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Geospatial objects change over time and this necessitates periodic updating of the
cartography that represents them. Currently, this updating is done manually, by inter-
preting aerial photographs, but this is an expensive and time-consuming process. While
several kinds of geospatial objects are recognized, this article focuses on buildings.
Specifically, we propose a novel automatic approach for detecting buildings that uses
satellite imagery and laser scanner data as a tool for updating buildings for a vec-
tor geospatial database. We apply the support vector machine (SVM) classification
algorithm to a joint satellite and laser data set for the extraction of buildings. SVM
training is automatically carried out from the vector geospatial database. For visualiza-
tion purposes, the changes are presented using a variation of the traffic-light map. The
different colours assist human operators in performing the final cartographic updating.
Most of the important changes were detected by the proposed method. The method not
only detects changes, but also identifies inaccuracies in the cartography of the vector
database. Small houses and low buildings surrounded by high trees present signifi-
cant problems with regard to automatic detection compared to large houses and taller
buildings. In addition to visual evaluation, this study was checked for completeness and
correctness using numerical evaluation and receiver operating characteristic curves. The
high values obtained for these parameters confirmed the efficacy of the method.

1. Introduction

Although a wide range of modern geographical products are available, cartography remains
an important task for today’s national mapping agencies (NMAs). User demands have
increased and diversified and this has placed increased pressure on NMAs to operate more
efficiently and effectively. The NMAs are now expected to generate more and better prod-
ucts and services in less time. This includes the production of topographic databases for
territories, which is one of the primary priority tasks of NMAs. The creation, maintenance,
and production of high-quality topographic databases all require software that understands
the craft of the cartographer for application to an automated production environment.

In recent years, most NMAs in developing countries have implemented basic
cartographic digital databases. They are now developing derived products on several scales,
but the current problem is the maintenance of these topographic databases. Considerable
effort is being expended to find efficient software for this enterprise, especially for the
mapping of urban areas, which require frequent updating. Today, this updating is carried

*Corresponding author. Email: josea.malpica@uah.es

ISSN 0143-1161 print/ISSN 1366-5901 online
© 2013 Taylor & Francis
http://dx.doi.org/10.1080/01431161.2012.725483
http://www.tandfonline.com


mailto:josea.malpica@uah.es

International Journal of Remote Sensing 1653

Figure 1. (a) Demolished buildings; (b) new buildings; and (c¢) planimetric inaccuracies.

out manually by visual inspection of orthophotos to detect changes in cartographic enti-
ties — a task that is both time consuming and expensive. Therefore, the establishment of
semi-automatic procedures would be of great benefit as these could significantly reduce
map revision timelines. The Spanish NMA has recently completed its national topographic
database at the scale of 1:25,000, but this database already needs to be updated. The present
study has concentrated exclusively on buildings in this database, with the objective of
detection of the changes in this entity type between two specific dates.

Change detection involves the study of a pair of images taken from the same geograph-
ical area, but acquired at different times, in order to detect the changes that have occurred
between the dates of the two data collections. In our work, instead of comparing pairs of
images, we have compared an old map, constructed using digital cartographic procedures
as vector data, with more recent spatial information of the same geographical area acquired
from satellite images (raster) and laser data. Detecting these changes in this way allows for
the possibility of automatically updating the maps.

In the present study, the results of the changes are depicted in a modification of the
well-known traffic-light detection map, where the different types of change are represented
by different colours. Ultimately, a human operator would perform future updates aided by
the colours of the traffic-light detection map. The proposed procedure can detect several
types of changes in the following categories: (1) demolished buildings; (2) new buildings;
and (3) planimetric inaccuracies. As noted in Figure 1(a), some of the buildings in the
digital cartography represented by the red lines have been demolished in recent years. This
would indicate that these buildings need to be removed from the vector database as part
of the updating process. As noted in Figure 1(b), several new buildings are seen that do
not appear in the digital cartography. These newly constructed buildings would therefore
need to be included in an updated vector database. As noted in Figure 1(c), planimetric
inaccuracy can be observed in the digital orthophoto, where a displacement is evident in
the base of the buildings with respect to the vector cartography. This information would
also need to be corrected in the updated database.

2. State of the art

Many methods and techniques for change detection have been published in the last three
decades; reviews can be found in Lu et al. (2003) and Coppin et al. (2004). Given the impor-
tance of space imagery as a source for updating maps, several working groups have been
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created over the past few years and several workshops have been organized on the topic
of updating maps using high-resolution data. Many map entities, such as roads (Mena and
Malpica 2005; Mancini, Frontoni, and Zingaretti 2010), vegetation (Hayes and Sader 2001),
land cover (Marcal et al. 2005), etc., can be updated. The present article deals specifically
with buildings.

The pioneering work on the detection of buildings for automated map updating can
be traced to project ATOMI (Automated Reconstruction of Topographic Objects from
Aerial Images using Vectorized Map Information), a cooperative venture between the
Swiss Federal Office of Topography and the Institute of Geodesy and Photogrammetry
at ETH Ziirich. This project used a vectorial database (VECTOR25) at scale 1:25,000,
and exploited Niederodst’s assessment (Niederdst 2003) that VECTOR2S favours the detec-
tion of buildings. One aim of the present project was to develop a software prototype for
a productive system. Several procedures were analysed: one of these combined height
information and three-dimensional (3D) edges. The method subsequently used by Olsen
(2004) for the detection of change was realized in three phases: (1) extraction of the
cartographic entities that are used as training samples; (2) identification of the buildings
by means of a supervised and unsupervised classification; and (3) elaboration of a map
of the traffic-light type of changes, where a final editing must be completed by a human
operator.

The problem with Olsen’s method was that it did not detect buildings that were differ-
ent from the buildings used as training samples for the algorithm. In later work (Olsen and
Knudsen 2005, 2006), the authors realized the importance of height with regard to detecting
buildings and they indicated the necessity of using the digital surface model (DSM), which
is calculated using stereoscopic pairs. Knudsen and Nielsen (2004) employed other charac-
teristics (spectral, texture, and shape), but again, reliable results were not obtained unless
the heights were also considered. For this reason, these authors proposed to investigate new
characteristics, such as shadows, since shadows are another method of introducing height.
Peng and Liu (2005) also found that consideration of shadows led to satisfactory perfor-
mance. Nakagawa and Shibasaki (2008) also introduced the concept of shadows fused with
textures and achieved acceptable results.

Matikainen, Hyyppd, and Hyyppd (2003) and Matikainen, Hyyppd, and Kaartinen
(2004) reported that, in general, experiments incorporating light detection and rang-
ing (lidar) or precision DSM produced better results. More recently, these authors have
applied decision trees for this type of analysis (Matikainen, Kaartinen, and Hyyppa 2007).
Vosselman, Gorte, and Sithole (2004) were able to use lidar and two classifications to sep-
arate vegetation, building types, and trees and shrubs. Huang and Chen (2007) investigated
the fusion of lidar and aerial images, comparing images from 2002 with images from 2005.
The images from 2002 and 2005 also contained lidar information and the authors were able
to obtain good results using mathematical morphology. Alonso and Malpica (2008) studied
the influence of lidar on the classification of multispectral Systeme Pour 1I’Observation de
la Terre 5 (SPOT5) imagery over a semi-urban area and obtained an improvement of 28.3%
when lidar was included. Chen et al. (2009) used lidar and QuickBird images to extract
buildings and highways, using a hierarchical method of object orientation, and obtained
overall accuracies of 89%.

All of these studies emphasize height as a fundamental measurement for detecting
buildings. For this reason, we have introduced lidar as a complement to SPOT imagery.
Recently, Liu et al. (2010) developed a semi-automatic method for detecting changes
in urban buildings using UltraCamD images and an existing 3D computer-aided design
(CAD) map. The purpose of the present study is to detect changes that occur after natural
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disasters such as earthquakes, typhoons, or tsunamis. Most of the change detection methods
proposed above, as well as our own, could serve this purpose.

The EuroSDR is the European organization that links NMAs, research institutes, and
universities that are active in applied research in geographical spatial data. It periodi-
cally issues projects to debate and to compare the leading techniques in cartography and
photogrammetry being investigated in the academic and professional fields. The intent of
these projects is to discover the productive viability of the theoretical methods. In 2005,
EuroSDR introduced a new project with the following objectives: (1) to evaluate the pos-
sibility of automatically detecting changes in constructions in cadastral databases; (2) to
observe the benefits when specific data are introduced (e.g. lidar/DSM/infrared images);
(3) to analyse the value of certain developments, such as comparing the methods that use
the cadastral database to obtain the final solution with the methods that use only images;
and (4) to study the best scale for comparison of data in the process of change detection.
The results and findings from the EuroSDR groups are summarized by Champion, Stamon,
and Pierrot-Deseilligny (2009b).

Our present work shares these objectives and our comparison between algorithms is
based on the protocol established by EuroSDR. Although we used our own imagery and
data, we manually evaluated our method with a reference database by calculating the num-
ber of true positives (buildings in the cartographic database reported as demolished or new
(i.e. changed) that are actually changed in the reference), false positives (buildings that
have not changed in the reference, but were reported as changed by the method), and false
negatives (buildings that had changed in the reference, but were reported as unchanged)
to test the method’s suitability (i.e. to evaluate the completeness and correctness of the
method). The quality measures are computed in the evaluation on a per-building basis,
instead of on a per-pixel basis, as recommended by EuroSDR. This is probably the most
meaningful way of presenting these types of results, as observed in the 2009 EuroSDR
Report (p. 56), which stated ‘a change detection approach is limited by the number of
changed buildings that is missed or over-detected, and not by the area covered by these
buildings’.

3. Study area and data
3.1. Satellite data

Several authors have utilized imagery from satellites for detection and extraction of build-
ings. For example, Mayunga, Coleman, and Zhang (2007) used QuickBird and Lhomme
et al. (2009) used IKONOS and QuickBird. The present study used images from SPOTS,
which was launched on 4 May 2002. The data are generated as four multispectral bands
and a panchromatic band, as follows: green B1 0.50-0.59 pm; red B2 0.61-0.68 pum; near
infrared B3 0.78-0.89 wm; infrared B4 1.58—1.75 pm; and panchromatic 0.50-0.73 pm.
The first three bands have a spatial resolution of 10 m, the fourth band has a spatial reso-
lution of 20 m, and the panchromatic band has a spatial resolution of 2.5 m. Images were
taken from an altitude of 822 km, with a digitalization of one byte per pixel. The dimen-
sions of the complete scene were 60 km x 60 km. The image used in our present work
(Figure 2) corresponds to a site approximately 6 km x 6 km located in Alcala de Henares,
about 30 km east of the city of Madrid. The Henares River crosses the study area from east
to west. The university campus area, consisting primarily of university buildings, is situated
in the upper part of the study area. As Figure 2 demonstrates, the image depicts thousands
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Figure 2. Pan-sharpened SPOTS5 image of the study area. This depicts a false colour image
composition of bands B1, B2, and B3 as RGB.

of buildings of varying types and forms. The terrain is relatively flat, but the riverside area
to the left, in the southern part of the image, is hilly, with altitude differences of 200 m.

Using the four multispectral and the panchromatic images, we applied the principal
component analysis (PCA) pan-sharpening method (Figure 2). We chose the PCA method
from among several methods that could have been applied (Wald 2002) because, together
with Brovery transforms and intensity—hue—saturation, it provides superior visual high-
resolution multispectral images, although it disregards the requirement for high-quality
synthesis of spectral information (Wang, Ziou, and Armenakis 2005). One important
advantage of PCA is that it is rapid, and since the final objective is an interactive soft-
ware application to help human operators perform map updating, a compromise between
speed and image quality has been sought.

Precise georeferencing was necessary because the image has to be superimposed on the
lidar data and the vector cartography. Errors of less than one pixel were obtained, which
means a dimension of less than 2.5 m. The georeferencing of the image was supported
via the metadata for SPOTS, and 20 points were surveyed in the field using the global
positioning system (GPS) with sub-centimetre accuracy and manually measured on the
image. Overall, nine ground control points (GCPs) were sufficient for compensation for
systematic errors inherent in the model and to obtain sub-pixel accuracy. The remaining
11 points were used as independent checkpoints. The calculation was performed with the
help of PCI software, specifically using the rigorous sensor model for pushbroom linear
array sensors (Toutin 2004). This method has a high modelling accuracy (approximately
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one pixel or better) and great robustness (Malpica, Mena, and Gonzalez-Matesanz 2007),
and uses only a few GCPs to achieve consistent results over the full image.

The raster layer for the lidar arises, as an interpolation, from the cloud of points of
the lidar file, which has its own georeferencing from the GPS sensor on board the aero-
plane. The lidar layer was co-registered to the SPOT image using well-known tie points in
the SPOTS image layer and the lidar layer. The vectorial data from the Base Cartografica
Nacional (BCN) were used with their original coordinate from the cartographic database,
without any co-registering. When no correspondence existed between the map and the
image, the error was assumed to come from the map, since that layer was produced
manually. These cartographic human errors are shown by the algorithm, as indicated in
Section 5.

3.2. Lidar

Lidar technology allows the calculation of the DSM with a precision of the order of 20 cm
in planimetry and 30 cm in height (Raber et al. 2002). The combination of a sweeping beam
laser with inertial navigation systems and a GPS guarantees a high geometric precision in
the data. In this study, we used the LEICA ALS50-II (Leica Geosystems AG, Heerbrugg,
Switzerland) sensor to capture the lidar data.

Although a DSM could also be obtained by classical digital photogrammetry, this would
be more expensive and slower to produce. The lidar data used in the present work cor-
respond to two successive flights, conducted in the mornings of 17 and 19 May 2006.
The flight was taken at an altitude of approximately 1800 m. We obtained 144 blocks of
1 km? each. Of these, we selected 33 blocks that agreed geographically with the other data
(SPOTS5 and vector cartography) available for our work. All data selection was carried out
with the intention of including the entire city of Alcala de Henares. The point density of
the lidar data was 0.5 point per square metre, which meant about three points for each
SPOTS5 pixel. The coordinate system is WGS84 with orthometric heights.

The DSM was obtained from the first echo of each pulse, after filtering the noise that
was generated in the process of data capture. We rasterized the 3D clouds of the LAS
file using the method proposed by Streutker and Glenn (2006), who divided the data into
regular cells, with each cell containing a determinate number of individual lidar points,
depending on the local density of each cell. The final elevation for each cell was calcu-
lated as the average of several lidar points contained within that cell: if a cell was without
points, then a nearest neighbour interpolation was applied. The dimension of the cells (i.e.
the resolution) was 1 m. The DSM contained information regarding constructions, vegeta-
tion, and uncultivated ground, as seen in Figure 3(a). The digital terrain model (DTM) was
generated as a product derived from the DSM after employing a semi-automatic method
developed recently by Martinez de Agirre and Malpica (2010). This method consists of
applying several filters to the DSM, with the intention of removing the non-ground points.
Next, minimal manual editing of the points that had not been properly classified was neces-
sary. Currently, no fully automatic method is available for obtaining a DTM from the DSM.
The result is illustrated in Figure 3(5). Finally, calculation of the difference between the
DSM and the DTM generated the standard DSM (nDSM) shown in Figure 3(c¢).

Initially, the lidar data come in a binary format (*.LAS), according to the ASPRS norm.
The LAS format includes information in addition to echoes of the pulses, such as GPS
time and intensity. If the first echo is considered, the image that appears in Figure 3(d)
is obtained, while Figure 3(e) illustrates the image of the last echo. This latter layer is
obtained with the same technique used for the first echo, as explained above. Figure 3(f)
illustrates the difference between the images of the first and the last echoes. In this last
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Figure 3. (a) DSM; (b) DTM; (c) nDSM; (d) first echo; (e) last echo; and (f) difference between
echoes. Units are in metres.

image, which shows the case for the difference in echoes, darker pixels represent higher
values than brighter pixels, i.e. the opposite of the other cases (Figures 3(a)—(e)).

In developing the method proposed in the present study, we found that working with
the differences between these echoes proved very useful, as discussed in the next section.
The differences between these echoes allowed us to differentiate between different types of
vegetation, since a pulse can be reflected by leaves or by the ground.

The complete nDSM used with the algorithm developed in our work is shown in
Figure 4.

3.3.  Numerical cartographic database

In 1986, the Spanish NMA began the process of numerical production of a national
topographic map at the scale of 1:25,000. Over the past two decades, the NMA has pub-
lished 1:25,000 sheets for Spain’s entire national territory and, at the same time, a DTM of
25 m grid and a numerical cartographic base called BCN at a scale of 1:25,000, which also
captures information on the national territory. From this BCN, we can extract vector files
for buildings. Figure 5 shows examples of the vector cartography overlaid on aerial images
with 0.5 m resolution. These images were taken from the Spanish Mapping Agency PNOA
(Arozarena and Villa 2005). Since the vector cartography has to represent the position of
the buildings, the errors and geometric inaccuracies can be seen. Up to a certain point (5 m
for 1:25,000 map scale), these errors are normal because vector cartography is a manual
product and prone to human error.
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Figure 4. nDSM (difference between DSM and DTM) of the city of Alcala de Henares and its
surroundings.

The BCN contains a great amount of information, with codes defined for each
cartographic entity. All of the vector entities related to building construction must be
extracted; these correspond to different codes depending on whether the building is residen-
tial, industrial, historical, etc. Each code is also associated with a colour and a width-of-line
based on building type. Taking all of these codes into consideration, we applied several fil-
ters to the original BCN and obtained a vector layer for the buildings. Next, we generated
a mask for buildings. For each of the building codes, the algorithm creates a region of
interest (ROI) and creates a mask that joins all of these regions (an example can be seen in
Section 4.2.3, Figure 8(a)).

4. Methods
4.1. Introduction

In our work, the integration of lidar with the multispectral images allowed for the dis-
crimination of buildings and the implementation of an automatic system for the detection
of changes. These sources of data combine the advantages of multispectral SPOTS satellite
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Figure 5. Vector cartography from the BCN in red (code 41) over aerial image with GSD 0.5 m.
(a) Polytechnic School of Alcald University and (b) different buildings from the university campus
of Alcala.

data with the height information provided by lidar. The input data consisted of SPOT?5, lidar,
and the digital vectorial cartography from the BCN, as can be observed in the upper part
of the diagram (Figure 6). After pre-processing of these data, the support vector machine
(SVM) was used for the central algorithms of this method. The ultimate objective was to
obtain a map of changes.

4.2. SVM algorithm

Supervised learning implies analysis of the training set (which is a given set of labelled
observations) in order to predict the labels of unlabelled future data. Specifically, the objec-
tive is to construct some function that describes the relationship between observations and
their labels.

The SVM is a powerful technique for training binary classifiers from examples, and it
seeks a hyperplane that will separate the labelled observations. Intuitively, a hyperplane that
is as far away as possible from either class is preferable, because the results are expected
to generalize better when applied to unseen future data. The idea of the SVM classifier
appeared initially in a 1992 article by Boser, Guyon, and Vapnik (1992), where it was
applied to a problem of recognition of characters. The authors demonstrated the superiority
of the SVM against other algorithms for character recognition. Vapnik and the research
team at AT&T laboratories developed different variants for the SVM algorithm (for more
details, see Vapnik 1995).

SVMs are essentially binary classifiers by their inherent nature; however, they can be
used to handle the multiple classification problems commonly needed in remote-sensing
applications. The two approaches commonly used to accomplish this are the one-against-all
and the one-against-one techniques. No superiority of one over the other has been reported
so far (Hao, Liu, and Yang 2006).

The output of the SVM algorithm, when used as a binary classifier, is given by values
between zero and one, similar to a probability layer. Formally speaking, these would be
pseudo-probabilities. Since a pixel with a value close to one has a great probability of
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Figure 6. Flow diagram of the proposed algorithm. NIR, near infrared; MID, mid-infrared; R, red;

G, green.

belonging to one class versus the other, we took these values as membership measures for

our classification purposes.

4.2.1.

Input to the SVM algorithm

The first input to the algorithm is given by

¢ the four bands of the SPOT5 image, with 2.5 m of spatial resolution, transformed
with the pan-sharpening method;
¢ the normalized DTM, usually named nDSM, which represents the difference between
the DSM and the DTM, as explained in Section 3.2; and



1662 J.A. Malpica et al.

¢ the difference between the first and last echo of each pulse (DEcos), also explained
in Section 3.2.

A file with the six bands was formed so that a pixel would be given by a vector with six
components, all normalized to 0-255 levels of grey.

The other input to the algorithm is the vector layer from the BCN, as explained in
Section 3.3. This vectorial layer is converted in a mask (building mask) necessary for the
training, which will be explained in the next section. Ultimately, this mask is used to detect
the changes by comparing the constructions obtained by the proposed algorithm (using
SVM for classification) with the existing ones in the BCN vector layer. A flow chart that
summarizes the proposed algorithm is shown in Figure 6.

4.2.2. Training

The following three classes have been considered: ground (w;), vegetation (w;), and build-
ings (w3). The training is automatically achieved by the algorithm from the vector layer. The
proposed algorithm first generates a large number of random pixels for the whole image.
For the case presented here (Figure 2), 5000 random points for each class were taken. From
the experiments, we determined that taking a greater number of points makes no difference
in the end result and just increases the time needed to execute the algorithm (this is 1 h, as
will be explained in Section 4.2.5). The randomly generated pixels are assigned to a class
as follows: if the randomly generated pixel meets certain conditions imposed for a class, it
will be considered to belong to that specified class (see Figure 8). If these conditions are
not met, the pixel is ruled out or disregarded. The parameters used to impose the conditions
for each class are

h:  height,
wy:  width of the window mask,
i vegetation index,

wy:  width of the window difference of echoes, and
d: difference between echoes.

The units for these parameters are metres for /# and d, number of pixels for w; and wy,
and dimensionless for i. After several experiments on different areas, the optimal values
were determined to be 4 =2, w; = 5,i = 0.1, w, = 5, and d = 3. These parameters were
fixed for all of the subsequent tests. Small variations in the values did not affect the results,
which showed the robust performance of the proposed method. The Buildings_M term,
which indicates the mask of buildings (see Figures 7 and 8(«) for details of the building
mask), was constructed from the files of the vector cartography of the buildings obtained
from the BCN.

If a pixel belongs to the mask, it means that it corresponds to a zone where a building
exists, according to the vector cartography. However, if the building has been demolished,
further discrimination is needed with regard to the difference between echoes (Echoes_D)
and the normalized difference vegetation index (NDVI), as can be seen in Figure 7.

4.2.3.  Output from the SVM algorithm

After the classification of SVM, the layers of membership measure for each class are
obtained. For application of the SVM, the radial basis kernel is used. The threshold for the
new layer of membership measure of buildings becomes 0.5, and a new image (Figure 8(5))
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Figure 8. (a) Mask for buildings from BCN and () output of the SVM algorithm.

of the buildings is obtained. Actually, the SVM algorithm discriminates between only
two classes: vegetation and buildings (the building mask obtained from the vectorial data
ignores ground pixels). Several values for this threshold were tried and no significant dif-
ferences were observed in the output for values between 0.3 and 0.7. The robustness is very
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high and the threshold can be taken as the middle value of the membership measure 0.5.
The differences between Figures 8(a) and (b) are due to the detection of new buildings by
the proposed algorithm using SVM for classification.

4.2.4.  Change detection

In order to obtain the map of changes, the algorithm compares the mask of buildings
obtained from the BCN (Figure 8(a)) with the new image of the buildings obtained from
determining the layers of membership measure (Figure 8(0)), as discussed in the previous
section.

4.2.5. Implementation

The algorithm is implemented in the IDL programming language as an extension of the
ENVI software of Visual ITT Information Solutions (http://www.ittvis.com/). The large
size of the images, vector data, and lidar preclude loading of everything into the computer
RAM. Therefore, the input data are divided into smaller equal-sized (or near-equal) spatial
units, the algorithm is run on these smaller pieces, and then the pieces are joined. As a
result, the entire geographical area of Alcald in Figure 2 was divided into a set of small
rectangles or tiles. Algorithms were run on each tile and the tiles were finally joined.
In ENVI, this is known as the tiling technique and it allows handling of images of any
spatial size. The run-time on a PC (a 3 GHz CPU and 2 GB of RAM) is about 1 h for
the size of the data shown in this study (36 km?) (Figure 2). For a complete 1:25,000 map
sheet, which is the standard for Spanish NMA (approximately 100 km?), the run-time
would be approximately 3 h.

S. Results
5.1. Types of change

The changes in this study were indicated using a variant of the traffic-light map technique,
which has been well validated in the field of cartography (Heipke et al. 1997; Kraak and
Ormeling 2003). When validating an algorithm that detects a certain cartographic entity,
the traffic-light technique will consist of assigning the colour green for a correctly detected
entity or building and it requires no further manual editing. The colour red will be assigned
when the entity has been detected erroneously. The colour yellow will be assigned when
the entity is partially erroneous. Since this study investigated more situations than usual,
we have modified the general traffic-light technique. In our case, the following colours
have been assigned to indicate different situations: new buildings are assigned the colour
red, demolitions are assigned the colour blue, validations are assigned the colour green,
incoherencies are assigned the colour yellow, and backgrounds are assigned the colour
grey (see Figure 9).

5.2. Discussion

The final image of changes given by the proposed algorithm is shown in Figure 9. New
residential and industrial areas of the city appear in red, as noted in the central part of the
image, a little to the left. This represents an area called the Garena, which corresponds
to a new construction zone developed as a result of a previous real estate boom in Spain.
Figure 9 also shows another new construction zone, known as the Exfension, in the upper
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Figure 9. Change detection results for the entire study area (36.0 km?).

central part of the image. In the old part of town, the green colour predominates, indicating
that no significant changes have occurred in the time interval examined.

The efficiency of the method for the detection of buildings requires that the DTM,
extracted from DSM lidar, be of high quality. Otherwise, the errors in the DTM will be
seen as errors in the image changes that appear in the final results. As Figure 9 illustrates,
the large red spot on the right side, a little below the middle of the image, corresponds to
an error in the DTM. This spot indicates a small hill with steep sides that the algorithm (for
forming the DTM from the DSM) mistook for a building and eliminated from the DSM
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Figure 10. (a) Aerial image with 0.5 m resolution for the university campus of Alcala with vector
cartography and (b) final results for ().

when forming the DTM. The human operator in the later manual edition failed to spot this
error and, thus, it was passed on to the DTM.

Figure 10 shows the oldest part of the campus of the University of Alcala, including the
polytechnic school, nursing school, medical school, and other buildings. The new build-
ings, appearing in red, were constructed after the creation of the vector cartography. All
of these images were obtained directly from the proposed algorithm, and some noise can
be observed; however, this noise could be eliminated with mathematical morphology by
means of an opening operator. The yellow building (Figure 10(b)) represents an error in the
original codification of the vector cartography; it has been registered with a code 11 when,
in fact, it should have been registered with a code 41. Code 11 is reserved for inner patios,
while code 41 is reserved for buildings. This type of incoherency arises because of the
particular way the mask for buildings was made: the raster layer for code 11 (inner patios)
was subtracted from the raster layer formed for code 41 (general buildings). If there is a
mistake, and code 11 is written in place of code 41, then a —1 appears where only zeros or
ones should appear if everything is correct in creating the mask for buildings. Therefore, if
a—1 appears when the building mask is constructed, the incoherency is reported in yellow.

Figure 11 shows buildings that originally existed when the cartography was created, but
were later demolished.

When the buildings are small, such as small isolated houses or huts, method detec-
tion problems can be identified, especially if vegetation exists around the house. Figure 12
shows that the uppermost hut is almost completely covered by a tree that has a height
greater than that of the hut. In Figure 12(e), a false colour SPOTS5 image has been placed,
which has been pan-sharpened from multispectral images of 10 and 20 m, as described
in Section 3.1. For this reason, the quality of the image is far lower when compared with
the PNOA aerial image of 0.5 m resolution. It is important to remember that the image
that drives the proposed algorithm is the SPOTS (see the flow chart of the algorithm in
Figure 6).
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Figure 11. Detection of a demolished building.

The aerial image of 0.5 m resolution was used for only visualization purposes. It was
not used as an input to the proposed algorithm. The reason for not using aerial imagery is
that the images that are available have only RGB values, while the SPOT5 images have two
infrared bands, and infrared is very important for detecting vegetation. In the SPOTS5 image,
this hut is almost indistinguishable. The image is so poor that the hut could not be detected
by the proposed algorithm. In the lidar image of the nDSM, the hut can only be seen as
a small white spot that corresponds to a mixture of the vegetation and the hut. In these
conditions, the proposed algorithm, by itself, has difficulty in detecting buildings of this
size.

We also tried to input the PNOA aerial images instead of the SPOTS imagery. A higher
spatial resolution of the aerial image is obtained with PNOA than with the spectral high
resolution available with the infrared bands of the SPOTS. After many experiments, the
infrared bands proved to be more effective in separating vegetation and buildings than was
the higher resolution aerial imagery. Figure 13 shows an example of an area in the centre
of Alcala city. Figure 13(a) represents the building mask from the vectorial cartographic
BCN, while Figure 13(b) is the corresponding PNOA aerial image. Figure 13(c) is the
result of applying the classification algorithm SVM to this area using only the PNOA aerial
image, lidar data, and the vectorial cartography from the BCN. Figure 13(d) is the result
of applying the SVM algorithm to the same area using SPOTS, lidar data, and the vectorial
cartography. As can be observed in the centre of the image, some trees (Figure 13(b)) have
been mistakenly confused with a new building (Figure 13(c), the approximately rectangular
red figure), whereas it is not confused in Figure 13(d). With the aerial image, the algorithm
could not discriminate vegetation from buildings, while it could with the SPOTS imagery,
and this is due to the two infrared bands. More groups of trees have been taken as new
buildings in Figure 13(c), but this did not happen in Figure 13(d). The only new building
in the area is well detected by both input data (aerial PNOA and SPOTS), but clearly more
false positives are seen in the aerial image than in the SPOTS image.

When the parameters for the aerial image input are changed, in order to reduce the
false positives, old buildings are no longer detected, and new false negatives appear. In our
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Figure 12. Detection of small buildings. (a) Aerial image of a residential area with vector
cartography overlay; (b) results alter the application of the detection algorithm; (c) detail of (@) with
aerial image and vectors; (d) results alter the application of the algorithm to (c); (e) pan-sharpened
SPOTS5 false colour image for the detail shown in (¢); and () DSM obtained from the lidar data
for (c).

experiments, we had no means to tune the parameters to obtain a clear separation of the two
classes: vegetation and buildings. We blame this lack of infrared information on the aerial
imagery. The need for infrared information has also been reported by Hermosilla, Ruiz,
and Recio (2010). Calculation of a proper vegetation index such as NDVI is not possible
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Figure 13. (a) Building mask; (b) aerial image; (c) result of the proposed algorithm with the aerial
entry; and (d) result of the proposed algorithm with the SPOTS entry.

without the infrared band; however, with the SPOTS5 input, the separation between buildings
and vegetation is quite good.

The aerial image in Figure 14(a) represents a new residential area of Alcala. It shows
that only four buildings in the vector cartography are represented; the rest of the buildings
were constructed after the creation of the cartography. The proposed method has success-
fully detected all of these buildings except one (Figure 14(b)) with a purple-coloured tile
roof (Figure 14(c)). This is a unique, large-sized building (about 1000 m?) that is not
detected by the proposed algorithm. As such, it is considered to be a false negative. This
building appears as purple, a colour that is not seen in other tile roofs. Hence, the building
must be made of a material with a very different spectral signature from all of the other
buildings in the entire image.

Another error, a false positive, corresponds to the bridges on the highways.
In Figure 15(c), these bridges were detected as buildings because, in the DSM, the bridges
are seen to have height.
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Figure 14. Detection of new buildings. (a) Aerial image; (b) results from the algorithm; and (c)
SPOTS5 image in false colour of (a).
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Figure 15. Detection of bridges as buildings. (a) Aerial image; (b) algorithm result; and (¢) DSM
corresponding to image (a).

5.3. Evaluation

Validation can be achieved by studying the buildings or the pixels that have changed. In this
study, we investigated validation with regard to the buildings. A vector map that represents
the true terrain has been manually constructed for a part of the entire image. This vector
map corresponds to the upper right area of the initial image and is part of the university
campus and its surroundings, a semi-urban zone of the city of Alcala with a size of 4 km?
(2 km x 2 km). This area contains approximately 200 buildings of different sizes, as shown
in Figure 16.

In addition to the visual evaluation, a numerical evaluation would be of interest.
Therefore, the validation of the formulae indicated in Heipke et al. (1997) and Rottensteiner
et al. (2005) is also used:

TP
let = — ¢c[0,1], 1
completeness TP L TN [0,1] ()

correctness =

P €[0,1] (2)
TP + FP T
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Figure 16. SPOTS image and ground truth (manually constructed).

Here, TP is the number of true positives, which represent the new buildings that have been
detected correctly; FN is the number of false negatives, which represent the buildings that
the proposed method detects as unchanged, but that nevertheless have changed; and FP
is the number of false positives, which represent the buildings that the proposed method
detects as changed but are actually unchanged. Finally, TN, the true negative, indicates the
buildings detected as not changed, which indeed have not changed; these appear in green.

Completeness and correctness are two measures that quantify the effectiveness of the
method used to detect the changes from a practical point of view. The first measurement
could be said to address the errors that remain in the final database once it has been updated,
whereas the second measurement is related to the time necessary for a human operator to
verify that the buildings have not changed.

For the validation of the method, only buildings with a ground surface greater than
25 m? were selected. The noise of the proposed method was not considered. In fact, if
we view the purpose of the algorithm as being to aid human operators in updating the
cartographic information, then when the operators see very small red or green spots, they
are unlikely to pay any attention to them. The operators would consider the changes in
buildings to be of little or no interest, since they will be looking for bigger changes.

With regard to new constructions, we could say that the detection of the algorithm is
very satisfactory, since it detects 98% (46/47) (see Table 1). The only failure is in the
detection of the building with the blue roof in Figure 10(«a) or the building with the purple

Table 1. Confusion matrix for detected changes against actual
changes, for buildings with ground surface greater than 25 m?.

Detected by the algorithm

Change No change

Actual Change TP = 46 FN=1
No change FP=0 TN =135
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Figure 17. ROC curve that provides the probability of a false alarm (Pfa) versus the probability of
detection (Pd) curve.

roof in Figure 14(c). As noted above, these detections could be the result of the strange
materials used in the construction of these tile roofs. As seen in Equations (1) and (2) and
Table 1, a completeness of 0.98 and a correctness of 1 are obtained for buildings with
ground surface greater than 25 m?.

With regard to the total number of buildings (including ground surface smaller than
25 m?) on the validation image, the method detects 93% (181/194). Almost all of the
undetected buildings corresponded to small houses or huts that appeared in the BCN but
were too small to be detected with the input data (see Figure 12).

When the entire image is considered, the bridges and the hill are false positives, as
mentioned above. The area of the image is very well known to some of the authors, and
the algorithm has detected most of the changes. Although a human operator will have to
perform a final manual edit to correct some errors, these changes will be minimal.

The receiver operating characteristic (ROC) method, applied to medical images for the
evaluation of classifiers (Swets 1979), draws the detection probability against the false
alarm probability. As explained in Section 4.2.2, the SVM was trained for the zone illus-
trated in Figure 16. It was later validated with the sample (1 km x 1 km) of the true
terrain collected manually. Twenty thresholds were used to construct the ROC curve for
the proposed algorithm. The result is shown in Figure 17.

The accuracy of a classifier can be measured by the area under the ROC curve (Hanley
1982; Fawcett 2006). An area of 1 represents a perfect classifier. An area of 0.5 represents
a poor classifier. The following is a rough guide for the accuracy of a classifier: 0.5-0.6:
fail; 0.6-0.7: poor; 0.7-0.8: fair; 0.8-0.9: good; and 0.9—1: excellent. In this study, the area
under the curve was 0.95 for the proposed algorithm.

6. Conclusions

A method has been presented that allows the detection of changes between digital
cartography, satellite images, and lidar data that occur between two specific dates. The
developed computer application is a tool that can help a human operator in the cartographic
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updating of 1:25,000 scale topographic maps. The method uses the traffic-light technique
to detect new buildings and those that have disappeared, with 98% accuracy.

The proposed method allows discrimination of which buildings (or parts of buildings)
have changed. Since the resolution of the SPOTS5 images is 2.5 m, it can detect changes in
only those buildings that have a ground plant size greater than 2.5 m x 2.5 m, i.e. greater
than a pixel. Superior results are obtained with SPOTS5, rather than PNOA, aerial images,
although the latter provide greater spatial resolution and a superior radiometric quality. The
reason for this is that the aerial image captures only RGB bands, whereas the SPOTS5 images
allow for two infrared bands, which provide a greater capacity to discriminate objects,
especially vegetation. In future flights, the Spanish NMA plans to capture lidar data and
simultaneously obtain aerial images in RGB plus near infrared. In that case, with small
modifications, the method developed in this study would be applicable to these new data.
The results would be expected to improve an operator’s ability to detect smaller buildings
that cannot now be detected with SPOTS.

The novelty of this method, when compared to other methods presented in the lit-
erature, is the use of SVM and the automatic training from the vectorial database. This
provides operators with a fast semi-automatic approach for detecting buildings using satel-
lite imagery and laser scanner data. Although we have used the protocol established by
EuroSDR for comparison between algorithms, it is difficult to compare this study’s pro-
posed method with the other methods in the literature (Champion et al. 2009a) because
all current methods are semi-automatic methods and each one uses a different set of input
data, different types of classification algorithms, and different amounts of manual work.
What can be said of our proposed method is that it is effective due to the high degree of
accuracy obtained. Consequently, the intervention of an operator to edit the errors will be
minimal.

With the tiling technique of the implementation, our proposed method will run for
any data size. Consequently, the method would be completely operational in an industrial
environment.
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