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Public Disagreement†

By Rajiv Sethi and Muhamet Yildiz*

We develop a model of deliberation under heterogeneous beliefs and 
incomplete information, and use it to explore questions concerning 
the aggregation of distributed information and the consequences 
of social integration. We show that when priors are correlated, all 
private information is eventually aggregated and public beliefs are 
identical to those arising under observable priors. When priors are 
independently distributed, however, some private information is 
never revealed, and communication breaks down entirely in large 
groups. Interpreting integration in terms of the observability of pri-
ors, we show how increases in social integration lead to less diver-
gent public beliefs on average. (JEL D82, D83, Z13)

Members of different social groups often hold widely divergent beliefs regard-
ing the world in which they live, even when the existence of such disagree-

ment is itself public knowledge (see the next section for examples). Such persistent 
belief disparities can impede communication and interaction across social and eth-
nic boundaries and undermine the effectiveness of government policies. Public dis-
agreement also appears to conflict with the standard common-prior assumption in 
economic theory, which implies that beliefs that are commonly known must also be 
identical (Aumann 1976) and that the repeated communication of beliefs eventually 
leads to their convergence (Geanakoplos and Polemarchakis 1982).

In this paper we develop a framework that allows for public disagreement and use 
it to explore questions concerning the aggregation of distributed information and the 
consequences of social integration. We consider a finite population of individuals 
who differ with respect to both their priors and their information about the state of 
the world. All priors and signals are assumed to be normally distributed; priors may 
or may not be correlated, and signals are independent. Given their priors and their 
information, individuals form beliefs and these beliefs are publicly and truthfully 
announced. The announcements are informative, and individuals update their beliefs 
based on them. This results in a further round of announcements, which may also 
be informative. The sequence of announcements continues until no further belief 
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revision occurs. At the end of this process, all beliefs become public information; 
we call these public beliefs. We are interested in whether or not all distributed infor-
mation is incorporated into public beliefs through the process of communication, 
and the manner in which the extent of disagreement in public beliefs is affected by 
patterns of social integration.

We compare two benchmark cases that reflect the extent of social integration: 
observable and unobservable priors. The case of observable priors may be inter-
preted as a situation in which individuals understand the thought processes and 
perspectives of others, even if they do not share them. Such understanding could 
arise through social integration and mutual understanding that goes beyond the mere 
announcement of posterior beliefs. Since signals can be deduced from announce-
ments when priors are observable, this case may also be interpreted as a situation in 
which information (rather than beliefs) can be communicated directly. The alterna-
tive case of unobservable priors corresponds to a situation in which individuals are 
uncertain about the manner in which others process information and form opinions, 
and cannot directly communicate their information. They observe beliefs but cannot 
immediately deduce signals from announcements. We take this to represent a less 
integrated society.

Given the heterogeneity of priors, public beliefs would involve some level of 
disagreement even if priors were observable and all relevant information aggre-
gated. We show that unobservability of priors may inhibit the communication of 
some information, resulting in different levels of disagreement relative to the case of 
observable priors. This happens because unobservability of priors gives rise to a nat-
ural signal-jamming problem. An individual’s first announcement is a convex com-
bination of his prior and his signal. Since other individuals observe neither the prior 
nor the signal, they can only extract partial information about each of these from the 
announcement. At the end of the first round of communication, therefore, beliefs do 
not reflect all distributed information. We show that when priors are uncorrelated, 
none of the subsequent announcements has any informational value. As a result, 
some distributed information remains uncommunicated, despite potentially unlim-
ited rounds of communication. Public disagreement now arises not only because 
of the heterogeneity of prior beliefs, but also because of informational differences 
induced by the fact that priors are privately observed.

Although public beliefs differ depending on whether priors are observable or 
unobservable, it need not be the case that unobservability of priors results in greater 
public disagreement. That is, there exist realizations of priors and signals such that 
disagreement is greater when priors are observable than when they are not. In fact, 
one can easily construct examples in which beliefs converge completely when priors 
are unobservable but remain apart under observable priors. We show, however, that 
the expected value of public disagreement must be smaller when priors are observ-
able than when they are not. This problem becomes especially acute when the num-
ber of communicating individuals is large. When a fixed amount of information is 
distributed among a large number of individuals, unobservability of priors leads to 
a complete breakdown in communication: the difference between the public beliefs 
of any two individuals is approximately equal to the difference in their prior beliefs, 
as though no information had been received and communicated. Hence, in a large 
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society, public disagreement is greater under unobservable priors than under observ-
able priors at almost all realizations of priors and signals.

With correlated priors the situation is more complex. As long as each individual’s 
prior is correlated with that of at least one other individual, we show that (subject to 
a regularity condition that is generically satisfied) all distributed information is fully 
incorporated into public beliefs even if priors are unobservable. While individuals 
may agree to disagree, their eventual beliefs are precisely what they would have 
been if they had observed each other’s signals. This happens because the manner in 
which an individual responds to the announced beliefs of others reveals his beliefs 
about their priors, which in turn reveals his own prior. As a consequence, public 
beliefs in the case of unobserved (but correlated) priors are identical to those result-
ing from observable priors. However, convergence to public beliefs requires a larger 
number of rounds of communication when priors are unobserved, and involves 
levels of statistical sophistication that far exceed those required for convergence 
under observable priors. And although limiting beliefs are invariant to the manner 
in which information is distributed in society, beliefs held before convergence has 
been attained exhibit all of the properties of public beliefs under independently dis-
tributed priors.

Taking observability of priors as a proxy for social integration, we investigate the 
relationship between social integration and public disagreement further. We do so 
by exploring a variant of the model with uncorrelated priors, two social groups and 
three possible information structures. We say that society is fragmented if no priors 
are observable, segregated if each individual observes only the priors of those within 
his own social group, and integrated if all priors are observed. Our earlier results 
imply that expected disagreement is greater under fragmentation than under integra-
tion. A segregated society with uncorrelated priors behaves in a manner similar to 
a fragmented society with correlated priors: all distributed information is eventu-
ally aggregated. Before such aggregation is complete, however, the expected magni-
tude of public disagreement is greater under segregation than under integration, and 
greater under fragmentation than under segregation.

When the population size is large, the dynamics of beliefs under segrega-
tion exhibit a number of intriguing characteristics. First, differences in priors 
can become amplified through communication under segregation. In fact, even 
if there is no ex ante difference in prior beliefs, there will be disagreement after 
the first round of communication. Second, if the groups are of unequal size, then 
individuals belonging to the smaller group face a disadvantage under segrega-
tion even though all individuals receive equally precise signals and have access 
to the same belief announcements. The disadvantage arises in the interpretation 
of public announcements. Since minorities (by definition) observe the priors of 
a smaller segment of the total population, the beliefs of majority group members 
are more closely aligned with reality (interpreted as the true state) than are the 
beliefs of minority group members. Finally, we show that when both groups are 
composed of ex ante identical individuals, realized belief differences under segre-
gation are greater than such differences under either integration or fragmentation. 
Segregation tends to homogenize within-group beliefs at the expense of amplify-
ing the divergence in between-group beliefs.
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The remainder of the paper is structured as follows. In the next section we discuss 
the existing literature and place of our own contribution within it. We introduce the 
model in Section II, and explore a special two-person case in Section III. When 
there are just two individuals, correlated priors result in the same limiting beliefs 
(and hence the same levels of expected disagreement) as commonly known priors. 
The general case is examined in Section V, where it is shown that this irrelevance of 
observability result continues to hold as long as the primitives of the model satisfy 
a genericity condition. The case of uncorrelated priors (which fails this condition) 
is explored earlier in Section IV, where we identify conditions under which observ-
ability of priors lowers expected disagreement relative to unobservability. Section 
VI uses our results to explore the relationship between social integration and public 
disagreement, and Section VII concludes.

I.  Related Literature

Examples of Public Disagreement.—There is considerable evidence establish-
ing that the members of different social groups have divergent beliefs on a variety 
of issues. Here we provide some examples based on the racial divide in the United 
States. A 1990 survey by the New York Times and WCBS found that 29 percent of 
black respondents (as compared with 5 percent of whites) considered it to be true or 
possibly true that the AIDS virus was “deliberately created in a laboratory in order 
to infect black people.” Almost 60 percent of blacks believed that it was true or pos-
sibly true that the government “deliberately makes sure that drugs are easily avail-
able in poor black neighborhoods,” and 77 percent gave credence to the claim that 
“the government deliberately singles out and investigates black elected officials in 
order to discredit them in a way it doesn’t do with white officials.” The correspond-
ing numbers for white respondents were 16 percent and 34 percent respectively. 
These differences cannot be attributed to differences in socioeconomic status or 
demographic characteristics (Crocker et al. 1999).

More recently, a July 2009 poll by Research 2000 found that 93 percent of 
Democrats but only 47 percent of Republicans agreed with the statement that 
“Barack Obama was born in the United States of America.” Based on unpub-
lished poll internals, Weigel (2009) estimated that 97 percent of black respon-
dents but less than 30 percent of Southern whites agreed with the statement that 
Obama was born in the US. Along similar lines, a June 2008 survey found that 
while 5 percent of black respondents believed that Barack Obama was a Muslim, 
the corresponding figure was 12 percent for white respondents, and 19 percent 
for white evangelical protestants (Pew Research Center 2008). And in a poll con-
ducted just a few days after the 2008 presidential election, 38 percent of black 
respondents but only 8 percent of whites stated that racial discrimination against 
blacks in the United States continues to be “a very serious problem” (CNN/
Opinion Research 2008).

All of these differences in beliefs are a matter of public record, and appear to 
persist even when the public nature of the disagreement becomes inescapable. An 
especially dramatic example of this arose on October 3, 1995, when a nation trans-
fixed by the criminal trial of O.J. Simpson tuned in to hear the announcement of 
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the verdict. The following report describes the scene in New York’s Times Square 
(Allen, O'Shaughnessy, and Chang 1995):

“In the moments before the O.J. Simpson verdict was announced, the 
crowd moved as one, heads all tilted upwards, eyes trained on the giant 
video screen. But when the verdict was delivered, the crowd split into two 
distinct camps one predominantly black, the other white and each with 
a vastly different response. Many blacks … reacted with jubilation. Many 
whites wore faces of shock and anger directed not only at the verdict, 
but at the reaction from blacks … Throughout the country, the scene was 
similar. In Wall Street offices, college campuses, stores, train stations and 
outside the Los Angeles County Courthouse, the Simpson verdict drew 
reactions that split along racial lines.”

Differences in reaction to the verdict reflected substantial racial differences in 
beliefs regarding the likelihood that Simpson was guilty. Brigham and Wasserman 
(1999) tracked such beliefs over the course of a year, starting with the period of 
jury selection in 1994 and ending three weeks after the announcement of the ver-
dict. During jury selection 54 percent of whites and 10 percent of blacks in their 
sample thought that Simpson was “guilty” or “probably guilty.” By the time closing 
arguments were concluded these numbers had risen to 70 percent for whites and 
12 percent for blacks, reflecting an even larger racial gap. The final round of the 
survey, taken several days after the verdict and initial reaction had been made public, 
showed modest convergence but a significant remaining disparity, with 63 percent of 
whites and 15 percent of blacks declaring a belief in probable or certain guilt.

Social Impact of Public Disagreement.—Belief disparities can have significant 
welfare consequences. As Crocker et al. (1999) note, blacks and whites “exist in 
very different subjective worlds” and “a chasm remains … in the ways they under-
stand and think about racial issues and events.” Such differences in beliefs can make 
“communication and interaction across racial lines painful and difficult,” as blacks 
find “their construal of reality flatly denied” and whites feel hurt or outraged that 
blacks give credence to conspiracy theories that they find bizarre or outlandish. In 
addition, beliefs affect responses to government policies such as public health initia-
tives aimed at reducing the spread of communicable diseases or the promotion of 
birth control. Most fundamentally, differences in beliefs about the fairness of the 
justice system or the extent of racial discrimination in daily life can have corrosive 
effects on the functioning of a democracy and erode confidence and participation 
in the political process. While a serious analysis of such welfare effects is beyond 
the scope of this paper, our analysis is motivated in part by the sense that persistent 
public disagreement can be welfare reducing in subtle but substantial respects.

Public Disagreement and the Common-Prior Assumption.—The persistence of 
public disagreement appears to conflict with the standard hypothesis in economic 
theory that differences across individuals in beliefs are due solely to differences 
in information. If this view were correct, then disagreement itself would be infor-
mative and lead to revised beliefs and eventual convergence (Geanakoplos and 
Polemarchakis 1982). This is the insight underlying Aumann’s (1976) theorem, 
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which states that two Bayesian individuals with a common prior must have identical 
posterior beliefs if these beliefs are themselves common knowledge, no matter how 
different their information may be. As suggested by Aumann (1976), the widespread 
public disagreement that one observes in practice can be attributed either to depar-
tures from the common prior assumption, or to violations of the hypothesis that 
Bayesian rationality itself is common knowledge.1

Communication and Learning with Heterogeneous Priors.—Our work contributes 
to a growing literature that allows for heterogeneity in prior beliefs.2 In particular, 
Banerjee and Somanathan (2001), Van den Steen (2010), and Che and Kartik (2009) 
explore strategic communication under observable heterogeneous priors. Since het-
erogeneous priors lead to heterogeneous preferences, some information cannot be 
communicated (as in Crawford and Sobel 1982). Our work differs in allowing priors 
not only to be heterogeneous, but also to be unobserved. Furthermore, communica-
tion in our model is truthful, nonstrategic and two-sided. We consider nonstrategic 
communication in order to focus on the role of unobservability of priors in commu-
nication.3 (Moreover, in the applications we have in mind, individuals do not face 
strong incentives to misrepresent their opinions.) In this we follow Geanakoplos and 
Polemarchakis (1982), who show how the agreement predicted by Aumann (1976) 
could arise through a sequence of truthful belief announcements. We adopt the same 
model of sequential announcement introduced there, but apply it to the case of het-
erogeneous and possibly unobserved priors.

Another strand of literature on heterogeneous priors focuses on the comple-
mentary problem of learning from external sources rather than from communica-
tion. Within that paradigm, it has been established that belief differences between 
Bayesian individuals may increase after they observe a public signal (Dixit and 
Weibull 2007), and their beliefs may even diverge asymptotically as they observe 
an infinite sequence of informative signals. Asymptotic divergence can occur when 
there are infinitely many signal values (Freedman 1965), or when individuals are 
uncertain about the informativeness of signals (Acemoglu, Chernozhukov, and 
Yildiz 2009), or when they have bounded memory (Wilson 2003). Yet another lit-
erature studies belief divergence (Andreoni and Mylanov 2011) and the formation 
of approximate common knowledge (Cripps et al. 2008) when players privately 
learn under a common prior. In this environment beliefs necessarily converge when 
players communicate their opinions. Interestingly, in their experiments, Andreoni 
and Mylanov (2011) find that subjects put lower weight on the informative actions 
of others than they do on their own, as predicted by our model.

1 Since any updating rule with a mild convexity assumption can be modeled using Bayesian rationality (Shmaya 
and Yariv 2008), all such violations can be modeled within the general framework in which the individuals’ heter-
ogenous priors (i.e., their updating rules) are not known.

2 Heterogeneous priors play a role in many applications, including work on asset pricing (Harrison and Kreps 
1978; Morris 1996; Scheinkman and Xiong 2003), political economy (Harrington 1993), bargaining (Yildiz 2003, 
2004), organizational performance (Van den Steen 2005), political polarization (Dixit and Weibull 2007) and mech-
anism design (Morris 1994; Eliaz and Spiegler 2007; Adrian and Westerfield 2009).

3 Under broad conditions, Ostrovsky (forthcoming) shows that without heterogenous priors dynamic markets 
eventually aggregate all information despite strategic behavior by market participants. Taken together with our 
results, this suggests that information aggregation in public beliefs depends on whether players have unobservable 
heterogenous priors, rather than on whether they behave strategically.
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In deliberations, bounded rationality may also lead to asymptotically biased 
beliefs and public disagreement. For example, DeMarzo, Vayanos, and Zwiebel 
(2003) analyze a model in which boundedly rational individuals double count 
some information by ignoring the fact that this information is incorporated into 
more than one opinion. In such a model, although beliefs converge eventually, the 
limiting beliefs are biased due to double counting. Similarly, Hafer and Landa 
(2007) analyze the deliberation of individuals who do not know the logical impli-
cations of their information. Such individuals are self-selected to deliberate with 
people who have a similar bias, and deliberation leads to more extreme beliefs. 
Our paper differs from this literature by focusing on the informational barriers to 
communication between rational individuals with differing priors, and on the role 
of social structure in such communication.

Alternative Causes of Belief Divergence.—Our focus here is on the nature of 
communication with heterogeneous beliefs under alternative information struc-
tures. The heterogeneity itself is a primitive of the model and we do not consider 
the psychological processes that might give rise to it in practice. A variety of such 
mechanisms have previously been explored. For instance, there is an extensive lit-
erature in psychology on confirmatory bias, which induces individuals to disregard 
evidence that disconfims previously held views while embracing evidence that is 
consistent with such views (see Rabin and Schrag 1999, and the references cited 
therein). Similarly, information may be processed selectively by individuals seeking 
to maintain a high self-image, as in Benabou and Tirole (2002), Benabou (2009), 
and Gottlieb (2010). Such selective information processing may lead to divergent 
beliefs and thereby inhibit communication. Indeed, the nature of the disagreement 
described in our motivating examples suggests such a mechanism. Regardless of 
the source of belief heterogeneity, however, it is worth exploring the question of the 
manner in which beliefs are affected by communication under different information 
structures, which is our main concern here.

II.  The Model

There are n individuals i ∈ N = {1, 2, … , n} and an unknown real-valued param-
eter θ, which we call the state of the world. Individuals differ with respect to both 
their prior beliefs and their private information about the state of the world. Before 
the receipt of any information, individual i believes that θ is normally distributed 
with mean ​μ​i​ and unit variance:4

 	  θ ​ ∼​i​ N  (​μ​i​ , 1).

4 We use the subscript i to denote the belief of i. For example, ​E​i​ and ​E​i​[⋅  |  ⋅] denote the ex ante and the  
conditional-expectation operators under i’s beliefs. We omit the subscript when all individuals agree. For example, 
X∼N(0, 1) means that all individuals agree that X has the standard normal distribution. Likewise, E denotes the 
expectation operator when all individuals agree; e.g., E[X] means that ​E​i​[X] = ​E​j​[X] = E[X] for all i, j ∈ N.
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Given these (possibly heterogeneous and privately observed) prior beliefs, each 
individual i observes a private signal ​x​i​ that is informative about θ with additive 
idiosyncratic noise ​ε​i​:

 	​  x​i​  =  θ  + ​ ε​i​ .

All individuals agree that θ, ​ε​1​, … , ​ε​n​ are independently distributed, and that

 	​  ε​i​  ∼  N (0, ​τ​ 2​).

Observing ​x​i​, individual i updates5 his belief about θ to a normal distribution with 
mean

(2) 	​  A​i, 1​  =  α​μ​i​  +  (1  −  α) ​x​i​

and variance

(3) 	  α  = ​   ​τ​ 2​ _ 
1  + ​ τ​ 2​

 ​ .

Hence, one can think of ​μ​i​ as the manner in which individual i processes his infor-
mation ​x​i​ , about which other individuals are uncertain. One can also think of ​x​i​ as the 
component of the belief of i that is perceived to be informative about θ by other indi-
viduals, and ​μ​i​ as the residual component, which is perceived by others to contain 
no information about θ. We refer to the pair (​μ​i​, ​x​i​) as i’s type, assuming that (​μ​i​ , ​x​i​)  
is privately known by i unless we explicitly specify that ​μ​i​ is observable, in which 
case ​μ​i​ will be common knowledge.

The priors (​μ​1​, … , ​μ​n​) are distributed normally with mean (​​ _ μ​​1​, … , ​​ _ μ​​n​) and vari-
ance-covariance matrix Σ with entries ​σ​ij​ for i, j ∈ N. A crucial assumption is that 
conditional on ​μ​i​ , individual i believes that the state θ, the others’ priors ​μ​−i​ = (​μ​j​​)​j≠i​ ,  
and the noise terms ​ε​j​ , j ∈ N, are all stochastically independent. That is, player i 
thinks that there is some uncertainty about how each individual j processes his infor-
mation ​x​j​, but does not think that the manner in which j updates his beliefs reflects 
any information about θ.

Within this framework, we consider a model of deliberation involving truth-
ful communication of beliefs in a sequence of stages, as in Geanakoplos and 
Polemarchakis (1982). Once signals are received, beliefs are made public in 
period 1 by simultaneous (and truthful) announcements ​A​i, 1​, i ∈ N, where ​A​i, 1​ 
denotes player i’s expectation of θ conditional on the prior ​μ​i​ and the signal ​x​i​. After 
observing all announcements, individuals update their beliefs and simultaneously 

5 Throughout the paper, we use the following well-known formula. If θ ∼ N(μ, ​σ​2​) and ε ∼ N(0, ​v​ 2​), then con-
ditional on signal s = θ + ε, θ is normally distributed with mean

(1) 	  E [θ | s]  = ​   ​v​ 2​ _ 
​σ​ 2​  + ​ v​ 2​

 ​  μ  + ​   ​σ​ 2​ _ 
​σ​ 2​  + ​ v​ 2​

 ​  s

and variance ​σ​ 2​​v​ 2​/(​σ​ 2​ + ​v​ 2​).
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announce these updated beliefs ​A​i, 2​, i ∈ N, in period 2. Here ​A​i, 2​ denotes i’s expec-
tation of θ conditional on his own prior ​μ​i​, his own signal ​x​i​ , and the others’ ini-
tial announcements ​A​−i, 1​ = (​A​j, 1​​)​j≠i​ . Individuals continue to update and announce 
their beliefs indefinitely. The limiting values of the sequence of announcements 
is denoted ​A​i, ∞​ for i ∈ N. We call ​A​i, ∞​ the public belief of i, emphasizing the fact 
that this belief becomes public information (i.e., common knowledge) at the end 
of the communication process. We assume that everything we have described to 
this point is common knowledge.

REMARK 1: Since (​μ​1​, … , ​μ​n​) may be correlated, i may think that ​μ​i​ is correlated 
with both ​μ​−i​ and θ, but ​μ​−i​ and θ are independent conditional on ​μ​i​. Such seem-
ingly inconsistent beliefs arise naturally as follows. Suppose that all potentially 
relevant historical facts are represented by a family ​{​X​m​}​m∈M​ of random variables. 
Each individual i considers a set {​X​m​ | m ∈ ​R​i​} of random variables to be relevant 
for understanding θ for some ​R​i​ ⊂ M; he considers the remaining random vari-
ables ​X​m​ with m ∉ ​R​i​ irrelevant. His conditional expectation of θ given {​X​m​ | m ∈ ​R​i​}  
is ​μ​i​ , which is all the relevant information about θ in ​{​X​m​}​m∈M​ according to i. 
Consequently, conditional on ​μ​i​ , ​μ​−i​ does not affect his beliefs about θ; i.e., he 
considers ​μ​−i​ and θ to be independent. On the other hand, at the ex ante stage, if i 
assigns positive probability to ​R​i​ ∩ ​R​j​ ≠ 0̸ for some j ≠ i, then i considers ​μ​i​ and ​μ​j​ 
to be stochastically dependent.

REMARK 2: The assumption that ​μ​−i​ and θ are independent conditional on ​μ​i​ 
is without loss of generality: the posterior of j under the belief of player i can be 
decomposed into two parts, one correlated with θ, which i considers the relevant 
information contained in the belief of j, and one independent from θ. We also assume 
that ​x​i​ and ​x​j​ are independent conditional on θ. This independence assumption is 
made only for simplicity and should not affect the qualitative results.

We conclude this section by describing the two environments that we will inves-
tigate. We say that priors are observable if (​μ​1​, … , ​μ​n​) is common knowledge 
(although drawn from an ex ante distribution). We say that priors are unobservable 
if ​μ​i​ is privately known by i for each i. We use superscripts ck and u to denote vari-
ables in the observable and unobservable priors cases, respectively. For example, we 
write ​A​i, k​ ck

 ​ or ​A​i, k​ u
  ​ for the announcement of i at round k, depending on whether priors 

are observable or unobservable, respectively.
Under observable priors, public beliefs can be easily computed. Each individual 

i can deduce the signal ​x​j​ of any other individual j from the first round announce-
ments. (Specifically, from (2), we have ​x​j​ = (1 + ​τ​ 2​) ​A​j, 1​ − ​τ​ 2​​μ​j​.) Hence, individu-
als extract the entire relevant signal

 	  (​x​1​  +  ⋯  + ​ x​n​)/n  =  θ  +  (​ε​1​  +  ⋯  + ​ ε​n​)/n,

where the noise has variance

(4) 	​​  _ τ​​ 2​  = ​ τ​ 2​/n.
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Using this signal, they form their public beliefs as follows:

(5) 	​  A​i, ∞​ ck
  ​  = ​ A​i, 2​ ck

 ​  = ​   ​τ​ 2​ _ 
n  + ​ τ​ 2​

 ​​ μ​i​  + ​   n _ 
n  + ​ τ​ 2​

 ​ ​ ∑ 
j=1

​ 
n

 ​  ​​ 
​x​j​

 _ n ​ .

Here, the expression for ​A​i, 2​ ck
 ​ follows from (1). Since all the available information is 

revealed by the first announcements, the updating stops at round 2. The difference 
between the public beliefs of any two individuals i, j ∈ N is therefore simply

(6) 	​  A​i, ∞​ ck
  ​  − ​ A​j, ∞​ ck

  ​  = ​   ​τ​ 2​ _ 
n  + ​ τ​ 2​

 ​ (​μ​i​  − ​ μ​j​)  = ​   ​​_ τ ​​ 2​ _ 
1  + ​​ _ τ ​​ 2​

 ​ (​μ​i​  − ​ μ​j​).

Holding constant ​​
_ τ ​​ 2​, this difference in beliefs is independent of n. That is, under 

observable priors, differences in public beliefs between any pair of individuals are 
due only to differences in priors, which are scaled down according to the precision 
1/​​_ τ ​​ 2​ of the distributed information. This difference in beliefs serves as the bench-
mark against which we measure belief differences under unobservable priors.6

REMARK 3: As demonstrated above, the case of observable priors is equivalent 
to the case in which individuals communicate their information directly. Hence, 
information may be aggregated either if it is transmitted directly, or through knowl-
edge of the manner in which others process information (i.e., their priors). These 
possibilities are most likely to be feasible in relatively small and well integrated 
groups. In contrast, in a large, fragmented society, it may not be possible for indi-
viduals to communicate their information directly, or to understand the manner 
in which others incorporate their information into their beliefs. Information is a 
complex object consisting of many small bits and pieces, and the manner in which 
these are incorporated into one’s final opinion is itself a complex process that 
involves interpretation in light of one’s upbringing and experience. Nevertheless, 
beliefs may still be communicated through opinion polls in large, fragmented soci-
eties, and this allows some inferences to be made. In our subsequent analysis, we 
compare information aggregation through direct communication (with observable 
priors) to information aggregation through indirect communication (with unob-
servable priors).

III.  The Two-Person Case

Before proceeding to more general results, we consider the case of two individu-
als. We assume without loss of generality that ​μ​i​ ≥ ​μ​j​.

6 Note that if individuals were to receive an infinite sequence of independent signals, then they would each learn 
the true state even in the absence of communication and there would be no scope for public disagreement even 
under heterogeneous and unobservable priors.
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A. Observable Priors

Consider the case in which the priors ​μ​i​ and ​μ​j​ are common knowledge. Since 
n = 2, (6) implies that the difference in public beliefs is

(7) 	​  A​i, ∞​ ck
  ​  − ​ A​j, ∞​ ck

  ​  = ​   ​τ​ 2​ _ 
2  + ​ τ​ 2​

 ​ (​μ​i​ − ​μ​j​).

Note that although each individual’s public belief depends on the other’s initial 
announcement, the difference in beliefs is independent of both initial announce-
ments, and the individuals agree on the distribution of this difference.

B. Unobservable Independent Priors

Next consider the case in which the priors ​μ​i​ and ​μ​j​ are not observed, and are 
independently distributed, each with variance ​σ​2​. First round beliefs and announce-
ments are exactly as in the case of observable priors:

 	​  A​i, 1​ u
  ​  =  α​μ​i​  +  (1  −  α) ​x​i​.

Observing ​A​j, 1​ u
  ​, all i can infer is that α​μ​j​ + (1 − α) ​x​j​ is equal to ​A​j, 1​ u

  ​, and cannot 
know the specific values of each variable. Hence, he attributes some of the variation 
in ​A​j, 1​ u

  ​ to variation in ​μ​j​ and some to variation in ​x​j​. More precisely, he observes an 
additional signal

(8) 	  (1  + ​ τ​ 2​) ​A​j, 1​ u
  ​  − ​ τ​ 2​ ​​ _ μ​​j​  =  θ  + ​ τ​ 2​ (​μ​j​  − ​​  _ μ​​j​)  + ​ ε​j​

with additive noise ​τ​ 2​(​μ​j​ − ​​ _ μ​​j​) + ​ε​j​. The noise term has mean 0 and variance  
​σ​2​​τ​ 4​ + ​τ​ 2​. He then updates his beliefs to a normal distribution with mean

(9) 	​ A​i, 2​ u
  ​   = ​   ​σ​2​​τ​ 4​  + ​ τ​ 2​  __  

α  + ​ σ​2​​τ​ 4​  + ​ τ​ 2​
 ​  ​A​i, 1​ u

  ​  + ​   α __  
α  + ​ σ​2​​τ​ 4​  + ​ τ​ 2​

 ​  ((1  + ​ τ​ 2​)  ​A​j, 1​ u
  ​  − ​ τ​ 2​ ​​ _ μ​​j​) 

 	  = ​  1 _ γ ​ ((1  + ​ σ​2​​τ​ 2​)(1  + ​ τ​ 2​) ​A​ i, 1​ u
  ​ + (1 + ​τ​ 2​) ​A​j, 1​ u

  ​ − ​τ​ 2​ ​​ _ μ​​j​),

where γ = (1 + ​τ​ 2​)(1 + ​τ​ 2​​σ​2​) + 1. Here, the first equality is obtained by updat-
ing according to (1) starting from θ ∼ N(​A​i, 1​ u

  ​, α) and using the signal in (8), and the 
second equality is by (3). Note that (unlike the case of commonly known priors) i 
puts greater weight on his own announcement than on that of j. This is because i 
does not know j’s prior. When j announces a higher expectation ​A​j, 1​ u

  ​, i believes that 
with some probability j has obtained a higher value of the signal ​x​j​ , motivating i to 
increase his own expectation of θ too. He also thinks that, with some probability, 
the high announcement may be due to a bias towards higher values (i.e., larger ​μ​j​), 
in which case i would not want to increase his expectation of θ. Consequently, each 
player’s beliefs become less sensitive to the other’s announcement than in the case 
of commonly known priors.
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Even after the second round announcements, i does not know ​x​j​ , so there remains 
some relevant asymmetric information. In other words, the distributed information 
is not aggregated at the first round.7 One might hope that further announcements 
communicate more private information, resulting in the aggregation of the remain-
ing distributed information. This is not the case, however. Since ​A​i, 1​ u

  ​ and ​A​j, 1​ u
  ​ are 

sufficient statistics for ​A​i, 2​ u
  ​ and ​A​j, 2​ u

  ​, the second round announcements provide no 
additional information, and

 	​  A​i, 2​ u
  ​  = ​ A​i, 3​ u

  ​  =  …  = ​ A​i, ∞​ u
  ​.

The difference in public beliefs is

(10) 	​  A​i, ∞​ u
  ​  − ​ A​j, ∞​ u

  ​  = ​  1 _ γ ​ (​σ​2​ ​τ​ 2​ (1  + ​ τ​ 2​)(​A​i, 1​  − ​ A​j, 1​)  + ​ τ​ 2​ (​​ _ μ​​i​  − ​​  _ μ​​j​)) 

	 = ​  ​τ​ 
2​ _ γ ​ ((​​ _ μ​​i​  − ​​  _ μ​​j​)  + ​ σ​2​ ​τ​ 2​ (​μ​i​  − ​ μ​j​)  + ​ σ​2​ (​ε​i​  − ​ ε​j​)).

The difference of opinion has three sources: the difference in the means of the distri-
butions from which priors are drawn (​​ _ μ​​i​ − ​​ _ μ​​j​), the difference in the realized values 
of the priors (​μ​i​ − ​μ​j​), and the difference in information (​ε​i​ − ​ε​j​). Since commu-
nication never completely eliminates informational differences, these differences 
affect public beliefs. Communication does, however, decrease the role of differential 
information as the coefficient of (​A​i, 1​ − ​A​j, 1​) is strictly less than 1. That is, differ-
ences in information play a larger role in affecting initial announcements than in 
affecting public beliefs. As in the common knowledge case, all individuals agree on 
the distribution of the difference in public beliefs.

Note from (10) that the two individuals will generally agree to disagree even if 
they have identical priors (​μ​i​ = ​μ​j​), since they cannot deduce from the announce-
ments that their priors are in fact identical. This makes transparent the obvious but 
sometimes overlooked fact that the standard common prior assumption requires not 
only that the players have the same prior, but also that this fact is itself commonly 
known. Furthermore, even if both individuals have identical priors and receive iden-
tical signals (​ε​i​ = ​ε​j​), they may disagree once their beliefs have been communi-
cated, provided that the priors themselves are not drawn from identical distributions. 
The following numerical example illustrates.

Example 1: Suppose that ​​ 
_ μ​​i​ = 0, ​​ 

_ μ​​j​ = 2, and ​μ​i​ = ​μ​j​ = ​x​i​ = ​x​j​ = 1. Then, 
​A​i, 1​ = ​A​j, 1​ = 1, while ​A​i, 2​ = 0.8 and ​A​j, 2​ = 1.2.

In this example, both individuals have identical priors and signals, and make iden-
tical initial announcements. But since their priors are not observable, and are drawn 
from different distributions, they interpret each others announcements in different 
ways, resulting in a divergence of beliefs over time. Communication can therefore 

7 We say that all distributed information is aggregated if all private signals become known to all individuals; a 
formal definition is provided in Section V.
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lead to increased polarization when priors are unobserved even when individuals 
receive exactly the same information.

In conclusion, uncertainty about the manner in which other individuals process 
information hinders the communication of relevant private information through 
the announcement of beliefs. Consequently, individuals hold different beliefs both 
because they have (possibly) different priors and because of different information.

C. A Comparison of Belief Differences

Note that ​A​i, ∞​ − ​A​j, ∞​ measures the amount that i overestimates θ relative to j at 
the end of the process of deliberation. Hence, we call ​A​i, ∞​ − ​A​j, ∞​ the public bias 
of i relative to j. Since uncertainty regarding priors leads to less communication of 
information, one may think that it also leads to greater public bias. This is not the 
case. It may so happen that the individuals have very different priors, and knowledge 
of this may lead to a very large difference of opinion. Indeed, when the priors are not 
observed, by (10), any amount of public bias is possible, including no bias at all. In 
contrast, when the priors are common knowledge, by (7), the amount of public bias 
is constant, depending only on the difference in realized priors.

Figure 1 plots the values of public bias under observed and unobserved priors, 
respectively, for a set of randomly drawn type realizations.8 Here, for each realization, 
the horizontal coordinate is ​A​i, ∞​ ck

  ​ − ​A​j, ∞​ ck
  ​ and the vertical coordinate is ​A​i, ∞​ u

  ​ − ​A​j, ∞​ u
  ​.  

In the realizations that lie below the diagonal, public beliefs differ more when priors 
are observable. Hence the figure demonstrates that making priors observable may 
lead to greater disagreement in many cases.

While observability of priors can result in greater public bias for particular type 
realizations, observability always lowers the ex ante expected value of public bias,  
E[​A​i, ∞​ − ​A​j, ∞​]. To see this, note that when priors are observable, by (7), the expected 
bias in public beliefs is

 	  E [​A​i, ∞​ ck
  ​  − ​ A​j, ∞​ ck

  ​]  = ​   ​τ​ 2​ _ 
2  + ​ τ​ 2​

 ​  (​​ _ μ​​i​ − ​​ _ μ​​j​).

On the other hand, when the priors are not observable, by (10), the expected public 
bias is

 	  E [​A​i, ∞​ u
  ​  − ​ A​j, ∞​ u

  ​]  = ​   ​τ​ 2​ (1  + ​ σ​2​ ​τ​ 2​)  __   
1  +  (1  + ​ σ​2​ ​τ​ 2​)(1  + ​ τ​ 2​)

 ​  (​​ _ μ​​i​  − ​​  _ μ​​j​).

If ​​ 
_ μ​​i​ = ​​ _ μ​​j​ then the expected public bias is zero in both cases. If ​​ 

_ μ​​i​ > ​​ _ μ​​j​ , however, 
then ​σ​2​ > 0 implies

 	  E [​A​i, ∞​ u
  ​  − ​ A​j, ∞​ u

  ​]  >  E [​A​i, ∞​ ck
  ​  − ​ A​j, ∞​ ck

  ​]  >  0.

That is, the expected public bias is higher when priors are not observable than 
when they are observable. This is intuitive because unobservability of priors 

8 The figure is based on 500 realizations of type profiles for parameter values ​σ​2​ = ​τ​ 2​ = 1, ​​ 
_ μ​​i​ = 3, and ​​ 

_ μ​​j​ = 0.
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impedes the full aggregation of the distributed information through deliberation. 
This result is useful in comparing the difference between the average opinions of 
various groups. For example, it implies that differences across groups in beliefs 
about the incidence of police brutality or racial profiling would narrow on aver-
age if members of each group were to observe each other’s priors and therefore 
understand how their information is incorporated into beliefs. We return to this 
point in Section VI.

D. Unobservable Correlated Priors

Under the assumption that priors are uncorrelated, we have so far illustrated that 
unobservability of priors may impede the aggregation of distributed information 
through deliberation and affect the amount of public disagreement. We now show 
that when priors are correlated, all distributed information is aggregated and hence 
the observability of priors has no effect on public beliefs.

Assume that ​μ​i​ and ​μ​j​ are correlated:

 	  (​
​
​μ​i​   
​μ​j​​

​)  ∼  N ((​
​
​​ _ μ​​i​   
​​ _ μ​​j​​

​ ), ​ σ​2​ [​1  ρ   
ρ  1

​]),

Figure 1. Public Bias with Observable and Unobservable Priors
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where ρ ≠ 0. Observing ​μ​i​ , i believes that ​μ​j​ is distributed normally with mean

 	​  E​i​ [​μ​j​ | ​μ​i​]  = ​​  _ μ​​j​  +  ρ (​μ​i​  − ​​  _ μ​​i​)

and variance

 	  Va​r​i​ (​μ​j​ | ​μ​i​)  = ​ σ​2​ (1  − ​ ρ​2​).

That is, ​E​i​[​μ​j​ | ​μ​i​] is a one-to-one function of ​μ​i​. As before, we have ​A​i, 1​ u
  ​ = ​A​i, 1​ and ​

A​j, 1​ u
  ​ = ​A​j, 1​. Now, for i, the announcement ​A​j, 1​ u

  ​ of j in the first round yields an addi-
tional noisy signal

(11) 	  (1  + ​ τ​ 2​) ​A​j, 1​ u
  ​  − ​ τ​ 2​ ​E​i​ [​μ​j​ | ​μ​i​]  = ​ τ​ 2​ (​μ​j​  − ​ E​i​ [​μ​j​ | ​μ​i​])  + ​ x​j​

 	  =  θ  + ​ τ​ 2​ (​μ​j​  − ​ E​i​ [​μ​j​ | ​μ​i​])  + ​ ε​j​.

The additive noise ​τ​ 2​(​μ​j​ − ​E​i​[​μ​j​ | ​μ​i​]) + ​ε​j​ has mean 0 and variance ​σ​2​(1 − ​ρ​2​) ​τ​4​  
+ ​τ​2​. Updating his belief, in the second round i announces

 	​  A​i, 2​ u
  ​  =  K ​A​i, 1​ u

  ​  +  L ​A​j, 1​ u
  ​  −  αL​E​i​ [​μ​j​ | ​μ​i​],

where K and L are known strictly positive constants.9 The crucial observation here is 
that ​A​i, 2​ u

  ​ is strictly decreasing in ​E​i​[​μ​j​ | ​μ​i​], which is i’s expectation of j’s prior once i 
has observed his own prior. Player j, having observed ​A​i, 1​ u

  ​ and ​A​j, 1​ u
  ​ from the previous 

round, can therefore use ​A​i, 2​ u
  ​ to deduce that

 	​  E​i​ [​μ​j​ | ​μ​i​]  = ​ (αL)​−1​ (K ​A​i, 1​ u
  ​  +  L ​A​j, 1​ u

  ​  − ​ A​i, 2​ u
  ​).

Moreover, since ​E​i​[​μ​j​ | ​μ​i​] = ​​ _ μ​​j​ + ρ(​μ​i​ − ​​ _ μ​​i​) and ρ ≠ 0, there is a one-to-one map-
ping between ​μ​i​ and ​E​i​[​μ​j​ | ​μ​i​]. Hence j correctly infers that

 	​  μ​i​  = ​​  _ μ​​i​  + ​ ρ​−1​ (​(αL)​−1​(K ​A​i, 1​ u
  ​  +  L ​A​j, 1​ u

  ​  − ​ A​i, 2​ u
  ​)  − ​​  _ μ​​j​).

That is, at the end of second round, all prior beliefs are revealed, and all signals can 
be inferred. The announcements in all subsequent rounds are therefore precisely the 
same as in the common knowledge case:

 	​  A​i, 3​ u
  ​  =  ⋯  = ​ A​i, ∞​ u

  ​  = ​ A​i, ∞​ ck
  ​  = ​  1  + ​ τ​ 2​ _ 

2  + ​ τ​ 2​
 ​ (​A​i, 1​  + ​ A​j, 1​)  − ​   ​τ​ 2​ _ 

2  + ​ τ​ 2​
 ​  ​μ​j​.

9 One applies (1), starting from θ ∼ N (​A​i, 1​ u
  ​, α) and using the signal in (11), to obtain

​A​i, 2​ u
  ​  = ​ 

​σ​2​ (1  − ​ ρ​2​) ​τ​ 4​  + ​ τ​ 2​
  __   

α  + ​ σ​2​ (1  − ​ ρ​2​) ​τ​ 4​  + ​ τ​ 2​
 ​  ​A​i, 1​ u

  ​  + ​   α  __   
α  + ​ σ​2​ (1  − ​ ρ​2​) ​τ​ 4​  + ​ τ​ 2​

 ​ ((1  + ​ τ​ 2​) ​A​j, 1​ u
  ​  − ​ τ​ 2​ ​E​i​ [​μ​j​ | ​μ​i​]).

The desired equation is obtained by letting K and L respectively denote the coefficients of ​A​i, 1​ u
  ​ and ​A​j, 1​ u

  ​.
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Accordingly, when priors are correlated, both individuals can infer each other’s 
prior beliefs from the manner in which they react to the initial announcements. 
All distributed information is therefore aggregated through communication, and the 
resulting public bias is fully attributable to differences in prior beliefs:

 	​  A​i, ∞​ u
  ​  − ​ A​j, ∞​ u

  ​  = ​   ​τ​ 2​ _ 
2  + ​ τ​ 2​

 ​  (​μ​i​  − ​ μ​j​).

We show in Section V that this is true under broad conditions. First, however, we 
consider the case of uncorrelated priors.

IV.  Public Biases

In this section, we explore the impact of observability of priors on the degree of 
bias in public beliefs under the assumption that priors are independently and identi-
cally distributed.

ASSUMPTION 1: The variance-covariance matrix for priors is Σ = ​σ​2​I.

That is, for all distinct pairs i and j, the priors ​μ​i​ and ​μ​j​ are independent (i.e., ​σ​ij​ = 0)  
and the variances of priors are equal (i.e., ​σ​ii​ = ​σ​2​ for all i).

Consider two individuals, i and j. At the end of deliberation, j thinks that the 
expected value of θ is ​A​j, ∞​. He also knows that i thinks that the expected value of 
θ is ​A​i, ∞​. Therefore, j thinks that i overestimates θ by an amount ​A​i, ∞​ − ​A​j, ∞​. This 
leads to our notion of public bias.

DEFINITION 1: For any i, j ∈ N, the public bias of i relative to j is ​A​i, ∞​ − ​A​j, ∞​.

Similarly, the ex ante bias of i relative to j is ​​ 
_ μ​​i​ − ​​ _ μ​​j​ . The bias after i and j have 

observed their own priors but before they observe any information is ​μ​i​ − ​μ​j​, which 
we call the prior bias of i relative to j. Note that the ex ante bias is known to all play-
ers, and the public bias comes to be known through communication, but the prior 
bias may never be revealed.

We know from (6) that when priors are common knowledge, the only source of 
public bias is the difference in realized priors, ​μ​i​ − ​μ​j​ , which is scaled down through 
communication. The following lemma identifies the amount of public bias when pri-
ors are unobservable, generalizing the analysis of Section III to n individuals.

LEMMA 1: Under Assumption 1, for any i and j, the public bias of i relative to j 
under unobservable priors is, 

(12) 	​ A​i, ∞​ u
  ​  − ​ A​j, ∞​ u

  ​  = ​  ​τ​ 
2​ _ ​γ​n​
 ​ ((​​_ μ​​i​  − ​​ _ μ​​j​)  + ​ τ​ 2​​σ​2​ (​μ​i​  − ​ μ​j​)  +  ​σ​2​ (​ε​i​  − ​ ε​j​)).

where ​γ​n​ = (1 + ​τ​ 2​)(1 + ​τ​ 2​​σ​2​) + n − 1.

Under unobservable priors, public bias has three sources: ex ante bias (​​ _ μ​​i​ − ​​ _ μ​​j​),  
prior bias (​μ​i​ − ​μ​j​), and informational difference (​ε​i​ − ​ε​j​). The informational 
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difference contributes to public bias because unobservability of priors impedes the 
full aggregation of information. Ex ante bias affects public bias because, without 
full aggregation, individuals use ex ante information on priors to estimate the infor-
mation of others.

By Lemma 1, the magnitude of public biases does not depend on θ. Hence all indi-
viduals agree on the distribution of these biases (although they disagree on the distri-
bution of public beliefs). Our next result establishes that, if the priors are drawn from 
distinct distributions, the expected bias is necessarily larger under unobservable priors. 
(The expected bias is always zero when priors are drawn from the same distribution.)

PROPOSITION 1: Under Assumption 1, if ​​ 
_ μ​​i​ > ​​ _ μ​​j​, then 

 	  E [​A​i, ∞​ u
  ​  − ​ A​j, ∞​ u

  ​]  >  E [​A​i, ∞​ ck
  ​  − ​ A​ j, ∞​ ck

  ​]  >  0.

Consider two individuals i and j. Suppose that ​​ 
_ μ​​i​ > ​​ _ μ​​j​ so that at the ex ante stage i 

overestimates θ relative to j, although the actual prior ​μ​i​ of i may or may not turn out 
to be larger than ​μ​j​. After each player k forms his prior and receives his information, 
all individuals deliberate, communicating their beliefs. At the end of this process, 
their beliefs become public. Proposition 1 establishes that all individuals expect that, 
at the end of the process of deliberation, i overestimates θ less vis-à-vis j when priors 
are observable. That is, ​E​k​[​A​i, ∞​ ck

  ​ − ​A​j, ∞​ ck
  ​] < ​E​k​[​A​i, ∞​ u

  ​ − ​A​j, ∞​ u
  ​] according to each k ∈ N. 

Therefore, making priors observable decreases public biases on average. This sug-
gests that social integration, interpreted as an increased understanding of the manner 
in which other people think, should result in lower levels of public disagreement on 
average. We explore these issues further in Section VI.

We conclude this section with a discussion of the manner in which increases in 
population size affect the aggregation of distributed information. When informa-
tion is distributed among a large number of individuals, unobservability of priors 
becomes detrimental for communication, so much so that the bias at the end of 
the deliberation process is approximately the same as the bias before deliberation 
begins. Towards establishing this, recall from (4) that the distributed information in 
society has variance ​​

_ τ ​​2​ = ​τ​2​/n. If one fixes τ and varies n, as n gets large, the dis-
tributed information becomes very precise. Consequently, the individuals approxi-
mately learn θ from each other. In order to disentangle the effect of group size n 
from the effect of the information available to the group, we now fix the precision of 
the distributed information and let n vary.

In particular, consider a family of models (​τ​ n​ 2​, ​σ​2​, ​​ _ μ​​n​, n), indexed by the num-
ber of individuals n, where ​​ 

_ μ​​n​ = (​​ _ μ​​1​, … , ​​ _ μ​​n​) is the vector of means for the priors; ​
μ​i​ ∼ N(​​ _ μ​​i​ , ​σ​2​) for each i ≤ n. We assume that the variance ​τ​ n​ 2​/n approaches some 
positive value ​​

_ τ ​​ 2​ as n → ∞. (A special case of this arises if the variance of distrib-
uted information is independent of n, i.e., the total amount of information is fixed. 
In that case, ​τ​ n​ 2​ = n​​

_ τ ​​ 2​ for some fixed ​
_ τ ​ > 0.) For any distinct individuals i and j, 

and any pair of realized priors ​μ​i​ and ​μ​j​, this family of models defines a sequence 
of random variables (​A​i, ∞​ u

  ​ − ​A​j, ∞​ u
  ​​)​n​. Our next result shows that under unobservable 

priors, as the number of individuals n becomes large, this sequence of random vari-
ables converges in distribution to ​μ​i​ − ​μ​j​.
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PROPOSITION 2: Under Assumption 1, for any family (​τ​ n​ 2​, ​σ​2​, ​​ _ μ​​n​, n) of models, any 
distinct individuals i and j, and any realized priors (​μ​i​, ​μ​j​),

 	  (​A​i, ∞​ u
  ​  − ​ A​j, ∞​ u

  ​​)​n​ ​ 

 
  →      ​ ​ μ​i​  − ​ μ​j​ .

Proof: 
By Lemma 1,

 	  E [​(​A​i, ∞​ u
  ​  − ​ A​j, ∞​ u

  ​)​n​ | ​μ​i​, ​μ​j​]  = ​ τ​ n​ 2​ ​σ​2​ η (​μ​i​  − ​ μ​j​)  +  η (​​ _ μ​​i​  − ​​  _ μ​​j​),

where

 	  η  = ​   ​τ​ n​ 2​/n
  ___    

n ​(​τ​ n​ 2​/n)​2​ ​σ​2​  +  (​τ​ n​ 2​/n)(1  + ​ σ​2​)  +  1
 ​ .

As n → ∞ and ​τ​ n​ 2​/n→​​_ τ ​​ 2​ > 0, η goes to 0, while ​τ​ n​ 2​ ​σ​2​ η goes to 1. Hence

 	​   lim   
n→∞​  E [​(​A​i, ∞​ u

  ​  − ​ A​j, ∞​ u
  ​)​n​ | ​μ​i​, ​μ​j​]  = ​ μ​i​  − ​ μ​j​.

To complete the proof we need to show that the variance of (​A​i, ∞​ u
  ​ − ​A​j, ∞​ u

  ​​)​n​ goes to 0 
as n → ∞. Since ​μ​i​ and ​μ​j​ are given, from Lemma 1 we have

 	  Var [​(​A​i, ∞​ u
  ​  − ​ A​j, ∞​ u

  ​)​n​ | ​μ​i​, ​μ​j​]  =  2​τ​ n​ 2​ ​σ​4​ ​η​2​  =  2​τ​ n​ 2​ ​σ​2​ η (​σ​2​ η).

Since η goes to 0 and ​τ​ n​ 2​ ​σ​2​ η goes to 1 as n → ∞,

 	​   lim   
n→∞​  Var [(​A​i, ∞​ u

  ​  − ​ A​j, ∞​ u
  ​​)​n​ | ​μ​i​, ​μ​j​]  =  0.

Hence, when the number n of individuals is large, the public bias of i relative to j 
is approximately equal to the prior bias of i relative to j. In the limit, all distributed 
information, no matter how precise, is entirely dissipated.10

REMARK 4: For simplicity, Proposition 2 assumes that there is some residual uncer-
tainty in the limit even if one can aggregate all the information (i.e., lim ​τ​ n​ 2​/n > 0).  
Although there are many cases in which such uncertainty remains (such as religious 
disagreements), some may question the validity of this assumption in other cases. 
This assumption is not necessary, and the proposition illustrates a broader fact. To 
see this, assume that ​τ​ n​ 2​/n → 0 but ​τ​ n​ 4​/n → ∞. That is, while the total distributed 
information becomes completely informative in the limit, the individuals’ signals get 
less informative as we distribute the information among a larger group. Then, one 
can easily check in the proof of proposition that η → 0 and ​τ​ n​ 2​ ​σ​2​ η → 1, showing 
that ​(​A​i, ∞​ u

  ​ − ​A​j, ∞​ u
  ​)​n​ ​ 


 
  →   
 
 ​ ​μ​i​ − ​μ​j​, as in the proposition.

10 Note that since ​μ​i​ − ​μ​j​ is a constant (conditional on the realized priors ​μ​i​ and ​μ​j​), convergence in distribution 
implies convergence in probability. Hence we also have plim ​A​i, ∞​ u

  ​ − ​A​j, ∞​ u
  ​ = ​μ​i​ − ​μ​j​.
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Under observable priors, individuals use all distributed information efficiently. 
Hence, their public beliefs and the bias in those beliefs do not depend on how infor-
mation is distributed. When priors are unobservable, however, even if individuals 
have very precise information as a group and announce their beliefs sincerely, they 
cannot communicate any significant information: at the end of the deliberation pro-
cess, their beliefs are as they were at the outset. The intuition is that each individual 
has such a small amount of information that their announcements reveal little more 
than their priors. Recall from (6) that

 	​  A​i, ∞​ ck
  ​  − ​ A​j, ∞​ ck

  ​  = ​   ​​_ τ ​​2​ _ 
1  + ​​ _ τ ​​2​

 ​  (​μ​i​  − ​ μ​j​),

so the difference in beliefs under observable priors is independent of n holding ​
_ τ ​ 

fixed. An immediate implication of Proposition 2 is therefore the following: as the 
population size becomes large, so that a given amount of information is distributed 
among an increasingly large number of individuals, public bias under unobserv-
ability is greater not only in expectation but also for almost all type realizations. 
This is illustrated in Figure 2, which repeats the exercise depicted in Figure 1 but 
for three different values of group size. As n gets large, type realizations for which 
observability results in greater public bias (which lie below the diagonal) become 
increasingly rare.11

Note that for large n, Proposition 2 and (6) imply that

 	​  A​i, ∞​ u
  ​  − ​ A​j, ∞​ u

  ​  = ​  1  + ​​ _ τ ​​2​ _ 
​​_ τ ​​2​

 ​   (​A​i, ∞​ ck
  ​  − ​ A​j, ∞​ ck

  ​).

Hence, the public bias under unobservability is a linear function of the public bias 
under observability, with slope greater than 1. This is illustrated for the case of 
n = 40 in the right panel of Figure 2.

11 Each plot is based on 500 realizations of type profiles for parameter values ​σ​2​ = 1, ​​ 
_ μ​​i​ = 3, ​​ 

_ μ​​j​ = 0, and ​τ​ n​ 2​/n  
= ​​_ τ ​​2​ = 1/2 for all n. Only type realizations at which ​μ​i​ ≥ ​μ​j​ (and public biases lie in the positive quadrant) are 
shown. For realizations at which ​μ​i​ < ​μ​j​ our results imply that as n gets large, public biases will lie below the 
diagonal in the negative quadrant.
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Figure 2. Public Bias with Observable and Unobservable Priors for Various n
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V.  Aggregation of Distributed Information

We now turn to the general model with unobservable priors, and provide a near-
characterization of the cases in which the private information of an individual is 
revealed through deliberation. We show that, roughly speaking, if an individual’s 
prior is correlated with the prior of any other individual, his private information is 
revealed by the end of the second round; otherwise his information is never revealed. 
Hence, except for certain knife-edge cases (as in the example of independent pri-
ors), the process of sequential belief announcements leads to the aggregation of all 
distributed information.

The idea that an individual’s private information is revealed through communica-
tion is formalized as follows.

DEFINITION 2: We say that the private information of individual i is revealed by 
(the end of) round k if (​μ​i​, ​x​i​) is measurable with respect to {​A​j, m​​}​j∈N, m≤k​. If the pri-
vate information of individual i is not revealed by round k for any k, we say that his 
private information is never revealed.

That is, the private information of i is revealed by the end of round k if, by observing 
all announcements up to and including those in round k, one can compute his prior 
belief ​μ​i​ and signal ​x​i​. In that case, his private information will be common knowl-
edge at any round m > k:

 	​  A​j, m​  = ​ E​j​ [θ | ​μ​i​, ​x​i​, ​μ​j​, ​x​j​, ​{​A​i′, l​}​i′∈N \{i, j}, l≤m​]    (∀j ∈ N).

To present our characterization, we introduce the following notation. For any 
i ∈ N, we define column vectors ​μ​−i​ = (​μ​j​​)​j≠i​ and ​σ​−i, i​ = ​(​σ​j, i​)​j≠i​ and write ​
Σ​−i,−i​ = (​σ​j, k​​)​j≠i, k≠i​ for the variance covariance matrix of ​μ​−i​. We write ​1​k×l​ for 
the k × l-dimensional matrix with entries 1 and I for the identity matrix. Finally, we 
define the row vector ​M​i​ as follows:

 	​  M​i​  = ​ 1​1×n−1​ (α​1​n−1×n−1​  + ​ τ​ 2​ I  + ​ τ​ 4​ (​Σ​−i, −i​  − ​ σ​ ii​ −1​ ​σ​−i, i​ ​σ​ −i, i​ ′  ​)​)​−1​.

Note that ​M​i​ depends only on the primitives of the model and is therefore indepen-
dent of all type realizations. The next definition provides the terminology of the 
characterization.

DEFINITION 3: We say that i is isolated if ​σ​−i, i​ = 0. We say that i is regular under 
(​τ​ 2​, Σ) if ​M​i​ ​σ​−i, i​ ≠ 0. We say that (​τ​ 2​, Σ) is regular if every i is regular under  
(​τ​ 2​, Σ).

Note that i is isolated if and only if ​μ​i​ is independent of all other priors ​μ​j​. In 
this case, i cannot infer any information about the priors of others from his own 
prior. Consequently, others cannot learn about i’s prior from the way he reacts to 
their announcements, and it is not possible to uncover all of his private information. 
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The regularity condition ​M​i​ ​σ​−i, i​ ≠ 0 corresponds to the case that i’s second-round 
announcement contains some new information. It only rules out some knife-edge 
cases, such as isolation. Indeed, ​M​i​ ​σ​−i, i​ = 0 is a nontrivial linear equality restric-
tion on the variances (​τ​ 2​, Σ), and hence is satisfied only on a lower-dimensional sub-
space of the space of all variances (​τ​ 2​, Σ). In particular, the set of regular parameters 
(​τ​ 2​, Σ) has full Lebesgue measure and is open and dense.

Our characterization establishes that whether the private information of an indi-
vidual is revealed depends on whether he is regular or isolated.

PROPOSITION 3: Assume that priors are not observable. If i is regular, then his 
private information is revealed by the end of round 2. Conversely, if i is isolated, 
then his private information is never revealed.

An immediate implication of this is:

COROLLARY 1: If (​τ​ 2​, Σ) is regular, then all private information is revealed by 
the end of round 2.

This result establishes the irrelevance of observability: public beliefs under unob-
servable priors are identical to public beliefs under common knowledge of priors as 
long as (​τ​ 2​, Σ) is regular. All information is aggregated no matter how little indi-
viduals know about each other’s way of thinking. Moreover, as in the two person 
case, this process requires just two rounds of communication.

In order to prove Proposition 3, in the Appendix, we compute the announcements 
(see Lemma 2). After the first round, the announcement of an individual i is an 
affine function of the first round announcements of all individuals, the priors of the 
individuals whose information has been revealed, and the prior ​μ​i​ of i himself. In the 
second round announcement, the coefficient of ​μ​i​ is proportional to ​M​i​ ​σ​−i, i​. Hence, 
when ​M​i​ ​σ​−i, i​ ≠ 0, other individuals can compute ​μ​i​ using the publicly available 
information and ​A​i, 2​. In that case, the private information of i is revealed by the end 
of the second round. Moreover, in any round after the first, the coefficient of ​μ​i​ is 
proportional to ​σ​−i, i​. When ​σ​−i, i​ = 0, the announcement of i does not contain any 
new information because it is a function of publicly available information, namely 
the first round announcements and the priors that have already been revealed. In that 
case, i’s private information is never revealed.

Since all private information is revealed by the end of the second round when  
(​τ​ 2​, Σ) is regular, the difference in public beliefs with unobservable priors is identi-
cal to the difference with observable priors: ​A​i, k​ u

  ​ = ​A​i, k​ ck
 ​ for all i and k ≥ 3. Using (6), 

we therefore have

​A​i, ∞​ u
  ​  − ​ A​j, ∞​ u

  ​  = ​ A​i, ∞​ ck
  ​  − ​ A​j, ∞​ ck

  ​  = ​   ​τ​ 2​ _ 
n  + ​ τ​ 2​

 ​ (​μ​i​  − ​ μ​j​)  = ​   ​​_ τ ​​2​ _ 
1  + ​​ _ τ ​​2​

 ​ (​μ​i​  − ​ μ​j​).

That is, under the regularity assumption, regardless of whether priors are observ-
able or unobservable, differences in public beliefs are due only to differences in 
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priors, scaled down by a factor that depends on the precision 1/​​_ τ ​​2​ of the distrib-
uted information.

The regularity assumption is weaker than genericity and contains many interest-
ing “non-generic” cases, as the following example illustrates.

EXAMPLE 2: Take N = B ∪ W consisting of two groups B = {1, 2} and W = {3, 4}. 
For each i, ​σ​ii​ = ​σ​2​ and for all distinct individuals i and j, ​σ​ij​ > 0 if i and j are in 
the same group and ​σ​ij​ = 0 otherwise. That is, from his own prior, an individual 
can learn about the other individual’s prior in his own group, but he cannot learn 
anything about the other group. Nevertheless, (​τ​ 2​, Σ) is regular. One can check that, 
for any i ∈ N, 

 	​  M​i​ ​σ​−i, i​  ∝  1  + ​ τ​ 2​  + ​ σ​2​ ​τ​ 2​  + ​ σ​2​ ​τ​ 4​  + ​ σ​2​ ​τ​ 2​ ρ  + ​ σ​2​ ​τ​ 4​ ρ  ≠  0.

This example illustrates that even in a segregated society with no correlation in 
priors across groups, all distributed information is incorporated into public beliefs.

Consider a society composed of several subgroups such that priors are cor-
related within groups but independently distributed across groups. In light of 
Propositions 2 and 3, one might be tempted to conclude that information in such 
a society would be aggregated within but not across groups. Example 2 demon-
strates that this claim would be false. As long as each group is composed of mul-
tiple individuals, all individuals can infer the priors and information of all others 
by observing the manner in which they respond to the announcements of those 
within their respective groups.12

Proposition 3 implies that public beliefs are discontinuous with respect to the 
correlation of priors. When the priors are correlated, no matter how small the cor-
relation may be, public beliefs incorporate all private information. When priors are 
independent, however, a substantial amount of private information remains private. 
This is true even for the third round announcements. The discontinuity in finite 
rounds stems from our assumption that individuals can communicate their beliefs 
precisely, and understand the correlation structure perfectly. In reality, individuals 
have noisy information about the beliefs of others, and imprecise estimates of the 
correlation structure, which could lead to a continuous relationship between dis-
agreement and correlation, with a substantial amount of private information remain-
ing uncommunicated at each round. In that case, the beliefs at any given round 
would be a continuous function of parameters such as the correlation coefficients. 
The public beliefs ​A​i, ∞​ may remain discontinuous with respect to these parameters. 
Accordingly, we consider full aggregation after only two rounds to be an artifact of 
our simplifying assumptions.

Full aggregation after only two rounds is also an artifact of the two-dimensional 
model we use for tractability. In general, communication of information through 
announcements can take arbitrarily many rounds, depending on the level at which 
the model is “closed”. More, precisely, in any type space, every type has a belief 

12 In particular, a large population consisting of a small number of subgroups (with correlated priors within but 
not across groups) does not behave like a small population with independent priors.
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about θ (i.e., first-order beliefs), beliefs about θ and the other individuals’ first-order 
beliefs (i.e., second-order beliefs) and so on. Typically, a type space is closed at 
some order k in the sense that there is only one type with a given first k orders of 
beliefs. In such a model, one needs to knows the first k orders of beliefs to fully 
learn the individuals’ private information, and this requires k rounds of communi-
cations in general. An individual’s first-round announcement provides information 
about his first-order belief. By observing the first-round announcements, one then 
updates his beliefs using his second-order belief, a joint probability distribution of θ 
and the first-order beliefs. The second-round announcements then give information 
only on the second-order beliefs. In the third round then one uses his newly acquired 
information about the other parties’ first and second order beliefs and his own third-
order belief to update his belief about θ. In this way, the announcements in the first 
m rounds reveal only the information contained in first m orders of beliefs. If the 
model is closed in k orders, one then needs k rounds of communication to learn 
all of the private information, while some types’ information can be revealed in 
earlier rounds. Although the models are not exactly same, an example of this can 
be seen in Geanakoplos and Polemarchakis (1982), who show that even under the 
common prior assumption beliefs may take arbitrarily long to stabilize.13 Hence 
the complete aggregation of distributed information could take an arbitrarily large 
number of communication rounds in a more general setting. Accordingly, we view 
Proposition 3 to be demonstrating that all information is aggregated under corre-
lated priors once belief announcements cease to be informative.

In our model, beliefs are represented by expectations, and the first and the  
second-order beliefs of a type (​μ​i​ , ​x​i​) are ​A​i, 1​ = α​μ​i​ + (1 − α) ​x​i​ and ​E​i​[(θ, ​A​j, 1​)]  
= (​A​i, 1​, αE[​μ​j​ | ​μ​i​] + (1 − α) ​A​i, 1​), respectively. Under independence, E[​μ​j​ | ​μ​i​]  
= ​​ _ μ​​j​ , and the second-order beliefs are already determined by the first-order beliefs, 
i.e., the model is closed at the first order. In fact, informative communication stops 
after the first round. With correlation, E[​μ​j​ | ​μ​i​] varies with ​μ​i​ , and the second-order 
beliefs can vary for a fixed first-order belief ​A​i, 1​. Nonetheless, from the second-order 
beliefs, one can solve for ​μ​i​ and ​x​i​ , figuring out the entire hierarchy of beliefs. In this 
case, the model is closed at the second round, and there are two rounds of informa-
tive communication.

Complete aggregation of distributed information in the limit relies on the assump-
tion that all individuals have high levels of statistical sophistication. Not only are 
they able to make rational inferences based on the initial beliefs of others, they are 
also able to make rational inferences based on the manner in which others adjust 
their beliefs after hearing each successive round of announcements. This requires 
that individuals assume that beliefs are as described in the model, and assume that 
all individuals assume that beliefs are as described in the model, and update their 
beliefs accordingly … up to high orders. When such strong assumptions fail, indi-
viduals may fail to aggregate distributed information fully, and behavior may resem-
ble the case of independent priors, where individuals do not make inferences based 
on the manner in which others react to information.

13 Within a special class of models that are closed at the first order, Geanokoplos and Polimarchakis (1982) show 
also that the beliefs are aggregated at one round “generically.”
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VI.  Social Structure

As an illustration of the theory developed in the previous sections, we now ana-
lyze the amount of bias between two groups under three alternative social structures, 
which we call fragmentation, integration, and segregation. Fragmentation corre-
sponds to a structure in which no individual observes the prior of any other. Under 
integration, each individual observes the prior of every other individual. And under 
segregation, each individual observes the priors of all those belonging to the same 
group, but none of the priors of those in the other group.

More formally, let N = B ∪ W, where B and W are disjoint sets with ​n​b​ ≥ 2 and ​
n​w​ ≥ 2 members, respectively. We maintain the assumption that Σ = ​σ​2​ I, so priors 
are independently distributed, and we assume that for some ​​ 

_ μ​​b​ > ​​ _ μ​​w​,

 	​​   _ μ​​i​  = ​​  _ μ​​b​  and ​​ 
_ μ​​j​  = ​​  _ μ​​w​    (∀i ∈ B,  j ∈ W).

That is, ex ante, members of B overestimate θ relative to members of W.14 An indi-
vidual member of B, of course, may turn out to have a higher expectation than an 
individual member of W once each observes his own prior. We assume that opin-
ions are communicated by successive belief announcement as before and that all 
announcements are observable.15 Define the average opinion within each group in 
period k as follows:

 	​​    A​​b, k​  = ​  1 _ ​n​b​ ​ ​ ∑ 
i∈B

​ 
 

 ​  ​​A​i, k​  and ​​   A​​w, k​  = ​  1 _ ​n​w​ ​ ​ ∑ 
j∈W

​ 
 

 ​  ​​A​j, k​ .

We use the same superscript to denote other within-group averages as well, 
so ​​  μ​​b​ = ​ 1 _ ​n​b​ ​ ​∑ i∈B​ 

 
  ​​μ​i​​  , ​​  ε​​w​ = ​ 1 _ ​n​w​ ​ ​∑ j∈W​  

  ​​ε​j​​ , etc. We are interested in the extent to which 
average opinion in B exceeds that in W at any given round k, defined as follows:

 	​  β​k​  ≡ ​​   A​​b, k​  − ​​   A​​w, k​ .

We let ​β​ k​ F​, ​β​ k​ I
 ​ and ​β​ k​ S​ denote the values of this difference under fragmentation, inte-

gration and segregation respectively.
We shall refer to beliefs at k = 2 as intermediate beliefs, and those at k = 3 as 

limiting beliefs. From the previous section, recall that in both fragmented and inte-
grated societies, ​A​i, k​ = ​A​i, 2​ for all k ≥ 2, and the distinction between intermediate 
and limiting beliefs is not meaningful. However, as we show below, the distinction 
is important under segregation, since individuals behave as in the correlated priors 
case (although the priors are in fact independent).

14 This assumption is without loss of generality even if the groups are of unequal size, because if ​​ 
_ μ​​b​ < ​​ _ μ​​w​, then 

we can simply reverse the order on θ by considering − θ. Simply put, we are measuring the biases in the direction 
that, ex ante, members of B overestimate with respect to the members of W.

15 The results in this section hold without modification even if only the average announcement in each group is 
publicly observable. To see this, note from (5) that when priors are observable, the public belief of i depends only on 
his own prior and the aggregate signal. Similarly, when priors are unobservable, the public belief of i depends only 
on his own initial announcement and the aggregate announcement in the group from (B2) in the proof of Lemma 1.
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A. Fragmentation

In a fragmented society, individuals obtain information, form beliefs, commu-
nicate these beliefs to pollsters, and observe the aggregate belief distribution. No 
individual observes the prior belief of any other individual. Instead, he uses his prior 
belief about the thinking of the others in order to extract the information revealed in 
the polls. This is the case of unobservable priors.

From Lemma 1, for any round k ≥ 2, the difference in average opinions across 
groups is

(13) 	​  β​ k​ F​  = ​  ​τ​ 
2​ _ ​γ​n​ ​ (​​ 

_ μ​​b​  − ​​  _ μ​​w​)  + ​  ​τ​ 
4​ ​σ​2​ _ ​γ​n​ ​  (​​  μ​​b​  − ​​   μ​​w​)  + ​  ​τ​ 

2​​σ​2​ _ ​γ​n​ ​  (​​  ε​​b​  − ​​   ε​​w​).

Hence, the bias has three sources: the ex ante bias between groups (​​ _ μ​​b​ − ​​ _ μ​​w​), the 
average prior bias between groups (​​  μ​​b​ − ​​  μ​​w​), and the average informational differ-
ence between groups (​​  ε​​b​ − ​​  ε​​w​). Recalling the definition of ​γ​n​ from Lemma 1, the 
expected value of between-group bias is therefore

(14) 	  E [​β​ k​ F​  ]  = ​   ​τ​ 2​ (1  + ​ τ​ 2​​σ​2​)   ___   
(1  + ​ τ​ 2​)(1  + ​ τ​ 2​​σ​2​)  +  n  −  1

 ​ (​​ _ μ​​b​  − ​​  _ μ​​w​).

B. Integration

In an integrated society, each individual observes the priors of every other indi-
vidual. They communicate directly, understanding the manner in which information 
is incorporated into beliefs. This is the case of observable priors.

From (6), for any round k ≥ 2, the difference in average opinions across groups is

(15) 	​  β​ k​ I
 ​  = ​   ​τ​ 2​ _ 

​τ​ 2​  +  n
 ​ (​​  μ​​b​  − ​​   μ​​w​).

Hence, the difference across groups in average opinion is the difference between 
their respective average priors, scaled down by a factor that uses all of the distrib-
uted information efficiently. The expected value of this is

(16) 	  E [​β​ k​ I
 ​]  = ​   ​τ​ 2​ _ 

​τ​ 2​  +  n
 ​ (​​ _ μ​​b​  − ​​  _ μ​​w​) 

and hence, from Proposition 1,

 	  E [​β​ k​ F​  ]  >  E [​β​ k​ I
 ​].

C. Segregation

Now we consider a segregated society partitioned into two components, one for 
each group. Each component is like an integrated society that is closed to members 
of the other component; individuals in different groups receive information about 
each other only through opinion polls. Formally, we assume that the prior of an 
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individual is observable to the members of his own group and unobservable to the 
members of other group. That is, for each i ∈ B and j ∈ W, ​μ​i​ is common knowledge 
among B and ​μ​j​ is common knowledge among W.

Now, when any i ∈ B observes the first round announcements of his own group, 
he extracts all of the relevant information that other members of B have, concluding 
correctly that

(17) 	​​    x​​b​  ≡ ​  1 _ ​n​b​ ​ ​ ∑ 
i∈B

​ 
 

  ​ ​x​i​​  =  (1  + ​ τ​ 2​) ​​  A​​b, 1​  − ​ τ​ 2​ ​​  μ​​b​.

On the other hand, he can extract only limited information from the announcements 
of the other group. The only relevant information for him is (1 + ​τ​ 2​) ​​  A​​w, 1​ = ​​  x​​w​ + ​
τ​ 2​​​  μ​​w​ , where he knows neither ​​  x​​w​ nor ​​  μ​​w​ . Combining these two pieces of informa-
tion, he updates his belief, and in the second round, he announces

​A​i, 2​ S
  ​  = ​ c​b​ (​α​b​ ​μ​i​  +  (1  − ​ α​b​) ​​  x​​b​)  +  (1  − ​ c​b​)((1  + ​ τ​ 2​) ​​  A​​w, 1​  − ​ τ​ 2​ ​​ _ μ​​w​)  (i ∈ B)

where

(18) 	​  α​b​  = ​   ​τ​ 2​ _ 
​τ​ 2​  + ​ n​b​

 ​

and

(19) 	​  c​b​  = ​   (​τ​ 2​  + ​ n​b​)(1  + ​ τ​ 2​ ​σ​2​)   ___   
(1  + ​ τ​ 2​ ​σ​2​)(​τ​ 2​  + ​ n​b​)  + ​ n​w​

 ​ .

Hence the average opinion in B at this stage is

(20) 	​​   A​​b, 2​ 
S
  ​  = ​ c​b​ (​α​b​ ​​  μ​​b​  +  (1  − ​ α​b​) ​​  x​​b​)  +  (1  − ​ c​b​)((1  + ​ τ​ 2​) ​​  A​​w, 1​  − ​ τ​ 2​ ​​ _ μ​​w​).

It turns out that, together with the first round announcements, the second round 
announcements reveal all relevant information. To see this, consider any j ∈ W. 
From the average first round announcements of the other group, j deduces that  
(1 + ​τ​ 2​) ​​  A​​b, 1​ = ​​  x​​b​ + ​τ​ 2​​​  μ​​b​, and in the second round deduces (20). Since ​n​b​ > 1, j 
can solve these two independent linear equations, thereby computing ​​  x​​b​ and ​​  μ​​b​. That 
is, j does not need to know how members of B think: knowing that members of B 
know how each other thinks, j can infer all relevant information from the manner in 
which members of B react to each others’ announcements. As a result, by the end of 
the second round, all distributed information is aggregated, and in the limit, segre-
gated and integrated societies are identical.

PROPOSITION 4: For each i ∈ N and k ≥ 3, ​A​i, k​ S
  ​ = ​A​i, k​ I

  ​ and ​β​ k​ S​ = ​β​ k​ I
 ​.

This illustrates the power of the argument behind Proposition 3. When some 
individuals have information about other individuals (through correlation in 
Proposition 3 and observation here), third parties can extract that information from 
the manner in which these individuals react to each other’s announcements.
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We now turn to intermediate beliefs in a segregated society. From (17) and (20), 
we obtain

(21) 	​​    A​​b, 2​ 
S
  ​  =  (1  − ​ α​b​ ​c​b​) θ  + ​ α​b​ ​c​b​ ​​  μ​​b​  +  (1  − ​ c​b​) ​τ​ 2​ (​​  μ​​w​  − ​​  _ μ​​w​) 

 	  +  (1  − ​ α​b​) ​c​b​ ​​  ε​​b​  +  (1  − ​ c​b​) ​​  ε​​w​.

Similarly,

(22) 	​​    A​​w, 2​ 
S
  ​  =  (1  − ​ α​w​ ​c​w​) θ  + ​ α​w​ ​c​w​ ​​  μ​​w​  +  (1  − ​ c​w​) ​τ​ 2​ (​​  μ​​b​  − ​​  _ μ​​b​) 

 	  +  (1  − ​ α​w​) ​c​w​ ​​  ε​​w​  +  (1  − ​ c​w​) ​​  ε​​b​ ,

where ​α​w​ and ​c​w​ are defined analogously to (18) and (19).
If ​n​b​ = ​n​w​ then ​α​b​ ​c​b​ = ​α​w​ ​c​w​. In that case, intermediate bias, ​β​ 2​ S​  

= ​​  A​​b, 2​ 
S
  ​ − ​​  A​​w, 2​ 

S
  ​, does not depend on θ, and all individuals have the same expectation:

 	  E [​β​ 2​ S​  ]  = ​   ​τ​ 2​ (1  + ​ τ​ 2​ ​σ​2​)   ___   
(1  + ​ τ​ 2​ ​σ​2​)(​τ​ 2​  +  n/2)  +  n/2

 ​ (​​ _ μ​​b​  − ​​  _ μ​​w​).

It is easily verified that for any n > 2,

 	  E [​β​ 2​ I
 ​]  <  E [​β​ 2​ S​  ]  <  E [​β​ 2​ F​  ].

That is, when groups are of equal size, they agree about the value of intermediate 
bias under all three information structures, and the bias is greatest under fragmenta-
tion, least under integration, and intermediate under segregation.

When groups are of unequal size, however, the intermediate bias does depend on 
θ, and hence the members of different groups will have different expectations about 
it. Our next result establishes that, in a segregated society, ex ante, members of a 
minority group will expect a smaller intermediate bias than the members of a major-
ity group. Despite this, it further establishes that they all agree that the expected 
intermediate bias under segregation is higher than that under integration, and lower 
than that under fragmentation.

PROPOSITION 5: If ​n​b​ < ​n​w​, then, for all i ∈ B and j ∈ W,

 	  E [​β​ 2​ I
 ​]  < ​ E​i​ [​β​ 2​ S​]  < ​ E​j​ [​β​ 2​ S​]  <  E [​β​ 2​ F​].

To gain some intuition for the finding that minorities expect lower levels of inter-
mediate bias, consider a highly skewed population with a very large majority group 
and a very small minority. Then the minority expects the majority to approximately 
learn θ, and hence to converge to a belief that is close to the minority group prior. 
The minority therefore expects the initial bias to diminish substantially. In contrast, 
the majority expects the minority to learn very little, and hence to maintain beliefs 
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that are distant from majority group priors, with little narrowing of the initial bias. 
Roughly speaking, the minority expects the majority to come around to their way of 
thinking, while the majority expects no such convergence.

In summary, expected biases are always highest under fragmentation. Expected 
biases are higher under segregation than under integration with respect to intermedi-
ate beliefs, but the two social structures are identical in the limit. This is intuitive, 
since individuals have the least ability to process information under fragmentation 
and the greatest ability to process information under integration.

D. Large Societies

We have so far compared the expected value of biases under three social struc-
tures for arbitrary values of the population size n. In large societies idiosyncratic dif-
ferences cancel each other out and we can compare the magnitudes of actual biases 
under various social structures state by state. Doing so reveals that our analysis of 
expectations misses an interesting and potentially disturbing fact about intermediate 
beliefs: Segregation puts minorities at a disadvantage in processing public informa-
tion and consequently results in biases even when groups are formed from ex ante 
identical individuals.

In order to compare biases in large societies (as in Section IV), we consider a 
family of models indexed by n, such that

(23) 	  as  n  →  ∞, ​ τ​ 2​/n  → ​​ _ τ ​​ 2​    and  ​  n​b​/n  →  r

for some ​​
_ τ ​​2​ > 0 and r ∈ (0, 1/2). That is, we adopt the convention that B is the minor-

ity group. In a large fragmented society, by (13), the bias is approximately as great 
as the ex ante bias:

(24) 	​  
 
 
 

 lim    
n→∞

​  ​β​ k​ F​  = ​​  _ μ​​b​  − ​​  _ μ​​w​    almost surely, for all k  ≥  2.

By (15), in a large integrated society, the bias is smaller, to a degree that depends on 
the precision of the distributed information:

(25) 	​  
 
 
 

 lim    
n→∞

​  ​β​ k​ I
 ​  = ​   ​​_ τ ​​2​ _ 

​​_ τ ​​2​  +  1
 ​  (​​ _ μ​​b​  − ​​  _ μ​​w​)    almost surely, for all k  ≥  2.

In a large segregated society, the bias is identical to that under integration in the 
limit, as we have seen above:

 	​  
 
 
 

 lim    
n→∞

​  ​β​ k​ S​  = ​   ​​_ τ ​​2​ _ 
​​_ τ ​​2​  +  1

 ​  (​​ _ μ​​b​  − ​​  _ μ​​w​)    almost surely, for all k  ≥  3.

In the limit, both segregated and integrated societies use all available information 
efficiently.

At the intermediate stage, under segregation, information is not fully aggregated. 
This does not, however, mean that the magnitude of the bias lies strictly between 
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the corresponding magnitudes under fragmentation and integration respectively. To 
see this, note from (21) and (22) that average group beliefs at the intermediate stage 
are given by:

(26) 	​  
 
 
 

 lim    
n→∞

​  ​​  A​​b, 2​ 
S
  ​   = ​   ​​_ τ ​​2​ _ 

​​_ τ ​​2​  +  r
 ​ ​​ 
_ μ​​b​  + ​   r _ 

​​_ τ ​​2​  +  r
 ​ θ

(27) 	​  
 
 
 

 lim    
n→∞

​  ​​  A​​w, 2​ 
S
  ​   = ​   ​​_ τ ​​2​ _  

​​_ τ ​​2​  +  1  −  r
 ​ ​​ 
_ μ​​w​  + ​   1  −  r _  

​​_ τ ​​2​  +  1  −  r
 ​ θ.

Notice that neither group processes information as efficiently as in an integrated 
society. In effect, a representative member of the minority group faces a noisy signal 
with variance ​​

_ τ ​​2​/r, and a representative member of the majority group faces a noisy 
signal with variance ​​

_ τ ​​2​/(1 − r). Under integration, each individual obtains a noisy 
signal with variance ​

_ τ ​, which is clearly smaller than both ​​
_ τ ​​2​/r and ​​

_ τ ​​2​/(1 − r). 
Furthermore, under segregation, minorities are disadvantaged in processing public 
information, since ​​

_ τ ​​2​/r > ​​_ τ ​​2​/(1 − r). As a result, at the intermediate stage, the 
majority belief puts greater weight on the true state (and less weight on the prior) 
when compared with the minority group belief. This disadvantage becomes more 
pronounced as group sizes become more unequal.16

Note that the intermediate stage bias under segregation depends on θ:

(28) 	​  
 
 
 

 lim    
n→∞

​  ​β​ 2​ S​  = ​   ​​_ τ ​​2​ _ 
​​_ τ ​​2​  +  r

 ​ ​​ 
_ μ​​b​  − ​   ​​_ τ ​​2​ _  

​​_ τ ​​2​  +  1  −  r
 ​ ​​ 
_ μ​​w​ 

 	  −  (​  ​​_ τ ​​2​ _ 
​​_ τ ​​2​  +  r

 ​  − ​   ​​_ τ ​​2​ _  
​​_ τ ​​2​  +  1  −  r

 ​) θ

almost surely. Because of this dependence, the bias can take any value. In particular, 
at the intermediate stage, the difference in beliefs under segregation may increase 
(relative to the ex ante belief difference) and therefore exceed the difference under 
fragmentation. This will occur if θ turns out to be very different from ex ante expec-
tations of it.

An interesting special case arises when the groups have identical ex ante 
beliefs: ​​ 

_ μ​​b​ = ​​ _ μ​​w​ = ​ _ μ​ ≠ θ for some ​ 
_ μ​. That is, the two groups start out with identi-

cal priors, and the true state happens to be different from the priors. Then, from (24) 
and (25), the intermediate and limiting biases are both negligible under fragmenta-
tion and integration: li​m​ n→∞​    ​ ​β​ k​ F​ = li​m​ n→∞​    ​ ​β​ k​ I

 ​ = 0 almost surely for k ≥ 2. However, 
from (28), the intermediate stage bias under segregation is strictly positive:

 	​  
 
 
 

 lim    
n→∞

​  ​β​ 2​ S​  =  (​  ​​_ τ ​​2​ _ 
​​_ τ ​​2​  +  r

 ​  − ​   ​​_ τ ​​2​ _  
​​_ τ ​​2​  +  1  −  r

 ​)(​ _ μ​  −  θ)    almost surely.

16 Individuals belonging to a minority within any population tend to have a smaller number of affiliates in friend-
ship networks (Currarini, Jackson, and Pin 2009), which should reinforce this effect. On the other hand, segregation 
itself tends to be endogenously increasing in the size of the minority group (Sethi and Somanathan 2004), which 
suggests that the extent of public disagreement may not vary monotonically with the size of the minority group.
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Furthermore, from (26–27), the majority group belief at the intermediate stage is 
closer to the true state. These two facts may be stated as follows.

PROPOSITION 6: Suppose that ​​ 
_ μ​​b​ = ​​ _ μ​​w​ ≠ θ. Then,

 	​   lim   
n→∞​ ∣ ​​  A​​b, 2​ 

S
  ​  −  θ ∣  > ​  lim   

n→∞​ ∣ ​​  A​​w, 2​ 
S
  ​  −  θ |

and

 	​  lim   
n→∞ ​ ∣ ​β​ 2​ 

S​ ∣ > ​ lim   
n→∞ ​ ∣ ​β​ k​ 

F​ ∣  = ​ lim   
n→∞ ​ ∣ ​β​ k​ 

I
 ​ ∣  =  0.

To summarize, when the two groups are composed of ex ante identical individu-
als, the beliefs of the majority group are more closely aligned with reality than are 
the beliefs of the minority group at the intermediate stage. Also, the level of bias in 
intermediate stage beliefs is greater under segregation than under either integration 
or fragmentation. The former result arises directly from the fact that majority group 
members have an advantage in the interpretation of public information. The latter 
result arises because segregation tends to homogenize beliefs within groups, which 
has the effect of creating belief heterogeneity across groups. This effect does not 
arise under either fragmentation or integration.

VII.  Conclusions

If a group of individuals share a common prior and are commonly known to 
be Bayesian (in the sense that each member of the group forms beliefs using 
Bayes’ rule according to the common prior) then public disagreement cannot arise. 
Accounting for such disagreement therefore requires a departure from one or both 
of these hypotheses. We have chosen here to explore the implications of heteroge-
neous priors, while maintaining stringent assumptions regarding Bayesian rational-
ity. Two main results follow from this. First, we find that for generic values of the 
model’s primitives, the extent of public disagreement is independent of whether or 
not priors are observable, and public beliefs involve the aggregation of all distrib-
uted information in the limit. Second, we find that when priors are uncorrelated, the 
expected value of public bias is lower in an integrated society than in a fragmented 
one. For large societies, a stronger result holds: public bias is greater in a fragmented 
society relative to an integrated one under almost all realizations of priors and infor-
mation. This suggests that social integration (in the sense of better understanding of 
the priors of others) should result in diminished public disagreement, especially in 
large populations.

Our results depend on the ability of individuals to make highly sophisticated 
statistical inferences, based not only on the initial beliefs of others but also on the 
manner in which these beliefs are adjusted over time on the basis of earlier announce-
ments. If cognitive limitations prevent individuals from making inferences based on 
the manner in which one person responds to another’s announcement, then our inter-
mediate stage analysis applies, and the expected value of bias across social groups 
depends systematically on the extent of social integration. Expected bias is smallest 
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in integrated societies (where priors are observable both within and between social 
groups) and largest in fragmented societies (where priors are unobservable even 
within social groups). Intermediate levels of expected bias arise under segregation, 
when priors are observable within but not across groups. Hence integration both 
within and across social groups tends to reduce expected levels of public bias.

In large populations, realized biases may be greater under segregation than under 
either fragmentation or integration, as belief differences are compressed within 
groups but amplified across groups. Communication in segregated societies can 
cause initial biases to be amplified, and new biases to emerge where none previ-
ously existed. Despite the fact that all announcements are public and all signals 
equally precise, members of a minority group face a disadvantage in the interpreta-
tion of public information that results in beliefs that are less closely aligned with 
the true state. If majority group members (or outside observers) fail to appreciate 
this effect, they may regard the views of minorities as “bizarre” or “outlandish,” 
attributing them to failures in reasoning rather than to structural factors such as the 
demographic composition and constraints on information exchange induced by the 
heterogeneity and unobservability of prior beliefs.

Mathematical Appendix

A. Aggregation of Distributed Information

In this subsection, we prove Proposition 3. The proof requires the use of the fol-
lowing well-known formula. For any two random vectors X and Y, if

 	​  ( X   
Y

 )​  ∼  N (​( ​μ​X​   
​μ​Y​

 )​,  (​
​
 ​Σ​X​   
​Σ​Y, X​​

​ ​
​
​Σ​X, Y​   
​Σ​Y​

 
​
​)),

then conditional on Y, X is distributed with N(E[X | Y], Var(X | Y)) where

(A1) 	  E [X | Y]  = ​ μ​X​  + ​ Σ​X, Y​ ​Σ​ Y​ −1​ (Y  − ​ μ​Y​) 

 	  Var (X | Y)  = ​ Σ​X​  − ​ Σ​X, Y​ ​Σ​ Y​ −1​ ​Σ​Y, X​ .

We also need to introduce some more notation. For any subset N′ ⊂ N, we use sub-
script N′ to denote the column vector obtained by stacking up all the values for 
j ∈ N′. For example, we write ​μ​N′​ = (​μ​j​​)​j∈N′​, ​A​N′, k​ = ​(​A​j, k​)​j∈N′​ , and ​σ​N′, i​ = ​(​σ​j, i​)​j∈N′​. 
For any subsets N′ and N″ of N and any matrix X = ​(​x​i, j​)​i, j∈N​ , we write ​X​N′, N″​ for the 
submatrix with entries from N′ and N″, i.e., ​X​N′, N″​ = ​(​x​i, j​)​i∈N′, j∈N″​  . We use subscript 
− i instead of N\{i}, e.g., ​μ​−i​ = (​μ​j​​)​j≠i​ and ​Σ​−i,−i​ = (​σ​j, k​​)​j≠i, k≠i​ . We write ​1​k×l​ for 
the k × l-dimensional matrix with entries 1 and I for the identity matrix. We write

(A2) 	​​     μ​​−i​   ≡  E [​μ​−i​ | ​μ​i​]  = ​​  _ μ​​−i​  + ​ σ​ ii​ −1​ ​σ​−i, i​ (​μ​i​  − ​​  _ μ​​i​) 

 	​​   ˜ Σ​​−i,−i​   ≡  Var (​μ​−i​ | ​μ​i​)  = ​ Σ​−i,−i​  − ​ σ​ ii​ −1​ ​σ​−i, i​ ​σ​ −i, i​ ′  ​.
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Using the definitions of R and H in Lemma 2 below, we also write

(A3) 	​   v​   = ​ τ​ 2​/(​τ​ 2​  +  1  +  | R |), 

 	  α  = ​ τ​ 2​/(​τ​ 2​  +  1), 

 	​  M​R​  = ​ 1​1×|H|​ ​(​  v​​1​|H|×|H|​  + ​ τ​ 2​I  + ​ τ​ 4​​​ ˜ Σ​​H, H​  − ​ τ​ 4​ ​​ ˜ Σ​​H, R​ ​​ ˜ Σ​​ R, R​ −1
 ​ ​​ ˜ Σ​​R, H​)​−1​

 	​  M​i​  = ​ 1​1×n−1​ ​(α​1​n−1×n−1​  + ​ τ​ 2​I  + ​ τ​ 4​ ​Σ​−i,−i​  − ​ τ​ 4​ ​σ​ ii​ −1​ ​σ​−i, i​ ​σ​ −i, i​ ′  ​)​ −1​.

We compute the announcements in the following lemma. 

LEMMA 2: Assume that the priors are not observable. For any i ∈ N and any round 
k, let R ⊆ N \{i} be the set of other individuals whose private information is revealed 
by the end of round k − 1, and let H = N \(R ∪ {i}). Then, 

(A4) ​ A​i, k​ 
u
  ​  = ​   ​τ​ 2​  +  1 __  

 ​τ​ 2​  +  1  +  |R|
 ​ (1  − ​   v​​M​R​​1​|H|×1​)  ​  ∑ 

j∈R∪{i}
​ 

 

  ​ ​A​j, 1​​  +  (1  + ​ τ​ 2​) ​  v​​M​R​ ​A​H, 1​

 	  − ​   ​τ​ 2​ _  
 ​τ​ 2​ + 1 + |R|

 ​ ​1​1×|R|​ ​μ​R​  − ​ τ​ 2​ ​  v​​M​R​ (​​_ μ​​H​  −  ​​ ˜ Σ​​H, R​ ​​ ˜ Σ​​ R, R​ −1
 ​ (​μ​R​  −  ​​

_ μ​​R​))

	 − ​ τ​ 2​ ​σ​ ii​ 
−1​ ​  v​​M​R​ (​σ​ H, i​  −  ​​ ˜ Σ​​H, R​ ​​ ˜ Σ​​ R, R​ −1

 ​ ​σ​ R, i​)(​μ​i​  −  ​​
_ μ​​i​)

when R ≠ 0̸ and

(A5) 	​  A​i, k​ 
u
  ​  =  (1  −  α​M​i​​1​n−1×1​) ​A​i, 1​  + ​ τ​ 2​ ​M​i​ ​A​−i, 1​  −  ​τ​ 2​ α​M​i​ ​​

_ μ​​−i​

	 − ​ τ​ 2​ ​σ​ ii​ 
−1​ α​M​i​ ​σ​−i, i​(​μ​i​  −  ​​

_ μ​​i​)

when R = 0̸.

Proof: 
We will use mathematical induction on k. We first compute ​A​ i, 2​ u

  ​, showing that the 
statement is true for k = 2. For each j, since ​A​j, 1​ = α​μ​j​ + (1 − α) ​x​j​,

 	  (1  +  ​τ​ 2​) ​A​j, 1​  =  θ  + ​ ε​j​  + ​ τ​ 2​ ​μ​j​.

Hence,

 	​  E​i​ [(1  + ​ τ​ 2​) ​A​j, 1​ | ​μ​i​ , ​x​i​]  = ​ A​i, 1​  + ​ τ​ 2​ ​E​i​ [​μ​j​ | ​μ​i​].

Substituting (A2) in this equality, we obtain
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(A6) 	​ E​i​ [(1  + ​ τ​ 2​) ​A​−i, 1​ | ​μ​i​, ​x​i​]  = ​ 1​n−1×1​ ​A​i, 1​  + ​ τ​ 2​ ​​_ μ​​−i​  + ​ τ​ 2​ ​σ​ ii​ −1​ ​σ​−i, i​ (​μ​i​  − ​​  _ μ​​i​).

Now, the first round of announcements provides i a new vector (1 + ​τ​2​) ​A​−i, 1​  
= θ​1​n−1×1​ + ​ε​−i​ + ​τ​ 2​​μ​−i​ of signals with additive normal noise. Notice that, condi-
tional on (​x​i​, ​μ​i​), the variance of θ​1​n−1×1​ + ​ε​−i​ + ​τ​ 2​​μ​−i​ is

 	  α​1​n−1×n−1​  + ​ τ​ 2​I  + ​ τ​ 4​ (​Σ​−i​  − ​ σ​ ii​ −1​ ​σ​−i, i​ ​σ​ −i, i​ ′  ​).

Hence, updating his belief according to (A1), in the second round i announces

(A7) 	​  A​ i, 2​ u
  ​  = ​ E​i​ [θ | ​μ​i​ , ​x​i​ , (1  + ​ τ​ 2​) ​A​−i, 1​] 

 	  = ​ A​i, 1​  +  α​M​i​ ((1  + ​ τ​ 2​) ​A​−i, 1​  − ​ E​i​ [(1  + ​ τ​ 2​) ​A​−i, 1​ | ​μ​i​ , ​x​i​]) 

 	  =  (1  −  α​M​i​ ​1​n−1×1​) ​A​i, 1​  + ​ τ​ 2​​M​i​ ​A​−i, 1​  −  α​τ​ 2​​M​i​ ​​
_ μ​​−i​

 	  − ​ τ​ 2​ ​σ​ii​ −1​ α​M​i​ ​σ​−i, i​ (​μ​i​  − ​​  _ μ​​i​),

where the second equality is by (A1) and the definition of ​M​i​ , and the last equality 
is by (A6). Now suppose that the proposition is true for rounds k′ ≤ k − 1 and for 
all j. Then, if

 	​  M​R​ (​σ​ H, j​  − ​​  ˜ Σ​​H, R​ ​​ ˜ Σ​​ R, R​ −1
 ​ ​σ​ R, j​)  =  0

for R defined for k′ and j, no new information is revealed by the announcement  
​A​ j, k′​ u

  ​ because it is measurable with respect to the public information at the end of 
round k′ − 1. On the other hand, if

 	​  M​R​ (​σ​ H, j​  − ​​  ˜ Σ​​H, R​ ​​ ˜ Σ​​ R, R​ −1
 ​ ​σ​ R, j​)  ≠  0,

then we can solve for ​μ​j​ from (A4) for k′ and j. That is, either the private informa-
tion of j is revealed by the end of round k − 1, i.e., j ∈ R, or i knows only that ​A​j, 1​  
= α​μ​j​ + (1 − α) ​x​j​ . Now, if R = 0̸, i has not learned any new information after 
the first round. In that case, ​A​ i, k​ u

  ​ = ​A​ i, 2​ u
  ​, and (A5) is equivalent to (A7). Now sup-

pose that R ≠ 0̸. Individual i knows (​μ​i​ , ​x​i​), (​μ​j​ , ​x​j​) for j ∈ R and that ​A​j, 1​ = α​μ​j​  
+ (1 − α) ​x​j​ for j ∉ R. We compute conditional distributions sequentially, first con-
ditioning on (​μ​i​ , ​x​i​), then on (​μ​R​, ​x​R​), and finally on ​A​H, 1​ = α​μ​H​ + (1 − α) ​x​H​, i.e.,

(A8) 	  (1  + ​ τ​ 2​) ​A​H, 1​  = ​ 1​|H|×1​ θ  + ​ ε​H​  + ​ τ​ 2​ ​μ​H​.

Conditional on (​μ​i​ , ​x​i​), (θ, ​μ​−i​ , ​ε​−i​) are independently and normally distributed with 
θ ∼ N(​A​i, 1​, α), ​μ​−i​ ∼ N(​​   μ​​−i​ , ​​   Σ​​−i,−i​), and ​ε​−i​ ∼ N(0, ​τ​ 2​I). Then, from (​μ​R​, ​x​R​), he 
obtains a new signal ​x​R​ = ​1​|R|×1​ θ + ​ε​R​ about θ and also potentially new information 
about ​μ​H​ from ​μ​R​. Conditioning on ​x​R​ = ​1​|R|×1​ θ + ​ε​R​, he updates his belief about θ 
to N(​​  μ​​i​ , ​  v​) where
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 	​​    μ​​i​  =   ​  ​τ​ 2​  +  1 __  
​τ​ 2​  +  1  +  |R|

 ​ ​A​i, 1​  + ​   1 __  
​τ​ 2​  +  1  +  |R|

 ​ ​1​1×|R|​ ​x​R​

 	  = ​   ​τ​ 2​  +  1 __  
​τ​ 2​  +  1  +  |R|

 ​   ​∑ 
j∈R∪{i}

​ 
 

  ​ ​A​j, 1​​  − ​   ​τ​ 2​ __  
​τ​ 2​  +  1  +  |R|

 ​ ​1​1×|R|​ ​μ​R​

 	  ​  v​  =   ​  ​τ​ 2​ __  
​τ​ 2​  +  1  +  |R|

 ​ .

Conditioning on ​μ​R​, he updates his belief about ​μ​H​ to N(​​  μ​​H​, ​​ ˜ Σ​​H​) where

 	​​    μ​​H​  =   ​​   μ​​H​  + ​​  ˜ Σ​​H, R​ ​​ ˜ Σ​​ R, R​ −1
 ​ (​μ​R​  − ​​    μ​​R​)

 	​​    Σ​​H​  =   ​​   Σ​​H, H​  − ​​    Σ​​H, R​ ​​ ˜ Σ​​ R, R​ −1
 ​ ​​ ˜ Σ​​R, H​.

Now, i conditions on (A8) starting from θ ∼ N(​​  μ​​i​ , ​  v​). Given the conditionings so 
far, by (A8),

 	  (1  + ​ τ​ 2​) ​A​H, 1​  ∼  N (​​  μ​​i​ ​1​|H|×1​  + ​ τ​ 2​ ​​  μ​​H​ , ​  v​​1​|H|×|H|​  + ​ τ​ 4​ ​​  Σ​​H​  + ​ τ​ 2​I).

Using (A1), he therefore obtains

 	​  A​i, k​  =  E [θ | ​μ​i​ , ​x​i​ , ​μ​R​, ​x​R​, (1  + ​ τ​ 2​) ​A​H, 1​  = ​ 1​|H|×1​ θ  + ​ ε​H​  + ​ τ​ 2​ ​μ​H​]

 	  = ​​   μ​​i​  + ​   v​​1​1×|H|​ ​(​  v​​1​|H|×|H|​  + ​ τ​ 4​ ​​  Σ​​H​  + ​ τ​ 2​I)​−1​ 

 	  ×  ((1  + ​ τ​ 2​) ​A​H, 1​  − ​​   μ​​i​​1​|H|×1​  − ​ τ​ 2​ ​​  μ​​H​)

 	  =  (1  − ​   v​ ​M​R​ ​1​|H|×1​) ​​  μ​​i​  +  (1  + ​ τ​ 2​) ​  v​ ​M​R​ ​A​H, 1​  − ​ τ​ 2​ ​  v​ ​M​R​ ​​  μ​​H​

 	  = ​   ​τ​ 2​  +  1 __  
​τ​ 2​  +  1  +  |R|

 ​ (1  − ​   v​ ​M​R​ ​1​|H|×1​) ​ ∑ 
j∈R∪{i}

​ 
 

  ​ ​A​j, 1​​

 	  − ​   ​τ​ 2​ __  
​τ​ 2​  +  1  +  |R|

 ​ (1  − ​   v​ ​M​R​ ​1​|H|×1​) ​1​1×|R|​ ​μ​R​

 	  +  (1  + ​ τ​ 2​) ​  v​ ​M​R​ ​A​H, 1​ 

	 − ​ τ​ 2​ ​  v​ ​M​R​ (​​ _ μ​​H​  + ​ σ​ii​ −1​ ​σ​H, i​ (​μ​i​  − ​​  _ μ​​i​)  + ​​    Σ​​H, R​ ​​ ˜ Σ​​ R, R​ −1
 ​ 

	 ×  (​μ​R​  − ​​  _ μ​​R​  − ​ σ​ii​ −1​ ​σ​ R, i​  ×  (​μ​i​  − ​​  _ μ​​i​))),
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where the second equality is by (A1); the third is by arrangement of terms using the 
definition of ​M​R​, and the last by substituting the values of ​​  μ​​i​ and ​​  μ​​H​. By rearranging 
terms, we obtain the equality in the proposition.

Using Lemma 2, we can now prove Proposition 3.

Proof OF PROPOSITION 3: 
Assume first that i is regular, i.e., ​M​i​ ​σ​−i, i​ ≠ 0. Then, since no individual’s private 

information is revealed by the end of round 2, by (A5),

 	​  μ​i​  = ​​  _ μ​​i​  + ​ 
(1  −  α​M​i​​1​n−1×1​) ​A​i, 1​  + ​ τ​ 2​ ​M​i​ ​A​−i, 1​  − ​ τ​ 2​ α​M​i​ ​​

_ μ​​−i​  − ​ A​i, 2​     _____    
α​τ​ 2​ ​σ​ii​ −1​ ​M​i​ ​σ​−i, i​

 ​  ,

i.e., ​μ​i​ is measurable with respect to ​A​i, 1​, ​A​−i, 1​, and ​A​i, 2​. Moreover, since ​A​i, 1​  
= α​μ​i​ + (1 − ​α​i​) ​x​i​ , we can further compute that

 ​ x​i​  =  (1  + ​ τ​ 2​) ​A​i, 1​  − ​ τ​ 2​

×  (​​ _ μ​​i​  + ​ 
(1  −  α​M​i​​1​n−1×1​) ​A​i, 1​  + ​ τ​ 2​ ​M​i​ ​A​−i, 1​  − ​ τ​ 2​ α​M​i​ ​​

_ μ​​−i​  − ​ A​i, 2​     _____    
α​τ​ 2​ ​σ​ii​ −1​ ​M​i​ ​σ​−i, i​

 ​ ),

showing that ​x​i​ is measurable with respect to ​A​i, 1​, ​A​−i, 1​, and ​A​i, 2​. Therefore, the pri-
vate information of i is revealed by round 2. Conversely, suppose that i is isolated, 
i.e., ​σ​−i, i​ = 0. (Note that, in that case, ​​

_ μ​​−i​ = ​μ​−i​ and ​​ ˜ Σ​​−i,−i​ = ​Σ​−i,−i​). Hence, by 
Lemma 2, for any k > 1, if R ≠ 0̸, then the coefficient of ​μ​i​ is

 	  −​τ​ 2​ ​σ​ii​ −1​ ​  v​ ​M​R​ (​σ​ H, i​  − ​ Σ​H, R​ ​Σ​ R, R​ −1
 ​ ​σ​R, i​)  =  0

because ​σ​H, i​ = 0 and ​σ​R, i​ = 0. If R = 0̸, the coefficient is again ​τ​ 2​ ​σ​ii​ −1​α​M​i​ ​σ​−i, i​  
= 0. Thus, ​A​i, k​ is measurable with respect to the information at the end of round 
k − 1, revealing no new information. On the other hand, since ​σ​−i, i​ = 0, (​x​R​, ​μ​R​) 
does not provide any information about ​μ​i​ , either. It only reduces the variance of ​x​i​ 
without revealing it. Hence, the private information of i is not revealed at any round.

B. Public Bias

Proof OF LEMMA 1: 
By Proposition 3, since the priors are independent, no information is revealed. 

Hence, by Lemma 2, ​A​i,∞​ u
  ​ = ​A​i, 2​ u

  ​, and ​A​i, 2​ u
  ​ satisfies (A5). To compute ​A​i, 2​ u

  ​ from (A5), 
first define

 	  φ  =  (1  + ​ τ​ 2​)(1  + ​ τ​ 2​ ​σ​2​)

and note that
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(B1) 	​  M​i​  = ​ 1​1×n−1​ ​(α​1​n−1×n−1​  +  (​τ​ 2​  + ​ τ​ 4​ ​σ​2​) I)​−1​

 	  = ​ α​−1​ ​1​1×n−1​ ​(​1​n−1×n−1​  +  φI)​−1​

 	  = ​   1 __  αφ (φ  +  n  −  1) ​ ​1​1×n−1​ ((φ  +  n  −  1) I  − ​ 1​n−1×n−1​) 

 	  = ​   1 __  α (φ  +  n  −  1) ​ ​1​1×n−1​.

Here, the first equality is obtained by substituting Σ = ​σ​2​I in (A3), and the 
second equality is by simple algebra. In the third equality, we invert the matrix ​
1​n−1×n−1​ + φI. It can be easily verified that

 	​  (​1​n−1×n−1​  +  φI)​−1​  = ​   1 __  φ (φ  +  n  −  1) ​ ((φ  +  n  −  1)  − ​ 1​n−1×n−1​ I),

yielding the third line. Finally, by adding up the rows of the matrix  
((φ + n − 1)I − ​1​n−1×n−1​), we obtain (A9). Substituting (A9) in (A5), we then 
obtain

 	​  A​ i, 2​ u
  ​  =  (1  −  α​M​i​ ​1​n−1×1​) ​A​i, 1​  + ​ τ​ 2​ ​M​i​ ​A​−i, 1​  −  α​τ​ 2​ ​M​i​ ​​

_ μ​​−i​

 	  =  (1  − ​  ​1​1×n−1​ ​1​n−1×1​  _  φ  +  n  −  1
 ​) ​A​i, 1​  + ​   ​τ​ 2​ __  α (φ  +  n  −  1) ​ ​1​1×n−1​ ​A​−i, 1​

 	  − ​   ​τ​ 2​ _  φ  +  n  −  1
 ​ ​1​1×n−1​ ​​ 

_ μ​​−i​

 	  = ​   1 _  φ  +  n  −  1
 ​ ​A​i, 1​  + ​   1  + ​ τ​ 2​ _  φ  +  n  −  1

 ​ ​ ∑ 
j≠i

 ​ 
 

  ​ ​A​j, 1​​ 

 	  − ​   ​τ​ 2​ _  φ  +  n  −  1
 ​ ​ ∑ 

j≠i
 ​ 

 

  ​ ​A​j, 1​​ ​​ 
_ μ​​j​.

Here, the first equality is simply (A5) for ​σ​−i, i​ = 0, and the second equality is just 
by the substitution of the value of ​M​i​ from (B1). The last equality is by straightfor-
ward algebra. By adding and subtracting new terms with ​A​i, 1​ and ​μ​i​ , we obtain

(B2) 	​  A​i, ∞​ u
  ​  = ​ A​i, 2​ u

  ​  = ​  φ  −  (1  + ​ τ​ 2​)  __  φ  +  n  −  1
 ​ ​ A​i, 1​  + ​   1  + ​ τ​ 2​ _  φ  +  n  −  1

 ​ ​ ∑ 
j=1

​ 
n

 ​   ​A​j, 1​​

 	  + ​   ​τ​ 2​ _  φ  +  n  −  1
 ​ ​​ 
_ μ​​i​  − ​   ​τ​ 2​ _  φ  +  n  −  1

 ​ ​ ∑ 
j=1

​ 
n

 ​   ​​ _ μ​​j​​ .
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Terms with summations do not depend on i, and hence are cancelled out in the dif-
ference, yielding

 	​  A​i, ∞​ u
  ​  − ​ A​j, ∞​ u

  ​  =   ​ φ  −  (1  + ​ τ​ 2​)  __  φ  +  n  −  1
 ​  (​A​i, 1​  − ​ A​j, 1​)  + ​   ​τ​ 2​ _  φ  +  n  −  1

 ​ (​​ _ μ​​i​  − ​​  _ μ​​j​)

 	  = ​  ​τ​ 
2​ ​σ​2​ (1  + ​ τ​ 2​)  __ ​γ​n​ ​  (​A​i, 1​  − ​ A​j, 1​)  + ​  ​τ​ 

2​ _ ​γ​n​ ​ (​​ 
_ μ​​i​  − ​​  _ μ​​j​)

 	  = ​  ​τ​ 
2​ ​σ​2​ _ ​γ​n​ ​  (​τ​ 2​ (​μ​i​  − ​ μ​j​)  +  (​x​i​  − ​ x​j​))  + ​  ​τ​ 

2​ _ ​γ​n​ ​ (​​ 
_ μ​​i​  − ​​  _ μ​​j​)

 	  = ​  ​τ​ 
4​ ​σ​2​ _ ​γ​n​ ​  (​μ​i​  − ​ μ​j​)  + ​  ​τ​ 

2​ ​σ​2​ _ ​γ​n​ ​  (​ε​i​  − ​ ε​j​)  + ​  ​τ​ 
2​ _ ​γ​n​ ​ (​​ 

_ μ​​i​  − ​​  _ μ​​j​).

Here the second equality is by substitution of the definitions φ = (1 + ​τ​ 2​) 
× (1 + ​τ​ 2​​σ​2​) and ​γ​n​ = φ + n − 1; the third equality is by (1 + ​τ​ 2​) ​A​i, 1​ = ​τ​ 2​​μ​i​  
+ ​x​i​ and the last is by ​x​i​ − ​x​j​ = ​ε​i​ − ​ε​j​ .

Proof OF PROPOSITION 1: 
Note from (6) and (12) that

 	  E [​A​i, ∞​ ck
  ​  − ​ A​j, ∞​ ck

  ​]  = ​   ​τ​ 2​ _ 
​τ​ 2​  +  n

 ​ (​​ _ μ​​i​  − ​​  _ μ​​j​)

 	  E [​A​i, ∞​ u
  ​  − ​ A​j, ∞​ u

  ​]  = ​   ​τ​ 2​ (1  + ​ τ​ 2​ ​σ​2​)   ___   
(1  + ​ τ​ 2​)(1  + ​ τ​ 2​ ​σ​2​)  +  n  −  1

 ​ (​​ _ μ​​i​  − ​​  _ μ​​j​).

E[​A​ i, ∞​ ck
  ​ − ​A​ j, ∞​ ck

  ​] is independent of ​σ​2​ while E[​A​ i, ∞​ u
  ​ − ​A​ j, ∞​ u

  ​] is increasing in ​σ​2​. 
Since E[​A​ i, ∞​ u

  ​ − ​A​ j, ∞​ u
  ​] = E[​A​ i, ∞​ ck

  ​ − ​A​ j, ∞​ ck
  ​] for ​σ​2​ = 0, we have E[​A​ i, ∞​ u

  ​ − ​A​ j, ∞​ u
  ​] > 

E[​A​ i, ∞​ ck
  ​ − ​A​ j, ∞​ ck

  ​] for ​σ​2​ > 0.

C. Social Groups

Proof OF PROPOSITION 5: 
For any i ∈ B, ​E​i​[​​  μ​​b​] = ​E​i​[θ] = ​​ _ μ​​b​ and ​E​i​[​​  μ​​w​] = ​​ _ μ​​w​. Hence, by (21) and (22),

(C1) 	​  E​i​ [​β​ 2​ S​  ]  = ​ α​w​ ​c​w​ (​​ _ μ​​b​  − ​​  _ μ​​w​).

Similarly, for any j ∈ W,

(C2) 	​  E​j​ [​β​ 2​ S​  ]  = ​ α​b​ ​c​b​ (​​ 
_ μ​​b​  − ​​  _ μ​​w​).
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Now,

 	​  α​b​ ​c​b​  = ​   ​τ​ 2​ (1  + ​ τ​ 2​ ​σ​2​)   ___   
​τ​ 2​ (1  + ​ τ​ 2​ ​σ​2​)  + ​ n​b​ ​τ​ 2​ ​σ​2​  +  n

 ​

 	​  α​w​ ​c​w​  = ​   ​τ​ 2​ (1  + ​ τ​ 2​ ​σ​2​)   ___   
​τ​ 2​ (1  + ​ τ​ 2​ ​σ​2​)  + ​ n​w​ ​τ​ 2​ ​σ​2​  +  n

 ​ .

Since ​n​b​ < ​n​w​, we have ​c​b​​α​b​ > ​c​w​​α​w​, showing that ​E​i​[​β​ 2​ S​  ] < ​E​j​[​β​ 2​ S​  ]. To see that 
E[​β​ 2​ I

 ​] < ​E​i​[​β​ 2​ S​  ], observe that (16) can be obtained from (C1) by setting ​σ​2​ = 0, 
and ​α​w​​c​w​ is increasing in ​σ​2​. To see that ​E​j​[​β​ 2​ S​  ] < E[​β​ 2​ I

 ​], observe that (14) can be 
obtained from (C2) by setting ​n​b​ = 1, and ​α​b​​c​b​ is decreasing in ​n​b​.
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