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Econometrica, Vol. 50, No. 3 (May, 1982)
A THEORY OF DISAGREEMENT IN BARGAINING

By VINCENT P. CRAWFORD!

This paper proposes a simple theory to explain bargaining impasses, which is based on
Schelling’s view of the bargaining process as a struggle between bargainers to ¢ommit
themselves to favorable bargaining positions. Because bargaining impasses are generally
Pareto-inefficient, anything involving a positive probability of impasse is Pareto-inefficient
as well. It is demonstrated that in spite of this avoidable inefficiency, when successful
commitment is uncertain and irreversible it can still be rational for individuals to artempt
commitment and thereby risk an impasse; in a leading special case, the model reduces to a
Prisoner’s Dilemma game, in which only strategic-dominance arguments are needed to
establish this conclusion. Further, making commitment more difficult, or changing the
costs of disagreement in a way that makes available a wider range of settlements that are
better for both bargainers than disagreement, need not always lower the probability of
impasse, in spite of the conventional wisdom to the contrary.

It is also a good rule not to put overmuch confidence in the abservational results
that are put forward untif they are canfirmed by theary.
—Sir Arthur Stanley Eddington

l. INTRODUCTION

BARGAINING, BROADLY CONSTRUED, is a pervasive phenomenon in modern econo-
mies, ranging from labor negotiations to trade agreements to strategic arms
limitation talks. One need only consider these examples in the light of past
experience to realize that the potential welfare gains from improving the effi-
clency of bargaining outcomes are enormous, perhaps even greater than those
that would result from a better understanding of the effects of macroeconomic
policy. Yet the problem of designing environments to yield improved bargaining
outcomes has been all but ignored by economists.

A major part of this design problem is ensuring that impasses are avoided as
often as possible. Because such disagreements, whether they take the form of
strikes, trade restrictions, or arms races, tend to be very costly, reducing their
likelihood is of great welfare importance. But, before this aspect of the problem
can even be approached, a theory that relates the likelihood of disagreement to
the bargaining environment is needed. Such a theory would serve an important
purpose in guiding attempts to determine this relationship empirically or experi-
mentally, even if it did not yield strong theoretical conclusions.

Almost all microeconomic and game-theoretic models of bargaining beg the
question of what determines the probability of disagreement by assuming that an

"This paper incorporates material from University of California, Sap Diege Discussion Papers
79-3, written in November, 1978 and bearing the same title, and 80-18, “A Model of the Commitment
Process in Bargaining,” written in August, 1930. Support from NSF Grant SES 79-03550 is gratefully
acknowledged. T also owe thanks for helpful suggestions to Peter Berck, Norman Clifford, Clifford
Donn, David Lilien, Mark Machina, William Samuelson, Joel Sobel, Hugo Sonnenschein, Ichiro
Takahashi, William Thomson, and Allan Young. Participants in seminar presentations at Caltech,
UCSD, Michigan, Cornell, MIT, VPI, Harvard, and Berkeley also made useful comments.
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608 VINCENT P. CRAWFORD

efficient settlement is always reached.? This is probably due to the simple and
elegant theoretical results often available under the efficiency assumption and to
the common belief that inefficient outcomes are inconsistent with rational
behavior by well-informed bargainers. But plainly, any theory of bargaining that
assumes away the possibility of disagreement must fail te capture an aspect of
bargaining that is of central importance in the design problem mentioned above.

This paper proposes a simple theory that explains the probability of disagree-
ment in bargaining, and, it is hoped, will therefore prove more useful in studies
of the design problem than existing theories. The theory develops Schelling’s [18]
view of the bargaining process as a struggle between bargainers to commit
themselves to—that is, to convince their opponents that they will not retreat from
—advantageous bargaining positions. The potential benefits of commitment are
clear, since once one’s opponent is convinced, his best strategy is to yield if he
can.

It is shown that if the outcome of the commitment process is both uncertain
and irreversible, it can be rational for bargainers to take actions that imply a
positive probability of disagreement, an outcome ex ante inferior for both to
outcomes feasible through negotiation. The theory, which determines the proba-
bility or frequency of impasse endogenously, permits an evaluation of the
assumption, common in the industrial relations and law and economics litera-
ture, that enlarging the set of feasible settlements that are at least as good for
both bargainers as disagreement—commonly called the contract zone in this
literature—makes a negotiated settlement more likely. It turns out that this need
not be true: in quite “well-behaved™ bargaining situations, enlarging the contract
zone by changing the disagreement outcome may actually increase the probabil-
ity of an impasse.® It is also shown that attempts (like the common requirement
in labor law to bargain “in good faith™) to make commitment more difficult, with
the goal of reducing the probability of impasse, may have perverse effects.

2See, for example, Harsanyi [9] and the references therein, Kalai and Smorodinsky [11j, Nash
[14,15], and Roth [17] and the references therein. Notable exceptions are Cross [4] and Ashenfelter
and Johnson [1j. But the models developed there are somewhat ad hoc, in that bargainers’
motivations for behaving as they are assumed to do are weak. Chatterjee and W. Samuelson 2] have
developed an interesting model, discussed in footnote 4 below, that explains the occurrence of
disagreement by focusing on bargainers’ uncertainty about each other’s preferences. And Harsanyi (8,
pp. 329-334] presents an example to show that under uncertainty, the fact that bargainers cannot
make binding agreements before they have all relevant information about preferences and feasible
outeames may prevent them from reaching an agreement that is fully Pareto-efficient relative to the
information that is collectively available. But Harsanyi makes no attempt to explain the occurrence of
impasses, and the theory of bargaining outlined there and in Harsanyi and Selten (10, unlike the one
developed here, would predict fully efficient outcomes in the absence of uncertainty about prefer-
ences and feasible outcomes. An interesting recent development, which explains the occurrence of
impasses by exploring bargainers’ incentives to maintain reputations for “toughness,” is the work of
Rosenthal and Landau [16).

IWhile the rationale for this assumption is rarely made explicit, it often appears to stem from an,
analogy between bargaining and individual behavior, where large costs (taking uncertainty and costs
of decision-making into account) are more likely to be avoided than small costs. Although this
analogy 1s superficially plausible, adopting it as an assumprion is quite risky. There is little reason to
suppose that bargaining, one of the most interactive of economic situations, is behavicrally analogous
to individual decision-making in all respects.
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The paper is organized as follows. Section 2 discusses modeling issues and
presents the bargaining model, describing the commitment process and the rules
that determine bargaining outcomes. Section 3 analyzes the model under the
assumption of full noncooperative game-theoretic rationality; the solution con-
cept employed is Harsanyi's [8] Bayesian Nash equilibrium, with an additional
requirement of perfectness (see Selten [21]). Section 4 analyzes the model under
the alternative assumption that bargainers use simple heuristics (rather than the
assumptions of perfectness and full rationality} to evaluate the uncertain future
consequences of current attempted commitments. It is shown that for a leading
special case of these heuristics, the bargaining game can be reduced to a
Prisoner’s Dilemma, providing a simple “textbook™ explanation of the fact that
bargainers do not always manage to avoid disagreement and showing that the
implied inefficiency can arise even if one is willing to accept only strategic-
dominance arguments about bargainers’ rational strategy choices. For a more
general class of heuristics, a simple condition which guarantees that both
bargainers will attempt commitment to incompatible positions, thereby risking
impasse, is provided. The analysis of Sections 3 and 4 confirms Schelling’s [20,
Chapter 3] suggestion that uncertainty may enhance the strategic usefulness of
attempting commitment, shows that Harsanyi’s [7, p. 182; 9, p. 187] claim that
attempting commitment is irrational because it creates a risk of impasse is not
valid if commitment is uncertain, and yields new insight into the properties of the
“demand game” proposed by Nash [15] as a noncooperative model of bargaining
to provide an alternative justification for the cooperative bargaining solution he
axiomatized in [14].

Section 5 studies some of the comparative statics properties of the model,
showing that commonly held beliefs about the effects of enlarging the contract
zone and of making commitment more difficult may be invalid and are, at any
rate, not justified on & priori grounds. Section 6 concludes by discussing some
possible directions for future research in this area.

2. THE BARGAINING MODEL

This section outlines a model of the bargaining process that is simple, but rich
enough to explain the occurrence of disagreements under reasonable behavioral
assumptions. The theory follows Schelling’s classic paper [18] in focusing on the
commitment aspects of bargaining. Schelling defines commitment impressionis-
tically and by way of examples, but the essential idea seems to involve making a
demand and “burning one’s bridges,” or taking actions during the negotiation
process that increase the future cost of backing down from one’s demand. The
potential benefits from such a strategy arise from the possibility that one’s
opponent will thereby become convinced that one will in fact not retreat, and
that he will therefare decide to vield to one’s demand. Schelling [18, pp. 295-96]
suggests that the possibility of mutually incompatible commitments may explain
the occurrence of impasses:
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In threat situations, as in ordinary bargaining, commitments are not altogether clear;
each party cannot exactly estimate the costs and values to the other side of the two related
actions involved in the threats; the process of commitment may be a progressive one, the
commitments acquiring their firmness by a sequence of actions. Communication is often
neither entirely impossible nor entirely reliable; while certain evidence of one’s commit-
ment can be communicated directly, other evidence must travel by newspaper or hearsay,
or be demonstrated by actions. In these cases the unhappy possibility of both acts
aceurring, as a result of simultaneous commitment, is increased. Furthermore, the recogni-
tion of this possibility of simultaneous commitment becomes itself a deterrent to the taking
of commitments.

(In the present context, Schelling’s “threats” correspond to relying on the
disagreement outcome rather than agreeing on a settlement.)

But Schelling [18] does not address further the question of why bargainers
might attempt commitment. The puzzle is simple: attempting commitment cre-
ates a risk of impasse, which is generally Pareto-inefficient ex past." And any
distribution of outcomes that puts positive probability on an inefficient outcome
18 not ex ante Pareto-efficient either. This paper proposes a plausible explanation
of why bargainers attempt commitment when there are feasible negotiated
settlements that are better for both ex ante than attempting commitment.

Schelling [18] argues convincingly that commitment is an important compo-
nent of real bargaining and that it typically involves significant elements of
uncertainty and irreversibility. The uncertainty is intrinsic to the process, which
is primarily psychological (and uncertain even to psychologists). The irreversibil-
ity arises primarily because attempting commitment involves making statements
about one’s relative evaluations of disagreement and agreement on one’s posi-
tion, and linking one’s reputation to the maintenance of one’s position. A union
leader who, in the hope that management is listening, has told his members they
should replace him if he fails to get them a given wage increase cannot
comfortably back down from that position. If it later turns out that he cannot
obtain that wage increase in negotiations, he may actually prefer a strike. (Of
course his original preferences, which presumably better reflected those of his
membership, are still the relevant ones for judging outcomes.) A management
representative who has stated publicly that his company cannot grant the wage
increase sought by the union without going out of business is in much the same
position.

Schelling (20, Chapter 3] suggests that if attempting commitment is not certain
to cause an impasse, it might be a viable bargaining strategy even when
disagreement is extremely costly. The rest of this section discusses the issues that
arise in building a model to confirm that uncertainty can provide a resolution of
the puzzle posed above, and outlines the model.

First, it is important to note that an element of irreversibility is an essential
component of a sensible model of the commitment process. As in all models with
uncertainty, unless actions whose effects cannot be undone are taken before the

“Here and in what follows, “ex anre™ and “ex post” refer to before and after the uncertainty
inherent in the bargaining process is resolved.
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uncertainty is resolved, uncertainty can have no lasting effect. In the present
context, bargainers could reconsider their decisions whenever an impasse seemed
imminent, and it would generally be irrational for them to do otherwise.

Uncertainty is equally essential. With irreversibility alone, questions of timing
take on primary importance, as Schelling [19, Chapter 2 and Appendix B]
pointed out. A bargainer who knew he could be the first to communicate an
irrevocable demand to his opponent would find it to his advantage to do so,
ending negotiations on the spot. And if bargainers must communicate their
demands simultaneously, there is great sfrategic uncertainty, in the form of
multiple Nash equilibria: under certainty, the best strategy is to demand a lot if
one’s opponent demands a little, and vice versa. Aside from the fact that in
games with multiple equilibria and payoff functions that allow inefficient out-
comes it is difficult to justify the assumption that players will coordinate their
strategy choices so that a Nash equilibrium arises {see, however, Nash [15, pp.
131-136]): the resulting predictions are sensitive to the theory used to predict
which, if any, equilibrium will arise. Since no such theory has yet been widely
accepted (see, however, Harsanyi [9, Chapter 7] and Schelling [19, Chapter 4]), it
seems a better research strategy to avoid uncertainty about which theory is
appropriate by incorporating uncertainty into the game.

At the most general level, commitment, and the entire bargaining process, is a
complex multistage game with incomplete information, in which bargainers make
demands, take actions to increase the difficulty of retreating from their demands,
learn from their opponents’ actions, and periodically reconsider their strategy
choices. In a detailed model of the process, bargainers’ freedom to undo the
effects of their decisions would be eroded only gradually over time, and uncer-
tainty would be resolved more or less continually. While much of interest might
be learned by building such a detailed model, I shall adopt the alternative
strategy of building the simplest possible model in which attempting and suc-
ceeding at commitment are the outcomes of bargainers’ rational decisions, and in
which uncertainty and irreversibility can have an effect on the outcome. This
maodel, which has two stages and abstracts from all uncertainty except that in the
commitment process, is likely to share many of the important features of more
realistic models. I believe that the approach taken here will best serve
to elucidate the possibilities inherent in more general models, and in real bar-
gaining,

A useful starting point for expositing the model is the “demand game”
presented by Nash [I5] as an alternative justification for his “fixed-threats”
solution, developed in [14]. (In Nash [15], the demand game is later combined
with a “threat game” to provide a model of what is now commeonly called
“variable-threats” bargaining. But the demand game also stands on its own as a
model of fixed-threats bargaining.} In Nash’s demand game, there is only one
stage, in which bargainers simultaneously make demands, in utility terms. If the
demands are compatible, in the sense of being collectively feasible, each bar-
gainer gets the utility level he demanded; if the demands are incompatible,
disagreement is the outcome.
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Nash [15] observes that in his demand game, any Pareto-efficient pair of
demands in the contract zone is in Nash (noncooperative) equilibrium; this is the
basic source of the strategic uncertainty referred to above, He then characterizes
his fixed-threats cooperative solution as the only Nash equilibrium of the
demand game that is the limit of equilibria of “smoothed” games as the amount
of smoothing goes to zero. (In the smoothed games, bargainers assume they are
certain to get their demands if they are compatible, but that the probability of
getting them, or, equivalently, of their compatibility, falls off rapidly toward zero
as their distance from the set of feasible settlements increases. Nash suggests that
these probabilities can be thought of as reflecting uncertainty about preferences
and the information structure of the game.)

The model used here differs from Nash’s in three respects. First, bargainers are
not required to make demands (that is, to attempt commitment); one of their
options is to bargain cooperatively, which entails no risk of impasse and leads, if
both bargainers adopt that strategy, to a known Pareto-efficient compromise
settlement. Second, if both bargainers make demands that are more than compat-
ible and allow them to stand, they share the surplus according to a rule that
generalizes Nash’s but need not preclude an efficient outcome. Finally, the most
important difference lies in a richer specification of how demands are made and
backed up. In Nash’s demand game, demands are simply irrevocable; thus, one
might view his model (although he apparently did not} as a model of commit-
ment in which commitments are completely certain. I shall adopt the alternative
assumption that whenever a bargainer makes a demand, he also sets in motion a
process that will make it costly, to an uncertain extent, for him to later accept
less than his demand, but that he may freely choose to accept less, as long as he
pays the cost. It is this cost-generating process by which bargainers give meaning
to their demands.®

More precisely, bargaining is viewed as a two-stage process, in which
bargainers are perfectly informed about everything except their costs of backing
down. In the first stage, bargainers simultaneously decide whether or not to
attempt commitment. An attempt, if one is made, consists of the announcement
of a demand (in utility terms) and a draw from a probability distribution, whose
realization is the cost {again in utility terms) that must be borne if the bargainer
in question later decides to accept anything less than his demand. In the second
stage, each bargainer learns his own, but not his opponent’s, cost of backing

3 A related model of bargaining is developed by Chatterjee and Samuelson [2]. Although they do
not point out the connection, their model is essentially a generalization of Nash's demand game, in
which the irrevocability of demands, or what I have called commitment, is certain, but bargainers are
upcertain about each other's disagreement utilities. (Minar differences between their madel and
Nash's are that they make assumptions that imply a lingar utility-possibility frontier, and employ a
different rule for compromising when mare-than-campatible demands have been made.} Chatterjee
and Samuelson show that in their model, Nash equilibrium demands (which are, equivalently,
“Bayesian” equilibrium demands in the game with incomplete information; see Harsanyi [8])
generally invalve “shading,”or demanding more than one’s disagreement utility. Given the uncer-
tainty, shading makes it possible that with positive probability no bargain will be struck even if there
is a nonempty contract zone. Thus, Chatterjee and Samuelson's model provides an alternative
explanation of the occurrence of impasses.
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down (the outcome of his draw); whether or not his opponent attempted
commitment; and what demand, if any, he made. He then decides, taking into
account this information, whether or not to retreat from his demand; if not, he is
said to have “achieved commitment” to the position given by his first-stage
demand. The second-stage part of his strategy takes the form of a rule that
relates his action to the situation in which he finds himself. These second-stage
decisions then determine the final outcome as in Nash’s demand game, with the
qualification noted above: incompatible demands from which neither bargainer
retreats lead to the disagreement cutcome; and compatible demands lead to a
compromise that yields each bargainer at least what he demanded. In other
situations, which cannot arise in Nash’s game, the outcome is as follows: if
exactly one bargainer has made a demand and not backed down from it, the
Pareto-efficient settlement in which he gets his demand is the final outcome; and
if neither bargainer has made a demand and stuck to it, the outcome is a
compromise settlement. This compromise settlement is assumed to be Pareto-
efficient, to avoid begging the question that lies at the heart of this paper:
whether rational behavior in bargaining must lead to efficient outcomes.

In the above specification of the bargaining game, it is assumed that
bargainers do not learn their costs of backing down until after their first-period
decisions. In general multi-stage games with incomplete information, players can
learn about their opponents by observing their actions in early stages and
drawing inferences based on game-theoretic rationality (or other behavioral)
assumptions. Players must, therefore, evaluate early-stage actions taking into
account the later-stage effects of the information those actions reveal to oppo-
nents. (See Kreps and Wilson [12] for an especially clear discussion of these and
other problems that arise in modeling bhehavior in multi-stage games with
incomplete information.) These issues do not arise in my specification of the
bargaining game, because a bargainer’s choice of first-stage strategy is based on
precisely the same information that is assumed to be available to his opponent,
who can, therefore, draw no additional inferences from it. (Information is
transmitted by second-stage actions, but by then, given my assumptions, it is too
late for this information to change the outcome.} This fact allows complex issues
of strategic information transmission, which are conceptually separate from the
issues considered here (although certainly important in real bargaining, mainly in
connection with information about preferences, however), to be avoided.

The bargaining environment can be farmally deseribed as follows. It includes
two bargainers, indexed i = 1,2. The index j, when it appears, refers to the
bargainer other than i; and to avoid needless repetition of “i = 1,27, i alone will
be understood to refer to each bargainer. Each bargainer i is assumed to have
preferences aver agreements and probability distributions of agreements that can
be represented by a von Neumann-Morgenstern utility function, denoted u'.
These preferences may reflect the anticipated effects of the current agreement on
future negotiations, but bargainers are assumed not to contemplate coordinating
their current bargaining strategies with. strategies in future negotiations. Follow-
ing Nash [14] and many others, I shall assume that the set of utility pairs,
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denated U, that can be attained by negotiating an agreement is a closed,
bounded, convex, and nonempty subset of two-dimensional Euclidean space.®
And 1 shall consider only the “fixed-threats” case, where the disagreement
outcome—denoted (¢', #?) and defined as the pair of expected utilities bargainers
associate with the (possibly uncertain) consequences of not negotiating an
agreement—is independent of bargainers’ actions. The disagreement outcome is
assumed not to be Pareto-efficient in I/. The contract zone, denoted V, is defined
as the set of utility pairs (¢', #?) € U such that ¥’ > «',i = 1,2. For simplicity, it
is assumed that the part of the boundary of the utility-possibility set that lies in V'
is strictly downward-sloping and differentiable. And a bargainer faced with a
choice between outcomes between which he is indifferent will be assumed always
to choose as his opponent prefers.

Let # denote the largest utility for bargainer / that is compatible with (z', u?)
€ V; given the above assumptions, @’ > u'. Write the equation of the portion of
the utility-possibility frontier that lies in ¥, which is downward-sloping by
assumption, as «/ = ¢(u'), and let = ¢ ~ ', so that u’ = y(u’) also represents the
utility-possibility frontier in V. (Even though the superscript i is normally
understood to refer to either bargainer, this notation will be used to indicate
whether the utility-possibility frontier is viewed as parameterized by u‘ or w/ as
they appear elsewhere in the argument; no confusion should result.) A compatrible
pair of utilities is defined as one such that, if 2! and «? are the utilities, (z', 4*) €
U; more-than-compatible utilities lie, as a pair, in the interior of U; and juss-
compatible utilities lie on the utility-possibility frontier.

The outcome function is formally specified as follows. Without loss of general-
ity, we may restrict bargainer r's possible commitment positions to the interval
[¢/,%]. If neither bargainer achieves commitment, the outcome is a Pareto-
efficient compromise, denoted (&',4%); it is assumed that &' < #* <%, so that
(d', 4% € V. If both bargainers achieve commitment, to incompatible pasitions,
the outcome is (u',u?). If bargainers achieve commitment to compatible positions
(4', &), the outcome (', u%) € U satisfies #' > &' and «* > &?; it is not required
to be Pareto-efficient. However, #‘ is assumed to be a strictly increasing function
of &' in this case, as long as the positions (#!, #%) remain compatible. Nash’s [15]
rule, where u’=4‘, is a simple example of one satisfying this assumption.
Finally, if bargainer i alone achieves commitment, to a position 4‘ <%, the
outcome is (é@°, o(#')).

The justification of this outcome function is clear, given the above definition of
achieving commitment. Figure 1, which illustrates a typical bargaining environ-
ment, may make it easier to remember the notation; the contract zone is the
shaded portion of the utility-possibility set in the figure.

To complete the specification of the model, consider the determinants of the
costs of backing down for bargainers who have attempted commitment. In
principle, a bargainer's cost might be systematically related to the position he

8Convexity could be dispensed with, but since bargainers are allowed to choose strategies that lead
to probabilistic outcomes, it seems unnatural to prohibit them from negotiating random settlements.
Without such a prohibition, {f is well known to be convex.
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attempts commitment to; and he might, by his choice of negotiating tactics, also
be able to exert an influence on the distribution of these costs that is separate
from the influence of his commitment position. Intraspection and casual empiri-
cism have not made clear to me whether it should tend to be harder to back
down from an extreme position or a moderate one, and I have even less intuition
about how this effect should interact with bargaining tactics. For these reasons,
and because these complications seem to add little to what light the model sheds
on bargaining, I shall study explicitly only the leading special case where the
distribution of costs, given that a bargainer has attempted commitment to some
position, is independent of that position and of his other actions. The only
influence he can exert on these costs is by exercising his option not to attempt
commitment. This assumption does not, of course, imply that the probability of
achieving commitment is necessarily independent of the commitment position as
well. Additional simplicity is gained at little expense by assuming that bargainers’
cost distributions are independent.

More formally, let Fi(¢') denote the distribution function of bargainer i’s cost,
in utility terms. F' and F/ are assumed to represent independent and, for most of
the analysis, continuous distributions, and to be common knowledge. The
supports of the F' contain only nonnegative values, so there is never a “subsidy”
for backing down.
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3. PERFECT BAYESIAN NASH EQUILIBRIUM

This section analyzes the model developed in Section 2 when the solution
concept is Harsanyi’s [8] Bayesian Nash equilibrium, with an additional require-
ment of perfectness (see Selten [21]). These assumptions embody what has come
to be known as full game-theoretic rationality in multi-stage noncooperative
games with incomplete information; they therefore provide the most stringent
possible test of the model’s ability to rationalize the occurrence of impasses in
bargaining. The result obtained here, that impasses can occur with positive
praobability in equilibrium, does not stem from bargainers having irrational
expectations or making suboptimal decisions.

A Bayesian Nash equilibrium, in the context of the model, is simply a Nash
equilibrium in first-stage actions and in the rules that relate bargainers’ second-
stage actions to the situation created by first-stage actions and to their observed
costs of backing down. Each bargainer responds optimally to his opponent’s
strategy choice, taking into account its implications in view of his probabilistic
beliefs about his opponent’s cost. An additional requirement of perfectness will
be imposed, which has the effect of ruling out equilibria in which a bargainer
makes implausible bluffs about what he will do in the second stage that are not
called in equilibrium. To put it another way, perfectness requires bargainers
always to respond optimally in the second stage to any situation that might be
created by their actions in the first stage. The resulting equilibrium concept is
equivalent to Kreps and Wilson’s [12] notion of “sequential rationality.”

The Bayesian Nash equilibrium is both the natural generalization of the
ordinary Nash equilibrium to games with incomplete information and a natural
extension of the familiar concept of rational-expectations equilibrium to situa-
tions where strategic interactions are important. It has the further, closely related
advantage that rational players who have chosen strategies that are in Bayesian
Nash equilibrium, and are given an opportunity to revise them before the
uncertainty in the game is resolved, will never do so.

When a Bayesian Nash equilibrium exists in the model {the existence question
1s discussed further below), it can be characterized as follows. First, note that no
equilibrium can have neither bargainer attempting commitment: in such a
situation, either bargainer could attempt commitment to a position better than
the compromise settlement for himself and not back down in the second stage
(which is consistent with perfectness), obtaining his demand. For similar reasons
equilibrium cannot, with one possible exception, involve only one bargainer
attempting commitment: in such cases, that bargainer would always have an
incentive to increase his demand. The exception occurs when bargainer { is
already demanding %, in which case it might be an equilibrium strategy for
bargainer j to acquiesce. But in that case, j might just as well attempt commit-
ment to u/, a convention that allows the simple classification of equilibria
presented below.

It follows from the above observations that equilibrium can always be taken to
involve each bargainer attempting commitment to some position; but these
positions need not be incompatible. In fact, there are two significantly different
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types of equilibria in this model: those with compatible commitments and those
with incompatible commitments. Given my assumption that the utility a bar-
gainer gets if both bargainers achieve commitment, to compatible positions,
increases strictly with his position as long as compatibility is preserved, it is
immediately clear that compatible commitments can be in equilibrium only if
they are just compatible. It is also clear that a bargainer can never gain by
unilaterally backing down from a commitment position that is just compatible
with that of his opponent, even if the cost of doing so turns out to be zero. Thus,
equilibrium involves either just-compatible commitments {in which it can be
assumed without loss of generality that neither bargainer backs down in the
second stage, no matter what his cost} or incompatible commitments. The
Jjust-compatible commitment equilibria are the ones identified by Nash [15],
although in general, not all of those equilibria are equilibria here as well.
Relaxing Nash's assumption that demands are certain to be irrevocable both
destroys some compatible-commitment equilibria and allows the existence of
some incompatible-commitment equilibria, as we shall see.

Suppose that bargainers have attempted commitment to the incompatible
positions (&',#/) in the first stage. How do they decide when to back down in
the second stage? Under my assumption of perfectness, the rules that answer this
question must be in Nash equilibrium in the second-stage game created by
bargainers’ choices of demand in the first stage. It is clear that best-response
decision rules will invalve cutoff levels of costs, below which bargainers will back
down, and above which they will stand firm. Suppose the F' represent continu-
ous distributions, so that how bargainers break ties is unimportant. The equilib-
rium cutoff levels are determined as follows.

Let ¢’ denote bargainer i’s cutoff level of costs. When ¢’ < d*, he backs down
in the second stage; otherwise, he stands firm. Given the definitions and
assumptions, it is easy to verify that bargainer i’s expected payoff in this game,
when demands are incompatible, is given by

Gy wi(d\d )= Fi(d)[ F (& )i+ (1 - F(d (i) ]

+[1- F*‘(d*‘)][pf(df)ﬁf + (1 - Fi(d/ ))g‘]
Ffdlcj“'(c")dc",
0
where ' denotes the density associated with F'. This expression for w'(d’,d’} is
derived by considering the four possible combinations of bargainers backing

down and standing firm, weighted by their probabilities, and subtracting the
expected costs incurred by backing down. An easy computation reveals that

(2 wid\d)=f(d)| P ya - i)

+ (1= Fi(d))(w(d) - u') - d‘].
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Suppose, for example, that the support of F’ is the interval [0,e], where
e! > @ —y'. Then it is not hard to see that i’s best choice of 4’ must be interior,
and must, therefore, satisfy w/(d’,d’) =0, which holds, given that f'(d") >0
whenever 4 €[0,e'), if and only if the term in brackets on the right-hand side of
(3.2) equals zero. Another easy computation reveals that whenever wi{d',d/) = 0,

(B3 wi(d,d)y=—fi(d') <O

Thus, it follows that the w' are strictly quasi-concave. Since they are also clearly
continucus, and the strategy spaces can be taken to be compact and convex
without ruling out any “good™ strategies, Debreu’s Social Equilibrium Existence
Theorem (restated as Theorem 1 in Dasgupta and Maskin [§]) implies the
existence of a pure-strategy Nash equilibrium in the second-stage game, given
any incompatible choices of & and &/ in the first stage. In general, it is not
passible to prove uniqueness without considerably stronger restrictions on the
payoff functions, but I shall assume uniqueness to facilitate the rest of this
discussion.

Given this determination of equilibrium strategies in the second stage, a
perfect Bayesian Nash equilibrium in the entire game can be constructed, in
dynamic programming fashion, by finding Nash equilibrium demands in the first
stage, evaluating the second-stage consequences of first-stage actions using the
already determined second-stage equilibrium strategy rules. Of course, that there
is always an equilibrium in pure strategies in the second-stage game does not .
imply that there is always an equilibrium, in pure sr mixed strategies, in the game
taken as a whole. In fact, it does not appear possible to prove a general existence
result under the maintained assumptions, due to the discontinuities that may
arise in the payoff functions when bargainers’ demands are just compatible.” T
shall provide a partial remedy for this by exhibiting a class of examples in which
equilibrium generally exists and, later, by providing restrictive, but not unreason-

?The discontinuities prevent the use of Debreu’s Social Equilibrium Existence Theorem (restated
as Theorem | in Dasgupta and Maskin [5]). Dasgupta and Maskin have shown [5, Theorsms 3 and 4
and n. 16] that at least a mixed-strategy Nash equilibrium will exist, given the compactness and
convexity of the strategy spaces, provided only that payoff functions are upper semi-continuous and
graph continuous. (Graph continuity requires, roughly, that the graph of a player’s payoif, viewed as
a function of his own actions, vary continucusly with changes in others players’ actions.) If, in
addition, the payoff functions are quasi-concave, pure-strategy exjstence is cbtained. These more
general results do not imply existence in the present madel, because it is not generally true that both
payoff functions are upper semi-continuous when bargainers’ demands are just compatible. The
intuitive reason for this is that by moving from a just-compatible to a just-incompatible demand, a
bargainer may induce both his opponent and himself to back down frequently enough that the
compromise settlement occurs with significant probability, (Allowing for such changes in second-
stage actions is the proper way ta evaluate the consequences of such a change, since it is the rule that
determines the bargainer’s second-stage actions, rather than the action itself, that must be held
constant in viewing the perfect Nash equilibrium as a Nash equilibrium in first-stage demands, when
the payoff functions are dynamic-programming value functions.) If a bargainer does this starting
from a configuration of demands that is worse for himself than the compromise settlement, it can
make him hetter off, even though there is also a risk of impasse that was not present before. This
failure of upper semi-continuity appears to be intrinsic to the model rather than to the present
formulation, although of course it does not imply nonexistence of equilibrium.
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able, assumptions about behavior and the bargaining environment under which
existence is guaranteed.

The remainder of this section analyzes in detail a class of simple examples in
which pure-strategy existence can be guaranteed under easily interpretable and
reasonable assumptions, and in which for some parameter configurations there
are only incompatible-commitment equilibria. It is hoped that the analysis of
these examples will also serve to illustrate better the workings of the model.

Normalize &' =#/ = 0 and @ =7’ = 1, and depart from the earlier assumptions
by letting F' and F/ be Bernoulli distributions, with probabilities 4° and ¢/
respectively of yielding a cost greater than unity, and probabilities 1 — 4* and
1 — ¢/ of yielding zero costs. I shall assume to avoid trivialities that ¢* and ¢/ lie
strictly between zero and one. When costs are high in this case, bargainers always
stand firm in the second stage; when costs are low, they are zero. Thus, costs are
never paid; they serve only to make it effectively “impossible™ to back down,
with given probability. As will become clear, however, the game is far from trivial
even in this simple case.

The reader can easily verify that my analysis of the necessary conditions that
must be satisfied at compatible-commitment equilibria remains valid here: with
inessential exceptions, any such equilibria must involve just-compatible demands
and must not be vulnerable to defections involving incompatible demands. In the
remainder of this section, I shall argue first that the examples are capable of
supporting compatible-commitment equilibria for some parameter configura-
tions; second, that there are configurations where incompatible-commitment
equilibria always exist; and finally, that there are configurations where only
incompatible-commitment equilibria exist.

While it is difficult to characterize compatible-commitment equilibria in gen-
eral, it is not hard to show that when 4" > | — ¢/ and &/ > 1 — ¢/, (&', &) = (&',
i) is such an equilibrium. Consider possible defections from the hypothesized
equilibrium configuration by bargainer i, and recall the perfectness requirement,
which implies that the consequences of a defection must be evaluated under the
assumption that bargainer j responds optimally {in the sense of choosing an
equilibrium strategy) to the second-stage situation created by the defection. To
evaluate these consequences, we must first consider bargainers’ choices of strat-
egy in the second stage when they have attempted commitment to incompatible
positions in the first stage. Recall that at perfect equilibria, bargainers always
stand firm when costs are high, bhecause the costs outweigh any possible gains.
Bargainers’ unconditional expected payoffs, as a function of the actions that they
take when costs are low and taking into account their optimal actions when costs
are high, are as follows, with /s expected payoff given first in each case. If
bargainer i stands firm, if j also stands firm the outcome is (¢,1/), and if j backs
down the outcome is (¢t + (1 — ¢/)d',¢/u’/ + (1 — g )p(i")). If bargainer i
backs down, if j stands firm the outcome is (g'u' + (1 — g'W(d/),q'uw/ +
(1 ~ ¢")@/), and if j also backs down the outcome is (¢'¢/u’' + ¢'(1 — ¢/)i’ +
(1= g)g/y(a’/) +(L-g")y1—-g/)d’ ¢'q/ u’/ +g°(1 —g/)e(d")
+ (1 — ¢g)gd + {1 — ¢'}1 — ¢/)i&).
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Given the definition of the outcome function when commitments are compati-
ble, from (& &) = (@', ) only a defection to some incompatible commitment
i’ > &' could possibly yield a better outcome for bargainer i. Inspection of the
conditional payoff function given above reveals that in the case under consider-
ation, any such defection makes backing down when costs are low a dominant
strategy for bargainer j (that is, optimal for either of s possible second-stage
actions) no matter what commitment position in (&, &) bargainer i defects to.
Thus, setting &' at {or near) unity 8 the optimal defection of this type for
bargainer i, and given that #‘ > 1 — ¢/, backing down when costs are low is his
optimal second-stage policy. This defection yields bargainer i an expected payoff
of ¢'(1 — ¢/y+ (1 — ¢")ii’, which is unprofitable when compared to his original
payoff if and only if # > 1— ¢/. Given the symmetry of the situation aross
bargainers, imposing the analogous condition &/ > | — ¢ for bargainer j guaran-
tees that (4°,4/) = (&',@&) is, in fact, a compatible-commitment equilibrium.
Generally, it is not unigue; I have singled this one out because it is easy to
identify.

I shall now argue that when g and ¢/ are near enough to zero that &/ < 1 — ¢°
and &/ < 1 — 4, there always exist pure-strategy incompatible-commitment equi-
libria. This confirms Schelling’s [20, Chapter 3] intuition that low probabilities of
success (because they imply a low probability that one’s opponent will succeed)
tend to favor attempting commitment to incompatible positions. Conceivably,
for some values of the parameters there are equilibria where one, or even both, of
the 4° < 1(=%') constraints on bargainers’ demands are binding. Since in these
cases the analysis is unduly complicated by possible multiplicity of equilibria in
the second-stage game, I shall confine my discussion to interior equilibria, where
this multiplicity is easily dealt with. The analysis yields a simple characterization
of incompatible-commitment equilibria.

The analysis of interior incompatible-commitment equilibria is greatly simgpli-
fied by the observation that such equilibria must have both bargainers backing
down in the second stage if (and only if) costs are low. Any other combination of
second-stage strategies yields either bargainer / less than (#/) or bargainer f less
than ¢{#i'); since bargainers can unilaterally guarantee themselves these amounts
by defecting to just-compatible commitments in the first stage and standing firm
in the second stage {which is consistent with perfectness), such strategies are
incompatible with equilibrium. That bargainers are in equilibrium in the second-
stage game backing down when costs are low places the following restrictions on
interior incompatible-commitment equilibria, recalling the ¢’ = 0 normalization:

g'(1 = ¢)@" +(1 = gy (@) + (1~ ¢') (L~ g)i" 2 (1 - ¢/},

which reduces to

i ‘i'f A L
(3.4 i< - q}_tp(&f) + i
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and
g'(1— g/ Wy + (1 = g )t + (1 = "Y1~ ¢/)a/ > (1 — q" )i/,
which reduces to

i

(3.5 @< 1 I paty + i,

An interior incompatible-commitment equilibrium must have (3.4) and {3.5)
satisfied with equality, because in these examples, given the anticipated equilib-
rium in the second-stage game, the probabilities of backing down are indepen-
dent of 4' and &/ as long as (3.4) and (3.5) are satisfied. Thus, setting #‘ or #
lower than these inequalities allow, but still incompatible, gives up something
without gaining any advantage in return. In addition, as noted above, an
equilibrium with incompatible commitments must yield bargainer i at least (4/)
and bargainer j at least ¢(#'); thus,

(3.6) g1 - ¢t +(L— gY@y + (1 = g")(1 — ¢/ )i > Y(#)

and

BT g (1= g)@) + (1 - )¢ + (1 — ¢')(1 = ¢/ Y&/ > o(2").

Substituting (3.4), with equality, into (3.6) and simplifying yields &’ > (i},
which is equivalent, given the Pareto efficiency of (ii', &), to &/ > #i/. Similar use
of (3.5), with equality, reduces (3.7) to &' > &#'. Given the 4'< 1 and 4/ <1
constraints, these conditions are automatically satisfied when (3.4) and (3.3) are
satisfied with equality. So the question of existence of interior incompatible-
commitment equilibria reduces to the question: Can (3.4) and (3.5) both be
satisfied with equality for some (&°,4/) in (&', 1) X (&, 1)?

To see that they can, substitute the equality form of (3.5} into the equality
form of (3.4) to obtain

+ i

g o
(.8) ﬁ‘=lqu,¢{lfqi¢(u)+uf

When & = if', the right-hand side of (3.8) becomes ¢/y[& /(1 — ¢)]/(1 — ¢/) +
fi', 50 the left-hand side is less than the right-hand side if and only if &/ < 1 — ¢".
When &' = |, the right-hand side simplifies to #'/(1 — g’), so the left-hand side
exceeds the right-hand side if and only if &' < | — ¢/. It therefore follows by the
Intermediate Value Theorem from the continuity of ¢ and ¢ that, when &/ < 1 —
g' and &' < 1 — ¢/, there exists a value of 4 strictly between &' and unity that
satisfies (3.8). Now consider the corresponding value of &/, as given by the
equality form of (3.5). When &’ < |, &/ > @/. And when &' > @', that ¢ is strictly
decreasing implies that & < & /(1 — ¢°). Thus, if # </ | — g* as assumed above,
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the corresponding value of 4/ also satisfies the desired restrictions, and we have
an interior incompatible-commitment equilibrium, which is completely character-
ized by the equality forms of (3.4) and (3.5). It does nat seem possible to establish
uniqueness in general, however.

This section closes with an example to show that there are parameter configu-
rations in the region where incompatible-commitment equilibria always exist for
which there are no compatible-commitment equilibria. The example will be
constructed by deriving a necessary condition that compatible-commitment
equilibria must satisfy, and then constructing a parameter configuration where
this necessary condition cannot be satisfied; it is hoped that this will be more
informative than simply pulling the parameter values in question out of a hat.

Since any equilibrium pair of compatible demands must be just compatible,
either £ < ' or &t/ < &/. Suppose the first for definiteness; since the example will
be symmetric across bargainers, this involves no loss of generality. Given that
#' < i) (3.4) holds with strict inequality for any #/ < 1. Thus, by simple
first-order stochastic dominance arguments, if bargainer j defects to such an
incompatible commitment position, backing down (when costs are low) is a
strictly dominant strategy for bargainer i in the second-stage game. This is true
for any & < 1, so bargainer j can guarantee himself a payoff as close as desired
to 1 — g' by defecting to a position near unity and standing firm in the second
stage. Imposing the perfectness requirement can only raise this expected payoff
further, since bargainer / has a dominant second-stage strategy in this case. It
follows that a necessary condition for the demands (#',#) to be a compatible-
commitment equilibrium is that &/ > 1 — ¢ if &/ > i

Consider a compatible pair of demands (#',4/) with &/ > 1~ ¢' > # and
&' = ¢(#4/). Bargainer i has the option of defecting to 4° + ¢, where ¢ is near zero.
Since 4° < &, this strategy is potentially advantageous in that it may induce
bargainer j to back down when costs are low in order to reduce the risk of
impasse. Of course, this risk of impasse is costly for i as well, but the costs may
be outweighed by the increased probability of getting the compromise settlement.
For such a defection to help, two things must be true: the defection must cause
bargainer j to back down in the second stage, and the resulting expected payoff
for i must exceed (/). The first condition is just inequality (3.5}, which simple
algebra reveals to be satisfied with strict inequality for all &/ €[1 — g7, 1] and for
i near (&), provided that & > (1 — 24°}/(1 — ¢'). Impose this and the sym-
metric condition #' > (1 — 2¢/}/(1 — ¢/); these are easily seen to be compatible
with the 1 — ¢’ > @ and | — ¢/ > &' restrictions. They are also compatible with
the fact that & = (i) when ¢ is linear and g’ = ¢/ > 1/3, for example. The
second condition, for small ¢, requires that

G (1= gy + (= gY@ + (1= ¢ YL — g/)id’ > p(@),
Given that &' = (&), (3.9) reduces to

(B10)  (1— g W1 — g/ )@ — 87y > ¢'gd,
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which, recalling that &' = 4‘ —u' given the normalization, is easily interpretable
in terms of weighing the benefits of the greater probability of compromise against
the costs of the greater risk of impasse. For defections of the kind being analyzed
to rule out all possible compatible-commitment equilibria, ¢3.10) must hold for
all 4° € {0, (1 — ¢')], given that &/ > 1 — 4’ at any candidate for an equilibrium;
preserving symmetry guarantees that the analogous condition for bargainer j will
be satisfied.

Now suppose that ¢ is linear, the #i = &/ = 1/2, and that ¢’ = ¢/ = 7/20. This
preserves symmetry, and it is easy to check that for these parameter values, the
conditions for a successful defection are always met. In particular, (3.10) is
satisfied for all &' < 169 /436, but &’ < (1 — ¢*) = ¢' = 7/20, which is less than
169/436. Thus, there can exist only incompatible-commitment equilibria for
these parameter values.

4. EQUILIBRIUM WITH EXPECTATIONAL HEURISTICS

Assumptions of full game-theoretic rationality such as those maintained in
Section 3 provide a useful discipline, whose value is obvious when the goal is to
show that the accurrence of inefficient bargaining outcomes is compatible with
rational behavior by bargainers. And it is tempting simply to view perfect
Bayesian Nash equilibrium as the “right” equilibrium. concept for noncooper-
ative multi-stage games with incomplete information, and to reject all others as
being irrational or arbitrary. But in my opinion, it would be unfortunate if the
search for truly descriptive behavioral assumptions in such games were to end
there.

My reasons for this opinion are as follows. Suppose we give the “fully
rational” theory the greatest possible benefit of the doubt by accepting the usual
iterative story about how players come to choose equilibrium strategies, in which
they are free to keep revising their actions until both are satisfied. Suppose
further, for the sake of argument, that the implied dynamic process converges.
Even under these circumstances, in the model of this paper, players are not
relieved of the need to formulate expectations about their opponents’ actions,
because irreversible actions whose payoffs depend on those expectations must be
taken in the first stage. Most will agree that it is reasonable to assume that what a
player does in the first stage can be viewed as maximizing expected von
Neumann-Morgenstern utility, where the expectation is taken over his probabil-
ity distributions of his cost and of his opponent’s future actions. The question is:
Where does the latter distribution come from?

The standard story among game theorists is that players are (except as limited
by incomplete information) fully informed about the game, assume that their
opponents are fully rational, and actually compute self-confirming strategy rules
for all players under these assumptions. Bayesian Nash equilibrium strategies
(and, if best responses are unique, only such strategies) are self-confirming. Thus,
unless bargainers play strategies that are in Bayesian Nash equilibrium, at least
one will eventually have to revise his probabilistic expectations about opponents’
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actions. {Compare the concept of “stable conformistic expectations” that charac-
terizes Harsanyi and Selten’s [10, pp. P92-P93] “strict” equilibrium points.} This
is why the Bayesian Nash equilibrium is a natural generalization of the rational-
expectations equilibrium to environments where strategic interactions are impor-
tant,

Given the great complexity of the simplified bargaining game analyzed in
Section 3, it seems a reasonable conclusion that the search for a sensible solution
concept to describe real bargainers should not end here. But the story just
outlined, it can be argued, is a straw man. What is really being assumed is not
this kind of unlimited computational skill, but rather that players who live in a
population of rational players will come to learn the correct probability distribu-
tions of what their opponents will do in various strategic situations. While this
view may have some justification, its theoretical underpinnings are extremely
weak. And even if the learning process could be counted on to converge to the
correct distributions, this view’s reliance on the assumption that players have
spent a long time in a stable environment (but are not repeatedly matched with
the same players, for then the situation would eventually cease to be one of
incomplete information) greatly limits its applicability, in a way that does not
also limit the applicability of the approach about to be proposed.

In this section, [ shall study the implications of an intermediate position. It will
be assumed that bargainers reach a Nash equilibrium in first-stage actions, but
that their expectations about what will happen in the second stage are formed
more simply than fully “rational” expectations would be. This approach has two
main advantages: it is uncomplicated enough to be a reasonable candidate for a
descriptive model, and it does not ignore the most immediate (first-stage)
strategic aspects of bargainers’ choices of demand. In evaluating this approach,
the reader may find it useful to recall to what extent he used game-theoretic
rationality assumptions in deciding on the best stralegy to pursue in the negotia-
tions accompanying his last purchase of a house. The analysis that follows
attributes, as I hope the reader’s recollections will show, a reasonable level of
strategic sophistication to bargainers, and leads to conclusions that differ in some
interesting respects from, but basically confirm, the results in Section 3. The
assumptions made here also provide a framework in which it is convenient to
study the relationship of the probability of impasse to the bargaining environ-
ment, as is done in Section 5.

I shall begin with the simplest possible assumption about expectations: that the
probability bargainer i assigns to his deciding not to back down in the second
stage is a constant, denoted p,, and assumed to lie strictly between zero and
unity. It is also assumed that bargainers view their decisions whether or not to
back down as probabilistically independent events (a natural extension from
Section 3, where independence of the cost distributions implies conditional
independence of bargainers’ decisions whether or not to back down), and, for
simplicity, that both share the same perception of the probabilities of these
events. This case is closest in spirit to the examples of Section 3, in which the
equilibrium probabilities of backing down are constant, as long as bargainers’



DISAGREEMENT IN BARGAINING 6235

commitment positions leave them enough incentive to back down when costs are
low. The present assumption fails to be fully rational because it ignores these
constraints on the commitment positions. Finally, I shall maintain the assump-
tion made in the examples of Section 3, that costs are either zero or prohibitively
high. This seems to allow the points of this and the next section to be made most
simply, and the reader can easily check how things would change with more
general assumptions about the cost distributions.

When the probabilities are constant, a striking result is obtained. A strategy is
said to dominate another strategy if it yields the player who employs it an
outcome at least as pood, no matter what strategy his opponent employs. I shall
now argue that in this case, successive deletion of dominated strategies reduces
the bargaining game to a Prisoner’s Dilemma. In it, each bargainer has two
strategies: not attempting commitment, and attempting commitment to the
position in the contract zone most favorable to him. This is so in spite of the fact
that neither of these strategies alone dominates all other strategies. After the
deletion of dominated strategies, the latter strategy dominates the former for
each player, so that if bargainers do not play dominated strategies, bargainers
attempt commitment to (&',4/) = (&,#’) and there is a positive probability p, p,
of impasse.® Since the impasse outcome (', #°) is not Pareto-efficient, the
distribution of outcomes that results is not ex ante Pareto-efficient, even though
bargainers could have avoided it only by playing dominated strategies.

The argument proceeds in three steps. First, 1 shall show that attempting
commitment to a position &‘ < i' is dominated by not attempting commitment.
Then, I shall observe that attempting commitment to a position 4' > % is
dominated by attempting commitment to &'. And finally, I shall argue that after
deletion of the above dominated strategies, attempting commitment to a position
& such that 4' < #' < @ is also dominated by attempting commitment to #.

To see that attempting commitment to &' < 4° is dominated by not attempting
commitment, note that there is no difference between these strategies unless the
attempt succeeds. Assuming it does, bargainer / obtains utility 4 if bargainer j
does not achieve commitment; u’, where &' < u’ < (&), if j achieves commit-
ment to a compatible position &/ (where the latter inequality follows from the
requirements that &/ > &/ and (u’,4/) € U); and ¥ if j achieves commitment to
an incompatible position #/ or to a position &/ >%/. If, on the other hand,
bargainer / does not attempt commitment, he obtains, respectively, utilities
@', (&), and (&) or . In each case, i does at least as well by not attempting
commitment.

Attempting commitment to 4’ > & is dominated by attempting commitment to
# simply because if commitment is achieved, the former strategy always yields
utility «', while the latter sometimes yields &, but also yields &' and # with
positive probabilities.

%Since there is no guarantee that bargainers' expectations about second-stage events are correct,
P p2 need not be the “true” probability of impasse, which depends on how bargainers actually
behave in the second stage. To keep the discussion as simple as possible, I shall maintain throughout
the practice of making ex ante judgments using bargainers' own expectations.
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Finally, attempting commitment to #‘, where &* < &' <#@, is dominated by
attempting commitment to #. To see this, note first that p, is the same for all 4",
By the ahove arguments, only cases where bargainer ;j does not attempt commit-
ment or attempts commitment to &/, where i# < &/ <%/, need be considered. All
strategies under consideration are equivalent unless the attempted commitment
succeeds. If bargainer i succeeds in committing himself to position #‘, he obtains
utility &' if bargainer j does not achieve commitment and u' if j does achieve
commitment, since in this case the commitments must be incompatible because
4' > &', &/ > i/, and (&F*, ) is Pareto-efficient. Thus, since p; is constant, it is
clear that attempting commitment to i dominates all other strategies in this class
for bargainer i.

Consider the bargaining game, reduced by deletion of dominated strategies to
a game in which each bargainer / has only two strategies: not attempting
commitment, and attempting commitment to the position %'. I shall now argue
that the latter strategy in fact strictly dominates the former for both bargainers.

There is clearly no difference between the two strategies unless commitment is
successful. If bargainer i achieves commitment to % and bargainer j does not
achieve commitment, { obtains utility @, whereas he could have obtained only
@' <@ by not attempting commitment. If, on the other hand, bargainer j
achieves commitment to @/, which is necessarily incompatible with @, bargainer i
obtains utility &' whether he attempts commitment or not, regardless of whether
his attempted commitment is successful. Thus, attempting commitment to
stochastically dominates not attempting commitment for bargainer /.

To complete the interpretation of the game, note that it is natural to assume
that (&', 4°), the outcome when neither bargainer attempts commitment, is ex
ante Pareto-superior to the outcome when both bargainers attempt commitment.
It is unlikely, given the convexity of the utility-possibility set, that a bargainer
would negotiate an agreement inferior to what he could obtain ex ante by
attempting commitment; and the prospect of attempting commitment is at least
as good as the outcome when both bargainers attempt commitment, because
having an opponent attempt commitment is the worst case for a bargainer who
has attempted commitment. :

To summarize, in the constant-probabilities case the bargaining game can be
reduced by successive deletion of dominated strategies to a classical Prisoner’s
Dilemma, in which attempting commitment to the most favorable position in the
contract zone dominates not attempting commitment for bath bargainers. There
is, therefore, a unique Nash equilibrium, which results provided only that
bargainers do not employ dominated strategies. Intuitively, this is so because,
given the deletion of dominated strategies carried out above, attempting commit-
ment to & increases bargainer {’s chance of getting a favorable outcome at no
cost, since the probabilities of success are constant and an impasse is no worse
for i than letting bargainer j achieve commitment to #’. The Nash equilibrium of
the commitment game has the usual property of the noncoaoperative equilibria of
Prisoner’s Dilemma games—in spite of its clear individual rationality, it leads to
an outcome that is collectively “irrational” because the positive probability of
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impasse that results implies that its distribution of outcomes is not ex ante
Pareto-efficient. While I would not wish to argue that the extreme demands that
occur in equilibrium in this case are realistic, the result provides a nice
“textbook” example and a striking demonstration that, under these expectational
assumptions, inefficiency can occur even if one is willing to accept only strategic-
dominance arguments about bargainers’ rational actions.

At this point, it is natural to consider more sophisticated heuristics relating
bargainers’ second-stage expectations to the positions to which they attempt
commitment in the first stage. Consider what determines these expectations in
the fully rational model of Section 3. There, bargainers’ first-stage estimated
probabilities that they will not back down in the second stage depend on both
bargainers’ commitment positions and, in general, the entire bargaining environ-
ment. For example, bargainer s probability in the continuous model] of Section
3is 1 — F'(d"), where d' is the equilibrium cutoff level (assumed unique for the
purposes of this discussion), which depends on both commitment positions and
the entire bargaining environment. In Section 5's comparative statics analysis,
(¢, 1’} is the only aspect of the bargaining environment that is allowed to vary;
therefare, for my purposes, 4, #, 6/, and uw/ are the variables on which
bargainers’ estimated probabilities might be allowed to depend.

What is a reasonable form for this dependence? Since we are studying the
implications of bounded rationality, there is little but intuition and common
sense to go on here (although the same sort of intuition and common sense come
into play in deciding what factors to take into consideration in a fully rational
model). I have therefore chosen plausible hypotheses that lead to a rich, but
analytically tractable model. Bargainer i’s probability of successful commitment
—of not backing down in the second stage—is assumed to be a twice continu-
ously differentiable function of 4’ and #, denoted p'(4’,4'). In the continuous
model of Section 3, comparative statics calculations not reproduced here reveal
that a fully rational p'(-) should depend positively on &, negatively on #/, and
ambigucusly on #° and &’/. 1 shall assume however that, denoting partial
derivatives by subscripts in the usual way, pi(:) <0, p3(-) > 0, and p|,(-) <0,
except where the natural zero/one probability boundaries come into play. In
words, the likelihood of successful commitment decreases at an increasing
{algebraically decreasing) rate with increases in the position to which commit-
ment is attempted, and increases when the bargainer's disagreement utility rises.
To avoid trivialities, I shall also assume that p'(éi’, &) > 0 for all . (Note that &
may depend on ') I shall continue to assume that bargainers are well informed
about everything but the outcomes of attempted commitments, and that they
agree on the forms of the p‘ functions.

In this model, as in the model of Section 3, it does not seem possible to
demonstrate without further assumptions that pure-strategy, or even mixed-
strategy, Nash equilibria always exist. To see why this s so, note that the proof
given in the analysis of the constant-probabilities case that not attempting
commitment dominates attempting commitment to a position &’ < &’ is still valid
in the variable-prababilities case, because the proof involved only the value of
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the commitment probability at a single position. Thus, such overly conservative
commitment strategies can be ruled out a priori, and the notation can be
simplified by assigning to &' = &' the meaning of not attempting commitment
(rather than Section 3's meaning of attempting commitment to #‘, which is
dominated here by not attempting commitment). Given this notational conven-
tion, which will be maintained from now on, each bargainer has, in effect, a
compact strategy space—the set of #° such that &' < 4° <#—and the question of
existence can be resolved by examining the behavior of the payoff functions.

Let o(#',4/) denote bargainer i"s expected payoff when bargainers’ strategies
are (&', 4"). Given my assumptions, the payoff function can be written:

@l @l @y=pi(ah e +[1-pl(ae)a)
o' (@, a7) = pI (& W W (@) +[1 = pl(#, u)) |,
and
o (&', ) = pi (', g")pf(af,gf)g"+pf(a*',g")[1 - pf(ﬁf',gf)]a*'
1= pr(ah )| (@ w (@)
Hi-p@h)|[1 -l a > dand & > .

The o’ functions are clearly continuous in (4°, /) whenever &* > §' and &/ > &/,
but discontinuous when either # = 4° or &/ = §§/, Thus, the standard results used
to guarantee the existence of Nash equilibrium are not applicable.’

In spite of these technical problems, the results in the constant-probabilities
case indicate that pure-strategy Nash equilibria will exist much of the time, in
particular when p‘(4*, %) does not fall too rapidly with increases in 2‘ for ejther
bargainer i. In fact, if (but not necessarily only if)

4.2) pf(af,gf)g"+[1 - plEhu)|ui>

holds for i = 1,2, there always exists a pure-strategy Nash equilibrium, as T shall
now argue. The reason is that condition (4.2), which depends only on the
parameters of the bargaining environment, guarantees that bargainer i/ will wish
to attempt commitment to some position even if bargainer j is attempting

?See footnate 7. In the present context, it is not hard to show that, because a bargainer is better off
if his opponent dogs not attempt commitment than if he attempts commitment to 2 position that
differs only slightly from the compromise settlement, and because the bargainer himself is better off
not attempting commitment than attempting commitment to such a position, the v are everywhere
upper semi-continuous, The problem is that Dasgupta and Maskin’s [§] condition of graph continuity
is not satisfied here, because there is a radical change in the graph of vi(a’, &), viewed as a function
of 4, when i/ rises above /. This change occurs because such an increase in i/ creates a risk of
impasse that was not present befare. As a resull, it is easy to imagine situations where bargainers’
reaction correspondences, even allowing mixed strategies, are not upper hemi-continuous, In such
situations, there may not exist any pure-strategy, or even mixed-strategy, Nash equilibria.



DISAGREEMENT IN BARGAINING 629

commitment to a position near /. When &/ is near &/, the relative attractiveness
of attempting commitment is at its lowest, both because the associated risk of
impasse is highest there and because the cost of yielding to s demand is lowest.
Thus, it is intuitively clear that if bargainer { attempts commitment in these
unfavorable circumstances, he will, a fortiori, always attempt commitment. Note
that p‘(d',u’y and p/(&,u’), the probabilities of bargainers’ successful commit-
ment to their compromise settlements, can always be made low enough so that
(4.2} is satisfied. This can be viewed as a confirmation of Schelling’s [20, Chapter
3] suggestion that low suctess probabilities favor attempting comimitment.

More formally, straightforward computations reveal that when (4.2) is satis-
fied, there is always some value of #° (in fact, #’ =# will do, although it is not
generally a bést response) such that o'(&*,#/) > o'(#', #/) for all # such that
# < &/ <w. Further, it is easy to verify that for all such &/,

(4.3) lim oj(4',4/) > 0.

&'

Tt follows that 4! can be restricted to lie in the compact and convex interval
[f' + ¢, &}, for some € > 0, without ruling out any “good” strategies. Thus, if
condition {4.2) holds, each bargainér / will always choose to attempt commitment
to some position #' > d’. His strategy space can therefore be taken to be
compact and convex; and given (4.1), his payoff function wili be continuous in
the relevant range. If, in addition, the payoff function o(&, 4/) is quasiconcave
in 4, i = 1,2, Debreu’s Social Equilibrium Existence Theorem (see Dasgupta
and Maskin 5, Theofem 1)) yields the existence of a Nash equilibrium in pure
strategies.

To see that o(&', #/) is quasiconcave in #’, note first that when &/ > &/,

(44)  oi(dh 6 zp;'(af,g‘)[y'(m,gf)[g*‘ ~ (@) ] +[1 - p/(#,u)]
X (@' = @) |+ pi(@ )1 ~ P u)

and

@5)  oj(@\ @) =pi(a' ) p(@ W) & =y (@)]+[1 - (@)

x (@' = z'f")] + 2pf(1?",g")[[ —pi(ﬁf,gf)].

It is easy to verify from (4.4) and (4.5) that if /(4% 47) =0, v} (&', &) < 0; thus,
vi(4’,#), viewed as a function of the single variable &', is strictly quasiconcave.
It follows that whenever (4.2) holds for i = 1,2, there is a pure-strategy Nash
equilibrium, at which bargainers both attempt commitment, to incompatible
positions.

In spite of this result, it is not true that in the general case where (4.2) does not
hold for i =1,2, a Nash equilibrium, if one exists, necessarily involves both
bargainers attempting commitment. To see this, consider the case where, for all
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w/, p/(it/,u/) is unity {or nearly unity) for all %/ up to and including a certain
level between #/ and %’ and falls rapidly beyond that point, so that in equilib-
rium & will generally be set at (or near) that level. This might be the case, for
example, if there is some feature of the bargaining situation (for example, a
Council on Wage and Price Stability guideline) that makes it especially credible
that bargainer j will not accept less than some particular settlement. If bargainer
i attempts commitment to some position &’ where p(4°,1') > 0, (4.1} and the fact
that p/(#/,u/) =~ 1 imply that

@6 ol(@L @)y =p' (0 uyu'+ [1 — p'(#, g")]xp(ﬁf) < Y().

On the other hand, if bargainer / does not attempt commitment {or, equivalently,
attempts commitment to a position where p‘(-) = 0),

4.7 o'(d, 4y s (i)

Thus, in this case there is a Nash equilibrium where one bargainer attempts
commitment while the other does not.

It does, however, follow from my assumption thatp"(ff“, #') > 0 and (4.1) that
(&', 85) = (@', i )—that is, neither bargainer attempting commitment—can never
be a Nash equilibrium. For, since p" is a continuous function, there will always
exist some #‘ > #/ such that p'(&‘,1') > 0 as well; if &/ = &, this &' yields a
higher value of v'(#', 4} than 4‘, by (4.1).

5. COMPARATIVE STATICS

The main interest of making the probability of impasse variable is that it
provides a framewoark in which the relationship between the bargaining environ-
ment and the probability of impasse can be investigated. This section presents
comparative statics results that indicate how the probability of impasse responds
to changes in the size of the contract zone (caused by changes in the costs of
disagreement) and to changes in the difficulty of commitment.

The conclusions are easy to summarize: two assumptions that are almost
invariably maintained in the industrial labor relations and law and economics
literature about bhargaining—that the frequency of impasse is reduced by in-
creases (n the size of the contract zone (brought about by increases in the costs of
disagreement) and by increases in the difficulty of commitment—cannot be
supported on theoretical grounds if commitment to incompatible demands is part
of the explanation for the occurrence of impasses. The comparative statics results
that test these assumptions are ambiguous in the models studied here; and this
ambiguity is highly robust to changes in behavioral assumptions and to special
assumptions about the bargaining environment. A nonpathological example
shows that strong and implausible assumptions, at the very least, would he
required to resolve the ambiguities and justify the conventional wisdam.

To demonstrate the extent of this robustness, 1 shall adopt rather special
assumptions for the remainder of this section. First, only equilibria where both
bargainers attempt commitment, to incompatible positions, will be considered.
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Second, since the ambiguous sensitivities of the p’ functions implied by the
analysis of Section 3 would result immediately in ambiguous conclusions here, I
shall instead maintain the assumptions about the p' functions used in Section 4;
attention is further restricted to the leading special case where p’(#‘,1') can be
written in the form p'(2' ~u'). (No confusion should result from this abuse of
notation.} Finally, it will be assumed that the &°, viewed as differentiable
functions &#(#,u/) of the disagreement outcome, satisfy 0 < ii(-) < 1 and ()
< 0 for all (&, u'); these assumptions are satisfied in most descriptive bargaining
theories (see, for example, Kalai and Smorodinsky [11] and Nash [14]), and are
quite plausible. '

In what follows, | shall suppress the arguments of functions for notational
clarity whenever this can be done without causing confusion. First, consider the
effects of varying the costs of disagreement. When the p’ can be written in the
form p'(d' —u'),

) By

du du
where #‘ and 4/ now denote the equilibrium attempted commitments for given
values of & and u/. If dp'p//dy’ > 0, shrinking the contract zone by raising «'
also rajses the probability of impasse; this is the conventional wisdom. Given
that p{(+) < 0 and p{(-) < 0, this will be true in general only if d&//d' < 0 and
dit'/du’ < 1, with strict inequality holding at least once.

Under the maintained assumptions, straightforward but extremely tedious
caleulations, not reproduced here, reveal that it is not true in general that
dit/ /du' <0 or dit' /du' < 1. Further, this ambiguity is not of the type that can be
resolved by naive application of Samuelson’s Correspondence Principle: the
denominators of the expressions for di’//dy’ and dit'/du’ can be signed by
postulating the local stability of a simple gradient adjustment process, but the
numerators remain sufficiently indeterminate that the above questions cannot he
resolved a priori.

In the pi(ﬁj — i) case, the indeterminacy can be shown to depend on interac-
tions between bargainers’ strategy choices, in the following sense. Suppose the
problem is simplified (as was done in Section 4, in the example used to show that
there could be WNash equilibria at which one bargainer did not attempt commit-
ment) by specifying p/ so that bargainer /s optimal commitment strategy leads to
a constant probability of success for all #°. Then only bargainer /’s equilibrium
conditions need be considered.

The first-order condition for the problem that determines ’s optimal commit-
ment strategy requires that oi(#‘,4/) = 0, and the second-order sufficient condi-

A

tion requires that o (4", #/) < 0; these derivatives are given by (4.4) and (4.5). As

Qne might reasonably argue that the cooperative outcome ought ta be determined instead by the
actual strategic possibilities—in this case, the utilities bargainers can guarantee themselves by
atternpting or not attempting commitment—rather than the disagreement outeome. From this point
of view, that the Nash and Raiffa-Kalai-8moradinsky solutions satisfy my assumptions that 0 < &/(-)
< 1 and &4(-) < 0 is less compelling. But the assumptions still appear quite plausible.
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noted in Section 4, the second-order condition is satisfied whenever the first-
order condition is; it follows that v'(4‘, &) is strictly quasi-concave in & and has
a unique maximum, which is characterized by the first-order condition, for any
given value of /.

Total differentiation of the first-order condition with respect to u' reveals that

g P[P = 0@) + (= @ )] = pif2p = 1~ (1= p)a]

du' i1~ ) + P[P — v (@) + (1= )@ — )]
(52 <1,

where the inequality follows, after a simple computation, from the facts that
i} <1 and the denominator, which is o] (4',8), is strictly negative. Similarly,
total differentiation of the first-order condition with respect to ¥/ vields

pil P+ (1= p))i]
2pi(1 = py + pu[ P — () + (L= p/ Y~ &) ]

where the inequality follows immediately from my assumptions and the fact that
the denominator is, again, negative by the second-order condition. These results,
in conjunction with (5.1), imply that when bargainers’ strategy choices do not
interact, the conventional wisdom relating the probability of impasse to the size
of the contract zone is confirmed in the p'(ii‘ —u') case. Of course, these are
extremely stringent requirements.

In deriving (5.3), I made use of the assumption that, from bargainer i’s
standpoint, di//du/ = 1. This assumption follows from the assumptions in the
p'(@' —u) case, given that bargainer i knows the form of the function p/ and
real]ly believes that p/(-)} will remain constant when u’/ changes. But it can be
argued that this is too sophisticated to be really plausible. If one instead adopts
the position that bargainer /, in addition to expecting p/(-) to remain constant,
expects no change in #/ when &/ changes, the p4), term in the numerator of the
right-hand side of (5.3) disappears, altering the magnitude, but not the sign, of
dii’ / dul.

To make things more concrete, one would like to supplement the formal
ambiguity referred to above with a simple example in which bargainers® strategy
choices interact and shrinking the contract zone actually decreases the probabil-
ity of an impasse. Unfortunately, I have been unable to find an analytically
tractable example with this property in the p'(d' — ') case, which I consider the
most interesting; interactions between strategy choices, while necessary for the
perverse result in this case, also seem to prevent explicit solutions. The following
simple example, in which p’(-) depends only on 4’ and p/(-) is constant, may
help to dispel some of the reader’s dissatisfaction with this state of affairs and
illustrate why the perverse result can ocecur.

Suppase that the relevant part of the utility-possibility set lies in the nonnega-
tive quadrant and that its frontier is given by u' = y(w/) = 1 — &/, Let p'(4', &)

<0

3

da' _
53 o=
(5.3) Y,
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=1 — &' and p/(#,u4') = p/, a constant. By continuity, small amounts of depen-
dence on # and u’ could be introduced without significantly altering the result.
The compromise agreement that is reached if neither bargainer achieves commit-
ment is taken to be the Nash [14] cooperative solution (or equivalently, the
Raiffa-Kalai-Smorodinsky [I11] solution, which is the same in this case), with
(&', u') as the threat point. Thus, &' = (' —u/ + 1)/2 and &/ =@/ —u' + 1)/
(One might argue as in footnote 10 that the strategic possibilities, rather than the
disagreement outcome alone, ought to determine the &', But since the utilities
bargainers can guarantee themselves by attempting or not attempting commit-
ment are influenced by the i, this would involve a recursive definition of the &',
adding much complexity but little insight.)

Easy calculations show that condition (4.2) guarantees that bargainer [ will
always attempt commitment at a Nash equilibrium provided that p/ < 1/2;
similarly, bargainer j will always attempt commitment when w/ <u'.!" When these
conditions are satisfied, it is clear that # =1 — is bargainer ;’s optimal
commitment strategy. Given this and the above assumptions, bargainer i’s
expected utility when he attempts commitment to &' is given by

S4)  o'(@\1-w)=plul+ (1 -1 - p)a'+ 21— plY(u' — w + 1)/2.

Maximizing the expression on the right-hand side of (5.4) with respect to &' is
clearly equivalent to maximizing (I — £)&' + 4°(¢ —u/ + 1)/2. The second-
order sufficient condition is satisfied everywhere, so solving the first-order
condition yields the unique optimal strategy:

(5.5)  d'=(u' —u+3)/4

Now we are ready to examine the effects on the probability of impasse of
changing ¢ and u/. In Nash equilibrium, this probability is given by

(56)  pl(tu)p =pi(l~u' +ul)/4

Thus, dp'p//dy = —p’/ /4 < 0, so increasing «', which shrinks the contract zone,
actually makes an impasse Jess likely. On the other hand, dpp//du/ = p//4 > 0,
so shrinking the contract zone by increasing u/ makes impasse more likely. (If &
is mear zero, but not exactly zero, it is possible to raise 4/ while continuing to
satisfy the u/ < u' constraint.) Thus, the conventional wisdom is valid in this
example when u/ changes, but not when u' changes. These results follow simply
from the fact that changing the disagreement outcome also changes the relative
costs and benefits of attempting commitment to different positions, possibly, as
the example shows, in a way that induces bargainers to take more extreme
positions when the contract zone shrinks, making impasse less likely.

" Readers of footnate 10 may be curious about whether &' and &4 in this example are in fact at
least as good for bargainers { and j as what they could guarantee themselves by attempting
commitment. When a bargainer attempts commitment, the worst case is when the other bargainer
also does. It is not always true that i’ and 2/ are better for I and j than these worst cases, but it can
be shown to be true near (¢, &) = (0, 0), for example, whenever, roughly, 1/9 < p/ < 1 /3.
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To summarize the results obtained so far, it is impossible to establish on a
priori grounds that the conventional wisdom about the effect of changing the size
of the contract zone on the probability of impasse is always valid. But there is
some weak theoretical evidence to support it in the leading special case where
p'(d',u') can be written as p'(d° —u'). The expected relationship holds in this
case when interactions between bargainers’ strategy choices are relatively unim-
portant.

Certain provisions in the customs and laws governing bargaining behavior—
for example, the common requirement in labor law to bargain “in good faith”--
can be viewed as attempts to make commitment more difficult, presumably with
the purpose of reducing the probahility of impasse. This section concludes by
asking whether such attempts that stop short of making commitment completely
impaossible, viewed in the present framework, appear likely to succeed.

More formally, rewrite the function p" as p“(ti",g*',a), where a is a shift
parameter that shifts only p‘(-); without essential loss of generality, it is assumed
that pi(-) > 0 everywhere. Lowering @ makes commitment more difficult, in the
sense of lowering the probability of successful commitment to any position. Now,

¥7}
57 B o ppdl +pf[p[ﬁ~+p3}

where &' and &/ denote the equilibrium attempted commitments for the given
value of a. If dp’p//da > 0, making commitment more difficult by lowering e
lowers the probability of impasse, which is the conventional wisdom. Given that
pi(-) and p(-) are everywhere negative, this is guaranteed in general only if
dit' /do < 0 and di/ / da < 0.

As with the above analysis of the effects of changes in the costs of disagree-
ment on the #‘, the comparative statics of Nash equilibria when « changes are
cotnplex and unilluminating, leading to formal ambiguities very similar to those
encountered above. But as before, studying the response when strategy choices
do not interact gives a feel for the likely effects of changing «, and can be viewed
as an approximate analysis of the response of Nash equilibria when interactions
between bargainers® strategy choices are not expected to be important.

Straightforward computations verify that in this case,

sy di o PE[PQ @) (P - 2]+ a1 - )
. da 2‘P{.(l_pj)+p{|[Pj(E’I_‘L‘(ﬁj))+(l—Pj)(ﬁ’.—ﬁ"):[ .

The term in brackets in the numerator of the right-hand side of (5.8) must be
strictly positive by the first-order condition; the denominator must be negative
by the second-order condition. Because pi(-) > 0 by assumption, it is plain that
di'/de is strictly positive if piy(-) >0 and ambiguous in sign otherwise. (A
similar computation shows that di#/ /de is always ambiguous in sign.) In any
event, dii' / da can never be unambigucusly negative, so that it is certainly not
possible to validate the conventional wisdom theoretically in this case. The

Il
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common reasoning errs in considering only the partial effect of changing «,
which is obviously in the “right” direction. But the total effect, taking into
account the responses of &' and &/ (which tend to go in the “wrong” direction),
may easily be counterintuitive.

4. CONCLUSION

This paper develops a theory that explains why rational bargainers might take
actions that could lead to an impasse.'’ By formalizing Schelling’s [18,19,20]
view of the bargaining process as a struggle between bargainers to commit
themselves to favorable bargaining positions, the theory determines the probabil-
ity of impasse endogenously and permits an investigation of its relationship to
the bargaining environment. Its crucial elements, which allow an explanation of
the occurrence of inefficient outcomes without assuming irrationality, are the
uncertainty and irreversibility of commitment. To the extent that commitment is
part of the explanation for the impasses frequently observed in real bargaining,
doubt is cast on two widely held beliefs about the influence of the bargaining
environment on the frequency of impasse. Contrary to what is assumed almaost
universally in those parts of the law and economics and industrial relations
literature that consider the question, increasing the costs of disagreement and
thereby enlarging the contract zone need not decrease the probability of impasse.
Malouf and Roth [13] report experimental evidence that casts further doubt on
this assumption. Neither is there support for the common belief that making
commitment more difficult {(in the sense of lowering the probability of success)
makes impasse less likely. The reason is that the “common-sense” argument used
to reach this conclusion considers only the partial effect of lowering the success
probability; it ignores the resulting changes in attempted commitment positions,
whose effects generally go the other way and could easily swamp the partial
effect.

Two lines of research appear especially promising at this point. As mentioned
above, Chatterjee and W. Samuelson {2} have developed an alternative explana-
tion of the occurrence of impasses, based on a stylized complete irreversibility of
demands (certainty about commitment, in the language of this paper) and on

121t might be argued that the rationalization of the accurrence of bargaining impasses presented
here is incomplete hecause my assumption that bargainers can communicate only by their demands is
unduly restrictive. When outcomes are always efficient, bargaining is essentially a zero-sum game,
and direct communication cannot play a significant role, But when impasses are possible, bargainers
have & mutual interest in avoiding them, and it is no longer clear that communication would not
oceur in equilibrium. if it were allowed. {In the present model, bargainers might wish to communicate
about their costs of backing down. hetween the first and second stages.) In a recent paper [3], Joel
Sobel and I have considered the general question of strategic communication in an abstract setting,
abtaining results that seem ta shed some light on whether the above criticism 1s valid. Tn [3], it is
shown under reasonable assumptions (which have not, however, been verified for the present model}
that perfect communication is not compatible with noncooperative rationality unless agents’ interests
completely coincide, and that ance their interests differ by a given, “finite” amount, only no
communication is compatible with rationality. Thus, it seems likely that direct communication would
not alter the qualitative results obtained above.
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bargainers’ uncertainty about each others’ preferences. Since in their model,
bargainers generally find it advantageous to demand more than their disagree-
ment utilities, the possibility of impasse due to uncertainty about preferences is
present. As it happens, their model also casts doubt on the conventional wisdom
about the effects of expanding the contract zone. In another recent paper, Sobel
and Takahashi [22] have combined uncertainty about preferences with uncer-
tainty about the number of stages which shares some of the effects of uncertainty
about commitment, as it is conceptualized here. They obtain interesting results
about how the frequency of impasse depends on the bargaining environment.
Natural next steps in this direction would be to build models with endogenous
numbers of stages, and to deal with the issues of strategic information transmis-
sion that are avoided in Chatterjee and Samuelson [2], Sobel and Takahashi [22],
and the present paper.

The second line of research involves a deeper investigation of the process by
which commitment is achieved. In this paper, bargainers communicate only by
making demands and making it costly to back down from them. And the actual
process of commitment is not modeled explicitly; rather, its influence on
bargainers’ strategy choices is summarized by the probability distributions of
their costs of backing down. To explain the occurrence of impasses and to
evaluate the effects of changes in the bargaining environment on their likelihood,
it suffices to place certain mild, plausible restrictions on these distributions. The
situation is somewhat similar to that encountered in consumer and producer
theory, where many of the conclusions do not depend on detailed knowledge of
technology and tastes. But to make sharper predictions, or to test the theory
empirically, it would be highly desirable to know more about the nature of
communication and commitment in bargaining. This would require a detailed
model of the process by which bargainers back up their demands; Schelling [18:
19, Appendix B} and Ellsberg [6] contain fascinating discussions of the issues that
such a model would have to resolve.

University of California, San Diego
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