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I
n this article, a statistical method for mobility prediction that
incorporates terrain uncertainty is presented. Mobile
robotics has been performing a significant role in scientific
lunar/planetary surface exploration missions [1]. In such
missions, mobile robots are required to predict their mobil-

ity to avoid hazards such as immobilizing wheel slip on loose
sand or collision with obstacles. This mobility prediction prob-
lem is thus important to the successful exploration on chal-
lenging terrain. Of particular interest is mobility prediction on
sloped terrain, since travel on slopes can cause extreme longi-
tudinal and lateral slips.

There have been significant works dealing with mobility
predictions and analyses in the military community [2], [3].
These works have primarily focused on empirical analysis of
large (i.e., several ton gross vehicle weight) vehicles. Other
works have been performed to predict the mobility of small
mobile robots while considering interaction mechanics of a
slipping wheel on deformable terrain. Jain et al. have devel-
oped the rover analysis, modeling, and simulation software
(ROAMS) simulator, which can be used for deterministic
mobility prediction and includes models of terrain/vehicle
interactions [4]. A multibody system for deterministic simula-
tion of rover tire–soil interaction has also been demonstrated
[5]. A terramechanics-based dynamic model for exploration

rovers that considers slip and traction forces of a rigid wheel on
deformable terrain has been developed [6].

These works have employed well-known dynamic and terra-
mechanics models to calculate vehicle motion and wheel forces.
However, these models assume prior knowledge of wheel–
terrain interaction physical parameters (i.e., soil cohesion, inter-
nal friction angle, and others). In practical situations, mobile
robots often traverse environments composed of terrain with
unknown properties. These parameters can be estimated
by onboard robotic sensor systems [7]–[9]; however, these esti-
mated parameters remain subjected to uncertainty. Some recent
work has attempted to predict rover mobility on slopes via a
learning-based approach [10]; however, this work does not
explicitly consider uncertainty in terrain physical parameters.

Based on these observations, it can be asserted that practical
approaches to mobility prediction should explicitly consider
uncertainty in terrain physical parameters. A conventional
technique for estimating probability density function of a sys-
tem’s output response from uncertain input distributions is the
Monte Carlo method [11], [12]. This approach generally
requires a large number of analytical or numerical simulation
trials to obtain a probability distribution of an output metric(s)
associated with ranges of uncertain input parameters. Monte
Carlo methods are typically computationally expensive, with
computational cost increasing as the simulation model com-
plexity increases. Structured sampling techniques such as Latin
hypercube sampling, importance sampling, and others can be
used to improve computational efficiency; however, these
gains may be modest for complex problems [13], [14].

Alternatively, extended Kalman filters (EKFs) or particle fil-
ers have been well used for the prediction of a robot’s positionDigital Object Identifier 10.1109/MRA.2009.934823
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in uncertain environments, as mentioned in [15] and [16]; how-
ever, EKFs cannot explicitly deal with uncertainty on individual
parameters. The particle filter is known as sequential Monte
Carlo method, which needs a sensor model [i.e., global posi-
tioning system (GPS) or light detection and ranging (LIDAR)
observations] to successively resample particles in high probabil-
ity regions. Such an approach is not suitable for prior prediction
of mobility before a rover travels in uncertain terrain.

This article proposes a statistical method for efficient mobil-
ity prediction consisting of two techniques: 1) a wheeled vehi-
cle model for calculating wheel–terrain interaction forces and
vehicle dynamic motions [6] and 2) a stochastic response sur-
face method (SRSM) for modeling of uncertainty [17]–[19].
In the wheeled vehicle model, a terramechanics-based
approach is used to calculate interaction forces of slipping
wheels on deformable soil, and a dynamic model is employed
to simulate vehicle motion. An SRSM is used as a functional
approximation technique to obtain an equivalent system
model with reduced complexity. Generally, the use of SRSM
can reduce the number and complexity of model simulation
trials to generate output metric statistics, when compared with
Monte Carlo methods. In this article, the computational effi-
ciency of SRSM is confirmed through the comparison with
those of standard Monte Carlo (SMC) method and Latin
hypercube sampling Monte Carlo (LHSMC) method.

Experimental studies of the proposed statistical mobility
prediction method are conducted for a slope-traversal scenario
in two different terrains. Here, two key terrain parameters,
cohesion and internal friction angle, are chosen as uncertain
parameters. The proposed method provides a prediction of

rover motion, with confidence ellipses indicating probability
ranges of the predicted position due to terrain parameter
uncertainty. Further, the method predicts the rover’s probable
orientation and wheel slippage.

Outline of Statistical
Mobility Prediction Method
Figure 1 shows a flowchart of the statistical mobility prediction
method proposed in this article. This method is divided into three
steps: First, uncertainty in terrain parameters Gi is represented as
functions of standard random valuables (i.e., Gaussian variables):

Gi ¼ li þ rin, (1)

where li is the mean, ri is the standard deviation, and n is a set of
standard normal random variables. Following the approach of
[18], M sample points are calculated, where M is approximately
twice the number of coefficients in SRSM reduced model (2).

In the second step, M dynamic simulations using the
wheeled vehicle model are carried out to obtain several values
for the variables of interest in a state space X corresponding to
the uncertain inputs Gi. The state space X consists of state var-
iables of the vehicle, for example, vehicle position and orienta-
tion, or wheel slippage.

In the third step, SRSM is employed to develop an equivalent
reduced model of the state space, which can be expressed by

X(t, n) ¼
XN
j¼0

X j(t)Uj(n), (2)

where X j(t) is a set of unknown coefficient values that are cal-
culated via a regression-based approach [18]. The number of
unknown coefficients (N þ 1) is determined by both the
degree q of polynomial expansion (4) and the number of
uncertain parameters. Once the coefficients are determined,
the vehicle dynamic motion with terrain uncertainties can be
predicted using the reduced model.

Uncertainty Analysis Approach

Monte Carlo Method
and Latin Hypercube Sampling
Monte Carlo methods are well-known techniques for estimat-
ing a probability distribution of a system’s output response
from uncertain input parameters [11], [12]. A typical calcula-
tion step of Monte Carlo method to obtain the model output
statistics is as follows: first, uncertain input parameters for an
analytical or numerical system model are randomly sampled
from their respective probability distributions. Then, multiple
simulation runs are conducted using each set of the input
parameter values to obtain the corresponding outputs for each
case. The probability distribution of a user-defined output
metric can then be generated while estimating various statistics
such as mean and variance.

In the SMC method, since random sampling of the input
parameter distributions is required, the number of simulation
runs must be large enough to ensure representation of the

Dynamic Simulation
(Wheeled Vehicle Model)

Stochastic Simulation
(SRSM)

Terrain Parameters with Uncertainty

X = [x y z θx θy θz s  β ]T

X(t, ξ )=ΣXj(t)Φ(ξ )
N

j = 0

(ξ = [ξ0, ξ1 ,...,ξM])
Gi = µi + σi ξ

Prediction of  6 DoF Vehicle Dynamics

Figure 1. Flowchart of statistical mobility prediction method.
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entire input parameter range and also to converge to the out-
put distribution.

Several methods for efficient sampling of input parameters
from their probability distributions have been developed. The
LHSMC method [13], [14] ensures dense coverage of each
input parameter’s range by dividing the range into disjoint
intervals of equal probability and then randomly sampling a
parameter value from each interval (Figure 2). This approach
reduces the number of samples of input parameters due to this
efficient sampling technique and is thus an improvement over
the SMC method in terms of computational cost.

Stochastic Response Surface Method
SRSM provides a computationally efficient method for uncer-
tainty propagation through the determination of a statistically
equivalent reduced model [17], [18]. In SRSM, inputs to a sys-
tem model may be given as functions of independent identi-
cally distributed (iid) normal random variables, each having
zero mean and unit variance [e.g., as defined in (1)]. The same
set of input random variables is then used for deriving the
statistics of system model outputs.

An equivalent reduced model for output metrics is
expressed as a series expansion in terms of standard random
valuables as multidimensional Hermite polynomials with nor-
mal random variables

y ¼ a0 þ
Xn

i1¼1

ai1C1(ni1 )þ
Xn

i1¼1

Xi1

i2¼1

ai1ai2C2(ni1 , ni2 )þ � � � ,

(3)

where y is an output metric, ai1, ai2, . . . are unknown coeffi-
cients to be determined, and ni1, ni2, . . . are iid normal random
variables. The Hermite polynomial of degree q is given as

Cq(ni1 , ni2 , . . . , niq ) ¼ (�1)qe
1
2n

T n
3

@q

@ni1 , . . . , @niq

3 e�
1
2n

T n:

(4)

For notational simplicity, the series in (3) may be rewritten
as shown in (2) as

y(t, n) ¼
XN
j¼0

yj(t)Uj(n), (5)

where the series is truncated to a finite number of terms, and
there exists a correspondence between Cq(ni1, ni2, . . . , niq) and
Uj(n) and their corresponding coefficients. In this article, the
Hermite polynomial is used as an equivalent reduced model
since input random variables are assumed to be Gaussian varia-
bles; however, different orthogonal polynomial basis functions
can also be used for the probability distribution of other non-
Gaussian variables [19].

The series expansion contains unknown coefficient values
that can be determined from a limited number of system
model simulations to generate an approximate reduced model.
A set of sample points is selected, and model outputs at these

points are used for calculating the unknown coefficients [18].
Once the statistically equivalent reduced model is formulated,
it can be used to determine statistical properties related to
mobility prediction, such as position and orientation of the
vehicle subject to uncertainty. Note that the accuracy of the
model output increases as the order of the expansion increases.

Application of SRSM to Rover Mobility Prediction
In this article, two key terrain parameters, cohesion c and
internal friction angle /, are chosen as uncertain variables.
These parameters were chosen because of their influence on
maximum terrain shear strength. These uncertain parameters
are defined by the following normal distributions:

c ¼ lc þ rcnc

/ ¼ l/ þ r/n/

�
, (6)

where lc and l/ are the means, rc and r/ are standard devia-
tions, and nc and n/ are standard normal random valuables.

The output metrics considered in this article include vehi-
cle position, orientation, and wheel slippage, expressed as sec-
ond-order multidimensional Hermite polynomials:

X(t, n) ¼ X0(t)þX1(t)nc þX2(t)n/

þX3(t)(n
2
c � 1)þX4(t)(n

2
/ � 1)þX5(t)ncn/, (7)

where X0(t), . . . , X5(t) are the unknown coefficient matrices.
The state-space X is then defined as

X ¼ x y z hx hx hx s b½ �, (8)
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Figure 2. Illustration of sampling using the Latin hypercube
sampling method.
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where (x, y, z) are the vehicle position, (hx, hy, hz) are the vehi-
cle orientation, and s and b include the slip ratios and slip
angles of each individual wheel, which are respectively defined
in (19) and (20) later.

Spectral stochastic analysis [20], [21] is then performed using
the expansion defined in (7) to obtain time-series predictions of the
motion path of the rover, vehicle orientations, and wheel slippages.

Confidence Ellipse Calculation
Statistical techniques, such as Monte Carlo method and SRSM,
can provide predicted rover path coordinates (x, y) under uncer-
tainty. Relevant output statistics such as mean, variances, and
covariance can also be calculated. Based on these statistics, the
motion path (here taken as the mean path) can be augmented
with ellipses defined by the variances and covariance (see Figure 3).
The ellipses indicate confidence levels for the predicted position
on the path. The technique for confidence ellipse calculation is
drawn from the method presented in [22].

Given a sufficient sample size n from Monte Carlo method
or SRSM of motion path coordinates xi ¼ xi, yi½ �T , a sample
mean vector �x is given as

�x ¼ �x, �y½ �T , (9)

where

�x ¼ 1

n

Xn

i¼1

xi, �y ¼ 1

n

Xn

i¼1

yi: (10)

The sample covariance matrix S is then determined as

S ¼ 1

n� 1

Xn

i¼1

(xi � �x)(xi � �x)T ¼ s2x rsxsy
rsxsy s2y

� �
, (11)

where sx and sy are the sample standard deviations, sxy the sample
covariance, and r the sample correlation index. Then, the equation
for a confidence ellipse is formulated by the following equation:

(x� �x)TS�1(x� �x) ¼ C2, (12)

where

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln (1� P)

p
, (13)

and P is the probability that determines the confidence level of
the predicted position.

Then, (12) can be rewritten by substituting (9) and (11):

1

1� r2

(x� �x)2

s2x
� 2r(x� �x)(y� �y)

sxsy
þ (y� �y)2

s2y

" #
¼ C2: (14)

As illustrated in Figure 3, the principal semiaxes of the con-
fidence ellipse for a given probability P are obtained from the
following relationships:

ax ¼ Cs0x, ay ¼ Cs0y, (15)

where ax and ay denote the major and minor semiaxes of the
confidence ellipse. s0x and s0y are expressed by

s0x ¼ s2x þ s2y þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s2x � s2y)

2 þ 4r2s2xs
2
y

qh i.
2

n o1=2

s0y ¼ s2x þ s2y �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s2x � s2y)

2 þ 4r2s2xs
2
y

qh i.
2

n o1=2

9>>=
>>;: (16)

The orientation of the confidence ellipse with regard to the
x-y coordinate is defined by the inclination angle

a ¼ 1

2
tan�1 2rsxsy

s2x � s2y
: (17)

Wheeled Vehicle Model
Dynamic simulation of a wheeled rover requires two submodels: a
vehicle dynamic model of the rover to obtain several values for
each state space variable and a wheel–terrain contact model to cal-
culate the interaction forces of a wheel on deformable soil at each
dynamic simulation step.

Vehicle Dynamic Model
Here, a rover is modeled as an articulated multibody system.
The vehicle addressed in this article is assumed to be a four-
wheeled vehicle, as shown in Figure 4.

The dynamic motion of a vehicle for the given traveling and
steering conditions are numerically obtained by successively
solving the following motion equation:

H

_v0

_x0

€q

2
64

3
75þ CþG ¼

F0

N0

s

2
64

3
75þ JT Fe

N e

� �
, (18)

where H represents the inertia matrix of each body, C is the
velocity-depending term, G is the gravity term, v0 is the trans-
lational velocity of the vehicle, x0 is the angular velocity of the
vehicle, q is the angle of each joint (such as wheel rotation and
steering angle), F0 ¼ 0, 0, 0½ �T is the forces at the centroid of
the vehicle body, N0 ¼ 0, 0, 0½ �T is the moment at the centroid

x

y

xb

ay

ax

yb

y

y ′

x ′
0

Csy
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α

Confidence Ellipse

x

Motion Path

Figure 3. Confidence ellipse on the predicted motion path of
the vehicle.
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of the vehicle body, s is the torques acting
at each joint (wheel/steering torques), J
is the Jacobian matrix, and Fe is the
external forces acting at the centroid of
each wheel. The wheel–terrain contact
model, as described in (21)–(23) later,
calculates each external force. N e is the
external moment acting at the centroid
of each wheel.

The vehicle dynamic model is re-
quired to be equivalent to the kinematic/
dynamic parameters (i.e., geometric
dimensions, mass, inertia, and others) of
the corresponding vehicle addressed in the
mobility prediction algorithm.

Wheel–Terrain Contact Model
Wheel–terrain interaction mechanics
has been well investigated in the field of
terramechanics [23], [24]. A model for a
rigid wheel traveling on deformable soil
is shown in Figure 5. A wheel coordi-
nate system is defined as a right-hand
frame; in this system, the longitudinal
direction is denoted by xw, the lateral
direction by yw , and the vertical direc-
tion by zw.

The slip ratio (i.e., slip in the longitu-
dinal direction of wheel travel) is defined
as a function of the longitudinal traveling
velocity of the wheel vx and the circum-
ferential velocity of the wheel rx, where
r is the wheel radius and x represents the
angular velocity of the wheel:

s ¼ (rx� vx)=rx ( rxj j � vxj j: driving)
(rx� vx)=vx ( rxj j < vxj j: braking):

�
(19)

The slip ratio assumes a value in the range from�1 to 1.
The slip angle expresses the slip in the lateral direction of

wheel, and it is defined as a function of vx and the lateral travel-
ing velocity vy as follows:

b ¼ tan�1 (vy=vx): (20)

Wheel–terrain contact forces, including the drawbar pull
Fx, side force Fy, and vertical force Fz, can be calculated by the
following equations [6], [24]:

Fx ¼ rb
Z hf

hr

sx(h) cos h� r(h) sin hf gdh, (21)

Fy ¼
Z hf

hr

rbsy(h)þ Rb½r � h(h) cos h�
� �

dh, (22)

Fz ¼ rb
Z hf

hr

sx(h) sin hþ r(h) cos hf gdh, (23)

where b represents the wheel width, r(h) the normal stress
beneath the wheel, sx(h) and sy(h) are the shear stresses in the
longitudinal and lateral direction of the wheel. The contact
patch of the wheel is determined by the entry angle hf and exit
angle hr. Rb is modeled as a reaction resistance generated by
the bulldozing phenomenon on a side wall of the wheel [6]. Rb

is a function of wheel sinkage h. Also, r(h), sx(h), and sy(h) are
defined by the following equations [24]:

r(h) ¼

(ckc þ qbk/)
r
b

� 	n
( cos h� cos hf )

n (hm � h < hf )

(ckc þ qbk/)
r
b

� 	n

cos hf �
(h� hr )(hf � hm)

hm � hr

� �
� cos hf

� �n

,

(hr < h � hm)

8>>>>>>>>><
>>>>>>>>>:

(24)

sx(h) ¼ ½c þ r(h) tan /�½1� e�jx(h)=kx �
sy(h) ¼ ½c þ r(h) tan /�½1� e�jy(h)=ky �

)
,

(25)

where kc and k/ represent the pressure sinkage moduli, q is the
soil density, n is the sinkage exponent, hm is the maximum

mg
fw2

fw3

fw1

fw4

Steering

Driving

xb

yb

ZbMain Body

(a) (b)

Figure 4. Vehicle dynamic model as an articulated multibody system. (a) Rover test
bed. (b) Vehicle dynamic model.
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stress angle, c is the soil cohesion, / is the soil internal friction,
jx and jy are the soil shear deformations, and kx and ky are the
soil deformation moduli.

From the aforementioned equations, it is obvious that the
terrain uncertainties addressed in this article (cohesion c and
internal friction angle /) directly affect calculation of the nor-
mal and shear stresses and result in uncertainty in wheel–ter-
rain contact force calculation.

Note that the wheeled vehicle model described in this sec-
tion has been developed and validated in the range where the
wheel slip ratio is from 0.0 to 1.0 and the wheel slip angle is
from 0� to 630�, as seen in [6].

Simulation and Experimental Studies
of Mobility Prediction Performance
In this section, the computational efficiency of (benchmark)
SMC, LHSMC, and SRSM approaches are compared via sim-
ulation study. Then, an experimental study of the mobility
prediction algorithm performance in two different terrains is
described. The validity of the proposed technique is confirmed
through the comparison between predicted and experimental
motion paths of the rover.

Scenario Description
As shown in Figure 6, the mobility prediction scenario is one
of a four-wheeled rover traversing flat, sloped terrain with a
side-slope angle of 10�, while maintaining 0� of steering angle
at every wheel. The rover (see Figure 4) has dimensions of
0.44 m (length) 3 0.30 m (width) 3 0.30 m (height) and
weighs approximately 13.4 kg in total. Each wheel has a diam-
eter of 0.11 m and a width of 0.06 m. The angular velocity of
each wheel is controlled to maintain 0.3 rad/s.

The coordinate system of the rover is described in Figure 7.
The position and yaw orientation (heading) of the rover body
are expressed based on a slope-coordinate system

P
s. Kine-

matic and dynamic parameters of the rover are summarized in
Tables 1 and 2, respectively.

The terrain surface of the slope is assumed to be evenly cov-
ered with two different types of soil: in Case A, the surface consists
of the Lunar regolith simulant described in [25], whereas in Case
B, it is covered with cohesionless, Toyoura sand provided by [26].

Uncertainties are represented in two critical terrain physical
parameters: cohesion and internal friction angle. The mean and
deviation of these parameters for the two soils of interest were
determined by manual characterization and are summarized in
Table 3. (Note that the mean and deviation can generally be esti-
mated by engineering approximation or predicted to be similar
to well-characterized soils.) Other parameters for the calculation
of wheel–terrain interaction forces are summarized in Table 4.

Algorithm Flow of Mobility
Prediction Method
Rover mobility is predicted following
the flowchart in Figure 1. In this study,
the probability distributions due to ter-
rain uncertainty include the motion path
during rover slope traversal, vehicle ori-
entation, and wheel slippage.

The algorithm flow of the proposed
mobility prediction method is summar-
ized as follows:

1) choose a sample value for the stan-
dard normal random variables nc

and n/ and then calculate terrain
parameters with uncertainty by (6)

2.0 m
z
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yb
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x

y

Slope
AngleSlope Coordinate
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ybxb
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{ΣS}
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(b)
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Figure 6. Mobility prediction scenario: slope traversal with
zero degree steering angles. (a) A schematic view of the
scenario and (b) tiltable test field with the rover test bed.
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2) conduct slope traversal simulations over the set of
uncertain terrain parameters Gi:
a) determine s such that the steering angle and wheel

angular velocity are controlled to maintain their
desired values

b) derive the external forces Fe acting at each wheel
from the wheel–terrain contact model of (21)–(23)

c) solve (18) to obtain the rover position, orientation,
and velocity

d) calculate the slip ratio and slip angle by (19) and (20).
3) return to Step 1 until sufficient data sets of the state

space X for calculation of the unknown coefficients
are obtained. Taking the number of model simulation
trials M to be approximately twice the number of
unknown coefficients, (N þ 1) has been shown to
yield robust coefficient calculations [18], [20]

4) calculate the unknown coefficient matrices for the
multidimensional Hermite polynomials using singular
value decomposition and a regression-based approach

5) formulate a statistically equivalent reduced model as in
(7) for the output uncertainty, and then predict the
rover position, orientations, and wheel slippages

6) calculate confidence ellipses based on (14) and draw a
motion path with ellipses for visualization purposes.

Simulation Results and Computational Efficiency
Simulation results of the motion paths of the rover using SMC,
LHSMC, and SRSM are shown in Figures 8 (Case A: Lunar
regolith simulant) and 9 (Case B: Toyoura sand).

The solid black line shows the predicted motion path using
SRSM. This consists of the mean value of the rover position (x
and y) calculated from the reduced model. In this case, the
motion path obtained from SRSM is nearly identical to those

obtained from SMC and LHSMC (solid gray and dashed black
lines, respectively), making the results difficult to distinguish in
the figures. In Figure 8, the difference between the rover’s final
positions, as computed by SRSM and SMC, was 0.001 m. In
Figure 9, the difference between the rover’s final positions, as
computed by SRSM and SMC, was 0.002 m.

The graphs also illustrate confidence ellipses with a proba-
bility P ¼ 95% (�2r) in each predicted motion path. These
ellipses of the three different approaches nearly coincide with
one another. This indicates that the statistics such as variances
and covariance obtained from SMC, LHSMC, and SRSM are
also nearly identical. This result confirms that SRSM can
provide a statistically equivalent representation of the complex
system model considered in this analysis (i.e., the vehicle
dynamic and wheel–terrain contact models).

Table 5 summarizes the computational time for mobility
prediction between three approaches. The number of simula-
tion runs of SMC was set as n ¼ 500, while that of LHSMC
was n ¼ 100. The computational time of SRSM was approxi-
mately 71 times faster than that of SMC and 14 times faster than
LHSMC. This is due to the fact that SRSM avoids multiple runs
of the nonlinear model, which results in reduced simulation

Table 1. Rover kinematic parameters.

Coordinate

x Axis

(m)

y Axis

(m)

z Axis

(m)P
b!

P
1 �0.017 0.114 �0.011P

b!
P

2 �0.017 �0.114 �0.011P
1!

P
3 ,
P

2!
P

6 0.222 �0.050 �0.035P
1!

P
4 ,
P

2!
P

5 �0.222 �0.050 �0.035P
3!

P
7 ,
P

4!
P

8 0.000 0.045 �0.071P
5!

P
9 ,
P

6!
P

10 0.000 �0.045 �0.071

Table 4. Terrain parameters and values.

Parameter

Value

Unit

Case A: Lunar

Simulant

Case B: Toyoura

Sand

kc 1.71 0.0 –

k/ 4754.7 1203.5 –

q 1700.0 1490.5 kg/m3

n 1.0 1.7 –

kx 0.104 0.077 m

ky 0.031 0.031 m

Table 2. Rover dynamic parameters.

Mass

(kg)

Inertia (kg Æ m2)

Ix Iy Iz

Main body
P

b


 �
7.17 0.064 0.104 0.095

Rocker arm
P

1 ,
P

2


 �
0.85 0.000 0.023 0.028

Steering blockP
3 , . . . ,

P
6


 � 0.56 0.001 0.001 0.001

Wheel
P

7 , . . . ,
P

10


 �
0.58 0.001 0.001 0.001

Table 3. Statistics of uncertain
terrain parameters.

Parameter

Case A: Lunar

Simulant

Case B: Toyoura

Sand

Mean Std. Dev. Mean Std. Dev.

c (kPa) 8.0 1.0 0.08 0.01

/(�) 37.2 4.65 38.0 2.38

A conventional technique for

estimating probability density

function of a system’s output

response from uncertain input

distributions is the Monte Carlo

method.
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time. Therefore, SRSM significantly improves the computa-
tional efficiency compared with conventional methods. These
computations were performed on a 1.66-GHz laptop PC.

For onboard usage of the proposed method, the wheeled
vehicle model can be simplified as long as it provides equivalent

performance to the accurate model so that
the computational time will be reduced
further. For example, the linear approxi-
mation of wheel stress model reported in
[7] can reduce the complexity of wheel–
terrain contact model.

Experimental Results
and Discussions
Statistical mobility predictions of the
motion paths of the rover on two differ-
ent types of soil are shown in Figures 10
(Case A) and 11 (Case B) with experi-
mental motion paths.

The predicted motion path of the
rover obtained from SRSM is drawn as a
gray line. Confidence ellipses were cal-
culated with two different probabilities,
P ¼ 68% (�1r), drawn as black ellip-
ses, and P ¼ 95% (�2r), drawn as gray
ellipses. These ellipses show the proba-
ble rover position considering uncer-
tainty in terrain physical parameters. As
expected, the 1r confidence ellipses are
smaller than the 2r ellipses. The magni-
tude of the confidence level for mobility
prediction can thus be tuned by the
choice of probability.

The solid black line depicts the exper-
imental motion path, which was ob-
tained via laboratory experimentation.
The path was measured using a motion-
capture camera (Stereo Labeling Camera
developed by CyVerse Corp.), with a
positional accuracy of 0.01 m. Three
experimental runs were performed for
each soil. Here, a typical result among
them is presented.

It can be seen that the rover reaches
(x, y) ¼ (0:53,�0:18) in Case A and
(x, y) ¼ (1:10,�0:26) in Case B, having

a relatively large positional uncertainty because of the uncer-
tainty in terrain parameters. Based on (15), the dimensions of the
2r confidence ellipses can be calculated as (ax, ay) ¼ (0:06, 0:03)
in Case A, and (ax, ay) ¼ (0:16, 0:01) in Case B. In both cases,
the experimental motion path falls within the predicted
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Figure 8. Mobility prediction with different approaches: SRSM, SMC, and LHSMC in
Case A (Lunar regolith simulant).
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Figure 9. Mobility prediction with different approaches, SRSM, SMC, and LHSMC in
Case B (Toyoura sand).

Table 5. Computation time for mobility
prediction analysis.

Method

Case A: Lunar

Simulant

Case B: Toyoura

Sand

SMC (500 runs) 17526.1 s 79994.1 s

LHSMC (100 runs) 3507.2 s 16232.5 s

SRSM (second order) 245.8 s 1125.9 s

Table 6. Mobility prediction results.

Parameter

Case A: Lunar

Simulant

Case B: Toyoura

Sand

Mean 2r Dev. Mean 2r Dev.

Roll (�) 10.1 0.00 13.3 0.01

Yaw (�) �0.17 0.17 9.58 0.09

Slip ratio 0.43 0.03 0.29 0.08

Slip angle (�) �18.8 3.93 �14.5 4.20
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confidence ellipses, and in particular, the 1r ellipses still con-
tain the experimental results. This suggests that the proposed
mobility prediction can be used to reasonably predict rover
motion. Viewed from another perspective, the results suggest
that the actual (i.e., experimental) terrain parameters lie
within the assumed ranges.

Experimental results regarding the rover orientations (roll
and yaw) and wheel slippage (at the front-left wheel of the
rover) are summarized in Table 6. The predicted values include
the uncertainty bounds on the 2r deviations. The deviations of
the vehicle orientations are negligible in both cases, indicating
that terrain uncertainty does not have a significant influence on
vehicle orientation in these cases.

The mean value of the wheel slip ratios are approximately
0.3–0.4, with small deviations in each case. However, the devia-
tions of the slip angles are approximately 25% of their mean value.
Since the deviation of the lateral wheel slip (measured by slip
angle) is more significant than that of the longitudinal wheel slip
(measured by slip ratio), deviation of the
lateral vehicle position (depicted by the
major axis of the confidence ellipses in
Figures 10 and 11) is larger than that of
the longitudinal vehicle position (depicted
by the ellipses’ minor axes). Thus, as
expected, for the case of slope traversal,
uncertainty in terrain parameters largely
contributes to the deviation in the lateral
direction of the rover rather than in the
longitudinal direction.

SRSM models are generally con-
structed for specific scenarios. An SRSM
model developed for a scenario (e.g., 10�
downhill traverse) would not be used to
model other scenarios (e.g., 20� traverse).
However, it is possible to develop other
SRSM models for other scenarios based
on the proposed method, because genera-
tion of an SRSM model is relatively com-
putationally inexpensive. In addition, an
SRSM model is generally constructed for
a particular scenario to include estimates
of variability in that scenario. In the appli-
cation studied here, this includes variabil-
ity in soil parameters.

Conclusions
In this article, a statistical mobility predic-
tion for planetary surface exploration
rovers has been described. This method
explicitly considers uncertainty of the ter-
rain physical parameters via SRSM and
employs models of both vehicle dynamics
and wheel–terrain interaction mechanics.

The simulation results of mobility
prediction using three different techni-
ques, SMC, LHSMC, and SRSM, con-
firms that SRSM significantly improves

the computational efficiency compared with those conven-
tional methods.

The usefulness and validity of the proposed method has
been confirmed through experimental studies of the slope-
traversal scenario in two different terrains. The results show
that the predicted motion path with confidence ellipses can be
used as a probabilistic reachability metric of the rover position.
Also, for the slope-traversal case, terrain parameter uncertainty
has a larger influence on the lateral motion of the rover than
on longitudinal motion.
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Figure 10. Mobility prediction of motion path with confidence ellipses,
P ¼ 68% (�1r) and P ¼ 95% (�2r) in Case A (Lunar regolith simulant).
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Figure 11. Mobility prediction of motion path with confidence ellipses,
P ¼ 68% (�1r) and P ¼ 95% (�2r) in Case B (Toyoura sand).

SRSM is used as a functional

approximation technique to obtain

an equivalent system model with

reduced complexity.
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Future directions of this study will apply the proposed
technique to the path-planning problem. Here, confidence
ellipses will be used to define collision-free areas, which will
provide useful criteria for generating safe trajectories.

Keywords
Field robots, space robotics, wheeled robots.
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Monte Carlo methods are well-

known techniques for estimating a

probability distribution of a system’s

output response from uncertain

input parameters.
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