Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > KRISHNAMOORTHY DINESH:
All reports by Author Krishnamoorthy Dinesh:

TR24-140 | 11th September 2024
Sagar Bisoyi, Krishnamoorthy Dinesh, Bhabya Rai, Jayalal Sarma

Almost-catalytic Computation

Revisions: 1

Designing algorithms for space bounded models with restoration requirements on (most of) the space used by the algorithm is an important challenge posed about the catalytic computation model introduced by Buhrman et al (2014). Motivated by the scenarios where we do not need to restore unless $w$ is "useful", we ... more >>>


TR23-108 | 21st July 2023
Andrej Bogdanov, Tsun-Ming Cheung, Krishnamoorthy Dinesh, John C.S. Lui

Classical simulation of one-query quantum distinguishers

We study the relative advantage of classical and quantum distinguishers of bounded query complexity over $n$-bit strings, focusing on the case of a single quantum query. A construction of Aaronson and Ambainis (STOC 2015) yields a pair of distributions that is $\epsilon$-distinguishable by a one-query quantum algorithm, but $O(\epsilon k/\sqrt{n})$-indistinguishable ... more >>>


TR21-115 | 6th August 2021
Scott Aaronson, Andris Ambainis, Andrej Bogdanov, Krishnamoorthy Dinesh, Cheung Tsun Ming

On quantum versus classical query complexity

Revisions: 2

Aaronson and Ambainis (STOC 2015, SICOMP 2018) claimed that the acceptance probability of every quantum algorithm that makes $q$ queries to an $N$-bit string can be estimated to within $\epsilon$ by a randomized classical algorithm of query complexity $O_q((N/\epsilon^2)^{1-1/2q})$. We describe a flaw in their argument but prove that the ... more >>>


TR21-093 | 1st July 2021
Andrej Bogdanov, Krishnamoorthy Dinesh, Yuval Filmus, Yuval Ishai, Avi Kaplan, Akshayaram Srinivasan

Bounded Indistinguishability for Simple Sources

Revisions: 1

A pair of sources $\mathbf{X},\mathbf{Y}$ over $\{0,1\}^n$ are $k$-indistinguishable if their projections to any $k$ coordinates are identically distributed. Can some $\mathit{AC^0}$ function distinguish between two such sources when $k$ is big, say $k=n^{0.1}$? Braverman's theorem (Commun. ACM 2011) implies a negative answer when $\mathbf{X}$ is uniform, whereas Bogdanov et ... more >>>


TR18-153 | 22nd August 2018
Krishnamoorthy Dinesh, Samir Otiv, Jayalal Sarma

New Bounds for Energy Complexity of Boolean Functions

Revisions: 1

For a Boolean function $f:\{0,1\}^n \to \{0,1\}$ computed by a circuit $C$ over a finite basis $\cal{B}$, the energy complexity of $C$ (denoted by $\mathbf{EC}_{{\cal B}}(C)$) is the maximum over all inputs $\{0,1\}^n$ the numbers of gates of the circuit $C$ (excluding the inputs) that output a one. Energy Complexity ... more >>>


TR18-152 | 30th August 2018
Krishnamoorthy Dinesh, Jayalal Sarma

Sensitivity, Affine Transforms and Quantum Communication Complexity

Revisions: 1

In this paper, we study the Boolean function parameters sensitivity ($\mathbf{s}$), block sensitivity ($\mathbf{bs}$), and alternation ($\mathbf{alt}$) under specially designed affine transforms and show several applications. For a function $f:\mathbb{F}_2^n \to \{0,1\}$, and $A = Mx+b$ for $M \in \mathbb{F}_2^{n \times n}$ and $b \in \mathbb{F}_2^n$, the result of the ... more >>>


TR17-192 | 15th December 2017
Krishnamoorthy Dinesh, Jayalal Sarma

Alternation, Sparsity and Sensitivity : Bounds and Exponential Gaps

Revisions: 1

The well-known Sensitivity Conjecture regarding combinatorial complexity measures on Boolean functions states that for any Boolean function $f:\{0,1\}^n \to \{0,1\}$, block sensitivity of $f$ is polynomially related to sensitivity of $f$ (denoted by $\mathbf{sens}(f)$). From the complexity theory side, the XOR Log-Rank Conjecture states that for any Boolean function, $f:\{0,1\}^n ... more >>>


TR16-076 | 27th April 2016
Krishnamoorthy Dinesh, Sajin Koroth, Jayalal Sarma

Characterization and Lower Bounds for Branching Program Size using Projective Dimension

Revisions: 2

We study projective dimension, a graph parameter (denoted by $pd(G)$ for a graph $G$), introduced by (Pudlak, Rodl 1992), who showed that proving lower bounds for $pd(G_f)$ for bipartite graphs $G_f$ associated with a Boolean function $f$ imply size lower bounds for branching programs computing $f$. Despite several attempts (Pudlak, ... more >>>




ISSN 1433-8092 | Imprint