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~ Motor Control and Learning by the State Space Model
by | | |
Marc H. Raibert
Submitted to the Department of Psycholégy -

on September 8, 1977 in partial fulfillment of the requirements
for the Degree of Dactor of Philosophy.

Abstract

A madel is presented that deals with problems of motor control, motor
learning, and sensorimotor integration. The equations of motion for a limb are
parameterized and used in conjunction with a qUantized, multi-dimensional memory
organized by state variables. Descriptions of desired trajectories are translated
inte motor commands which will replicate the specified motions. The initial
specification of a movement is free of information regarding the mechanics of the
effectof system. Learning occurs without the use of error correction when
practice data are collected and analyzed. |

The model was implemented using a small com‘putéf and tha MIT-Scheinman |
manipulator. Experiments were conducted which demonstrate thg controller’s
~ ability to learn new Amovements, adapt to mechenical changes caused by inertial and
elastic loading, generalize its behavior among similar movements, .and use a variety

~ of coordinate systems for learning. A second generation model, based on
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improvements suggested by these experiments, is discussed.
The following are features of the implemented State Space Model:

1) Complexity: The computations performed by the model are quite
simple, and especially suited to a parallel processing device.

2) Mechanical Interactions: Systematic compensation is provided for
interactions between joints.

3) Constraints: Only weak constraints need be placed on the geometry
- of the limb under control, its actuators, and its sensors. :

4) Remapping: The sensory information used by the model may be
related to the joints of the limb, to visual space, or to any of a
large class of coordinate systems.

5) Learning: The system demonstrates gradual improvement in
performance as it gains experience from self-produced practice
~_movements. The performance of selected movements can be more

rapidly improved through intensive practice. :

6) Generalization: Practice of one movement can improve perfdrmance
of other similar movements, thereby showing a kind of transfer of
training.

7) Adaptation: Adaptations to mechanical and certain sensory changes
take place without an explicit error correction procedure.

Thesis Supervisors:

Berthold K.P. Horn,
Associate Professor of Electrical Engineering and Computer Science

Whitman A. Richards
Professor of Psychology
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1 Introduction

~ The human hotor system is characlerized by properties which are not

exhibited by traditional mah—ma&q machines. Most basic of these properties }i.s the
ability to learn. Initially the human infant exhibits discoordinated movements which
have no apparent purpdse and are skillessly executed (T,wi}tchell, 1965; 1970).
But aé the child develops, his movements take on a different character. Théy
become directed aﬁd effective, smooth and gvv'acefuly. The improved dexterity is
attributable ih part fd the experience the developing organism receives from his
own attempts to move (Bilodeau, 1966; Conolly, 1970; Whits, 1970;

Held & Baver, 1974). The adult, moreo;réf: is able to select bafii'cdlé'r" rnovements
and center his attention ubon them through practice until a high Ievél of
‘pe‘rformance has Been reached. fhe human is not limited to making only those
moverﬁents which have been the ,subjeét of previous practice -- it i.s often the |
case tha:t a movément which has never before been attempted can be executed

with a fair degree of precision (Mednick, 1964; Welford, 1968).

| Not only' are we able to gain motor control .of‘our bodies through ontogeny
but we are able to maintain this control. Under normal circumstances we make the
adjustments needed to control 6Qr limbs even though the masses‘vand size# of 'tl"le
various parts of the body undergo large changes throughout on(ogény. In the

laboratory we are‘ able to compensate for experimentally induced distortions made
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to our sensory inputs or the environment (Hein & Held, 1962; Held, 1961; Young,
1969; Kornheiser, 1978). | |

Finally, our limbs are useful tools only if they will do our bidding, but our
wishes are phrased in a language which motoheurons and muscle do ‘ndt
understand If we start with the simple, ;;erhaps schematic inétmction, "Close your
eyes and move your hand o that the tip of your finger travels a path which is a
straight line. * we are able to comply. We are able to comply even though this
specification of the movement of the finger gives nb explicit ihformation about the
reqﬁisite joint movements or muscle forces. This means that our motor system is
éble to convert a description of a movement given in one coordinate frame into a
set of commands which are suited to act in an entirely different frame -- that of

bone, joint, énd muscle (Marr, 1969; Gelfand et al,, 1971; Arbib, 1972).

1.1 Gosls

The y:iurpoae of this thesis Is o attack two related questiohs: First, how ivs
ihe human nervous system able to achieve such agquislte motor control? Second,
how can we rﬁake machines that perform with similar elegance? More specifically,
by presenting a mdel and working implementation that exhibit properties
remeniscient of human performance, | will examine a number of issues of
fuﬁdamental importance to metor control and motor learning. | teke the point of
view that there ié only one contro! problem which governs man-made mechanical

arms and biological limbs (which are also largely mechanical in nature). We know
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- that solutions to the limb control problem are possible because the human provides
a superb existence proof. Demonstrating that the same solutions apply to both
domains is made difficult at 'times. however, because no proofs of uniqueness are

available and, indeed, may not in principle be possible.

»‘ 1.2 QOrganization of Thesis
| In the next section of this chapter, (Section 1.3), | highlight the important
features of this work by presenting the problem, the State Space Model and some
of the experimental flndlngs, all in a nutshell. By showing the reletlonshlp between
the proposed model and other methods ef arm cbntrol, Section 1.4 helps the
reader to view this research in the proper perspective.

The details of the work are presented in the remaining chapters Chapter 2
focusses on the problem of controlling a multi-linked arm as it moves through
3-dimensional space. Chapter 3 presents details of the State Space Model, and a
description of its properties. In Chapter 4] discuss the practical problems
associated with developlng an implementation of the model that is used to control

- a physlcal arm. Experlmental data that |Ilucvdate the model’s behavior are
presented and discussed in Chapter 5. Chapter 6 concludes this report by

proposing lines eleng which the research can continue.
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1.3 A Model for‘Mbtor Learning and Sensorimotor Integjatioh; An Overview

Abstract: A model ‘for motor learning, generalization, and adaptatio}n is presented.
It is shown that the equations of motion of a limb can be expresséd in a parametric
torm that facilitates transformation of desired trajectories into motor plans. These
parametric equations ‘are used in conjunction with a quantized multi-dirhensional
memory organized by state variables. The rhemory is supplied with data derived
from the analysié of practice movements. A small computer and mechanical arm are
used to implement the model and study its propertiss. Resuts verify the ability to
acquire new movements, adapt to mechanical loads, and generaiize between sirhilar

movemants. (Note: References for this section are at end of the section.)

1.3.1 Introduction

After two decades of intensive study, control theorists, in%erested in
controlling more complicated non-linear devices (Bryson & Ho, 1969), and
physiologists, guided by experimental findings (Hammond, 1956; |
Melvill Jones & Watt, 19714), have begun to look beyonrd the ser?o con{rol
feedback mechanism in order to examine the merits of pre-planning and the central
program (Evarts et al, 1970; Melvill Jones & Watt, 19715). For a limb comprised
of interacting degrees of freedom, the transformation from a desired trajectory |
into such a motor plan, a set of actuator control signals, is a computationally

expenslve operation. Yet the nerveus system's ability to use motor plans
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interchangebly with a number of effector systams argues that the problem has
“been efficiently sclved (Raibert, 1976). Moreover, the biologi'calf solution allows
the organism to learn through practice, to generalize traini'ng be.tWeen similar
movements, and to‘adapt to mechanical and sensory changes (Held & Hein, 1963;
White, 1970; Miles & Fuller, 1974; Gonshor & Melvill Jones, 1976).

| Experirﬁents.by Held (1961) and Hein and Held (1963), and a model
proposed by Marr (1969) have combined to motivate a new model for motdr ‘
.control, motor learning, and sensorimotor integration. The idea that an internal
signal, Helmholtz’s efference copy (1867), distinguishes an organism’s
self-produced mdvements from externally induced movements lead to Held and
}Hein’s now classical experiments. Their reSuits, showing that active movement is
essential to motor learning and sensorimotor adaptation, suggest the nervous
system assesses the response characteristics of the limbs using an inpthoutput
analysis. The problem remains to formulate the extremely complicated equations
of motion characterizing a limb’s mechanical behavior in a way which permits such
an input-output analysis. Marr supplies the clue in his cerebellar model by stating
that the context in which an elemental movement is made influences the
movement’s execution. Extensions of this idea show that using state variables as
parameters produces dramatic s‘implifications in the equations of motion, a result
which lays the groundwork for the present model (Raibert, 1977b)‘.‘

Two interacting processes plus auxiliary memory functions explain learning of
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new mo\)emedts, transfer of training between similar movements, and adaptaiion to

~ mechanical and sensory changes. Parameterization, the processvof restating an

equation with a subset of the independent variables held constant, recasts the
equations of motion into a very simple form that allows learning vbased oh practice.
The parameterized equations, however, must be used in conjunction with a
rhulti-difnensional memory in which constants of mechanical descriptiah, also
pafameterized by state variables, are stored. I;e_ggi_ng, the proéess which supplies
data to this tabular memory, takes place when torque vectors applied to the limb,
| Tene aré ‘i:orrelated with resulting accelerations véctors, §. Pr_o’pe}rties' »of the
memory, its tirﬁe-constant and accessing function, contribute to adaptatidn and
generalization. | |

The power and simplicity' of the model derive from the combined usé of
parameteri;ation and l.earning. Without learning, the constants that make the
parameterized equations usable can only be found by evaluating extremely
complicated equations. Learning without parameterization, on the other hand,
reqﬁires inversion of non-linear trigonometric differential equationé- compriséd of
thousands of terms. Psrameterization makes |earning possible, and learning makes

parameterization usable.
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1.3.2 Model Describtion
When each of the terms contributing to the torque acting on the joints of a
limb are included, Newton’s equation for rotary motion may be exﬁressed
schematically as: | |
Tpn - G(8) - B() - C(0.,4) = J(O)§ (eq. 1.1)

Where: :
Ty is the actuator torque vector

G is a vector-function for gravitational torque
B is a vector-function for frictional torque
- Cis a vector-function for Coriolis torque
J is a matrix-function for moment of inertia ,
8,6, and § are the position, velocity, and acceleration vectors.

The full set of time-varying, non-linear equations with explicit expression of
8- and 6 -dependencies has been worked out by Kahn‘(l 969). His equations

involve about 1600 te_rms and 13,000 multiplications for a general 3 degree of

freedom limb. B

The Translation Equations
By treating the state variables # and § as parameters, (ie. letting them
assume a number of fixed values), a simplified parametric form of Kahn’s equations
can be found:
Tm = Glig=a) = Blig=p) - Clo=ad=p) = Jlip=a)¥ (e 1.20)
where: |

a parametric position vector
B parametric velocity vector
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Or, more compaétly:

Tm =G, - Bg - Cag = Job (eq. 1.2b)
Here, each of the vector-function relationships G(#), B(é ) C(0,0), and J(@) has
become a parameterlzed set of constants. By grouping terms and making the
equatlon explicit in muscle torque one further simplification can be made:

T =dgb + Kaﬂ . | , (eq. 1.3)

where:
Kaﬂ = Ga + Bﬂ + Caﬁ

Eq. 1.3 is the transiation equation. 1t is linear in § and without hidden
dependencieé on 0 or .

We now definé a state space having 2N dimensions, and associate one state
variable, {0 8 5. . .8, 0 1.0 2. . .8} with each dimension. For any point in this
spacé, («,8), there exists a set of values for Ja and Kaﬂ' such that E@ 1.3
describes behavior of a limb when its state passes through that point.
Furthermore, sinée fhe values of the components of J and K vary smoothly

throughout the spacé, ie:>

v j;,-,a < (i=1,2 . N; j=1,2 . .N)
v k..’aﬂ <o (i=1,2.. N)
where:

V is the gradient operator . o | -
the space can be divided into a large number of hyper-regions throughout each of
whlch the behavnor of the limb, and the correspondlng values of J and K, are

reasonably uniform. This approach becomes useful when values of J and K
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corresponding to particular (8, §) are available from a well: 'organized tabular
memory: Desired’ trajectories, §(t), are processed by Eq. 1.3 after division into
int‘ervals of duration At, where different values for J and K fof each interval are
obtained from the stale space memory. |

Since data will not always be available for every hyper-region, (assuming the
system begins tabula rasa), performance will be more robust if a memdry accessing
function is used that takes into account :thé gradual variations of mechanical
- behavior thrpugh state space -- 4if_d}at;a from a particular hyper-reg_ionr are not
available, data from neighboring regions may be used instead. In addition to
robustness, transfer 6f training between similar practiced and ‘uvnpraActricr:ed

movements is an expected consequence of such an accessing function.

The Inversion Eqdations
Von Holst and Mittelstaedt uéed the efference copy, an internal copy of thé |

motdr c_omménd, to account for the fly’s ability to distinguish between internally

and externally produced changes in sensory stimulation (von Holst, 1954;
Mittelstaedt, 1958). Their notion was that the relationship between an exterhally
generated signal describing changes in sénsory stimulation and an internally
| generated signal describing impending changes in the position oflt\he sensory
surface would always give unambiguous information about movefnent in the

external wbrld In Held’s model, (1961; Hein & Held, 1962) the Holstian view was

augmented to allow attainment of perceptual accuracy even after changes were
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made to the meaning of the sensory signals. The afferencecobf was used to elicit
the trace of previous reafference, which in turn was compared it‘o’t‘he current
afference. In 1965 Yoqng and Stark modelied the ability of humans performing a
tracking task to change control strategies when there were changes in. the
dynamics of the contfolled element (Young & Stark, 1965). In that model thev
efference copy was used to drive an internal dynamic model of thé con'troll‘ed
élément, the output of which was compared with afference from the control task. |
In the preseht model the relationship between efference _copy, Tm and
r‘eafvference, b,is usedv to compute descriptions of the mechahical properties of the
limb, represented in Eq. 1.3 by J and K. The approach is someWhat similar to
MacKay’# idea of evaluation as opposed to elimination (MacKay, 1972).’ Here
reafference is obtéined from measurements of the acceleration vector made from
the fimb’s sensors, or other sensors which can monitor the limb’s activity.
Efference copy is a record of the actuator torque Qecior, internally available frorﬁ
the source of motor commands or pessibly from actuator sensors. The use made of
the efference copy in this model is somewhat unique in that there ié no -

comparator, no error signal is calculated, and no error correction procedure is

used. Rather, the limb’s properties are fdund by exémining the relationship
" between input and output, command and response. As a result the local minima
- problems associated with' search procedures are avoided (Tsypkin, 1971).

Since the simplified equations of motion are linear, values qf J and K can be
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found in a straightforward manner, provided that sets of measurements,

AT 18 1 (Tm'z,b'z)'. . .} are available:

J=r-§°! (eq 1.4a)
K=Tgy-[r 8114, (eq. 1.4b)
whei'e:

T =TiTol A TND - ITNegE Tt TNt ]

O=[81102. 10N - [INe1i 0N - HONS ]

T; and §; are the i’th measurements of T and §.

Xav denotes the average: (X +Xo+ . .. +Xp,1)/(N+1).

(note: all torques are motor torques -- the m subscript

‘ has been dropped.)
Eq. 1.4 is the inversion equation. These calculations can be performed if N+1
input-output pairs, (T;8;), also called measurement vectors, are available. All
measuréments contributing to such a calculation must have been made while the
limb was near a single hyper-region of interest. A temporary buffer is postulated
to store such measurements until appropriate sets are available for inversion. The
resulting values of J and K are then stored in the state space memory in
combination with previously stored data. The dynamic updating of the state space
memory, adding data as they are available and combining them with old data, allows
the system to adapt to changes in the limb’s kinematic and dynamic properties, in
addition to improving immunity to the effects of inverting noisy measurements,
‘typically a problem when inverting physical data.
The block diagram shown in Fig. 1.1 summarizes the model’s operation: High

level processes produce descriptions of desired movements, § pft), which are

presented to the translator. The desired movement is sectioned into time
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Tm= Ja’ * Kaﬂ

Desired Motor
HIGH _ Movament Command
LEVEL ———=3  TRANSLATOR -+ LIMB
6p Tm
PROCESSES
Tm [
STATE
. TEMPORARY
SPACE N
Jak BUFFER
MEMORY ‘
J=7- 871

K "Tav'[r'o-l]',av

Fig. 1.1 Major components of the model. The trenslator converts descriptions of
desired trajectories into motor commands suited to the kinematic and dynamic
properties of a particular limb. The operation employs the tabular equations of
motion in conjunction with the state space memory. Each mevement of the limb
generates date which, when processed by the inversion equations, contribute to
the state space memory, and consequently, to future translations.
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intervals, each of duration At. For each time slice Eq. 1.3, ‘the translation
equations, used in conjunction with the constants of mechanical de‘scription,»J and K
values from the state space memory, generate a motor plan that will replicate the
desired trajectory. The caleulated force commands are issued to the limb and,

- during the movement, a copy of the command, T, and a copy of the sensory
slgnals that indicate progress of the movement §, are stored in a temporary
buffer. Subsequently, the contents of the buffer and the inversion equations, Eq.
1.4, are used to calculate values of J and K, which are stored in the state space

memory in combination with data that might have been stored there previously.

1.3.3 Properties of the Model

Initial performance will be quite poor since every attempt to use infermation
about ihe mechanical character of the limb will be frustrated -- the state space
memory will be tabula rasa -- empty. As movements of the limb are made, data
describing the mechanics of its operation become available. During this period of
data acquisition the quality of translations will gradually improve. Practice will
facilitate masfery of a practiced movement, whi‘le similar, (but not identical),
movements will be improved more slowly. If the mechanical properties of the limb
or sensors should change then the model adapts, since new constants of mechanical
description are continuously being computed and stored.

The State Space Model can control limbs having a wide variety of dynamic

and kinematic properties. A single translator can learn to control almost any limb
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or body part. This is a direct result of the tebuler nature of the equations which
describe the mechanical system. Though the development given above deals with
torques applied to the joint, the actuator terms given in Eqs. 1.3 and 1.4 can be
force applied to a tendon. In fact, actuators and sensors neeq not be affiliated
with any one joint or subset of joints. Reafference can take thé form of visual
feedback just as readily as joint ariented proprioceptive feedback, ﬁrovided the
choice is made before learning commences and desired trajectories are described
in the choseﬁ coordinate system.

Iﬁ order to evaluate and verify the power of the madel, a sét of computer
programs embodying the various elements ars used to control a mechanical arm.

Tests of this implementation reveal the model’s wesknesses and illustrate its

strengths.

1.3.4 Methods

A PDP-| 1/45 computer is used to pqrform all computations, to issue.
commands to the manipulator, and to make measurements. The thrée joints of the
' ‘MlT-Vicarm rhanipulator that allow the wrist to be positioned arbitrarily within
the arm’s work space, are used, (N=3) (Horn & lnoue,‘ 1974). See Fig. 1.2. Each
joint Is powered by a DC torque motor and provided with a polqnﬁon’nebr and
laﬁhomeler. When a movement is made the computer specifies the torque
delivered by each motor and measures angular position and velocity every 10

msec. In addition, velocity samples taken every 500 psec allow the limbs
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Fig. 1.2 Layout of the first three joints of the MIT-Vicarm manipulator. The
manipulator is about the size of a human arm; base-to-shoulder = .273m,
shoulder-to-elbow = elbow-to-wrist =.203m. Each joint is provided with a DC
torque motor, a potentiometer, a tachometer, and a clutch-type brake.
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average accelerations to be estimated over 60 msec intervals using
least-mean-square error techniques, (At=60msec).
State Space Memory

‘Though only N+1 measurement vectors are theoretically required for each
inversion, (here N+1=4), improved noise immunity is obtained by using the
generalized inverse (Rust et al., 1966; Albert, 1972) to invert sets of 8 vectors.
The resulting data are stored in a hash coded disk memory in weighted
combination with data previously stored for the same hyper-region. Each new
entry receives a weight of 1./7, and previous data a weight of (7-1)/7, where T
is the memory’s time constant.

The memory is 6 dimensional, (one dimension for each state variable), and
quantized. Each dimension is partitioned into 10 ranges producing 106 possible
hyper-regions. A single hyper-region measures (15 deg)3 by (13 g:—%)a. These
regions are quite small and the mechanical properties of the arm are fairly
constant throughout. Each access of the memory yields a weighted average of
data from the desired hyper-region and all closest neighbors. Data from the
desired hyper-region are given a weight equal to the number of times data were
stored in that region. Neighbors are given a weight of 1 if any data are present,

otherwise zero.
Practice and Test

Input-output data are generated by exercising the arm under control of a

o~
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praétice program. This program generates a sequence of approximations to a

' pre-speciﬁed desired movement, called a prolo‘ypc.l Periods of .practice, analei§
of practice data (Eq. 1.4), and execution of test movements, generated by Eq. 1.3
_to test performance, are alternated during a learning session. Each tgst |
movément is evaluated by finding the root-mean-square pOsition-errof (RMS PE)
or finil-position-er'ror, (RMS FPE) for the three joints.

After a' baseline of- practice is established, adaptation is measured by a
manipulation of the mechanical state of the arm, (see Fig. 1.3), followed by
continued 'training. Gene;alization of trainiﬁg is measured by testing performance
of a set of prototypes, after practice of only one. The members of this set vary

A syst_em'atically in similarity t§ the practiced prototype. A learning index, LI,

tacilitates presentation of the generalization data:

Ll = 2(ep - &)
290

where: -

e; is the RMS FPE for the i'th test movement
e is the pre-training performance value.
Z is the sum from i=! to n-1
n is the number of test movements

Further details of the implementation are available in Raibert (1977a)

1.3.5 Results |
The left half of Fig. 1.4 is a learning curve for 3000 practice trials. As

predicted, p_erformance improves as more practice data are generated and
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ELASTIC LOAD

Fig. 1.3 Two methods of applying loads in order to disturb the manipulator’s
behavior are shown. A) A .19 kg. weight is attached to the third link of the
manipulator. B) A 1.85 kg/m spring is attached from the second link to tground’.
When movements start the spring is stretched .83m between coordinates
(.17m,.Om,.25m) and (.02m,.70m,1.20m); see Fig. 1.2
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0 . PRACTICE TRIALS 5

Fig. 1.4 Left) Acquisition of prototype PR-12 is shown as 3000 practice trials are
executed and analyzed. Arrow) One of the two loads shown in Fig. 3 are applied.
Right) The time course of adaptatipn to the two types of load is recorded. (r=10)
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analyzed. Rapid Jjumps in performance arise when new hyper-regions of the
memory are first provided with data, (asterisk in Fig. 1.4). WHen a load is applied
to the arm, (arrow in Fig. 1.4), adaptation slowly tskes place during the next 2500
practice trials under the new mechanical regime, as shown on the right side of Fig.
1.4. Modification of =, the memory’s time constant, results in improved rates of
adaptafion, though very small values of ¢ also introduce some ik‘nstbility. (See Fig.
1.5)

- Verification of the model’s ability to generalize data derived from the
practice of one movement to other similar movements is illustrated in Figs. 1.6 and
1.7. Throughout a 2400 trial learning session performance of the practiced
prototype, PR-20, improves the most (Fig. 1.6a). Each of the other prototypes
exhibit various degrees of improvement depending on their similarity to PR-20.
(See caption to Fig. 1.6) These generalization data ere summarized quantitatively
in Fig. 1.7 (diamonds), where the learning index, L1, is plotted for each prototype.
To cbntrol for the possibility of gradients due to the particular c;hoice of
prototypes, a different member of the prototype set, PR-23, was practiced. The
results, shown in Figs. 1.6b and 1.7 (triangles), reveal a similar pattema the
practice prototype shows the most improvement, with other movenﬁents improving
according to their similarity to the practice prototype.
~ Figs. 1.4 through 1.7 verify the model’s basic attributes:

1) Motor commands are generated suited to the kinematic and dynamic
properties of the effector mechanism. '
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Fig. 1.5 The memory’s time-constant is systematically varied. Smaller values of r
yield more rapid, but noisier adaptations. A) inertial load; B) spring load;
(prototype PR-11). Cloggg circles indicate} E{gfadaptation !e_'vels.
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Fig. 1.6a Five learning curves that show generalization when prototype PR-20
was practiced and prototypes PR-20, PR-21, PR-22, PR-23, and PR-24 were
tested. These prototypes share a common ending position and duration, but vary
systematicaily in starting position; ((.285m,~.145m,.12m), (.265,~.145,.1),
(.245,-.145,.3), (.245,~.165,.6), (.245,-.185,.4), respectively).
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Fig. 1.6b Learning curves generated when prototype PR-23 was:practiced and the

entire set, PR-20, PR-21, PR-22, PR-23, and PR-24 was tested.
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GENERALIZATION GRADIENTS

s
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PROTOTYPE

Fig. 1.7 Generalization curves summerizing the data of Fig. 5 are shown
Diamonds) Prototype PR-20 was precticed. Triangles) Protoiype FR-23 was
practiced.
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2) The quality of the motor commands improves with practice, though
no error correction is used.

3) Practice of one movement improves performance of others,
provided they are similar to the practice prototype.

4) Control of the arm is maintained or reattained, despite changes in
its mechanical properties.

1.3.6 D_iscusé.ion

Examination of Eq. 1.4 reveals that § D is absent from the computation of J
and K, the constants of mechanical description. Without knowledge of the desired
response an error signal cannot be éomputed. The present systém is able to learn
without error infor’mation and is, therefore, somewhat unique among models for
contt;ol. Systems that do use error correction rely on the signed magnitude and
sometimes the der;ivatives of error in selecting the next, and hopefully, better
command ‘(Fu, 1 971; Tgypkin, 1971). Unfortunately, local error data are not always
useful in findirng global maxima that correspond to best commands, and hill-climbing
probléms may result. The parametric equations are so simple, however, that a
- search pracedure is not required for solution. Application of Eq. ,1;4_ only requires
that N+1 independent measurements be available for the same hyper-region.

A mechanisms has been described that pre-computes a set 61‘ motor
commands which are executed in the absénce of feedback. Few practical
applications, (biological applications included), can tolerate the imprecision of such

open-loop operation, yet the problems of motor planning can probably be best
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developed in ‘this} type of i#olation Ultimately it will be necessary to find a
compromisg between pre-planning and servo control, énd the compromise will yield
dividends: The same data that are so useful in plahning will facilitate on-line error
correction, both processes benefitting from experience. Fof the sske of clarity of
fesults and presentation, however, consideration of the plan+servo approach has
been postponed.

| Young andetark (1965) and others have proposed the use of an internal
dynamic model to allow |earningvand adaptation. Their idea is that information
describing fhe response of thé plant to commands can be used to adjust an internal
dynamic .model that will be used in future selection of commands. Although this
idea can be made to work, another concept which represents a different point of
view is stressed here -- the internal inverse dynamic model (Paul, 1972; Waters,
1974).; The idea of the inverse is that the a motor learning system should have a
transfer function which converts responses into commands -- the inverse of the
operation performed by the mechanical device. When the inverse and the device
are operated in cascade the transfer function is the identity matrix -- the desired
result. The internal dynamic model allows simylation of the invefse function with
an approach similar to énalysis by synthesis (Eden, 1962). Because it uses sets of
extremely simple equations to describe the plant’s behavior, however, the present

model calculates the required inverse functions directly, for each region of space.
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1.4 Analytical Equations vs. Table Look-up for Manipulation: A Unifying Concept

Abstract: By considering parameterization of the equations of motion for a
manipulator, divergent procedures for control invelving analytical expressions and
table Idok-up can be examined in the same light. Each represents a diﬂerent
extreme on a continuum characterized by the indicator P, the number of parametric
variables. As P véries computational complexity is traded fér storage. Typically,
for an arm having N degrees of freedom ~(N(3‘IF\,I) operations and ~(M") storage
cells are required for evaluation of the equations of motion. A number 61
intermediate cases along the P-continuum, are discussed. They include the State
Space Model and the Configuration Space Model. (Note: ﬁefer'ences for this

section are at end of section.)

1.4.1 Introduction

Solution of the complete equations of motion for a seriél link maniphlafor is
computationally quite expensive and is ususily net possible in real-time. Even
off-line calculations frequently require simplifying approximations. Stanford’s
hand-éye project uses such simplifiéations in their approach to arm control (Paul,
1972). They begin with the complete set of dynamic equations, and ignore inertial
coupling and velocity interactions between joints. This allows them to
pre-compute torque trajectories in a reasonable amount of time.

An alternative approach is to trade large amounts of computation for large
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amounts of storage. Albus (1975) proposed a controller, CMAC, which reduces the
computational burden at the expense of a large hash-coded memory. CMAC in its
simplest and most useful form may be characterized by: 1) elimi’nation of
complicated real-time computations, 2) a very large memory containing data
descriptive of the arm's mechanical nature, and 3) a simple prnﬁure for acquiring
the memory’s dat; from préctice, without having an analytical model of the
‘manipulator. |

Though Albus’ pure table look-up and Stanford’s approximate analytical
approaches are quite different, through introduction of some ideas on the nature of
paramete_rized equations these apparently divergent approaches jto the control
problem can be bro_ught together under one conceptual roof. F'urthermore, a
number of computationally intermediate formulations that had not been identified
previously, have been isolated for study.

The main point of this paper is that the equations of motion for a manipulator
can be dramatically simplified if a subset of the independent variables are treated
as parameters. In order for the parameterized equations to be usefﬁl, however,
simplified forms must be available for a large set of parametric values. Therefore,
one complicated equation is traded for a set of simpler ones. (Of course, only one
of the simplified equations need be eValuate& for a given situation.) Thé particular
choice of variables submitted to parameterization determines the balance between

computational complexity and storage. As a corollary effect of simplification,
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parametric forms of the equations of motion can be uséd to acquire information

about the mechanics of the controlled device.

1.4.2 Parameterization
Consider the equation:
) |  (eald)
| whéfe:
X is a vector of the function’s independent variables.
(Capital letters denote vectors.)
The value of y can be found by specifying values for the independent variables of
the equatidn As the Ind}ependent variables change, the value of y will vhry as
dictated by the functibnal relationship, f.
In many cases, making one or mdre Of‘the variables in an ecjuation a

parameter, that is, holding it equal te a(known constant, Will greatly‘ simplify the

functional relationship. For examplev:

y‘ = f(xqx9) = %1 +rx2 + XyXg + xlz (eq. 1.6a)
i X1=1
then: yl(x1=l) = f(xl=”(x2) =2+ 2x9 ~ (eq. 1.6b)

Of course, the original relatienship is not exbfessed here unless the function
fxl(xz) is available for every x1 of interest. In general a function is simplified by
takihg some subset Xp, of X as parameters and recasting the functional relationship

in terms of the remaining independent variables, Xy
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= fy (X,) (eq. 1.7)
ylxp xp‘v q.

where:

X = [X Xv]

Xp are the variables held constant, the parametric variables.
- Xy are the remaining independent variables.

’ indicates transpose.

1.4.3 Parameterizing Equations of Motion

o For a mechanical arm the problem at hand is to find the functional
dependence qf motor torque on position, velocity and acceleration. Generally, if
the mechanical system has N degrees of freedom it is described by a ncn-linear
vector function, T, with independent variables 8,0, and §, each an N-vector: The
generic equations of motion for the general manipulator can be written as:

T=T10.0,§) | (eq. 1.8)

where:
T is the motor torque vector.
8,8, 8 are the position, velocity and acceleration vectors

Applying the paramcterizatlon procedures introduced above, a subset of the
independent variables are assigned values and become parameters of the
equations. When the equations are evaluated, substituting the parametric values |
for the parametric variables, simplified expressions result. For example, if 8 =K,
then 8 is a parametric variable, and the expression for torque is denoted:
Tho=x) = Tg(8.6).

Let P be an mdlcator equal to the number of variables in X By varying P,

0<P<3N, a continuum is defined along which the character of the equations of
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motion gradually changes from the combletely analytical form (P=0), to a form
where all variables are parameters and no analytical expre_ssioﬁs ekist (P=3N):

| T=T,4 ,‘b' ) = I‘xp(Xv) - I‘xp (eq 1.9)
For P=0 the equations are analytical. Only one equation need be evaluated for
every possible combination of independent variables. For P=3N a different
equaticn must be evalﬁated for each combination of independent variables. (For

P=3N the equations are all constant: Iy =K)

1.44 P = 0, N, 2N, 3N
1'(6,8,0) is simplified by defining )(p as a subset of the indepéndent |

variables, and X,, as the remaining independent variables. In principle, the
selection of the indepéndent variables for the two subsets, Xp and X,,, can be
made with complété freedom. P may assume any integer value between 0 and 3N.
While many partitiohings of the independent variables rﬁay lead to simplified
expressions, the present discussion is limited to the important class of subdivisions
that result when all components of an independent N-vectors, 8, §, or § are
assigned to one subsét or the other. For example:

if: 0; € {X5} holds for any i ' (eq 1.10)

them: g € {Xo} holds for all i, LsisN

Therefare, the points on the P-continuum of interest are P=0, N, 2N, 3N. The
functional forms of the parameterized equations of motion for these values of P

are given in columns 1 and 2 of Table 1.1.




A Unifying Concept 45 Marc Raibert

Table 1.1

P Expression No. of Eq. =u=y=M
N T=Tp4 N mN
Teri08 N MN
T=rz08 N mN
2N T=Ty,@ NN m2N
T =Ty 5 ANN MmN
T= Po "0'(0) quN meN
N TeTyyy  AWWN MM

Selection of P still does not always completely constrain the form of the
equations of motion, since the selection of variables to serve as pafaniele_rs is not
specified. The equations which represent each extreme of the P-continuum, P=0
and P=3N, are of unique form. (This would be so even if the restriction described
by Eq. 1.10 were not in force.) The intermediate cases, P=N and P}-ZN, however,
are each charactérized by three alternate forms. (See Table 1.1, columns 1
and 2)

The number of equations required to represent any one of the forms listed
in Table 1.1 can be determined by assuming that each independent variable takes
on a discrete set of values. Since representation of an equation by a finite set of
parameterized equations is only an approximation, the number of values required
for each variable must be determined in context of the application. The number of

parametric values can be chosen to produce an approximation of any desired
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accuracy. Let A be the number of values assumable by each component of 8, u by
each component of §, and v by each component of §. The number of equations
- needed to represent I‘XP(XV) Is given in Table 1.1, column 3. If all parameters .are
limited to thé same number of values, M, (A\=u=p=M), approximately mP equations
are required; Table 1.1, column ‘4. | |

While six forms of I‘XP(XV) are possible for P=N, 2N, the goal of reducing
complexity of the equations at the expense of storage, (ie. more e‘quations),‘is not
' served equally’by each possibility. In order to estimate the cost of each form, a
count is taken of thé number of adds, muitiplies, and trigonometric function
evaluations required for each form. The amount of storage required per cel_'l, and
the number of cells (assuming A=y=y=M) are also counted. Table 1.2 shoWs‘very

rough estimates for these costs. |

Table 1.2
P Fom Mits  Trgs. Cell size Cels
0 T=rT048 N o T 1
N T =,r',(o.a'> Nen3 0 (N+N2aNS) mN
T =Ty(0.4) SR R MN
TTy08) N N MM
2N =Ty N0 NeN2 m2N
T =Ty 5(0) Nend 0 NeN3 meN
Targy0 oM N m2N
3N T=Tyyy 0 0 N m3N

*Very difficult to estimate for the general manipulator.
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It is clear from Table 1.2 that § must be a parametric _variable to yield
computational efficiehcy. One can understand this result by examining the
mechanical nature of manipulators comprised of coupled, serial degre}esvof freedom
In general, elements of the moment of inertia tensor, (both off diagonal and on

‘ dlagpna_l télrms).’ gravitational terms, and Coriolis terms are sums of products of
trigonometric functions of angles between links, and sums of these angles (Kahn,

1969). Only when 8 is made a parameter do these computations become

‘unnecessary.

1.4.5 State Space Model (SSM)
‘The SSM, described more fully by Ralbert (1976; 1977), results when P=2N
and # and § are parametric varlal;les (Xp=[050]'):
T =Ty 4(@) ' (eq 1.11)
When each of the terms contributing to the torque acting on 4the joints of an arm

are included, Newton’s equation for rotary motion may be expressed schematically

T - G(8) - B(g) - C(0,§) = J(8)p (eq 1.12)

where:
T is the actuator torque vector
G is a vector-function for gravitational torque
B is a vector-function for frictional torque
C is a vector-function for Coriolis torque
J is a matrix-function for moment of inertia

| (Remember, the full set of time-varying, non-linear equations with explicit
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expression of ¢ - and § -dependencies are not shown here.) Parameterizing the
state variables, § and §:
T - Glg=a) ~Blig=p) ~ Cho-ap=p) = Np=¥ (e 1.139)
where:
a parametric position vector
g parametric velocity vector
Or, more compactly:
T-Gy-Bg-Chg= qa-y (eq. 1.13b)
Here, each of the vector-function relationships G{(#), B(é), C(a,b), and J(#) has
become a parametric set of constants. By grouping terms and making the equetion
explicit in motor torque one further simplification can be made:
T=Jd.§ +Keg | (eq. 1.14)

where:
Kaa = Ga + Ba + Caﬁ

An important property of this formulation is that values for J , and Kaﬁ' the
variables that characterize the equations, can easily be computed from

input-cutput data obtained during motions of the manipulator:

=741 (eq. 1.158)
K=T, ~[1" g-l] B gy , (eq. 1.15b)
where:

T= [T.1§T.z§.- L iTN] - [TN‘*IEIN”E: . E.T.N*'l]
=[085 .. 0Nl -[OpnsriOper - 10N ]

T; and §; are the i’th measurements of T and §.

Xy denotes the average: (X; +Xa+ . . . +Xp,p)/(Ne 1}

in general, as a corollery effect of simplification, forms of equations near the P=0
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~end of the P-continuum are easily invertable and learning is facilitated (Raibert,

1976).

1.4.6 Configuration Space’ Method (CSM) |
CSM is obtained when P=N ‘and 0 is the parametric variable (Xp=0):
T=Ty(4) - (eq. 1.16)
Since velocities are not parameterized (hey still appear as arguments in the
functiorial expreséion for motor torque. The equations of motion become:
T = Gy - BO) - C () = J_(§) (eq 117)
Neglecting friction and making the dependency on velocity explicit:
T = Gy = (001 B107Co 05 0 BT = 0@ (g 118)

where:
Ci,a is the Coriolis matrix for joint i evaluated at state a.

Note: The Coriolis force is determined by a vector of
terms each quadratic in @ (Bejczy, 1974).

Many control schemes used in practice ignore inertlal interactions between
joints and Coriolisforces, yet these terms can be important during high velocity
motions. This compromise has important implications for industrial applications
where the throughput of a manipulation process depends on the arm’s speed. The
importance of CSM is that these terms can be included at Ion computational cost
witﬁ reasonable amounts of memory. Real-time trajectory calculations may also be

Possible, especially in the context of a distributed computation emplaying multiple

microprocessors (Raibert & Horn, 1977).
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CSM is primarily of interest to those interested in robotics, though the
approach is not out of the question for explanation of nervous function. The
disadVantage for biological systems is that the inversion operations required for
learning are much more complicated than those characterizing P=2N and P=3N
systems. For robotic applications, howaver, configuration space'data can be
calculated in advance, based on an analytic model of the mechanical device. This
will bé 'a} one-time éalculation for each manipulator. Comparéd to SSM and CMAC,
(which theoretically also do not ignore inertial coupling and Cariolis forces), this
approach offers the advantage of reduced storags requirements at the expense of
increased run-time computation. While the SSM requires about ZNZ operations for
evaluation }and (MzN)(N+N2) memory locations, CSM requires about 3N2+2N3
operations for evaluation and (MN)(N+N2+N3) memory locations.

The relationships ambng the parameterized systems discussed are

summarized in Table 1.3, where computational and storage costs are ranked.

Table 1.3

Rank  Rank

Storage Comp.
P Form Cost  Cost Approach
0 T=146,0,6) 1 4 Analytic Eq. [4]
N T =Tg(6,8) 2 3 CSM [7]
2N T=Tp w(b’ ) 3 2 SSM [5,6]

T=T ,'9-(@) Not yet studied.

3N T= Togp 4 i CMAC [1]
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2 The Problem

2.1 Constraining the Issues

21.1 Many Factors at Work
An often- neglected first step in the study of the motor system is the

selection of a cléss of b.ehavior upon which attention may focus. The hum}an body
is a versatile mechanism capable of a staggering variety of movement. Its nervous
system is also extremely versatile and employs a number of contfol strategies. |
Sometimes a limb is moved with great deliberation and precision using simullaneous
aétivation of agonist and antagonist muscles. Other times more free-flowing
motions are made in which agonist muscles accelerate the masses of a limb to high
velocity, after which it coasts until slowed and stopped by the force of antagonist
muscies (Kelley, 1868). Contrast, for example, the motion of a delicate paint
stroke to that of a baseball pitch. Sometimeé interaction with the environment is
quite predictable and adjustments af'e virtually unnecessary while at other times
the movement is nothing but a set of constant adjustments to external
disturbances. When walking down a flight of stairs the position of each step and
moment of foot contact is quite predictable. Conversely, standing still in a‘moving
trolley car requires major adjustments at each lurch on the track. The aim of a
movemeht may be to achieve a certaln position, to move at a ceftain velocity, or

to contact an object with a certain force. When one presses a button the position
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of the finger is important, while the velocity at which the violinist draws his bow
influences the sounds which result. Imagine the effects of a masseur who cannot
regulate the force of his ministrations.

For each of these types of movement the problems of control are different
and one reasonably homogeneous solution would not be expe;led to apply to
every case. In ordef to develop a model that can Help us to better understand
movement we begin by acknowledging this diversity, and restrict study to a class
of movement which is produced by one, unified control scheme or st_rategy. Of |
course, our readiness to make this choice indicates our belief in a certain

discreteness of contro! function. |

2.1.2 Emphasis on Pre-planning

After two decades of near fﬁnatical interest in and devotedness to servo
control and feedBack mechanisms, physiologists and control theorists, motivated
both by experimehtalvfindings (Evarts et al, 1970) and a desire to deal with
non-linear, time varying devices (Schultz & Melsa, 1967; Bryson & Ho, 1969) have
begun to look at the merits of pre-planning.

Servo theorists correctly state that no controller can predii:t the
disturbances a mechanical device is likely to encounter in the real world. Even the
parameters of the mechanical device cannot be known exactly. Therefore one
must, if one wants accurate control, use feedback to sssess and correct errors

produced during operation. Unfortunately, servo advocates often stop there.
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However, there are a number of basic problems with servo-mechanisms for
controlling arms. Briefly:

1} Simple servos are not designed to work with non-linear mechanical
devices. They can be made to work, but the degree of success
usually depends on the degree to which the system can be
modelled as linear (Townsend, 1970).

2) When multiple degrees of freedom are involved, the simple servo
usually cannot guarantee that all joints will pass through particular
points at the same time. The usual methods of avoiding this
problem result in jerky movements or relaxation of the accuracy
with which the trajectory can be followed.

3) When errors are expressed in a coordinate system other than joint
coordinates corrections cannot be generated without a '
transformation. For example a 1mm error in any one direction
requires correction at a number joints, but the degree of
involvement at each joint is not constant. For this reason, a servo
controller without the ability to transform coordinates cannot
correct for visually ascertained errors. (This objection may be
somewhat unfair, since pre-planning does nothing to correct the
problem.)

4) Servo controllers often require errors for the continued production
of control signals.

Feedback is very important, but unable by itself to achieve the kind of
flexible, accurste trajectory control we are after. More recent work has stressed
the use of feedback with an open-loop plan. - The approach is to pre-compute a
set of commands which will drive the non-linear plant along the desired path in the
absence of disturbances. Since this computation is done off-line there is time to
use complicated analytiéal medels of the plant, usually in the form of equatiens of

motion. Furthermore, it only has to be done once for each trajectory since the
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planned commands are stored. During execution the commands are strobed from
the memory and issued to the plant. A simple servo controller may be used in
uddltion, to correct for residual errors (Bryson & Ho, 1969). The advantage of this
scheme is that the servo is only responsible for producing control signals which
will compensate for small deviations from the desired trajectory -- deviations for
whlch behavior of the system is usually nearly linear.

Physiologists are also thinking along these lines. Now that thé notion ovf the
simple follow-up length servo for muscle control, (Merton, 1972; Marsden et él..
1972; 1976), has been substantially discredited (Severin et al.,} 1967; Murphy,
1975), ideas about pre-planned movement are gaining ground. (Ideas about
preplanning Ha\?e been around for ‘quite a while (Léshley, 1851), bu( the servo
story has obscured their impact.) Especially important are papers by Hammond
(1956) and Melvil! Jones & Watt (1971). They show that substantial corrective
responses to mechanical disturbances are produced with a latency of about 120
msec. This does not imply that feedback is not used, but substantial computation
~Is possible betweqn the time such a disturbance is sensed, and the»corrective
action is taken.

One idea is that a new plan, one suited to the dlsturbance and designed to
return the arm to the desired trajectory is formulated between disturbance and
response. Rather than using a pre-plan or error correcting servo, this scheme

advocates repirogramming. A variation of the open-loop movement is used that is
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composed of a number of short, open-loop segments executed in sequence. The
sensory information produced during one segment only influences production of
subsequent ségments. This variation, dealt with in passing in this thesis, is
mentioned in order to suggest the ultimate usefulness of solutions to the
open-loop control and learning problems.

" This thesis is aimed at the problems of producing a usable, pre-co:hputed |
plan. Though plan-plus-servo is probably the only practical approach to these
control problems (practical for biclogical as well as man-made systems), for the
sake of clarity of results and crispness of presentation the work done here
excluded the use of servas and feedback. Once a movement is initiated no
sensory information is used to alter that movement during its execution. Such
movements are open-loop, but it should be realized that, ultimately, the loop is
closed -- though the sensory infofmation obtained during a movement is not used
to alter the progress of that mavement, it may be used to alter the motor sy#tém

in such a way that subsequent movements sre affected.

2.1.3 High- and Low-Level Specialization

The model under consideration here was not designed to account for all
motor function. in addition to restricting the class of movements under study, we
have limited the type of processing to be described. This means that other motor
processors work along with the sub-system described here and'the learning or

execution of even a single movement probably relies on a number of processing
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elements. Figure 2.1 is an example of a familiar demonstration. Each of the
orthogréphic strings shown in this figure are very similar, but the mechanical
systems used to ﬁroduce'then; and therefore the motor comrﬁénds, were quite
different. Unless the subject learned to produce each form of output separately.
(this was not the case in the example shown) we lmay draw two conclusions:
1) Motor plans}exisl in the nervous system which are expressed in a
language which is independent of muscular and kinematic
considerations. One such plan can be used to produce movements
in any of a number of limbs or body parts.
2 ‘Mechanliéms exist in the nérvous system which can tr;anSIAte general
motor programs (as described in 1) into explicit instructions suitable
for the muscles, mechanics, and sensors of a particular limb.

This ty'pel of architectural arrangement and the translation‘process have been
discussed in the literature (Marr, 1969; Gelfand et al, 1971; Arbib, 1972; Woaters,
1974). The power of such an arrangement is quite attractive. High level
processors may formulate new movements or modify and combine old ones without
having to take the mechanical properties of the effectors into consideration. It is
supposed that these processors may berform symbolic operations through which
planhing and strategy decisions may also be made. They specify to the translator _
what the output of the limb should be.

The translating mechanism, on the other hand, is not organized around motor
programs, but around the muscular, mechanical, and sensory systems with which it

communicates. It is free from the responsibilities of strategy and planning, and

need not be capable of performinﬁ éymbolic operations. Its 6nly duty is to accept
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Fig. 2.1 Each of these orthographic strings are quite similar though different
muscle and skeletal systems were used to produce each. The pen was moved by
A) right hand, B) right arm, C) left hand, D) mouth (gripped in teeth), and E)
right foot (taped to foot). The subjact had essentially no previous experience
writing with any body part other then A. A division of functich intu high- and jow -
level processes is suggested.
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detailed descriptions of movements and translate them into abpropriate rrtuscular
commands. But to perform this function information about the kinemétic, dynamic,
sensory, and muscﬁlar properties of the limb must be availabIeA'in a usable form.
This information may not be present in the infant, and certainly must change as the
organism grows. Effective translation therefore requires malntenance of an
up-to-date source of hmb-specmc mechanical information.

The translating mechanism which converts descriptions of desired output into
motor commands plus the support mechanism which acquires mechanical information
and stores it in a usable form are the topics of interest in this paper and will be
referred to collectively as the transiator. The terms controller and translator are

- used interchangeably throughout this paper.

2.2 Mechanical Problems

What mechanical problems must the low level system face? The human
motor system deals with the mechanical nature of the skeletal and muscular
systems, and the laws of physics which they must obey (Meriam, 1966). The
forces and torques creafed by a muscle often influence a number of joints, even
' wﬁen the muscle is of the simple, single joint Varlety. Each joint is influenced by a
number of muscles, not only because there are many muscles across the joint, but
because reaction torques are produced when muscles accelerate other joints of
the body. The degree and pattern of interaction is not consta_rwt, but depends on

the limb’s positibn. Yet our nervous control system effectively compensates for
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these mechanical interactions when precise movements are called for. Here we
examine the nature of each of these factors in a somewhat conceptual way by

developing a general form of the equations of motion.

2.2.1 Equations of Motion for a Limb

Let us begin by laying out the computations required by the translation
process. Descriptions of moverﬁents must be converted inte motor commands. The
acceleration of an object, taken with its initial conditions, gives a complete
descripﬁion of its movement and fhe force on an object is that which commands its
every motion. For this simple, unconstrained system we can specify the desired
acceleration and use Newton’s equation, F = Ma, as a translator to fibd the
necessary force. Of course, this also applies to rotary motion, T = J-§, where T is
the torque, J is the moment of inertia, and § is the angular acceleration. lf, only a
limb wefe as simple as that. |

What is the acceleration of a limb? 1If we take the simple case where the
coordinate system of interest is that of the limb’s joints we can describe the
acéele;ration by an N-vector, §, N being the number of joints or degrees of
freedom. Newton’s equation still applies, but the torque is now an N-vector and
the moment of inertia must be expressed as a square matrix of rank N. This
matrix, J, specifies the relationship between the torques and the resulting
accelerations at each joint in the limb; Jik = (torque applied to joint k) /

(acceleration at joint i). Unfortunately, the elements of J, though dependent on the



The Problem 61 ‘ Marc Raibert

masses vof the links, are not constant. They vary during each moyement. (Note:
Here we are not talking about the gradual changes in limb mass or geometry
caused by growth.)

The off—diagonal elements of J, ik for iuk, represent inertial interactions
between jomts The amount of mteractwn between two joints also depends on
the posstlon vector, §. For some configurations of the limb lnteractlons are
pronounced, while for others they are small. Figure 2.2 illustrates this" point. In
Fig. 2.2a the geometry of the joints are arranged to allow Iarge‘reactior‘as at joint
2 for torques applied to joint 1. In Fi‘g. 2.2b the magnitude of interaction is greatly
reduced. On-diagonal elements of J; Jik for i=k, represent the moments of inertia
for each joint. They too vary with configuration. The effective moment o'f inertia
of a joint is determined, not only by the masses of the links which ére moved, (a
link is that part of a limb between two jqints) but also by the distances between
the mésses and the center of rotation. In Fig. 2.2c the moment arm, and therefore
moment of inertia, are large, while in Fig. 22d they are small.

The torque shown in Newton’s equation is only the net tbrque acting_on the
joints. In addition to the torques applied by the muscle, (or motor), we must
consider the acceleration of gravity and the damping forces due to friction. The
acceleration of gravity must be represented by an N-vector because each mass in
the Iimb will be accelerated individually. As is true of the inertial terms, the

gravity factors also depend on configuration. Since the moments through which
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Fig. 2.2 Schematic diagrams of a limb that illustrate configuration dependent
properties. Acceleration of joint 1 will cause a larger reaction torque about joint
2 in A than B due to the difference in position of joint 2. In C) the moment of
inertia of joint 1 is maximum because the center of mass of link 2 is far from the
center of rotation. D) Here the moment of inertia is almost minimized. The
gravitational torque depends on the moment arm through which gravily acls. W =
it is maximum, but no torque is produced in F.
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gravity acts varies with configuration, so do the gravitational torques. (See
Figs. 2.2e and 2.2f)
| Frictional torque, also an N-dimensional vector, is independent of 8, but

depends on velocity of the moving joint, §. The friction function can be expanded
into a number of simple terms, none of which depend on variables re‘lated tq other
joints: |

bitd) = by 82 - be,sgn(d) + by ¥'_1(9)) ~ (eq 21

where:

by is the i’th viscous friction term.

b ; is the i'th coulomb friction term.
bg ; is the i’th stiction term. (8_ is similar to a doublet.)

Uhliké the gravitational and moment of inertia terms, which may be calculated from
a blueprint of the limb, the frictional terms depend on factors which usually cannot
be predicted by analysis, but must bé measured. These ,factors are summarlzed by
a si'ngle net friction term, B(§), in iﬁe equatioﬁs below. | ”

A finél factor relevant to the equations of motion that only introduces
appreciable torques at high velocities, is the Coriolis term. This torque is
produced by simultaneous rotation of an object about two orthogonAal’ axes; }the
direction of its action is about a third axis orti\ogohal to the plane of the first two.
The magnitudes of Coriolis forces depend on the velocity and position vectors.

Standard formulﬁtions of equations of motion fer limb-like devices do not
include terms for elasticity. This is because most man-made arms have no elastic

forces acting on the joints, or because such forces can be associated with the
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actuator’s properties. Such terms are similar to gravity in that they depend only
on configuratioh. For our purposes, therefore, the gravity function is augmented to
include torques‘ due to elastic elements.
- Réwriting Newton’s equation to include each term introduce‘d above:
T -GO)-BW) -Cod) = J0  (eq 22)

where:
Try, is the actuator torque vector

G is the augmented gravitational torque vector

B is the frictional torque vector

C is the Corlolis torque vector

J is the moment of inertia matrix

8,8, and § ere the position, velocity, and acceleration vectors.

This equation may still look managesble, but there is one more fly in the
ointment that aggravates and accentuates the other problems. We have shown in
& schematic way that some of the terms in Eq. 2.2 depend on positions of joint but
have not worked out the exact relationships. While the schematic argument was
simple and easy to understand intuitively, the evaluation of these factors in
practice is extremely complicated (Peiper, 1968; Kahn, 1969; Bejczy, 1974). The
problem is especially acute for a serial-link mechanical device because each set of
interactions must take into account the geometry associated with interceding links.
The system of coordinates determined by the jeints are not orthogonal so there is
a proliferation of residual terms. Kahn (1969, see his appendix A) has worked out

the explicit dependencies using a computer progream which parforms algebraic

manipulations. His results for a general limb having three links and three joints (N
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= 3) but no friction are almost intractable, (the equations involve about 1600

terms and 13,000 multiplications) and virtually useless for a fhedry of motor

function.

2.3 One Control Problem or Two?

At this point it is necessary to take a short digression so that an important
question can be raised: “Is there one contral problem that aﬁplies to biological and
man-made hmbs, or must there be two separate problems"" Thls thesls is based
on the premlse that for an important level of understanding there is only one.

There are differences. Human arms grow and are made of flesh and bone.
Man-made arms are constructed from metals and plastics and must be bolted,
welded or glued. But beyond these obvious, superficial differences lie important
questions for which the similarities are more significant.

Are we being too simplistic when we characterize the inervation of a muscle
in terms of a commanded force or position? it is easy to speak of motor commands
when considering a manipulator. There is usuaﬂy only one current or voltage for
each actuator, and only one actuator wofking on a joint. Each muscle of a human
arm, however, is enervated by thousands of motor neurons (Hennerﬁan, 1968), and
several muscles simultanebusly move a joint. Are we treating the elegance of the
nervous system unfairly when we reduce the messages of thousands of receptors
to the bare essentials and say they are signaling a joint’s position, velocity, and

acceleratlon? Just because a typical manipulator may be equiped with a single
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position and velocity sensor for each joint are we to assume that only a single
signal can be important? Thes‘e questions cannot yet be answered. We can only
promise to proceed with caution.

Despite these important differences, | feel that there is a level of approach
to the arm control problem at which the biological and man-made arms are very
similar indeed. Both are mechanical devices. The equations of motion developed
vin the last section apply equally well to the links, jointé, and mésses of eitﬁer'type
of arm. Biological limbs are mechanical manipulators, and man-made manipulators
are limbs. Though the particular configuration of parts, and materials used are
different, to the extent we can talk about actuator commands and position, velocity
and acceleration measurements, the control problems are identical. |
| One more point. There is an interesting perallel bétween the physiologiéts
question, "What are the control variables?” and the engineer’s question "Should we
u#e. torque motoré, hydraulic positioning devices, or velocity servos?”. Both
groups, motivated by different goals are searching for answers to the same
question. The final answer to this question is not yet known by either group.
Evarts finds cells in motor cortex that seem to encode force (Evarts, 1973), and
Bizzi argues that muscies understand finél position commands (Bizzi ‘et al., 1976;
Polit & Bizzi, 1977). Meanwhilé, Victor Scheinman designs arms that use DC
torque motors and the Unimate ie driven by hydraulic actuators under control of a

velocity sérvo.
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3 The State Space Model

In this section the elements of the State Space Model are presented along

with a description of the system’s operation and expected behavior.

3.1 The Forward Computation —,-- Translation

Before we totally discard the equations developed in Section 2.21, let us
examine a special set of circumstances under which simplifications can be made.
Durihg a very short interval of time we observe that Egq 2.2 otill describes the
behavior of the limb, but each term can be simplified. During a short interval, call
it a time slice, or just a slice, we see that the position and velocity for each joint
only change by small amounts. We may neglect these small changes or reduce the
duration of the slice to the point where they may be neglected. Onﬁe this is done
each element of a vector or matrix in Eq. 2.2 which had been depéndent on the
state of the syatém becomes a constant. (The state of the limb is uniquely

determined by the positions and velocities of all the joints.) The simplified

equations of motion can be represented as:

Tm = Clig=a) ~ Blig=g) - Cp=ag=p) = Jig=e¥ (eq 3.10)

~where: .
a is the position vector during the slice
B is the velocity vector during the slice

Or, more compactly:

Tm = Gy - By - caﬂ =J ¥ (eq. 3.1b)
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By grouping terms and making the equation explicit in torque exerted by the
muscle one further simplification cen be made:
Tm = Ja'b' + Kaﬂ (eq. 3.2)

where:
Kﬂﬂ = Gﬂ + Ba + Cﬂﬂ

This is the transiation equation. It must be remembefed that this equation 6nly
applies to the motion of the limb during one time slice. Nothing prevents
application of Eq 3.2 to other time slices provided new values of J and K can be
found (or are avallable) for the state of the system prevailing duflng those slices.
Eq. 3.2 may be described as the piece-wise constant version of Eq. 2.2; the state
- for whiéh the constants are chosen is the operating point. Although't‘hé
dgvélopment so far indicates that this equation calculates the torque needed at
each joint of the limb, the value calculated can be the net force exerted by a
muscle on the tendon, or a special version of the command to the muscle. (See
Section 323)

Subposing the required conslants are available, one can take the description
of an entire movement, slice it up into enough time intervals so that the change irl
position and velocity for each joint is negligible, and determine the muscular torque
needed to produce the desired acceleration for e_ach interval. If the appropriate
inltial conditiéns are satisfied and each torque is applied for the duration of the
interval for which it is computed, the resulting movement wili ciosely resemble the

originally specified movement. The error can be made arbilfarily small by reducing
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the duration‘ of the time slices, provided the constants needed are available for
each of these new, shorter slices.

This scheme will only work if the accelerations present in the description of
the desired movement are limited in magnltude to those produceable by the limb’s
actuators. Vlolation of this restnction will result in specmcatlon of a torque vector
which is not achievable and the resulting motion, assuming that some attainable
torque is used instead, will not conform to the desired response. It should be

realized that this problem must be faced by any solution to the translating probiem

and is not unlque to the solution given here.

3.2 The Inverse Computation -- Learning

The solution given so far is only a partial description of the computations
performed by the translator since we have not yet indicated how the constants
that describe the mechanical nature of the system are found, nor how they are

affected by motor experience and changes in the mechanical system.

3.2.1 Historical Perspective

von Holst and Mittelstaed (von Holst, 1953; Mittelstaedt, 1958) developed a
model designed to account for the fly’s ability to descriminate between the |
sensory consequences of the fly’s own self-produced movements, and externally
produced movements. Their model used the relationship between an externally

generated signal describing changes in sensory stimulation, raéfference, and an
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internally generated signal describing impending changes in the position of the
sensory surface, Helmholtz’s efference copy (Helmholz, 1867), to provide
unambiguous information about movement in the external world.

" Held (1961), and Held & Hein (1962) extended the Holstian view to allow
attainment of perceptusl accuracy even after changes were made to the
relationship between éctlvity in the external world, and the sensory stimulation
produced by that activity. In this model the efference copy was used to "elicit the
trace of previous reafference”, which in turn was compared to the cﬁrrent
afference. |

Young and Stark {1965) proposed an elaborate medel in ordef to account for
human performance in a tracking task. They were not directly interested in how
we control our limbs, but in how we use our limbs to control the external world.

‘In their model the efference copy was used to drive an intefnsl dynamic hodel of
the controlled e!emént, the output of which was corﬁpamd with the afference frem
the control task.

In the State Space Model all learning centers around determination of‘the
constants of mechahical description. The relationships between the efference copy
and the reafference are used to détermine these constants that describe the
mechanical behavior of the limb to the transiating mechanism. Reaffer_ence

corresponds to measurements of the acceleration vector made from the limb’s

sensors, or other sensors that monitor the limb’s activity. Efference copy is a
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record of the actuator torque vector, available from the source of motor commands
or from actuator sensors. (See 3.2.3)
This model makes rather unique use of efference copy in that no error signal

is calculated, there is no comparator, and no error correction procedure is used for

learning. Instead, the simplified form of the translation equation allows information
about the méchanica of the limb to be found by examining the limb’s input-output
relations. Mechanical properties are derived directly from the resuits of the
organism’s attempts to move. Furthermore, the State Space Model represents a |
rather direct example of Paul’s and Waters’ idea of an internal inverse dynamic

model! (Paul, 1972; Waters, 1974).

| 3.2.2 The Inversion Equation
We return, once more, to the simplified equations of motion which govern
the system’s behavior during a time slice, with the understandinﬁ that what must
be found are fhe N2+N constants which comprise each J and K. (Note: it is no
longer necessary .to distinguish betwgen net torque, T, and actuator torque, Tey 80
the subscript has been dropped: T=T,, The a and § subscripts have also been
dropped and should be assumed) For the scelar equation, (N=1):
=j§ +k (eq. 3.3)
'Itv is known that j and k can be found solving two simultaneous equations in two
unknowns. Once measurements are made of the torque and acceleration for two

movements j and k are calculated:
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ty -t :
k=t; -1 2 § eq. 3.4
1 61-0- ’y ( q. i
, ty -ty »
= — {eq. 3.4b)
j P | q.
where:

k, j, and t are scalar versions of K, J, and T.
For the case where Nx1, (a limb having a number of joints), N2+N measurements of
torque and acceleration must be made in order to solve N2+N equations. By

analogy to eq. 3.4:

J=17- 4! . (eq. 3.5a8)
CK=Tg -[r 8115, ' (eq. 3.5b)
where:

LoDt TN DT Tt T
CRAUFH PHST INER[ IYRH IYRHANRY Yy |

T; and §; are the i’th measurements of T and §.

X5y denotes the average: (X +Xot ... Xy, 1/(N+1).

This is the inversion equation. These calculations can be performed if N+1 sets of
f;and T are avallable, where the acceleratuon vector i is the response produced by
i issuing the torque vector to the limb as a command. These computations derive
information about the mechanical system from the relationship between the |
efference copy, T, and the reafference, §. Once again, the values of the NZ+N
constants appropriate to a particular time slice can only be found when each
measurement contributing to the computation, (Eq. 3.5), was made while the limb
was near the state prevailing during the slice.

The procedure for finding the values of the mechanical constants J and K for

one time slice are given above, but the goal is to proceés‘ movements which 'are
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composed of many slices, each :ofvw'hioh may correspond to different mechanical
states of the limb. To insure the achievement of this goal the operations of
collecting data and calculating constants must be organized. The necessary
organization arises by considering a discretized state space and the use of two

types of memory; the temporary buffer and the state space memory.

3.2.3 The Command-Torque Relationship
Until now discussion has centered around the torque applied to the joint |
rather than the command issued to the actuator. Unfortunately, the model
constrains the relationship betv’veenth,e motor command and the actuator force.
This !Q'Et‘,i,PDShiP must be linear in the following sense:
t=al0,6)u +ble,g) (eq 3.6)
~ where: , o
t is the force applied to the tendon
~ uis the motor command
a(8,0) and b(#,§) are state dependent constants.
This restriction says that for any given state of the limb, incremental changes in
the motor command must produce proportional changes in the torque delivered to
the joint. This is a weak restriction. The actuator torque need not be
proportlonal to the motor command, nor must it bo constant If tho command does
not change (lndeed if a human arm is moving and the command te the muscle does

not change, the force at the tendon will increase If the muscle io etretched and

decrease if unloaded.) The only requirement is that given the same mechanical
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conditions (ie. the state does not change) all increases in command produce
changes in force Which are related by a constant muitiplier.
Assuming the nature of the actuator does not conform to this réstriction, the
requirement can be satisfied by introducing local torque or force feedback. The
problem solved by this local process, makihg sure the '
motof-command/actuator-output relafionship is linear in the sénse of Eq. 3.6, is
only one dimensional: ‘lt cen be solved easily because _there are no dependencies

on variables related to 6ther joints.

33 The State Space Memory and the Temporary Buffer

The system cannot have stored, nor can it calculate the constants needed for
every attainable state of the limb, for the number of such consténts is in‘ﬁnite.
The best it can do is let each state be near a state for whicH data are stored or
can be stored. Let‘ us divide the range of each dimension of the state space, (one
aimension for each‘ joint’s position and velociiy) into M intervals. The 2N
dimensional state spaée is then partitioned into MZN hyper-regions. If M is chosen _
to make the sizé of each hyper-region reasonably small, and the values of J and K
are available for one state in the hyper-regi)oh, then all the states in that
hyper-region can be said to be near a state for which data are stored. If all the
measurements contributing to fhe calculation of a set of constants weré generated
while the state of the limb was in one hyper-region, the assumption can be made

that the constants correspond to a state in that hyper-region. This statement will
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surely be true for large M.

If one ke.e‘ps in mind this notion of a discretized state space, the operation of
the translator with respect to the acquisition of constants of mechanical description
can be made clear. During self-produced movements data are generated which
must subsequently be used to calculate the constants of mechamcal description.
The data for these computations are pairs of simultaneously generated acceleration
and torque vectors. These pairs of vectors cannot always be used imrﬁediately |
because each application of Eq. 3.5 requires N+1 sets of vectors from the same
region of state space. Since the state of the limb is constantly changing, only a
Iimivted amount of data from each movement is pertinent to a given region of the
state space at a time, and the data that are available must be saved. Hence the
temporary buffer. Although its use is quite different, the type of data sforéd in
thi§ buffer is similar to that of Helds correlation store (Held, 1961).

When N+1 pairs of vectors from’ the same region of state space accumulate
in the temporary buffer, J and K are calculated by the translator, and they are
saved. The state space memory is organized so thaf it can store N2+N constants
for each hyper-region of the space -- (N2+N) : (MZN) constants in all. In certain
cases values for J and K will bq calculated for regions of the space for which
previous results exist. In order to reduce noise and provide the ability to adap’t‘ to
changes in the mechanical properties of the system, new and old values of J and K

are averaged with some sort of weighting which favors recent data.
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Two ideas regarding access to the state space memory are imp"or‘tant if the
translator is to realize its full power. A full treatment of these ideas must take
into account details of the implementation, (type of storage, dimensionality of the
space, slice duration, speed of computation, etc.), and are thérefore only introduced
here.
A direct interpretation of the arguments advanced in the bréVioﬁs section
would indicate that‘ translation of one slice of a desired trajectory réquireé only
one memofy access. Only data for the state of interest should be used. But -
suppose no data are available for the desired state. Since the mechanical behavior
of t»he,limb varies smoothly ihréuthoi.it state space, data from nearby feglons‘could
bé used as substltutés. Such a p‘rocédure has a distinct advahtagé ‘during the
early stages of learning, and during generalization testing when there is a shorfage
of data. At these times it will be desirable to make maximum Llse of available -
data, even if the values are somewhat deviant. At least the signs will usu'élly be
correct and movement will be possible. Responsibility for this procedure rests
with the neighborhood function, an example of which is given in Section 4.2.3.1.
The tabulari}zed equations embodied in the state space memory are only
piecewise constant. .Each time data for a state are desired,' data for a neai’by
state are returned. One can imagine substantial improvements in accuracy of the
resultihg data if interpolation is used. Many possible interpolation schemes ex'ist,

§ome involving increased storage demands, others increased memory accéss and -
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computation. A version of the model that implicitly combines a neighborhood

function with an interpolation function is given in Section 6.2.1.

3.4 Combined Operation of the Components
vFigure 3.1 is a diagram of the system under discussion. Its operation can be

summarized as follows. High level processors produce descriptions of desired
movements, § p(t), Which are présented to the translator. These descriptions
explicitly state the time course of the_movement so that position, velocity, and
écceleration information are available for e‘ach dimension of”the coordinate syétem
in use. The desired movement is sectionéd into time intervals or slices, each of
duration At. For each time slice Eq. 3.2, the translation‘equation, used in
conjunction with the mechanical information in the state space memory, generates a
force plan that will replicate the desired trajectory. The calculated force
commands are issued to the limb and, during the movement, a copy of the
command, the efference copy, and a copy of the sensory signals that indicate

progress of the movement, the reafference, are stored in the temporary buffer
| With labels indicating the region of the state space to which they apply.
Subsequently, the contents of the temporary buffer and the inversioﬁ equation, Eq.
3.4, are used to find values of J and K. These results are s't,or,edﬁ in the state
space memory in combingtion with data that might have been stored there

previously.
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Fig. 3.1 Major components of the model. The translator converts descriptions of
desired trajectories into motor commands suited to the kinematic and dynamic
properties of a particular limb. The operation employs the tabular equations of
motion in conjunction with the state space memory. Each movement of the limb
generates data which, when processed by the inversion equations, contribute to
the state space memory, and consequently, to future translations.
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3.5 Properties of the Model o | o
Initial performance of the translating mechanism will not be good. Every
| attampt to use information about the mechanical character of the limb will be
frustrated because the state space memory will be empty. Data describing the
mechanics of the limb are only available after movements have been processed. If
no data from the stata space memory are avanlabla two things can happen. The
translator could use some preset or genetically encoded constants and proceed to
generate a set of commands:avanqt:hoygh the resulting movement may be quite
different rrcm the one desired. Alternately, some other control system can take
over when the translator finds that it has no usable information. Under this
circumstance the controlier will not take part in the production of the movamenL
In elthar case it is important that the remainder of the translator's functiona, (ie.
the analysis of the efference copy and tha reaffarence by appllcation of the
inversion equation), be performed when the movement is executed, even though
the resulting movement may bear little resemblance to that specmed by the hlgh
level processor. If thus were not the case the system would never have the
opportunity to build up its memory and improve. (This would be something like the
fellow who cannot get a job because he has no experience, and cannot Vget any
experienca without a job.)
As more and more mavements of the limb are made, more and more data

daacrlbing the mechanics of its operation become available to the translator.
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During this period of data acquisition the quality of movement produced by the
‘translator will gradually improve. Intensive practice, repeated approximations to
the same movorﬁent, will facilitate mastery of a specific movement because a
higher percentage bf the incoming data are relevant to the regions of the state
space memory accessed during replication of the movement of ihteresf. It is also
true that more movement data of any kind are available during intensive practice.
While heavy practicé of one or a group of movements should improve the

ability to execute the practiced mdveménts, other movements will also be

L facilitated if they are similar to those practiced. The type of transfer described

here, from a highly practiced movement to a similar, but less précticed one also
contributes to the appearance of a general improvement in motor performance. In
fact, the characteriétic which prompts one to Céll the improvement general is ‘that‘
movements are performed with only modest amounts of error, though never before
explicitly practiced. It must be understood that the effectivenéss of intensive
practice upon the practiced and similar movements may be,influenced, to a large
degree, by the details of the practice strategy -- details considered in Section
4.3.4. Since neighboriﬁg regions are only defined in terms of the neighborhood
function, it is also important in this regard.

The State Space Model places very few restrictions on the dynamic andv
kinematic properties of the limb being controlled, or the geometries of the limb’s

- sensors and actuators. A single translator can learn to control almost any limb.
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- This is a direct result of the tabular nature of the equations that describe the
mechanical system. Each member of the chain of transformations between
- response and command:

1) sensor signal - sensor acceleration (egxg af (mm/secZ)/volt)

~ 2) sensor acceleration - joint acceleration (eg. X4.q8 (‘ra‘d/secz) /(mm/secz))
3) joint acceleration - joint torque (eg. X3 a8 (newton-meter)/(rad/secz)
4) joint torque -+ actuator force (eg. X2 qg Newton/newton-meter)
5) actuator force - command signal (eg. X1,a8 volt/newton)

can be represented in ferms of a set of,cohstents for a particula'r‘ state: Nene of |
these transformations need be known in advance, nor are they ever known

. ,ihdi_giduelly. ~The transiator uses the inversion equation to compute a net
transformatioh representing the total of these opefaiions. Note that no p“a‘lv'tic‘ulyar
units need be used; the controller ‘thinks’ in terms of actUator'eontkdl signals and |
raw sensor readings.

Frem a praetigal point of view, this geometric freedom means that the joints
can be revolute or sliding. The forces applied by the muscles can Ondergo
non-lineer tra_nsforrﬁations due to the joint-tendon geometry, without consequence.
In fact, actuators and sensors need not be affiliated with any one joint or subset of
joints. Reafference can take the form of visual feedback just as readin as joint
oriented propnoceptlve feedback, provided the choice be made before learnmg
commences and desired trajectories are descnbed in the chosen coordmate

system.

To recapitulate, the controller described here will exhibit {he following
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desirable properties. It will use practice to learn to translate descriptions of
desired trajectories into motor commands. Training will transfer among similar
movements and the system will édapt to mechanical changes. The geometry of
sensory. linkéges, and actuators is quite flexible. |

At this point | must reitefato that all properties of the motor system are not
being attributed to the translating mechanism. Just because ‘the translator learns
’and ada}pts} does not mean that other processes do not also learn and adapt. Itis

- assumed that they do.

3.6 Discussion of the Model

it should be étressed that the reason there is Iéarning is not that errors in
previous movements are explicitly corrected, nor that errors in the constants
which specify the mechanical properties are explicitly corrected. Movement 'errors'

can only be detected if desired and produced trajectories are compared, but this is

never done by the system presented here. Motor performance is gradually

improved with experience for two reasons:

1) Each movement submitted for translation requires data from a
number of regions in the state space memory. More of these data
are available when the system is more experienced, because these
data are generated directly from the movements which comprise
experience.

2) If there is any noise in the system (there always is noise in physical
systems) the data available from the state space memory become
more accurately specified when they are calculated a number of
times because noise is reduced through averaging.
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When the constants for a region of the state space memory are calculated a
number of times, the average of those calculations will converge upon the true
value of the mechanical properties they rebre,’sent provided the meghéhital ’
prdper;ties of the limb are constant and there is zero mean noise in the system. In
the event the hechanical properties are not constant -- a situation which can
occur when the organism grows, the muscles get stronger, or fﬁe sensory elements
change -- repeated calculations of the mechanical constants will reflect the
changing propertiés and ultimétely,converg'e some time after the limb stabilizes.
The exact nature of this adaptation process depends on the rules of combination
that apply to the storage of new data into the state space memory. The only
statement on this score to be made here is that a weighted aveﬁaﬁe which favors
recent data performs in an adaptive way. Improved noise rejection is
demonstrated, however, if lhg. time-constant of the memory is as long as possible,
while still being short with respect to the time-constant of changes in thé
mechanical properties of the limb.
There are two reasons for generalization between similar movements:
1) Two similar movements will use data from the same hyper-regions
of the state space, or from neighboring regions. (This type of
transfer might correspond to Thorndyke’s identical elements theory,
though he probably had a higher level process in mind (McGeoch,
1952; Hilgard & Bower, 1975).) |

2) Due to variations occuring during practice, training of one movement

may generate data appropriate to other similar movements, even if
no hyper-regions are in common.
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These two processes} interact, and are not distinguishable in all cases. By similar |
mean that the same or nearby regions of the state space memory are used to
generate the movement. This definition is quite limited. All the problems of
pattern recognition and pattern deséription bear on this question of similar
movements and more will need to be known about task analysis and motor function
before adequate definitions are possible.

The ability to plan trajectories in' a range of coordinate systems could
contribute a high degree of added versatility to any controller. Such a device
could be trained to plan trajectories on the basis of measurements and térgéts ina
Cartesian coordinate system, a polar system, a joint system, or any of a large class
of other coordihate systems. This idea is appealing if oné thinks of visual
information as being specified in a cartesian or polar-like syﬁtem while
proprioceptive sensors work in joint coordihates. This idea is especialfly important
in view of the fact that it could allow an arm to be controlled on the basis of
on-line visual space errors, provided the translator is used in the reprogramming |
mode. A servo mechanism would réquire an additional coordinate transformation
process in order to perform this function. Due to the tabular nature of the state |
space memory the transformation of codrdinates takes place in the SSM at no
extra cost . |

Young and Stark (1965) and others have proposed use of the internal

dynamic model as a mechanism for learning and adaptation. (These systems are

—~
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also called Model Reference Adaptation Systems (MRAS), (Landau, 1972).) They

~argue that commands can be tested on the internal model and adjusted until they
produce the desired response. This idea can be made to work, but | would like to
stress a concept which represents a differ'ent point of view -- the internal inverse
dynamic model (Paul, 1972; Waters, 1974). The idea here is that the a motor
learning system should have a transfer function that converts responses into
commands -- the inverse of the operation performed by the plant -- not commands
into responses. The overall transfer function is the identity mafriX, I, the desired
result.

The internal dynamic model allows one to simulate the inverse function with
an analysis by synthesis type approach (Eden, 1962). The State Space Model,
howevér, because its uses sets of extremely simple equétions to describe the
plant’s behavior, can directly calculate the required inverse functions for each =
region of space. It is only fair to stress that | am arguing point of view rather than
computational approach. Iterative techniques for solving an inversion. computation,
(Young and Stark’s appreach is such an iterative procedure), are ﬁuite common and

 legitimate. But it is important to conceptuslize th§ operation in clear terms.

The areas of motor physiology that deal with details of motor control
pr§b|ems have not advranced sufficiently to have developed a vocabulary suitable
for discussion of problems related to learning. | therefore take thé liberty of using

general psychological terms which convey the rough intent of my meaning. The
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terms transfer and generalization are cases in point; They are used throughout
this thesis to describe various properties, yet most of the biological learning
situations‘ in which transfer and generalization are defined and studied involve
much higher-level tasks than those studied here. In this regard, my use of these
terms is perhaps metaphorical. |

- Generalization usually refers to a lack of discfimination between or among
stimuli and transfer refers to the effect a procedure has on a numbe_r of similar
responses. The distinction betweén sets of stimuli and set_s of responses cannot
be drawn so sharply here. Each request for data frorﬁ the sfate spaée mémory
specifies a state. This state"ac_ts as a stimulus, (Marr (1969) calls it the context),
which is generalized by the neighborhood function. On the other hand, practice of
one movement often produces data for remote states which are only appropriate
to other movements. This effect is more like transfer. The two affects combine to
produce one behavioral result. The two terms are used intefchangebly here.

A set of experiments by Held and Freedman (1963) and Held and Hein
(1963) showed that self produced movements are required for motor learning and
movements produced by an external agent are not adequate for learning. The
sfate space model also behaves in this mahner. Measurement vectors can be
produced and learning can take place, only if torques are generated in a way that
makes the actuator commands known to ‘the system. If sensors are used to

measure the torques applied at the joints (Section 5.6.1) rather than storing an
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efference copy, the forces that accelerate the limb must be applied in such a way
th}at the sensors are stimulated. Biologically speaking, this means that tendon‘
receptors adequately measure the forces deli\)ered to the joints only if forces are
applied through the tendons -- movement of the arm by a cradle does not produce
‘such stimulation. By the way, any mechanism that relies on a form of the equations
of motion‘for control and iearning will probably have this constraint. ‘I"he system

proposed in Section 6.2.3, however, does not.
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4 lmp; lementation and Test

The predictions of the last chapter are based on reason and intuition; this
chapter and the}next examines these predictions experimentally. | would like
answers to the following duestions:

1) How well does the translator perform vis-a-vis its expected
desirable properties?

2) How does the behavior of each component of the translator
influence overall performance and contribute to successes and
failures?

3) What relatianships can be drawn between the behavior of the
translator and that of the human?

4) How might the processee described here coexlst with other models |
- for control? ,

Answers to these questions depend on data obtained using a variety of tests
applied to an implementation of the model which, it is hoped, adequately reflects
its power and its weaknesses. These data include measures of overall
performance during learning and adaptstion, as well as informationv about the
behavior of internal variables.
in order to evaluate and verify the pdwér of the model, a set of computer
programs were developed to embody the various computational aléments. These
‘programs are used to control a mechanical arm in order to study the detailed
nature of the resulting movement. A number of notions have been introduced --

the translation equations, the temporary buffer, the inverse computations, the
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discretized state space memory, desired trajectories, and a translation process --

which now have to be made concrete.

4.1 Facility

A PDP-11/45 computer is used to perform all computations, to issue
commands to the manipulator, and to make measurements. The manipulator is the
MIT-Vicarm, manufactured by Victor Scheinman. It has six degrees of freedom; the
three joints used in this study, (N=3), allow the wrist to be positioned arbitrarily
within the arm’s work space. See Fig. 4.1. Each joint is powered by a DC torque
motor and provided with a clutch-type brake which can be used to hold the arm
stationary when no movement is in progress. The PDP-11 may, through suitable
circuitry,l specify the current delivered to each motor. DC torque motors have the
characteristic that the torque they deliver is proportional to the winding current,
independent of armature velocity. Since the currents for each motor may be
;pecifi.ed independently and simultaneously the PDP-11 computes a vector which
&etermines the torques applied to the joints of thg arm.

Signals proportional to angular position and velocity are available from
potentiometers and tachometers provided for each joint. When a movement is
- made the computer makes position and velocity measurements every 10 msec. In
addition the velocities, sampled every .5 msec., allow the accelerations to be
‘estimated using least-mean-square error techniques. A record of each movement

can be saved for future use where each record represents up to 1.2 seconds of
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Fig. 4.1 Layout of the first three joints of the MIT-Vicarm manipulator. 8 1 acts
about the vertical axis. The manipulator is about the size of a human arm; ~
lo=-273m, I =l3=.059m, /5=/4=.203m. Each joint is provided with a DC torque

motor, a potentiometer, a tachometer, and a clutch-type brake. The diagram s
from (Horn and Inoue, 1974) with modifications.




Implementation and Test 91 Marc Raibert

movement and contains position, velocity, acceleration, and motor current
information for each of the three joints. _A
The mechanics of the joints are cd_mplete_ly backdrivable -- the torque -
produced by the motor plus externally induced torques sum to determine the
motion of the joint. Consequently, the motions of each joint are a function of the
tov"qvues‘applied to all the joints. This fact, ‘\&BiCh is geﬁéraily true of biological
limbs, is illustrated in Fig. 4.2. A step of current applied to the motor which drives
joint 2 caused changes in the trajectories of joints 1 and 3. For some ‘
rﬁanipulatd,rs, these interactions may be ignored (Paul, 1972). |
Accurate acceleration information is essential to the use of“tvhe inve:rs_ipn
' equations.r Since the Vicarm manipulator has no acceleration sensors, accelerations
are estimated by.‘ fitting straight line segments to the recorded velocity trajectory
for each time slice. The dqratlon of the slice, therefore, must be selected to
optimize two cohﬂicting factors affecting the quality of these estimates:
1) Constant acceleration estimates are only appropriate if the actual
time-varying acceleration is nearly constant. This is most nearly

true during very short time intervals. ‘

2) When more velocity samples contribute to each estimate they are

more precise and noise-free. Therefore, longer intervals are called
for.

~ | examined sections of 40. 50, 60, 80, and 120 msec. (with 2 khz sampling
_ rate per joint) in order to find an acceptable compromise. Figs. 4.3a and 4.3b (

s_how that 60 msec., the time alicq duration used for all data reporfed here, was
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Fig. 4.2 These curves demonstrate the potential for mechanical interactions among
the joints of the Scheinman arm -- a property characteristic of biological limbs.
Each movement labelled ! was made by applying constant torque to each joint. In
movement 2 the torques at joints 1 and 3 were unchanged, but a step was applied
to joint 2 after 500 msec. (at arrow). Note that the position and velocity '
trajectories of all thres joints were affected P-position; V-velocity.
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acceptable. The variation ihacceleration estimates for 10 repetitions of the same
movement are shown in Flg 43a. The repeatability of most values is very good,
Indicatlng an adequately long estimation interval. Fig. 4.3b, showmg a rather
 faithtul reconstruction of an originel traectory from its estimated accelerations,
demonatratea that most oi the information present in the original time-varyihg

acceleration trajectory is captured by the piecewise constant estimates.

4.2 Information Praces?iﬂj,,' |

"I order to calculate data for storage in the atate space memory,the -
constants of mechaniCalwoeecriotion. it is neceasarv to invert an N dirnensional |
matrix of acc«elerationl measurements. (Actually these are acceleration differences
taken from N+1 sets of measl.irements. See Eq. 3.4) One can notvinvert a matrix

if it is singular, but N sets of N measurements taken from a physical system are

. unlikely to be ,§ﬁfict|y_v!inearly dependent. Care must be taken that the matrix of

acceleration estimates is well conditioned, for inversion of an ill-conditioned matrix
amplifiee noise (Noble, 1969). In order to avoid the potentially disastrous effects

- of inverting an ill-conditioned set of noisy measurements, two precautions are

~ taken. . »‘ | |

Each group of vectors are ocraened before inversion by a condltiomng mdex,

x, ‘which determlnes the degree to which a set of measurement vectors are
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Fig. 4.3a The variability of acceleration estimates was determined by executing
ten repetitions of the same movement. During most time slices there were only
small variations in estimated acceleration, indicating an adequstely long sampling
interval. '
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Fig. 4.3b These curves show that 60 msec. piecewise-constant estimates of
_ &cceleration are informationally adequate for description of a typical movement.
During execution of the movement, position, velocity, and estimated acceleration
were recorded. The reconstructed position and velocity trajectories were
computed by integrating the estimates of acceleration The correspondence

between the recorded and reconstructed trajectories is quite good.
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independent:
= Ay A0 Al E (eq. 4.1)
A’ H+IAlI+IA31 | |
where:

Nj=ArAg ,
A;is a column vector of dimension N=3
lIAll is the norm of A.
‘The numerator of this index will be small if the matrix, A, is nearly singular.
The denominator insures that very large vector# do not vmake a nearly singular
matrix appéar ta‘ be non-singular. Only sets of measurements that meet a criterion
value of the index contribute to the state space memory. When a set of vectors
fail the conditioning test, the two least contributory vectors (srriallest cross-
’producl) are averaged together and replaced in thé temporary buffer. The
criterion used in‘ these experiments was chosen after a crude examination of
results with various values. The value used in each experiment is listed in the
Appendix. |
4.2.1.2 Use of the Generalized Inverse |
In theory. the calculations that produce data for the state space memory can
be performed when only N+1 measurement vectors have been collected. When
the computations are performed in this perfectly constrained manner, the effects of
noise can be quite large. The resulting inverse rigidly applies to the measurement
data, analogous to the way a straight line fits only two déta points. More than N+1

measurements can be used to reduce the effects of noise, much the way a straight
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line fit to more than twb data points minimizes thé influence of noise present at
each point. To perform the computation on more than N+1 measurements we have
to use the generalized inverse, since a matrix must be square to be inverted in
the usual sehse. Using the generalized inverse any number of measurements can
be regrered in an analogous manner to the line fit mentioned above. This
dperation does, in fact, minifnizé the efror of the Ihverae in the mean square sense.
| The value of using more than N+1 measurements is derﬁonstrated in Fig. 4.4.'
These hi#tograms were made by generating a set of measurement vectors relevant
to 'one ‘regior’\ in state space and inverting them N’ at a time, where N’ was 4, 6,
and 8. The value .distributgd is one element of the resulting matrix. The figuré
shows that when more than the minimum number of measurements is used, N>N+1,
the results are more consistent and less subject to extreme variafions. Values of
N’=12 and 16 were also tested, but the additional computatiqnal burden was not
justified by the resulting improvements in noise rejection. For this report N'=8. A
discussion of the generalized or pseudo inverse is given by Albert (1972). The
‘particular algorithm used here, an extension of an orthogonalization method, is

given by Rust et al. (1966).

4.2.2 The State Space Memory
The state space memory is organized into a large number of small‘regions,
each corresponding to a differe_nt, state of the manlpulatorz }Tﬁwo factors def‘terr’nine

the effective size of these hyper-regions; the'baﬁmete’rA‘M. the numberof
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Fig. 4.4 Use of the generalized inverse with more than N+1 vectors reduces
variability in the resulting computations. The histograms show the variation in
computed values for one element of the J matrix with N’ as a parameter. A) N'=4,
(ordinary inverse); B) N'=6; C) N'=8, (used throughout thesis).
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divisions along each dimension of the state space, and the rahge of values each
state variable is permitted to assume. The details of dividing up the state space
memory are given in Table 4.1. For the implementation using joint variables as
coordinate system variables and with M=10, (M2N or 108 defined states (for
N=3)), each hyper-region measures (15 deg)3 by (13-%93. These regions are
actually quite small, and the mechanical properties of the arm are fairly constant
throughout. Fig. 4.5a gives an idea of the region of joint space‘represented in the
memory. Naturally, all six dimensions of the space can not be displayed so only

the positional dimensions are represented.

Table 4.1
Joint Coordinate Measurement
Dimension Min Value Max Value Cell Size
Position: joint 1 -85 deg 67 deg 15 deg
joint 2 0 147 15
joint 3 -30 116 15
Velocity: joint 1 -12 deg/sec 112 deg/sec 12 deg/sec
joint 2 -112 12 12
joint 3 -12 112 12
_ Cartesian Coordinate Measurement ‘
Dimension Min Value Max Value Cell Size
Position: X 0 mm 400 mm 40 mm
: Y -400 0 40
Z -200 200 40
Velocity: X -613 mm/sec 68 mm/sec 68 mm/sec
Y , -613 68 68
Z -613 68 68

In some tests Cartesian coordinates were used for the state space
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dimensions. For those cases each hyper-region measures (40 mm)3 by (123 e‘:)3
The region of Cartesian space represented in the state space memory is shown in
Fig.i_ 4.5b. Again, only positional dimensions are shown. Although Table 4.1, Figs.
4.5, and the previous discussion deal in physically dimensioned variabies, the actual
implementation works entirely in sensor units. Only the range of the sensor
variables need be speclfled In advance since the relationship between sensor units
and physical units is Impllcltly determined during learning.

In order to make efficient use of storage resources, the state space memory is
hash coded. Collisions are avoided through a re-hash procedure. Though another
investigator has incorporated hash coded memory as an explicit component of a
system for control (Albus, 1975), in thls work the hash coded memory is merely a

concession to a practical problem -- a shortage of storage. The hashing procedure

is transparent to the translator, and has no deeper lmplications for the system’s

operatlon

4.2.2.1 Initialization

An assumption of the state space model is that memory is initially tabula
rasa. But what does that mean? For a neuronal mechanism it might be connections
of zero strength, connections of random strengths, no connections, or nothing to do

“with connections. Here | have distinguished between no data and zéro values. The
two situations where this question arises, entering new data into the memory and

applying data from _the memory, are treated separately and explained below.
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4.2.2.2 Time Constants
When new data are computed for regions of the memory, they must be

stored i'n combination with data that are already present. Many proéedures which
combine ner and old data will produce adaptive behavior. Without a great deal of
theoretical justification, having designated ¢ the memory time-qonstant, the
following daté combination procedure was chosen:

If k<r where k is the number of times a hyper-region has been

updated, and k<r, each new datum is weighted by I/(k+1) and the

old value is weighted by k/(k+1) -- the first r values are weighted

uniformly. When k>r the new value is weighted by 1/r and the old

- value by (r-1)/r.

r should be chosen to givé good immunity to noise while providing rapid
adjustfnents to changes in the dynamics of the manipulétor; There is a direct |
tradeoff between these two goals. Fig. 4.6 demonstrates the time course of the
weighting factor for each piece of data stored in the memory for various Value_s of
r. Small values of r give a large weight to new data, and the effectiveness of the
data are rather transitory. | Larger values of 7 result in small weights, but Idnger
lasting effects. Unless otherwise noted, r=10 in this report. The effects qf
varying 7 are described later. (It should be understood that the reference to time
in this context is indirect: more data enter the memory as time passes.

Therefore, r has units of 1/updates. Procedures for treating time explicitly are

discussed in Sections 5.6.3 and 6.1.1)
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Fig. 4.6 r is a parameter which determines the initial weight and decay-rate given
to a piece of data when stored in the state space memory. There is a tradeoff
between initially large weights and long lasting weights. Note that time is not a
direct factor, but rate of decay depends on rate of subsequent memory updates.
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4.2.3 Translation

When preéented with the description of a desired trajectory, the translator
uses the tabular equations of motion in conjunction with data which describe the
mechanics of the limb to produce a set of motor commands. After dividing the
desired trajectory into 60 msec. slices, (as is done to practice movements) and
accessing the apbropriate regions of the state spaée memory, the computation
defined by Eq. 3.2, the translation equation, is perfofmed in &der to determine a
set of mdtor currents. What are the appropriate regions of the mei'nory? ~
4.23.1 The Neighborhood Function |

Surely, data from the desired hyper-region are‘a‘pp'roprviayte. bdt data from
nearby Qtates can also be useful. Use of data from neighboring states is justified
since the mechanical behavior of our manipulator varies smoothly throughout the
state space. Data from these neighbors can be used to advantage whenever the
de§ired hyper-region has never been updated with information about the prevailing
mechanical properties of the limb. This situation arises when data generated in the
learning of one paft of a movement are used to replicate other parts of the same |
movement, or when a new movement makes use of data originally derived from a
separate but similar movement The distinction between these two cases can not |
always be drawn very sharply.

Experimentation with a number of data combination algorithms lead td the

following simple and effective choice: ' ‘ B
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Each of the desired hyper-regions’ first v}qg@gg_ﬁggighbo_rs:is o
accessed. (A first order neighbor differs from the desired region
by only one unit on one dimension) The contents of each are given
a weight of one. The contents of the desired hyper-region are
- given a weight equal to the number of times that region has been
updated with new information. The weighted average is used.
The range of the neighborhood function can have important effects on the
generalization behavior of the system which are discussed more fully later.
Aside from considerations regarding generalization, the constants of
mechanicai description might provide better approximations of the ideal values if
neighbors were used in an interpolation, rather than merely an average. Such

procedures have many implications and possibilities, but were not employed here.

4.3 Tools for Testing

In this section a number of constructs are introduced that allow the

implementation to be tested and evaluated

4.3'..1 Prototypes

Prototypes are internal representations of ideal movements. They are used
to specify desired trajectorie§ to the translator in the production of test
movements. They are also used as target movement during practice sessions.
Each prototype, is produced in one of three ways:

1) The arm is moved manually by the experimenter while pdsition and
velocities are recorded from each joint, and accelerations are
estimated.

2) A set of currents are selected by the exp'erifnenter and the arm is
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driven by these curi'ents during which time the positions and
velocities are measured, and accelerations are estimated.

3) A set of acceleration trajectories are selected by the experimenter
and they are integrated to obtain position and velocity trajectories.

Each of these three methods produces position, velocity, and acceleration
trajectories for each of the joints. Method (1) has the advantage that it facilitates
vthe generation of complicated spatial patterns, which are difficult to decompose
into the sen‘sor'y system’s coordinates. :It is also important because programming
industrial }rqbots often makes use of this method. Method (2) has the advantage
that the experimenier khows, a priofi, what set of éufrents Wfll produce‘the/ o
movement. This can be useful in conducting tests of compete'hc"e rather than
pel;formance. Method (3) has the advantage that a set of prototype movements
can be generated which vary in carefully controlled ways (eg. sfarting posi‘tion,
final position, maximum velc;city, duration, etc.) Although all three techniques were
used at some point in this study, most of the prototypes used to generate the data
included in this report were produced using method (3).

Using method (3) sets of prototypes were generated and used to test the
controller’s performance. In order to assess the system’s ability to generaliie from
a practiced movement to ather similar movements, pfototypes were generated in
sets whose members systematically vary in similarity. The trajectories of another
series share final positions and durations, but differ in starting positions. These

sets are used to assess the model’s ability to generalize. A typical prototype, PR-
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1 1 is shown in Fig. 4.7. Other prototypes will be described with prowitatlon of

the data.

4.3.2 Two Types of Movements
Each manipulator movement may be classified according to the way the
tréhslator processes it. Iin theory, any process can generate commands used to

producé practice movements. The important characteristic of the practice

- movement is that it generates data for the state space memory via the inversion,

Eq. 3.4. Test movements are those produced by translation of desired trajectones
in order to assess performance. These trajectories are converted into sets of
motor commands using data from the state space memory and Eq. 3.2. When the#e
commands are issued to the rm a test movemeﬁt results. In principle_a movement
can be both test and practice, but for the sake of clarity no such overlap was
permitted here. | | | |

In order to make use of a practice movement it must be divided into short
duration pieces slices, just as is‘ a desired trajectory. The duration of the slice
was chosen to be the same as that used for translation and estimating
accelerations, 60 msec. Once a practice mo;femenl has been divided into sections,
vectors are produced and stored in the temporary buffer. These vectors contain a
record of the motdr currents, one for each joint, a set of acceleration estimates,
and information regarding the state of the limb prevailing during the time slice.

These measurement vectors are collected in the temporary butfer until enough (N’)
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Fig. 4.7 These curves describe a typical prototype used to evaluate the model;
PR-11. It was generated using method (3). P-position, V-velocity, A-acceleration.
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are present for a single state to perform an inverse computation.

4.3.3 Performance Indices

The behavior of the modélwig‘measured‘by applying performance indices to
the test movements. Learning curves are created by plotting the values of one or
- ’ another of these indice# againsf tﬁé number of practice movements made by the

system at the time of the test. Each index is applied to an error curve found by
~comparing the movement to the test prototype. These error curves are only used
for analysis and db; not effect performance of the system. fhe indices in use are:
1) Root-mean-square position error - The mean square position error
for each joint and for all three joints is cumulated for the entire

- trajectory. The square roots of these values are reported.
(RMS PE)

2) Root-mean-square final-position error - The position error at the
end of a specified time interval is found for each joint. The total
position error is found by taking the square root of the sum of
squares of the errors for each joint. Since the joint coordinates
are not orthogonal, this total measure is not equivalent to a
resultant error in cartesian space. (RMS FPE)

3) Root-mean-square acceleration error - Same as RMS PE, but
-~ - acceleration error is found. (RMS AE)

4) Root-mean-square velocity error}-,s‘ame as RMS PE but the
velocity error is found. (RMS VE)

- Prbtotypes and movement plans have 1.2 sec. duration, but each
performance indices used in this paper are usually only applied to the first 500
msec. of thq test movement. This was done for practical and theoretical reasons:

1) Many movements made early in learning must be stopped before
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completion to avoid damage to the manipulator. Therefore, they are

shorter than 1.2 sec. This argument does not apply to competence

indices.

2) Most of the data produced by the practice algorithm'are only useful .
for planning the first half the test movements. Fig. 4.8 shows that
~ this was true for one typical set of 3000 practice trials for one

practice prototype. The extra investment of time needed to

generate practice data for all sections of a prototype seemed

unjustified.

3) All available evidence indicates that open loop segment§ longer than

300 msec. are not necessary for good control and are not found in

nature (Hammond, 1956; Melvill Jones & Watt, 1971; Pew, 1974).
4.3.3.1 Competence Index

B lt is useful to distinguish betweéri performance of the systqm and

performance of the manipulator under control of the system. The latter is
measured by the performance indices given above, while | feel the former should
be assessed by a competence index. Drawing this distinction between competence
and performance allows us to ignore extraneous factors related to the production
of moVement not under the influence of the controller. Furthermore, we can
evaluate the controller’s behavior in terms of variables more closely related to its
‘internal workings. Of course, the only good controller is one which causes
pfoduction of quality limb movements, but our success in finding such models and
modifying existing ones is improved by measuring these internal variables in

addition to terminal behavior. After all, do we want to casually reject a controller

which produces very nearly the right control just because the manipulator behaves
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Fig. 4.8 The measurement vectors produced by 3000 practice trials are shown
distributed on the time slices of practice prototype PR-11. Note that most of the
data apply to the first 10 slices. (10 slices are 600 msec.)
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poorly under that cpntrol? (This can océur, for instance, when the mechanics of the
manipulator include discontinuous non-linearities like stiction.)

One added feature of a competence measure is that it can be used to
evaluate the entire 1.2 sec. duration of a rﬁo#ement while performanCé indiées.
 often must be restricted. The folloWing index convéys information about the
_competence of‘the system to geherate hotor plans while de-emphasizing the

problems of production:

Root-mean-square motor-current error - Same as RMS PE but the
motor current error is found. (RMS MCE)

This index gives a measure of competence,_but can only be used when the
currents which will re‘produce :tl;te';br"btotyp}e trajectory are knowﬁn. This is
normally the case only for prototypes generated from motor-current pléns (see

| section on prototypes),‘but it was possible to estimate the currents for the
prototypes used here. Since stiction plays an important role in the behavior of the
Vicarm manipulatof, there is not a unique motor current that will hold the arm
stationary. For this reason this index often includes an artifactual constant term
that does not improve with practice whenever a test movement incorporates a

period during which the arm is stationary. "
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4.3.4 The Praétice Algorithm
The program which generates practice movements is not actually a part of

the confroller. Since the behavior of the translator during testing is so intimately
affected by the details of the practice algorithm, its operation is described hére
along with the implementation’s other components.A Once a movement is designated
as the desired mo?ement the practice routine takes the foIfowing steps:

On each trial, for each section and joint, the NewtonQRaphson

method is used to choose a motor current predicted to achieve the

desired acceleration. Only the previous two trials are used in

making this prediction. Whenever the acceleration errors on the

previous trial are within a set of limits for the section for all three

joints, the motor currents for that section are not changed.
An example of seven consecutive practice trials are shown in Fig. 49 where the
nature of progressive improvements is demonstrated. Since the duration of each
practice movement Qaries, the number of trials of practice does not precisely
indicate the amount of data generated for subsequent analysis.

If must be stressed that although the pfactice program relies on error
correction procedures to ensure convergence, the learning displayed by the
‘controller does not rely on error data in any way. The} selection of this particular
practice algorithm was made to simulate, in a simple way, the short term behavior
of humans when practicing. Levine has preliminary data which sUggest that a
similar iteration methoa may be used by the cat when learning to make an optimal

jump (Levine, 1975).

Originally it was assumed that the detalls of the practice algorithm would
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Fig. 4.9 Seven consecutive trials from a typical practice session are shown. Each
curve includes the practice prototype, PR-11, and the attempted movement. At
the beginning of each trial the manipulator is servoed to the correct starting
position for the prototype. In order to avoid damage to the arm, most practice
movements had to be terminated before completion.
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have little effect on the performance of the system, but this turned out to be
quite false. The behavior of the translator depends on how many data are
genersted, how variable they are, and to which regions of the memery they apply.
The rules which govern the former two of these factors are in direct ‘conflict, at
least for the simple algorithm used in this project. In order to produce useful data

the practlce algorithm has to produce movements which vary the output currents
independently and by significant amounts. Once the practice algorithm converges
upon an acceptéble set of acselerstions, (acceptable means within the accelefation
limits; AL), the output currents are not changed for that sectien Therefore, the

- same set of output currents are produced repeatedly -~ not good for calculating

* mechanical constants.

These acceleration limits (AL) do insure, however, that once the correct
values for the output currents are found, they are maintained so that subsequent
sections can be practiced and processed. When the allowable error for a section
Is reduced, a lsrger variety of movements is produced, but those sections late in
the movement rarely receive enough attention to produce adequate measurement
vectors. The effects of using AL = 50, 75, 90, and 115 are shown in Fig, 4.10.
Limits of AL=75 provude a good tradeoff between variety of data and number of
sections practlced |

This limiting effect can be overcome to some degree by practicing the

movement in parts. A simple servo program moves the arm to the correct initial
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Fig. 4.10 Manipulating the practice algorithm’s acceleration limit affects the
algorithm’s effectiveness. Three measures are plotted vs. the value of this limit:
1) Number of inverses computed for regions accessed directly by practiced
prototype. (+) 2) Number of inverses computed for neighbors of practice
prototype. (triangies) 3) Number of prototype sections for which data are
provided. (squares) Acceleration limit, AL, is 75 for data in this report.
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conditioﬁs for a_point in the middle of the movement, after which the practice |
program continues with a normal practice movement. People are known fo use
such a strategy when they break a complicated movement into parts during
learning (Welforq, 1968; Cratty, 1970). Fig. 4.11 shows how this procedure can
redistribute the effects of practice which would normelly generate data primarily
for the initial sections of the practice movement (Fig. 4.118). When the servo is
used to start the movement, sections in the middle of the movement also receive
data (Figs. 4.11b, ¢, and d).

The choice of parameters has been described. In summary: Three
manipulator joints are used for testing (N=3). Each dimension of the state space
mémory is divided into ten intervals, resulting in 106 hyper-regions (M=10).
Movements are processed in terms of 60 msec. sections and eight measurements
are inverted at a time (N=8). When ‘new data are stored into the memory they
receive a weight of one tenth, and old data receive a weight of nine tenths (r=10).
When the memory is accessed, data from the desired hyper-region and from the
first order neighbors are used in combination. The practice algorithm has been

adjusted to generate moderately variable data while remaining near the prototype

trajectory (AL=75).
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Fig. 4.11 Changing the starting section for a practice session redistributes the
session’s effect. For each histogram 250 practice trials were executed. At the
start of each trial a servo routine was used so that the movements could start
with time slice: a) 1, b) 6,¢) 11, d) 16. The histograms show the number of
usable measurement vectors generated for each section of the practice prototype,
PR-1. The solid bars indicate vectors that apply to sections in the prototype,
while the open bars indicate vectors that apply to first order neighbors (see text).
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4.4 Test Procedures

During each prectice session, the practice program, using one of the
prototypes as a goal movement, generates 100 practice movements. At the end of
each of these lOO-trlal blocks, the movements are processed by the translator,
creating data whlch describe the mechanics of the manipulator. The prototypes
are then used to plan test movements using the tabular equations of motion and
the data from the state space memory. After the test movements are executed
and recorded the performance and competence of the translator is measured. The
results are used to construct learning curves which plot the values of 8
performance index as a function of experience. This procedure lies at the heart of
all data reported in this thesis. Testing for generalizetion and adaptation, however,
requires additional procedures.

To show generalization, sets of prototypes are generated which vary
systematically in one or more properties. One of the set is chosen as the practice
prototype and is used as the target of subsequent practice sessions. All members
of the series are tested after each practice session. In addition to presenting sets

of learning curves a learning index has been defined which allows learning curves

to be compared:
Ll = Z(eg - &)
Eeo

where:
e; is the RMS FPE for the i'th test movement
e is the pre-training performance value.
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T is the sum from i=1 to n-1
n is the number of test movements

LI=0 if no learning }lakes place and Li»1 with total, immediate learning. This index |
is most useful when the learning curve is roughly monotonic. Generalization curves
are composed by plotting LI for each test prototypé of a series.

Adaptation is tested by establishing a baseline of performance with one
prototype, after which the disturbing manipulation is made. Then additional
practice is processed and the post-manipulation adaptation curve is plotted along

with an indication of the pre-adaptation baseline performance.
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5 Results and Discussion

5.1 Control and Learning
Position trajectories for a series of test moVements made during a learning -
- session are shown in Fig. 5.1a, each separated by 500 practice trials. The |
prototype which desCribed theitlzlesired movement to the translator, PR-1 1, is also
plotted. Each succeeding test movement is a better replica of the desired
movement than the previous one, and the last movement shown is very‘ similar to
the prototype. Most of the residual error after 3000 practice trials is caused by
deviations from the desired trajectory of joint three. Stiction forces in this \joint
are especially lafgé, and are probably resvpohsible for thé obéerved deviations.
Fig. 5.1b shows velocity trajectories for the same set of movements. The Velocity
devfations for joint 3 shown here support the stiction exblanation for these errors.
The gradual improvement in performance indicated by Fig. 5.1 is expressed
in quantitative form in Fig. 5.2. The performance index, root-mean-square
final-position error (RMS F PE), was evaluated for each test movement and plotted
agéinét the number of practice trials processed by the system. The learning curve
shows a rapid initial improvement with‘subsequent apparently asymptotic behavior.
Acquisition data for another test movement, PR-12, are shown in Figs. 5.3
and 5.4. (Same practice data as above.)‘ Stiction was not a problem here because

the 'motor-currents plan_ned to produce this higher-velocity movement were
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Fig. 5.1a Attempts to replicate prototype PR-11 are shown. Each is separated by
500 practice trials and is plotted along with the desired trajectory. (Position
trajectories.)
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Fig. 5.2 After every 100 practice trials a set of test movements are produced
and the performance indices are applied. This learning curve shows the _
performance index, RMS FPE plotted agamst number of practice trials. These data
summarize Fig. 5.1.
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Fig. 5.3 A set of test movements showing progress during learning of PR-12.
(Note: PR-11 was the practice movement) Position and velocity are plotted on

the same axes.
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Fig. 5.4 These learning curves summarize the data of Fig. 5.3. TWo performance
indices and the competence index were used. A) RMS FPE, performance. B)
RMS AE; Note the irregular, non-monotonic behavior. C) RMS MCE, competence.
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adequate to overcome the étatic force on joint 3. (See last row of Fig. 5.3) The
learning curve shown in Fig. 5.4a presents a more dramatic.example of acquisition.
The abrupt.imprbvement oc;uring after 1300 practice trials is characteristic of the
SSM’s learning behavior. These sudden improvements occur when new inverses
are found for regions of the memory for which data did not previously exist. They
a‘re also important because they introduce ambiguity into the asymptotic hature of
a learning curves. Though the learning curve for PR-11 looks asymptotic after
3000 trials, (see Fig. 5.2), a sudden improvémeﬁt might occur at ahy time with
additional practice.

One apparently peculiar result is that a set of test movements may show
that the RMS FPE and RMS PE are converging nicely to small values while the RMS
AE behaves somewhat disorderly. (See Fig. 5.4b.) Although one might suppose
that these two measures are closely linked, some thought shows that small error in
acceleration near the beginning of a movement may contribute to very large
position errors, while acceleration errors near the end of a mo\?eme_nt may not
influence position error at all. On the other hand, there may be no change in
acceleration error, or even a net decrease, while position errors have become
quite large. |

Fig. 5.4¢c shows that dufing the éractice sessioﬁ the motor currents planned
by the translator approach those which are known to produce the desired

movement. The competence index, (RMS MCE), was used to produce this learning
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curve. As noted earlier, this curve may be affected by a constant error because
the frictioh compensation term is not unique when the joint is stationary.

Gravity compensation could be tested separately from dynamic, terms by
using @ movement which has ne accelerations. Trenslation of this degenerate
trajectory results in an output determined by the non-inertial terms stored in the
memory, the K terms. Since the velocities for_éuch a movement are all zero,
Coriolis and frictional forces are zero and gravity compensation is the only factor.
A learning curve for this null or hold-still mévement, PR-17, is shown in Fig. 5.5.
The speed and completeness of learning is unrivaled by any other curve presented
in this thesis. | |

- Figures 5.1 through 5.5 provide substantiation for our basic claim; the state
space madel can acquire control of a limb-like mechanical device by processing
dets collected during movements of that device, without the use of error

information.

5.2 Generalization

In addition to learning to perform new movements when they are practiced,
the SSM should transfer training, or generalize fmm practiced movements to
movements Which have never been practiced, provided they are sufficiently similar.
Initial attempts to verify this claim were only partially successful, though
subsequent data provided more complete support for these ideas. Both sets of

resuits iiluétrate properties of the state space model vis-a-vis generalization.
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Fig. 5.5 A hold-still prototype, PR-17, was used to test acquisition of gravity |
compensation.
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5.2.1 The First Géneralization Test

Fig. 5.6 plots the set of prototype trajectories first used to test for
generalization. The movements in this set consisted of a graded s‘er‘ies. each
having the séme initial and final position, but differi'ng‘in duration, and therefore
velocity. Prototype PR-11 was practiced and the normalized learning curves of
Fisg. 5.7 plot acquisition for each prototype of the set throughout a session ‘of
3000 pr‘actfce triais. Though transfer was extensive, (every prototype showed
substantial improvement), a sy;te'malic deterioration of performance for dissimilar
protofypes did not occur. In fact, Prototype PR-12 showed substantially bet_ter
Iéarning than the practice prototype, PR-11. In order to quantify these data the
learning index, LI, was applied to the set of learning curves and the‘ resulting
generalization are plotted i}n Fig. 5.8 (triangles). The data show aﬁ unsystematic
variation in generalization, despite the use of test movements that vary
systematically in their relationship to‘ the practice protetype.

These data satisfy the strict definition of generalization, but they are
peculiar in certain respects. Normally, one exbects a gradual deterioration in
performance as the test movements become more and more different from the
| practiced movement. Such a syétematic variation was not found among these
performance curveé. On'the‘ other hand, practice of one movemént is clearly
| shown to improve performance of the others. |

Perhaps | should clarify why | am unhappy with results which indicate that
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Fig. 56 These prototypes, PR-10, PR-11, PR-12, and PR-13, have the seme
starting and ending positions, but vary systematically in duration, (1080, 960, 840,
and 720 msec. respectively). They were used in initial assessments of
generalization.
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Fig. 5.7 Prototype PR-11 was practiced and each member of a graded set of
prototypes (shown in Fig. 5.6) was tested The data for each curve are normalized
so relative improvement is shown.
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urves were produced by applying the learning

index, L, to sets of learning curves. (Triangles) The data from the normalized
learning curves, Fig. 5.7, are shown. There is no systematic generalization.
(Diamonds) The competence learning curves of Fig. 5.9 were analyzed. The

-generalization curve is more sy

small (see text).

stematic, but differences between prototypes are
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the controller does not generalize poorly among dissimilar movements. After all,
the goal is to find efficient solutions for learning, and a controller which performs
well on a number of movements with little practice is desirable. There are two |

'very general principles which govern such solutions.

Principles of Generalization

1) A controller should maximize the use of available data by providing
~ access to them whenever possible. .

2); A controller should minimiie the misuse of data by restricting
access to them whenever necessary.

~ Since .the dynamic behavior of the manibulator varies smoothly 'thfoughdﬁt state
" gpace, data generated for one region of the state space memory can be made
avail,abfe when planning movements through other, nearby parts of the space. But
this sharing of data éanhot go too far or the state dependent variations in
mechanical‘ properties will lead to the generation of very poor trajectories.

| Each of the‘sembrinciple.s should induqe, a generalization gradient in the
controller’s behavior. The first because inappropriate use of available data will
produce bad trajéctories. The seﬁond because unavailability of data will produce
bad trajectories. For these reasons our data must show a gradient in performance
ln_order to verify our analysis of generalization.

One factor, closély related to these principles may be held responsible for

the lack of observed regularity. Each trajectory was replicated with roughly equal

precision -- replicatibn of pi'ototype PR-13 was as good as PR-11. Since the
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range of movements chosen for the tests was relatively small, none were
sufficiently different from the practice movement to involve substantially changed _
mechanical behavior. Nor were much data required from unfilled regions of the
state space memory. This probleh may be solved by selecting test movements
which span a larger range of movement space.

Another factor, related to the individual characteriatice of certain
trajectories, caused some to be replicated much more faithfully than the practice
movement -- replication of prototype PR-12 was better than PR-11. A movement
may be easier or harder to learn and replicate for a number of reasons. It may
have fewer low velocity components, require more data from the niemoi'y, bear a
partiéular relationship to the practice algorithm, etc. Some of these factors, those
relatedvto production rather than learning, can be eliminated by examining
competence rather than performance. (Sée Section 4.3.3.1)

Fig. 5.9 plots the competence learning curves for the set of tests previously
shown in Fig. 5.7, and Fig. 5.8 (diamonds) provides a quantitative summary. The
results are somewhat more orderly for these data: The practice pfototype is near
the peak of a unimodal generalization curve, however, differences between
protofypes are fairly small. The differences in form between the competence and
performance generalization curves shown in Fig. 5.8 verifies the existence of
prototype-specifi_c easiness factors.

The lack of substantial differences between pairs of prototypes for
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Fig. 5.9 The competence index, RMS MCE was applied to the learning data used to
generate Fig. 5.7. The resulting competence learning curves are plotted here.
Performance difficulties are eliminated here resulting in somewhat more systematic
generalization data. Also see Fig. 5.8 (diamonds).




Results and Discussion 137 Marc Raibert

performance and competence measures, indicates a poor choice of test prototypes.
Indeed, practicing one movement facilitated performance of others, but the

expected gradual deterioration of performance as the test trajectory varies was

not observed.

5.2.2 The Second Generalization Test

This time each prototype trajectory in the series of five was chosen so that
successive members shared fewer regions of the state space memory with the
practice prototype than the previous ones. All members of the series had the
same ending position and duration, but they varied in starting position. (They also
varied in velocity) The members of the set are plotted in Fig. 5.10. In order to
confrol for gradients which might result from prototype-specifiq properties, two
learning sessions were run,

In the first of these sessions prototype PR-20 was practlced while all five
members of the series were tested (PR-20 through PR-24). The learning curves
are shown in Fig. 5.11a. In the second session the same test prototypes were
used, but PR-23 was practiced. (See Fig. 5.11b.) The data from these two
sessions are summarized by the generalization curves given in Fig. 5.12. The
gradients show just the type of behavior we have come to think of as typical of
human performancé (Mednick, 1964): Practiced movements are improved most and
similar movements less. The shift of peak Iearnmg with change of practlce

prototype, (see Fig. 5.12), rules out the possibility that extraneous effects or the
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Fig. 5.10 These prototypes, PR-20, PR-21, PR-22, PR-23, and PR-24, have the
same ending positions and durations, but vary systematically in starting
position,((.285m,~.145m,. 1 2m), (.265,-.145,1), {.245,-.145,3), (.245,-.165,.6),
(.245,-.185,.4), respectively). They were used in additional tests for
generalization.
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Fig. 5.11a Prototype PR-20 was practiced and prototypes PR-20 through PR-24
were tested. The resulting learning curves are shown. The practice prototype
shows the most improvement.
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Fig. 5.11b Prototype PR-23 was practiced and, once again, prototypes PR-20
through PR-24 were tested. The resulting learning curves are shown. The
practice prototype shows the most improvement. o
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Fig. 5.12 Generalization curves for three conditions are shown. Diamonds)
Prototype PR-20 was practiced (Fig. 5.11a). Triangles) Prototype PR-23 was
practiced (Fig. 5.11b). Squares) After a baseline of 2400 trials of practice of
prototype PR-20, 2400 additional practice trials of prototype PR-23 were
executed. No Type llb generalization is revealed. Prototype PR-21 shows
retroactive inhabition.
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¢hoice of test movements were responsible for the observed gradients.

5.2.3 Type Il Generalization
So far ohly one type of generalization has been discussed -- that which is
typified by improvéd performance of one task after practice of a different, but
similar task. Let us call this Typs | generalizetion. We now consider. two other
forms of generalization, called here Type lla and lib. It may be én overstatement to
call theme types rather than measures, but the uhderlying mechanisms are
~ somewhat different. |
- When a movement is practiéed after a baseline of perférmancé_ has been
established for a similar movement, one can expect rapid learning. (An example
might be the rapidity with which the tennis player learns the Corf‘ect stroke for
squash.) There are two factors which contribute to such an effect. First, the
initial level of performance will often be better than exhibited by the naive
system. Aﬁy giVen level of proficiency will then take less time to achieve. | will
refer to this as Type lla generalization though it is really only the result of |
previous Type | generalization. Secondly, improvements may actually be more
rapid: Since inversions only take place when the required number of measurement
védtors are a'vailabl'e‘ from the temporary buffer, the bresence of un-inverted, but
accurate measurement vectors should facilitate learning. This will be called Type
b generalization.

The practice data generated for the previcus Section, 5.2.2, were re-used to
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test for Type Il generalization. After establishing a baseline of 2400 trials with
practice prototype Pﬁ-ZO, 2400 additional trials were generated using PR-23 as‘
the target. Fig. 5.13 shows the set of learning curves generated under these
conditions. Fig. 5.14, an explicit comparison of acquisition of prototype PR-23,
with and without previous practice, clearly demonstrates Type lla generalization.
Performance of PR-23 is initially and subsequently better when the system has
previous experience than when it does not. The figure shows, however, that the
rate and time-course of learning for PR-23 are almost identical to the case when
no previous data were present; no Type Ilb generalization. The generalization
curve depicted in Fig. 5.12 (squares) summarizes the data of Fig. 5.13. It further
argues agajnst Typg lib generalization since the index used, LI, which only
measures learning relative to the starting value, yields about the same value for
both cases.v Type lib generalizatlon is not demonstrated.

Fig. 5.13 reveals another interesting process. Practice of PR-23 causes a
slight deterioratioﬁ of performance for PR-21. This result is an indication that the
second principle of generalization is at work, (see Section 5.2.1), and can lead to
retroactive inhibition. Data generated for PR-23 were made available to PR-21
through the neighborhood function, even though they were not quite suitable. This
points up the care with Which the neighborhood function must be chosen.

This test, learning with a baseline, is important because, in addition to testing

for another kind of generalization, it mest nearly resembles normal steady-state



144

2500 ¢
N
R
" "
s f—l——‘-’," [
17 : v PR-22 | PRACTICE
A PROTOTYPE
i L_’__ o . . | PR21
, vl 'y 9 ,PR-ZO.,
00 - 25

PRACTICE TRIALS {(X100)

Fig. 5.13 A set of learning curves resulting when practice of prototype PR-23 is
preceeded by 2400 trials using PR-20 as the practice prototype. Though Type lib
generalization is not shown, some retroactive inhibition of prototype PR-21 was
observed. Also see Fig. 5.12 (aquares)
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Fig. 5.14 An explicit comparison of learning of prototype PR-23 with and without
previous experience reveals little difference. Note, however, that the
improvements accrued in the provlous situation are not lost.



Results and Discussion 146 | Marc Raibert

6peration of the system. Only in the rare case of a brand new controller would
the state space memory and the temporary buffer be tabula rasa, yet almost all of
' the expenments descnbed in this report begm that ‘way.
Figs. 5.6 through 5.14 show that the system can generalize between samllar
movements, that intensive practlce of a partlcular movement improves its
execution more than other movements, and that the system’s general level of

performance improves during practice.

5.3 Adaptation
5.3.1 inertial and Elastic Loads

It is claimed that the mode! will adapt its motor commands to compensate for
changes in the mechanics of the arm. Fig. 5.15 illustrates how the arm is modified
to test this propérty. In one case (Fig. 5.15a) a .75 kg weight is attached to link 3
of the arm. The moments of inertia of all links and the effect of gravity on links 2
and 3 are increased. In the other ca#e a spring, having a constant of 1.85 kg/m, is
attached betWeen link 2 and ground. (Fig. 5.14b.) Only static properties of the
limb are changed by this manipulation.

The general finding is that application of a mechanical load causes a
temporary disruption of motor control, but control is restored after practice with
the new mechanical situation. This result is demonstrated by the data shown in
Fig. 5.16. These curves were produced by establishing a 3000 practice trial

baseline upon which the effects of disturbances were assessed. The figure shows
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Fig. 5.15 Two methods of applying loads in order to disturb the manipulator’s
behavior are shown. A) A .19 kg. weeght is attached to the third link of the
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manipulator. B) A 1.85 kg/m sprmg is attached from the second link to ‘ground’.

When movements start the spring is stretched .83m and runs from coordmates
(.17m,.0m,.25m) to (. 02m, 70m,1.20m); see Fig. 4.1



momn UVWXEo

148

Mass

y 55.G)

900~

NROBIM ZXOrm—~|=WWOTV WX

o

PRACTICE TRIALS(HUNDREDS)

Fig. 5.16 A 3000 trial baseline having been established, adaptation to two types
of load are shown. The load is applied at practice trial 3000 and the time course
of adaptation is recorded. A) Prototype PR-11, B) Prototype PR-12. (r=10)
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 that both types of load cause a large increase in error which is éubse_quently
reduced. Althougﬁ these results satisfy minimal expectations for adaptation,
4mani‘pu|ati‘ons designed to improve the rate of adaptation were performed. Two
factors might be responsible for retarding adaptation:

| One_ factor arises because measuremgnt vectors remain in the tempora_ry |
buffer until they are.used in an inversion. Therefore, data generated during the
period following application of a mechanical disturbance are Iikgly to result from
computations based on combinations of measurements taken before a“nd after
application of the load. The constants obtained from these interim calculations may
attain values which are quite different from either pre- or post-adaptation values
-- they do not necessarily attain intermediate values. Fig. 5.17 domonstrafas this
counter-intuitive effect.

Eight measurement vectors were recorded in each of two different states.

For each state a different set of mechanical conditions prevailed. As the ratio of
number-of-vectors-from-state-A to number-from-B changes monotonically, the
data produced by inversion vary non-monotonically. If one were averaging dafa '
from two groups, however, the transition would be monotonic. To assess the
effects of these interim calculations, an adaptation test was conducted in which all
data from the te_mpofary buffer were removed when the load was applied. The
heavier dotted line in Fig. 5.18 éhows that this procedure produces no ciear

improvement in rate of adaptation
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VECTOR MIX

Fig. 5.17 A demonstration of the deleterious effects of ‘mixing’ measurement
vectors when inverting. Two sets of vectors were used, (sets A and B), each
consisting of 8 vectors generated for a mechanical situation. Nine inversions were
performed where the vectors contributing to each inversion were:
(81,82,83,84,85.36,87,88), (81,82,83,84,85,86,87,b8), (a 1,82,83,84,35,86,b7,b8), .
(by,bobgbgbrbgbybg). The value plotted on the ordinate is one element of the
resulting J matnx.
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Fig. 5.18 The heavy dotted curve was produced by removing all measurement
vectors from the temporary buffer when the sprmg load is applued. The solid

curve is reproduced from Fig. 5.16a for comparlson (r=10). (Prototype PR-11)
Closed circle indicates pre-adaptallon level
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s The rate of adeptation is also retarded when old and new data are combined
in the state space memory by averaging. Thlo factor can be adjusted by reducing
the‘ yalue of r, the averaging parameter fdls'cuesed earlier. (See Flg, 46) The
results of such a-manipulation are .shown by the curves in Figs. 5.19. Each
succes_slvely ‘smaller value of r results ln more rapid' adapta}tion to tha mechanical
disturbance imposed by the springﬂ While reduction of r lmproves adaptation rate,

it may reduce the system s reelstance to the ‘effects of nolsy measurements (Data

preaently avallable do not substantlate thls pount, but lt is strongly expected to be

true based on our understandmg of the model’s operatlon.)

Whlle reductlons inr decrease the effects of old state space memory data.
they do not ellmlnate them. An expenment was done in whlch all prewous state
space data were ellmmated at the time the load was applled The temporary
bufter was also zeroed. The dotted curve in Flg 5.20a reveals an extremely rapld
and rather complete adaptation. This is a drarnatlc result if compared to the
adaptation rate shown in Fig. 5.19. Unfortunately. the irnprovement in adaptation
rate is accompanied by an initial loss of control. The level of performance
following application of the load is temporarily worse then that initially achieved
when the memories are left intact (solid curve in Fig. 5.19al. A more severe loss
of control resulting from initialization of the memories le shown in Fig. 5.19b.

Held and Hein (1963) conducted a series of }experiments designed to show

that initial learning and adaptations were merely two manifestations of the same

e




153

1800.0 | Mass
R
M
S
F
P =
E
L
DL 1 1. - 1 | - 1 1 1 L 1 1 1 ]
30 56

PRACTICE TRIALS (HUNDREDS)

mom VXX

PRACTICE TRIALS (HUNDREDS)

Fig. 5.19 The memory’s tlme-constanl is systematically varied. Smaller values of
r yield more rapid, but noisier adaptations. A) I_and B) spring’ Ioad
(prototype PR-11). Closed circles mdlcate pre-adaptatlon Ieveis
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Fig. 5.20 The dotted adaptation curves were produced by removing all data from
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complete adaptations resulted. In B rapid learning is accompanied by an initial
period during which performance is quite poor. Closed circles indicate pre-
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process. Thelr results, though not conclusive, were rather provocative. The
essentlal deslgn of the SSM, (there are no provnslons for zeromg memories), takes
| thenr notion as a premise; no special mechamsms are used for ada'ptation that
éren’t used during initial learning. The dramatic results presented m Fig. 5.20,

howevef, argue strongly in favor of re-examining this position.

5.3.3 Redriéntétion of Gravity Vector

A test for the system's ability to acquire control of the manipulator after
reorienting the gravity vector was’ combined with some of the gener'ali‘zation‘ tests
reported above. Though this was not actually an‘adaptation test -- a manipulation
was not made after a baseline of performance hed been established -- the results
of such an adaptation test can be inferred from the resuiting data.

The armvw’aa mounted with its base on the wall so that the gravity vector

‘ inﬂuenced all three joints. (See Fig. 5.21.) This is an interesting manipulatjon
since joint 1is normally unaffected by gravity and the gravitational torques
exerted at joints 2 and 3 are normally not influenced by the position of joint 1.
(By normal, | mean when the arm is mounted as in Fig. 41) A practiéé séssion :
was conducted and the normal procedures were used to assess learning. All of the
learning curves reported in Sections 5.2.2 and 5.2.3 were generated with the arm
in this position. It is clear from tﬁe data presented there, Figs. 5.11 through 5.14,
that learning takes place'under these circumstances.

In light of the results for the previous Section, 5.3.2, and the learning data
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ARM MOUNTED ON WALL

Fig. 5.21 The manipulator was mounted sideways to examine the controller’ s
ability to deal with a reorlentation of gravity.
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from Sections 5.2.2 and 5.2.3, thefe is every reason to believe that, had th‘ere
been an established baseline of béhavior with the normal orientation, the translgtor
would have adjusted its plan to accommodate the r‘eoFl‘énfa‘ﬂgri.’ | am prepared to
argue this point because the mﬁel’e operation clearly represents the view that

adaptation is just the form of learning which takes place when something else was

learned first.

5.4 Fiexibility of Coordihate, System

Here the Sfa{e Spéce Model’s ability to learn With measurement data from a
coordinate system other than those of the joints is demonstrated. The purpose of
__this test is to show that sensors which operate in coordinates other. than those
natural to the manipulator can be used as a source of measurement data. Since
the arm’s potentiometers and tachometers are the only available sources of
position and velocity data, C}artesianv'coordinate data were generated by
interpolating a computér program between the generation of meaﬁurement data
| and the use of those data. (See Fig. 5.22) This program was merély a festing
device and has no other function than to allow simulation of the desired sensors.
Naturally, the state space map had to be modified to accommodate the new
variable ranges. (See Fig. 4.5b.)

Cdrtegian coofdinates were chosen for this test because they represent a
large c|a§s of coordinate systems. The most important characteristic is that the

unit vectors of the system do not coincide with those of joint coordinates. In fact,
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the relationship between the unit vectors of the two systems is a function of
position in space. 'Carteaian goordinates are also attractive because they are a |
likely candidate for use by a visual system. (Actually, polar éoordinates' may be a
better choice for vision, but joint 1 of the Scheinman arm coin_cides‘with the ¢
coordinate of such a system. The Cartesian system was chosen to provide a more
convincing test) | | |

The first experiment was conducted in a way that allowed learning in XYZ
coordinates to be compared to learning in joint coordinates. Prototype PR-11 and
all the practice data used to test acquisition of this movement (Section 5.1) were
transformed into Cartesian coordinates. The resulting prototype, designated
PR-l 1XYZ, is plotted in Fig. 5.23. The practice data were processed in the hormal
way and the resulting learning curve is plotted in Fig. 5.24. The learnihg shown
here is quite good, and verifies the point that the coordinate systerﬁ used for
specification of desired movements is flexible. |

A second test was conducted to emphasize the idéa that high-level
processes can plan movements in sensory space without regard to the joint
movements which will be required. In this test a set of straight-line movements,
(the tip of the manipulator traverses a straight line), were used as the prototype.
The prototypes and resulting data, also used for the gonoralizatioﬁ tests 6( Sociion

5.2.2 and 5.2.3, are shown in Figs. 5.10 and 5.11.
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Fig. 5.23 Prototype PR-11XYZ, the Cartesian version of prototype PR-11, is
shown. P-position, V-velocity, A-accelieration.
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5.5 Goneral Discussion
The amount of generalization exhibited by the controller is largely

~ determined by the range of the neighborhood function and the map that determines
the quantization of the stoto space memory. But these parameters should}bvo
chosen wlth some knowledge of the behavior of the manipulator. That does not
mean that a naivo controller must hav‘e'a priori knowledge of correct values for
these parameters, but optimum choices must be postponed untii some expei'ience
with the plant variables is gained. fhis issue has not recoived syotematic attention
here. | The neigﬁborhood function and state space memory map were ohooen and
adjusfod to give good performanco.' It is my opinlon. however, thot simple
mechonlsms cah be found that will perform theso eeloctions outoma‘t'lcally.}
Furtherroore, suoh automatic selection could desigh memory mops and neighborhood
functions which compensate for the rate at which the limb’s proper’ties? vary with
state. |

Another difficulty in studying generalization is the lack of a good, general
classifioation scheme for movement. As a consequenoe, the concopt of similar
movements, necessary for a precise study of generalization, is not well developed.
Each pair of movements can be eaoily classified if we are willi_ngl to limit our
consideration to a particular model or theory, but the results may be q;:ite
unappeolfng. |

It has been shown that the SSM can control an arm moun_t,ed on the tablo or
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mounted on the wall. Joint coordinates can be used for specification of desired
trajectories or Cartesian coordinates may be used. And the masses of the links
and elasticities of the jbint'a 'may vary without a permanent loss of control. Taken
“alone these results indicate a high _dejree of flexibility. Furthermore, these data
lea& to inferences about the overall potential poWer of the model.

While thé dal_a derived dsing Cartesian coordinateé directly show that the.
- coordinates used for measurement can be different from joint coordinates, these
data indirectl}y suggest that the system of coordinates nétural to the actuators can
also} be Ad‘ifferen't from those of the joints: An actuator may apply forces to two or
more joints. Indeed, the argument presented in Section 3.2.3 is based on a similar
i‘hferentx:e. The Cértesian coordinéte data,'taken with the ré#ults on adaptation to
mechanical changes, also ‘imply that the model can effectively compensate for
sensory distortions such as maghifications, inversions, and left-right ravers#ls.
Finally, though not explicitly demonstrated, | think the data suggest that the SSM

“can learn to control a number of kinematically and dynamically distinct limbs.

5.5.1 Distributed vs. Massed Trials

| in a normal practice session, mearsurem‘ents vectors from temporally adjacent
practice trials are often similar. The beginning of a practice block, however, is
unlikely to include vectors similar to those at the end of "the previous block. Since
the invertibility index screens and combines sets of linearly dependent vectors,

one would éxpect more inverses to be found, (more learning), near the beginning
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of a practice block than elsewhere. Taking thie factor into account, one might
expect more Iearmng when 100 prectlce trials are broken down into 5 blocks of
20 than when they are practlced in one large block. This is remimscent of
behavior observed in humans and other'animals: Learning is more efficient when
’triele ere dlstributed in time than when long sessions of practice are employed

(Cratty, 1964; Welford, 1968; Taub & Goldberd. 1973; Choe & Weich, 1974).

55.2 A Use for Error Data

It was shown that the rate of adaptation to mechamcal dlsturbance was
increased when outdated data were removed from the memory. (See Flg 5. 10)
Unlike reducing the value oi T, however, this mampulatlon requires mformatlon
lndicetlve of the datao obsolescence. That information was provided by the
- experimenter vior the tests described above, but a control system could orovide |
those data for itself .in a number of ways. For instance somedey, high-level
processe_s might visually ascertain that a coii shape object was now connected
between arm and ceiling. Using its data base it could deteri_nine that such a device
was probably a spring and would probably change the mechanicai properties of the
»lirnb.'. . Alternatlve|y, a simple mechanism which merely examines lverror data could
quickly determine a loss of control.

itis 'Intere_sting to postulate a system that uses error data to determine that
something went wrong, and measurement data to find outlm went wrong. The

expected behavior of such a system, rapid adaptation when error information is
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provided and moderately rapid adaptation when it is absent, is in agreement with
experimén_ts from the psychological literature (Pew, 1974); This combination of
feedback and feedforward may prove to be a powerful concept for future models

of adaptation.

5.5.3 The SSM and Optimal Control
The theory of optimal control descrfbes how traje;:torieé may be chosen to |
satisfy a set of movement constraints, while minimizing a cost kfunt':tio'n for a
particular mechanic‘al syétém (Bryson & Ho, 1969). The constraints might specify,
for exémplé, initial and final positions and execution time, while the cost function
| prdvides penaltie§ for, say, errars in position, time of arrival, and expenditure of
energy (the last of which is minimized by humans during at least one motor activity
(Ralston, 1976)).

We have supposed that the functions of motor control are divided into:
High-level processes which plan trajectories without considering the mechanics of
the motor apparatus, and low-level mechanisms which translate these trajectories
into commands understood by the limb. Since the optimization process generates
trajectories, one is inclined to include it with the high-level mechanisms mentioned.
When variables related to the manipulator enter the cost function, however, as

| they do when energy is conserved, the optimization process threatens the
presumed dichotomy between high- and low-level functions. In order to optimize

energy consumption, the brocess which generates trajectories must know which
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‘motor éommands will be required fbr productloh, and that is the business of the
low-level traﬁslator. |

This apparent merging of high- and low-level functions is avoided if the
optimization process gets its information about energy costs, not from the
translator, but from another éource which remembers thé measured costs

associated with previous movements.

5.5.4 A Fair Test of the Model?

The ranges of certain variables have to be limited to sa{is'fy technical
considerations. For instance, all velocities have to be below a maximum. When
very large velocities are allowed the current/force relationship for the DC motors
is no longer valid. This resiriction is especially annoying; because some of the
more important properties of the control system‘ are most clearly exhibited at high
. veiocities. For obvious reasons, the value of M, the state space quantizing factor,

also has to be restricted. thereby reducing the attainable precision of i:ontrol.

Many combinations of the model’s parameters are possible. Limited time
resources forced us to choose relatively few combinations for experimental
investigation. In most cases the experimenter was guided by his intuition derived
from previous experience, and the results were satisfactory. We have no way of
knowing, however, what»'pockets’ of unusual or revealing behavior may have gone
“undetected. |

In spite of these difficulties, | feel that the tests presented here are
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represeotative of the model's abilities and power. From a research point of view,
these drawbacks are compensated in a rather direct way by the degree to which
each of the model’s variables and parameters are available for examination and

manipulation.

5.6 Improvements to the Model

In the course of developing and testing this model, a number of ideas
emerged which were not included in the implementation presented above. Some
~were available at the outset but were not used in order to keep thmgs slmple
Others presented themselves after the experimenter became more familiar with
the system’s operation. Since they migbt be valuable for future work in this field,
this section presents a brief list of these ideas with some discussion of their
motivation. Most of them are not well developed and no plans exist for their

implementation or test.

5.6.1 Insuring,the Command-Force Relationship

Earlier it was pointed out that there are restrictions on the allowable
relationships between the command issued by the oontroller and the net force or
torque applied to the jomt The Scheinman menipuletor used in these tests is
powered by DC torque motors They have the characteristic that, neglecting
friction, the torque produced is proportional to the current through the motor at all

speeds. These motors are driven by servo amplifiers which insure, for a certain
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range of inputs and velocities, that the current through the motor is proportional to
the voltage applied to the amplifier. Since the amplifiers only have a finite voltage
swing (28v) and the motors produce a back emf when in motion, the‘ amplifiers
are not always able to drive the desired current. In order to fcheck for this
condltton the actual voltages across the motors was monitored at all times.
Whenever these values approached 28 volts durlng a measurement that
measurement was ignored becauae the amplifier might have been saturated and
‘applied an unknoWn fovrce |

A more systematuc treatment of this problem could be developed if sensors
were used to measure the actual force delivered by the actuator Then the force
measurement, rather than the command, could be stored with the resulting
acceleration measurement. Measurements of actual force delivered would
automatically adjust for any saturation effects in the actuator. On the other hand,
the translator would only determine the force to apply to a joint, rather than
command -- another piece of hardware would have to convert the desired force
into a command which produced that force. But that one dimensional problem,
involving data for only one joint, is easily-solved This type of a_rrangement would
also have the advantage that changes in properties of the actuators which occur

quickly, such as fatigue or warm-up, need not effect performance of the transiator.
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5.6.2 Practice Improves Practice
| In the present implementation, each practice session is totally independent

from every other practice session. Each session starts about the same, and often
includes a number of wild trajectories that are very ditferent from the desired
m.ovement. Therefore, although much of the data generated might be useful at
some future time, or for replication of some othér movement, they are useless for
the task at hand -- learning to replicate the desired trajectory. -

in man, on thé other hand, experience influences practice. The sophisticated
mover does not flail his limbs around each time he wishes to learn a new
movement. On the contrary, he may begin by executing a reasonably gdo_d '
approximation to His goal on the very first try. After some practice he will be
doing something véry close to the desired response, and each attempt at that level
may be rich in meés_urements usable by the learning mechanism.

This type of regenerative effect:

practice - learning -+ better practice » more learning -+ etc.

could be quite important for future studies. In order to make use of this approach,
the practice algorithm must use the translator's expertise when planning
movements.

In addition to accelerating learning, the practice-improves-practice approach
might be used to explain another important human ability. It is common when

learning a new movement to begin by practicing slowed-down approximations. The
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practice movements are gradually increased in rate until the desired movement is
performed at required speed. If the translator hses the state space memory
during practice, it too could perform in lhi§ way:

The basic idea is that It‘is easier to practice slower movements because
dynamic interactions are minimized. Once informationis gained regarding
slowéd-down versions of a movement, slightly féstef versions could be efficiently
practiced since the system generalize§ to néighborlng states. The initial slow
practicé movement may not be within generalization-distance of the goél.' but an
intgfmediate trajectory can be imprbved.. (Fig. 5.7 Illustrﬁtes génerdlization from
one movement to 3 slightly faster versions.) Eventually the system can learn to
practiée‘ and execute movements of any speed.

of i:obr'se, not all skills are developed using the start-siow/speed-up
paradigm. In many situations it is important to establish the correct form or rhythm
of movement paying little attenti'oh to the details, which can be fine-tuned later.
Here again, a SSM with a pradtice-improves-prﬁctice approach may prove
enlightening, though some hard questions about the form of a movements may have
to be answered fir"st. | |

This scheme, the use of learned data during practice, is a large improvement
over the implemented systeuﬂ which relies on the unchanging practice algorithm. to
'g'enerate data for all appropriate states. We might note, however, that the

methods of learning fast movements by starting with slow ones and of fine-tuning
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movements of roughly the correct gestalt will require help from relatlvely

high-level processes.

5.6.3 Decaying Measurement Vectors |

During the normal course of an organism’s development,’ the mechanical
properties of a limb will change in a number of ways. As new measurernent data
arrive describing these new properties, the translator s equatuons of motion wull
change But there is a potentlal problem whlch lmpaurs the translator s abullty to
adapt, and even allows for wildly deviant performance durmg the adaptation
period.

At any given time there are usually a number of vectors stored in the
temporary buffer awaiting the arrival of others, at whioh time inversion takes
ptace. Each of these vectors may have been generated during differeht mechanical
conditions, if the rheohenical properties of the system are changing rapidly or
measurement data are being generated slowly. If a single inverse computation
includes vectors generated during changin_g mechanical conditions, the resuiting
state space data are not likely to be reliable. (See Fig. 5.17.) Even when the
transition from old to new data is smooth, this effect tends to prolong the amount
of time and practice needed to completely change the controls.

The translator described here does not know when its vectors are no longer
applicable, though performance measures could be used to help obtain such

information. Another solutlon is based on the notton of a deceying memory. |f old
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measurement data are removed from the temporary buffer, ar given reduced
weights, there will be a reduction in the range of measurement dates found .
contributing to any ene inversion. - Of course, the eame sort of temporal decay
could also be applied to data in the state space memory. Observe that | am
edyocating a decay of weight, not a decay of value.

An interesting result comes from conaldering the consequences of applying a
partlcular decay functlon to the state space memory Suppose, first of all, that all
data decay exponentlally During any t|me interval new, old, and intermediate data
are all reduced by the same fractlon. When data do not enter the memory, all
weights are reduced, but the relationships among weights are the same and
behavior remains unchanged. If an exponential with a growing time-constant is
| used, (see Fig. 5. 25); new data will decay faster than old, and the eyatern will tend
to return to previously used values ot course, the tlme-constant need not be
contmuouely growing. An exponentlal decay function wnth a plecewme constant
time-constants, (eg. short plus long term memory; see Fig. 5.25b), would also gwe
a temporary large weight to recent data. |

Now consider the following case: A large amount of data have been
collected and stored. The mechanical properhea ot a limb are artlflcmlly
manipulated and a practice period is permitted. If memory weights decay -
exponentially, the level of performance at any time after the adaptation period, but

before new data are generated, should be the same as that found immediately
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Fig. 5.25 Examples of decay functions with variable time-constants. Examples of
two classes of such functions are shown a) Continuously varying time-constants:
r=-1, fs-t"s, and f=-t"75; b) Piecewise constant time-constant: r={-2, O<t<.75;

-.5, .75<t}. A combination of short and long term memory falls into this second
class.
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after the adaptation period. A decay function that uses a growing time constant,
" however, should result in an initial improvement in porformahco, followed by a
gradual return fo pre-adaptation levels. | |

Hamilton and Bossom (1964), and Choe and Welch (1974) conducted prism
adaptation experiments under these circumstances. Hamilton and Bossom suggest
that their findings argue for a distinction between the mechanisms responsibié for
initial acquisition and those for adaptation. Their results, however, are consistent

with the alternative notion of a variable time-constant memory.
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6 Concluding Remarks

6.1 Derivative and Alternative Models

The State Space Model has been presented, implemented, tested, discussed,

and put into perspective. We now examine cousins and decendents.

6.1.1 The Measuremént Space Model
The following formulation incorporates a number of improveménts into the
design of thé State‘ Space Model,.while maintalning its desirable properties. The
major differences in the new formulation ere:
1) The state space memory and temporary buffer are combined.

Measurement vectors are stored in a state space memory.

Inversions are only performed when data are used during

translation. : ‘ '

2) Hyper-regions are no longer discrete entities.

3) Each measurement vector is labelled with its time of generation.
The age of a vector contributes o its weight during inversion.

4) The neighborhood function, applied before inversion rather than
after, gives each measurement vector a weight determined by its
distance from the desired state.

5) During the planning of a movement the generalized inverse is used
to invert all measurement vectors found in the neighborhood of the
desired state.

 This arrangemént allows for a simpler, less ad hoc specification of the
neighborhood function. When data are taken from the memory they are weighted

as a functlon of their distance from the desired state. The neighborhood function
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can be continuous and the broader it is more the data in the memory are shored in
the production of different movements. A gharper function onabiosbotter
replication of roovements which travel thfough'non-linear portions of the movement
space. Si‘nce oaoh measurement vector oarrios information about its age, the
advantages of a decaying memory can be realized.

- An invertibiliiy index would no longer be noeded beoause oach use of the
generaliiod inverse yields an optimal estimate of the constants of mechanical
descnptuon in the mean square error sense. The procedure descnbed in Section
4.2.2.2, averaging optlmal estimates, is only sub-optimal. The proposed new
method is truly optimal in that each computation of the mechanical constants relies
on the maximum possible number of measurements -- all those present. Though
large inversions of this type are oiponsive in iorms of timo and memory for serial
* computers, they present no speclal problems for computers characterized by large

numbers of parallel interconnections.

6.1.2 The Configuration Space Method CSM

Many control schemes used in practice ignore inertial interactions between
joints and }Coriolis forces, yet these terms can be important during high velocity
motions. This compromise has important implications for industrial applications
where the throughput of a manipulotion process depends on the orm’s speed. The
Importance of CSM is that these terms can be included at low computational cost

with reasonable amounts of. momory Real-time trajectory calculationo may also be
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possible, especially in the context of a distributed computation employing multiple
microprocessors (Raibert & Horn, 1977). Some of the details of this approach are

‘given in Section 1.36.

6.1.3 Multiple Spaces Model

The worst drawback of the SSM is the amount of storage required. lt
increases as the power of the number of state variables; two for each degree of
freedom, M2\ For a few degrees of freedom this number is managably Iarge, but
it soon reaches unreasonable proportuons, even for the renowned capacity of the
central nervous system. (By some analyses the human arm and hand have a total
of 35 degrees of freedom.) There are, however, a number of ways in which the
memories required for each limb or manipulator can be kept to practical sizes.

A review of the terms entering the'equations of motion for a manipulator
reveals that, except for the Coriolis force, each is a function of theposition state
vector or the velocity state vector, but not both. (See Eq. 2.2) Gravitational
forces and moments of inertia are dependent only on the position vector, while
friction is primarily a function of velocity. Since Coriolis forces are typically small,
one might propose the cse' cf two memories; one with N positional dimensions a,nd4

~one with N velocity dimensions. Development of this approach could lead to
practical control applications, especially if used together with hashing techniques.

Under certain circumstances a contraller that uses one memory with

dlmenslonalit'yr 2N cen be replaced by two controllers, each of whlch employs a
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memory with fewer than 2N dimensions. This can be done whenever the -
mechanical properties of the pl’enf may be decomposed Into» non-interacting

| subsections, or when the interactions are constrained to a few degrees of freedom
- Then each contreller will have state variables.whlch represent the net influence of
codpling with the other mechanical corﬁponent. One could imagine the use of this
type of arrangernent in controllmg the interactions between the trunk of the body
and each I|mb Suppose that each of two limbs had 4 degrees of freedom, and the
trunk had another 3. Further suppose that all the coupling at ‘each shoulder could '
be represented in terms of 3 degrees of freedom. If the entire system were

cohtrolled from one memory it would require 2(4+4+3)=22 dimensions. |f three

| separete controllers were used, however, 3 memories would be required, of

dimension 14, 14, and 12. Though these results are still out of the question, we |

are encouraged to pursue this line of attack.

6.1.4 Visually Locete and Move
Man is eble to guide his hands to visual targets. This is essentiallya .
problem of transformation between coordinates systems. He learns to do so in
infancy and early childhood (Held & Hein, 1963; White, 1970; Held & Bauer,
1974). Once established, the relationship between these coordinete systems is
maintained de‘spite natural or experimental changes to the visual and motor

systems. The human mo\)er can maintain or re-attain correspondence between

hand and eye when the relationship between visual and motor worlds are
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disturbed by shifts, distortion, invertion, lateral reversal, magnification, and
rr;inificatlon (Held, 1961; Held & Freedman, 1963; Miles & Fuller, 1974;
Gonshor & Melvill Jones, 1976). |

What mechanism could be résponsible for such flexibility? Is it possible that
'the motor learning we see Ixn eaqh of us is n_ot‘primarily an expression of improved
control, but only an improvement in coordination? Glen Speckert and | desighed
and implemented a controller that employed two prbt.:ésses:‘ one that learns to
transform trajectories from 2-d visual coordinates to 2-d arm coordinates, énd
another that moves the arm along desired arm-coordinate trajectories (Speckert,
1976). Resuits from this system (using a TV camera and the MIT-Scheinman arm)
suggest that certain vform’s of learning, adaptation, andgenéraliz’alidn are possible
even if the process responsible for moving has no learning abilities. Rather, all
improvements in performance correspond to a a more effective.transformation
process. In particular, the system can learn to pick up visually targetted objects
when the visual data provided to the system are disturbed by any of the
- distortions mentioned above. (Not all of these have been demonstrated, but there
is strong reason to believe that each will be correctly learned or adapted.) This is
all done using no trigonometric operations and no complicated mathematics.

We assume that the transformation between a point expressed in visual
coordinates, V;» and the samé point expressed in arm coordinates, A,, only changes

gradually as the point moves throughout space. When the coordinates for points
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are available expressed in both arm and visual coordinates,
{(VpA, (VhD), . . etc.} an interpolatioh will yield the transformed coordinates of
any new nearby point, P, Since topology is not changed by tranéformation of
‘coordinates, nearby points are nearby in both systems. o

The system is most useful when orgamzed by a multl-dimensuonal table quite
similar to the state‘space memory, but only having dimensions of visual position
- coordinates. (This makes sense sincé the dynamics of the problem are not included
here.) Pairs of coordinates are stored in this table when they become available
duridg movement -- the position of the hand in arm coordinates is recorded along
with the simultaneously abserved position of the hand in visual coordinates. When
a transformation is necessary the memory is accessed through the y‘isual
coordinates of the target point, V;. The pairs of nearby coordinates stored in Che
region of the space allow the new A, to be approximated

Of course, this is only the beginning of a theory. No mention has been made |
of usinﬁ »twé Ln_om; eyes on a moving head. Furthermore, there is no .roasori to
prohibit learning by the movement process. More complete work on this and
related models will lead, | hope, to better understanding of motor maps, sensory

maps, sensorimotor maps, and mappings.
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6.2 Problems for Further Research

Many new ideas developed during the pursuit of this thésis, Those that
were well organized were presented in the last séction They consist of new
’apprdaches to the manipulator control problem. A number of problems which are

less well understood, but which bear more work are suggested here.

6.21 Measurement + Error Correction

Throughout this thesis | have emphasized the fact that learning by the SSM
c#nnot be attributed to error correction procedures. Many investigators héve
devised quite effective adaptive controllers which do rely on eﬁ‘or correction.
(Virtually the entire subfield of control theory called identification, serves as an
example.) | feel the host advanced learning controllers will probably result from
the appropriate éombination of thése ‘two ideas: measurement and error correction.
But it is not clear how this can be doné.

In Section 5.5.2 | discuss a ﬁybrid approacﬁ that Oses errors onl& to &eteci
changes in the plant, with correction made by measurement techniques. An
alternate approach might rhaké h§a§urement adjustments until behavior cea§e§ to
improve, then use error correction to make final, high precision adjustments. This
might be especially useful in overcoming one of the most important pitfalls of error
correction learning algorithms -~ their susceptability to local minima
(Tsypkin 1971, 1973). The measurement data can be used to get the solution

onto the correct hi", while error data are used to climb that hill.
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6.2.2 Plan + Servo

Just as the best learning will probably result when measurerﬁent is combined
with error correction, the best control will probably result from judicious
combinations of preplanniﬁg and feedback Control. A number of possibilities in this
area remain to b§ studied: |

1) Can state space data bé used on-line in a reprogramming mode?

2) If the translator works in visual coordinates, can visual errors be
used to reprogram?

3) Perhaps a simple servo-assistance mechanism is adequate in certain
circumstances. What are they?

6.23 Practice

The initial conception of this project described ‘th,e practice algorithm as an
unimportant black box which ‘practices movements’. An important finding of this
work haé. been, hoWéver, thét} the amount and type of learning, adéptation, and
~ especially generalizaﬁon is intimately tied to what a system‘ does when it
practices. A few parameters were adjusted (Section 4.3.4) but no systematic,
comprehensive study was made. | would like to know:

1) Are their special movements which provide the most learning for
the least practice (eigenmovements)?

2) Can state space data be effectively used during practice (Section v
5.6.2)? .

3) How rriuch high-level planning would be needed to permit practice
which started slowly and increased in speed (Section 5.6.2)?

4) Can special probe movements, or probe components be
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incorporated in a practice routine to accelerate learning?
(Nashner 1976) advances this hypothesis.)
5) What do psychblogists mean when they talk about practice? (Few

‘realize that learning n repetitions of a task doesn’t mean n identical
sequences of stimulation and response (Mednick 1964 p.92).)

6.2.4 High-Level Processes

One of the importani advantages of dsivng a translator is .'that hig'h‘-levelv
processes can plan in one language and use the resulting plans to move a number
of limbs which may speak different /anguages. The SSM was designed with this
tacility in mind, yet we have not substantiated the utility of such an arrangement.
A number of workers in artificial intelligence may npw}be in a position to obtain

such verification (Lozano Perez 1976, Mason 1977, Will 1975).

6.3 Summary
o Thé human motor system acquirés control of each limb in the body, adaptsv to
mechanical and sehsory changes, transfers training between practice movements,
and performs coordinate transformations from sensory space to motor space. This
thesis presents the theory and implementation for a model which exhibits these
properties. | |

A controller is proposed which translates descriptions of desired trajectories
into motor plans.‘ The processes which provide input to this translator do not have
to deal with the mechanical properties of the manipulator, and the specified

| tfajéctorié# may be expressed in a coordinate system appropriate to the available
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sensors. The translator’s outputs are motor commands suited to the kinematic and
dynamié properties of a particular manipulator and its actuators.

The model employs parameterized equations of motion m conjunction with a
quantized, multi-dimensional memory organized by state variébles. The memofy is
supplied with data derived from the analysis of practice mo‘vqments. Thg analysis
performed is quite simple and does not employ error correction or search
techniques, as do many learning‘ schemes currently in use. Since iterative methods
are avoided, problems involving local minima are not encountered.

A small computer and three joints of the MIT-Scheinman manipulator were
used to implément the controller and assess its properties. Tests havo verified
‘the controller’s ability to: |

1) acquire usable mechanical descriptions of the manipulator, énd to
use those descriptions to pre-plan effective trajectories.

2) adapt to mechanical disturbances caused by inertial and elastic
loads, and acquire control after the gravity vector is modified.

3) generalize information derived from the practice of one movement
to the execution of other similar movements.

4) use a Cartesian coordinate system for specification of desired |
trajectories when measurement data are provided in that system,
even though motor commands are expressed in joint coordinates.

Since these tests were conducted on a physical manipulator the possibility of
undiscovered vaguaries are greatly reduced.

" The nature of parameterized equations was investigated in order to bri'ng

the State Spéce Mode! and a number of other models into one conceptual
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framework. In addition to descfibing a number of alternate control schemes,
improverhents to the present model were proposed and discussed. These included:

1) Efnployment of a subsidiary controller that maintains the ‘
command-force relationship for each actuator.

2) The use of a more powerful practice algorithm
3) Inclusion of a decay factor in operation of the controller’s memory.
4) Methods for reducing the size of the state space memory.

'5) Elimination of the discrete nature of the memory.

B2 S B == 3= haes b
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Appendix A: Experimental Conditions

Practice Arm Inversion

Fig. Prototype T Coordinates Qrientation Criterion
1.4 PR-12 10 joint upright 550
1.5 PR-11 - joint upright 550
1.6a PR-20-24 10 XYZ horizontal 200
1.6b PR-20-24 10 XYZ horizontal - 200
1.7 PR-20-+24 10 XYZ " horizontal 200

- 5.1 PR-11 10 joint upright 550
5.2 PR-11 10 joint upright 550
53 PR-12 10 joint upright 550
5.4 PR-12 10 joint upright 550
5.5 PR-17 10 joint upright 550
57 PR-10-13 10 joint upright 550
58 PR-10-13 10 joint upright 550
5.9 PR-10-13 10 joint upright 550
5.11 PR-20-+24 10 XYZ horizontal 200
5.12 PR-20-24 10 XYZ horizontal 200
513 PR-20-24 10 XYZ horizontal 200
514 PR-20-24 10 XYZ horizontal 200
516a PR-11 10 joint upright 550
5.16b PR-12 10 joint upright 550
5.18 PR-11 10 joint upright 550
519 PR-11 - Jjoint upright 550
520a PR-11 10 ~ joint upright 550
520b PR-12 10 joint upright 550

5.24 PR-11XYZ 10 XYZ upright 250
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Glossary of Terms

Devices which cause motion by exerting forces. Usually
muscles, motors, hydraulics, etc.

The adjusiment of a control law appropriate to changes in the

- mechanical or sensory properties of the plant. |

arm

biological arm

 CMAC

controller

Coriolis term

CSM

efference copy

error correction

A mechanical device, usually with serial degrees of freedom in
the form of links separated by joints. Used to move objects
and apply forces. Synonyms: Iimb, manipulator. ‘

A type of arm grown from biological materials.

Cerebeller Mode! Articulation Controller: a controller proposed
by Albus. (Recently renamed: Cerebellar Model Arithmetic
Computer.)

An information processing device which -produces signals
designed to produce a desired response in another system.

A torque exerted about one axis of an orthogonal set caused
by simultaneous movement about the other two axes.
Sometimes used loosely in this report to include centrifugal
terms.)

The Configuration Space Method of control. A method of

control currently under investigation by Berthold K. P. Horn and
myself.

A record of the commands issued to a set of actuators.

A learning mechanism that compares the desired response with
the actual response.



Glossary of Terms

exafference

Hyper-region
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Afference caused by movement in the environment not
produced by the organism. '

A portion of 2N-dimensional space for which one set of
constants, J and K, are stored.

internal dynamic model A component of a controller that mimics behavior of the

plant un_der control.

internal inverse dynamic model A component of a controller which, when provided

generalization
limb
man-made arm

manipulator

movement

with a plant’s response, describes the corresponding input.
The process whereby the general level of motor performance
is improved as the result of a particular set of practice date.
Exhibited as transfer.

See armA

- An arm manufectured by man, usuelly made from metals and

plastics.
See arm.

A change in the positions of an arm’s joints. Also refers to the

“path the arm makes during the change.

parametric variable An independent variablé held constant during

parameterization

parameterization.

The process of simplifying a functional relation by substituting '
a set of constant values for a subset of the independent

‘ yariables.

plant

prbtotypo

Any dynamic system.

An internal representation of a desired trajectory




Glossary of Terme ' 197 ~__ Marc Raibert

re-afference The sensory signals produced by an internally generated
movement.

state The position and velocity of an arm.

state space memory A quantized, muiti-dimensional memory orgenized by state
variables.

SSM The State Space Model

tabular equations A set of equations for which a table of coefficients are
required for evaluation. The equations are usually simplified.
Synonym: parameterized equations.

| trajectory The path an arm takes during a movement.

transter Behavior characterized by improvement of one task after
practice of another. Closely related to generalization.

translator A device which converts descriptions of desired trajectories
into appropriate motor commands. Also used in this thesis to
include the mechanisms which allow acquisition of this function.
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Glossery of Veriebles

AL A constant internal to the practice algorithm which influences the
degree of variability found in the practice movements.

B A term in the equations of motion representing the force of frictional.

(o ' A term in the equations of motion representing the Coriolis force.

G A term in the equations of motion representing the gravitational force.

J A term in the simplified equations of motion which represents
equivalent moment of inertia matrix.

K A term in the simplified equations of motion which represents the net
effect of gravity, friction, and Coriolis forces.

r | The state space memory’s time constant.

Ll The learning index.

M “The number of divisions on each dimension of the state space memory.

N The number of joints of a limb. | '

N The number of measurement vectors contributing to one inversion.

P The parameterization indicator.

RMS AE Root-mean-square acceleration error.

RMS FPE Root-mean-square final-position error.

RMS MCE Root-mean-square motor-current error.

RMS PE Root-mean-square position error.

Tmor T Actuator torque vector.

X Iindex of invertability

Xp The independent variables of a function that have been parameterized.

Xy The indep. variables of a function that have not been parameterized.

] A parametric value of 4. '

] A parametric value of §.

At One time slice. Usually 60 msec.

@ The position vector.-

(] The velocity vector.

[} The acceleration vector.

¥p The desired acceleration vector.
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