Discussiones Mathematicae Graph Theory 17(1) (1997)
147-153
DOI: https://doi.org/10.7151/dmgt.1048
GENERALIZED DOMINATION, INDEPENDENCE AND IRREDUDANCE IN GRAPHS
Mieczysław Borowiecki
Danuta Michalak
Elżbieta Sidorowicz
Institute of Mathematics, Technical University of
Zielona Góra
Podgórna 50, 65-246 Zielona Góra, Poland
Abstract
The purpose of this paper is to present some basic properties of P-dominating, P-independent, and P-irredundant sets in graphs which generalize well-known properties of dominating, independent and irredundant sets, respectively.
Keywords: hereditary property of graphs, generalized domination, independence and irredundance numbers.
1991 Mathematics Subject Classification: 05C35.
References
[1] | M. Borowiecki and P. Mihók, Hereditary Properties of Graphs, in: Advances in Graph Theory (Vishwa Inter. Publications, 1991) 41-68. |
[2] | E.J. Cockayne and S.T. Hedetniemi, Independence graphs, in: Proc. 5th Southeast Conf. Combinatorics, Graph Theory and Computing, Utilitas Mathematica (Winnepeg, 1974) 471-491. |
[3] | E.J. Cockayne, S.T. Hedetniemi and D.J. Miller, Properties of hereditary hypergraphs and middle graphs, Canad. Math. Bull. 21 (1978) 461-468, doi: 10.4153/CMB-1978-079-5. |
[4] | M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completness (W.H. Freeman, San Francisco, CA, 1979). |
[5] | M.A. Henning and H.C. Swart, Bounds on a generalized domination parameter, Quaestiones Math. 13 (1990) 237-253, doi: 10.1080/16073606.1990.9631615. |
[6] | O. Ore, Theory of Graphs (Amer. Math. Soc. Colloq. Publ. 38, Providence, R. I., 1962). |
Close