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Abstract

Neurons serve as the basic unit of computation within the nervous system. As the

nervous system is involved with the encoding, transmission, processing, and decoding

of information at every level, characterization of the nervous system is of the utmost

interest to neuroscience. However, techniques for probing the nervous system have

previously focused primarily of characterizing single cell behavior, which does not

provide insight as to the functioning of the system as a whole. This is further compli-

cated by the fact that functional network of neurons are typically spatial interwoven,
rendering spatially-limited stimulation techniques ineffective. The desire to charac-

terize the system in its entirety necessitates the development of neuronal probes that

can target functional subpopulations of cells. A proposed system for such stimula-

tion is the genetic targeting of neurons via expression of gated ion channels, and the

selective stimulation of them using a transmitter-receiver pair.

This thesis describes the design and optimization of such a transmitter-receiver

pair that activates ion channels via the dissipation of heat. Magnetic losses in su-

perparamagnetic metal ferrite nanocrystals are modeled to determine the optimal

operating parameters for dissipation of heat. Optimal nanocrystals are then syn-

thesized via high-temperature thermolysis of a mixed metal oleate precursor, and

stabilized in the aqueous phase through functionalization with polyethylene glycol.

A solenoid is designed and constructed to serve as a radiofrequency excitation source,
and subsequently optimized to maximize the power transfer from solenoid to magnetic

nanocrystals. A susceptometer and lock-in amplifier are designed for characterization

of colloidal nanocrystals in the aqueous phase. The constructed susceptometer is

then used to measure magnetic losses in metal ferrite nanocrystals and compare their

performance with the modeled behavior.

Thesis Supervisor: Prof. Polina 0. Anikeeva
Title: AMAX Assistant Professor in Materials Science and Engineering
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Chapter 1

Introduction

1.1 Background

Bioelectric phenoma of the cell are among the most vital functions of a living organ-

ism. Bioelectric phenomena are used to drive transport, sensing, transduction, and

metabolic regulation within various cells. In addition to their paramount importance

within the living cell, bioelectricity provides a method for characterizing biological

systems. While biochemical or biophysical phenomena cannot be measured directly,

their indirect effects on bioelectrical systems can be measured easily with electrodes

and standard signal processing techniques.

As early as 1791, when Luigi Galvani used a Leyden jar to stimulate the femoral

nerve of a frog[Gal9l], scientists have directly stimulated neurons to study their func-

tion. Nearly 50 years later, Carlo Matteucci measured bioelectric currents using

galvonometers[Mat38], marking the first bioelectric recording and spawning the field

of electrophysiology. As technology and biology advanced, electrophysiological mea-

surements became more specific, allowing measurements to be made on single cells and

confirming theoretical foundations of cell biology. In 1976, the patch clamp technique

was invented by Erwin Neher and Bert Sakmann[NS76], allowing electrophysiologi-

cal measurements of single ion channels. This technique allowed the integration of

molecular biology with electrophysiology for the first time, giving insight as to the

origins of bioelectrical phenomena.
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In contrast to the high level of precision available through electrophysiological

measurement techniques, bioelectrical stimulation techniques are remarkably impre-

cise. Artificial stimuli are often delivered via electrodes, allowing only coarse spatial

targeting of cellular populations. In the case of neuroscience, specific classes of neu-

rons tend to be sparsely embedded within tissue, making it extremely difficult to

target functional, rather than spatial, populations of cells. The ability to precisely

stimulate a given functional population of neurons would allow neuroscience to move

from observation-based studies to experimental studies, where the behavior of a given

subpopulation of neurons could be resolved in isolation.

A particularly elegant solution is to equip targetted cells with a 'receiver' that

allows a response to an otherwise spatial signal. In this manner, cells within the same

spatial region that lack a receiver will ignore the stimulus, but the targetted cells will

respond. Such a receiver can be encoded genetically, allowing for functional subpopu-

lations of neurons to be targetted. [Cri99] [ZM01] Of particular interest is photostimu-

lation of neurons that express light-activated ion channels[ZLNM02] [BZB+05] [CK08].

Photostimulation of these light-sensitive ion channels is limited by the depth that

the requisite radiation can penetrate into bone and tissue. However, magnetic fields

interact weakly with biological materials and are relatively simple to create and op-

erate, making them an ideal candidate for stimulation of neurons deep within tissue.

However, their weak interactions also require the need for a magnetic transducer that

can convert the energy of the magnetic field into an electrical potential across the cell

membrane.

This thesis proposes such a system and lays down the groundwork for progress

in this growing field. The proposed system uses superparamagnetic nanocrystals as

magnetic transducers to convert energy from the radiation field to thermal energy

via magnetic losses. Neurons are genetically targeted to express the TRPV1 ion

channel, which is heat sensitive. The nanocrystals are bounded to the heat-sensitive

ion channels via functionalization of the nanocrystal surface, and the magnetic losses

cause the channel to open. Calcium imaging and patch clamp electrophysiology are

used to demonstrate the depolarization of the membrane.
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1.2 Overview

Chapter 2 presents the relevant cell biology theory. This chapter describes in detail

the relevant aspects of neuron molecular biology and the kinetics of the transient

receptor potential vallinoid (TRPV) ion channels.

Chapter 3 details the optimization of our framework described in Chapter 3. The

theory behind inductive heating of magnetic nanocrystals is explored and simulated

to determine the optimal operating parameters and nanoparticle synthesis techniques.

The heating power of various nanoparticle chemistries are measured.

Chapter 4 describes the synthesis, stabilization, and characterization of nanocrys-

talline receivers for neuronal stimulation.

Chapter 5 describes the design and construction of a radiofrequency coil capable

of producing magnetic fields suitable for in vivo and in vitro cell stimulation.

Chapter 6 presents experimental results. Using the apparatus described in Chap-

ter 5, the magnetic losses are directly measured as quadrature susceptabilities in col-

loidal nanocrystals. The results are compared to the theory described in Chapter

3.

Chapter 7 concludes with a discussion of our experimental results, and an outlook

on future experiments in this field.

1.3 Contributions

The work described in this manuscript was performed in Professor Polina Anikeeva's

laboratory in the Department of Materials Science and Engineering at the Mas-

sachusetts Institute of Technology. Ritchie Chen and Moises Montalvo performed

the synthesis of colloidal nanocrystals, including developing the aqueous phase stabi-

lization protocol. David Bono assisted with the construction of the excitation source

and provided many helpful discussions while designing the lock-in amplifier described

in Section 5.2.2.
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Chapter 2

Membrane Biology

In this manuscript, we concern ourselves with how to actuate this regulatory system

to control the bioelectric behavior of cells. In order to

We seek to implement a system that can overcome the shortcoming of optogenetics.

Therefore, the proposed system must utilize a stimuli that can induce fast, selective

responses in populations of neurons while also allowing for deep tissue stimulation.

In addition, we prefer that the ion channel be mammalian in origin.

2.1 Information Encoding in Biological Systems

Electric potentials within the cell are involved in many cellular processes. The most

important of these processes is the encoding of information in the nervous system.

The nervous system is responsible for the encoding, transmitting, processing, and

decoding of information that is received as optical, mechanical, electrical, or chemical

stimuli and transducing these signals into an electric potential. The electric potential

serves as the common mode of communication between cells with which they represent

information. These electrical signals are ultimately processed and converted into

motor or secretory responses.

The neuron is the basic unit of the nervous system, responsible for directly trans-

mitting and receiving electrical signals in addition to performing computations on the

information provided. These cells are electrically active; when a current of sufficient

15



strength is passed through the plasma membrane (thus depolarizing the membrane),

a change in the membrane potential called an action potential is triggered. The sud-

den onset of an action potential causes the membrane to hyperpolarize through the

sudden diffusion of ionic species (predominantly Na+ and Ca 2 +) in and out of the

membrane; this sudden change causes a cascade of ionic flux within the cell, creating

a pulse of electric energy. This pulse propagates from the cell body, down the axon,

and through the axonal terminals. From the axonal terminals, the signal can be

transferred to another cell via a synaptic site on the surface of an adjacent dendrite.

Each neuron may contain only a single synaptic input or as many as thousands, and

may receive them along the dendrites or the cell body; it is the spatiotemporal distri-

bution of synaptic activity and how the neuron processes it that produces such varied

and complex behavior.

The human nervous contains over 1011 neurons arranged in a complex, highly

structured network.[Wei96] Subnetworks exist that perform such specialized tasks as

motor control, auditory sensing, and communication between internal organ systems.

Each subnetwork is composed of heterogeneous populations of nerve cells possessing

different structures and functions. The vast complexity of the neuronal network

makes the correlation between cellular signals and organismic behavior extremely

difficult to isolate. Progress has been made in understanding the basis of organismic

behavior in only the simplest of invertebrates (e.g. C. elegans) where the behavior

is determined by a small number of neurons that can be unambiguously identified

and isolated; however, even in these cases only the simplest behaviors have been

understood. [BK78]

Substantial progress has been made in understanding the structure and func-

tion of neurons through studying technically favorable models (such as the squid

giant axon[You38]), resulting in complete models of single neuron behavior. [HHK52]

However, these simple cellular models do not adequately capture the dynamics of a

complex neuronal network because information is often carried by neural ensembles

rather than single neurons. Even in favorable neuroanatomical circumstances study-

ing such transient functional linkages between neurons has proven to be a substantial
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experimental challenge. As a consequence, modern neurobiology research has focused

on experimental techniques that allow for the selective targetting and virtual isolation

of neural pathways.

2.2 Cell Biology

Recent developments in experimental neurobiology have turned to using genetic schemata

to achieve such selectivity. [ZM01] Modern genetics has allowed for the determination

of regulatory elements responsible for gene expression; once these patterns have been

identified and isolated, they can be used to exogeneously express natural or engineered

proteins within neurons. These proteins can be selected to report, interface, or in-

terfere with neural physiology in a controlled manner. In order to target functional

populations of neurons, it is reasonable to begin with one of the more fundamental

surface proteins involved with neuronal behavior: the ion channel.

2.2.1 Plasma Membrane

All livings cells are surrounded by a plasma membrane that acts as a divider between

the cytoplasm and the extracellular media. The membrane serves to both physically

and chemically isolate the cell from its environment, ensuring tight control over all

intracellular processes. In order to maintain such tight control, the membrane is host

to a variety of channels, carriers, and pumps that serve to regulate the molecular

contents of the cell. These proteins function to control the structure, signaling, and

homeostasis of the cell through a careful network of regulatory hormones and signals.

Of particular importance is the gradient of ions across the membrane. A mem-

brane potential arises when there exists a difference in charge on opposing sides of

the membrane due to an excess of positive ions on one side of the membrane and an

excess of anions on the other side. This situation occurs in cells due to the presence

of permanent organic anions present within the membrane and electrodiffusive equi-

librium placing more cations outside of the cell membrane. This membrane potential

stores energy that can be used in a variety of ways within the cell. Neurons use rapid
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variations in the membrane potential to transmit information in the form of action

potentials; biological sensors in the visual and auditory systems utilize the membrane

potential to transduce external stimuli into information that cells can process; and is

even involved in the regulation of homeostasis.

The concentration gradient of ionic species across the membrane is responsible

for two separate mechanisms of transport. The first one is diffusion, where the ionic

species diffuse from high concentration to low concentration until an equilibrium is

achieved due to a uniform spatial distribution across the membrane. However, the

fact that ionic species possess a charge creates an opposing electrostatic force due to

the accumulation of charge. For example, potassium (which is concentrated within

the cell but dilute outside of the membrane) will tend to diffuse out of the cell due to

the concentration gradient; however, with each potassium ion that leaves the cell, the

intracellular space begins to become more negatively charged than the extracellular

space. This negative charge attracts potassium ions back against the concentration

gradient. A steady-state equilibrium is reached when the electrostatic forces and the

diffusive forces are equal.

The flow of ions across the plasma membrane is facilitated by a variety of spe-

cialized proteins. They are primarily sorted into two categories: passive and active

transport proteins. Passive transport proteins, such as ion channels, are composed

of an aqueous pore that allows for diffusion of an ionic species across the membrane

(see Figure 2-1. Nearly all ion channels possess a gating mechanism to determine

whether the pore is open or closed. Active transport consist of specialized proteins

that facilitate the transport of ionic species against their concentration gradient.

These proteins typically require an energy source to initiate transport; this energy

is acquired either through the breakdown of cellular energy sources such as ATP, or

through the co-diffusion of another chemical species along its concentration gradient.

2.2.2 Ion Channels

While the plasma membrane serves to isolate the cell from its environment, ion chan-

nels serve to provide a pathway between the intracellular and extracellular spaces.

18



Figure 2-1: Schematic of an ion channel, embedded in the plasma membrane. The
channel is shown open on the right and closed on the left.

These proteins are responsible for establishing the concentration gradient of various

ionic species by varying the membrane's permeability to said species. Ion channels

are ideal for this task because they possess three main properties:

1. A hydrophillic pore that allows the transport of aqueous ions.

2. Selective permeability to particular ionic species through variation in the size

and charge of the pore.

3. A gating mechanism to change the state of the pore (open or closed).

The third property of ion channels is of particular interest because it suggests that

a particular stimuli can be used to open or close an ion channel. The gating of an ion

channel is based upon the conformational change of the channel protein initiated by

a range of factors specific to the ion channel. There exists a diverse set of stimuli that

can gate an ion channel - there are ion channels that are gated by electric potential,

specific chemicals, pH, and mechanical stress, to name but a few. Modern genetics

has given us the ability to bestow a large variety of proteins to cells; this allows us

to expand our potentially targets beyond endogenously expressed ion channels. It is

clear that with the appropriate stimulus, action potentials can be easily initiated and

allow the control of information transfer within a biological system.
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Voltage-gated ion channels are perhaps the most common of gated ion channels.

These channels consist of charged pore proteins that shift conformation and open

or close the pore in response to the membrane potential. These channels are also

directly responsible for action potential amplification and propogation; when a small

patch of membrane achieves the threshold voltage for an action potential, it activates

nearby voltage-gated channels. This causes a cascade effect that enables detriment-

free signal propogation in neurons. Due to a combination of their ubiquity and

direct effect on the electric behavior of cells, voltage-gated ion channels have been

used to stimulate neurons for over a century.[Gil05] Although the technology has

advanced significantly since these first neuromodulators, the basic principle has been

the same: an electrode is placed into tissue and the electrode transduces electric

currents into ionic currents through the medium. Despite the demonstrated efficacy

of such methods, voltage-gated ion channels are not ideal targets due to the spatial

dependency of the stimuli. The spatial targetting abilities of direct electric stimulation

are limited to the volume directly adjacent to the electrode, necessitating the need

for implantable microelectrode arrays to allow for precision cell targetting. Even with

such a microelectrode array, the affected zone is limited by the size of the array. For

these reasons we find voltage-gated channels an unsuitable target channel.

A second type of gated ion channel is the ligand-gated channel. This group of ion

channels is particularly rich, with not only a variety of ionic species affected by such

channels, but also a vast array of stimulating chemicals available. These ion channels

are especially prevalent in sensory systems, such as the gustatory system,[SB83] and

in the nervous system, such as in the case of neurotransmitters.[DHK71] These ion

channels are more favorable than voltage-gated channels because their stimuli are

much more selective; agonists and antagonists can be selected for a cell subtype, and

functional populations of cells can be targetted in this manner. However, these stimuli

still suffer from spatial and temporal limitations; methods of delivering such chemical

stimuli rely on diffusion to deliver the ligand to the cell's membrane, providing only

very coarse temporal and spatial control over the stimuli. Once delivered, there

currently lacks a scheme for deactivating excess ligands; therefore this method does
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not allow for fine temporal control.

The optical caging technique was developed to overcome many of these shortcom-

ings; in this technique a 'caged' compound is used that becomes neuroactive upon

exposure to light.[FG83] This allows for diffusion of the desired ligands to occur first,

and then laser light can uncage the compound through photolysis. This allows for

temporal control rivaling that of electrical stimulation[GCOZ97 while providing the

benefits of substantially high selectivity of the stimuli. Nonetheless, optical caging

suffers from a variety of technical limitations. While caged ligands can spatially select

for desired cells, the requisite optics can only target a single location at a given mo-

ment; the ability to target multiple cells that are spatially separated requires the use

of high-speed optics to scan over the sample. In addition, the requisite wavelength

for uncaging is typically in the ultraviolet regime, which is undesirable because of its

mutagenic side effects and requires the use of expensive ultraviolet optics. Lastly, the

technique is similarly as invasive as direct electrical stimulation because direct optical

access is needed, making the technique undesirable for in vivo applications.

The sole use of light to elicit an electrical response has many potential benefits.

Light can be projected onto tissue with extremely precise spatial and temporal control,

unlike electrical probes or extracellular ligands. Ion channels that are directly gated

by optical irradation also allow for transient stimulation via rapid pulses of light;

this allows for precise sequencing of membrane depolarizations. Optically initiated

depolarization in opsins can be triggered by visible wavelengths, making the optics

much more practical than those used in optical caging; however, the lack of such

proteins outside of the retina requires the exogenous expression of an opsin-related

photoprotein.[CK081 The required exogenous expression is not necessarily a drawback;

the fact that cells must be targetted specifically is indeed a benefit, as it allows

subpopulations of neurons to be genetically targetted by function rather than spatial

location.

The primary drawback of these light-gated channels are their slow kinetics; the

optical response of most opsins is typically on the order of seconds, limiting their use-

fulness. The application of channelrhodopsin 2, which has kinetics almost a thousand

21



times faster than most related opsins, has largely overcome many of the drawbacks

of light-gated ion channels, making optogenetic stimulation (as the combination of

pulsed lights with exogenously expressed light-gated channels has come to be called)

the de facto standard for minimally invasive neuronal stimulation. [BZB+05] This

method still requires optical access to the neuronal population, typically in the form

of a surgically implanted optical fiber, making the technique suboptimal for in vivo

applications where a less invasive technique may be preferred. The near-IR window

provides a range of wavelengths (between 850 nm and 1.0 pm) where tissue absorption

is at a minimum and transmission is at a maximum; this suggests that an infrared

light-gated ion channel would provide a way to stimulate deep tissue neurons in a less

invasive manner.

Mechanosensitive ('stretch-activated') ion channels are commonplace in the skin,

muscles, tendons, and joints. These ion channels, as their name suggests, are gated

by mechanical stimulation applied to the membrane. Work has been done in con-

jugating ferrite microparticles to bind specifically to these channels; a magnetic

field can subsequently be applied to the cell to load the membrane and induce

depolarization. [GFM95] By specifically targetting a protein on the membrane surface

(as opposed to the entire cell), single channels can be actuated without interfering

with the behavior of neighboring channels in the cell's membrane. [HMDH08] The use

of magnetic fields as the energy delivering medium allows for deep tissue penetration

where optical wavelengths would otherwise be fully attenuated. Nevertheless, me-

chanical stimulation has been demonstrated to give inconsistent results, likely due to

the magnetic particles loading the membrane at a variable axis. Hughes et. al sug-

gest that improved performance may occur with uniaxial loading of the membrane.

Furthermore, the large microparticle size necessary for mechanical stimulation (1-10

Mm) is unsuitable for in vivo applications.

Similar work has been done using magnetic nanocrystals as cellular transducers

to convert energy from a radiofrequency field to electrical energy; rather than us-

ing mechanosensitive ion channels, the target is a temperature-gated ion channel in

the transient receptor potential vanilloid (TRPV) family.[HDZ+10] Nanocrystals are
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conjugated to bind to the temperature-gated proteins and through magnetic losses

dissipate energy from the radiofrequency field as heat. This shares many of the ad-

vantages of using a magnetic field as a mediator of energy rather than visible light;

however, the literature shows that this method is far too slow for neural stimulation

(taking approximately 30 seconds to induce an action potential). Yet, significant work

has been done in the field of magnetic hyperthermia, where magnetic losses in ferrite

nanocrystals are used to induce apoptosis in cancerous cells, to optimize the heating

power of such nanocrystals.[PJW+03][CGC10] Recent studies have shown that the

heating power can be significantly increased through careful tuning of material pa-

rameters and morphology.[LJC+11] With substantial improvements that can be made

to the technique readily available, it is not unrealistic to expect a significant decrease

in the stimulation time from this technique.

2.2.3 Transient Receptor Potential Vanilloid Receptors

The mammalian sensory system is capable of discriminating a wide range of tem-

peratures, ranging from noxious cold (< 8 'C) to noxious heat (> 52 oC).[VDW+04]

Studies done in the past decade have shown that the principle temperature sensors

of the nervous system all belong to the transient receptor potential (TRP) family

of cation channels. [Cla03] Of these TRP channels, the transient receptor potential

vanilloid (TRPV) subfamily is of particular interest for its sensitivity to innocuous

heat.

The origin of the temperature-sensitive behavior is relatively obscure, with many

hypothesized mechanisms ranging from temperature-sensitive ligand release (placing

TRP proteins into the ligand-gated ion channel family) to true temperature-sensitive

gating due to temperature-dependent protein conformations. While the true activa-

tion mechanism remains unknown, structural similarity to voltage-gated cation chan-

nels and dual-stimulus studies have suggested a mechanism where thermosensitivity

arises from the difference in activation energies associated with voltage-dependent

opening and closing. [VDW+04] [TT05]

TRPV1 was the first isolated member of the transient receptor potential vanil-
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loid subfamily, having been isolated through expression cloning with capsaicin as a

ligand.[CST+97] Although TRPV1 was initially discovered through the use of cap-

saicin as a stimulus, it was also found to be thermosensitive with a critical gating

temperature of 43 'C. This is only 5 'C above ambient body temperature, making it

an extremely attainable target for in vivo heating. The rise time of the depolarization

in response to a change in external temperature was measured to be 6 ms, suggesting

that the kinetics are suitable for rapid stimulation.[YLQ1O] The same study found

that channel deactivation is temperature-independent, further suggesting that this

mechanism is ideal for thermal stimulation in vivo.

TRPV1 has been shown to be a nonselective cation channel, showing permeability

to calcium, magnesium, sodium, and potassium ions. However, the channel shows

a preferential permeability to calcium that is over nine times the permeability of

sodium and five times the permeability of magnesium, suggesting that calcium is

the primary charge carrier. [VDW+04] This allows for direct monitoring of channel

behavior through the use of a calcium indicator such as fura-2 or GCaMP.

TRPV1 has been found to be ubiquitous in the peripheral nervous sytem, hav-

ing been found to be an important nociceptor sensitive to temperature, pressure,

and pH[MXC04]. However, it has also been found to be expressed in the cen-

tral nervous system, where it has been hypothesized to participate in a variety of

vanilloid-sensitive pathways, suggesting a variety of previously unforeseen therapeu-

tic applications. [MT C+00] [SCDM08] Its ubiquitous endogenous presence in the mam-

malian sensory system suggests that is may be involved in a diverse number of human

disease states, suggesting that selective, noninvasive in vivo control over this protein

could be extremely beneficial for treating such states.

The combination of an easily attainable stimuli, fast kinetics, and easy direct

monitoring of the ion channel make TRPV1 a nearly ideal candidate for activation

through remote-controlled heating. In addition, its ubiquitous presence in the mam-

malian nervous system presents a vast array of endogenous targets as well the the

ability to easily introduce the ion channel to targetted cells.
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2.3 Summary

In this chapter, we provided the background necessary to understand the motivation

for this thesis. The role of neurons in information encoding was described, as well

as the role of ion channels in their function. A suitable ion channel target was

determined based on the criteria that the stimuli was to be non-invasive, allow for

functional targetting of neurons (rather than spatial), and the ion channel possessed

rapid activation kinetics. The transient receptor potential vanilloid (TRPV) family

of ion channels was selected as a suitable target, with TRPV1 being chosen as the

target protein for its easy monitoring, fast kinetics, and easily attainable stimulus: a

local temperature increase of approximately 5 from body temperature.
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Chapter 3

Specific Loss Power Optimization

A large heating power is desirable for a magnetically induced hyperthermia appli-

cations. Nanocrystals with a large heating power reduce the amount of material

necessary and time required to achieve neuronal stimulation. We use a radiofre-

quency magnetic field as an excitation source to align magnetic moments, and heat

is dissipated through relaxational phenomena. A thorough understanding of these

relaxational loss phenomena allows us to select appropriate operating parameters

for optimization of the radiofrequency magnetic field. In addition, material prop-

erties may be carefully tuned to maximize the dissipative power of the synthesized

nanocrystals.

This chapters is concerned with the theoretical foundations of magnetic losses in

metal ferrite nanocrystals. Simulations are performed to fully characterize the heating

power as a function of all controllable parameters, and optimal conditions are selected.

The heating power of various nanocrystals are then measured and compared with our

simulations.

3.1 Losses in Magnetic Materials

Losses occurring in magnetic particles can be divided into three classes - hystere-

sis losses, relaxational losses, and resonance losses. Hysteresis losses arise from the

alignment of magnetic moments within a magnetic material. When an external field
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is applied, the moments align themselves with the field, magnetizing the material.

When the field is removed, the material is left with a remanent magnetization, with

energy stored within the material in magnetic domain interactions. A coercive field

must be applied to coerce the material back to zero magnetization. This process

requires net work to be done, known as hysteresis losses. Below a critical diameter,

metal ferrite nanocrystals possess only a single magnetic domain and hysteresis losses

disappear (a state of magnetism called superparamagnetism).[HAd+98]

The magnetization is single domain materials can reverse through relaxational

phenomena. For sufficiently small diameter nanocrystals, the anisotropy barrier is re-

duced to the point where it can be overcome by thermal fluctuations. For nanocrystals

whose moment is aligned by an external field, this can lead to the field's energy being

dissipated as heat. In this fashion the magnetization of the particle reverses while

the physical particle remains motionless. This type of relaxation is known a N6el

relaxation. [N49] A second type of relaxational loss is due to Brownian relaxation,

where the particle physical rotates with the magnetic field. In this process the par-

ticle's physical rotation is impeded by the viscosity of its carrier fluid. The particle

takes a characteristic time rB to rotate in the carrier; if the field is changing faster

than this characteristic time, then particle's magnetization experiences hysteresis and

dissipates heat through these so-called Brownian losses.[Bro63]

The final kind of loss is due to ferrimagnetic resonance, where the nanocrystal

exhibits a sharp increase in the absorption of energy from the electromagnetic field

at a specific frequency. However, this phenomena occurs in the GHz range where

transmission in the human tissue is reduced to a fraction of a millimeter, rendering

this phenomena undesirable for in vivo applications. [GR86]

For small metal ferrite nanocrystals, relaxational losses are the dominant mech-

anism through which energy is dissipated when exposed to an oscillating magnetic

field.
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3.1.1 Theory

From the first law of thermodynamics, it is possible to derive the amount of work

done on a magnetic material under a changing external field as: [Ros02]

AW = -Po MdH (3.1)

where M is the magnetization of the material (measured as the magnetic moment

per volume) and H is the applied field. The magnetization and applied field are related

by a proportionality constant x, the magnetic susceptability, such that M = XH. It

is convenient for this discussion to represent the externally applied magnetic field

H(t) and the magnetization M(t) as:

H(t) = Ho cos(wt) (3.2)

M(t) = XHo cos(wt) (3.3)

M(t) = Ho(X' cos(wt) + X" sin(wt)) (3.4)

where HO is the field amplitude, w is the angular frequency, and X' and X" are the

real and imaginary components of the magnetic susceptability, respectively. Within

the magnetization term, x'cos wt represents the component of the magnetization that

is in-phase with the applied field, indicating the storage of magnetic energy. In

contrast, x" sin wt is the out-of-phase component that is proportional to losses (called

the quadrature). Substituting into Equation 3.1:

AW = 2PoHx" j sin(wt)2 dt (3.5)

Following through with the integration and multiplying by the frequency of oscil-

lation f = ' gives the volumetric power dissipation, or volumetric loss power:

P = porrx"f H2 (3.6)

29



The power dissipated in dependent upon the amount of magnetic material present,

so it is intuitive to divide it by the mass concentration of magnetic material i, 'Yj to

normalize it to a specific loss power:

q o rX"f= 
(3.7)

where all of the material properties of the magnetic material are encapsulated in

X". The loss component of the susceptability is given by: [Shl74]

X = 2 - (3.8)
1+ (27r fr) 2

such that Xo is the equilibrium susceptability and r is the relaxation time of

the magnetic material. As discussed above, for magnetic nanocrystals there are two

relaxation phenomena - Brownian and N6el relaxation. For Brownian relaxation, the

relaxation time is given by: [Bro63]

3r1VH
TB = (3-9)

kBT

such that q is the viscosity of the carrier medium, VH is the hydrodynamic volume

(typically 1-3 nm larger than the nanocrystal volume), kB is Boltzmann's constant

(1.38 x 10-3 J K 1 ), and T is the absolute temperature (in Kelvin). The other type

of relaxation is N6el relaxation, which is defined as:[N49]

KV

TN = Toe kT (3.10)

where K is the anisotropy energy density (in J m- 3), V is the nanocrystal volume,

and ro is a constant on the order of 10- seconds. The two relaxation processes take

place in parallel, giving rise the effective relaxation time:

1 = - + 1 (3.11)
T TN TB

Due to the parallel nature of the relaxation process, the faster of the two relaxation

mechanisms tends to dominate the relaxation of the entire ensemble. The relaxation
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mechanisms indicate that there are three parameters that influence the loss power that

are within our control - the anisotropy energy density K, the nanocrystal diameter d,

and the carrier fluid viscosity 77. The anisotropy energy density can be controlled by

materials selection, whereas the diameter is controlled by our synthetic process. The

fluid viscosity can be controlled for in vitro experiments, but for in vivo applications

(especially applications where the nanocrystals are bound to the cell membrane)

we have little control over the viscosity. Therefore, for considerations as to how to

optimize the specific loss power, only the N6el relaxation mechanism is considered.

One may intuit that the optimal field parameters would depend on the relaxation

time constant. If the excitation field is significantly slower than the relaxation process,

then suboptimal heating is produced. The magnetic moment fully relaxes, dissipating

heat, and then remains in its relaxed state until the field excites the magnetic moment

again. In this case the magnetic moment spends excess time relaxed where it is not

dissipating energy. In the case of an excitation source that is significantly faster than

the relaxation time, suboptimal heating occurs because the magnetic moment does

not fully relax before it is excited again. Therefore, optimal heating is produced when

the excitation field frequency is equal to the relaxation time.

The equilibrium susceptability may be derived from Langevin function: [Ros02]

_poMsV F i
Xo = MB [coth - (3.12)

kBT I (
_ 1 oMsHoV

kBT (3.13)kBT

where Ms is the saturation magnetization of the nanocrystals (in A m- 1). We

must note that the nomenclature for magnetization in magnetic fluids is ambiguous;

the saturation magnetization Ms refers to the amount of magnetization per unit

volume of magnetic material. However, in a magnetic fluid, a very small fraction

of the fluid is actually magnetic - most of the fluid is a magnetically inert carrier

fluid. To avoid confusion between the saturation magnetization of the magnetic fluid

and the saturation magnetization of the magnetic particles, we rewrite the equations
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in terms of o-, the specific magnetization (in A m 2 per gram of magnetic material).

This allows a straightforward measurement of the magnetization because the mass

concentration y is usually known in the preparation of a magnetic suspension.

Combining terms and rewriting in terms of o, the equilibrium susceptability can

be simplified to:

[-j 1]
Xo = coth(- - (3.14)Ho L

toa-pHoV
kBT (3.15)
kBT

where p is the density of the magnetic material (in g m-3 ). Thus, the specific loss

power can be written as:

q = polrc-Hof 1  7T)2 cothm - - (3.16)
1 + (27rf-r)2 I (

The specific loss power explicitly depends on five factors that are directly related

to the design of the transmitter and nanoantennae: the transmitter's field frequency

and amplitude, and the nanocrystal's specific magnetization, anisotropy energy den-

sity, and diameter. The transmitter properties as easily controlled externally, the

diameter is determined by the synthesis method, and the specific magnetization and

the anisotropy energy density are determined by materials selection.

3.1.2 Modeling

The effect of each on the specific loss power is not straightforward due to complex

dependencies on the material parameters, so it is instructive to explicitly determine

the effect of each parameter on the losses. In this section we compute the specific loss

power as a function of various tunable parameters to determine the optimal state to

operate the remote stimulation system with.

In order to vary each parameter independently, we must define a standard set

of values to hold the unvarying parameters to. These values, collected from the
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Parameters Standard Value
Field Frequency 500 kHz
Field Amplitude 5 kA m-1

Particle Diameter 10 nm
Specific Magnetization 0.06 A m2 g-1

Anisotropy Energy Density 1.4 x 104 J m-3

Table 3.1: Standard values for a 10 nm diameter magnetite (iron ferrite) nanocrystal.
These values are used to compute the standard specific loss power q0 , approximately
440 mW g-.

literature, are listed in Table 3.1. We may then vary each parameter independently

and compare them to a standard specific loss power, qo, to determine what parameters

increase the losses.

For the purpose of this model we assume that the relaxation time r is dependent

only upon the Neel relaxation time TN because the nanocrystals will be physically

bound to the cell membrane. This forces the particles to remain stationary, prohibit-

ing Brownian relaxation.

Transmitter Optimization

The transmitter has two parameters that may be controlled to optimize the loss

power: the field frequency and amplitude. The normalized specific loss power (the

q(f, HO) divided by qo) is plotted against both field frequency and field amplitude for

experimentally realizable values of both parameters in Figure 3-1.

Figure 3-1 demonstrates a monotonic increase with both field and amplitude. Sim-

ply put, higher frequencies and fields induce more loss per gram in our nanocrystals.

Equation 3.16 would suggest that the specific loss power increases linearly with both

frequency and field amplitude; however, Figure 3-1 suggests otherwise. This is be-

cause there is an non-explicit dependence on the frequency and amplitude through .

Figure 3-1 appears to suggest that the largest field-amplitude combination possible

should produce the largest losses.

However, there exists a constraint on the amplitudes we can apply to an in vivo

system. If the frequency and amplitude are too high, then eddy currents will be
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Figure 3-1: Normalized specific loss power versus field frequency and amplitude. The
loss power increases monotonically with both field and amplitude.

induced in tissue, causing unintentional heating within the target. Brezovich exper-

imentally studied this phenomenon, and developed the criterion that the product

f x HO must be less than 4.85 x 108 A m -1 s-1 for a 30 cm diameter coil.[Bre88]

Brezovich noted that patients subjected to magnetic fields of these levels "had a sen-

sation of warmth, but was able to withstand the treatment for more than one hour

without major discomfort".

From Faraday's Law, the current induced by a changing magnetic field is propor-

tional to f x HO x A, where A is the area of the current loop. The loop's area is

proportional to the square of its diameter d, so the induced current I is proportional

to f x HO x d2. The power dissipated P is proportional to 12, so have the relationship:

P Oc (Hofd2) 2  (3.17)

In Section 5.2.1 we determined that the series capacitor Cs in our circuit deter-

mines its operating frequency. Thus we choose f as our independent variable; that

is, f determines the field amplitude HO. Rearranging Equation 3.17:
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Figure 3-2: A two-dimensional contour map of the normalized specific loss power ver-
sus field frequency and amplitude. The Brezovich Criterion is shown in red delineating
the maximum allowed field-amplitude product.

HO = (3.18)fd2

If we set d to 30 cm, then = 4.85 x 10 8 A m- 1 s- 1 and we get the original

Brezovich Criterion back. This suggest can rewrite the Brezovich Criterion for any

diameter coil as:

4.85 x 10 8  
3H 0 = -(3.19)

f d

where do is 30 cm, and d is the diameter of the constructed coil. Equation 3.19

can be used to compute the maximum allowed field amplitude at a given frequency.

Figure 3-2 shows a contour plot of qO versus field frequency and amplitude with the

Brezovich Criterion overlaid.

Figure 3-2 shows that the specific loss power can be significantly increased by

operating at the Brezovich Limit. The Brezovich Limit occurs at approximately 100

times the losses of our standard set of parameters. Figure 3-3 shows the normalized
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Figure 3-3: A plot of the normalized specific loss power at various frequency-amplitude
pairs, as dictated by the Brezovich Criterion. The inset shows q/qo between 1 kHz
and 1 GHz on a log-log plot, showing the broad peak centered around 3 MHz.

specific loss power at each point along the curve defined by the Brezovich Criterion.

Figure 3-3 shows that for frequencies below 1 MHz, the losses can be increased

substantially by increasing the frequency and decreasing the field amplitude according

to the Brezovich Criterion. However, this technique yields diminishing returns.

The inset shows that for frequencies above 1 MHz the loss power plateaus, reaching

a maximum -at approximately 2.9 MHz before declining again. Far beyond after

approximately 10 MHz the specific loss power begins to drop off again, eventually

returning near the baseline. The specific loss power thus exhibits a very broad (9

MHz) peak beginning at approximately 1 MHz; all values within this broad peak

are within 5% of each other, suggesting that the system is not extremely sensitive to

frequency. This broad peak suggests that there is some sort of frequency-dependent

peak in the specific loss power. However, it must be noted that as the frequency

approaches 1 GHz our model begins to break down; in the GHz range ferro- and

ferrimagnetic resonance begins to dominate, which is absent in our model.
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Figure 3-4: A plot of q/qo versus nanocrystal diameter. The optimum peak occurs at
d = 16.4 nm

Nanocrystal Optimization

There are three parameters related to the nanocrystal that can be altered to increase

q - the nanocrystal diameter, anisotropy energy density, and specific magnetization.

The former is a function of the synthesis technique (related to the time allotted to the

growth phase), while the latter two parameters are dictated by the chemical identity

of the nanocrystal - the selection of M in MFe204. Figure 3-4 shows how the losses

change as a function of the nanocrystal diameter d.

Figure 3-4 shows a clear peak at approximately 16.4 nm, where the specific loss

power increases by over a factor of 170. However, the peak is very narrow - q is less

than 50% of its peak value if the diameter is off by only 0.12 nm. This also demon-

strates why monodispersity in the nanocrystal population is of utmost importance

- with a standard deviation of t 2 nm, as is common with aqueous coprecipitation

methods, only about 4.8% of the nanocrystals will lie within the top half of the loss

peak. With monodisperse populations, the majority of the nanocrystals will lie in

the loss peak, greatly increasing the heating power of the ensemble.

To determine why the diameter has such a large and narrow peak, we must de-
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Figure 3-5: A contour plot showing how the specific loss power varies with anisotropy
energy density and nanocrystal diameter. The curve of maximum losses indicates the
prescence of an optimal KV product.

termine what role the volume, V plays in the specific loss power. It appears twice:

once in the N6el relaxation time (Equation 3.10 in the KV product that determines

the anisotropy energy of a nanocrystal, and again the (Equation 3.15) where the

product opV determines the magnetic moment of the nanocrystal population. Figure

?? shows a contour map of the normalized q versus diameter and anisotropy energy

density.

There is a clear curve of maximum losses moving from the top left of Figure 3-

5 to the bottom right. This indicates the prescence of an optimal KV product -

the anisotropy barrier. Figure ?? shows the curve of constant energy in red that

gives the highest specific loss power. On this curve, the anisotropy energy barrier

was numerically computed to be approximately 2.371 t 0.003 x 10- 20 Joules. This

anisotropy barrier produces a N6el relaxation time that is approximately equal to the

drive frequency (for q0 , this is 500 kHz), maximizing the losses as described in Section

3.1.1.

We may then postulate that for a frequency f, there exists an optimal anisotropy
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energy KV that forces the Neel relaxation time to be equal to the time between peaks

in the magnetic field. This would suggest that the optimal frequency to operate at is

given by:

f = -KV (3.20)
2irroe kET

Equation 3.20 is valid when N6el relaxation is the only mechanism. More gener-

ally, f = for the relaxation time -r as defined in Equation 3.11. When the field

frequency matches the relaxation frequency, we call such a system relaxation reso-

nant. Figure 3-6 shows the specific loss power as a function of both the anisotropy

energy and the field frequency. For a given anisotropy energy, there exists an optimal

resonant frequency f that locally optimizes the specific loss power q. The red line

shows this relaxation resonance peak for all anisotropy energies. As the resonance

decreases in frequency, the maximum attainable q increases - this is due to the Bre-

zovich Criterion, which allows a higher field amplitude at lower frequencies, increasing

q.

Figure 3-6 also shows that as the diameter increases, the possible heating power

that can be achieved increases. Besides the relaxation resonance effect, there exists a

magnetic effect - as the diameter increases, the total magnetic moment (the product

upV) of the fluid increases, increasing the losses.

Figure 3-7 shows the effect of varying the specific magnetization o with the diam-

eter on specific loss power. For any fixed diameter, increasing the specific magnetiza-

tion increases the specific loss power. However, there is a trough where a relatively

lower magnetization will produce the same specific loss power. This occurs at a diam-

eter of 16.34 nm - the same peak that was found in Figure 3-4, where the anisotropy

energy hits a critical value. This demonstrates two points:

1. There exists a critical anisotropy energy that produces the largest specific loss

power by setting the N6el relaxation time equal to the drive frequency.

2. The specific magnetization can be increased indefinitely to improve the heating

power.
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Figure 3-6: The relaxation resonant frequency as a function as anisotropy energy
KV. For a given product KV there is a single broad peak. As frequency decreases,
the Brezovich Criterion allows a higher amplitue to be used, increasing the maximum
specific loss power.

This is demonstrated in Figure 3-8, where the specific loss power is shown as a

function of diameter and specific magnetization at three different anisotropy energy

densities. Shifting the anisotropy energy density moves the peak to a different di-

ameter (to match the operating frequency), but in all cases increases the specific

magnetization monotonically increases the loss power.

However, it must be noted that the anisotropy energy density and specific mag-

netization are not independent parameters, and thus cannot be tuned separately.

According to Stoner-Wolfarth Theory, the work done per unit volume in changing

the magnetization from 0 to a magnetization M is:[CG08]

/MW= foHM(3.21)

The work done is simply the area between the magnetization curve and the M

axis. If this amount of work is required to magnetize the sample, then the work

must be equal the anisotropy energy stored in the material. If the sample's volume is
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Figure 3-7: The magnetic effect of diameter increase on q. Larger diameters cre-
ates larger nanocrystal volumes, increasing the product o-pV, therefore increasing the
heating power.

known, the anisotropy energy density K can be determined from this measurement.

While the relaxational losses are independent of hysteresis, hysteresis remains a

point of much confusion in determining the anisotropy constant. The above method

assumes no hysteresis in the sample; if hystereis is present, then when the field is

returned to zero a remanent magnetization MR will remain. In this case, the energy

ER = / HdM (3.22)/M
is returned to the field, while the energy

Es = HdM - HdM (3.23)

is stored in the sample. When the field reverses and undergoes one full cycle,

twice this energy will be dissipated as heat.

We have constrained our original five parameters into three free parameters, re-

ducing our parameter space to a simpler one. Our free parameters are the field
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frequency f, the nanocrystal diameter d, and the material identity (encompassing K

and -). Once these three properties are chosen, the remainder of the parameters are

determined. These criteria for optimizing the power transfer in our system are:

1. For a given material, identify its diameter and anisotropy energy.

2. Tune the frequency to the relaxation resonance using Equation 3.20.

3. The amplitude is determined by the Brezovich Criterion at a given frequency.

However, it is of note that when the relaxation resonant frequency can be made

small (through large particle diameter or high anisotropy) it is ideal to do so in

order to increase the maximum field amplitude. This is a novel approach in that we

find a way to maximize q for a given nanocrystal structure and composition. Once

the nanocrystal has been characterized, the optimal external field parameters are

chosen. This, along with a variable-frequency transmitter, allows experiments to be

run optimally with any nanocrystal chemistry, rather than the traditional method

of tuning the chemistry to create the optimal q at a fixed field frequency and/or

amplitude.

3.1.3 Materials Selection

In this section we study the effect of materials chemistry on q with two goals in mind:

1. Compute the relaxation resonance for various metal ferrite nanocrystals.

2. Determine if there exists an ideal chemistry for use in frequencies between 100

kHz and 10 MHz.

We use iron, nickel, manganese, and cobalt ferrite in our study. The relevant

properties of each chemistry is listed in Table 3.2.

Figure 3-9 shows the computed q for a variety of metal ferrites. For each ferrite, the

anisotropy energy density K and specific magnetization o were held constant while the

diameter and frequency were varied. The field amplitude Ho was Brezovich-limited.
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Chemistry I K (J m~3 )[SIS187] Io- (A m 2 g-)[CG08]

Fe30 4  1.4 x 10 4  0.092
CoFe20 4  1.8 x 105 0.080
MnFe20 4  3.3 x 103  0.080
NiFe2 0 4  3.3 x 103 0.050

Table 3.2: Material properties listed for four common metal ferrites. The specific

magnetizations are listed for bulk ferrites, whereas the anisotropy energy density

data is taken from measurements of coprecipitated nanocrystals.

By selecting a ferrite chemistry the parameter is reduced from five free parameters to

only two, allowing a global maximum to be determined.

To maintain an optimal q, small diameter requires high frequencies and vice versa.

This is because the relaxation resonance moves to higher frequencies for small diam-

eter due to a smaller anisotropy barrier. The second observation is that lower fre-

quencies and larger diameter induce the largest q. This is because of a combination

of the Brezovich Criterion and the magnetic effect discussed earlier. At lower fre-

quencies higher field amplitudes are reachable, and in turn larger diameters are used

which also increases the total magnetic moment of the nanocrystal colloid. However,

it must be noted that larger nanocrystals are more difficult to synthesize than small

ones - as nanocrystals grow, their monodispersity decreases and the probability of

a magnetic domain forming (and therefore making the particle ferromagnetic rather

than superparamagnetic) increases. Therefore, we must balance the desires to keep

the particle size low while simultaneously utilizing a lower frequency.

The data suggests that magnetite (iron ferrite) and manganese ferrite are the

best choices for nanoscale receivers. This is due to their combination of high specific

magnetization and a relaxation resonance at an attainable diameter. Cobalt ferrite's

relaxation resonance peak is very narrow - less than half a nanometer - suggesting

that synthesizing nanocrystals at this optimal size would be very difficult. If the

nanocrystals were synthesized with a mean diameter even half a nanometer off of

the peak, then their heating power would suffer substantially. For this reason cobalt

ferrite is not a suitable candidate. Nickel ferrite offers the same relaxation resonance

as manganese ferrite, however its specific magnetization is 62% that of manganese
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Figure 3-9: From top left to bottom right, the Specific Loss Power versus frequency

and diameter for (a) iron ferrite (magnetite), (b) cobalt ferrite, (c) manganese ferrite,
and (d) nickel ferrite. The red lines delineate the optimal diameter for each frequency.

From this it is apparent that iron ferrite and manganese ferrite offer the largest heating
power in the radiofrequency range.

ferrite, resulting is a significant decrease in heating power.

3.2 Summary

In this chapter we examined the theory of magnetic losses in ferrite nanocrystals.

Through examining the theory of losses we deduced that there are five experimental

parameters that can be controlled by the experiment - the external field's amplitude

and frequency, and the nanocrystal's diameter, anisotropy energy density, and mag-

netization. Furthermore, we were able to reduce our parameter space by determining

which parameters had coupled effects. It was found that the field amplitude is fully

determined by the field frequency according to the Brezovich Criterion, and that the

anisotropy energy density and nanocrystal diameter together set the relaxation time

for the magnetic moment of the nanocrystal. This three-parameter space suggests
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that the optimal losses occur when the nanocrystal's relaxation time and the external

field frequency match; the losses can further be optimized by increasing the specific

magnetization of the nanocrystal and the external field amplitude.

46



Chapter 4

Nanocrystal Antennae

The last chapter outlined a suitable biological target for noninvasive neuronal stimula-

tion. The next step is develop a method to stimulate this genetic target by producing

heat in vivo. The field of oncology has exploited hyperthermia therapy for cancer

treatment since the 1950s[GMS+57]; in this treatment ("magnetic hyperthermia")

the radiofrequency losses in magnetic nanocrystals is used to initiate necrosis in tu-

mors. We use a modified version of this technique where a small amount of heat

generation (causing an increase in temperature on the order of 3-5 0 rather than full

necrosis is required. In order to generate heat in tissue, two components are neces-

sary: a nanocrystal receivers and an excitation source. The first portion of this thesis

will focus on the optimization of magnetic nanocrystals as nanoscale radiofrequency

receivers.

Aqueous colloids of nanocrystals have become increasingly common in biotech-

nology. Such systems have found a variety of applications, including MRI contrast

agents[LHJ+07], remote drug release[DvH+07], protein purification[MPGP07], and

magnetic hyperthermia[HDMZ06]. Colloidal nanocrystals are ideal for such tasks

because of their nanoscale diameters and subsequent magnetic behavior. Nanoscale

crystals are substantially smaller than typical cells (whose diameter is typically 1-5

[tm) and much closer to the size of proteins, allowing for precise biological targeting.

In addition, their small scale allows for simple delivery to a biological target. The

small size of such nanocrystals physically limits the number of magnetic domains
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that can form; for a small enough nanocrystal the entire crystal behaves as a single

magnetic moment. These single-domain nanocrystals behave as paramagnets due to

the thermal relaxation of their magnetic moments (as phenomena known as super-

paramagnetism); they are easily magnetizable in the presence of a field but have a

small remanent magnetization and coercivity, which prevents flocculation in solution.

4.1 Synthesis

There are a variety of methods available that are suitable for synthesizing a monodis-

perse population of magnetic nanocrystals.[LFP+08] The simplest and most efficient

synthesis is the chemical coprecipitation of iron salts, developed by Massart.[Mas8l]

Metal ferrite nanocrystals are prepared by the alkalinization of a stoichiometric mix-

ture of a ferric salt (such as FeCl3 ) and the salt of a divalent metal M (such as Fe2 SO 4 ,

Co(N0 3)2):

M2+ + 2Fe3+ + 80H- -+ MFe20 4 + 4 H2 0 (4.1)

This technique produces a large quantity of nanocrystals with size ranging from

single nanometers[BPS+90] to microns[SENJ+08]. The primary advantage of this

technique is its simplicity - it can be performed under standard ambient temperature

and pressure conditions and the product precipitates rapidly from solution. However,

control over particle size and dispersity is extremely coarse in this method. This

is because of an overlap of the nucleation and growth phases of crystal growth -

critical cluster sizes form due to local supersaturation, nuclei begin to grow, and then

diffusion of the dissolved ions to the nuclei surface limits the growth rate. A more

ideal synthesis would not rely on local supersaturation to begin nucleation, instead

maintaining clear nucleation and growth phases such that all nuclei form and growth

simultaneously.

One such alternate approach to synthesis is high-temperature decomposition of

iron organic precursors (such as Fe(CO)5 or Fe(acac) 3
1 in organic solvents. In such a

lacac = acetylacetonate
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Figure 4-1: A flowchart illustrating the synthesis of metal ferrite nanocrystals using
thermolysis of a mixed-metal precursor.

synthesis, the organic precursor is decomposed at high temperatures in the presence of

a surfactant (such as oleic acid, to stabilize the colloid) and then aged for a variable

period of time to control the size.[SZR+03] The separation of the decomposition

and nucleation phase from the growth phase allows for a very fine control of final

nanocrystal diameter. The size and the morphology can be controlled by varying

the reaction times and temperature, but the organic solvent used, concentration of

reactants, precursors, and surfactants each play a significant role in determining the

final structure. [SLM09]

We use a synthesis method based off the one published by Bao et. al[BSA+09],

modified to increase the yield. This synthesis occurs in two steps - the formation of

an organometallic (metal-oleate) precursor, and then the thermolysis of the precursor

to form nanocrystals. A graphical overview of the process is shown in Figure 4-1. The

mixed metal-oleate complex is formed through the reaction of sodium oleate with a

stoichiometric ratio of metal and iron chlorides. Sodium oleate and metal chlorides

are mixed together in a solution of water, ethanol, and hexane and subsequently re-

fluxed at 60 'C for 4 hours. The resulting mixed-metal complex (MFe2-(C1 8 H33 0 2 )4)

was allowed to cool to room temperature before isolation. Isolation was performed

by removing the aqueous phase (bottom layer) and then evaporating the remaining

ethanol and hexane at 70 'C for 30 minutes and the remaining water at 100 'C for

60 minutes. This synthesis is summarized in Table 4.1.

After the precursor has been formed, 5 grams of the mixed-metal oleate precursor

is combined with 0.5 g of olcic acid and 20 mL of 1-octadecene in a three-neck round

bottom flask. The flask is evacuated for 15 minutes and then placed under flowing
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Reactant Amount

FeCl3  20 mmol
MC12  10 mmol

Sodium Oleate (C1 8 H33 0 2Na) 80 mmol
H2 0 50 mL

Ethanol 50 mL
Hexane 100 mL

Table 4.1: The mixed-metal oleate precursor is formed through the reflux of the above
reactants at 60 'C for 4 hours.

Reactant Amount

Mixed-Metal Oleate Precursor 5 g
1-octadecene 20 mL

Oleic acid 0.5 g

Table 4.2: The mixed-metal precursor is mixed with oleic acid and 1-octadecene and
then heated to 310 'C for thermolysis.

nitrogen. The mixture is then heated to 310 'C at a rate of 100 'C/hr and then

held at 310 'C for one hour. The flask is then removed from the heat source and

allowed to cool to room temperature. Bao et. al suggest from alternating gradient

magnometry measurements that between 250 and 300 'C the mixed-metal oleate com-

plex begins to dissociate into metallic cations and the oleate anion; at approximately

300 the critical concentration is achieved and homogeneous nucleation occurs in

the solution.[BSA+09] The nucleation process is complete within approximately one

minute, upon which the concentration drops below the nucleation threshold and the

growth processing begins.

Once cooled, the oleate-stabilized nanocrystals are easily soluble in hexane.

4.2 Stabilization

It is imperative that synthesized nanocrystals are able to be stably dispersed into an

aqueous phase for biological applications. While dispersed in a liquid, the colloidal

stability of the magnetic nanocrystals is dependent upon four primary factors: [BPS+90]

1. electrostatic repulsion from surface charges
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2. van der Waals attraction between nanocrystals

3. magnetic dipole-dipole interactions

4. steric repulsion due to the presence of surfactants

The sum of these four forces must be carefully balanced to prevent aggregation of

the nanocrystals while in solution.

Iron atoms on the surface of magnetite nanocrystals coordinate with hydroxyl

groups in the aqueous phase, leaving the surface hydroxylated.[BPS+90] These am-

photeric hydroxyl groups may react with acids or bases to produce a positive or

negative surface charge; however, at physiological pH (approximately 7.4), the iso-

electric point is reached and the surface charge drops to zero. At this point brownian

motion and van der Waals attraction causes flocculation of the nanocrystals occurs,

necessitating the tuning of electrostatic and steric forces to stabilize the particles in

solution.

The two common routes to stabilization is via the use of either monomeric sta-

bilizers or polymer coatings. Monomeric stabilizers (such as citric acid, dimercapto-

succinic acid (DMSA), or gluconic acid) are typically acids that readily dissociate in

the aqueous phase. The anions then bind to the nanocrystal surface and stabilize the

particle via electrostatic repulsion.[LFP+08] The primary advantage of monomeric

stabilizers is their small size - large polymeric stabilizers can increase the hydrody-

namic diameter of nanocrystals and restrict their access to confined spaces in vivo.

In contrast, polymeric stabilizers (such as dextran, polyethylene glycol (PEG), or

polyvinyl alcohol (PVA)) dramatically increase the hydrodynamic radius (often by

as much as 10 or 15 nm) but serve as stronger stabilizers due to multiple hydrogen

bonding domains along their length. [TMVV+06] Polymeric stabilizers also possess

a high level of variation in polymers allows for extensive bioconjugation options by

changing functional groups on the polymers, rather than requiring the selection of a

new stabilizer.

Magnetic nanocrystals synthesized using our technique will be stabilized with oleic

acid, allowing for solubility in nonpolar solvents such as toluene or hexane.[SZR+03]
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In order to exchange the surfactant to allow for transfer to the aqueous phase, we

perform a ligand exchange. The first step is to remove excess oleic acid through

centrifugation and discarding of the supernatant. A mixture of 1 part ethanol to 3

parts hexane was added to the nanocrystal colloid in a 50 mL centrifuge tube, and

subsequently cetrifuged at 6000 rpm for 10 minutes. The supernatant was discarded,

leaving precipitated nanocrystals in the centrifuge tube. The nanocrystals were re-

suspended in 10 mL of hexane by vortexing, and 10 mL of ethanol were added to

the solution. The solution was again centrifuged at 6000 rpm for 10 minutes, the

supernatant discarded, and resuspended in 10 mL hexane. A glass vial was massed,

and the nanocrystal solution was added to the vial. The hexane was evaporated at

100 'C and the vial was again massed to determine the mass of nanocrystals.

To exchange the ligand, 10 mg of nanocrystals suspended in hexane were added

to a glass vial. The nanocrystals were vacuum distilled to remove the solvent, and

then resuspended in 2 mL of tetrahydrofuran (THF). 20 mg of poly(ethylene glycol)-

derivatized phosphine oxide (PO-PEG) was then added to the solution and vortexed

to dissolve. The solution was then vacuum distilled again to remove the THF, leaving

the stabilized nanocrystals, and then heated to 150 'C for 1 hour while still under

vacuum. After the mixture was cooled to room temperature, an aqueous colloid was

formed by adding 5 mL of water and vortexing to dissolve the stabilized nanocrystals.

The solution was then filtered using a 220 nm syringe filter to remove any aggregates.

4.3 Characterization

The above synthesis method was used to synthesize three common metal ferrites:

cobalt, manganese, and nickel ferrite. These are three of the most well-studied ferrites

(after iron ferrite, also known as magnetite). These ferrites are also very simple in

that the divalent metal must be present in a 2:1 ratio with the trivalent iron ion; this is

in contrast to more complex ferrites such as manganese-zinc ferrite (MnZnl-xFe2 0 4 )

or strontium ferrite (SrFel20l 9 ).

Transmission electron microscopy was utilized to investigate the size distribution
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Chemistry d (nm)

Ni 25
Mn 12
Co 12

Table 4.3: Three total samples were synthesized and stabilized using the process
described above. Their diameters as determined by TEM are listed.

resulting from the synthesis. TEM samples were prepared by mixing 1 AL of 10 mg

mL- 1 nanocrystal solution (dissolved in hexane) with 200 ptL of hexane and adding

10 piL of the dilution to an amorphous carbon-coated copper grid. The hexane was

allowed to dry, depositing the nanocrystals on the grid. The grid was then cleaned

by placing the grid on laboratory tissue, dropping 10 pL of methanol onto the grid,

and allowing the grid to dry. This was repeated a total of three times to clean the

grid. The samples were subsequently imaged using a JEOL 200CX General Purpose

TEM (200 kV).

Figure 4-2 shows a representative image taken via TEM. This image illustrates

that the synthesis produces a highly monodisperse (L ~ 10%) population of spherical

nanocrystals with a finely controlled size. Table 4.3 shows a full table of the samples

that were synthesized, the final solvent (particles in water were stabilized using PEG,

while particles in toluene remained stabilized by oleic acid), and the diameter as

determined by TEM.

4.4 Summary

This chapter presented a flexible method for the synthesis of aqueous phase monodis-

perse metal ferrite nanocrystals. The proposed chemistry is extremely flexible, allow-

ing for the synthesis of varying composition and diameter nanocrystals. In addition,

a stabilization protocol is demonstrated that allows the synthesis nanocrystals to be

suspended in the aqueous phase for extended periods of time. This is ideal for in vivo

applications, where the nanocrystals will need to be subjected to physiological con-

ditions without aggregation or flocculation. The synthesized nanocrystals were then

subsequently characterized using transmission electron microscopy to demonstrate
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Figure 4-2: A representative TEM image of the synthesized nanocrystals. The syn-

thesis produces highly monodisperse spherical nanocrystals.
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the size control.
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Chapter 5

Radiofrequency Transmitter

The last two chapters focused primarily on the design and synthesis of colloidal

nanocrystals to serve as nanoscale radio receivers; now our attention turns to the

design and construction of a suitable excitation source. The excitation source must

be simple and cost-effective to construct while being capable to provide moderate

magnetic fields (up to 30 kA m-1 ) at low radiofrequencies. This chapter describes

the theory and implementation of such an excitation source.

5.1 Design

Solenoids are useful for producing large uniform magnetic fields ranging from a few A

m' to 16000 kA m-. A typical solenoid is constructed from many turns of insulated

copper wire wound around a tube of electrically insulating, low-permeability material

(to reduce its effects on the generated magnetic field). For a solenoid with inner

diameter d and length 1, the field H (in kA m-1 at an axial distance x from the

center of the solenoid is given by

NI 1 + 2x ± - 2x (5.1)
101 2d2+ (I + 2x)2 2d2 + (1 - 2x)2

where N is the number of turns and I is the current flowing through the solenoid.

At the center of the solenoid (x = 0), the maximum field is given by
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Figure 5-1: The influence of aspect ratio on the uniformity and divergence of the

magnetic field H. The left images shows a large aspect ratio (black lines indicates

the edges of the solenoid) and the right image shows a small aspect ratio.

H=NI [ 1 1(5.2)
101 /d2+12

Equation 5.2 suggests that the two critical ratios for solenoid construction is the

turn ratio (N) and the aspect ratio (1). For fixed solenoid dimensions, increasing the

turn ratio (through packing turns more tightly or winding multiple layers of wires) is

the most desirable form of increasing the field. This is because the ohmic losses in the

wire increase as I 2 R for a resistance R; thus an increase in total wire length linearly

increases the ohmic losses whereas an increase in current quadratically increases in

the losses for the same gain in H.

The aspect ratio determines the uniformity of the field. For a solenoid with a large

aspect ratio (1 >> d), the magnetic field inside the solenoid is very uniform over the

middle half. However, the field at the edges of the solenoid are only half of the field

at the center. In contrast, for a small aspect ratio (d >> 1), the field is not uniform

inside the solenoid, but the field at the edges of the solenoid may be as little as 10%

less than the field at the center. Thus, the aspect ratio embodies the tradeoff between

a high field outside of the solenoid and uniformity inside the solenoid's length. Figure

5-1 demonstrates this tradeoff.
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The above considerations give rise to the following design criteria:

" The diameter d of the solenoid is determined primarily by the space required

for the sample.

" The aspect ratio is selected to provide the requisite field uniformity for the

sample.

" For given d and 1, the turn ratio is required by the field required given the

current that can reasonably be supplied by the power supply.

The electrical impedance (Z) of a circuit element is a measure of how much the

element opposes the flow of current. It can be separated into two components - the

resistance (R) is the real component of the impedance and represents the dissipative

behavior of the element; the reactance X is the imaginary component and represents

the induction and storage of energy in the element. To achieve maximum power

transfer from a source to a load, the source impedance (Zs) must equal the complex

conjugate of the load impedance (ZL):

ZS= ZL (5.3)

Rs +iXs = RL -iXL (5.4)

That is, the impedances must sum to zero and the resistances must match. This

can be accomplished through the use of a matching network (to match reactances)

and transformers (to match resistances).

A solenoid is typically defined by its inductance L. However, most inductors

(especially hand-wound ones) are extremely non-ideal; for this reason we include

in our model the resistance of the wire comprising the solenoid (RL), and the self-

capacitance of the solenoid windings (CL). These three elements can be combined

into the lumped element model shown in Figure 5-2 with an impedance given by

Equation 5.5.
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CL

RL
L

Figure 5-2: A lumped element model for a solenoid. The solenoid is characterized by
its inductance L, self-capacitance CL, and resistance RL-

iwL
ZL = RL + L (5.5)

1 - LCLW2

It is apparent that the inductor possesses a self-resonant frequency WL at

which the denominator disappears. Below this self-resonant frequency, the denomi-

nator increases, subsequently decreasing the solenoid's impedance. This allows more

current to flow, allowing a larger magnetic field to be generated. On the other hand,

above the self resonant frequency the impedance increases dramatically, impeding the

flow of current and attenuating the magnetic field. This suggests that our solenoid

operates most efficient when our operating frequency w is below the self-resonant

frequency WL-

As described in Section 5.1, the power transfer between an alternating current

source and its load (the solenoid) is maximized when the load impedance is equal

to the complex conjugate of the source impedance. For many sources of alternating

current signals, the source impedance is required to be 50 0; therefore, to meet our

power transfer criteria the solenoid must be combined with an impedance matching

network to bring its overall impedance to 50 Q.

If a capacitor C, is added in series with the solenoid, the impedance of the network

becomes:

iwL i
ZNetwork = RL + (5.6)

1 - LCLW2 Cs

It can be observed from Equation 5.6 that the addition of a series capacitor can
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Figure 5-3: Schematic of the final impedance matching network. Shielded enclosures
are shown with dotted lines.

completely eliminate the network's reactance if the capacitor value is selected to be

equal to

1 - T 1 - LCLW2

CS LW2  Lw2

This leaves only the real component of the impedance RL. This remaining com-

ponent of the impedance can be matched to 50 Q by utilizing a transformer. For a

transformer with Np turns on the primary coil and Ns on the secondary coil, the

impedance of the solenoid network ZL will appear to be

N2

ZNetwork RL (5.8)
ATS

By choosing the appropriate number of turns on the primary and secondary coil,

the solenoid network can perfectly match the source impedance Zs = 50Q, maximiz-

ing the power transfer. However, the addition of a transformer also adds the reactance

iwLp, where Lp is the inductance of the primary coil of the transformer. To remove

this reactance, a capacitor Cp is added in series with the transformer, following the

logic above.

It is also important to be able to characterize the magnetic field produced by our

solenoid. The magnetic field may be calculated theoretically by Ampere's Law given

that we know the current through the solenoid. While a properly tuned impedance

matching network should allow 100% power transfer, in reality various losses make
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that value much less. Therefore we constructed a current probe to measure the current

through the solenoid. The current probe is a transformer with a single turn on the

solenoid's side that induces current in the secondary coils (Lsense in Figure 5-3). The

current is then read as a voltage across a 50 Q resistor (Rense in Figure 5-3) with

an oscilloscope or digital multimeter. The current through the secondary (Isense) can

then be determined by Ohm's Law and the field is computed as

H = NFieldNSIsense (5.9)
1

where NField is the number of turns on the field-producing coil and Ns is the

number of turns on the secondary coil.

A function generator is used to set the input frequency in conjunction with a

radiofrequency power amplifier to provide the high voltage and current necessary to

create large magnetic fields.

In summary, the criteria for optimizing the performance of a solenoid are:

" Construct the solenoid such that w < wo.

" Select a value for the series capacitor C, such that the reactance is minimized.

" Construct a resonant transformer with appropriate turns ratio to transform the

network resistance to 50 Q, with a series capacitor Cp selected to match the

resonant frequency of the transformer and the solenoid.

5.2 Construction of Excitation Sources

5.2.1 In Vitro Coil

With a firm understanding of the design considerations, a solenoid may be constructed

to stimulate the synthesized nanoantennae. The first step is to determine the size of

our sample, as outlined above. For in vitro samples, it is convenient to use a petri

dish to hold cell cultures. In addition, it is necessary to maintain optical access to
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I__ Coil

Petri Dish

Figure 5-4: Left: Design of the in vitro coil with a microscope objective for scale.
Right: Photograph of the constructed in vitro coil. The solenoid has 8 turns around
a 45 mm OD borosilicate scaffold. The sample sits on top of a petri dish to lift it
into the center of the magnetic field.

the sample so that fluorescence techniques can be used to monitor the sample. Elec-

trophysiology measurements also require the placement of electrodes in the sample,

necessitating a low aspect ratio so that the electrodes may reach the sample. However,

the sample is planar, allowing for a non-uniform field within the solenoid.

The chosen petri dishes are 40 mm in diameter; thus, we choose 45 mm OD

borosilicate glass tubing as a core to wind our solenoids around. Borosilicate glass

was chosen for its low magnetic permeability and low thermal expansion coefficient in

addition to its affordability. The core is cut to be 20.6 mm tall with a Buehler 11-1190

low speed saw with a diamond blade to a height a 20 mm such that a microscope

objective and electrophysiology electrodes may access the sample.

At radiofrequencies, standard copper wires have dramatically increased impedance

due to the skin and proximity effects. To mediate these problems, Litz wire is tradi-

tionally used. A standard litz wire construction consists of many high-gauge copper

wires individually insulated and woven together in a fashion that exposes each con-

ductor to the outermost insulation for equal lengths. For our transmitter, we used a

custom-wound Litz wire from HM Wire International (Ohio). Each wire contained

105 strands of 36 AWG copper wire woven into 5 bundles of 21 conductors, coated
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in a nylon outer insulation. Eight turns of Litz wire was wrapped around the outer

diameter of the glass, using double-sided tape to hold the wires in place. After the

appropriate number of turns were added, the wire was cut and polyolefin heatshrink

was applied to hold the construction together. A female BNC connector was soldered

onto the ends of the Litz wire and heatshrink was applied to the leads.

The current probe was constructed using magnetic wire around a ferrite core.

A single turn from the field solenoid served as the primary, with 37 turns as the

secondary. The number of turns on the secondary was limited only by the size of the

ferrite. A 10x attenuator was used for measuring the sense current at fields of over

23 kA m-1 .

The type of dielectric chosen for the series capacitors must be able to withstand

high currents and maintain low losses at high frequencies. Polypropylene capacitors

were chosen for their low losses and resistance to stray eddy currents (to reduce heat-

ing). To allow for quick swapping of capacitors to test samples at multiple frequencies,

the capacitors were placed in aluminum enclosures with mounted BNC connectors,

as shown in figure 5-5.

The series capacitors serve to determine the operational frequency of the field

coil. Our frequency spectrum was controlled by two constraints: first, the effective

distance of radiofrequencies through human tissue is at least 10 cm between 100

kHz and 50 MHz[Ros87]; second, our radiofrequency amplifier was rated for up to

15 MHz. Therefore we seek to operate between 100 kHz and 15 MHz. The series

capacitor value was computed to force the benchtop coil to resonate at intervals of

100 kHz, and capacitors were purchased that were as close to the computed values

as reasonably possible. The benchtop coil was used for frequency-dependent testing,

and once an ideal operating frequency was chosen (see Chapter ??) C, and C, were

chosen for the in vitro coil.

To determine the ideal operating frequency, it is convenient to construct a coil

that can characterize the heating power of nanocrystals in solution. For that purpose

we construct a magnetic susceptometer using these same principles.
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Figure 5-5: The in vitro coil with completed impedance matching network. From top
right to bottom left, following the cables: the primary capacitor Cp, the impedance-
matching transformer, series capacitor Cs, current probe (unconnected), and the in
vitro coil.
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5.2.2 Susceptometer

The quantity of interest for our synthesized nanocrystals is their specific loss power.

It would be ideal to measure their heating power calorimetrically; however, it is

very difficult to measure increases in temperature with high precision and accuracy

in the presence of an alternating magnetic field. Metal and semiconductor-based

sensors such as thermocouples and thermistors are susceptable to self-heating due

to induced eddy currents, resulting in drifting temperature readings. Non-magnetic

thermometers (such as liquid-in-glass thermometers) add a large thermal mass to

the sample and are extremely slow with poor precision. Optical pyrometers avoid

many of these downsides but have low sensitivity in the temperature regime near

body temperature. Optical fiber thermometers that utilize infrared light to measure

the temperature can make extremely fast and precise measurements; however, these

thermometers require a controller and the entire system is prohibitively expensive.

Direct measurements of the magnetic losses avoids many of the drawbacks of

calorimetric measurements. As noted in Equation 3.7, the specific loss power is

directly proportional to the quadrature susceptability x"; therefore, if we can measure

x" the relative specific loss power of synthesized nanocrystals can be measured.

A schematic of a typical susceptometer is shown in Figure 5-6. A function gen-

erator is used to drive a solenoid (Lp) that serves as the primary coil in an air-core

transformer. Two identical coils, LSearch and LReJ, are connected in series with op-

posing polarities to make a differential measurement. The primary coil creates a

magnetic field H that induces a current Is in the secondary coils. If the two coils

are geometrically identical, they will each have an equal current induced in them and

therefore an equal induced electromotive force. Connecting them in reverse series

ensures that the combined voltage as detected at the output is zero.

If a magnetic sample is placed inside of the search coil, then the search coil expe-

riences a magnetic flux equal to:

B = po(1 + X)H (5.10)
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Figure 5-6: A schematic of the magnetic susceptometer used to measure the magnetic
losses in colloidal nanocrystal solutions.

where as the reference coil experiences a flux equal to simply POH. Thus the total

electromotive force detected at the output is only dependent upon poXH.

The susceptometer is constructed from 100 turns of Litz wire around a core of

16 mm OD borosilicate glass that is 195 mm long to ensure a uniform field for the

sample. The search and reference coils are constructed from 20 turns of Litz wire,

placed a quarter of the coil length from each end of the coil. The sample is placed

in a glass ampule that may hold up to 200 pL of colloidal solution; the glass am-

pule fits into the primary coil to hold the sample in the center of the search coil.

For relative quantification of specific loss powers, high magnetic fields and optimal

power transmission are not necessary, so we ony use a single monolayer of turns and

omit the impedance matching network in our construction. An illustration of the

susceptometer construction is shown in Figure 5-7

The quadrature susceptability is typically very small compared to the in-phase

susceptability; therefore the use of a lock-in amplifier is required. A typical lock-in

amplifier is shown in Figure 5-8.

A lock-in amplifier operates on the principle of phase-sensitive detection. A signal

source provides an AC signal Vsource cos(wt) that is used to excite our system of

interest. The output signal of the system is typically an attenuated and phase-shifted

signal Vy, cos(wt+s). The output of the system is first amplified by a preamplifier to
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Figure 5-7: Left: A schematic of the susceptometer coil with the primary coil con-
struction shown in grey, and the secondary coils in white. Right: A photograph of
the constructed susceptometer.

AC Signal Preamplifier Multi Her

Syiterm sof Low-Pass o output

"" Reference
Signal

IPhase Shifter

Figure 5-8: A block diagram showing how a typical lock-in amplifier operates.
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increase the size of the signal, and then multiplied by a reference signal Vref cos(wt +

OR). The output of the multiplier VM is given by:

VM sys cOS(wt + Os) - Vref coS(wt + OR) (5.11)

VM VsysVref [Cos(qS - R) + cos(2wt + Os + OR)] (5.12)2

Equation 5.12 shows that there are two components of the resultant signal: a DC

component at zero frequency and a component at the frequency 2w. If a low pass

filter is used with a cut-off frequency less than 2w, only the DC component is seen in

the output.

By considering Equation 3.4 and Equation 5.10 simultaneously, it is apparent that

the system output is equal to:

Vott = poHo [(1 + x') cos(wt + Os) + X"sin(wt + Os)] (5.13)

where Os is the phase acquired from the system. If this is substituted into Equation

5.12 then the locked-in signal is given by:

Vlock-in = POHOsource [(1 + x') cos(Os - OR) + x" sin(Qs - OR)] (5.14)
2

where we assume that the reference signal is the same frequency as the system

output. If the reference signal is set the same phase as the system-acquired phase

Os, then the output of the lock-in is simply the in-phase component; if the reference

phase is offset by !, then the lock-in outputs the quadrature component.

Measurement of the quadrature can be simplified by two facts: the impedance of

an ideal solenoid is purely reactive (implying that there is no dissipation) and that the

magnitude of the signal vector (R) of the quadrature (Y) and the in-phase component

(X) must remain constant at:
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R = v/X 2 +Y 2  (5.15)

Thus the quadrature component can be found with knowledge of just the in-phase

component and the total magnitude of the signal vector. The magnitude of the

signal vector can be found by measuring the locked-in signal of the susceptometer

with no sample; because there are only reactive (energy-storing) components to the

impedance, the magnitude and in-phase component are equal:

R = X2 (5.16)

Equation 5.12 tells us that the output signal is at a maximum when the reference

phase is equal to the output signal's phase. With the reference phase set, the magnetic

sample can be introduced to the susceptometer, introducing a quadrature component

Y. Combining Equations 5.15 and 5.16, the quadrature component can be found by:

Y= X2 - X2 (5.17)

The implementation of our lock-in amplifier is shown in Figure 5-9 with compo-

nent values given in Table 5.1. The TLC071 was chosen as our operational amplifier of

choice for its relatively high gain-bandwidth product (10 MHz) and cost-effectiveness.

The preamplifier supplies a gain of 5 to the search coil's output; then signal then pro-

ceeds to the AD835 4-Quadrant Multiplier which serves to demodulate the signal

with a reference. The phase shifter is implemented as an active all-pass filter with

unity gain and phase shift determined by the pull-down resistor R5 . The phase can

be shifted between 180 and 0 degrees by manually setting the value of the 1 kQ po-

tentiometer. The output of the multiplier is then conditioned by an active low-pass

filter with a cut-off frequency set to 3.38 Hz that removes the doubled frequency com-

ponents, leaving only the component of the signal that is in-phase with the reference.

The active filter also provides a gain of 10 to amplify the final signal, to improve the

precision of the measurement. The split-supply was created from a DC power supply

and a resistive divider, shown in the upper right corner of Figure 5-9.

70



Signal R3 V.,

Reference

R4 R, C4  C5 -

Search Coil V. Oscillosco e

output TLC071
+ TLC071

YJ , +,

"'E"Y2 X TL- 11

R2 V. V R7

-- -.._ AD835 - C 2

Figure 5-9: A schematic of the lock-in amplifier used to determine the quadrature
susceptability. Not shown: each integrated circuit has a 0.01 pF bypass capacitor
between the positive and negative supply pins (V+ and V_, respectively) and a 2.2
pF bypass between V+ and V_.

Resistor I Value Capacitor Value
R, I kQ C1 1.0 nF
R 2  3.9 kQ C2 0.47 pF
R3 1 kQ C 100 pF
R4 1 kQ C4 100 pF
R5 1 kQ C5 0.1 pF
R6 1 kQ 06 0.1 pF
R7 10 kQ

Table 5.1: Component values for the lock-in amplifier shown in Figure 5-9. Not listed
are the bypass capacitor values.

5.3 Characterization

The frequency response of each coil was fully characterized using Bode plots. The

voltage output of the coil was taken to be the current probe for the in vitro coil, and

the search coil for the susceptometer coil. Each Bode plot was taken by sweeping the

input frequency between 10 kHz. and 10 MHz with an output voltage of 5 VPP and

measuring the response at the output.

The Bode plot for the susceptometer is shown in Figure 5-10. The susceptometer

exhibited a self-resonance near 6 MHz; as per our criteria, this is above our desired
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Figure 5-10: A Bode plot demonstrating the frequency response of the susceptometer
primary coil with respect to the search coil. Note the flatband response between 100
kHz and 1 MHz. Solid lines are to guide the eye.

operating range. In addition, the susceptometer's primary coil exhibited a flatband

frequency response between 100 kHz and 1 MHz, making the matter of changing

operating frequencies extremely straightforward.

The inductance of the in vitro coil was found to be 6 pH using an LCR Meter.

Using this value of inductance, ten capacitor values were chosen to set the resonant

frequency at 10 evenly distributed points between 100 kHz and 1 MHz. Due to the

discrete nature of available capacitors, the closest available values were used. The

actual values used and resulting resonant frequencies are shown in Table 5.2. The

Bode plots in Figure 5-11 show that the addition of a series capacitor creates a clear

resonance at the desired frequency, and that variation of the series capacitor shifts

the resonant frequency as described earlier in this chapter.
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Figure 5-11: A Bode plot demonstrating the frequency response of the in vitro coil
with a series capacitance of 470 nF (top), 43 nF (middle), and 4.7 nF (bottom). Solid
lines are to guide the eye.
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Frequency (kHz) Theoretical C, (nF) Actual C, (nF) Actual Frequency (kHz)

100 422 nF 470 nF 94.7
200 105 nF 91 nF 215
300 46.9 nF 43 nF 313
400 26.4 nF 22 nF 438
500 16.8 nF 16 nF 513
600 11.7 nF 12 nF 593
700 8.62 nF 8.2 nF 717
800 6.59 nF 6.8 nF 787
900 5.21 nF 5.6 nF 868

1000 4.22 nF 4.7 nF 947

Table 5.2: Capacitor values chosen to reach 10 frequencies between 100 kHz and 1
MHz. The actual value of C, was chosen to be as close as possible to the computed

value.

5.4 Summary

This section outlined the theory of designing a radiofrequency excitation source for

the purpose of exciting magnetic nanocrystals. The theoretical and practical aspects

of solenoid design were covered, and two solenoids were constructed using the de-

scribed techniques - one suitable for in vitro experiments and one suitable for the

characterization of nanocrystals in colloidal suspension. In addition, the design and

implementation of a lock-in amplifier for use in characterizing the nanocrystal losses

was documented. With a suitable excitation source constructed, it is now possible

to measure the loss properties of the magnetic nanocrystals in comparison with the

results of Chapter 3.
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Chapter 6

Measurement of Magnetic Losses

in Metal Ferrite Nanocrystals

The previous several chapters described a methodology for choosing optimal operating

parameters for radiofrequency heating of nanocrystals, and then constructing the

parts necessary to implement such a system. This chapter culminates that work in

directly measuring the magnetic losses in synthesized nanocrystals.

6.1 Measurements

For each magnetic measurement, 200 pL of colloidal nanocrystals were placed in a

glass ampule which was then loaded into the susceptometer. An oscilloscope was

used to compare the reference phase and the susceptometer signal as described in

Section 5.2.2. The phase difference was set to 90 degrees by varying the resistance

of a potentiometer in the reference circuit, and was confirmed by ensuring that the

signal was minimized when no sample was present in the susceptometer (representing

a susceptometer signal that is entirely in phase). The operating parameters of the

primary coil were then varied and the output signal was recorded.

Three synthesized nanocrystal samples were measured. Their properties are listed

in Table 6.1, along with their computed Neel relaxation frequency fN. The results of

Chapter 3 suggest that the optimal losses occur when our excitation source's frequency
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Chemistry d (nm) K (kJ m- 3 fN (MHz)

Ni 25 3.3 1.16
Mn 12 3.3 92
Co 12 180 20 MHz

Table 6.1: A table of the samples tested with the susceptometer, along with their

computed relaxation resonant frequency (assuming only Neel relaxation).

is matched to the relaxation time; unfortunately, the relaxation time of all of our

particles is far outside of the attainable range for our system.

However, despite the lack of a reachable relaxation frequency, there are still trends

that can be experimentally verified. The easiest one is the influence of frequency and

amplitude on specific loss power. Figure 3-1 shows that the amplitude should have

a much stronger effect on the loss power than the field frequency. This effect was

measured by varying the amplitude of the primary coil's input sinusoid between 1

and 10 V,, with a fixed field frequency of 500 kHz, and varying the field frequency

between 100 kHz and 1 MHz with a fixed amplitude of 1 V, .

6.2 Results

The results are shown in Figure 6-1 for manganese ferrite. Comparing with Figure

3-1, the results are qualitatively very similar. Across nearly a decade of frequency

and amplitudes, the frequency-dependence provides an increase only one tenth the

increase seen via amplitude alone.

6.3 Summary

This chapter demonstrated the functionality of a homemade susceptometer for mea-

suring the quadrature susceptability of colloidal nanocrystals suitable for in vivo ra-

diofrequency heating. The nanocrystals were shown to qualitatively match the behav-

ior expected based upon the theory described in Chapter 3, though no local maxima

was observed due to the lack of an attainable relaxation frequency.
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Figure 6-1: The measured quadrature susceptability for MnFe20 4 colloidal nanocrys-
tals. Note that the amplitude dependence is much stronger than the frequency de-
pendence.
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Chapter 7

Conclusions

7.1 Summary

This manuscript sought to lay down initial groundwork for the radiofrequency stimu-

lation of neurons. Previous work has shown that such stimulation is possible utilizing

magnetic nanocrystals are nanoscale radio transducers; however, the demonstrated

system responded several orders of magnitude slower than the target ion channel's ki-

netics and thus was far too slow for useful probing of neuronal ensembles. This thesis

sought to carefully look at all of the components of this remote stimulation system

and determine where optimizations could be made to improve the responsiveness of

the system.

7.1.1 Nanocrystal Optimization

The first component that was examined were the superparamagnetic nanoparticles

utilized as radiofrequency transducers. The theory of superparamagnetic losses was

described in detail, determining five parameters that could be tuned to optimize the

specific loss power. By looking at the relationships between these five parameters,

the five-parameter space was reduced to a three-parameter space: the nanocrystal

diameter, specific magnetization, and magnetic field frequency completely defined

the specific loss power.
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Modeling the magnetic losses led to an important insight regarding the design of an

optimal remote heating system: because optimal heating occurs when the relaxation

time of the nanocrystal matches the excitation frequency of the external field, the

same increase in specific loss power can be achieved through either changing material

properties or field parameters. This allows us to take the difficult problem of precise

tuning of material parameters and transform it into a much simpler problem of tuning

our excitation source.

A synthesis method for fine size control of monodisperse nanocrystals was de-

veloped based off of thermolysis of a mixed metal oleate precursor. This synthesis

method allows us to synthesize nanocrystals with an accurate size distribution based

off of our modeled results. An aqueous phase stabilization protocol was also developed

to render the nanocrystals water soluble for in vivo applications.

7.1.2 Excitation Source

In addition to designing optimal nanocrystals, a variable-frequency, variable-amplitude

excitation source was designed to allow for tuning of the field parameters to prop-

erly match those of the targetted nanocrystals. The design utilizes a single coil that

is optimized for the sample geometry, with the frequency varied through the use of

polypropylene capacitors. The design is simple to construct and made from easily

attainable parts, eliminating the need for expensive induction furnaces. The design

is also efficient enough that it does not require water cooling for moderate use.

7.1.3 Susceptometer

The final component of the thesis was the development of a susceptometer for directly

measuring the magnetic losses (and therefore the specific loss power) of magnetic

nanocrystals while suspended in colloidal solution. The design allowed for rapid in

vitro testing of synthesized nanocrystals, allowing their behavior to be easily compared

to theory. As a part of this design, a low-cost lock-in amplifier was constructed to

allow for phase-sensitive detection of the quadrature component of the susceptability.
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The susceptometer was then utilized to make magnetic susceptometry measure-

ments on synthesized nanocrystals. Unfortunately our synthesized nanocrystals did

not exhibit a relaxation frequency that fell within the tunable range for our excitation

source; however, we were able to confirm the frequency- and amplitude-dependence

of the susceptability.

7.2 Future Work

There are many directions that work derived from this thesis may take. A short-

term goal would consist of making a series of more complete susceptometry mea-

surements. A sample matrix of nanocrystals possession relaxation frequencies that

were attainable with our susceptometer would provide an ideal set to perform further

measurements on. Such a matrix could be used to further confirm or deny the theory

described in Chapter 3.

A more long-term direction would be to take an optimized nanocrystal-radiofrequency

transmitter system and implement the two in vitro to remotely stimulate cells. As

demonstrated in the work of Huang et. al, remainder of the implementation presents

a relatively straightforward problem in biology.[HDZ+10] The stabilized nanocrys-

tals may be conjugated with streptavidin and the target cells may be genetically

tagged to express a biotinylated transmembrane peptide to serve as an anchor for

the nanoscale receivers. [HT08] The targetted cells must either endogenously express

TRPV1 or may be further treated to express the protein exogenously. Upon exci-

tation with a radiofrequency source, the cell's status may be monitored via the use

of calcium indicators (to monitor the activity of the TRPV1 channels directly) or

electrophysiology techniques to record the action potential across the membrane.

If such the proposed system could be demonstrated with activation kinetics on the

order of milliseconds or tens of milliseconds, radiofrequency stimulation could prove

to be an extremely useful technique for studying the functions of neuronal networks.
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