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Abstract—We analyze the anonymous communication patterns
of 2.5 million customers of a Belgian mobile phone operator.
With these communications, we construct a social network of
customers, that we call microscopic network. Grouping customers
together by billing address city, we obtain a network of cities,
which we call the macroscopic network, built from 571 towns and
cities in Belgium. We show that the macroscopic network has both
a degree distribution and edge weight distribution with lognormal
characteristics. We find that inter-city communications can be
characterized by a gravity model: the intensity of communication
between two cities is proportional to the product of the two
populations divided by the square of the distance between the
cities. Furthermore, we observe that intra-urban communications
scale superlinearly with city population.

I. INTRODUCTION

In the last decade, social network analysis has attracted
increasing interest. This increase of interest is mainly due to
the availability of large human-generated datasets, that allow
wide-scale analysis of social behavior. Mobile phones have
played an important role in this content and various studies
of anonymized datasets have allowed significant progress in
understanding the structure of our social network [1], our
ability to gather in communities [2], the variety of our ways to
create connections [3], as well as the dynamics of our contacts
with friends [4].
Recently, a geographical component was added to mobile
phone networks. This component has been added in two
different ways, either by tracking users each time they make
a phone call, or by assigning to every user a home address,
assuming that his activities are centered in that position. Both
ways have given remarkable results, the first method enabled
to infer a model of human displacement [5], while the second
showed that the probability for two people to know each other
decreases with physical distance [6].
Yet, this second way allows another kind of analysis, which
has not yet been explored. Based on the location of the
customers addresses (typically at ZIP code level), one is able
to group those customers together by cities and analyze how
these groups interact. Similar analysis has been done based on
different datasets and aggregation level [7], [8], [9].
The aim of this work is to analyze a communication network
between Belgian cities that is constructed based on individual

calling patterns.
From the anonymized mobile phone communications of a
Belgian operator, we infer a human social network where
nodes are customers and edges are weighted by the total time
of call between them. We call this network the micro-network.
By grouping customers by residential ZIP codes, we also infer
a social network of cities, where nodes are cities and edges are
weighted by the total time of call between their inhabitants.
This network is the macro-network.
The article is structured as follows : in section 2, we present
the analyzed data, as well as the definitions of cities we use.
In section 3, we construct the two layers of the network, and
analyze how volume of calls relate to the size of cities and
the impact of distance. Finally, in section 4, we provide some
conclusions.

II. MICRO NETWORK: THE COMMUNICATION NETWORK OF
BELGIAN CUSTOMERS

We consider mobile communications made by more than
3.3 million customers of a Belgian mobile phone operator
over a period of 6 months in 2006 [6]. Every customer
is identified by a surrogate key and to every customer
we associate its corresponding billing address zip code.
To construct the micro-network, we have filtered out calls
involving other operators (there are three main operators in
Belgium), incoming or outgoing, and we have kept only
those transactions in which both the calling and receiving
individuals are customers of the mobile phone company. To
eliminate “accidental calls”, we have kept links between two
customers i and j only if there are at least six calls in both
directions during the 6 months time interval1. The resulting
network is represented by a weighted graph G(V ,E) of 2.5
million nodes and of 38 million links. The link between
customers i and j is weighted by their communication
intensity, the total communication time in seconds lij
To analyze the relation between this social network and

1The limit of 6 is the one chosen by the authors of [6]. A limit is needed
so as to remove strongly connected hubs, such as call centers, from the
network and to remove connections that are not human to human connections.
The authors of [6] report that their observations are robust with respect to
modifications of the bound of 6 calls.
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geographical positioning, we assign customers to cities based
on their billing address zip code. Belgium is a country
of approximately 10.5 million inhabitants, with a high
population density of 344 inhab./km2. The Belgian National
Institute of Statistics (NIS) [10] divides this population in
571 cities (cities, towns and villages), whose sizes show an
overall lognormal population distribution with approximate
parameters µ = 4.05 and σ = 0.37.2

The analyzed communication network provides information

Fig. 1. Ranks of city population sizes (blue triangles) and number of
customers (red squares) follow similar distributions.

for the operator’s customers rather than for the entire
population. However, the number of customers for each city
follows the same lognormal distribution as the total population,
this may suggest that our dataset is not structurally biased
by particular user-groups and market shares. This is also
confirmed by having the rank of city population sizes, (Fig.
1), match the rank of customers. By population of a city, we
will furthermore mean the number of customers living in this
city.

III. MACRO NETWORK: THE COMMUNICATION NETWORK
OF BELGIAN CITIES

By aggregating the individual communications at city level,
we obtain a network of 571 cities in Belgium.
In this macro-network, each node represents a group of nodes
in the micro-network. To each node A of the macro-network,
we associate a set sA = {i1, i2, . . . } that contains the nodes
of the micro-network that belong to it. As each node of the
micro-network is assigned to one and only one city, the sets
sA1 , sA2 , . . . are disjoint and their union is the set of all nodes
V .

sAm
∩ sAn

= ∅ ∀Am 6= An,

sA1 ∪ sA2 ∪ · · · ∪ sAN
= V

2The lognormal distribution of city size is consistent with similar data on
US cities [11].

We can then define for each node A of the macro-network its
mass MA as |sA|, namely the number of nodes of the micro-
network that belong to it.
We define the intensity of interaction between the the nodes
A and B by (Fig. 2):

LAB =
∑

i∈A, j∈B
lij .

Finally, we also define three measures of node strength,
namely the incoming strength L∗A, the outgoing strength LA∗
and the internal strength LAA as follows:

L∗A =
∑

i /∈A,j∈A

lij , LA∗ =
∑

i∈A,j /∈A

lij ,

LAA =
∑

i∈A,j∈A
lij .

In network analysis, classical clustering is based on the net-
work structure, like in community detection, where strongly
connected nodes are aggregated together in communities [12].
Here, we use a different clustering method, where the criteria
of aggregation does not depend on the network structure, but
on geographical proximity. Although this kind of networks is
widely met in daily life, few analysis has been done on the
properties of macroscopic networks, and about the influence
of the microscopic level on the macroscopic one. Examples of
these aggregations can be found in various contexts, spanning
from economics to transport [13], [14].

A. Degree and Edge weight distributions

Analyzing the macro-network, we observe properties that
are sharply different from typical social network characteris-
tics. For example, the degree distribution is relatively narrow
and spans from approximatively 100 to 570. It also presents a
lognormal distribution (Figure 2), in opposition to the power
law traditionnaly found in social network analysis.
The same lognormal distribution is also observed for the
distribution of the intensities LAB (Figure 3). The interest of
this lognormal distribution is that, contrary to power laws, the
values are equally distributed around the average, while the
average of a power law distribution is usually not representa-
tive of the distribution.

B. Scaling behaviors in the intensity of interaction

The incoming and outgoing strengths represent the total
time spent on the phone by customers of the city with the
rest of the country. These values are strongly correlated with
the mass MA of the node, as defined previously.

As shown on Figure 4, both incoming and outgoing strength
scale linearly with the mass (L∗A, LA∗ = kMβ

A, β = 0.96,
confidence interval: [0.93,0.99], R2 = 0.87). Also, incom-
ing and outgoing strength are strongly symmetric (LA∗ ≈
L∗A, ∀A), that is, calls in one direction find always match
in the opposite direction.
The same analysis can be made for internal strength, which are
the time of communication between customers of the same city
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Fig. 2. Degree distribution of the macroscopic network, self edges are not
considered. The red curve shows the best lognormal fit, with parameters µ =
2.4 and σ = 0.15

Fig. 3. Edge weight distribution of the macroscopic network, self edges are
not considered. The red curve shows the lognormal best fit, with parameters
µ = 3.93 and σ = 1.03

Fig. 4. Incoming and outgoing strengths (L∗A and LA∗) in function of the
node mass MA. Black line represents the best linear fit, with slope 0.96.

(see Figure 5). In this case, we observe a superlinear relation-
ship (β = 1.17, confidence interval: [1.14,1.19], R2 = 0.95),

Fig. 5. Internal strength LAA in function of the node mass MA. Black line
represents the best linear fit, with slope 1.17.

meaning that the amount of internal communication grows
faster than population.
This is in line with previous results [9]. In particular, they
showed that several factors linked with cities’ dynamism
scaled superlinearly with city size, leading the authors to
the conclusion that innovation rate and pace of life increase
superlinearly with city size.

C. Gravity model for intercity communication

Based on the observations we made, let us try to develop a
model of communication between cities.
Our first result is that the flow of communication from and to
a city is proportional to its mass: LA∗, L∗A ≈ kMA. Secondly,
these flows are strongly symmetrical: LA∗ ≈ L∗A.
We finally tested the impact of distance on intercity communi-
cation, and found that the intensity of the edges in the macro-
network decreases with 1

d2 , where d is the distance between
the centroids of the cities.
These three results lead naturally to a gravitational model,
which is similar to models developed for economical exchange
[15], traffic flow [14] and other socio-economical networks [8],
[16]. We tried to fit the intensity of interaction between cities
with a model

LAB ∝
MAMB

d2
AB

.

To ensure the validity of our results, we plotted the estimated
intensity given by the gravity model versus the observed
intensity. As shown on Figure 6, the results match particularly
well for pairs of cities A and B that have a large value
for LAB . Let us finally observe that this gravity model is
consistent with the results presented in [6] that described the
probability of connection between customers based on their
distance. One can check that the intensity of communication
between two customers that make a link does not vary
with the distance between them. Our gravity model can
thus be derived using the model described in [6], and by
hypothesizing a homogeneous distribution of people around
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Fig. 6. Communications intensity between pairs of cities versus the ration
MAMB

d2
AB

. The black line shows the gravitational law.

the centroid of each city.

IV. CONCLUSION

We have introduced the definition of microscopic and
macroscopic networks. Micro-networks are typical human-to-
human social networks of interaction. Macro-networks are
made from the aggregation of a micro-network, and in our
case the aggregation is not based on network structure, in con-
trast as usual network aggregation methods, like community
analysis. In our study the aggregation criteria is a geographical
criteria, namely the billing address ZIP code.
We analyze a communication network made of 2.5 million
customers of a Belgian mobile operator as proxy for a social
network, and use the total time of communication as a measure
of the strength of social interaction.
We discover that calls internal to cities show power law prop-
erties and scale superlinearly with population. This result is in
agreement with previous research that showed that innovation
rate in a city scales superlinearly with city size. Secondly,
each pair of cities communicates following a gravitional model
which is in line with previous results from the literature of
economical and transport networks.
This analysis is exploratory and attempts to open up new re-
search directions on how people organize their social network
in function of the city in which they live, and more generally,
on how geography influences social networks.
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