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[1] The validation of gridded surface solar radiation (SSR) data often relies on the
comparison with ground-based in situ measurements. This poses the question on how
representative a point measurement is for a larger-scale surrounding. We use
high-resolution (0.03°) SSR data from the Satellite Application Facility on Climate
Monitoring (CM SAF) to study the subgrid spatial variability in all-sky SSR over Europe
and the spatial representativeness of 143 surface sites with homogeneous records for their
site-centered larger surroundings varying in size from 0.25° to 3°, as well as with respect
to a given standard grid of 1° resolution. These analyses are done on a climatological
annual and monthly mean basis over the period 2001-2005. The spatial variability of the
CM SAF data set itself agrees very well with surface measurements in Europe, justifying
its use for the present study. The annual mean subgrid variability in the 1° standard grid
over European land is on average 1.6% (2.4 W m2), with maximum of up to 10% in
Northern Spain. The annual mean representation error of point values at 143 surface sites
with respect to their 1° surrounding is on average 2% (3 W m™2). For larger surroundings

of 3°, the representation error increases to 3% (4.8 W m2). The monthly mean
representation error at the surface sites with respect to the 1° standard grid is on average
3.7% (4 W m~2). This error is reduced when site-specific correction factors are applied or
when multiple sites are available in the same grid cell, i.e., three more sites reduce the

error by 50%.
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1. Introduction

[2] Ground-based measurements of solar radiation are the
most direct way to monitor the evolution of the Earth’s
surface energy budget. Networks like the Baseline Surface
Radiation Network (BSRN) [Ohmura et al., 1998] provide
radiation data of high temporal resolution, quality, and
accuracy. These data sets are often used to validate
gridded data products originating from climate models or
satellite retrieval, which is a vital part of today’s climate
research [e.g., Wild et al., 1995, 1998; Pinker et al., 2005;
Hatzianastassiou et al., 2005; Bodas-Salcedo et al., 2008;
Hinkelman et al., 2009; Freidenreich and Ramaswamy,
2011; Posselt et al., 2012]. The drawback of these data is
their geographical coverage, as they originate from point
measurements [Wild et al., 2009]. Data from satellite-based
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measurements and climate models have the advantage of
providing full coverage of both the land and the oceans.
However, they bear uncertainties due to a variety of con-
straints and assumptions made in the retrieval processes
or parametrization. Specifically, satellite instruments are
capable of measuring top-of-atmosphere irradiance with
high accuracy, but the retrieval of surface shortwave and
longwave fluxes depends heavily on radiative transfer
modeling to account for atmospheric attenuation [ Wild et al.,
1998, 2013].

[3] The validation of both climate model output and satel-
lite products, via the comparison of footprint or grid cell
means with collocated ground-based SSR measurements is
state-of-the-art. Model deviations from observations may be
caused not only by uncertainties in retrieval and parametriza-
tion, but also by a possible lack of spatial representativeness
ofthe surface sites [e.g., Li et al., 2005]. Li et al. [1995] com-
pared monthly mean SSR from two global satellite-retrieved
data sets with in situ measurements from the Global Energy
Balance Archive (GEBA) [Ohmura et al., 1989] and stated
that large errors are mainly caused by the inadequate spatial
representation of point observations within a larger grid
cell. Thus, the need to further investigate the point measure-
ments’ representativeness is undeniable [e.g., Wild et al.,
1995; Dutton et al., 2006, Hinkelman et al., 2009; Wild et al.,
2009; Kato et al., 2012]. For limited areas or networks,
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e.g., in Southeast Spain [Tovar et al., 1995], Scotland
[Glasbey et al., 2001], Belgium [Journee et al., 2012], the
FIRE/SRB Wisconsin experiment [Long and Ackermann,
1995], the MESONET in Oklahoma [Barnett et al., 1998],
and the ARM network in the Southern Great Plains [Li et
al., 2005], short-term SSR data at high temporal resolution
(minutes to days) have been examined with respect to their
spatial representativeness based on areal averages, cross-
correlations, and cross-covariances. Overall, the results
point to decreasing representativeness with increasing
distance between points or increasing area size, respectively.

[4] The station sites’ representativeness is also highly
dependent on cloud cover and cloud type [e.g., Long and
Ackermann, 1995; Barnett et al., 1998], variability in alti-
tude, local topography, and surface type [e.g., Hay, 1984;
Tovar et al., 1995]. Temporal averaging and the use of mul-
tiple sites to approximate a larger grid cell’s mean value
substantially enhance the spatial representativeness [e.g., Li
et al., 1995; Barnett et al., 1998; Li et al., 2005; Journee et
al., 2012]. For the study of a point’s spatial representative-
ness for different spatial scales, the use of high-resolution
satellite-retrieved SSR has proven very useful [e.g., Li et al.,
2005; Zelenka et al., 1999; Journee et al., 2012].

[s] An alternative approach to compare satellite-retrieved
or modeled SSR with point observations is the Meteorolog-
ical Similarity Comparison Method (MSCM) [Zhang et al.,
2010], which somewhat bypasses the issue of spatial repre-
sentativeness by screening the data sets for times when both
the ground observation and the collocated model calculation
experience similar meteorological conditions. This method
requires additional information retrieved from SSR mea-
surements by the Radiative Flux Analysis (RFA) method-
ology [Long and Ackermann, 2000; Barnard and Long,
2004; Long et al., 2006; Long and Turner, 2008; Barnard et
al., 2008] and coincident meteorological parameters at high
temporal resolution to exploit diurnal variations.

[6] To our knowledge, a study on the spatial represen-
tativeness of comprehensive observational SSR data sets
based on climatological mean conditions is missing to this
date. Europe has the highest density of SSR surface obser-
vations on a continental scale [e.g., Wild et al., 2009]. Thus,
focusing on Europe and using monthly mean SSR series
during the period 2001-2005, we attempt to fill in this gap
and quantify the spatial representativeness of sites from the
BSRN and the GEBA for their larger surroundings and a
standard grid of 1° resolution (as used by the Clouds and
Earth’s Radiant Energy System, CERES [Wielicki et al.,
1996]). For this purpose, we make extensive use of a high-
resolution satellite-retrieved SSR data set provided by the
Satellite Application Facility on Climate Monitoring (CM
SAF). The data set provides monthly mean data that span
the period 1983-2005 with a horizontal resolution as high
as 0.03°. We start by identifying a set of European surface
observation sites from BSRN and GEBA of sufficient quality
and homogeneity (section 2) and validate the CM SAF data
set’s spatial variability (section 3). We then use the CM SAF
data in section 4 to study the small-scale spatial variability
in SSR over Europe and to assess the spatial representa-
tiveness of surface sites (BSRN and GEBA) for their larger
surroundings. In section 5, we discuss the results and suggest
a “poor-man’s” approach to improve a surface site’s spatial
representativeness. In section 6, we present our conclusions.

2. Data and Methods

2.1. CM SAF MVIRI

[7] The Satellite Application Facility on Climate Moni-
toring (CM SAF, www.cmsaf.eu) is part of the European
Organization for the Exploitation of Meteorological Satel-
lites (EUMETSAT) Satellite Application Facilities (SAFs)
network. Within CM SAF, special emphasis is placed on
the generation of satellite-derived data records for climate
monitoring [Schmetz et al., 2002; Schulz et al., 2009]. The
continuous SSR data records are based on the visible chan-
nel (0.45—1 pm) of the MVIRI (Visible and Infrared Imager)
instruments on-board the Meteosat First Generation (MFG)
satellites. The processing employed a climate version of the
Heliosat algorithm [Beyer et al., 1996; Cano et al., 1986],
which includes a self-calibration method and an improved
algorithm for the determination of the clear-sky reflectivity
[Posselt et al., 2012]. For more details about the data set,
we refer to Mueller et al. [2011] and Posselt et al. [2011a,
2012]. The mean absolute difference of the monthly mean
CM SAF SSR as compared to ground-based observations
from the BSRN as a reference is 7.8 W m™ [Posselt et
al., 2011a, 2011b]. The data are available as monthly, daily,
and hourly means at 0.03° spatial resolution covering the
period 1983-2005. In the present work, we use the monthly
mean series covering the period 2001-2005 and refer to it
as “cmsaf03”. The spatial domain used here covers most of
Europe between —12° and 35° East and between 35° and
64° North.

2.2. Ground-Based Observations

[8] The SSR data from the BSRN and GEBA are solely
used in the validation of the cmsaf03 data set (section 3). The
only information needed for the further analyses (section 4)
is the location of the surface sites, since we use their collo-
cated cmsaf03 pixels as surrogates to assess their spatial rep-
resentativeness. In the validation, we use SSR as measured
by pyranometers, which are known to have instantaneous
accuracy limitations of 3%—5% [Michalsky et al., 1999; Wild
et al., 2013]. Their accuracy in the field has been estimated
by Gilgen et al. [1998], who compared long-term SSR pyra-
nometer measurements of five pairs of stations stored in the
GEBA. While the absolute accuracy is unknown, the rel-
ative random error of measurement is 5% of the monthly
mean and 2% of the yearly mean values. For BSRN-type
pyranometer measurements, the GEWEX Radiative Flux
Assessment (RFA) [Dutton and Long, 2012] reports opera-
tional uncertainties (95% inclusion ranges) of on average +8
W m? for monthly mean and £6 W m™ for yearly mean
values based on the comparison of redundant measurements
at a number of NOAA radiation field sites.

2.2.1. BSRN

[9] The BSRN is a project of the World Climate Research
Program (WCRP), which aims at detecting important
changes in the Earth’s radiation fields [Ohmura et al., 1998;
Wild et al., 2005] and providing reference data for the assess-
ment of model and satellite-derived SSR. The BSRN pro-
vides high-quality surface radiation measurements at around
50 sites worldwide, some of them dating back to the early
1990s. At these selected sites, covering a latitude range from
80°N to 90°S, SSR is measured with well-calibrated instru-
ments of high accuracy producing 1 min averages from
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Table 1. Statistics of Spatial Representativeness at 9 BSRN Sites
With Respect to Their Collocated 1° Grid Cells in the Standard
Grid?

BSRN site SSE (RSSE) MAD (RMAD) MAX (RMAX)
Cabauw 0.19 (0.15) 1.53 (1.21) 5.53 (4.39)
Camborne -2.14 (-1.61) 1.02(0.76) 4.36(3.24)
Carpentras 16.46 (8.66) 9.06 (5.22) -26.57 (-15.32)
Cener -13.00 (-7.7) 10.5 (5.77) -36.75 (-20.21)
Lerwick 5.15(4.95) 1.49 (1.51) 6.22 (6.29)
Lindenberg —0.03 (-0.03) 1.13 (0.93) —3.51(-2.88)
Palaiseau —-1.83(-1.32) 2.22(1.58) 4.93(3.51)
Payerne 3.61(2.39) 5.16 (3.49) —11.03 (-7.47)
Toravere 0.67 (0.57) 0.7 (0.6) -2.42 (-2.01)
mean 1.01 (0.67) 3.65 (2.34) —6.58 (-3.39)
mean (abs.) 4.79 (3.04) 3.65(2.34) 11.26 (7.27)
median 0.19 (0.15) 1.53 (1.51) —2.42(-2.07)
median (abs.) 2.14 (1.61) 1.53 (L.51) 5.53 (4.39)

o 7.73 (4.54) 3.73 (1.98) 15.49 (9.28)

2SSE (W m™), RSSE (%, in brackets), MAD (W m~2), RMAD (%, in
brackets), MAX (W m~2), and RMAX (%, in brackets).

1 s sampling.The computation of monthly mean values, as
used in this study for the validation of the CM SAF data,
follows the recommended approach as described in Roesch
etal [2011].

[10] Nine sites from the BSRN as listed in Table 1 are
located in Europe, of which six sites provide sufficient
data during the validation period (see section 3). The data
is distributed via the World Radiation Monitoring Center
(WRMC) hosted by the Alfred Wegener Institute (AWI) in
Bremerhaven, Germany (http://www.bsrn.awi.de/).

2.2.2. GEBA

[11] The GEBA, maintained at the Institute for Atmo-
spheric and Climate Science (IAC) at ETH Zurich, is a
database for worldwide measurements of energy fluxes at
the Earth’s surface [Gilgen and Ohmura, 1999] and is con-
tinuously updated with flux data mainly from the World
Radiation Data Centre (WRDC) of the Main Geophysi-
cal Observatory in St. Petersburg. It contains more than
2000 stations with more than 450,000 monthly mean val-
ues of various surface energy balance components, mainly
downwelling SSR. Many records date back to the 1960s.

[12] There are 158 European GEBA stations with monthly
data covering at least 3 years within the period 2001-2005,
less than 30% data gaps and at least one complete annual
cycle. Furthermore, we use only time series that prove to
be homogeneous during the study period. To address the
temporal homogeneity of the GEBA records, we follow the
approach as described in Hakuba et al. [2013], in which
four different absolute homogeneity tests are applied to each
series. In brief, a time series is considered inhomogeneous if
at least three out of the four tests indicate a sudden shift in
the mean or change in variance. Before applying the homo-
geneity tests, we removed monthly values that were flagged
to be erroneous by the quality control as implemented in the
GEBA [Gilgen and Ohmura, 1999]. We find that 140 of the
158 time series are considered homogeneous at the 99% sig-
nificance level. Most of the inhomogeneous station records
(18 in total) are located in Switzerland (3), Eastern Europe
(6), France (5), and Spain (2). Out of 140 temporally homo-
geneous GEBA records, 134 lie within the study domain as
defined in section 2.1.

2.2.3. SwissMetNet

[13] The Swiss Meteorological Network (SwissMetNet)
has been established since 2003, renewing and unifying
ground-based networks formerly known as ANETZ, ENET,
KLIMA, and AERO [Suter et al., 2006]. The data of more
than 130 stations include various meteorological parameters
at 10 min temporal resolution. Monthly and annual means
of pyranometer measurements from the Automatic Meteoro-
logical Network (ANETZ, 1981-2000) have been compared
to BSRN and Alpine Surface Radiation Budget (ASRB) data
by Moesch and Zelenka [2004], who suspected the mean
values to be afflicted with an uncertainty of 5% to 10%. In
the validation process, we use 14 sites located in the Swiss
Central Plateau with sufficient data during the study period.

2.3. Standard 1° Grid

[14] To exemplify the study of spatial subgrid variabil-
ity and representativeness in a gridded data set, we use the
standard 1° equal-angle grid as utilized by the Clouds and
Earth’s Radiative Energy System (CERES) [Wielicki et al.,
1996] and the NASA/GEWEX Surface Radiation Budget
(SRB, e.g., mentioned in Hinkelman et al. [2009] and Zhang
et al. [2012]). The grid resolution of 1° is also comparable
to the spectral resolution T106 as widely used for General
Circulation Model (GCM) integrations.

2.4. Measures of Variability and Representativeness

[15] To measure the spatial variability of the cmsaf03 SSR
data within a given area, i.e., larger-scale grid cell, we use the
mean absolute deviation (MAD) as defined in equation (1). It
quantifies the mean absolute difference between all individ-
ual cmsaf03 pixels in the larger area and the corresponding
area mean in W m2. The area size determines the number of
cmsaf03 pixels (n) to be taken into account for the computa-
tion of the statistic. In case of a 1° grid cell, 1089 cmsaf03
pixels are taken into account. MAD is a robust measure
of statistical dispersion and, thus, less sensitive to outliers
and assumptions about the data distribution than a paramet-
ric measure such as the standard deviation (o). The relative
mean absolute deviation (RMAD, equation (2)) gives the
spatial variability relative to the area mean in percent.

1< 1 ¢
MAD = — A R NS 1
" ;\x X, x ” ;x )
MAD
RMAD = —— - 100 2)
X
[16]] We define the spatial sampling error (SSE,

equation (3)) of a point measurement with respect to its
larger surrounding as the difference between a surface site’s
collocated cmsaf03 pixel value x; and the surrounding area
mean in W m~2. The SSE can be expressed relative to x,,
in % (RSSE, equation (4)). To compute station averages of
SSE and RSSE, we consider the absolute (non-negative)
errors, referred to as [SSE| and |[RSSE].

[17] The SSE and RSSE are per se site-specific. How-
ever, we distinguish between the so-called grid-specific
SSE/RSSE, which is calculated with respect to the 1° stan-
dard grid (see section 4.3), and the site-centered SSE/RSSE,
for which the site is located in the center of a surround-
ing area of variable size up to 3° (section 4.6). In practice,
both, the grid-specific and site-centered SSE/RSSE can be
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used to calculate correction factors to improve the site’s
representativeness (see section 5.2).

SSE =x,—X, x, = pixel value 3)
SSE
RSSE = - 100 4
Xs

[18] The (site-centered) SSE/RSSE represents a charac-
teristic property of a surface site, quantifying the potential
spatial sampling uncertainty associated with its use for the
validation of or combination with a gridded data set.

2.5. Clear-Sky Latitude Effect

[19] The prevalent astronomical relations between Sun
and Earth induce seasonal and meridional variations in SSR.
In the annual mean, the SSR follows a positive North-South
gradient on the Northern Hemisphere, which is a crucial
factor for the analysis of spatial variability in SSR over
larger areas or grid cells. This gradient may induce devia-
tions between point measurements and gridded data simply
because they are latitudinally shifted, which we call latitude
effect in the following. We approximate this astronomically
induced latitude effect at the Earth’s surface by determining
the meridional gradient in clear-sky SSR (CM SAF) repre-
sentative for Europe. To obtain such a gradient, we apply
robust regression to the SSR data as a function of latitude
for the entire European domain. The resulting annual mean
meridional gradient in clear-sky SSR is 3.6 W m2deg'.
With this meridional gradient and an average latitudinal shift
of 0.25° between a station site collocated with a 1° grid cell
and its center, the mean latitude effect would be 0.9 W m2.

[20] The clear-sky latitude effect varies substantially from
season to season and is much smaller in summer (JJA, 1.5
W m deg') than in winter (DJF, 5.1 W m2 deg ™).

[21] In the following, we validate the annual mean spatial
variability in the cmsaf03 all-sky SSR data. Beforehand, we
remove the meridional gradient derived from clear-sky SSR
to eliminate the astronomically induced latitude effect. This
helps to decrease a spurious correlation between the data
sets due to the coinciding North-South gradient in SSR. The
study of subgrid variability and point representativeness is
again based on the original all-sky cmsaf03 data set.

3. Validation of Spatial Variability in
CM SAF SSR

[22] A prerequisite for the analysis of spatial representa-
tiveness is the adequate representation of spatial variability
in the SSR fields given by cmsaf03. Therefore, we vali-
date the spatial variability of cmsaf03 against the spatial
variability from GEBA and SwissMetNet station data. For
completeness, we also assess the mean biases between
BSRN/GEBA and cmsaf03 by comparing the monthly mean
all-sky SSR from six European BSRN sites (Camborne,
Carpentras, Lerwick, Lindenberg, Payerne, and Toravere)
and 134 GEBA sites with sufficient data covering the
period 2001-2005, with their collocated cmsaf03 pixels’
time series.

[23] We find a mean bias between cmsaf03 and BSRN of
6.55 W m? (5.6% of BSRN mean), with RMSE of 10.85
W m2, which is in good agreement with the validation
results by Posselt et al. [2011a, 2012]. The mean bias with
respect to the GEBA sites is 6.24 W m™2 (4.46%), with

cmsaf03 MAD [W/m”2]
&l

105 11 115 12 125 13
GEBA MAD [W/m”2]

Figure 1. Two-dimensional density plot of 1000 MAD val-
ues from random samples based on annual mean SSR at 134
GEBA sites and their collocated cmsaf03 pixels. The color-
bar indicates the density (number of MAD values in a given
bin) in percent of all MAD values (1000). The green dot
indicates the median MAD, the black dashed line is the 1:1
line. See text for details.

RMSE of 13.72 W2 and maximum bias of 21.4% (Rome,
Italy), and agrees well with results by Sanchez-Lorenzo et al.
[2013]. Both ground-based data sets indicate that cmsaf03
overestimates the monthly mean SSR by around 5%.

[24] However, the absolute accuracy of cmsaf03 is not
critical for the purpose of our study. To assess the spatial
variability in cmsaf03 over Europe, we compare the MAD
(see section 2.4) of the 134 GEBA sites’ climatological
annual means (2001-2005) with the MAD of their collo-
cated cmsaf03 pixels. Using a bootstrapping approach, we
robustly determine the o and 95% confidence intervals tied
to this statistic for both data sets.

[25] The spatial variability of cmsaf03 is with a MAD of
27.05 W m~ in very good agreement with the GEBA data
set’s MAD of 25.41 W m™. Removing the mean latitude
effect derived from clear-sky SSR of 3.6 W m2 deg™! (see
section 2.5) prior to this analysis, reduces the spatial vari-
ability down to 11.77 W m™ in cmsaf03, and 11.32 W m™
in GEBA. The bias in MAD is then 0.44 W m™2, indicat-
ing a marginal overestimation of about 4% in the spatial
variability by cmsaf03.

[26] Using the bootstrapping method, we pick 1000 ran-
dom samples from the cmsaf03 and GEBA data sets (clear-
sky SSR gradient removed), which results in 1000 MAD
values to calculate confidence intervals with. We find mean
(median) MAD values of 11.74 W m™2 (11.74 W m™2) for
cmsaf03 and 11.26 W m™2 (11.28 W m2) for GEBA, with
o of 0.77 W m2 and 0.64 W m2, and 95% bootstrap con-
fidence intervals of [10.36, 13.19] for cmsaf03 and [10.24,
12.66] for GEBA (bias corrected and accelerated percentile
method [Efion, 1987]). The two-dimensional density plot
(Figure 1) illustrates the distribution of the random samples’
MAD for both data sets with their median (green dot) and the
1:1 line, and supports the finding of an excellent agreement
with only a slightly larger MAD in the cmsaf03 data set.

[27] To assess the spatial variability in cmsaf03 with a
denser network, we perform the same analysis with 14
stations of the SwissMetNet located in the Swiss central

8588



HAKUBA ET AL.: SPATIAL REPRESENTATIVENESS

220

180

160

140

120

100

80

54°N -

Figure 2. (left) cmsaf03 annual mean SSR (2001-2005) in W m™2. (right) Spatial variability of cmsaf03
in terms of RMAD within the 1° surrounding (square) of every cmsaf03 pixel in the domain [%].

plateau. The MAD of cmsaf03 and SwissMetNet are
2.52 Wm™? and 2.72 W m 2, which means cmsaf03 underes-
timates the spatial variability in the Swiss Central Plateau by
0.2 W m™ or about 7%. The mean MAD of the 1000 random
samples is 2.55 W m? for cmsaf03 and 2.66 W m for the
SwissMetNet data, with o of 0.89 W m2 and 0.58 W m2,
and 95% bootstrap confidence intervals of [1.27, 4.57] and
[1.82,4.19].

[28] Both analyses point to good agreement (on average
7% or better) in spatial variability between cmsaf03 and the
ground observations. Thus, we conclude that cmsaf03 rea-
sonably captures the general spatial variability across the
European study domain and can be used to quantify the spa-
tial representativeness of the European surface sites by using
their collocated cmsaf03 pixels as surrogates.

4. Results

4.1. Spatial Small-Scale Variability in SSR

[29] We analyze the annual mean SSR as given by the
high-resolution cmsaf03 data to identify regions in Europe
of large spatial small-scale variability. Figure 2 (left) depicts
the annual mean SSR (2001-2005) over Europe, whereas
Figure 2 (right) depicts the variability within every 0.03°
pixels’ 1° surrounding (pixel is center of a square) in terms
of RMAD (see section 4.2). Regions where steep gradi-
ents in SSR exist are likewise regions of large spatial
(1°) variability with maximum RMAD of 10.5% found in
Northern Spain.

[30] Figure 3 depicts the |RSSE| of each cmsaf03 pixel
in the domain with respect to its 1° surrounding. Pix-
els that have large |[RSSE| (reddish colors) are less rep-
resentative for their larger surrounding than pixels with
small |RSSE]| (yellowish colors). As expected, pixels with
large |[RSSE| are located in regions of large spatial vari-
ability (RMAD, Figure 2), the maximum of 18% lies in
Northern Spain.

4.2. SSR Subgrid Variability on a 1° Grid

[31] Large RMAD indicates that at least some pixels in
the corresponding region will also have large [RSSE|. Here,
we determine for a 1° standard grid (section 2.3), where grid
cells with large RMAD are located and whether RMAD has
any dependence on season.

[32] We calculate the RMAD within every 1° grid cell
in the standard grid on a climatological basis, for annual
mean SSR (2001-2005), winter (DJF), and summer (JJA).
Figure 4 (left) depicts the annual mean cmsaf03 SSR aggre-
gated onto the 1° grid. Although the main features of the
spatial pattern are captured, the small-scale variability is lost
when decreasing the spatial resolution. Naturally, the high-
resolution cmsaf03 data capture the local SSR gradients,
such as in Northern Spain, more realistically. Figure 4 (right)
depicts the subgrid variability (RMAD). As expected, it is
largely in line with the spatial variability pattern as shown
in Figure 2 (right). Most of the critical grid cells are thus
located in Northern Spain, the Alpine region, the Carpathi-
ans, and the Adriatic coast. The maximum of around 10% is
again found in Northern Spain.

[33] On average, RMAD (MAD) is 1.6% (2.4 W m™)
over European land (including oceans: 1.3% or 2 W m™),
based on our analysis for annual mean radiation in Europe.
There are 842 1° grid cells over land (1392 in entire domain)
of which 10% exceed a subgrid variability of 5.04 W m
(3.13%).

[34] In winter (not shown), the RMAD is largest in
Norway. However, the amount of solar radiation is very
small (between 20 and 40 W m2). Stating large variabil-
ity in SSR is thus redundant. Compared to the annual mean,

10

54°N

48°N

36°N

9

Figure 3. Annual mean (2001-2005) [RSSE| [%] of every
cmsaf03 pixel with respect to its 1° surrounding (square).
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Figure 4. (left) cmsaf03 annual mean (2001-2005) SSR aggregated onto 1° standard grid in W m™2.
(right) Subgrid variability in 1° standard grid in terms of RMAD [%].

the Alps and Pyrenees remain as critical regions with even
larger RMAD. In summer (not shown), the pattern in subgrid
variability is similar to the annual mean, also in magnitude.
Although the SSR variability depends on weather condi-
tions, the seasons of high insolation dominate the annual
pattern. Hence, we focus on the annual mean pattern to
assess the BSRN and GEBA sites’ representativeness for
their collocated 1° grid cells.

[35] As expected, subtracting the annual mean clear-sky
latitude effect reduces the average MAD and RMAD down
to 1.76 W m2 and 1.21% (European land). However, this
reduction appears very small. In some grid cells, local
(cloud) effects have masked or even reversed the meridional
gradient in SSR, which means that subtracting the clear-
sky gradient induces enhanced dispersion and, thus, subgrid
variability. Further analysis is again based on the original
all-sky cmsaf03 SSR data.

4.3. Representativeness of Points for 1° Grid Cells

[36] The subgrid variability (MAD, RMAD) alone is not
a sufficient measure for the representativeness of an individ-
ual observation site for its collocated larger-grid cell. Despite
large MAD, the value at the location of the site can be close
to the grid cell mean. Thus, it is particularly necessary that
the site’s |[SSE| is small. To obtain a “worst case” estimate
for representativeness, we additionally calculate the maxi-
mum possible SSE (MAX) and RSSE (RMAX) associated
with an arbitrary cmsaf03 pixel located within the surface
sites’ collocated 1° grid cell. The MAX and RMAX account
for a slight shift in site or grid cell location, which could
substantially change the site-specific RSSE.

[37] In the following, we assess the representativeness of
143 surface sites (9 BSRN, 134 GEBA) by comparing their
cmsaf03 surrogate with the 1° standard grid cell mean to
obtain the SSE (RSSE).

4.3.1. The Concrete Case of BSRN Sites

[38] The geographical location of the nine BSRN sites
(crosses) and their collocated grid cells with RSSE in color
(squares) are shown in Figure 5 (top). The station average
|SSE| and [RSSE| are 4.79 W m™ and 3.04% (o: 3.28 %)
with largest |RSSE| of +8.66% (SSE: 16.5 W m2) in Carpen-
tras (France) and —7.7% (SSE: —13 W m2) in Cener (Spain).
Both sites are located in areas of large spatial variability with
RMAD exceeding 5%. The station average RMAX| (MAX)
is 7.27% (11.26 W m2), more than double the sites’ average

[RSSE]|. Table 1 presents for every BSRN site in Europe and
its collocated 1° grid cell the SSE (RSSE), MAD (RMAD),
and MAX (RMAX).
4.3.2. The Concrete Case of GEBA Sites

[39] Four of the 134 GEBA sites liec on the border of
two grid cells and are assigned to both, in these cases, two
grid cells are included in the analysis. In 13 cases, multi-
ple GEBA sites (max. four) are collocated with a 1° grid
cell, but are treated as individual site-grid cell pairs. Hence,
in total, we evaluate 138 site-grid cell pairs, although only
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Figure 5. RSSE at (top) nine BSRN sites and (bottom) 134
GEBA sites with respect to their collocated 1° grid cells [%)].
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Table 2. Statistics of Spatial Representativeness at 134 GEBA
Sites With Respect to Their Collocated 1° Grid Cells in the
Standard Grid *

GEBAstats ~ SSE (RSSE)  MAD (RMAD) MAX (RMAX)
mean 0.78 (0.4) 2.9 (1.93) ~6.48 (-3.67)
mean (abs.) 32(2.1) 2.9 (1.93) 10.64 (7.01)
median 0.77 (0.54) 2.28 (1.75) ~7.2 (-4.44)
median (abs.) 234 (1.72) 2.28 (1.75) 9.08 (6.42)
o 4.43 (2.85) 1.92 (1.16) 10.73 (7.07)
max (abs.) 17.46 (10.84)>  10.5 (5.77) 36.75 (20.21)¢
min (abs.) <0.01 (<0.01)¢ 0.5 (0.38)° 2.05 (1.59)f

*SSE (W m™), RSSE (%, in brackets), MAD (W m2), RMAD (%,
in brackets), MAX (W m2) and RMAX (%, in brackets). Statistics are
based on 138 site-grid cell pairs. Footnotes indicate surface sites with max-
imum/minimum |RSSE|, RMAD, and |RMAX].

® Lugano, Switzerland.

¢ Vitoria, Spain.

4 Norrkoepping, Sweden.

¢ Oostende, Netherlands.

 Constanta, Romania.

118 individual 1° grid cells are collocated with the 134
GEBA sites.

[40] In Table 2, we summarize the statistics of the
SSE (RSSE), MAD (RMAD), and MAX (RMAX). The
station average SSE and RSSE are 0.78 W m™ and 0.4%,
respectively. The station average |SSE| and |RSSE| are
3.2 W m2 and 2.1%. The largest RSSE of 10.8% is found
at the site in Lugano, Switzerland. The station average
[IRMAX]| is with 7% more than three times larger than the
GEBA sites’ average [RSSE], i.e., the grid cells could be less
well represented by other arbitrary cmsaf03 pixels located
within them.

[41] Ofthe GEBA sites considered here, 90% are located
within grid cells of less than 3.5% RMAD and with [RSSE]|
smaller than 4.7%. Seventy percent of the sites are located
within grid cells of less than 2.2% RMAD and have |RSSE|
smaller than 2.4%.

[42] To depict the RSSE with respect to the 118 grid cells
as collocated with the 134 GEBA sites (Figure 5, bottom),
we average the annual mean SSR over multiple GEBA sites
if more than one site is collocated with a larger-grid cell, and
calculate the RSSE thereafter. This leads to slightly lower
average RSSE and [RSSE| of 0.46% and 1.76%. The reduc-
tion in RSSE through the use of multiple sites to approximate
the larger grid cell mean is discussed in section 4.7. The 12
grid cells with |[RSSE| exceeding 3.7% (90th percentile) lie
in Great Britain (4), on the Iberian Peninsula (4), and in the
Alpine region and Northern Italy (4).

4.4. Monthly Mean |SSE| and |RSSE|

[43] The monthly mean |SSE| and |RSSE]| over the period
2001-2005 reveal a distinct annual cycle. On average, the
monthly mean |SSE| and |RSSE| at the 134 GEBA sites with
respect to the 1° standard grid are 5 W m™ (median: 4.1
W m32, 0:3 W m?) and 4.3% (median: 3.5%, o: 2.7%).
Figure 6 depicts the corresponding 5 year mean annual
cycles of (top) |[SSE| and (bottom) [RSSE|. The blue curve
represents the mean annual cycle averaged over all stations;
the green shadings illustrate the 95% bootstrap confidence
intervals. The seasonal cycles of |[SSE| and [RSSE| averaged
over all stations are opposing: |SSE]| is larger in the summer

months, reaching up to 7 W m=2 ([RSSE|: 3%) in July, |RSSE]
peaks in December with 7.5% (|SSE|: 2.6 W m™). Overall,
the monthly mean |SSE| and |[RSSE| are of the same mag-
nitude as the climatological annual mean |SSE| (3.2 W m?)
and |[RSSE]| (2.1%).

4.5. Temporal Evolution of RSSE

[44] We examine the temporal variability, including
potential trends, of the grid-specific RSSE at nine BSRN
and 134 GEBA sites. For this purpose, we use cmsaf03 time
series of 11 years length (1995-2005). The temporal vari-
ability in annual mean RSSE at the nine BSRN sites with
respect to the 1° grid is shown in Figure 7. The series show
no systematic trends at the 90% significance level (¢ test),
but a year-to-year variability of around 1% is evident.
The climatological averages of |RSSE| over 5 (2001-2005,
RSSE: 3.04%) and 11 years (1995-2005, RSSE: 2.97%) are
robust and do not significantly differ. The same analysis
performed with the cmsaf03 surrogates at the 134 GEBA
sites shows that 20 time series of annual mean RSSE
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Figure 6. Mean annual cycles (2001-2005) of monthly
(top) |SSE| in W m™ and (bottom) |RSSE| in % of 138
site-grid cell pairs (GEBA data set wrt. standard grid). The
blue thick line is the station average annual cycle, the green
shading indicates the 95% bootstrap confidence intervals.
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Figure 7. Time series of annual mean RSSE (1995-2005)
with respect to the 1° standard grid based on cmsaf03 SSR
at nine BSRN sites in Europe [%].

have significant trends, of which 12 are positive and eight
are negative with a mean absolute trend of 0.1%yr'. Also
for the GEBA data set, the 5 year mean RSSE agrees very
well with the 11 year mean.

4.6. Point Representativeness Versus Grid Cell Size

[45] The spatial representativeness of a surface site can
be quantified independent of a predefined grid. Based on
the cmsaf03 data, we calculate the surface sites’ [RSSE|
with respect to surrounding grid cells of variable size. In
Figure 8 (BSRN top, GEBA bottom) the |RSSE]| of each site
is shown as a function of surrounding area from 0.03° to 3°.
In Tables 3 and 4, we summarize the BSRN and GEBA sites’
SSE, |SSE|, RSSE, and |RSSE| with respect to 0.25°, 0.5°,
1°, 2°, and 3° surroundings. This “grid” range covers many
of the modeling and satellite-derived data sets available over
Europe. The analysis highlights several things: (1) Even for
area sizes of up to 3°, the mean |[SSE| does not exceed 5 W
m2; considering the GEBA data set, we find a mean |SSE|
of 4.8 W m? and |RSSE]| of 3.1% for 3° grid cells. (2) For
some individual stations, and also in the mean and median
curves (red and green), a steep increase in |RSSE| at smaller
distances and a leveling-off thereafter is evident. This makes
sense especially for surface sites that lie in regions of large
small-scale variability, e.g., in or near mountain ranges like
the BSRN site Payerne or near coast lines like the BSRN
site Lerwick. At stations located in regions with no strong
SSR variability, the curve stays rather flat (e.g., Lindenberg).
At Carpentras, on the other hand, the absolute [RSSE| seems
to grow quadratically with increasing grid cell size. The
GEBA station average curve (Figure 8, bottom, red line) is
well represented (R?> = 0.98) by the logarithmic function:
0.74 - In(x) + 2.2, where x is the surrounding grid cell size in
degrees. This function allows for a first-order estimate of the
IRSSE]| as a function of the grid cell size.

[46] Similar to the grid-specific RSSE (section 4.5), the
site-centered [RSSE| varies from year to year. The year-to-
year (2001-2005) variability of the [RSSE| averaged over all
grid cell sizes is +0.4% for the GEBA data set and has the
tendency to increase with increasing grid cell size, reaching
at most +0.7% with respect to the 3° surrounding.

4.7. Multiple Sites’ Representativeness

[47] To assess whether the averaging over multiple sur-
face sites improves the approximation of a grid cell mean,
we randomly select 1000 times up to 50 cmsaf03 surrogates
within every 1° cell (standard grid) over European land (842
grid cells) and calculate the [RSSE| as a function of “station
site” number.

[48] The 842 resulting curves are shown in Figure 9 (gray
lines) and are overlaid by some statistically relevant exam-
ples as described in the following. The black thick line is the
average of all considered grid cells. Critical high-variability
grid cells (exceeding the 95th percentile of RMAD = 4.03%)
yield the blue dashed lines with their average in thick blue.
The green dashed lines depict the functions of the least crit-
ical (below the fifth percentile, RMAD = 0.55%) grid cells
with their average as thick green line. The most critical grid
cell is located in Northern Spain (red dashed).

[49] On average (black curve), three sites within a grid
cell are sufficient to reduce the [RSSE| from 1.6% (when
only one site is found within a grid cell) down to 1%. The
situation is different for the critical grid cells, as far more
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Figure 8. (top) |[RSSE| as a function of surrounding area
size (in degree) based on the cmsaf03 data at nine BSRN
sites. (bottom) [RSSE| at 134 GEBA sites [in % of the point
values]. The red and green lines indicate the station average
mean and median curves.
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Table 3. BSRN Sites’ Site-Centered SSE (W m~2) and RSSE (%, in Brackets) With Respect to
Their Larger Surroundings (Squares) of 0.25°, 0.5°, 1°, 2°, and 3° Resolution

BSRN Site 0.25° 0.5° 1° 2° 3°
Cabauw 0.69 (0.55) 0.99 (0.78) 0.76 (0.6) 0.82 (0.65) 0.32 (0.25)
Camborne 2.05(-1.55)  239(-1.81) 257(-1.94)  -1.87(-1.41)  —1.03 (-0.77)
Carpentras 1.58 (0.83) 4.7 (2.47) 10.68 (5.62) 16.99 (8.95) 19.40 (10.22)
Cener 3.8 (2.25) 213(1.26)  -2.30(-136)  -475(281)  -5.80(-3.44)
Lerwick 3.4(3.27) 3.96(3.81)  4.09 (3.94) 3.61 (3.48) 3.02 (2.91)
Lindenberg ~ —0.62 (-0.51) —0.67(-0.55) —0.19(-0.16)  —0.43(-0.35)  -2.14(-1.76)
Palaiseau ~0.25(-0.18)  -0.7(-0.5)  -0.77(-0.56)  —0.81(-0.59)  —0.79 (~0.57)
Payerne 3.46 (2.29) 5.8 (3.84) 5.76 (3.81) 4.09 (2.71) 2.02 (1.34)
Toravere 0.23(0.2) 0.29 (0.25) 043(037)  <-0.01(<-0.01)  0.20(0.17)
mean 1.14 (0.79) 1.57 (1.06) 1.77 (1.15) 1.96 (1.18) 1.67 (0.93)
mean (abs.) 1.78 (1.29) 2.4 (1.7) 3.06 (2.04) 3.71(2.33) 3.86 (2.38)
median 0.69 (0.54) 0.99 (0.78) 043(0.37)  <-0.01(<-0.01)  0.2(0.17)
median (abs.)  1.58 (0.83) 2.13(1.26)  2.30(1.36) 1.87 (1.42) 2.02 (1.34)
o 2.06(1.54)  2.77(1.98) 4.32(2.65) 6.24 (3.49) 7.11 (3.92)

points, on average 24, are needed to reach an [RSSE]| of only
1%. For the most critical grid cell, not even 50 points are
enough to reduce the [RSSE| down to 1%.

[s0] On average and for the critical and less critical grid
cells, adding three more sites would be sufficient to half the
[RSSE]|, but the strongest improvement occurs when adding
a second site. The improvement is most efficient in critical
grid cells indicated by the steeper slopes as compared to the
mean average curve.

4.8. Synthesis: Uncertainties

[s1] The spatial sampling uncertainty depends on the grid
resolution, the specific location of the surface site within the
collocated grid cell, and the spatial subgrid variability.

[52] The spatial subgrid-variability (MAD, RMAD) con-
stitutes a rather loose uncertainty estimate that may serve as
an indicator for the site-specific SSE and RSSE and is on
average 2% for both the BSRN and GEBA data sets in the
1° standard grid.

[53] The climatological annual mean |[RSSE| (|SSE]) is on
average 3% (5 W m2) at nine BSRN, and around 2% (3
W m) at 134 GEBA sites, and represents a more realistic
and site-specific uncertainty estimate. 90% of the cmsaf03
surrogates collocated with the 134 GEBA sites have [RSSE|
smaller than 4.7%. The monthly mean |[SSE| and [RSSE|

(2001-2005) are 5 W m~ and 4% and of similar magnitude
as the climatological annual mean values.

[s4] The site-specific RSSE values are robust over
different time periods, but the year-to-year variability
might add another 1% on top of the climatological
uncertainty estimates.

5. Discussion

[s55] Besides relating our study to previous works
(section 5.1), we furthermore suggest a ‘“poor-man’s”
approach to improve the surface sites’ representativeness
with respect to the 1° standard grid (section 5.2). This “cor-
rection” approach takes into account the clear-sky latitude
effect (see section 2.5) and the site-centered SSE/RSSE with

respect to a 1° surrounding grid cell (section 4.6).

5.1.

[s6] The central question of the present study is as fol-
lows: How well does a point measurement represent the
area mean of its larger surrounding? Most similar to our
approach, yet differing in spatial and temporal extent, is
the study by Li et al. [2005]. Using SSR data retrieved
from the Geostationary Operational Environmental Satel-
lite (GOES) and ground-based SSR measurements from

Comparison With Previous Studies

Table 4. Statistics of GEBA Sites’ Site-Centered SSE (W m2) and RSSE (%, in Brackets) With
Respect to Their Larger Surroundings (Squares) of 0.25°, 0.5°, 1°, 2°, and 3° Resolution ?

GEBA SSE and RSSE 0.25° 0.5° 1° 2° 30
mean 0.6 (0.33) 0.9 (0.48) 0.72 (0.3) 0.41(-0.02)  0.05(-0.34)
mean (abs.) 1.81(1.18)  2.53(1.65) 3.2 (2.08) 422 (2.75) 4.82 (3.14)
median 0.58 (0.35) 0.7 (0.47) 0.58 (0.44) 0.33(0.3) ~0.19 (~0.14)
median (abs.) 1.17(0.81)  2.04(1.27) 2.43 (1.6) 3.35(2.24) 3.88(2.57)
o 2.56 (1.68) 3.3(2.16) 4.22 (2.74) 5.7 (3.64) 6.48 (4.12)
max (abs.) 12.18 (747> 13.45(8.25)°  13.92 (8.53)° 19.84(13.35)c  22.84 (15.36)°
min (abs.) 0.02 (0.0  0.01(0.01)  0.02(0.01)  0.01(0.01) 0.02 (0.02)"

2 Statistics are based on 134 GEBA sites. Footnotes indicate observation sites with maximum and minimum
RSSE, respectively.

b Sion, Switzerland.

¢ San Sebastian, Spain.

4 Umea, Sweden.

¢ Dijon, France.

f Zoseni, Latvia.

¢ Vigna Valle, Italy.

h Oestersund, Sweden.
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Figure 9. (top) |IRSSE] as a function of “surface site” num-
ber (1 to 50) for 842 grid cells in the standard grid over
European land (gray lines). (bottom) Same as Figure 9 (top)
but for “surface site” numbers 1 to 10. The black curve
indicates the average curve over all considered grid cells,
the blue dashed curves represent the critical grid cells with
subgrid variability exceeding the 95th percentile with their
mean as solid blue line. The red dashed curve represents the
most critical grid cell in the domain. Green indicates the
least critical (low-variability, fifth percentile) grid cells with
their average.

the Atmospheric Radiation Measurement (ARM) Southern
Great Plains (SGP) site, Li et al. [2005] studied the differ-
ence between the point observations’ surrogate data (GOES)
and area-means for different months (in 2000), grid sizes
(up to 400 x 400 km?), and integration intervals. From their
Figure 5, we deduce a monthly mean sampling error between
4 and 5 W m2 for a 100 x 100 km? grid cell, largely in line
with our monthly mean |SSE| of 5 W m2 with respect to the
1° standard grid.

[57] Furthermore, Li et al. [2005] show how the use of
multiple sites (up to 21) to approximate the area mean
decreases the SSE. This effect is strongest using two or three
sites instead of one site within a 200 x 200 km? domain.
In addition to that, our study based on the cmsaf03 surro-
gates shows that the reduction of [RSSE| is most efficient for
grid cells of high spatial subgrid variability. In general, our

study can be seen as an expansion of the approach of Li et al.
[2005] to a broader and more heterogeneous spatial domain,
including a larger number of existing surface sites’ locations,
and estimating monthly and annual mean SSE/RSSE over a
longer time period.

[58] Another class of studies uses correlations between
SSR time series from different observation sites to quan-
tify spatial representativeness. In general, our results are
in good agreement with such studies as well, even though
a direct comparison is not feasible. Tovar et al. [1995]
found a correlation between SSR variability and elevation
differences between station pairs, which means orography
interferes with the distance related error. In line with that, we
find the highest subgrid variability and largest SSE/RSSE in
mountainous regions like the Alps or Pyrenees, clearly also
influenced by mesoscale meteorology.

[59] Various studies showed that averaging over longer
time intervals improves the correlation between station pairs,
i.e., their representativeness for larger surroundings [e.g.,
Barnett et al., 1998; Li et al., 2005; Journee et al., 2012].
Here we use monthly and annual mean SSR data, which a
priori lead to lower SSE and RSSE than using daily or sub-
daily means. The monthly and annual means reflect mean
weather conditions and climate regimes instead of diurnal
variations, and are widely used in energy budget studies
[e.g., Stephens et al., 2012; Wild et al., 2013] or the valida-
tion of (non-deterministic) climate models [e.g., Wild et al.,
1995; Wild, 2005; Wild and Schmucki, 2010].

5.2. Correcting for SSE

[60] The consequences of omitting sites because of their
low representativeness is to be debated. Losing sites in
low-variability regions that are otherwise well covered by
other more representative sites is certainly less problematic
than losing a site in a sparsely covered area. Also, omit-
ting sites in high-variability regions per se might be critical,
as valuable information will be lost in these regions. On
the other hand, it is questionable whether sites in high-
variability regions can ever be truly representative for their
larger surrounding even though the SSE appears small by
coincidence. We suggest that decisions on accuracy require-
ments and data omission depend on the respective data
sets and their application and should be evaluated case-
specifically. A viable alternative to adequately compare
modeled data with point observations in high-variability
regions is the MSCM method [Zhang et al., 2010], as
briefly introduced in section 1. However, in contrast to the
BSRN, the GEBA does not fulfill the data requirements of
this method, as it provides only monthly mean radiation
flux data.

[61] Resting upon the results presented here, it is pos-
sible to improve a surface site’s representativeness with
respect to the 1° standard grid, i.e., to obtain an SSE-
free representation of the collocated grid cell mean by an
appropriate correction. This can be achieved by computing
correction factors based on the monthly or annual mean SSE
or RSSE. For this purpose, the present study would have
to be repeated for any grid specification other than the 1°
grid discussed here, which is time consuming and requires
access to high-resolution data sets such as the cmsaf03. To
circumvent this procedure, we exemplify a pragmatic “poor-

man’s” approach using the site-specific latitude effect and
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Figure 10. Change in RSSE with respect to the 1° standard
grid (black circles) at nine BSRN sites due to a “poor-
man’s” correction approach, which is based on the latitude
effect (green), the site-centered adjustment for a 1°
surrounding (blue), or their combination (red). Filled
circles indicate improvement of representativeness due to

the correction approach.

site-centered RSSE, instead of using the “true” grid-specific
RSSE. This approach appears useful, as for both the BSRN
and GEBA data set, the grid-specific RSSE and site-centered
RSSE are strongly correlated (R?: 0.9).

[62] In Figure 10, we show at nine BSRN sites the change
in RSSE (black circles) due to a correction based on the
clear-sky latitude effect (green), the correction based on the
site-centered RSSE (blue) for a 1° surrounding, and the
combination of latitude effect and site-centered RSSE (red).
The horizontal zero line (black dashed) indicates perfect
correction to be obtained by using the grid-specific
correction factor.

[63] For seven sites, the RSSE improves by both the
site-centered and combined adjustment (filled blue and red
circles), and the circles move closer to the zero line. The
latitude effect alone improves only four sites’ RSSE. For
two sites (Cabauw and Lindenberg) that seem highly
representative and lie within low-variability grid cells, the
correction approach increases the RSSE slightly, which
is mostly due to the latitude-effect correction. For three
sites with large RSSE (Carpentras, Payerne, and Lerwick),
the improvement is more efficient and mostly due to the
site-centered adjustment.

[64] On average, the |IRSSE| of 3% is reduced down to
1.3% due to the combined correction, which constitutes an
improvement of almost 60%. Considering only the seven
sites, for which the |RSSE| indeed decreases due to com-
bined correction, leads to an improvement of even 75%.
Also for GEBA, a reduction in RSSE can be achieved
by combining the latitude-effect and site-centered correc-
tion factors. The mean |[RSSE| of 2.1% is halved down
to 1.07%.

[65] The supporting information provides annual mean
SSE and RSSE data with respect to different surrounding
area sizes (grid cells) and the 1° standard grid for all consid-
ered GEBA sites including their coordinates. With the help

of this data and Table 3 (BSRN), an interested reader should
be able to optimize the representativeness of the GEBA and
BSRN sites with respect to a specific grid between 0.25°
and 3° he/she may use in an application. These tables may
also provide guidance on the selection of appropriate sur-
face radiation sites in Europe depending on the accuracy
requirements of a particular application.

6. Summary and Conclusions

[66] In the present work, we addressed the question of
how representative a point measurement of surface solar
radiation (SSR) is for its larger surrounding, such as a grid
cell of a climate model or satellite data product. We define
the representativeness of a measurement site by means of
the relative spatial sampling error (RSSE) and the relative
mean absolute deviation (RMAD). RSSE compares the site
value to the area mean value. RMAD compares the vari-
ability within the area to the area mean, thus can be seen
as a measure of SSR subgrid-scale variability. To quan-
tify RSSE and RMAD, we used the high-resolution (0.03°)
SSR data from the Satellite Application Facility on Climate
Monitoring (CM SAF). Regions of large spatial subgrid vari-
ability are mostly located in mountainous regions, such as
the Pyrenees, Alps, and Carpathians. The mean MAD and
RMAD in the 1° standard grid are 2.4 W m 2 and 1.6% over
European land.

[67] The site-specific |[RSSE| at nine BSRN and 134
GEBA sites with respect to their collocated 1° grid cell
varies from almost 0% to more than 10%. The [RSSE| over
all BSRN and GEBA sites is 3% (5 W m2) and 2% (3 W
m2), respectively, on a climatological annual mean (2001—
2005) basis. 90% of the GEBA sites considered here are
associated with |[RSSE| smaller than 4.7%. Considering the
GEBA data set, the monthly mean [RSSE| during 2001—
2005 is on average 4% and clearly of the same order as the
climatological uncertainty estimates.

[68] The site-centered [RSSE| represents a characteristic
property of the surface sites and is on average 2% (3 W m~2)
with respect to a 1° surrounding grid cell and around 3%
(5 W m2) for a 3° surrounding grid cell. Furthermore, it
is a suitable indicator for the grid-specific RSSE, and can
be used to approximate correction factors to enhance the
representativeness of a site for a larger surrounding. With
2%-3% (3—5 W m2), the error magnitude is on the order
of the accuracy limitations associated with pyranometer
measurements (5% of monthly, 2% of yearly means [Gilgen
etal., 1998)).

[60] Using multiple sites to better approximate the area
mean of a larger surrounding (1° grid cell) works most
efficiently for grid cells that exhibit high spatial subgrid vari-
ability. Adding one more (potential) site reduces the RSSE
most efficiently, adding three more sites halves the RSSE.

[70] In a forthcoming study, one could spatially expand
the present work by analyzing the cmsaf03 data over the
entire Meteosat Disk and assess the spatial variability over
large portions of Africa and South America and thus in
other climate regimes. This study is part of a project that
aims at the computation of atmospheric solar absorption
based on the combination of ground-based SSR measure-
ments with collocated satellite-retrieved top-of-atmosphere
irradiance. Knowledge about the surface sites’ spatial rep-
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resentativeness is essential to narrow down the uncertainty
range associated with this analysis.
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