy ⇡⇤ is

Regret
MDP

(K) = (V ⇤
1 � V ⇡1

1 ) (x1
1) +

KX

k=2

(V ⇤
1 � V ⇡k

1 ) (xk

1)

 H +
KX

k=2

⇣ HX

h2�k

B

H

A5T 5
+

X

h2�k

A

�hp
k � 1

+
X

h2�k

A

H

A5T 5

⌘


KX

k=2

O(
p
H7◆)p

k � 1
 O(H3

p
T ◆).

It follows that the total expected regret of HQL against OPT is

Regret
total

(K) = Regret
MDP

(K) + Regret
gap

(K) = O
⇣
H3
p
T ◆+ (M �m)/K

⌘

= O
⇣
H3

p
T log T

⌘

Finally, recall the scaling we performed on the reward, so we multiply by the

factor O
�
M · max(|oh|, |ph|)

�
. This implies an O

�
H3M · max(|oh|, |ph|)

p
T log T

�

total dependence on all setting parameters.

⇤

A.1.1 Properties of weights ↵i
t

We obtain the last property in Lemma 11 by a more careful algebraic analysis, so

that we obtain a tighter bound on
P

t

i=1
↵
i

tp
i

than the corresponding bound in Jin

et al. (2018). For the remaining properties in Lemma 11, see Lemma 4.1 in Jin et al.

(2018).
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Proof: Proof of Lemma 11, part 5: We prove the last property in Lemma 11 by

induction. For the base case t = 1, we have
P

t

i=1
↵
i

tp
i
= ↵1

1 = 1 so the statement

holds. For t � 2, by the relationship ↵i

t
= (1� ↵t)↵i

t�1 for i = 1, . . . , t� 1 we have

tX

i=1

↵i

tp
i
=

↵tp
t
+ (1� ↵t)

t�1X

i=1

↵i

t�1p
i

(A.5)

Assuming the inductive hypothesis holds, on the one hand,

↵tp
t
+ (1� ↵t)

t�1X

i=1

↵i

t�1p
i
� ↵tp

t
+

1� ↵tp
t� 1

� ↵tp
t
+

1� ↵tp
t

=
1p
t

where the first inequality holds by the inductive hypothesis. On the other hand,

↵tp
t
+ (1� ↵t)

t�1X

i=1

↵i

t�1p
i
 ↵tp

t
+

(1 + 1/H) (1� ↵t)p
t� 1

=
H + 1p
t(H + t)

+
(1 + 1/H)

p
t� 1

H + t

 H + 1p
t(H + t)

+
(1 + 1/H)

p
t

H + t
 (1 + 1/H)p

t
(A.6)

where the first inequality holds by the inductive hypothesis. ⇤

A.1.2 Optimality of base-stock policies

Proof: Proof of Lemma 12: Since the optimal value functions V ⇤
h
(·) and Q⇤

h
(·)

evaluate all possible ways of ordering inventory at each time step throughout each

episode, the fact that they turn out to be concave (Lemma 16) implies that there is

one single quantity that we should order up to for each time period h to obtain the

maximum expected reward. ⇤
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A.1.3 Proof of Lemma 13

Proof: Proof of Lemma 13: From the Bellman optimality equation (A.1), and the

fact that
P

k�1
i=0 ↵

i

k�1 = 1, we have

Q⇤
h
(y) = ↵0

k�1Q
⇤
h
(y) +

k�1X

i=1

↵i

k�1

h
Ex0,⌧ i

h

[r̃⇤
⌧
i

h

+ V ⇤
⌧
i

h

(x0
⌧
i

h

)]
i

Subtracting Equation (A.3) from this equation, and adding some of the middle terms

that cancel with themselves gives us Lemma 13. ⇤

A.1.4 Proof of Lemma 14

Proof: Proof of Lemma 14: Since we assume that given a fixed value Dh, the

next state xh+1(yh) is increasing in yh, and ah(xh) is increasing in xh for the lower

one-sided-feedback problem, we conclude that the (deterministic given Dh) dynamics

are monotone with respect to any simulation starting point xh. Since the algorithm

chooses at least the maximal action in Ak

h
at all times, this implies it can observe

the simulated trajectory started from any xh 2 Ak

h
for any k, h 2 [K]⇥ [H].

Let F i

h
be the �-field generated by all the random variables until episode i, stage

h. Then for any ⌧ 2 [K],

⇣
V ⇤
⌧
i

h

(xi

⌧
i

h

) + r̃⇤
⌧
i

h

� Er̃⇤,x0,⌧ i
h

h
r̃⇤
⌧
i

h

+ V ⇤
⌧
i

h

(x0
⌧
i

h

)
i⌘⌧

i=1

is a martingale difference sequence with respect to the filtration {F i

h
}
i�0. Then by
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Azuma-Hoeffding Theorem, we have that with probability at least 1� (1/AT )9:

�����

k�1X

i=1

↵i

k�1 ·
⇣
V ⇤
⌧
i

h

(xi

⌧
i

h

) + r̃⇤
⌧
i

h

� Er̃⇤,x0,⌧ i
h

h
r̃⇤
⌧
i

h

+ V ⇤
⌧
i

h

(x0
⌧
i

h

)
i⌘�����

 cH

2

vuut
k�1X

i=1

�
↵i

k�1

�2 · ◆  c

r
H3◆

k � 1

(A.7)

for any constant c � 2
p
2. By union bound, we have with probability at least

1� (1/AT )8 that for any x, h, k, y 2 Ak

h
,

�����

k�1X

i=1

↵i

k�1

⇣
V ⇤
⌧
i

h

(xi

⌧
i

h

) + r̃⇤
⌧
i

h

� Er̃⇤,x0,⌧ i
h

h
r̃⇤
⌧
i

h

+ V ⇤
⌧
i

h

(x0
⌧
i

h

)
i⌘�����  c

r
H3◆

k � 1

By this equation and Lemma 13, Lemma 14 follows. ⇤

A.1.5 Upper bound on sequence �h, h = 1, . . . , H

Proof: We set dh = (�h) ·
�
1 + 1

H

�h and observe that the recurrence implies

dh = dh+1 +H + 2
p
2
p
H3◆ (A.8)

Then from this recursion we see dh  H2 + 2
p
2H5◆ for all h. Since dh, �h differ

by a constant factor
�
1 + 1

H

�h, we have �h = H
2+2

p
2H5◆

(1+ 1
H
)
h  4

p
H5◆. ⇤

A.1.6 Concavity of the Optimal Value Functions

Below we prove the concavity of the Q, V value functions of the lost-sales model with

zero lead time. The same proof and result applies to the single-product backlogged

model.
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Lemma 16 For the lost-sales model, for any h 2 [H], the optimal V -value function

V ⇤
h
(x) is concave in x, and the optimal Q-value function Q⇤

h
(y) is concave in y.

Proof: We proceed by backward induction on h, starting from the base case h = H.

The base case is the value functions for the last step of each episode: Q⇤
H
(y) and

V ⇤
H
(x). Since Q⇤

H
(y) is just the expectation of a one time reward for the last period,

we know Q⇤
H
(y) = �[oH(y � DH)+ + pH min(y,DH)]. This function is concave in

y. Since V ⇤
H
(x) = maxy�x Q⇤

H
(y), the graph of V ⇤

H
(x) is constant on the left of

x = argmax
y�x

Q⇤
H
(y), and then goes down with a slope of �oH on the right of

x = argmax
y�x

Q⇤
H
(y). So V ⇤

H
(x) is also concave.

Now suppose Q⇤
h+1(y) and V ⇤

h+1(x) are concave. It remains to show concavity of

Q⇤
h
(y) and V ⇤

h
(x).

Since Q⇤
h
(y) = E[V ⇤

h+1(y�Dh)+rh(y,Dh)], and we know rh(y,Dh) is concave in y

just like Q⇤
H
(y), and that V ⇤

h+1(x) is concave in x from the induction hypothesis, which

means V ⇤
h+1(y�Dh) is concave in y for any value of Dh. Therefore, E[V ⇤

h+1(y�Dh)+rh]

is also concave, as a weighted average of concave functions. Thus, Q⇤
h
(y) is concave,

and V ⇤
h
(x) = maxy�x Q⇤

h
(y) is concave. ⇤

A.1.7 Shortfall decomposition

The following proof of shortfall decomposition is adapted from Benjamin Van Roy’s

reinforcement learning notes for the class MS 338 at Stanford University.

Proof: Proof of Lemma 15: For any policy ⇡, let yk
h

denote the action the policy

⇡k takes at stage h of episode k. Let Rh denote the expected reward of yk
h
.
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Define

Zh+1 =

8
<

:
Rh +maxy Q⇤

h+1

�
xk

h+1, y
�

if h < H

Rh if h = H

Then

E⇡

⇥
Q⇤

h

�
xk

h
, yk

h

�⇤
= E⇡ [Zh+1]

Therefore,

V ⇤
1 � V ⇡k

1 =E⇡

h
max
a2A

Q⇤
1(x

k

1, a)�
HX

h=1

Rh

i

=E⇡

h
max
a2A

Q⇤
1

�
xk

1, a
�
�

HX

h=1

�
Rh � Zh+1 +Q⇤

h

�
xk

h
, yk

h

�� i

=E⇡

h HX

h=1

�
max
a2A

Q⇤
h
(xk

h
, a)�Q⇤

h
(xh, y

k

h
)
�i

⇤

A.1.8 Proof for Lemma 1

Proof: We prove by backward induction. Note that all of our statements below

hold with high probability. In particular, we will use Azuma-Hoeffding no more than

AT times in the below, with each use holding with probability at least 1/(AT )9.

Under the assumption that each use of Azuma-Hoeffding holds we will obtain the

statements of the Lemma. Our proof goes by induction; for the base case �H+1 = 0

satisfies the Inequality in Lemma 1.1 (actually equality here) with probability 1 based

on Bellman equations.

Now suppose the inequality in Lemma 1.1 is true for any k 2 [K], x 2 S, then
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for any h0 = ⌧ k
h
(x, a) that has a 2 Ak

h
:

max
y2Ak

⌧
k

h
(x,a)

���(Qk

⌧
k

h
(x,a) �Q⇤

⌧
k

h
(x,a))(y)

��� 
�
⌧
k

h
(x,a)p

k � 1
(A.9)

for all a 2 Ak

h
with high probability. Then the statement of Lemma 1.2 is true

for k, ⌧ k
h
(x, a): recall for any (x, h, k), yk⇤

h
= argmax

y2Ak

h

Qk

h
(y). Suppose y⇤

h
62

Ak

h
, then Qk

h
(y⇤

h
) < Qk

h
(yk⇤

h
) � 8

p
H5◆p
k�1

= Qk

h
(x, yk⇤

h
) � 2�hp

k�1
. Then we need either

Qk

h
(y⇤

h
) < Q⇤

h
(y⇤

h
)� �hp

k�1
or Qk

h
(yk⇤

h
) > Q⇤

h
(yk⇤

h
)+ �hp

k�1
. Therefore by Equation (A.9),

Prob(y⇤
h
62 Ak

h
(x)) 1

(AT )5 . Therefore, the optimal action y⇤
⌧
k

h
(x,a)

is in the running set

Ak

⌧
k

h
(x,a)

with high probability.

Lemma 1.3 is also true: by Equation A.9, the optimal Q-value of the optimal

policy’s action Q⇤
⌧
k

h
(x,a)

(y⇤
⌧
k

h
(x,a)

) is with high probability at most �hp
k�1

more than

the estimated Q-value of our estimated best arm Qk

⌧
k

h
(x,a)

(yk⇤
⌧
k

h
(x,a)

). Any action we

take in Ak

⌧
k

h
(x,a)

has an estimated Q-value no more than 8
p
H5◆p
k�1

=
2�

⌧
k

h
(x,a)p

k�1
lower than

Qk

⌧
k

h
(x,a)

(yk⇤
⌧
k

h
(x,a)

) base on our algorithm. Therefore, the optimal Q-value of the optimal

policy’s action Q⇤
⌧
k

h
(x,a)

(y⇤
⌧
k

h
(x,a)

) is with high probability at most
3�

⌧
k

h
(x,a)p

k�1
more than

the estimated Q-value of any action y 2 Ak

⌧
k

h
(x,a)

(x). Then again, by Equation A.9,

we know that the optimal Q-value of the optimal policy’s action Q⇤
⌧
k

h
(x,a)

(y⇤
⌧
k

h
(x,a)

) is

with high probability at most
4�

⌧
k

h
(x,a)p

k�1
more than the optimal Q-value of any action

in Ak

⌧
k

h
(x,a)

.

Then the statement of Lemma 1.4 is true: from Lemma 1.2, we know that with

high probability, the optimal action is in the running set. When the running set

is not feasible to choose from, then recall the assumptions that the value functions

are concave and that the feasible action set at any time is an interval of the form

A \ [a,1) for some a dependent on the state. So if we cannot play in the running

150



set, then the running set, and hence w.h.p. the true optimal action, is contained in

(�1, a). By concavity, this implies that the closest feasible action to the running

set is optimal in this case with high probability.

Now we induct on the previous stage h0 = h. By Lemma 14, with probability at

least 1� 1/(AT )8

max
y2Ak

h

���(Qk

h
�Q⇤

h
)(y)

��� max
a2Ak

h

⇢
↵0
k�1H +

k�1X

i=1

↵i

k�1

⇣
V i+1
⌧
i

h
(x,a)
� V ⇤

⌧
i

h
(x,a)

⌘⇣
xi

⌧
i

h
(x,a)

0
⌘

+ r̃i
h,⌧

i

h
(x,a) � r̃⇤

h,⌧
i

h
(x,a)

�
+ c

r
H3◆

k � 1

�
.

Based on our inductive hypothesis, we have

max
a2Ak

h

h ⇣
V i+1
⌧
i

h
(x,a)
� V ⇤

⌧
i

h
(x,a)

⌘⇣
xi

⌧
i

h
(x,a)

0
⌘
+ r̃i

h,⌧
i

h
(x,a) � r̃⇤

h,⌧
i

h
(x,a)

i

 max
y2Ai

⌧
i

h
(x,a)

|(Qi+1
⌧
i

h
(x,a)
�Q⇤

⌧
i

h
(x,a))(y)| 

�⌧ i
h
(x,a)p
i

where the first inequality is because r̃i
h,⌧

i

h
(x,a)
� r̃⇤

h,⌧
i

h
(x,a)

is with high probability zero

because of the Lemma 1.4 part of the inductive hypothesis. Then

max
y2Ak

h

���(Qk

h
�Q⇤

h
)(y)

���  max
a2Ak

h

(
↵0
k�1H + (

k�1X

i=1

↵i

k�1 ·
�⌧ i

h
(x,a)p
i

) + c

r
H3◆

k � 1

)
. (A.10)

We can bound ↵0
k�1 by 1p

k
, and bound

P
k�1
i=1 ↵

i

k�1 ·
�
⌧
i

h
(x,a)p
i

by 1+1/Hp
k�1

�⌧ i
h
(x,a) using
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Lemma 11:

max
y2Ak

h

���(Qk

h
�Q⇤

h
)(y)

��� 
1p
k
H +

1 + 1/Hp
k � 1

�⌧ i
h
(x,a) + c

r
H3◆

k

 1p
k � 1

H +
1 + 1/Hp

k � 1
�h+1 + c

r
H3◆

k � 1
=

�hp
k � 1

(A.11)

where the second inequality is because ⌧ i
h
(x, a) � h + 1 and �h’s is a decreasing

sequence. The last equality is true based on the recursive definition of �h. ⇤

A.1.9 Regret caused by discretization.

Proof: Proof of Lemma 2: If we discretize [m,M ] with step-size M�m

T 2 , for example,

then A = ⇥(T 2). Discretization incurs additional regret: Regret
gap

= O(M�m

T 2 ·

HT ) = o(1) by Lipschitzness of the reward function. ⇤

A.2 Applying existing Q-learning algorithms on the

inventory control problems

Here we show that existing Q-learning results in general MDPs give suboptimal

guarantees when specialized to our setting, as discussed in Section 2.3 of the main

text.

For Jin et al. (2018), suppose we discretize the state and action space optimally

with step-size ✏1 to apply Jin et al. (2018) to the backlogged/lost-sales episodic inven-

tory control problem with continuous action and state space. Then the Regret
gap

we

get is ✏1T . Applying the results of Jin et al. (2018), their Regret
MDP

is O(
p
H3SAT ◆) =

O(
q

1
✏1
· 1
✏1
T ◆). To minimize Regret

total
, we balance the Regret

MDP
and Regret

gap
by
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setting
q

1
✏1
· 1
✏1
T = ✏1T , which gives ✏1 =

1
T 1/4 , giving us an optimized regret bound

of O(T
3
4

p
H3 log T ).

For Dong et al. (2019), suppose we discretize the state and action space optimally

with step-size ✏2 to apply Dong et al. (2019) to the backlogged/lost-sales episodic

inventory control problem. We also optimize aggregation using the special property

of these inventory control problems that the Q-values only depend on the action not

the state, so we aggregate all the state-action pairs (x1, y), (x2, y) into one aggregated

state-action pair. This 0-error aggregation helps reduce the aggregated state-action

space. Then the optimized regret bound in Dong et al. (2019) is O(
q

H4 1
✏
T log T +

✏T ). We minimize Regret
total

by balancing the two terms and take ✏ = 1
T 1/3 , obtaining

an optimized regret bound of O(T
2
3

p
H4 log T ).

A.3 The Non-Discarding Lost-Sales Model

In the infinite-horizon version of the non-discarding lost-sales model with cyclic de-

mands: to have finite V-values, a long-time average reward r is subtracted from the

right-hand side of the Bellman equations:

Vt = E[Vt+1 + rt]� r.

(Puterman, 2014, Theorem 8.4.7) guarantees the existence of an optimal average-

reward policy. By taking limits of finite-horizon optimal policies, it can be proved

that cyclic base-stock policies are optimal for the infinite-horizon problem.

Proof: Proof of Proposition 1: For inventory problems with known cyclic stochastic

demands, (Zipkin, 1989, Proposition 1c) shows the existence of a time h 2 [H] such
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that for the episodic problem with demand distributions Dh+1, . . . , DH , D1, . . . , Dh,

the optimal base-stock level is maximized at the first round with demand Dh+1

(referred to therein as the “maximal property"). For this choice of h, it readily

follows that the base-stock levels for the episodic problem are equal to those of any

repeated version of length T = KH again started from Dh+1. Indeed, because the

base-stock level Bh+1 for the episodic problem is maximal, using the episodic base-

stock policy repeatedly on the T -horizon problem is equivalent to solving K separate

episodic problems - we are always able to order back up to exactly Bh+1. As a result,

this algorithm solves each episode optimally while achieving a best-case initialization

for each episode. This implies that it solves the T -horizon problem optimally for any

T = KH. (However note that this T -horizon problem is shifted from the original.)

⇤
We prove in the following proposition that the optimal policy for the infinite-

horizon problem is also near optimal for the finite-horizon problem.

Proposition 3 For any h and sequence (D1, . . . , Dh), the infinite-horizon optimal

policy, denoted by ⇡⇤
1, when applied to the finite-horizon problem, achieves expected

regret O(M�) independent of the time horizon length T from any starting state x

and time h 2 [H], with respect to the optimal finite-horizon policy, denoted by ⇡⇤
T
.

Proof: Suppose not, which means that the infinite-horizon optimal policy has some

amount of regret C 0 that is larger than O(M�) after time T . We will construct a

candidate infinite-horizon policy ⇡0 with superior performance to the optimal policy

⇡⇤
1, which would be a contradiction to the definition.

We construct this candidate policy by the following 3 phases

1. Run the optimal T -horizon policy until time T .
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2. Order nothing until all inventory is depleted.

3. Copy the infinite-horizon policy from the best possible starting point for the

rest of time.

Since all states are reachable from a 0 inventory state, after all inventory is

depleted by phase 2, all states are reachable in phase 3. Hence the above policy is

feasible.

By assumption, phase 1 above achieves reward C 0 greater than the optimal policy

on average. Meanwhile, phase 2 requires time O(M�) in expectation. Therefore,

the candidate policy above eventually matches the trajectory of the infinite horizon

policy, but its reward is larger by a positive constant C �O(M�) > 0. Moreover, it

has the same starting point. This is a contradiction because ⇡⇤
1 is by definition the

optimal policy for the infinite horizon problem. ⇤

Proof: Proof of Lemma 3: To handle switches between arms, we simply wait for

inventory to go below the base-stock level we want to choose for the beginning step

of the next remaining arm h0, and then start pulling arm h0 once possible. By

Assumption 3 for the non-episodic model, we know that each switch from an arm h

to an arm h0 will take O(M�) time periods in expectation. By Markov Inequality,

we know that the probability that the switch takes more than O(M�) time periods is

less than 1/2. Then the probability that the switch takes more than O(M� · 3 log T )

time periods is less than (12)
3 log T = 1

T 3 .

Each phase j contains O(2jH) time periods, so there are no more than log T

phases. Since |Wj|  H for any j, there are only O(H log T ) arm switches in the

whole horizon. Each switch takes time O(� log T ) time periods with probability

1� T�3, so switching between arms contribute negligible O(H� log2 T ) regret in the
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whole horizon. ⇤
To analyze the regret bound for Meta-HQL, we need a tighter analysis than what

is used in shortfall decomposition in HQL. Recall V ⇤
1 denotes the expected optimal

per-episode reward for the optimal policy. We use V (w)
1 to denote the realized per-

episode reward of the w-shifted HQL that arm w represents.

Proof: Proof of Lemma 4: First we want to show that for each arm, our estimated

per-episode reward is very close to the true optimal per-episode reward for that arm.

Let Rh denote the realized reward of yk
h
. For each episode k 2 [K] and time step

h 2 [H], define

Zk

h+1 =

8
<

:
Rk

h
+maxy Q⇤

h+1

�
xk

h+1, y
�

if h < H

Rk

h
if h = H

Then we have that for episode k, the difference between the optimal expected

per-episode reward for the best arm and our realized per-episode reward for arm w

is

V ⇤
1 � V (w)

1 = max
a

Q⇤
1(x1, a)�

HX

h=1

Rh

= max
a

Q⇤
1(x1, a)�

HX

h=1

⇣
Rh � Zk

h+1 +Q⇤
h
(xh, yh)

⌘

+
HX

h=1

⇣
Q⇤

h
(xh, yh)� Zh+1

⌘

(A.12)

Consider the last term in Equation (A.12) for rounds k = 1, . . . , Kj. Each of these

terms is bounded between [�H,H] and has mean 0 conditioned on the past. There-

fore, the partial sums over k = 1, . . . , Kj are martingales, with the difference between
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consecutive martingales bounded by [�H,H]. For notation, we use superscript k to

denote round k. By Azuma-Hoeffding Inequality,

P
h
������

KjX

k=1

HX

h=1

⇣
Q⇤

h
(xk

h
, yk

h
)� Zk

h+1

⌘⌘
������
� ✏

i
 2 exp (� 2✏2

PKjH

1 H2
) (A.13)

Then we have that the difference between the total expected reward and our

realized reward for any arm if that arm is pulled for Kj rounds (meaning Kj cycles)

is

���
KjX

k=1

(V ⇤
1 � V ⇡k

1 )
��� 

���
KjX

k=1

max
a

Q⇤
1(x

k

1, a)�
KjX

k=1

HX

h=1

⇣
Rh � Zk

h+1 +Q⇤
h
(xk

h
, yk

h
)
⌘���

+
���

KjX

k=1

HX

h=1

⇣
Q⇤

h
(xk

h
, yk

h
)� Zk

h+1

⌘���


���

KjX

k=1

max
a

Q⇤
1(x

k

1, a)�
KjX

k=1

HX

h=1

⇣
Rh � Zk

h+1 +Q⇤
h
(xk

h
, yk

h
)
⌘���+ ✏


KjX

k=1

HX

h=1

���max
a2A

Q⇤
h
(xk

h
, a)�Q⇤

h
(xk

h
, yk

h
)
���+ ✏

(A.14)

with probability at least 1 � 2 exp (� 2✏2

KjH
3 ). We take ✏ = 10

p
H3Kj log T ; then the

probability is at least 1� 2 exp (�200H3
Kj log T

KjH
3 ) = 1� 2e(�200 log T ) = 1� 2

T 200 .

On the other hand, let a⇤ denote the action that achieves maxa2A Q⇤
h
(xk

h
, a), then
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the first term inside the sum in the right hand side of the Inequality (A.12) is

Q⇤
h
(xk

h
, a⇤)�Q⇤

h
(xk

h
, yk

h
) Q⇤

h
(xk

h
, a⇤)�Qk

h
(xk

h
, a⇤) +Qk

h
(xk

h
, a⇤)�Qk

h
(xk

h
, yk

h
)

+Qk

h
(xk

h
, yk

h
)�Q⇤

h
(xk

h
, yk

h
)


���Q⇤

h
(xk

h
, a⇤)�Qk

h
(xk

h
, a⇤)

���+
⇣
Qk

h
(xk

h
, a⇤)�Qk

h
(xk

h
, yk

h
)
⌘

+
���Qk

h
(xk

h
, yk

h
)�Q⇤

h
(xk

h
, yk

h
)
���


���Q⇤

h
(xk

h
, a⇤)�Qk

h
(xk

h
, a⇤)

���+ CB1

+
���Qk

h
(xk

h
, yk

h
)�Q⇤

h
(xk

h
, yk

h
)
���

(A.15)

where the last inequality is due to the fact that the second term on the right-hand

side is upper-bounded by the confidence interval CB1 by definition of the running

set in Algorithm 1. Recall that CB1  O
⇣p

H5◆/
p

Kj � 1
⌘
.

On the other hand, by definition of a⇤, the left-hand side is non-negative. There-

fore, the right-hand side of Equation (A.15) is also an upper bound on the absolute

value of the left-hand side. Therefore, we get that the first term on the right-hand

side of Inequality (A.14) is upper-bounded by:

KjX

k=1

HX

h=1

���Q⇤
h
(xk

h
, a⇤)�Q⇤

h
(xk

h
, yk

h
)
��� 

KjX

k=1

HX

h=1

���Q⇤
h
(xk

h
, a⇤)�Qk

h
(xk

h
, a⇤)

���

+

KjX

k=1

HX

h=1

���Qk

h
(xk

h
, yk

h
)�Q⇤

h
(xk

h
, yk

h
)
���+ CB1

where the first term and the third term are both upper-bounded by

KjX

k=1

HX

h=1

max
a

���Q⇤(xk

h
, a)�Qk

h
(xk

h
, a)

���.
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Let w⇤ denote the best arm, that is, the arm that correctly chooses (one of) the

time steps with the highest optimal base-stock level as the beginning of the cycles.

By definition, the best arm has the highest optimal value function for the beginning

of its cycles V ⇤(w⇤)
1 ⌘ maxw V ⇤(w)

1 , which corresponds to having the highest expected

per-episode reward among the arms.

When w = w⇤, by part 1 of Lemma 1, we know that
PKj

k=1

P
H

h=1 maxa
���Q⇤(xk

h
, a)�

Qk

h
(xk

h
, a)

��� is bounded by HKj�hp
Kj�1

with probability at least 1 � 1
A5T 5 . Therefore, let

Ew
⇤

Kj
be the (random) total reward for arm w⇤ after pulling it for Kj cycles, then

using the fact that �h  4
p
H5◆ again, the difference between the expected optimal

reward for any arm w and our estimated reward after Kj samples of the arm w is

��KjV
⇤(w⇤)
1 � Ew

⇤

Kj

��  O
�p

H7Kj log T
�

(A.16)

with probability at least 1� 1
T 5 .

Let w2 denote any suboptimal arm that has not been eliminated before being

pulled Kj times. When w = w2, then because of trimming, our estimated reward

after Kj could be further lowered:

KjV
⇤(w2)
1 � Ew2

Kj
�O

�p
H7Kj log T

�
(A.17)

with probability at least 1� 1
T 5 .

By definition, its optimal value is V ⇤(w2)
1  V ⇤(w⇤)

1 . Let Ew2
Kj

be the total reward

for arm w2 after pulling it for Kj cycles. Then by Equations (A.16) and (A.17), after
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Kj samples, with probability 1� 1
T 5 ,

Ew
⇤

Kj
+ C2

p
H7Kj◆ � KjV

⇤(w⇤)
1 � KjV

⇤(w2)
1 � Ew2

Kj
� C2

p
H7Kj◆

=) Ew
⇤

Kj
� Ew2

Kj
� 2C2

p
H7Kj◆

(A.18)

for the same C2 we used in the confidence bound CB in Algorithm 2.

Since this holds for all suboptimal arms w2 and all no more than log T different

values of Kj, by union bound, the probability of Meta-HQL never eliminating the

best arm is at least 1� H log T
T 5  1

T 4 .

⇤

Proof: Proof of Theorem 3: Suppose arm w2 was eliminated after Kj = Kj(w2)

samples of arm w2. Then, arm w2 was not eliminated when it was pulled Kj

2 times.

To analyze the regret accumulated from pulling arms, observe that in fact each arm

has total regret O
⇣q

H7Kj◆

2

⌘
with probability at least 1 � T�5 not only on its first

Kj

2 samples, but also on its Kj

2 + 1 through Kj-th sample, as detailed below.

From the proof of Lemma 4, we know with probability at least 1� 1
T 4 ,

Ew2
Kj

2

� Ew
⇤

Kj

2

� 2C2

r
H7Kj◆

2
� KjV

⇤(w⇤)
1

2
�O

⇣rH7Kj◆

2

⌘

=) KjV
⇤(w2)
1

2
� KjV

⇤(w⇤)
1

2
�O

⇣p
H7Kj◆

⌘ (A.19)

Since Ew2
Kj
� KjV

⇤(w2)
1 �O

⇣p
H7Kj◆

⌘
by Inequality (2.5) of Lemma 1, we know

that

Ew2
Kj
� KjV

⇤(w⇤)
1 �O

⇣p
H7Kj◆

⌘
(A.20)
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with probability at least 1� 1
T 4 . Therefore, the total regret from playing arm w2 is

KjV
⇤(w⇤)
1 � Ew2

Kj
 O(

p
H7Kj◆) (A.21)

Summing over all suboptimal arms to find the total regret incurred when pulling

arms,

Regretarms 
X

w02[H]

E
h
Kj(w0)V

⇤(w⇤)
1 � Ew

0

K
j(w0)

i

Since
P

w02[H] Kj(w0)  K, Jensen’s Inequality implies
P

w02[H]

p
Kj(w0)  H ·q

K

H
=
p
KH. Therefore, the total regret incurred by pulling arms is upper-bounded

by O(
p

H7Kj◆).

The Regret
gap

term in the total regret caused by discretization contributes O(1/T )

to the regret. By Lemma 3, switching between arms contributes Regret
switching

=

O(H� log2 T ) to the total regret. The low probability T�4 of failure in applying

Azuma-Hoeffding has negligible regret contribution. Therefore the main regret term

is given by the regret accumulated while pulling arms Regret
arms

Regret
total

=Regret
gap

+Regret
arms

+Regret
switching

O(1/T ) +

✓
O(
p
H7T ◆)⇥ 1 +O(T 2)⇥ 1

T 4

◆
+O(H� log2 T )

=Õ
�p

H7T
�
.

(A.22)

⇤
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A.4 Assumption of 0 Purchasing Costs

We want to show that for our episodic lost-sales model, we can amortize the unit

purchasing costs ch into unit holding costs oh and unit lost-sales penalty ph. First

we know that for any h � 2

yh � xh = yh �Dh +Dh � xh = (yh �Dh)
+ � (Dh � yh)

+ +Dh � xh

= (yh �Dh)
+ � (Dh � yh)

+ +Dh � (yt�1 �Dt�1)
+

(A.23)

Then the total sum of costs starting from time step 2 is

HX

h=2

⇣
ch(yh � xh) + oh(yh �Dh)

+ + ph(Dh � yh)
+
⌘

=
HX

h=2

⇣
ch(yh �Dh)

+ � ch(Dh � yh)
+ + chDh � ch(yt�1 �Dt�1)

+

+ oh(yh �Dh)
+ + ph(Dh � yh)

+
⌘

=
HX

h=2

⇣
chDh � ch(yh�1 �Dh�1)

+ + (oh + ch)(yh �Dh)
+ + (ph � ch)(Dh � yh)

+
⌘

And the cost of stage 1 is equal to o1(y1 �D1)+ + p1(D1 � y1)+ + c1
�
(y1 �D1)+ �

(D1 � y1)+ +D1 � x1

�
.

Let cH+1 � 0 denote the salvage price at which we sell the remaining inventory

(yH �DH)+ at the end of each episode. Then the total sum of costs from stage 1 to
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H is

HX

h=2

⇣
chDh � ch(yh�1 �Dh�1)

+ + (oh + ch)(yh �Dh)
+ + (ph � ch)(Dh � yh)

+
⌘

+ c1(y1 �D1)
+ � c1(D1 � y1)

+ + c1D1 � c1x1 + o1(y1 �D1)
+ + p1(D1 � y1)

+

� cH+1(yH �DH)
+

=
HX

h=2

⇣
chDh � ch(yh�1 �Dh�1)

+ + (oh + ch)(yh �Dh)
+ + (ph � ch)(Dh � yh)

+
⌘

+ c1(y1 �D1)
+ � c1(D1 � y1)

+ + c1D1 � c1x1 + o1(y1 �D1)
+ + p1(D1 � y1)

+

� cH+1(yH �DH)
+

=
HX

h=1

chDh +
HX

h=1

⇣
(oh + ch � ch+1)(yh �Dh)

+ + (ph � ch)(Dh � yh)
+
⌘
� c1x1

Since
P

H

h=1 chDh and �c1x1 are fixed costs independent of our action, we can

take them out of our consideration. Then the cost of each stage h is just o0
h
(yh �

Dh)+ + p0
h
(Dh � yh)+, where o0

h
= oh + ch � ch+1 is the adjusted holding cost, and

p0
h
= ph � ch is the adjusted lost-sales penalty.

Similar amortizing works for the single-product backlogged model with zero lead

time.

A.5 Preliminaries for the episodic multi-product back-

logging model

We describe the MDP(S,A, H,P, r) for the multi-product backlogging model in this

section. The current state xh 2 Rn⇥L is the concatenation of the current on-hand

inventory Ih and the list of inventories ordered in the pipeline that are still in transit
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yh�L+1,yh�L+2, . . . ,yh�1.

For the multi-product backlogging model, we do a similar transformation1 on the

costs so that the per-period reward of any policy over an episode is bounded by [0, 1].

We discretize both the state and action spaces to consist of multiples of " = M�m

T 2 .

Rounding all the demands and orders to an adjacent multiple of " (using a fixed but

arbitrary rule) transforms any continuous policy to a discrete policy with at most

O(H") additive error per time-step (due to accumulation over the episode) and hence

O(H"T ⇥ n) = O(n(M�m)
K

) = o(1) total additive error in the cost. Note that techni-

cally, we might round a tiny order to 0, where the reward function is not Lipschitz.

However, this only helps as the reward is upper semi-continuous. Therefore solv-

ing the discretized problem with regret Regret
MDP

solves the continuous problem

with regret Regret
MDP

+Regret
gap

= Regret
MDP

+O(n(M�m)
K

) = Regret
MDP

, since

K = ⇥(T ).

Since the action set for the multi-product backlogging model includes any feasible

replenishment amount within the order limits, the reward and leftover inventory

depend on both the state and the action. Therefore, we do not simplify the notation

Q(x, y) to Q(x).

A.6 Regret analysis for FQL

For FQL, we are able to adopt similar notations and analysis in Jin et al. (2018) (but

adapted to our full-feedback setting).

We use [PhVh+1] (x, y) := Ex0⇠P(·|x,y)Vh+1 (x0). Then the Bellman optimality equa-

tion becomes Q⇤
h
(x, y) =

�
rh + PhV ⇤

h+1

�
(x, y).

1
We scale the negated costs down by a factor of ⇥

�
n ·max(Fh,M |oh|,M |bh|)

�
and then shift to

the right.
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FQL updates the Q values in the following way for any (x, y) 2 A at any time

step:

Qk+1
h

(x, y) (1� ↵k)Q
k

h
(x, y) + ↵k[r

k+1
h

(x, y) + V k

h+1(xh+1)] (A.24)

Then by the definition of weights ↵k

t
, we have

Qk

h
(x, y) = ↵0

k�1H +
k�1X

j=1

↵j

k�1

⇥
rj
h
(x, y) + V j

h+1

�
xj

h+1

�⇤
(A.25)

The following two lemmas are variations of Lemma 13 and Lemma 14.

Lemma 17 For any (x, y, h, k) 2 S ⇥A⇥ [H]⇥ [K], we have

�
Qk

h
�Q⇤

h

�
(x, y) =↵0

k�1 (H �Q⇤
h
(x, y)) +

k�1X

i=1

↵i

k�1

"
�
V i

h+1 � V ⇤
h+1

� �
xi

h+1

�
+ ri

h

� E[ri
h
] +

h⇣
P̂i

h
� Ph

⌘
V ⇤
h+1

i
(x, y)

#

Proof: From the Bellman optimality equation Q⇤
h
(x, y) = E[rh(x, y)]+PhV ⇤

h+1(x, y),

our notation
h
P̂i

h
Vh+1

i
(x, y) := Vh+1

�
xi

h+1

�
, and the fact that

P
k�1
i=0 ↵

i

k�1 = 1, we

have

Q⇤
h
(x, y) = ↵0

k�1Q
⇤
h
(x, y) +

k�1X

i=1

↵i

k�1

h
E[ri

h
(x, y)] +

⇣
Ph � P̂i

h

⌘
V ⇤
h+1(x, y) + V ⇤

h+1

�
xi

h+1

� i

Subtracting Equation A.25 from this equation gives us Lemma 17. ⇤

Lemma 18 For any p 2 (0, 1), with probability at least 1 � p, for any (x, y, h, k) 2
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S ⇥A⇥ [H]⇥ [K], let ◆ = log(SAT/p), we have for some absolute constant c:

0 
�
Qk

h
�Q⇤

h

�
(x, y)  ↵0

k�1H +
k�1X

i=1

↵i

k�1

�
V i

h+1 � V ⇤
h+1

� �
xi

h+1

�
+ c

r
H3◆

k � 1
(A.26)

Proof: Proof For any i 2 [k], recall that episode i is the episode where the state-

action pair (x, y) was updated at stage h for the ith time. Let F i

h
be the �-field

generated by all the random variables until episode i, stage h. Then for any ⌧ 2

[K],
⇣
[(P̂i

h
� Ph)V ⇤

h+1](x, y) + ri
h
� E[ri

h
]
⌘⌧

i=1
is a martingale difference sequence with

respect to the filtration {F i

h
}
i�0. Then by Azuma-Hoeffding Theorem, we have that

with probability at least 1� p/SAT :

�����

k�1X

i=1

↵i

k
·
h⇣

P̂i

h
� Ph

⌘
V ⇤
h+1

i
(x, y) + ri

h
� E[ri

h
]

����� 
cH

2

vuut
k�1X

i=1

�
↵i

k�1

�2 · ◆  c

r
H3◆

k � 1

(A.27)

for some constant c.

Now we union bound over states, actions and times, we see that with probability

at least 1� p, we have

�����

k�1X

i=1

↵i

k=1

h⇣
P̂ki

h
� Ph

⌘
V ⇤
h+1

i
(x, y) + ri

h
� E[ri

h
]

�����  c

r
H3◆

k � 1
(A.28)

Then the right-hand side of Lemma 18 follows from Lemma 17 and Inequality

(A.28). The left-hand side also follows from Lemma 17 and Inequality (A.28) using

induction on h = H,H � 1, . . . , 1. ⇤

Proof: Proof of Theorem 4: Define �k

h
:=

�
V k

h
� V ⇡k

h

� �
xk

h

�
and �k

h
:=
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�
V k

h
� V ⇤

h

� �
xk

h

�
.

By Lemma A.27, with 1 � p probability, Qk

h
� Q⇤

h
and thus V k

h
� V ⇤

h
. Thus the

total regret can be upper bounded:

Regret(K) =
KX

k=1

⇣
V ⇤
1 � V ⇡k

1

⌘
(xk

1) 
KX

k=1

�
V k

1 � V ⇡k

1

�
(xk

1) =
KX

k=1

�k

1

The main idea of the rest of the proof is to upper bound
P

K

k=1 �
k

h
by the next

step
P

K

k=1 �
k

h+1, which gives a recursive formula to obtain the total regret. Here

yk
h

denotes the base-stock levels taken at stage h of episode k, which means yk
h
=

argmaxQk

h
(y0).

�k

h
=
�
V k

h
� V ⇡k

h

�
(xk

h
)
(1)


�
Qk

h
�Q⇡k

h

�
(xk

h
, yk

h
)

=
�
Qk

h
�Q⇤

h

�
(xk

h
, yk

h
) + (Q⇤

h
�Q⇡k

h
) (xk

h
, yk

h
)

(2)

↵0
k�1H +

k�1X

i=1

↵i

k�1�
i

h+1 + c

r
H3◆

k � 1
+
⇥
Ph

�
V ⇤
h+1 � V ⇡k

h+1

�⇤
(xk

h
, yk

h
)

=↵0
k�1H +

k�1X

i=1

↵i

k�1�
i

h+1 + c

r
H3◆

k � 1
+
h⇣

Ph � P̂k

h

⌘ �
V ⇤
h+1 � V ⇡k

h+1

�i
(xk

h
, yk

h
)

+ (V ⇤
h+1 � V ⇡k

h+1)(x
k

h+1)

(3)
=↵0

k�1H +
k�1X

i=1

↵i

k�1�
i

h+1 + c

r
H3◆

k � 1
� �k

h+1 +�k

h+1 + ⇠k
h+1

(A.29)

where ⇠k
h+1 :=

h⇣
Ph � P̂k

h

⌘ �
V ⇤
h+1 � V ⇡k

h+1

�i �
xk

h
, yk

h

�
is a martingale difference sequence.

Inequality (1) holds because V k

h

�
xk

h

�
 maxfeasible y0 given x Qk

h

�
xk

h
, y0

�
= Qk

h

�
xk

h
, yk

h

�
,

and Inequality (2) holds by Lemma 18 and the Bellman equations. Inequality (3)

holds by definition �k

h+1 � �k

h+1 =
�
V ⇤
h+1 � V ⇡k

h+1

� �
xk

h+1

�
.

In order to compute
P

K

k=1 �
k

1, we need to first bound the first term in Equation
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A.29. Since ↵0
k
= 0, 8k � 1, we know that

P
K

k=1 ↵
0
k�1H  H.

Now we bound the sum of the second term in Equation A.29 over the episodes

by regrouping:

KX

k=2

k�1X

i=1

↵i

k�1�
i

h+1 
K�1X

i=1

�i

h+1

1X

k=i+1

↵i

k�1 
K�1X

i=1

�i

h+1

1X

k0=i

↵i

k0 
✓
1 +

1

H

◆ KX

k=1

�k

h+1

(A.30)

where the last inequality uses
P1

t=i
↵i

t
= 1 + 1

H
for every i � 1 from Lemma 11.

Plugging the above Equation (A.30) and
P

K

k=1 ↵
0
k
H  H back into Equation

(A.29), we have:

KX
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�k

h
H +

KX

k=2

�k
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H +H +

✓
1 +

1

H

◆ KX
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h+1 �
KX
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KX
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�k
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KX
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c
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H3◆

k � 1
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KX
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2H + �1
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1
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KX
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KX
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KX
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c
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H3◆
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KX
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3H +
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1 +

1

H

◆ KX
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�k

h+1 +
KX
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H3◆
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KX
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(A.31)

where the last inequality uses �k

h+1  �k

h+1. By recursing on h = 1, 2, . . . , H, and

because �K

H+1 = 0, we have:

KX

k=1

�k

1  O
 

HX

h=1

KX

k=1

�
c

r
H3◆

k � 1
+ ⇠k

h+1

�
!
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where
HX

h=1

KX

k=1

c

r
H3◆

k � 1
= O(H

p
H3 log(SAT/p)

p
K) = Õ(

p
H4T )

On the other hand, by Azuma-Hoeffding inequality, with probability 1� p, we have

�����

HX

h=1

KX

k=1

⇠k
h+1

����� =

�����

HX

h=1

KX

k=1

h⇣
Ph � P̂k

h

⌘ �
V ⇤
h+1 � V ⇡k

h+1

�i �
xk

h
, yk

h

�
�����

 cH
p

Tl  Õ(
p
H4T )

(A.32)

which establishes
P

K

k=1 �
k

1  Õ(H2
p
T ).

Regret
total

(K) = Regret
MDP

(K) + Regret
MDP

(gap) = O(H2
p

n(L+ 1)T log T )

(A.33)

We multiply the constant O
�
n · max(Fh,M |oh|,M |bh|)

�
back because we previ-

ously scaled the costs to have the reward for each time period bounded by 1. This

yields a O(H2n
p

n(L+ 1) ·max(Fh,M |oh|,M |bh|)) total dependence on setting pa-

rameters for our Õ(T ) regret. ⇤

When L = 0, n = 1, Fh = 0, the total regret of FQL on the single-product

backlogging model with a lead time and an order limit is Õ(
p
T ) with an

O
�
H2M max(|oh|, |bh|)

�

dependence on all constant parameters. This is smaller than the dependence of HQL

applied on the single-product backlogging model with a lead time and an order limit

by a factor of H.
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A.7 Regret analysis for MimicQL

Proof: Proof of Theorem 5:

Let ` denote the maximum order limit. Let o denote the maximum unit hold-

ing cost. The expected amount of time until synchronization is no more than

O(nL`�). During each of these time steps the holding cost is a constant nMo.

Then the additional cost Mimic-FQL incurs each time by not discarding is bounded

by O(n2`ML�o). This is a constant term, but since discarding happens at the end

of every episode, the total additional regret incurred is O(Kn2`ML�o). Note that

this term is linear in T when K = ⇥(T ), and we will perform additional techniques

to obtain a total regret that is sublinear in T .

With positive lead time, the optimal policy OPT in the non-discarding model

can have a larger or smaller total expected cost than the optimal policy OPT for

the intermediate MDP. We want to show that Cost of the optimal policy OPT in

the non-discarding model, will not be too much lower than the Cost of the optimal

policy OPT for the intermediate MDP.

Consider a policy ⇡1 on the intermediate MDP. At the beginning of each episode,

⇡1 starts with zero inventory and zero replenishment because discarding at the end

of the previous episode. In the first L time steps of the second episode, ⇡1 orders

the replenishment in a way that it ends up with the same inventory vector and

replenishment vector as OPT at the end of L time steps. Starting at time step

(L + 1), ⇡1 completely copies OPT under the beginning of the next episode, where

⇡1 starts with zero inventory and replenishment again. For each episode, the cost of

this policy ⇡1 is at most O
⇣
LF +LnMc

⌘
more than the cost of OPT. Therefore, the

total expected cost of ⇡1 is at most O
⇣
KLF+KLnMc

⌘
more than the total expected

cost of OPT. On the other hand, since by definition, the total expected cost of the
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optimal policy on the intermediate MDP is no higher than the total expected cost

of ⇡1, we know that the total expected cost of OPT is at most O
⇣
KLF +KLnMc

⌘

more than the total expected cost of OPT.

So far we have argued that in the case of zero lead time,

1. Cost
T
(OPT)�O

⇣
KLF +KLnMc

⌘
 Cost of OPT

2. Cost of FQL  Cost of Mimic-FQL  Cost of FQL +O
�
Kn2`ML�o

� (A.34)

Then we know that

Regret
Mimic�FQL

:=Cost of Mimic-FQL� Cost of OPT

Cost of Mimic-FQL� Cost of OPT + Cost of OPT

� Cost of OPT

Cost of Mimic-FQL� Cost of OPT +O
⇣
KLF +KLnMc

⌘


⇣
Cost of Mimic-FQL� Cost of FQL

⌘
+
⇣
Cost of FQL

� Cost of OPT
⌘
+O

⇣
KLF +KLnMc

⌘

O
�
Kn2`ML�o

�
+ Õ

�
J2
p
T
�
+O

⇣
KLF +KLnMc

⌘

(A.35)

where we recall that the second term on the last line is bounded by Theorem 1 for

the episodic model.

Since K := T

J
, we know that Regret

Mimic�FQL
 O

�
T (n2

`ML�o+LF+LnMc)
J

�
+

Õ
�
J2
p
T
�
. Choosing J to be a multiple of H of size J = ⇥(T 1/6) now yields the

regret bound Õ
�
T 5/6

�
. Note that T 1/6 might not be an integer multiple of H, then

we take J to be the closest multiple of H to T 1/6. ⇤
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A.8 General definitions and assumptions for wider

application of our policies

A.8.1 Full Feedback.

The formal definition of full feedback is as follows. Immediately after taking an action

at at time t, once the environmental randomness Dt is realized, the agent learns what

the counterfactual reward rt(s, a) and next state st+1(s, a) would have been for all

feasible state action pairs (s, a) 2 S ⇥A for that specific time step t.

We notice this feedback structure in the backlogging inventory problems: in the

backlogging model, we observe the actual realized demand, which allows us to de-

duce what the cost and leftover inventory would be for any action. Trivially, the

backlogging model also possesses one-sided feedback.

For problems that possess the full-feedback structure, FQL is applicable with our

regret bound guarantee.

A.8.2 One-Sided Feedback.

The formal definition of one-sided feedback is as follows. Immediately after taking

an action a at step t, once the environmental randomness Dt is realized, we learn

what the reward and next state would have been if any action that lie on one side

of a is taken, i.e., all a0  a for the lower -sided-feedback structure for that specific

time step t (or all a0 � a for the higher -sided-feedback structure). This implies that

the action space can be embedded in a compact subset of R.

We notice this feedback structure is in the lost-sales inventory control problem:

once the demand Dt is realized for that time step, if the demand is lower than our

chosen base-stock level yt, we will observe the actual Dt; otherwise we will observe
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the min(yt, Dt) part of the demand, which lets us deduce what the pseudo-cost and

leftover inventory would be if the agent had taken any action (base-stock level) lower

than yt. Mathematically, for any y0
t
 yt, min(y0

t
, Dt) = min(y0

t
,min(yt, Dt)).

We list a number of assumptions that need to hold for the lower -sided-feedback

setting. In the case of the higher -sided-feedback setting, Assumptions 2 and 3 would

be symmetric to Assumptions 2 and 3 below. If the set of feasible actions at any

time is unaffected by the current state, then the assumptions below are unnecessary.

However, in that case, even though our algorithm still applies, the MDP problem

can be reduced to a number of bandit problems.

Assumptions (lower-sided):

1. The optimal Q-value functions are concave.

2. The current feasible action set at time t is of the form A \ [a,1), for some

a 2 R non-decreasing in xt.

3. Conditioned on the environmental randomness, the next state xt+1(·) is non-

decreasing in yt.

4. The reward and transition only depend on the action, the time step and the

environmental randomness, even though the feasible action set can depend on

the state. So Q(x, y) can be simplified to Q(y), 8y feasible for x.

These assumptions impose a specific structure on the problem, which is often

satisfied in important OR and finance problems, e.g. inventory control, portfolio

management, airline’s overbook policy, online second price auctions, etc. See an

overview of these applications in Section 3.4.
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Appendix B

Appendix for Chapter 4

B.1 Proof of Theorem 7

Before we prove the above theorem, consider first the special case of algorithms

that always match a user to some available product if such a matching is possible.

Suppose we have a single unit of a single product with reward 1 and the following

arrival sequences,

• Sequence A: A single user with usage time duration 1 (never returns the

product).

• Sequence B: A user with usage duration 1, followed by T users that return

the product right away i.e., P(dt = 0) = 1 for all t 2 {2, . . . , T + 1}.

In order to be competitive on sequence A, the algorithm must match the arrival with

the only available product. Consequently, even on sequence B the algorithm will

match the product to the first user and earn a net reward of 1. An optimal offline

algorithm would earn total reward T on sequence B hence, an online algorithm that
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always matches an arriving costumer if possible can never have competitive ratio

better than O
�
1
T

�
.

Let c denote the capacity of the resource. For the general case, consider the

following family of arrival sequences and subsequent lemma.

• Sequence C(c, t): c T t users, each with identical usage duration distribution

where the item is either returned immediately with probability pt = 1� 1
T t or

never returned i.e., P(dt = 0) = pt = 1� 1
T t and P(dt =1) = 1� pt =

1
T t .

In the following, we focus on equitable algorithms that treat all units of the product

equally. This simplifies the arguments and is without loss of generality for the overall

result. Formally, since all c units of the product are identical, w.l.o.g., each time a

unit of the product is to be matched we let the algorithm randomly pick an available

unit for the match. If the algorithm has net expected revenue at least R, then this

ensures that the expected revenue from allocating any individual unit is R/c as all

units are treated equitably. Any algorithm can be turned into an equitable one

without change in total revenue.

It is worth noting that an algorithm may for computational reasons differentiate

between units of the same resources. Indeed, subsequent work (Goyal et al., 2021)

introduces this idea and demonstrates that such differentiation can help in addressing

reusability. Our notion of equity applies not at the computational level but to the

final allocation. Borrowing an algorithmic idea from Goyal et al. (2021), we explain

this in more detail through an example. Consider an instance with a 2 identical

units of a single reusable resource that we refer to as unit A and B and a sequence of

arrivals all requiring a unit of the resource. Suppose we have an algorithm that com-

putationally maintains a state (s1(t), s2(t)) 2 {0, 1}2 and decides whether to allocate

a unit of the resource to arrival t based on the state. Initially (s1(1), s2(1)) = (1, 1)
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and we ensure that s1(t) + s2(t) � 1 only if at least one unit of the resource is avail-

able at t. The following describes the state based allocation rule and corresponding

state update: (i) if the state at t is (1, 1) or (1, 0) the algorithm allocates a unit at t

and updates s1(t + 1) = 0, (ii) if the state is (0, 1) then with probability (w.p.) 0.5

it allocates a unit and updates s2(t + 1) = 0 and w.p. 0.5 it rejects t, (iii) in state

(0, 0) it rejects t. When a unit returns from use at t and the unit was allocated while

in state (1, 1) or (1, 0), we update s1(t) = 1. In all other cases when a unit returns

at t we update s2(t) = 1. Observe that both state (1, 0) and state (0, 1) indicate

that exactly one unit is available, but the algorithm behaves differently in the two

scenarios. However, this is a purely computational differentiation. Whenever the

algorithm makes an allocation, if we have both A and B available we pick one for

allocation uniformly randomly. Thus, the expected number of times A and B are

matched is the same and the algorithm is equitable. With this in mind consider the

following lemma,

Lemma 19 Given capacity c � 1, t 2 [T ], and arrival sequence C(c, t). If an

equitable algorithm generates expected revenue at least c 1�p
↵T

t

t

1�pt
for some ↵ 2 [0, 1],

then for every individual unit of the product, the probability that the unit is consumed

forever after the last arrival is at least 1� p↵T
t

t
.

Proof: Suppose that a single unit, i, is attempted to be matched y times i.e., unit

i is matched repeatedly every time it returns from a finite use, for up to y times in

total. Then the expected total reward from matching i is,

Ri(y) = (1� pt) + 2pt(1� pt) + · · ·+ ypy�1
t =

1� pyt
1� pt

.

Observe that the expected reward is 1
1�pt

times the probability 1�pyt that the unit
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is consumed forever (extinguished) when matched up to y times. Now, for any unit

i of the resource the maximum number, y, of match attempts is a random variable.

Formally, define random variable Yi as the number of times unit i is matched given

that the unit always has a finite usage duration. Further, we independently sample

usage durations for i and let ⌧i denote the (random) number of finite usage durations

before a duration of +1. Clearly, Yi is independent of ⌧i and therefore, the expected

revenue from matching unit i in the algorithm is

E[Ri(Yi, ⌧i)] =
X

y

P[Yi = y]E[Ri(y, ⌧i)]

=
X

y

P[Yi = y]
P[i extinguished | Yi = y]

1� pt

=
P[i extinguished]

1� pt
.

So if the expected revenue from matching unit i in the algorithm is at least 1�p
↵T

t

t

1�pt
,

then the probability that i is extinguished is at least, 1 � p↵T
t

t
. To complete the

proof, recall that in an equitable algorithm the expected revenue from an individual

unit is 1/c fraction of the total expected revenue. Given an equitable algorithm with

total revenue at least c 1�p
↵T

t

t

1�pt
, we have revenue at least 1�p

↵T
t

t

1�pt
from an individual

unit. So the probability that any given unit i survives is at most p↵T t

t
. Observe that

for T !1, 1� p↵T
t

t
! 1� e�↵.

⇤

Corollary 4 For any given capacity c and t 2 [T ], the maximum expected revenue

generated by any algorithm (online or offline) on arrival sequence C(c, t) is at least

c 1�p
T
t

t

1�pt
and at most c T t.
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Proof: Clearly, the maximum revenue is at most cT t. For the lower bound, con-

sider the algorithm that attempts to match each unit of the product to T t arrivals.

From the analysis of Lemma 19, we have that a single unit of the product generates

maximum expected revenue 1�p
T
t

t

1�pt
= ⇥(T t). ⇤

We are now ready to prove Theorem 7.

Proof: Proof of Theorem 7: For arbitrary capacity c � 1, consider T sequences

D(t) = {C(c, 1), . . . , C(c, T )} for t 2 [T ] that begin with c T users arriving from

sequence C(c, 1) followed by c T 2 users from sequence C(c, 2) and so on in order till

C(c, T ). For any sequence D(t) the maximum possible expected revenue is ⇥(c T t),

since it is lower bounded by c (1 � pT
t

t
)T t = ⌦(c T t) (matching only the users in

C(c, t) while ignoring earlier users and using Corollary 4) and is upper bounded by,

c
�P

t

k=1 T
t
�
= O(c T t).

We prove by contradiction. Consider a �-competitive online algorithm and as-

sume � = ⌦
�
log T
T

�
(otherwise we are done). W.l.o.g., let the algorithm be eq-

uitable towards units of the products. From the assumption on competitiveness

and using Corollary 4, on arrival sequence D(1) the expected revenue of the on-

line algorithm from an individual unit must be at least �(1 � pT1 )T . From Lemma

19 we have that the probability the unit is available after all arrivals is at most

1 � �(1 � pT1 ) ! 1 � �(1 � 1/e). Now similar to case of D(1), in order to be �-

competitive on sequence D(2) where the maximum expected profit is ⇥(c T 2), the

expected reward generated from the C(c, 2) part of sequence D(2) must be at least

�c (1�pT 2

2 )T 2, as the contribution from arrivals C(c, 1) is at most ⇥(c T ) = c⇥o(�T 2)

for � = ⌦
�
log T
T

�
. Focusing again on an individual unit and applying Lemma 19,

the probability of the unit surviving after all arrivals from C(c, 2) part of sequence

D(2), conditioned on the unit surviving after arrivals from C(c, 1) part of D(2), is
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at most 1 � �(1 � pT
2

2 ) ! 1 � �(1 � 1/e). Thus, the probability of the unit sur-

viving after all arrivals in D(2) is at most (1 � �(1 � 1/e))2. More generally, it

follows that the probability of an individual unit surviving after arrivals from se-

quence D(t) is at most (1 � �(1 � 1/e))t. Therefore, on sequence D(T ) there is at

most a (1 � �(1 � 1/e))T�1 probability that an individual unit survives until the

first arrival from the C(c, T ) part of D(T ). Hence, the overall expected revenue on

D(T ) is, c ⇥ O
�
max

�
(1� �(1� 1/e))T�1 T T , T T�1

 �
. Therefore, the competitive

ratio � of the algorithm must satisfy, �  O
�
max

�
(1� �(1� 1/e))T�1, 1

T

 �
. This

translates to �  O( 1
T
) for � � 2 log T

T
, a contradiction. Therefore, � is no larger

than 2 log T
T

. Note that a more refined argument can be used to further tighten the

log factor.

⇤
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Appendix C

Appendix for Chapter 5

C.1 Example for Remark 3

We show an example where the constraints of the second stage problem, equipped

with a different integral objective function, do not admit integral optimal solutions;

this implies that the constraint matrix is not totally unimodular. Suppose there are

two demands, two data centers, two days, and one supplier with sufficient capacity.

Suppose the demands are compatible with both data centers and the costs have the

form
P

d,`,t
cd,`,tzd,`,t, where cd1,`2,t1 = cd1,`1,t2 = cd2,`2,t2 = 1 and other cd,`,t are large

enough so that the corresponding zd,`,t are forced to take the value 0. By constraint

(5.14),

zd1,`2,t1 + zd1,`1,t2  1.

In addition, we assume all � and ⇢ are 1. By constraint (5.17),

zd1,`2,t1 + zd2,`2,t2  1.
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If we set p1 = {`1, `2} and (p1, t2) 2 H, then

zd1,`1,t2 + cd2,`2,t2  1.

Clearly, any feasible solution z has at most one entry 1, but zd1,`2,t1 = zd1,`1,t2 =

zd2,`2,t2 = 0.5 and others zd,`,t’s being 0 is a feasible solution for the LP relaxation,

and it cannot be written as a convex combination of the feasible binary solutions.

C.2 Proof for Lemma 8

Let z, w be a feasible solution of the LP relaxation of cost c1. Consider the flow

f(e), e = (u, v), with value

•
P

d,`,t2T2 zd,`,t, where u is the sink and v is the source.

•
P

d
wd,s, where u is the source and v is supplier s.

• wd,s, where u is supplier s and v is demand d, i.

•
P

`2Ld,t2T2 zd,`,t, where u is demand d, i and v is demand d, ii.

•
P

`2p zd,`,t, where u is demand d, ii and v is throughput p, t, i.

•
P

d,`2p zd,`,t, where u is throughput p, t, i and v is throughput p, t, ii.

•
P

d,`2p0 zd,`,t, where u is throughput p, t, ii and v is throughput p0, t0, i.

•
P

d
zd,`,t, where u is throughput p, t, ii and v is data center `.

•
P

d,t2T2 zd,`,t, where u is data center ` and v is the sink.
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It can be verified from the constraints of the LP relaxation that f is a feasible flow

of cost c1 �
P

d
ud.

To show the other direction, we first show that an integral flow can be mapped

to an integral feasible solution of the LP relaxation. Indeed, an integral flow f can

be decomposed into circulations of flow 1 (in O(mn) time, see Theorem 8.8 and

Proposition 9.5 in Korte and Vygen (2018)), though such decomposition may be

nonunique. We claim that each such circulation corresponds to a valid assignment

of a demand. Note that each circulation passes through the arc from demand d, i to

demand d, ii for a unique d. For each circulation g associated with the demand dg,

we take wdg ,s
= 1 if g passes through supplier s; and we take zdg ,`,t = 1 if g passes

through data center ` and time t. We set the remaining variables to be 0.

The construction above yields a feasible integral solution of the LP relaxation of

cost c2+
P

d
ud. In general, a feasible flow of cost c2 can be written as a convex combi-

nation of integral flows. We then construct a feasible solution of the LP relaxation by

considering the convex combination of the feasible integral solutions corresponding

to the integral flows, and such feasible solution gives an objective value c2 +
P

d
ud.

C.3 Proof of Lemma 9

It suffices to show that the second stage problem subsumes the set packing problem

as a special case, then the hardness results (Cornuéjols (2001), Håstad (1999), and

Williamson and Shmoys (2011)) of the set packing problem also apply to our problem.

Consider the following construction where T = T1+1 and Ld = L (hence Property

2 is satisfied trivially). Suppose cd,t = hd,s = 0, ud = ⇢`,2 = �p,t,2 = 1, and we take

�s,2 large enough so that constraints (5.15) and (5.18) can always be satisfied for any
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given zd,`,t’s. The original second stage problem then becomes

|D|� max
zd,`,T2{0,1}

X

d2D

X

`2L

zd,`,T

s.t.
X

`2L

zd,`,T  1 8d 2 D (5.14)

1 �
X

d2D

X

`2p

zd,`,T 8(p, T ) 2 H (5.16)

1 �
X

d2D

zd,`,T 8` 2 L (5.17).

Since
P

`
zd,`,T can only be either 0 or 1, it maximizes the number of demands that

can be deployed under constraints (5.16) and (5.17). If in addition we assume that

|D| � |L|, then the problem is equivalent to the set packing problem

max
y`2{0,1}

X

`2L

y` s.t.
X

`2p

y`  1 8(p, T ) 2 H.

Indeed, for one direction, if we take a feasible solution z in the maximization, then

y` =
P

d2D zd,`,T is a feasible solution with the same objective value. On the other

hand, let y be a feasible solution of the set packing problem, since |D| � |L|, we can

find feasible z such that y` =
P

d2D zd,`,T , and such z yields the same objective value.

C.4 Proof of Lemma 10

Consider the following example. Suppose there are three demands, two data centers,

two days, and two suppliers; demand d1 is only compatible with data center `1

and supplier s1, demand d2 is only compatible with data center `1 and supplier s2,

and demand d3 is only compatible with data center `2 and supplier s2. Suppose
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in addition the costs cd1,t1 , cd2,t2 , cd3,t1 are 0 and cd1,t2 , cd2,t1 , cd3,t2 are large enough

so that zd1,`1,t2 , zd2,`1,t1 , zd3,`2,t2 are forced to take the value 0. Thus, the free stage

variables are zd1,`1,t1 , zd2,`1,t2 , zd3,`2,t1 , wd1,s1 , wd2,s2 and wd3,s2 . If the values of �, ⇢, �

are all 1, then by constraint (5.17),

zd1,`1,t1 + zd2,`1,t2  1;

by constraint (5.15) and (5.18),

zd2,`1,t2 + zd3,`2,t1 = wd2,s2 + wd3,s2  1;

if we set p1 = {`1, `2} and (p1, t1) 2 H, then by constraint (5.16),

zd1,`1,t1 + zd3,`2,t1  1.

Clearly, any binary vector z satisfying the constraints must have at most one entry

1. Consider the costs ud = 1 and hd,s = 0, the optimal value of the LP relaxation is

at most 1.5 whereas the optimal value of the original formulation is 2, this implies

the integrality gap is at least 4
3 .

C.5 Risk Measures and Subgradients

A key ingredient in our numerical approach is the subgradient of a convex function f .

In this section, we show how to evaluate the subgradient of functions f = R[Q̃(·, ⇠)]

for various risk measures R, when the distribution is the empirical distribution based

on a sample of scenarios (⇠1, . . . , ⇠N) of size N . We first show how to evaluate the

subgradient of Q(·, ⇠i) for each individual scenario ⇠i.
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Subgradient for each scenario. We denote fi(x) = Q̃(x, ⇠i) for each i = 1, . . . , N .

Since each fi(x) corresponds to a linear program with x in the right hand side of

the constraints, its dual formulation will contain x only in the objective function. In

particular, its dual has the form fi(x) = maxy2Yi
b0
x
y. A subgradient @fi(x) is given

by an optimal solution y⇤ of the dual problem.

We next present several monotone and convex risk measures R we employed

in the numerical experiments. In general, since Q̃(·, ⇠) is convex, the composition

R[Q̃(·, ⇠)] is also convex, hence a subgradient exists (the interested readers could find

references regarding risk measures in Artzner et al. (1999) and Shapiro et al. (2014)).

Expectation. For the expectation E[Q̃(x, ⇠)] = N�1
P

N

i=1 fi(x), a subgradient can

be directly derived as N�1
P

N

i=1 @fi(x).

Conditional Value-at-Risk (CVaR). As explained in Section 5.5.2, for a threshold

↵ 2 (0, 1), the Conditional Value-at-Risk is defined as

R↵(Z) = ↵�1

Z 1

1�↵

V aR1�t(Z) dt,

where

V aR↵(Z) = inf{t : Pr(Z  t) � 1� ↵}

is the Value-at-Risk. Then, for the composition ⇢↵(x) = R↵[Q̃(x, ⇠)] we have:

⇢↵(x) = R↵[Q̃(x, ⇠)] =
1

↵N

b↵NcX

i=1

f(i)(x) +

✓
1� b↵Nc

↵N

◆
f(b↵Nc+1)(x),

where (i) is an ordering of 1, . . . , N (depending on x) such that f(i1)(x) � f(i2)(x)
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whenever i1 < i2. A subgradient of ⇢↵ at x is given by

@⇢↵(x) =
1

↵N

b↵NcX

i=1

@f(i)(x) +

✓
1� b↵Nc

↵N

◆
@f(b↵Nc+1)(x).

Mean-deviation risk measure of order 1 (MeanDev). For a threshold c 2

[0, 1/2], consider

Rc(Z) = E[Z] + cE[|Z � E[Z]|].

The composition ⇢c(x) = Rc[Q̃(x, ⇠)] is then

⇢c(x) = N�1
NX

i=1

fi(x) + cN�1
NX

i=1

�����fi(x)�N�1
NX

i=1

fi(x)

�����

= N�1
NX

i=1

fi(x) + cN�1
NX

i=1

max

 
fi(x)�N�1

NX

i=1

fi(x), N
�1

NX

i=1

fi(x)� fi(x)

!

= max
b2{±1}N

N�1
NX

i=1

 
fi(x) + cbi

 
fi(x)�N�1

NX

i=1

fi(x)

!!

=: max
b2{±1}N

gb(x).

It can be verified that each gb is a convex combination of f 0
i
s, so gb is also convex. A

subgradient of ⇢c at x is given by a subgradient of gb which attains the maximum.
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C.6 Benders Decomposition

For completeness, we present a brief summary of the Benders decomposition Benders

(1962). Consider the mixed integer convex program

min
x2Zn1⇥Rn2

c0x+ f(x) (C.1)

s.t Ax  b, (C.2)

where f is a convex function. Note that due to the convex approximation obtained

in the previous section, our two-stage stochastic mixed integer program (5.2) - (5.12)

can be written in this form with f = R[Q̃(·, ⇠)] for a convex and monotone (e.g.

coherent) risk measure R. The Benders decomposition proceeds by gradually refining

a lower convex approximation of f and eventually finding a (near) optimal solution

when the approximation is good enough. The procedure generates a sequence of

trial points x0, x1, . . ., and the lower convex approximation engaged is the convex

piecewise linear function maxi f(xi)+ s0
i
(x�xi), where si is a subgradient of f at xi.

Initialization. We start with an intial trial point x0, e.g., it could be the optimal

solution of the subproblem

min
x2Zn1⇥Rn2

c0x (C.3)

s.t Ax  b. (C.4)

We generate a subgradient s0 = @f(x0) of f at x0 and add the constraint ✓ �
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f(x0) + s00(x� x0) to the subproblem, which becomes

min
x2Zn1⇥Rn2 ,✓

c0x+ ✓ (C.5)

s.t Ax  b (C.6)

✓ � f(x0) + s00(x� x0). (C.7)

Iteration k. At iteration k, we generate an optimal solution xk of the subproblem

min
x2Zn1⇥Rn2 ,✓

c0x+ ✓ (C.8)

s.t Ax  b (C.9)

✓ � f(xi) + s0
i
(x� xi), 8i < k. (C.10)

A subgradient sk of f is evaluated at xk, and the constraint ✓ � f(xk) + s0
k
(x� xk)

is added to the subproblem. Note that the subproblem is equivalent to

min
x2Zn1⇥Rn2 ,✓

c0x+max
i<k

{f(xi) + s0
i
(x� xi)} (C.11)

s.t Ax  b. (C.12)

Since the lower approximation maxi f(xi) + s0
i
(x� xi) is tight at the trial points

x0, x1, . . ., it can be shown that the Benders decomposition never visits a suboptimal

solution twice. Note that the first stage decision variables in our problem are bounded

and integral, hence the procedure finds an optimal solution in a finite number of

iterations.
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C.6.1 General Row Building Lead Times

For simplicity of exposition, in the main sections of the chapter we focused on the

basic optimization model where the duration L for building a new row is the same

as the duration of the first stage T1 for which the demands are purely deterministic.

We now remove this assumption and generalize this model to allow arbitrary row

building times, as well as to account for rows whose building is in progress at the

start of the horizon.

Building in progress at the start of the horizon. In Section 5.3, we assume

that the cloud provider may have already built some rows in the data centers before

the horizon starts; these are denoted by ⇢`,1 for each data center ` and are available

to use at the start of the horizon. In practice, however, since row building requires

weeks to complete, rows may be at various stages of building, and hence they will

become available at different times over the course of the horizon.

To capture this temporal aspect, let ⇢`,t,1 denote the number of existing rows in

data center ` that will be ready before or at time t (this is the number of rows that

will be available for the demands at time t assuming none were used before that

time). We similarly extend the state variables ⇢`,t,2 to express the aggregate number

of rows that are available at time t for the second stage demands.

Non-uniform row building durations. Instead of assuming a uniform row build-

ing time equal to the duration of the first stage T1, let ⌧` denote the time required to

build a new row in data center `. Depending on the value of ⌧`, in this setting new

rows may become available during either stage.

Updated formulation. Following these changes, the row availability constraints

(5.7) - (5.9) in the first stage problem are now introduced for each time step t, and

190



they are updated as follows:

⇢`,t,1 �
X

d2D1:`2L(d)

X

t02T1:t0t

zd,`,t0 8` 2 L, t 2 T1 : t < ⌧` (C.13)

⇢`,t,1 + x` �
X

d2D1:`2L(d)

X

t02T1:t0t

zd,`,t0 8` 2 L, t 2 T1 : t � ⌧` (C.14)

⇢`,t,2 = ⇢`,t,1 �
X

d2D1:`2L(d)

X

t02T :t0t

zd,`,t0 8` 2 L, t 2 T2 : t < ⌧` (C.15)

⇢`,t,2 = ⇢`,t,1 + x` �
X

d2D1:`2L(d)

X

t02T :t0t

zd,`,t0 8` 2 L, t 2 T2 : t � ⌧` (C.16)

⇣` � ⇢`,T,1 + x` 8` 2 L (C.17)

⇢`,t,2 � 0 8` 2 L, t 2 T (C.18)

Constraints (C.13) and (C.14) ensure that demands that dock during T1 can only

use rows that are available at that time; note that we now allow using new rows during

T1 as long as their building is complete (C.14). Constraints (C.15) and (C.16) enforce

similar limitations during T2 and make any unused rows available for the stochastic

demands. Constraints (C.17) capture the data center capacity limits, assuming ⇢`,T,1

is the total number of existing rows whose building was already planned. The second

stage problem constraints (5.17) are updated similarly to account for rows becoming

available over the course of T2:

⇢`,t,2 �
X

d2D1

X

t02T2:t0t

zd,`,t0 8` 2 L, t 2 T2 (C.19)

Note that if for some times t0, . . . , t0+ i the number of available rows ⇢`,t,2 remains

the same, we only need to introduce constraint (C.19) for the last step t0 + i of this

range. Similarly, we can skip some time steps in constraints (C.13)-(C.16) (and the
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corresponding variables) if the number of existing rows will remain the same in the

next time step and no new rows may become available at that time. In the above

formulation, we introduced these constraints for each time step in order to maintain

a cleaner description. It is straightforward to extend the network construction and

the results from Section 5.5 for this more general formulation. In particular, the data

center nodes in the network now need to be time-dependent, so we introduce a node

for each (`, t)-pair and update the edges accordingly.
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