
Algorithms and Hardness Results
for

Object Nets

Dissertation

zur Erlangung des akademischen Grades
Dr. rer. nat

an der Fakultät für Mathematik, Informatik und Naturwissenschaften
der Universität Hamburg

eingereicht beim Fach-Promotionsausschuss Informatik von

Frank Andreas Heitmann

aus Hamburg (Deutschland)

Januar 2013

Gutachter:
Prof. Dr. Rüdiger Valk
Vertr.-Prof. PD Dr. Michael Köhler-Bußmeier
Prof. Dr.-Ing. Norbert Ritter
Univ.-Prof. Dr. Dr. h.c. Javier Esparza

Tag der Disputation: 3. Juli 2013

Zusammenfassung

Im Zentrum dieser Arbeit steht die Frage, wie der Formalismus der elementaren
Objektsysteme so eingeschränkt werden kann, dass die Möglichkeiten der Mo-
dellierung weitestgehend erhalten bleiben, Eigenschaften des Objektsystems
aber automatisch und effizient überprüft werden können.
Elementare Objektsysteme sind Petrinetze, deren Marken eine innere Ak-

tivität haben können und dazu selbst wieder als Petrinetz modelliert werden.
Das entstehende Netzsystem hat dann eine zweistufige Struktur. Dieser von
Valk eingeführte Formalismus und ähnliche Formalismen sind bei der Model-
lierung von Anwendungen nützlich, bei denen die Mobilität von Objekten und
die Interaktionen zwischen diesen Objekten von Bedeutung sind.
Die Attraktivität eines solchen Formalismus wird durch die Möglichkeit,

wichtige Verifikationsprobleme effizient lösen zu können, stark gesteigert. Da
elementare Objektsysteme allerdings Turing-vollständig sind, muss der For-
malismus eingeschränkt werden, wenn wichtige Probleme einer algorithmischen
Lösung zugänglich sein sollen.
In dieser Arbeit werden zahlreiche strukturell und dynamisch eingeschränkte

Varianten des Formalismus eingeführt und untersucht. Der Fokus liegt dabei
auf der Komplexität des Erreichbarkeitsproblems, einem der wichtigsten Ver-
ifikationsprobleme. Durch die hohen unteren Schranken, die selbst für struk-
turell stark eingeschränkte Formalismen bewiesen werden können, wird deut-
lich, dass strukturelle Einschränkungen alleine nicht genügen, soll das Erreich-
barkeitsproblem effizient gelöst werden. Für elementare Objektsysteme wird
dann ein Sicherheitsbegriff eingeführt. Für sichere elementare Objektsysteme
kann dann nicht nur das Erreichbarkeitsproblem, sondern jede Eigenschaft, die
in den temporalen Logiken LTL oder CTL ausgedrückt werden kann, in poly-
nomialen Platz entschieden werden. Dies gilt ohne weitere strukturelle Ein-
schränkungen und tatsächlich haben diese nun kaum noch einen Effekt. Des
weiteren kann für einen schwächeren Sicherheitsbegriff kein entsprechendes Re-
sultat gezeigt werden.
Abweichend von der zentralen Fragestellung dieser Arbeit wird zuletzt

der Formalismus der elementaren Objektsysteme erweitert. Objektnetzsys-
teme erlauben den vertikalen Transport von Marken, wodurch sich die Ver-
schachtelungstiefe ändern kann. Des weiteren werden elementare Objekt-
systeme mit einer beliebigen, aber festen Verschachtelungstiefe eingeführt.
Mit einem ähnlichen Sicherheitsbegriff wie zuvor kann für diese und für Ob-
jektnetzsysteme mit einem stärkeren Sicherheitsbegriff erneut bewiesen werden,
dass das Problem der Modellprüfung für LTL und CTL in polynomialen Platz
entschieden werden kann.
Sichere elementare Objektsysteme und stark sichere Objektnetzsysteme sind

somit Formalismen, die es ermöglichen, Mobilität und Interaktionen zu model-
lieren, die es aber zugleich auch erlauben, wichtige Eigenschaften automatisch
und mit einem vertretbaren Aufwand zu überprüfen.

v

Abstract

The central question tackled in this thesis is, how the formalism of elementary
object systems can be restricted, such that it retains most of its modelling
features, but the verification of properties of the net system becomes feasible.
Elementary object systems are a Petri net formalism introduced by Valk. In

elementary object systems the tokens of a usual Petri net are allowed to have
an inner activity. To this end, these tokens are again modelled by Petri nets
and thus a two levelled structure arises. This formalism and similar formalisms
where Petri nets are somehow nested are helpful for the modelling of applica-
tions where the mobility of entities and the interaction between them are of
importance.
The ability to solve important verification problems automatically and ef-

ficiently makes such a formalism far more attractive for practical purposes.
However, being Turing-complete, elementary object systems need to be re-
stricted if algorithmic solutions to important verification problems ought to be
found.
In this thesis, several structural and dynamic restrictions of the formalism

are introduced. The focus is then on the complexity of the reachability problem
as one of the most prominent verification problems. Evident in the severe com-
plexity bounds we establish even for structurally heavily restricted formalisms
is that these restrictions alone are not enough to solve the reachability problem
quickly. For elementary object systems with a safeness constrain we then show
that not only reachability but every property expressible in the temporal logics
LTL or CTL can be decided in polynomial space. This result holds without any
further structural restrictions and we even show that such further restrictions
have little to no effect. We also argue that other safeness constrains are too
weak to establish a similar result.
Diverging from the central question, we also enhance the formalism of elemen-

tary object systems to object net systems. These allow the vertical transport
of tokens and thus the nesting depth might change. We use these to introduce
elementary object systems with an arbitrarily but fixed nesting depth and show
that for these a similar safeness definition as for elementary object systems can
be introduced. For these and for object net systems with a stronger safeness
notion we establish a similar result as above, namely that LTL and CTL model
checking is possible in polynomial space.
Safe elementary object systems and strongly safe object nets thus are for-

malisms, which allow to model mobility and interaction, but which also al-
low the automatic verification of properties, using an affordable amount of
resources.

vi

Acknowledgement

This thesis was written while I was a member of the TGI group at the University
of Hamburg. I am deeply grateful to Prof. Dr. Rüdiger Valk for the way he
lead the group giving all members the possibility to pursue their scientific goals
in an enjoyable and free atmosphere. His encouraging statements concerning
my research have always helped me to continue. I am also deeply grateful to
Prof. Dr. Matthias Jantzen and Prof. Dr. Manfred Kudlek. Matthias awoke
my interest in Algorithms and especially in Complexity Theory while I was in
my third semester and has accompanied my studies ever since. Manfred, who
passed away unexpectedly shortly before the Petri Net conference in Hamburg
in 2012, was always a cheerful supporter of my research and I am grateful to
got to know him and his view on theory and theory research.
Above all I am grateful to Dr. Michael Köhler-Bußmeier who introduced me

to the topic of this thesis right from the start in 2008 and has kept me on course
through all the years, through the good times and - much more importantly -
through the hard times. He was and is to me a colleague, mentor, and close
friend.
I thank all the other members of the TGI group past and present for the

many great discussions and conversations about research and also private
life. Thank you Daniel, Lawrence, Gila, Thomas, Sofiane, Margit, Françoise,
Berndt, Heiko, Jan, Michael, Tobias, Matthias, Marcin, Erik, Julia, Kolja, and
Christine.
A great part of the writing of this thesis was done in the summer of 2012.

During this time I met regularly with my colleague and friend Petra who wrote
on her own thesis. Without her, writing would have much less fun and together
we even got pleasantly through the times where you simply have no idea how
to put the things you have in mind on the page. Thank you a lot, Petra!
I thank Prof. Dr.-Ing. Norbert Ritter who was so kind to write a review

in addition to his tremendous work load. For the same reason I also thank
Prof. Dr. Dr. h.c. Javier Esparza and I thank Prof. Dr. Ulrike von Luxburg for
chairing my examination committee.
A couple of great people read parts of this thesis and send me their extremely

helpful comments. I did not give them much time for this but they nonetheless
did great work and spotted mistakes which I would have been ashamed of if
they would have found their way in the final version. Moreover they send me
encouraging comments helping me through the last, stressful days and nights.
I thank Lorna, Erik, Georg, Christohper, Jan Henrik, Matthias, Sebastian,
Thomas, Sascha, and my mother Ingrid for this hard work.
Special thanks go to Claudia. Claudia is not working in Computer Science.

She is my Yoga teacher and friend and thanks to her I can not only twist my
body in far more ways than before this thesis but my back came out unharmed
of the writing process and the several hours I sat hunched in front of my laptop.

vii

Last but not least, I would like to thank my family and my friends and
all the people who have been part of my life in the last years. Without the
constant support of my family and friends this work would not have turned
out the way it did and indeed I might have stopped it one time or the other.
Thank you Sebastian, Mieke, Annika, Petra, Robin, Bianca, Jan, Claudia,
Silke, Daniel, Christopher H., Christopher S., Hüseyin, Georg, Patrick, David,
Sascha, Christin, Malte, Benjamin, Tobias M., Sonja, Yvonne, Tayfun, Jan
Henrik, Paula R., Jenny, Clawes, Niklas, Paula B., Felix W., Marc, Mehdi,
Christine, Dorle, Felix K., and the members of the TGI group again. Thank
you to all the students I met during my courses and lectures and especially to
those who came to support me during the defence of this thesis. Thank you
Mom, thank you Dad, thank you Ralf, Nina, Marlin, Alba, and Kaya. I wanted
to be a scientist, since I was a small kid and, for me, this is a dream come true.
I would not have done it without you. Thank you all! Thank you a lot!

viii

Contents

1 Introduction 1

2 Fundamentals 9
2.1 Notations and Fundamentals . 9
2.2 Algorithms and Complexity Theory 11
2.3 Logic and Model Checking . 17
2.4 Petri Nets . 25
2.5 Restrictions of Petri Nets . 33

3 Elementary Object Systems 41
3.1 Motivation . 41
3.2 Fundamentals and Formal Definition of Eos 45
3.3 Turing-completeness of Eos . 55
3.4 Related Approaches . 62
3.5 Summary . 65

4 Structural Restrictions of Eos 67
4.1 Conservative Eos . 68
4.2 Generalised State Machines . 73
4.3 Deterministic and Strongly Deterministic GSMs 75
4.4 P- and T-nets for Generalised State Machines 78
4.5 Acyclic Generalised State Machines 94
4.6 Conflict-free Generalised State Machines 96
4.7 Free-Choice Generalised State Machines 100
4.8 Summary . 103

5 Dynamic Restrictions of Eos 107
5.1 Unary and Persistent Eos . 108
5.2 Safe Eos and GSM . 110
5.3 LTL and CTL Model Checking of Safe Eos 117
5.4 Structural Restrictions of Safe Eos and GSMs 134
5.5 Summary . 137

6 Object Net Systems 139
6.1 Fundamentals of ONS . 140
6.2 Eos and GSM with Fixed Nesting Depth 152

ix

Contents

6.3 Safeness for ONS . 158
6.4 Summary . 161

7 Conclusion 165

Bibliography 171

x

1 Introduction

Today, computer systems play a crucial role in our everyday lives. This is
probably most evident in the Internet and its plenty useful applications, which
for many of its users have become part of their daily lives by now. But computer
systems are also important in many other areas and they often fulfil their
respective tasks unnoticed by its users. In a mobile phone, for example, very
sophisticated hard- and software comes into play to convert the voice into
binary information and to establish a communication link between two persons.
In a modern car, embedded systems control almost every aspect, from the
windscreen wiper to the ejection of the airbags that offer safety in case of an
accident. And at home most machines like refrigerators or washing machines
also contain some kind of hardware and software.
Nowadays, many of these systems are distributed. The computation is not

done by a single machine anymore that is manually given some input and then
produces some output. Instead computation is done by logically and in many
cases also physically distributed processes communicating over some kind of
network. Moreover, systems no longer just compute an output. Many of todays
systems are reactive. They run indefinitely, interact with their environment,
and react to it or to user’s needs.
A new aspect of computation, that becomes more and more important in

todays systems and that is neither captured by distribution nor reactivity, is
mobility. Mobility means that an entity is in some way able to move. For
example, a mobile phone has to switch from one base station to another while
the human, that uses the phone, moves. A software agent might “move” in a
network or maybe just between different areas on one machine. A code snippet
might, for example, traverses a firewall. Consequently, mobility and movement
is not only meant physically.
It is to be suspected that mobile systems will be of crucial importance in

the future. Computational devices, like cell phones, are carried around by
people. They are embedded in other moving artefacts, like chips in a car, or
are, by construction, moving entities by themselves, like robots. Moreover,
they interact with humans or with other computational devices, making the
systems even harder to understand. Suitable modelling languages and the
ability to verify properties of the model are two key factors for designing such
systems correctly.
To come up with such a modelling language, many formalisms have been

proposed in the last decade, that try to capture the concept of mobility, an

1

1 Introduction

aspect that was usually at least tedious to model using formalisms that were
available at that time. Several of these formalisms apply in one way or another
the idea of nesting to Petri nets, that is, they allow to interpret the tokens
of an ordinary p/t net as p/t nets again. Certain formalisms of this kind are
the subject of this thesis. Using an extension of Petri nets and thus a formal
modelling language, one hopes that verification techniques can be developed
and employed in a similarly successful fashion as was the case for Petri nets.
While Petri nets have been introduced some time ago in the seminal work

by Carl Adam Petri [Pet62], formalisms of the kind mentioned above have
only recently been introduced. Some examples are object nets [Val98], nested
nets [Lom00], MOB nets [Kum00], adaptive workflow nets [LvHO+06], Petri hy-
pernets [BBPP05], recursive nets [HP99], PN2 [Hir02], Mobile Systems [Lak05],
AHO systems [HEM05], and Hornets [KB09]. Another line of research, also
dealing with nesting, but not in the field of Petri nets, is concerned with pro-
cess calculi. Arguably most prominently among these calculi are the π-calculus
by Milner [Mil99], the Ambient Calculus by Gordon and Cardelli [CG00b] and
the Seal Calculus [CVN05] among many others. In Section 3.4 these formalisms
are discussed and compared in more detail.
All these formalisms are helpful for modelling mobility of and interaction

between different objects or agents. For example, at the latest International
Conference on Application and Theory of Petri Nets Cristini and Tessier [CT12]
presented work on modelling of innovative space architectures, for which they
used reference nets, a formalism closely related to object nets and to the for-
malisms investigated in this thesis. Ma, Tsai, and Murata have formally mod-
elled a secure mobile agent system, using an object net formalism that they ex-
tended according to needs in a security setting [MTM04, MT08]. Devarashetty,
Tsai, Ma, and Zhang have used the same formalism to model a secure sensor
network system [DTMZ08, DTMZ10].
However, despite the success in modelling a variety of applications, which

are rather complicated to model with ordinary Petri nets, to say the least, ver-
ification issues have not been central to investigation yet. Moreover, many of
the formalisms mentioned are Turing-complete and thus need to be carefully
restricted before algorithmic solutions to verification question can be consid-
ered. The borderline, however, between modelling power on the one hand and
complexity of the algorithms applied for verification issues on the other is by
far not as well understood as for Petri nets. There free-choice Petri nets can
be seen as the formalism that allows to model a high diversity of applications,
while retaining a modest and manageable degree of complexity.
Since the systems, one attempts to model using the above mentioned for-

malisms, tend to be extremely complex, the ability to analyse the models and
to verify automatically if specified properties are fulfilled by them or not, is of
outmost importance. This is even more the case if expensive or safety-critical
systems are subject to the modelling process.

2

This leads to the questions, how these formalisms can be restricted and how
to solve important verification problems for these restricted formalism quickly
– if at all.
In this thesis we tackle these questions for the aforementioned Object Nets,

specifically for elementary object net systems with a distributed token semantic.
Object nets are a Petri net formalisms introduced by Valk [Val91], [Val98]
and are along with the π-calculus probably one of the most widely known
formalisms for the modelling of mobile systems. In object nets a token may
itself be a Petri net, allowing not only a nesting of structures, but also to
capture mobility, thinking of the “net token” to be an agent (resp. a model
thereof) that “moves” through the net in which it resides. So far object nets
have been used as a modelling tool (for example in an agent context [KMR03])
and have been subject to decidability issues (cf. [Köh04]). But until now,
the complexity of problems like reachability and liveness, that are of utmost
importance in a verification context, have not been central to investigation.
Furthermore, restrictions, like in the case of standard Petri nets, have not yet
been thoroughly investigated neither.
This thesis aims at filling this gap by adopting known restrictions from Petri

nets and also introducing new ones, only sensible for object nets. For these
restricted formalisms we then study the complexity of the reachability problem
as one of the most prominent verification problems with great significance for
practical applications. We take little detours now and then and explore other
significant problems, like the liveness problem, too.
The goal of this work is to attain a formalism that still captures the notion

of mobility and that is still expressive in terms of modelling power, i.e. many
applications or at least those, one is interested in, can still be modelled comfort-
ably, while on the other hand important verification problems, like reachability
and liveness, can be decided using affordable resources. The focus of this work
is on the restriction of the formalism and the algorithmic solution of the reach-
ability problem. The usage of the formalism, in terms of modelling itself, is not
central to this work.
We start with Elementary Object Net Systems (Eos for short), which were

already known before this thesis. Eos allow tokens to be Petri nets again.
The uppermost net is the system net, other nets residing on its places are net
tokens or object nets. The nesting depth of an Eos is restricted to two levels,
that is no token of a net token is allowed to be a net token again, instead all
tokens of a net token are black tokens. Despite this restriction of the nesting,
the formalism is already Turing-complete. We slightly modify the construction
from [Köh07] to prove this, but also give a new proof, which is reusable in
the context of conservative Eos. Conservative Eos are restricted in such a
way that every net token type in the preset of a transition also has to appear
in its postset. We show that in this formalism, albeit not Turing-complete,
reachability and liveness remain undecidable. We then turn to Generalised

3

1 Introduction

State Machines (GSMs), which take the restriction utilised for conservative
Eos one step further by demanding that for each transition t, each type either
appears once in the preset and the postset of t or neither appears in the preset
nor the postset. Seemingly, a rather constrained specimen of the family of
nested Petri net formalisms, GSMs allow to model situations in which the net
tokens are agents, which are neither created nor destroyed and also not merged
or divided. These assumptions are realistic for many physical or real-world
systems.
A GSM can be “flattened” to a standard Petri net, the so called reference

net, and so the standard problems are decidable. Unfortunately, the flattened
Petri net can be huge even for small GSMs. We therefore introduce restricted
GSMs to tackle this problem and aim to attain a formalism that defines the
border between expressiveness and analysability in a similar way as free-choice
Petri nets do for Petri nets.
While Eos, conservative Eos, and GSMs where known before (the proofs

given here for the statements concerning conservative Eos are new, though)
the restricted GSM formalisms are new. We introduce acyclic, conflict-free,
and free-choice GSMs, which are GSMs, whose nets are restricted to be acyclic,
conflict-free or free-choice, that is we transfer these notions from general Petri
nets to GSMs, i.e. to an object net formalism. We also transfer the notion of
P- and T-nets to GSMs.
Furthermore, we introduce deterministic and strongly deterministic Eos and

GSMs. In these formalisms the possible communications resp. synchronisations
between the system net and the object nets are restricted. These restrictions
are only reasonable in the context of object net systems.
Taking combinations into account, these are already 30 different structural

restrictions. For many of these we give upper and lower bounds regarding the
complexity of the reachability problem.
All these structural restrictions usually have the advantage that fast algo-

rithms exist to check, whether a given GSM has a certain structural property.
Unfortunately, even many of the structurally severely restricted formalisms
mentioned above tend to be of high complexity, that is, the reachability prob-
lem is not easily decidable. For example, restricting the GSM in such a way
that the system net and all object nets are P-nets, i.e. each transition has ex-
actly one place in its pre- and exactly one place in its postset, the reachability
problem still requires polynomial space to be solved. In the case of free-choice
GSM, the complexity even jumps to ExpSpace-hardness, even if the GSM
is strongly deterministic and even if the reachability problem for the system
net and all object nets in isolation could be solved in polynomial time. We
therefore turn to dynamic restrictions of Eos. We take a look at unary and
persistent Eos, two dynamical restrictions close to conflict-freedom, but both
formalisms remain Turing-complete. Subsequently, we introduce the concept
of safeness for elementary object net systems. We introduce four different vari-

4

ants of which two do not guarantee finiteness of the state space and indeed give
rise to Turing-complete formalisms. The other two, however, do not only guar-
antee finiteness of the state space but also allow, by an adaption of a technique
developed by Esparza for 1-safe Petri nets [Esp98a], to decide every property
expressible in the temporal logic CTL or LTL using only polynomial space for
this object net class. The requirement of safeness thus leads to a formalism
of reasonable modelling power that can also be analysed using affordable re-
sources and thus fulfils the aforementioned goal of this thesis. Formalisms that
mix structural restrictions with the concept of safeness are also investigated,
but only rarely this improves the bound below PSpace.
Finally, we detour from the main track of this thesis and instead of restricting,

enhance the formalism of Eos. We introduce Eos and GSMs with an arbi-
trarily, but fixed nesting depth and we introduce Object Net Systems (ONS),
which allow a vertical transport of net tokens. In this way, the nesting of net
tokens may change. From a modelling point of view, this is an interesting con-
cept, because one can model, for example, that an object modelled by a p/t
net is carried by an agent, also modelled by a p/t net, and that the object is
then handed over to another agent, again modelled by a p/t net. Unsurpris-
ingly, Eos with a fixed nesting depth and ONS are Turing-complete. However,
for versions that have certain safeness restrictions, it is once again possible
to show PSpace-results similar to the ones mentioned above for safe Eos by
use of the techniques established there. These strongly safe ONS then have
additional modelling features compared to Eos as described above, lack some
others, most notably the creation of net tokens, but therefore again allow the
verification of properties within an acceptable complexity bound.

Naming Convention

In the following, we will use the term Petri net or general Petri net for the
unrestricted variant of a place/transition net, consisting of places, transitions,
and weighted arcs and using only black tokens (see Definitions 2.24 and 2.27).
We will also use the term Petri net if a structure can be seen as a Petri net if
certain features are ignored. For example, a object net of an elementary object
net system usually uses some channels to synchronise with the system net, but
ignoring these channels (which are simply a labelling of the transitions) the
object net can be seen as a Petri net. A similar reasoning applies to other nets
like coloured Petri nets, the system net of a elementary object net system and
so on. The meaning will always be clear from the context.
We will speak of the nets-within-nets-family of formalisms if we want to

denote a formalism that somehow applies the idea of nesting to Petri nets (see
the discussion of Petri net like formalisms in Section 3.4).
The term object net system is used to emphasise that we mean a member

of the nets-within-nets-family, where the black tokens of a Petri net can be

5

1 Introduction

a Petri net again or a reference to a Petri net. In particular, the formalisms
introduced in this thesis are object net systems. The term is also used for the
most general form we introduce in Chapter 6.

Outline and Contribution

In the following we give an outline of the chapters of this thesis, relate the topics
and results mentioned in the introduction above to the appropriate chapters,
and list the publications that resulted from the work on this thesis and in which
several results have already been published.
Figure 1.1 shows the chapter dependencies, in which the dashed lines indicate

only minor dependencies.

1

��
2

��
3

�� �� ��
4 //

$$

5 //

��

6

zz
7

Figure 1.1: Chapter dependencies

After the introduction in this chapter, we review the most important notions
and results for our purposes from complexity theory, logic and model checking,
and from the theory of Petri nets in Chapter 2.
In Chapter 3 we motivate and introduce the formalisms of Elementary Object

Nets and show that this object net formalism is Turing-complete in two different
ways: A simulation of counter programs and a simulation of inhibitor nets. Also
in Chapter 3 we discuss related approaches that also try to capture a nesting
of structures and mobility of objects.
In Chapter 4 we investigate several structural restrictions of Eos and focus on

the reachability problem for each of the introduced formalisms. We introduce
conservative Eos, GSMs, deterministic and strongly deterministic GSMs, and
GSMs that are obtained by restricting the participating nets to P-nets, T-nets,
acyclic nets, conflict-free nets, and free-choice nets. By reduction we show that

6

the reachability problem becomes hard to decide, even for structurally very
restricted formalisms.
In Chapter 5 we investigate dynamic restrictions of Eos. We introduce unary

Eos, persistent Eos, and safe Eos. While the first two formalisms remain
Turing-complete, we show in Section 5.3 that for safe Eos every property,
expressible in the temporal logics CTL or LTL, can be decided in polynomial
space. In Section 5.4 we discuss the effect of further structural restricting safe
Eos.
In Chapter 6 we diverge from the path of the two previous chapters and,

instead of restricting, enhance the formalism of Eos. We introduce Object Net
Systems, a formalism in which the nesting depth is arbitrary and not bounded
and in which it is possible to transport net tokens in the vertical dimension. It
is shown that this formalism is Turing-complete, but that in a safe variant the
reachability problem can again be solved in polynomial space. Furthermore,
Eosk and GSMk are introduced, as a special case of object net systems, not
allowing the vertical transport of tokens. Eosk and GSMk are then special
Eos and GSMs with an arbitrary, but fixed, nesting depth k. We introduce
a safeness notion for Eosk and show that for safe Eosk the techniques from
Chapter 5 can be adapted and that again every property expressible in the
temporal logics CTL or LTL can be decided in polynomial space, including the
reachability problem.
Chapter 7 concludes this thesis, summarising the results obtained and gives

an outlook to open questions and possible future work.
The subjects treated in Chapter 2 and most of Chapter 3 are not novel,

but are included as the foundations upon which the results of this thesis are
based. Furthermore, the formalism of conservative Eos and of generalised state
machines defined in Sections 4.1 and 4.2 have also been introduced before this
thesis. Some of the definitions mentioned above have been altered, though. For
example, the definition of an Eos now contains the labelling instead of the set
of events, which is more natural from a modelling point of view and also more
suitable for complexity analysis. The results presented in Sections 3.3, 4.1, and
4.2 have also been known before, but several are proved here in a novel way.
All other chapters present my own work and work that was done jointly

by me and Michael Köhler-Bußmeier. The construction of an Eos for a given
inhibitor net presented in Section 3.3 has been published in [KBH12]. The work
presented in Chapter 4 has been published in [HKB11a, HKB11b, HKB12b].
The work presented in Chapter 5 has been published in [KBH10b, KBH10a,
KBH11b]. The work presented in Chapter 6 has been published in [HKB12a]
and a similar but more complicated formalism, allowing the transport of net
tokens in the vertical dimension, has been published earlier in [KBH09]. More
details can be found in the respective chapters.

7

1 Introduction

8

2 Fundamentals

In this chapter, we review the most important facts from algorithms, complexity
theory, logic, model checking, and from the theory of Petri nets, which will be
needed later on.

2.1 Notations and Fundamentals

Here we state some notational conventions, important definitions, and review
some mathematical fundamentals. The presentation in this section is rather
swift. We assume knowledge of fundamental mathematical objects introduced
here, like sets and functions. Detailed explanations and a more rigorous treat-
ment can be found in most introductory text books.

Sets and Relations

The natural numbers are denoted N. N does include 0. If we want to exclude
0 we explicitly write N \ {0}. Z is the set of integers, Q the set of rational
numbers and R the set of real numbers. With Z+, Q+, R+ the subsets with
the numbers x ≥ 0 are denoted, that is we have Z+ := {x ∈ Z | x ≥ 0}, for
example. With [n] we denote the set {1, 2, . . . , n}, ∅ is the empty set.
Let A and B be sets. With A ⊆ B we denote the subset relation. A (B is

used to denote that A is a strict subset of B. A ∩ B denotes the intersection,
A ∪ B the union of sets. If an encompassing set X, i.e. a set X ⊇ A is
given, we denote with A the complement of A with respect to X, i.e. the set
A := {x ∈ X | x 6∈ A}. With P(A) or 2A we denote the power set of A, i.e. the
set of all subsets of A, including ∅ and A. |A| is the cardinality of A, i.e. the
number of elements in A.
If A1, A2, . . . , An are sets, A1 × A2 × . . . × An is the set of all n-tuples over

A1, . . . , An. In A1 × . . .× An are thus tuples (a1, . . . , an) with ai ∈ Ai, i ∈ [n].
The element ai in such a tuple is called the ith component of (a1, a2, . . . , an).
If A1 = A2 = . . . = An = A we also write An for the set A1×A2× . . .×An. A
subset R ⊆ A1×A2× . . .×An is called a relation. The tuple (a1, a2, . . . , an) is
also called a vector, in which case the Ai are usually the same set A.
For binary relations R ⊆ A× A we denote with R+ the transitive and with

R∗ the reflexive and transitive closure. Furthermore, we set R−1 := {(x, y) |
(y, x) ∈ R}.

9

2 Fundamentals

Multisets

Let A be a set. A multiset over A is a mapping msA : A→ N assigning to each
element a in A a number msA(a) ∈ N denoting how often a appears in the
multiset msA. The subscript A can be omitted. Multisets are often written as
sums:

∑
a∈AmsA(a) ·a. A multiset msA is finite if only finitely many members

of A are assigned a number greater than 0, i.e. if
∑

a∈AmsA(a) <∞.
Multisets over the same set can be added, subtracted and so on in the usual

way for functions, e.g. (msA +ms′A)(a) = msA(a) +ms′A(a) for all a ∈ A is the
addition of two multisets. Note that in the case of subtraction no value below
0 is possible, i.e. (msA −ms′A)(a) = max{0,msA(a)−ms′A(a)}.
A multiset msA is a submultiset of ms′A, denoted msA ≤ ms′A, iff msA(a) ≤

ms′A(a) for all a ∈ A.
The set of all multisets over a set A is denoted byMS(A) orMSA.

Vectors and Matrices

An n-vector is simply an n-tuple where all elements are from the same set A,
i.e. each x ∈ An is an n-vector. Vectors are written as columns x = (a1, . . . , an),
in which ai is the ith component of x also denoted as xi. To get a row vector
we use the transposed vector xT .
A collection of elements grouped together in m rows and n columns is an

m × n matrix A. The element at the ith row and jth column is denoted by
A[i, j] or Aij. If the elements are explicitly given as Aij := aij, the matrix
itself is then sometimes denoted as A = [aij]. If the aij are from a set B we
write A ∈ Bm×n to denote that A is an m × n matrix over the set B. The
n-vector consisting of the elements of the ith row of A is denoted by Ai or
A[i, •], i.e. Ai = A[i, •] = (ai1, ai2, . . . , ain). The m-vector consisting of the
elements of the jth column of A is denoted by Aj or A[•, j], i.e. Aj = A[•, j] =
(a1j, a2j, . . . , amj).
The transpose of a matrix A is denoted by AT . Note that an n-vector is a

special n×1 or 1×n matrix and that transposition converts one into the other.
Vectors are written as n × 1 matrices, so in matrix equations like A · x = b it
is usually understood that x and b are n-vectors written as n × 1 matrices, if
A is an m× n matrix. In case of xT ·A, on the other hand, we have to use the
transpose of x and thus xT is an n-vector written as an 1× n matrix.
With 0 we denote the zero vector or zero matrix, depending on the context.

With I we denote the unit square matrix, i.e. the matrix defined by Iij := 1 if
i = j and Iij := 0 if i 6= j.
If A = {a1, . . . , an} is a finite set we identify the multiset ms : A→ N with

the vector x = (ms(a1), . . . ,ms(an)) ∈ N|A| and vice versa a vector x ∈ N|A|
with the multiset ms : A→ N where ms(ai) := xi.

10

2.2 Algorithms and Complexity Theory

Language Theory

In language theory an alphabet Σ is a finite set of symbols. The set Σ∗ consists
of all finite words that can be formed by concatenating these symbols. With
ε ∈ Σ∗ the special word of length 0, the empty word, is denoted. The set Σω

additionally contains the words of infinite length. If w ∈ Σ∗ is a word, then
the length of w is denoted by |w|. Concatenation of two words w, u ∈ Σ∗ is
denoted by w · u or simply wu. If w ∈ Σ∗ and u ∈ Σω then w · u is possible,
but not u · w, if u is of infinite length.

Graphs

A graph is a tuple G = (V,E) with a set V of vertices or nodes and a set E
of edges. If G is an undirected graph, E consists of two-element subsets of V ,
i.e. E ⊆ {{v, v′} | v, v′ ∈ V and v 6= v′}. If G is a directed graph, E ⊆ V × V ,
i.e. E consists of two-element tuples over V . A tuple (v1, v2) means that an
edge starting at v1 and ending at v2 exists. Vertices and edges can also be
labelled. The former by a labelling function L : V → Lab, where Lab is a
set of labels. The latter either by a similar labelling function or by adjusting
the definition of edges slightly. A directed labelled graph for example is a tuple
G = (V,E, Lab) with E ⊆ V × Lab× V .
If G = (V,E) is a directed graph, a sequence of nodes v0, v1, . . . , vn such that

(vi, vi+1) ∈ E for all i ∈ {0, 1, . . . , n − 1} is a path of length n. If no node
appears more than once on a path, the path is called simple. If v0, v1, . . . , vn−1

is a simple path and an edge between vn−1 and v0 exists, then the sequence
v0, v1, . . . , vn−1, vn is a circle or cycle of length n. The definitions for undirected
graphs are analogous.

2.2 Algorithms and Complexity Theory

In this section, we review fundamental facts from computability and complexity
theory and state the most important complexity classes needed later to relate
the complexity of the reachability problems of the different net classes. More
detailed explanations can be found in the text books [HMU01] and [Sip97] for
fundamentals and in the text books [Pap94], [Rot05] for complexity theory
in particular. Furthermore, the book by Hemaspaandra and Ogihara [HO02]
gives a detailed account of many different complexity classes and reduction
mechanisms.
One of the most fundamental and important formalism to reason about what

is computable is the Turing machine, originally introduced by A. M. Turing in
his seminal paper [Tur36] in 1936.
A Turing machine works on a one-way infinite tape consisting of cells. Each

cell either holds a tape symbol or is empty, in which case it is marked with

11

2 Fundamentals

the blank symbol. The Turing machine is in one of a finite set of states and
has a tape head that is positioned above one cell. The tape head can read
the symbol in the cell it is positioned above, write a new symbol to that cell
and move to the left or to the right. At the beginning the input word w is
written on the tape, the Turing machine starts in its initial state and the tape
head is positioned at the first symbol of w. The Turing machine then changes,
depending on the current state and the tape symbol read, its state, writes a
new symbol on the tape cell read and then moves the tape head to the left, to
the right, or does not move it at all. The Turing machine then continues in this
fashion. If during this computation the Turing machine reaches a final state,
the input word is accepted.

Definition 2.1 (Turing machine). A Turing machine is a tuple

M = (Q,Σ,Γ,#, δ, q0, Qend),

where

• Q is a finite set of states,

• Σ is a finite alphabet of input symbols,

• Γ is a finite alphabet of tape symbols, where Γ) Σ and Γ ∩Q = ∅,

• # ∈ Γ\Σ is a special symbol describing the empty cell (the blank symbol),

• δ is a transition function,

• q0 ∈ Q is the initial state, and

• Qend ⊆ Q is the set of finite states.

In general δ is only a partial function. In case of a deterministic Turing ma-
chine the transition function is defined as δ : (Q × Γ) → (Γ × {L,R,H} × Q)
where the meaning of δ(q, a) = (a′, X, q′) is that if M is in state q reading
the symbol a from the tape, it replaces a with a′, moves the tape head to the
direction given by X ∈ {L,R,H} (move to the left, move to the right, or hold
position) and changes to state q′.1

In case of a nondeterministic Turing machine the transition function is de-
fined as δ : (Q×Γ)→ 2Γ×{L,R,H}×Q, i.e. for each tuple from (Q×Γ) more than
one action may be possible.
A configuration of a Turing machine is a tuple (u, q, v) ∈ Γ∗ × q × Γ+,

meaning that the word uv is currently written on the tape (where to the left of
1Note that a movement to the left might not be possible if the tape head is already on the
left end of the tape. We do not go into details here and refer the reader to [HMU01]
instead.

12

2.2 Algorithms and Complexity Theory

u and to the right of v only the blank symbol is written on the tape), the Turing
machine is currently in the state q and the tape head scans the first symbol of
v. Configurations are also written as uqv.
A sequence of configurations where each configuration follows from the one

before according to δ, is called a computation.

A Turing machineM accepts a word w if, given w as input,M reaches during
its computation a configuration (u, q, v) with q ∈ Qend, i.e. if M reaches a final
state. The set of all accepted words is the accepted language L(M) of M . The
class of all languages accepted by Turing machines is denoted RE , the class of
recursively enumerable languages. The class of languages for which a Turing
machine exists, that halts on all inputs, is denoted REC, the class of recursive
or decidable languages.
A Turing machine M can also compute a function f : Σ∗ → Γ∗. In this case

a word w ∈ Σ∗ is given as input, and M halts in the configuration qv where
q ∈ Qend and v = f(w) iff f is defined on w. If a function f can be computed in
this way, f is said to be Turing-computable. There is a close connection between
word acceptance and function computing. If a Turing machine computes a
function f then it is also possible to construct a Turing machine that accepts
the Language L = {(w, f(w))} and conversely.
Many formalisms exists that are equivalent to Turing machines in computa-

tional power, i.e. if a language L can be accepted by a Turing machine it can
also be accepted by the other equivalent formalism. The equivalent formalism is
also said to be Turing-complete. Two of these formalisms are counter machines
and counter programs, which will be needed later to prove Turing-completeness
of some object net formalisms.

Definition 2.2 (Counter machines). A 2-counter machine is a tuple

M = (Q, δ0,0, δ0,1, δ1,0, δ1,1, q0, Qend)

where

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• Qend ⊆ Q is the set of final states,

• δ0,0 : Q → (Q × {1} × {1}) is the transition function for the case that
both counters are equal to zero,

• δ0,1 : Q→ (Q×{1}×{−1, 1}) is the transition function for the case that
the first counter is equal to zero and the second is greater than zero,

13

2 Fundamentals

• δ1,0 : Q→ (Q×{−1, 1}×{1}) is the transition function for the case that
the first counter is greater than zero and the second counter is equal to
zero, and

• δ1,1 : Q→ (Q× {−1, 1} × {−1, 1}) is the transition function for the case
that both counters are greater than zero.

A configuration is a triple (q, n1, n2) ∈ Q × N × N representing the state q
the machine is currently in and the values n1 and n2 of the first and second
counter, respectively. The successor configuration of (q, n1, n2) is defined via
δi,j where i = min(1, n1) and j = min(1, n2). With δi,j(q) = (q′, d1, d2) the
successor configuration of (q, n1, n2) is then defined as (q′, n1 + d1, n2 + d2).

The usage of δi,j as described in the definition above is actually a test for
zero and the idea can be easily generalised to k-counter machines for a fixed
k ∈ N. Similar to 2-counter-automata counter programs can be defined.

Definition 2.3 (Counter programs). A m-counter program consists of a
finite, non-empty sequence of commands cmd1; cmd2; . . . ; cmdn and has access
to m ≥ 2 counters c1, c2, . . . , cm. There are four different commands:

1. cj := cj + 1, j ≤ m, which increases the counter j by 1,

2. cj := cj − 1, j ≤ m, which decreases the counter j by 1, if cj > 0,

3. ifzero cj jump k1 else jump k2, j ≤ m, k1, k2 ≤ n, which tests the
counter cj for zero and jumps to cmdk1 if so and to cmdk2 if not, and

4. halt, which terminates the program.

The last command is always the halt-command, i.e. cmdn = halt, and this is
the only halt-command present in a m-counter program.
A configuration is a tuple C = (k, c1, . . . , cm) consisting of the current posi-

tion k in the program and the value of each counter. The initial configuration
is given by C0 = (1, 0, . . . , 0).
The successor configuration C ′ = (k′, c′1, . . . , c

′
m) of C = (k, c1, . . . , cm) de-

pends on the command cmdk:

1. If cmdk is cj := cj + 1, then k′ = k + 1, c′j = cj + 1 and c′i = ci for all
i 6= j.

2. If cmdk is cj := cj− 1 and cj > 0, then k′ = k+ 1, c′j = cj− 1 and c′i = ci
for all i 6= j. If cj = 0 the program halts with an error.

3. If cmdk is ifzero cj jump k1 else jump k2, then c′i = ci for all i ≤ m
and k′ = k1 if cj = 0 and k′ = k2 otherwise.

14

2.2 Algorithms and Complexity Theory

4. If cmdk is halt, then the program terminates successfully. This is only
possible if k = n.

The successor configuration is uniquely defined and the transition is denoted by
C −→ C ′.

In the light of the theory of computability the question if a language can be
decided at all, is of interest. From a more practical point of view the question
of the complexity of this decision procedure is of great importance. This is
the field of complexity theory where the resources needed to decide a language
are measured, most importantly time and space. We give the definitions with
regard to Turing machines.

Definition 2.4 (Complexity Classes). Let M be a Turing machine halting
on each input and (in the case of nondeterminism) on each computation. The
time complexity of M is a function t : N → N, where t(n) is the maximal
number of steps needed on inputs of length n. We say t(n) is the running time
of M or M runs in time t(n). The space complexity is defined analogously,
where s : N → N and s(n) is the maximal number of tape cells visited by the
read-/write-head on an input of length n.
The class P consists of all languages that can be decided by a deterministic

Turing machine whose running time is bounded by a polynomial.
Similarly the class NP consists of all languages that can decided by a non-

deterministic Turing machine whose running time is bounded by a polynomial.
The classes PSpace and NPSpace are defined analogously for deterministic

and nondeterministic Turing machines with polynomial space bounds.

While the question if P equals NP (widely believed not to be the case)
is unresolved, the question if PSpace equals NPSpace is answered in the
affirmative by Walter J. Savitch in [Sav70]:

Theorem 2.5.
PSpace = NPSpace

Another central concept is the concept of a reduction, establishing connec-
tions between different problems and thus allowing to derive decidability results
from known ones and also to capture the notion of the “complexity” of a prob-
lem, most notably renowned in the theory of NP-completeness.

Definition 2.6 (Reduction). Given two languages A,B ⊆ Σ∗ a reduction
from A to B, denoted by A ≤ B is a Turing-computable f such that x ∈ A⇔
f(x) ∈ B holds, i.e. each input x can be algorithmically transformed into a
word f(x) such that x is an element of A if and only if f(x) is an element of
B.

15

2 Fundamentals

With the definition of reduction known decidability or undecidability results
for a given language can be carried over to new languages, if one can construct
a suitable reduction.

Lemma 2.7. 1. Let A,B ⊆ Σ∗. If A is undecidable and A ≤ B, then B is
undecidable, too.

2. Let A,B ⊆ Σ∗. If B is decidable and A ≤ B, then A is decidable, too.

While in Definition 2.6 no restrictions where imposed on f besides being
Turing-computable, in complexity theory one is mostly interested in reductions
that only use a certain amount of time or space. One of the most important
class of reductions are those that are computable in polynomial time.

Definition 2.8 (Polynomial-time reduction). Let A,B ⊆ Σ∗. A poly-
nomial time reduction from A to B is a reduction from A to B that can be
computed in polynomial time. This is denoted by A ≤p B.

Definition 2.9 (NP-Hardness and NP-Completeness). A language B is
NP-hard if A ≤p B holds for all A ∈ NP, i.e. each language A in NP is
polynomial-time reducible to B.
B is NP-complete if B is NP-hard and B ∈ NP holds.

The definition of PSpace-hardness and -completeness is analogously to the
definition of NP-hardness and -completeness.
The canonical NP- and PSpace-complete problems are SAT and QBF, respec-

tively, i.e. the problem of deciding if a given propositional formula is satisfiable
or if a given quantified Boolean formula is satisfiable (cf. [HMU01]).
There is much more that could be said about Turing machines (or other

Turing-complete formalisms), but for us it is enough to know that Turing ma-
chines are in some sense as powerful as common imperative programming lan-
guages like C, meaning that they can simulated each other with only a poly-
nomial increase in running time. Indeed the Church-Turing thesis states that
all reasonable deterministic computational models can pairwise simulate each
other with only a polynomial overhead, meaning that if one of them runs in
t(n) time on inputs of length n, then another model can do the same compu-
tation in O(p(t(n))) time, where p is a polynomial. (We assume familiarity
with the O-Notation. See for example [CLRS09].) Thus we will, as is common
practice, not give Turing machines to prove decidability of a given problem,
but describe an algorithm in an intuitively understandable pseudo code of an
imperative-style programming language.
Since the algorithm can be simulated with only polynomial overhead by a

Turing machine, a result that e.g. the algorithm requires only a polynomial
number of steps and each step only requires polynomial time, also means that
a Turing machine can calculate the algorithm in polynomial time, i.e. the prob-
lem is in P. A similar argumentation holds for the other classes employing

16

2.3 Logic and Model Checking

polynomials in their definitions, particularly for the classes NP, PSpace, and
NPSpace.

2.3 Logic and Model Checking

In this section, we review basic notations and definitions from logic. Most
notably we introduce the temporal logics LTL and CTL, which are widely used
to specify a system’s properties, and discuss the basics of model checking.
A more thorough account of propositional logic, linear time and branching

time temporal logic, and model checking can be found in the wonderful text
book by Huth and Ryan [HR04] and in the newer text book by Baier and
Katoen [BK08].

Propositional Logic

Propositional logic is defined over a countable set V = {x1, x2, . . .} of (propo-
sitional) variables or atoms. The alphabet of propositional logic, i.e. the set of
symbols that may be used to construct formulas, then consists of the variables
in V , the connectives ∧, ∨, and ¬ (for “and”, “or”, and “not”) and the paren-
theses (and). The syntax of propositional logic, i.e. the well-formed formulas
is defined using this alphabet.

Definition 2.10 (Syntax of propositional logic). The (well-formed) for-
mulas of propositional logic are defined inductively:

1. Each variable x ∈ V is a formula.

2. If φ is a formula, then so is ¬φ.

3. If φ and ψ are formulas, then so are (φ ∧ ψ) and (φ ∨ ψ).

4. Only formulas generated by finitely many applications of item 1 to 3 above
are well formed formulas of propositional logic.

Alternatively the syntax of propositional logic can also be defined by the fol-
lowing grammar where x represents a variable.

φ ::= x | ¬φ | (φ ∧ φ) | (φ ∨ φ)

We omit parentheses in the usual way and use the common abbreviations
φ⇒ ψ := ¬φ∨ψ, φ⇔ ψ := (φ⇒ ψ)∧ (ψ ⇒ φ), > := (x∨¬x), and ⊥ := ¬>
for implication, biimplication, tautology, and contradiction, respectively.
A formula only consisting of a single variable is also called an atomic for-

mula. A formula of the Form ¬φ is called a negation. (φ∧ψ) is a conjunction,
(φ ∨ ψ) a disjunction.

17

2 Fundamentals

A literal is an atomic formula or the negation of a atomic formula, i.e. a
literal is of the form x or ¬x for an x ∈ V . In the first case the literal is also
called positive literal and it is called a negative literal in the second case.
A formula is in conjunctive normal form (CNF) if it is a conjunction of

disjunctions of literals. For example (x2∨¬x4)∧ (x1∨¬x4∨x5)∧ (¬x3∨x4) is
a formula in CNF. A disjunction of literals is also called a clause. A formula
is in 3-CNF if each clause consists of exactly three literals.

To define the semantics of propositional logic we need to define a model with
regard to which the truth of a formula can then be defined.

Definition 2.11 (Propositional model). A model for a propositional for-
mula φ is a total function A : V → {0, 1}.
If A(x) = 0 we say, that x is false (in A). If A(x) = 1 we say, that x is

true (in A).
Actually A does not need to be total, but only to be defined on the variables

appearing in the formula φ, but requiring A to be total eases some other def-
initions and the value of A on variables not appearing in φ is not important
and might thus be defined arbitrarily. Thus these values are in general not
mentioned explicitly.
The definition of A is expanded inductively to formulas. With A |= φ we

denote the truth of a propositional formula φ in a model A, i.e. the fact that
A(φ) = 1 holds. In case of A(φ) = 0 we write A 6|= φ.

Definition 2.12 (Semantic of propositional logic). Given a formula φ and
a model A, A is expanded to φ inductively by the following rules:

A |= p iff A(p) = 1, for a p ∈ V
A |= ¬φ iff A |= φ does not hold, denoted as A 6|= φ
A |= φ1 ∧ φ2 iff A |= φ1 and A |= φ2 holds
A |= φ1 ∨ φ2 iff A |= φ1 or A |= φ2 holds

If A |= φ holds, we say that A satisfies φ or that φ is true in A. Otherwise we
write A 6|= φ and say that A falsifies φ or that φ is false in A.
A formula φ is satisfiable if some model A exists with A |= φ. φ is falsifiable

if some A with A 6|= φ exists. φ is valid if φ is true in all models. Validity is
denoted by |= φ. In this case φ is a tautology. φ is a contradiction, denoted
by φ |=, if no model satisfies φ.
Two formulas φ and ψ are equivalent, if A |= φ iff A |= ψ holds for all

models A.

The Temporal Logics LTL and CTL.

Temporal logics extend propositional logic by modalities like “finally” or “al-
ways” to reason about time. Other logics like predicate logic can also be ex-
tended in this way, but we focus on Linear-time Temporal Logic (LTL for

18

2.3 Logic and Model Checking

short) and Computation Tree Logic (CTL for short) here, which are extensions
of propositional logic. The origins of LTL can be dated back to [Pnu81] (with
an earlier conference version from 1977) where it was first used to reason about
concurrent programs. The origins of CTL can be dated back to [CE81].
In LTL time is viewed as “linear”, that is a state is followed by another, the

next state. The infinite continuation is then a path. Each path might be the
“actual” path that is realised. In CTL time might “branch”, that is one state
is followed by one of a number of possible successor states. Again there are
different paths and any one of those might be the “actual” path that is realised.
The logics are also enriched with quantifiers that range over paths.
In both logics it is not truly reasoned about time as in a statement like “the

state s is reached in 5 seconds”, where a time duration is explicitly mentioned.
Instead of the timing of events, the relative ordering of states is important and
can be specified, for example one might state that a state is eventually followed
by a state (in which a certain proposition holds).
In the following we will define the syntax and semantics of the two temporal

logics LTL and CTL, which by now have both been successfully used in the
verification of systems (see for example the book edited by Grumberg and
Veith to celebrate 25 years of model checking [GV08]). The semantics are
defined relative to a labelled transition system, which are basically directed
graphs where each node, also called state in this setting, is labelled with atomic
propositions that hold in that node.
We then state important results concerning model checking these logics. We

focus on the logics CTL and LTL here. The logic CTL∗ that contains CTL
and LTL as sublogics is not treated here (for an account of CTL∗ see for ex-
ample [BK08]).

The Temporal Logic LTL.

Let V = {v1, v2, . . .} be a countable set of (propositional) variables or (propo-
sitional) atoms as before. The syntax of LTL can be defined in two ways.

Definition 2.13 (Syntax of LTL). The (well-formed) formulas of LTL are
defined by the following grammar

φ ::= v | ¬φ | (φ ∧ φ) | (φ ∨ φ) |
Xφ | Fφ | Gφ | (φUφ)

where v ∈ V is any propositional atom.

Definition 2.14 (Syntax of LTL (alternative)). The (well-formed) formu-
las of LTL are defined inductively:

1. Each atomic proposition v ∈ V is an (atomic) formula of LTL.

19

2 Fundamentals

2. If φ1 and φ2 are formulas, then so are ¬φ1, (φ1 ∧ φ2) and (φ1 ∨ φ2).

3. If φ1 and φ2 are formulas, then so are Xφ1, Fφ1, Gφ1 and (φ1Uφ2).

4. Only formulas generated by finitely many applications of item 1 to 3 above
are well formed formulas of LTL.

To omit parentheses we use the convention that the unary connectives ¬, X,G
and F bind most tightly, then U and then ∧ and ∨.
The logical connectives ¬, ∧ and ∨ are as in propositional logic. The intended

meaning of the new temporal connectives is “next”, “globally”, “finally”, and
“until” for X, G, F , and U respectively. LTL formulas are interpreted along
a path in a transition system (a formalism similar to a finite automaton; see
below), where a path is simply a sequence of states. Before we define this
formally we give the idea behind the new temporal connectives. Let π be a
path starting at state s. Intuitively Xφ1 holds on π if φ1 holds in the next
state reached on π after the first state s. Fφ1 holds on π, if there is some
state on π in which φ1 holds. Gφ1 holds on π, if φ1 holds in all states along
π (including s). At last (φ1Uφ2) holds on π, if φ2 holds at a state s′ along π
and in all states until that state φ1 holds. More accurately the (sub-)formulas
do not hold in states, but on paths starting at certain states. This is captured
by the formal definition below. At first, however, we need the definition of a
transition system along whose paths LTL formulas are interpreted.

Definition 2.15 (Labelled transition system (LTS)). A labelled transition
system (LTS) is a tuple TS = (S, s0, R, L) where S is a finite set of states,
s0 ∈ S is a start state, R ⊆ S × S is a left-total transition relation, i.e. for
each s ∈ S there is always a s′ such that (s, s′) ∈ R, and L : S → P(V) is
a labelling function, labelling each state s with the set of atomic propositions
L(s) ⊆ V that hold in that state.

Labelled transition systems as defined above are also called Kripke struc-
tures in honour of the philosopher and logician Saul Kripke who proposed
them [Kri63]. The definition of a labelled transition system differs slightly in
the literature. Frequently the arcs are in addition provided with an arc label,
see e.g. [BK08].

Definition 2.16 (Path of an LTS). A path π in an LTS TS = (S, s0, R, L)
is an infinite sequence of states π = s1s2s3 . . . such that (si, si+1) ∈ R for all
i ≥ 1. With πi, i ≥ 1, we denote the suffix starting at si, i.e. πi = sisi+1 . . .,
and with π(i), i ≥ 1, we denote the i-th state in π, i.e. π(i) = si. If s1 happens
to be the initial state s0 of TS, π is also called a computation.

The semantics of LTL formulas is defined relative to paths in an LTS. The
satisfaction relation |= is again defined inductively.

20

2.3 Logic and Model Checking

Definition 2.17 (Semantics of LTL). Let M = (S, s0, R, L) be an LTS and
π = s1s2 . . . a path in M . π satisfies an LTL formula φ (in M), if M,π |= φ
holds, where the relation |= is defined inductively as follows:

M,π |= v iff v ∈ L(s1) for v ∈ V
M, π |= ¬φ iff M,π 6|= φ
M, π |= φ1 ∧ φ2 iff M,π |= φ1 and M,π |= φ2

M,π |= φ1 ∨ φ2 iff M,π |= φ1 or M,π |= φ2

M,π |= Xφ iff M,π2 |= φ
M, π |= Fφ iff M,πi |= φ for some i ≥ 1
M,π |= Gφ iff M,πi |= φ for all i ≥ 1
M,π |= φ1Uφ2 iff there is some i ≥ 1 such that M,πi |= φ2 holds

and for all j < i M, πj |= φ1 holds.

A LTL formula φ holds in an LTS M , if it holds along all paths starting at
s0.

Definition 2.18 (Semantics of LTL (continued)). Let M = (S, s0, R, L) be
an LTS. Let φ be a LTL formula and s ∈ S a state of M . We write M, s |= φ
if M,π |= φ holds for every path π in M that starts at s. If M, s0 |= φ holds we
also simply write M |= φ and say that M is a model for φ or that φ is satisfied
in M .
Two LTL formulas φ and ψ are equivalent, denoted by φ ≡ ψ, if for all

models M and all paths π in M we have M,π |= φ iff M,π |= ψ.

Note that some authors introduce more connectives like⇒ for implication or
the temporal connective R for “release”. These can be replaced by the equiv-
alences φ1 ⇒ φ2 ≡ ¬φ1 ∨ φ2 and φ1Rφ2 ≡ ¬(¬φ1U¬φ2) for example. The
connectives we use are an adequate set of connectives for LTL, i.e. all other
connectives can be expressed with them. Indeed there are smaller sets of ad-
equate connectives, for example the set {¬,∧, X, U} is an adequate set. The
connectives F and G are then defined via the abbreviations Fφ := >Uφ and
Gφ := ¬F¬φ. Having only a small number of operators is helpful in devising
(model checking) algorithms, since fewer cases have to be taken care of.
The model-checking problem for LTL asks given an LTS M and a LTL for-

mula φ if M |= φ holds, i.e. if M is a model for φ. It is possible to decide this
problem with an automata-theoretic approach using Büchi automata. This ap-
proach yields an algorithm that solves the problem in O(|M | · 2|φ|) time. The
problem is actually PSpace-complete. This is discussed in more detail in an
extra section about model checking below. Before that section we introduce
the temporal logic CTL.

The Temporal Logic CTL.

In CTL it is possible to argue about the paths in a transition system. To this
end the logic is enriched with the path quantifiers ‘A’ and ‘E’. The semantics

21

2 Fundamentals

is then defined with an infinite, directed tree in mind that is obtained by
“unfolding” a transition system into a reachability tree (cf. [BK08]).

Definition 2.19 (Syntax of CTL). The (well-formed) formulas of CTL are
defined by the following grammar

φ ::= v | ¬φ | (φ ∧ φ) | (φ ∨ φ) |
EXφ | EFφ | EGφ | E[φUφ] |
AXφ | AFφ | AGφ | A[φUφ]

where v ∈ V is any propositional atom.
As in the case of LTL (see Definition 2.14) the formulas of CTL can also be

defined inductively. We omit this here.

The intended meaning of ‘E’ is “a path exists” the intended meaning of ‘A’
is “on all paths”. The meaning of EX is then “in some next state” and of EFφ
“there is a path such that φ holds in some (future) state on it”. Contrary to
LTL formulas of CTL are evaluated with respect to states of an LTS. A CTL
formula might thus hold in a state or not. Formally the semantics is again
defined inductively.

Definition 2.20 (Semantics of CTL). Let M = (S, s0, R, L) be an LTS and
s ∈ S a state. A CTL formula φ is satisfied in s (in M), if M, s |= φ holds,
where the relation |= is defined inductively as follows:

M, s |= v iff v ∈ L(s) for v ∈ V
M, s |= ¬φ iff M, s 6|= φ
M, s |= φ1 ∧ φ2 iff M, s |= φ1 and M, s |= φ2

M, s |= φ1 ∨ φ2 iff M, s |= φ1 or M, s |= φ2

M, s |= EXφ iff a state s′ ∈ S exists such that (s, s′) ∈ R and
M, s′ |= φ holds

M, s |= EFφ iff a path π = s1s2 . . . starting at s (i.e. s1 = s) exists
and an i ≥ 1 such that M, si |= φ holds.

M, s |= EGφ iff a path π = s1s2 . . . starting at s (i.e. s1 = s) exists
and M, si |= φ holds for all i ≥ 1.

M, s |= E[φ1Uφ2] iff a path π = s1s2 . . . starting at s exists
such that a j ≥ 1 exists with M, sj |= φ2 and
M, si |= φ1 holds for all i < j

M, s |= AXφ iff M, s′ |= φ holds for all s′ ∈ S with (s, s′) ∈ R.
M, s |= AFφ iff for all paths π = s1s2 . . . starting at s an i ≥ 1

exists such that M, si |= φ holds.

22

2.3 Logic and Model Checking

M, s |= AGφ iff for all paths π = s1s2 . . . starting at s
M, si |= φ holds for all i ≥ 1.

M, s |= A[φ1Uφ2] iff for all paths π = s1s2 . . . starting at s a j ≥ 1
exists such that M, sj |= φ2 holds and
M, si |= φ1 holds for all i < j

A CTL formula holds in an LTS M , if it holds in the initial state of M .

Definition 2.21 (Semantics of CTL (continued)). Let M = (S, s0, R, L)
be an LTS. Let φ be a CTL formula. If M, s0 |= φ holds we also simply write
M |= φ and say that M is a model for φ or that φ is satisfied in M .
Two CTL formulas φ and ψ are equivalent, denoted by φ ≡ ψ, if for all

models M and all states s in M we have M, s |= φ iff M, s |= ψ.

To exhibit the differences between LTL and CTL consider the following exam-
ple taken from the book by Haubelt and Teich [HT10] (in German only). Con-
sider the LTL formula φ = FGp (which is actually interpreted as φ = AFGp),
the CTL formula ψ = AFAGp and the LTS M given by

1. S = {s0, s1, s2}

2. R = {(s0, s0), (s0, s1), (s1, s2), (s2, s2)}

3. L(s0) = L(s2) = {p}

Now, since LTL-formulas are interpreted over individual paths and CTL-
formulas are interpreted in states, φ is true in the model, because it holds for
every path (starting at s0), but ψ is not true in the model, because it would
have to hold at s0, i.e. at each path starting at s0 one would have to reach a
node in which AGp holds, but this is not the case in s0.
Thus even if the two formulas above seem alike, they are not. Indeed there

are LTL-formulas for which no equivalent CTL-formula exist and also CTL-
formulas for which no equivalent LTL-formula exists. Equivalence means here
that the formulas have the same set of satisfying Kripke structures. Each of
these logics is a sublogic of CTL∗, though, see e.g. [HR04] or [BK08].
We usually - and especially in the case of model checking - stick to a set

of adequate connectives, i.e. a set of connectives that is expressive enough to
capture the logic CTL. One such set is for example the set {¬,∧, EX,EG,EU}.
All formulas using any of the other connectives can always be replaced by
equivalent formulas using only the connectives of the set {¬,∧, EX,EG,EU}.
Common abbreviations are φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2), > ≡ φ ∨ ¬φ, EFφ ≡
E[>Uφ], AGφ ≡ ¬EF¬φ, AFφ ≡ ¬EG¬φ, AXφ ≡ ¬EX¬φ, and A[φ1Uφ2] ≡
¬(E[¬φ2U¬(φ1 ∨ φ2)] ∨ EG¬φ2). See [HR04] for more details.
Given a CTL formula φ and an LTS M , the model checking problem for

CTL asks if M |= φ holds. The problem can be decided in O(|M | · |φ|) time
and is thus linear in the input. One should note, however, that the size of the

23

2 Fundamentals

model M tends to be rather big, giving rise to the infamous state explosion
problem. We discuss CTL and LTL model checking in more detail in the
following subsection.

The Model Checking Problem

The model checking problem for LTL or CTL asks given an LTS M and a
formula φ if M |= φ holds, i.e. if M is a model for φ. CTL model checking
was invented independently by E. M. Clarke and E. A. Emerson [CE81] and
J.-P. Queille and J. Sifakis [QS82]. The ideas that underlie the method for
LTL model checking outlined below were proposed by O. Lichtenstein and
A. Pnueli [LP85] and M. Y. Vardi and P. Wolper [VW86].
Usually M is a more or less abstract model of a system or of certain aspects

of a system and φ is a specification of certain properties. If M |= φ holds, the
(model of the) system satisfies the specification.
In order to state results concerning the complexity of decision procedures for

the model checking problems, we need to define the size of an LTS and of a
formula: Let M be an LTS and φ be a CTL or LTL formula. The size of M is
denoted by |M |, the size of φ is denoted by |φ|. We set |M | := |S| + |R| and
|φ| := n, where n is the number of atomic propositions in φ. Note that each
occurrence of an atomic proposition counts, e.g. the size of φ = (A ∨B) ∧A is
3, since A appears twice.

Theorem 2.22 (Model Checking LTL and CTL). Let M be an LTS.

1. Let φ be a LTL formula. The model checking problem for LTL, i.e. the
question if M |= φ holds, is PSpace-complete and can be decided in
O(|M | · 2|φ|) time.

2. Let φ be a CTL formula. The model checking problem for CTL, i.e. the
question if M |= φ holds, can be decided in O(|M | · |φ|) time.

The difference in terms of complexity in the procedures to decide the model
checking problem for LTL and CTL stems from the fact that in CTL a formula
is true in a state or not. Thus one can break down the given formula into
its subformulas, test in which states these hold, and then use this to decide
in which state the more complex, composed formulas hold. This is actually
the main idea behind the basic CTL model checking algorithm (for a didactic
treatment see [HR04]).
For LTL model checking, on the other hand, all paths have to be checked.

Interpreting these paths as infinite words, a more language-theoretic approach
seems worthwhile. Usually, a LTL model checker constructs a Büchi automa-
ton M¬φ that accepts all words that do not fulfil the specification φ. With the
product construction for finite automata an automaton M ⊗M¬φ is then con-
structed that accepts all words that are in L(M), i.e. that are possible runs in

24

2.4 Petri Nets

the given LTS M , and that do not fulfil the specification. The model checking
problem for LTL, that is the question if M |= φ holds, is thus reduced to the
question whether the language of the automaton outlined above is empty, i.e. if
L(M ⊗M¬φ) = ∅ holds. The major task in this approach is the construction
of M¬φ. See [HR04] and [Var96] for details on this.
Note that regardless of the difference in complexity theoretic terms, the dif-

ficulty of solving the problems in practice usually stems from the size of the
model and not the size of the formula. A model often consists of several com-
ponents executed in parallel. The size of the model is then exponential in the
number of such components. The size of the formula, on the other hand, tends
to be rather small especially in comparison with the size of the model.
Despite the in most cases quite large model, both CTL and LTL model check-

ing have been implemented in tools and have been successfully used in practice.
For example the by now widely known model checker SPIN implements LTL
model checking (see the SPIN book by Holzmann [Hol04]). CTL model checking
is implemented in e.g. NuSMV [CCGR99]. The importance of model checking
has grown since the early papers of E. M. Clarke and E. A. Emerson [CE81]
and J.-P. Queille and J. Sifakis [QS82] in such a way, that for their research in
model checking and their role in turning it into a verification technique widely
used in the industry Clarke, Emerson and Sifakis received the prestigious ACM
A.M. Turing Award in 2007.

2.4 Petri Nets

In this section, we state basic definitions and review some facts about Petri
nets. Moreover, in this section we also treat extensions of Petri nets.
Several structurally and dynamically restricted variants are treated in Sec-

tion 2.5. More restrictions and extensions can be found in the literature, but
we focus on those variants that we will also treat later on in the context of
object net systems.
More details on Petri nets can be found in e.g. [RR98], [GV03], or [Pet81].

Basic Petri Nets

Petri nets are a by now well established formalism to model distributed systems
and in particular their control flow. Originally introduced by Carl Adam Petri
in his doctoral dissertation in 1962 [Pet62] they are now in widespread use. We
will use the term Petri net or general Petri net for the unrestricted variant of a
place/transition net We will also use the term, when a structure can be seen as
a Petri net if certain features are ignored (see Definitions 2.24 and 2.27 below
and the naming conventions in Chapter 1).
All Petri net models share the definition of a net :

25

2 Fundamentals

Definition 2.23 (Net). A net is a triple N = (P, T, F), where

1. P is a finite set of places,

2. T is a finite set of transitions with T ∩ P = ∅, and

3. F ⊆ (P × T) ∪ (T × P) is a flow relation describing the set of arcs

A net (P, T, F) is connected if every two nodes x, y satisfy (x, y) ∈ (F ∪
F−1)∗.

We do not distinguish between finite and infinite nets here. Our nets are are
always finite, i.e. |P |, |T | <∞.
With •t we denote the set of places that have an arc to t, i.e. •t = {p ∈ P |

(p, t) ∈ F}. Similarly we have t• = {p ∈ P | (t, p) ∈ F}. The sets •p and p•
are defined analogously as the sets of transitions “before” and “after” a place p.
The class of place/transition nets (or p/t nets for short) is one of the most

fundamental net classes and is defined as follows:

Definition 2.24 (P/T net). A place/transition net (p/t net for short) is a
tuple N = (P, T, F,W), where

1. (P, T, F) is a net, and

2. W : F → N \ {0} is the arc weight function.

If W (x, y) = 1 for all arcs (x, y) ∈ F we usually omit W in the tuple and
simple write (P, T, F) for a p/t net.
We will use the term Petri net or general Petri net for the place/transition

net introduced above or if a structure can be seen as a place/transition net, if
certain features are ignored.
An example of a p/t net is given in Figure 2.1.
In an alternative definition of p/t nets the arcs are given by the backward

and forward incidence matrices pre and post. This notation is usually quite
helpful when calculating invariants, whereas the usage of F is closer to the
graphical representation.

Definition 2.25 (P/T net (alternative)). A place/transition net (p/t net)
is a tuple N = (P, T,pre,post), where

1. P is a finite set of places,

2. T is a finite set of transitions with T ∩ P = ∅, and

3. pre,post ∈ N|P |×|T | are the backward and forward incidence matrices.

The matrix ∆ = post− pre is called the incidence matrix of N .
pre(t) := pre[•, t] and post(t) := post[•, t] are used as abbreviations.

26

2.4 Petri Nets

If there is an arc with weight n > 0 from p ∈ P to t ∈ T , then we have
pre[p, t] = n or alternatively (p, t) ∈ F andW (p, t) = n. Similarly for arcs from
transitions to places. The two representations can thus easily be converted into
each other. We usually use the second representation here.

Definition 2.26 (Marking). A marking of a p/t net N = (P, T,pre,post)
is a vector m ∈ N|P | or alternatively a function m : P → N.
The set of all markings of a net N is denoted byMN or simply byM if no

ambiguities can arise.
The special marking with m(p) = 0 for all p ∈ P is denoted by 0, which is

also used in the special case where N has no places, i.e. P = ∅. In the last
mentioned case there is thus only one marking andMN = {0}.

Definition 2.27 (P/T net system). A p/t net system N is tuple (N,m0)
consisting of a p/t net N together with an initial marking m0. Alternatively
we write N = (P, T,pre,post,m0).
If N = (P, T,pre,post,m0) is a p/t net system, we denote the underlying

p/t net (P, T,pre,post) by N .
In cases where no ambiguity can arise we use N and N interchangeable. In

the case of markings for example it does not matter if the set of markings is
denoted byMN orMN .

To state complexity results concerning problems where p/t net systems are
the input the size of p/t nets systems needs to be defined.

Definition 2.28 (Size of a p/t net system). Let N = (P, T,pre,post,m0)
be a p/t net system. The size of N is defined as |N | := |P | + |T | + |pre| +
|post|+ |m0|.

Note that |pre|, |post| ∈ O(|P | × |T |) and also |F | ∈ O(|P | × |T |), so the
different notions of a p/t net do not differ much in complexity terms. Also
note that the size of m0 depends on the number of markings that reside on
each place. In an algorithm usually only pre, post and m0 are given, where
pre and post are two-dimensional arrays and m0 is an one-dimensional array.

Definition 2.29 (Enabled transition). Let N = (P, T,pre,post) be a p/t
net. A transition t ∈ T is enabled or activated in a marking m ∈ N|P | if
m ≥ pre(t) = pre[•, t], where pre[•, t] = (pre[p1, t],pre[p2, t], . . . ,pre[pn, t])
for P = {p1, . . . , pn}, i.e. pre[•, t] is the t-column vector of the matrix pre.
If the net is given as N = (P, T, F,W), t is enabled in m : P → N iff

m(p) ≥ W (p, t) for all p ∈ •t.
Enabling of a transition t in a marking m is denoted by m t−→.

A transition t that is enabled may fire. Firing removes the necessary amount
of tokens from all places in the preset of t and puts new tokens on all places in
the postset of t according to the arc weight function.

27

2 Fundamentals

Figure 2.1: A p/t net

p1 + 2 · p2 + p3 + p4

t1−→ p1 + p2 + 2 · p4 + p5

t2−→ p1 + p2 + p3 + 2 · p4

t1−→ p1 + 3 · p4 + p5

t2−→ p1 + p3 + 3 · p4

Figure 2.2: A firing sequence for
the p/t net in Figure 2.1

Definition 2.30 (Firing a transition). A transition t of a p/t net N =

(P, T,pre,post) that is enabled in a marking m ∈ N|P |, i.e. m t−→, may
fire. The successor marking m′ is defined as m′ := m − pre(t) + post(t) =
m−pre[•, t] +post[•, t], where post[•, t] is defined analogous to pre[•, t] (see
Definition 2.29). We denote firing by m t−→ m′.
Again, if the net is given as N = (P, T, F,W) the successor marking m′ of

m reached by firing t is defined by

m′(p) =


m(p)−W (p, t) if p ∈ •t \ t•
m(p) +W (t, p) if p ∈ t• \ •t
m(p)−W (p, t) +W (t, p) if p ∈ •t ∩ t•
m(p) otherwise

To get rid of the case distinction we introduce a function W̃ : (P ×T)∪ (T ×
P)→ N with

W̃ =

{
0 if (x, y) 6∈ F
W (x, y) if (x, y) ∈ F

The successor marking can now be easily defined as

m′(p) = m(p)− W̃ (p, t) + W̃ (t, p)

Firing is extended to sequences in the usual way:

Definition 2.31 (Firing a sequence of transitions). Let w ∈ T ∗ a sequence
of transitions. The firing of w in a marking m is defined inductively on the
length of w:

• m ε−→ m

• If w = ut with u ∈ T ∗ and t ∈ T , then m w−→ m′ iff a marking m′′ exists
such that m u−→ m′′ and m′′ t−→ m′ holds.

28

2.4 Petri Nets

To denote, that w ∈ T ∗ is activated in m we write m w−→. To denote that m′
is reachable from m by some sequence of transitions we also write m ∗−→ m′.

In the example net of Figure 2.1 the current marking is p1 + 2 · p2 + p3 + p4

and the transition t1 is enabled. If t1 fires the successor marking is given by
p1 + p2 + 2 · p4 + p5. From this marking the sequence t2 · t1 · t2 is activated
resulting in the marking p1 + p3 + 3 · p4 in which now no transition is activated,
i.e. we have reached a deadlock.
Note that the number of tokens on p1 is not changed by firing t1, but that

p1 needs to be marked anyway or otherwise t1 is not active and can not fire.
Also note that the overall number of tokens remains the same. This does not
have to be the case. By deleting the arc (t1, p4) for example, this effect would
be gone.
In the example of Figure 2.1 there is only one transition active at each reach-

able marking. Usually this is not the case, too. By reversing the arcs (p5, t2)
and (t2, p3) we end up with a net in which the transitions t1 and t2 are both
active in the initial marking p1 + 2 · p2 + p3 + p4. If t2 fires now, t1 is not active
anymore, since the place p3 is empty then.
We are now able to define reachability of a marking and liveness of a net,

two basic terms in verification.

Definition 2.32 (Reachability). Let N = (P, T,pre,post,m0) be a p/t net
system and m,m′ markings of N . The marking m′ is reachable from the mark-
ing m iff a sequence w ∈ T ∗ of transitions exists such that m w−→ m′ holds, i.e. w
is enabled at m and after firing w the current marking of N is m′.
The set of markings reachable from m ∈MN in N , denoted by R(N,m), is

defined as
R(N,m) := {m′ ∈M | ∃w ∈ T ∗ : m

w−→ m′}

The set of reachable markings of N , denoted by R(N), is the set of markings
reachable from m0, i.e. R(N) := R(N,m0).
The reachability graph of N , denoted by RG(N), is a directed graph G =

(V,E) with

V := R(N)

E := {(m, t,m′) ∈M× T ×M | m t−→ m′}.

The set of nodes are thus exactly the reachable markings and a labelled edge
connects a marking m to a marking m′ reachable from m by firing one transi-
tion.

Note that the reachability graph can also be seen as a special transition
systems (see Definition 2.15) where the transition relation additionally includes
the firing transition (of the Petri net) and the labelling map is not used.
Boundedness can be defined via finiteness of the reachability set.

29

2 Fundamentals

Definition 2.33 (Boundedness). Let N = (P, T,pre,post,m0) be a p/t net
system. N is bounded iff the reachability set is finite, i.e. if |R(N)| <∞.

The following theorem gives an alternative characterisation of boundedness.

Theorem 2.34. Let N = (P, T,pre,post,m0) be a p/t net system. N is
bounded, i.e. |R(N)| < ∞, iff a k ∈ N exists such that m(p) ≤ k for all
m ∈ R(N) and for all p ∈ P , i.e. on each place at most k tokens reside in each
reachable marking.

Proof. Let N be bounded. Among the finite set of markings and the finite set
of places there is one marking m that assigns the most tokens to one of the
places p, i.e. m(p) is maximal. Let k := max{m(p) | m ∈ R(N), p ∈ P}, then
on each place at most k tokens reside in each reachable marking.
Conversely, let m(p) ≤ k for some k and all m ∈ R(N) and p ∈ P . In each

marking each place is then assigned a number between 0 and k culminating in
at most (k + 1)|P | markings, thus |R(N)| <∞.

Definition 2.35 (Liveness). Let N = (P, T,pre,post,m0) be a p/t net sys-
tem. A transition t ∈ T is live iff for each m ∈ R(N) a sequence w ∈ T ∗ exists
that enables t, i.e.

t ∈ T is live iff ∀m ∈ R(N)∃w ∈ T ∗m wt−→

It is thus always possible to enable t again.
The p/t net system N is live if every transition t ∈ T is live.

We now define standard problems in the context of Petri nets and verification
in general. The reachability problem asks if a given marking is reachable in
a net system. The liveness problem asks if every transition can always be
activated again. The coverability problem asks if a marking m can at least be
“covered” by a reachable marking m′, i.e. if m′ with m′ ≥ m is reachable. The
boundedness problem asks if the set of reachable markings is finite.

Definition 2.36 (Petri net problems). 1. In the reachability problem a
p/t net system N = (N,m0) and a marking m of N are given and the
question is, if m0

∗−→ m holds.

2. In the liveness problem a p/t net system N = (N,m0) is given and the
question is, if N is live.

3. In the coverability problem a p/t net system N = (N,m0) and a marking
m of N are given and the question is, if a marking m′ exists such that
m′ ∈ R(N) and m′ ≥ m.

4. In the boundedness problem a p/t net system N = (N,m0) is given and
the question is, if N is bounded.

30

2.4 Petri Nets

All the problems mentioned above are decidable for p/t nets, but to solve
them in the general case requires at least exponential space and thus the com-
plexity is rather high. Indeed most interesting questions about p/t nets are
ExpSpace-hard (cf. the survey articles by Esparza [Esp98a] and Esparza and
Nielsen [EN94]). Note that ExpSpace-hardness does not mean that these
problems are decidable. Indeed many important problems for p/t nets are
actually undecidable, among them the model checking problems for LTL and
CTL and equivalence problems (cf. [Esp98a]).
The reachability problem was first proven to be decidable by Mayr in

1981 [May81] (see also [May84]). A simplified proof was given by Kosaraju
in [Kos82]. Unfortunately, the procedures given in both require non primi-
tive recursive space. A further simplification by Lambert [Lam92] is still non
primitive recursive. As a lower bound ExpSpace-hardness was proven by Lip-
ton [Lip76] (see also [Esp98a] for a proof using terminology from Petri nets).
Neither an upper bound close to this hardness result nor a better lower bound
are currently known.
The liveness problem is recursively equivalent to the reachability problem

(cf. [Hac74], [Hac76a]) and is thus decidable, but it is again ExpSpace-hard
due to [Lip76] (see also [Esp98a]).
The coverability problem is ExpSpace-hard [CLM76] and can be decided

by a technique proposed by Karp and Miller in [KM69]. Unfortunately, this
technique is non-primitive recursive [Rac78], but also in [Rac78] Rackoff showed
that the problem can actually be decided in 2c·n·logn space for some constant c
and thus in ExpSpace and with this gave an almost optimal bound.
Decidability of the boundedness problem was also proven by Karp and Miller

in [KM69]. Lipton proved that at least 2c·
√
n space is required and thus the

problem is ExpSpace-hard [Lip76]. In [Rac78] Rackoff gave an algorithm that
again requires 2c·n·logn space and that is thus almost optimal, too.

Theorem 2.37. The reachability, liveness, coverability, and boundedness prob-
lem are decidable for p/t nets, but are ExpSpace-hard.
Coverability and boundedness can be decided in ExpSpace.

On the one hand Petri nets lack certain modelling capabilities. For this
reason several extensions are known, most of which yield a Turing complete
formalism. We state two prominent ones below, which we will need later on.
On the other hand, the above complexity bounds render the formalism prac-

tically intractable with verification in mind. Many restrictions of the formalism
have been investigated in which important problems like reachability and live-
ness are not only decidable, but in which far lesser resources are needed in the
decision procedures. These restrictions can be roughly divided into structural
and dynamic restrictions. Some of these restrictions are treated in Section 2.5
below.

31

2 Fundamentals

Extension of Petri Nets

For certain modelling tasks Petri nets lack appropriate modelling capabilities.
For example, in standard Petri nets it is not possible to test if a certain place
has zero tokens on it. We state two prominent ones, inhibitor nets and coloured
Petri nets, below, which we will need later on.

Inhibitor Nets

Inhibitor nets are defined as standard Petri nets with an additional set I of arcs
called inhibitor arcs (see [Hac76c] and [Pet81]). Inhibitor arcs connect places
to transitions, i.e. I ⊆ P × T . If (p, t) ∈ I is an inhibitor arc, then t is only
allowed to fire in a marking m if m(p) = 0 holds, that is inhibitor arcs test
places for zero. Unsurprisingly nets with this capability are Turing-complete,
which was shown by Hack by a simulation of counter programs [Hac76c].
Note that inhibitor arcs are defined here as elements of P × T , but their

direction is actually not important. They are usually depicted as undirected
edges.

Definition 2.38 (Inhibitor Nets). An inhibitor net is a tuple N =
(P, T, F,W, I) where (P, T, F,W) is a p/t net and I ⊆ P × T is a set of in-
hibitor arcs. A transition t ∈ T is active in a marking m : P → N iff for all p
such that an input arc (p, t) ∈ F exists m(p) ≥ W (p, t) holds and for all p such
that an inhibitor arc (p, t) ∈ I exists m(p) = 0 holds. The successor marking
is defined as in standard p/t nets.
For simplicity an arc (p, t) ∈ F is only allowed if (p, t) 6∈ I - otherwise t

would never be able to fire. Note that (p, t) ∈ I does not exclude (t, p) ∈ F . In
this case t might fire, if p is empty and after firing p is marked and must at
first be depleted before t can be activated again.

Theorem 2.39. Inhibitor nets are Turing-complete. Among other problems
the reachability problem is undecidable.

Petri nets with only one inhibitor arc are not Turing-complete. The reacha-
bility problem can be decided for them, cf. [Rei08].

Coloured Petri Nets

Coloured Petri nets (CPNs) are a widely used extension of classical Petri nets.
Tokens in CPNs are not only anonymous black tokens anymore, but may be
given any of a specified set of colours. In this way it is possible to define
complex data. Note, however, that it is not comfortably possible to model
internal behaviour of these objects.
Coloured Petri nets may furthermore use variables and so called guards that

are just logical expressions mapped to a transition. The transition is then

32

2.5 Restrictions of Petri Nets

only able to fire, if the expression is satisfied. If the set of colours is infinite
CPNs are Turing-complete. If only finite set of colours are allowed, a CPN
can be unfolded into a p/t net and CPNs with finite sets of colours are thus
no more expressive than standard Petri nets, albeit modelling might be much
more comfortable.
We do not give a formal definition of CPNs here. A detailed account

of them including modelling and applications can be found in the books by
Jensen [Jen97a], [Jen97b], [Jen97c] and in the newer book by Jensen and Kris-
tensen [JK09].
An interesting extension of CPNs is the addition of channels for synchronous

communication introduced by Christensen and Hansen [CH94]. With these
channels a transition may “send” a token from one of its input places to an out-
put place of another transition. This idea is similar to the idea of transporting
net tokens in object net systems (see Chapter 6. However, even with this ex-
tension it is still not possible to model an internal structure or behaviour of the
tokens of the CPN. See also the discussion of related formalisms in Chapter 3.4.

2.5 Restrictions of Petri Nets

Due to the complexity of many important problems for general Petri nets, auto-
matically verifying them is practically intractable (see Theorem 2.37). There-
fore many restrictions of the formalism have been introduced and investigated
in which important problems like reachability and liveness become practically
decidable, i.e. decidable using an affordable amount of resources. These restric-
tions can be roughly divided into structural and dynamic restrictions.

Structural Restrictions of Petri Nets

Given a p/t net system N = (P, T, F,m0) a structural restriction somehow
restricts the (graph-theoretic) structure of the underlying net N = (P, T, F) by
e.g. restricting the number of outgoing arcs from a place.
In the following we treat the restricted net classes we will need later on in

the context of object net systems. We will define the classes and state results
concerning most importantly the reachability problem and in some cases also
results concerning some of the other problems from Definition 2.36.
Not extensively treated here are mixtures of this structural restrictions like

e.g. 1-conservative and free-choice p/t nets.
Also note that many more structural restrictions are imaginable. See

e.g. [EN94] for some more restrictions and also more problems than those de-
fined above.

33

2 Fundamentals

P- and T-nets

One of the most severe restriction of a p/t net is that to P- and T-nets. In a P-
net the transitions are roughly speaking identical to the arcs, so only the places
and arcs are of importance, thus the name P-net. In a T-net the analogous
case holds for places.

Definition 2.40 (P- and T-nets). Let N = (P, T, F) be a p/t net.

1. N is a P-net, if |•t| = |t•| = 1 holds for all t ∈ T .

2. N is a T-net, if |•p| = |p•| = 1 holds for all p ∈ P .

P-nets are also called S-nets and T-nets are also called marked graphs for
historical reasons.
If N is a P-net and additionally a initial marking m0 ∈ MN is given, then

(N,m0) is called a P-system. Analogous (N,m0) is a T-system if N is a T-net.

In a P-net synchronisations are ruled out. In a T-net conflicts can not appear.
Given this severely restricted structure it is not surprising that most problems

can be decided very quickly:

Theorem 2.41. For P- and T-systems the reachability and the liveness problem
can be decided in polynomial time.

A proof of the above theorem and of some more properties of P- and T-
nets can be found in [DE95], while the origins of this work can be traced back
to [CHEP71], [GL73], and [BT87].

Conservative Petri Nets

Conservative Petri nets are similar to P-nets, but slightly more liberal.

Definition 2.42 (1-conservative Petri nets). A p/t net N = (P, T, F) is
1-conservative if |•t| = |t•| for all t ∈ T .
If N is a 1-conservative net, then (N,m0) with m0 ∈MN is a 1-conservative

system.

The more general definition of conservative Petri nets requires a function
f : P → N \ {0} such that

∑
p∈•t f(p) =

∑
p∈t• f(p) for every transition t.

We do not need this generalised definition here and focus on 1-conservative
Petri nets.
Despite their similarity to P-nets, where many interesting problems can be

decided in polynomial time, problems like reachability and liveness become
surprisingly hard:

34

2.5 Restrictions of Petri Nets

Theorem 2.43. For 1-conservative Petri nets the reachability and the cover-
ability problem are PSpace-complete. The liveness problem for 1-conservative
Petri nets is in PSpace.

Proofs for the statements in Theorem 2.43 can be found in [JLL77].
1-conservative Petri nets are by definition bounded, because a transition

removes as many tokens as it produces and thus the number of tokens remains
constant.

Acyclic Petri nets

A p/t net is acyclic if it does not contain a cycle, i.e. there is no element
x ∈ P ∪ T such that there is a non-trivial path starting and ending at x.

Definition 2.44 (Acyclic Petri nets). Let N = (P, T, F) be a p/t net. N is
acyclic if there is no x ∈ P ∪ T such that (x, x) ∈ F+ holds.
If N is an acyclic net, then (N,m0) with m0 ∈MN is an acyclic system.

Acyclic Petri nets are rarely used due to their restricted modelling power.
That the reachability problem for them can be solved in nondeterministic poly-
nomial time follows from a reduction to the linear programming problem for
integers [CEP93]. The last mentioned problem is in NP [HU79]. NP-hardness
was proved by Stewart [Ste95] along with other results concerning even more
restricted classes of acyclic Petri nets. Most notably it was shown there that
the reachability problem for 1-safe acyclic Petri nets remains NP-complete (see
the discussion about dynamic restrictions below).

Theorem 2.45. The reachability problem for acyclic Petri nets is NP-
complete.

Conflict-free Petri Nets

The definition of conflict-freedom ensures that whenever two transitions are in
conflict, i.e. both transitions are activated and have at least one place in their
presets in common, they actually both may fire and thus there is not truly a
conflict.

Definition 2.46 (Conflict-free Petri nets). Let N = (P, T, F) be a p/t net.
N is conflict-free if p• ⊆ •p holds for each place p with |p•| > 1.
If N is a conflict-free net, then (N,m0) with m0 ∈ MN is a conflict-free

system.

A p/t net in which two activated transitions may both fire without disabling
the other is called persistent (see the subsection about dynamic restrictions
below) and it is easy to come up with a persistent p/t net that is not conflict-
free in the sense of the definition above. Nevertheless, the structural definition

35

2 Fundamentals

covers a nice (sub-)class of p/t nets and can be easily checked. Moreover,
conflict-free p/t nets have the nice property that many problems are far easier
to solve as in the case of general p/t nets.

Theorem 2.47. The boundedness and the liveness problem for conflict-free p/t
nets can be solved in polynomial time. The reachability problem for conflict-free
p/t nets is NP-complete.

Proof. A proof that boundedness for conflict-free p/t nets can be solved in
polynomial time can be found in [HRY87]. The proof for liveness can be found
in [HR89] and the proof of NP-completeness of the reachability problem is
in [JLL77] and [HR88].

The reachability problem can even be solved in polynomial time, if the
conflict-free p/t net is also bounded (cf. [HR89] and also see the discussion
of dynamic restrictions below).

Free-Choice Petri Nets

Free-choice Petri nets constitute one of the most thoroughly studied net classes
and they are widely reckoned as a large net class with a sensible trade-off
between expressiveness and the existence of efficient algorithms. It is stated
in [DE95] that Eike Best coined the term “free-choice hiatus” in 1986 to describe
the situation that a rich and useful theory for free-choice Petri nets exists, but
that few of the results can be extended to larger net classes, i.e. the border
between Petri net formalisms that have acceptable expressiveness and efficient
algorithms for analysis and Petri net formalisms that may be suited to model a
richer variety of systems, but for whom decision procedures are inefficient can
be drawn very close to free-choice Petri nets.
While in a P-net no synchronisations and in a T-net no conflicts can appear,

they are both allowed in a free-choice net, but interference of both is ruled out.
Free-choice Petri nets have been introduced in [Hac72]. See also the thorough
treatment in [DE95].

Definition 2.48 (Free-choice Petri nets). Let N = (P, T, F) be a p/t net.
N is free-choice if (p, t) ∈ F implies •t × p• ⊆ F for every place p and every
transition t or alternatively if for every two places p1, p2 and two transitions
t1, t2 (p1, t1), (p1, t2), (p2, t1) ∈ F implies (p2, t2) ∈ F .
If N is a free-choice net, then (N,m0) with m0 ∈MN is a free-choice system.

Free-choice Petri nets have been subject to extensive research. Theorem 2.49
lists some of the most important results concerning the reachability and the
liveness problem. Most results require additional dynamic restrictions like live-
ness or boundedness. 1-safeness means that at every reachable marking and on
each place at most one black token resides (see also Definition 2.50 below). A

36

2.5 Restrictions of Petri Nets

net is cyclic if the initial marking can be reached from any reachable marking
again.

Theorem 2.49. 1. Reachability is PSpace-complete for 1-safe free-choice
p/t nets.

2. Reachability is NP-complete for live and bounded free-choice p/t nets.

3. Reachability is solvable in polynomial time for live, bounded, and cyclic
free-choice p/t nets.

4. Liveness is coNP-complete for free-choice nets.

5. Liveness is solvable in polynomial time for bounded free-choice nets.

A proof outline for the first item can be found in [CEP95], the full con-
struction is in [JLL77] and [Hac76b], see also the subsection about dynamic
restrictions below. The second item is proved in [Esp98b]. The third item is
proved in [DE91], [DE93]. It can also be decided in polynomial time if these
three properties hold for certain nets [DE91] and if a free-choice net is live and
bounded [DE95].
The fourth item is proved in [JLL77], see also [DE95] and the fifth item is

proved in [ES92].
A thorough treatment of free-choice Petri nets can be found in the text book

by Desel and Esparza [DE95], which only lacks newer result like [Esp98b] that
proves the second item above.

Dynamic Restrictions of Petri Nets

Contrary to structural restrictions a dynamic restriction of a p/t net system
does not restrict the structure of the underlying net, but somehow takes into
account the dynamic of the system, i.e. the firing of transitions or the mark-
ings reachable by firing of transitions. For example demanding that a given
net system is live is a dynamic restrictions because regardless of the marking
reached for every transition t there is always a sequence of transitions whose
firing enables t again.
In the following we will again treat the restricted net classes we will need

later on in the context of object net systems. We will define the classes and
state results concerning the problems from Definition 2.36.
Some more dynamic restrictions can be found in [EN94].

Unary and Persistent Petri Nets

A Petri net is unary if in every reachable marking at most one transition is
enabled. This severely restricts the possible reachability graphs. But even

37

2 Fundamentals

Figure 2.3: A persistent but not conflict-free p/t net

in this case the reachability problem is PSpace-hard. Indeed, it is PSpace-
complete in the case of unary and 1-safe Petri nets (cf. [CEP95]).
A Petri net is persistent if whenever two transitions are enabled at a reached

marking, then both may fire and in particular one does not disable the other.
Note that a unary net is persistent and that a conflict-free net is also persistent.
Indeed, persistence tries to capture the absence of conflicts in a dynamic way,
but it is hard to check if a net is persistent. For example it is PSpace-complete
to decide if a net is persistent even for 1-safe nets [CEP95]. While a conflict-free
net is also persistent, it is easy to come up with a persistent net that does not
have the structural property to be conflict-free (see Figure 2.3 for an example).
Thus conflict-freedom might not capture all nets in which no conflicts arise,
but it is an easy to check structural property, it covers a wide range of the nets
without conflicts, and many problems become quickly decidable as stated in
the discussion of conflict-free Petri nets above.

Safe Petri Nets

Safeness restricts the number of tokens that may reside on a place. In a safe
net all places may only contain a limited number of tokens and thus the state
space is finite. Also if the state space is finite, the net is k-safe for some k.

Definition 2.50 (k-safe Petri nets). Let N = (P, T, F,m0) be a p/t net
system. N is k-safe, k ∈ N, if for all places p ∈ P and all reachable markings
m ∈ R(N) the number of tokens on p is bounded by k, i.e. ∀m ∈ R(N)∀p ∈
P : m(p) ≤ k.
A p/t net that is n-safe for some n is also called bounded.
If N is 1-safe, we simply say that N is safe.

Lemma 2.51 (Finiteness of k-safe Petri nets). A p/t net N is k-safe for
some k iff |R(N)| <∞, i.e. the state space is finite.

Proof. Let n := |P |. Since at each of the n places between 0 and k tokens
reside, there are at most (k + 1)n markings of N .

38

2.5 Restrictions of Petri Nets

For the other direction let |R(N)| < ∞. Let k := max{m(p) | p ∈ P,m ∈
R(N)}, then N is k-safe, because by definition of k in no reachable marking
more than k tokens reside on any place of N .

Finiteness of state-space does not only guarantee decidability of interesting
problems, many problems become far quicker decidable than for general Petri
nets.

Theorem 2.52. 1. To decide if a given net is 1-safe is PSpace-complete.

2. Reachability is PSpace-complete for (unary) 1-safe p/t nets.

3. Liveness is PSpace-complete for 1-safe p/t nets.

4. Coverability is PSpace-complete for 1-safe p/t nets.

5. Every property that can be expressed in the temporal logics CTL or LTL
can be decided deterministically in polynomial space for 1-safe p/t nets.

May of the results above are mentioned or proved in [CEP95], but actually
follow from the fact already observed in the late seventies by Jones, Landweber,
and Lien in [JLL77], that a 1-safe p/t net of size O(n2) can simulate a linear
bounded automaton starting on an empty tape of size n. Since the net can
be constructed in polynomial time, hardness results concerning linear bounded
automata carry over to 1-safe p/t nets. Proofs for the second, third, and fourth
item of Theorem 2.52 can be found in [CEP95]. For reachability the statement
is also true for unary 1-safe p/t nets, where unary means that at most one
transition is enabled at every reachable marking. Boundedness is always true
for 1-safe or bounded nets.
The first item of Theorem 2.52 is proved in [JLL77].
The strong fifth item is proved in [Esp98a].
Safeness is especially interesting in combination with structural restrictions.

For net classes whose nets are 1-safe and also have some structural restriction
imposed upon them like e.g. conflict-freedom or free-choice, the reachability
problem might be even quicker solvable. This line of research has been inten-
sively studied and we state results relevant for this thesis in Theorem 2.53.
Some of the results of Theorem 2.53 have already been stated in the preceding

sections. For convenience we group them together here anyway.

Theorem 2.53. 1. Reachability for 1-safe and acyclic p/t nets is NP-
complete.

2. Liveness for 1-safe and acyclic p/t nets can be solved in constant time.

3. Reachability for 1-safe and conflict-free p/t nets is in P.

4. Liveness for 1-safe and conflict-free p/t nets is in P.

39

2 Fundamentals

5. Reachability for 1-safe and free-choice p/t nets is PSpace-complete.

6. Liveness for 1-safe and free-choice p/t nets is in P.

7. Reachability for 1-conservative p/t nets is PSpace-complete.

8. Liveness for 1-conservative p/t nets is in PSpace.

Stewart showed in [Ste95] the first item. The second item is mentioned
in [CEP95].
Both results for safe and conflict-free p/t nets can be found in [HR89]. Note

the difference to the unbounded case in which the reachability problem is NP-
complete (see Theorem 2.47).
A proof outline for the fifth item can be found in [CEP95] the full construction

is in [JLL77] and [Hac76b]. The sixth item is proved in [ES92]. See also the
subsection about free-choice p/t nets above for more results on free-choice nets.
Item seven and eight are proved in [JLL77].

40

3 Elementary Object Systems

In this chapter, we recapitulate Elementary Object Systems (Eos), a nets-
within-nets-formalism introduced by Valk [Val91] in which the nesting is re-
stricted to two levels, i.e. there is a p/t net, called the system net, in which the
tokens are allowed to be standard p/t nets, called object nets. We give a small
example in this chapter and point to the literature for a case study showing
the usefulness of the approach for modelling agent systems. On the negative
side we show that even with the restriction of the nesting depth to two levels,
elementary object systems are Turing-powerful, thus preventing attempts to
find usable analysis techniques.
In Section 3.1, we motivate the formalism of Eos and explain it in an intuitive

way with an example. In Section 3.2, we give the formal definition of Eos.
Our presentation in this section is close to the presentation in the report by
Köhler-Bußmeier [KB11], which summarises most of the work on Eos before
this thesis. In Section 3.3, we prove in two different ways that Eos are as
powerful as Turing machines, which implies undecidability of the reachability
problem and other problems. Firstly, we recapitulate, with slight modifications,
the proof from Köhler in [Köh07], in which a simulation of counter programs
is presented. Secondly, we present a construction to simulate inhibitor nets
by Eos providing an alternative proof that is reusable later in the context of
conservative Eos (see Section 4.1). The second construction is joint work with
Michael Köhler-Bußmeier and is published in [KBH11a] and in revised form
in [KBH12].
In Section 3.4, we discuss other approaches which also try to capture the

notion of both nesting of structures and mobility of objects. Among these
approaches, some are building upon the theory of Petri nets, for example nested
nets [Lom00] or hypernets [BBPP05], and some originate from process algebra,
for example the Ambient Calculus [CG00b] and the Seal Calculus [CVN05].

3.1 Motivation

Imagine a robot that moves around in some environment such as a factory.
The robot picks up some materials from the environment, say from the storage
depot, and transports it to some machine, where the materials are used to
construct an artefact. A Petri net modelling the environment might look like

41

3 Elementary Object Systems

Figure 3.1: The environment modelled by a Petri net N̂ .

the one depicted in Figure 3.1. For now ignore the transitions’ labelings in
brackets.
Initially the robot resides on the place p̂0. He can then pick up the different

materials A, B, C, or D with the transitions to the left. The materials are
only available in limited quantity. The robot can also move to the places p̂1

or p̂2 which model workbenches, there it can put down the materials, picked
up before. The materials can then be used via the two rightmost transitions
to construct the artefacts X or Y . Construction is only possible if the robot
has delivered the right materials. That the robot may only reside on the places
p̂0, p̂1, and p̂2 is modelled by the typing (not depicted in the figures). These
places are thus explicitly typed with the object net that models the robot. All
other places are typed with the object net type for black tokens.
The requirement, that only materials that have been picked up before, can

be put down, is not yet modelled. Intuitively, this should be encoded in the
robot. Of course, in this case we would also be able to model the whole scenario
with a standard Petri net. It is far more natural, however, to model the robot
with something more expressive than a black token. In the nets-within-nets-
approach the black token can be a Petri net again and thus it is possible to
model internal structure and internal behaviour of the object modelled before
with only the black token.
To model the robot with a Petri net, we note that the robot can only pick

up and put down certain objects. A Petri net, modelling this behaviour and
remembering which objects have been picked up, is depicted in Figure 3.2.
The net N̂ in Figure 3.1, modelling the environment, is called the system

net. The net N in Figure 3.2, modelling the robot or agent, is called an object
net. The transitions’ inscriptions pick up A etc. are channels. Channels are
used in the following way: In the system net the inscription <N:pick up A> of
the transition t̂A means that to be able to fire, t̂A needs to synchronise with a
transition of the object net N , that is labelled with the same channel pick up
A. In the object net the inscription <:pick up A> of the transition tA means
similarly that to be able to fire, tA needs to synchronise with a transition of

42

3.1 Motivation

Figure 3.2: The robot modelled by a Petri net N and located on place p̂0 of
Figure 3.1.

the system net, that is labelled with the same channel. Since there is only
one system net, it is not necessary to explicitly state it in the object nets’
transition inscriptions. The transition t̂A of the system net may thus only fire
synchronously with tA in the object net.
The places p̂0, p̂1, and p̂2 are typed with N , meaning that on these places

only net tokens of this object net type N may reside. All other system net
places are typed with N•, meaning that on these places only standard black
tokens may reside.
We now describe the dynamic behaviour of the net system. Initially the

situation is as depicted in Figure 3.1, where the robot modelled with the net
of Figure 3.2 resides on p̂0. Thus we do not have a black token but a Petri net
on p̂0. The marking of the robot is the empty marking 0, since initially it has
not picked up any materials. Markings are described via nested multisets. We
thus start with the marking

p̂0[0] + 4 · p̂A + 4 · p̂B + 4 · p̂C + 4 · p̂D,

meaning that p̂0 is marked with a net token whose marking is 0 and the places
p̂A, p̂B, p̂C , and p̂D are marked with four black tokens each. That on p̂0 resides a
net token of type N and that black tokens reside on the other places originates
from the typing of the places. The synchronous event consisting of t̂A and tA,
denoted by t̂A[tA], is activated, since both transitions are activated and can
thus fire, resulting in the successor marking

p̂0[pA] + 3 · p̂A + 4 · p̂B + 4 · p̂C + 4 · p̂D.

Firing t̂A[tA] once again, t̂B[tB] twice, and t̂C [tC] once leads to

p̂0[2 · pA + 2 · pB + 1 · pC] + 2 · p̂A + 2 · p̂B + 3 · p̂C + 4 · p̂D.

43

3 Elementary Object Systems

Then we fire the system-autonomous event t1 which models a movement of the
robot to p̂1. There the robot puts down its materials from p̂A and p̂B by firing
the synchronous events t̂′A[t′A] (twice) and t̂′B[t′B] (twice). Note that due to the
typing of the places, the object net N is placed on p̂1 again and not on p̂′A or
p̂′B. The places p̂′A and p̂′B are marked with black tokens.
The material originally obtained from p̂C can not be dropped from p̂1. The

robot thus moves via the system-autonomous event t′1 back to p̂0 and then via
t2 to p̂2. There the robot drops its last material via t̂′C [t′C], resulting in the
marking

p̂1[0] + 2 · p̂A + 2 · p̂B + 3 · p̂C + 4 · p̂D + 2 · p̂′A + 2 · p̂′B + 1 · p̂′C .

The robot can then return to its initial position via t′2 and with tcx one artefact
X can be constructed resulting in

p̂0[0] + 2 · p̂A + 2 · p̂B + 3 · p̂C + 4 · p̂D + 1 · p̂′A + 1 · p̂′B + 1 · p̂X .

Many additions to the model are imaginable, for example, extending the
model of the robot with a complementary place to allow only a certain amount
of materials to be picked up. However, the rough model above is enough to
illustrate the main points of the formalism.
In the example above we had synchronous and system-autonomous events.

Object-autonomous events are also possible. In this case a transition in an
object net, not using any channel, fires autonomously from any system net
transition.
A typical verification question now would be if a certain object can be con-

structed or if the robot can always return to its initial position. Thus being
able to solve the reachability problem and maybe other questions, expressible
in commonly used logics like CTL or LTL, is of great importance. If the general
formalism is Turing-complete, the question is if all facets of it are used in the
example above or if the formalism can be restricted in such a way that the
models are still useful, but can also be verified.
Note that it might be helpful from the modeller’s point of view to have the

ability to use colours, instead of black tokens, to combine the different materials
in one place, for example. This is not investigated further in this thesis. The
focus is on the simpler model above. Furthermore, note that it might also be
helpful to model the materials as Petri nets again, in case these are complex
objects with internal structure and behaviour again. This is already possible
in the outlined formalism above. However, in that case it would be nice to
actually transport these objects including their current internal state in the
vertical dimension, that is from the environment to the robot or more abstract
from the system net to the object net. In the example above the object net on
place p̂A would then be transported to the place pA in the object net modelling
the robot. Since the object net modelling the material then resides in the object

44

3.2 Fundamentals and Formal Definition of Eos

net modelling the robot which again resides in the system net and we thus have
three nesting levels, these thoughts lead to object nets with a deeper or even
arbitrary nesting. Moreover, these thoughts lead to a formalism that allows
such a vertical transport of tokens as mentioned above. This topic is taken up
in detail in Chapter 6. In this chapter, we now focus on the formal definition of
the basic model, introduced informally above and on the expressiveness of this
formalism. Another example of the usage of object net systems can be found
in [KMR03], where they are used in the context of agent systems and mobile
robots.
In the following we will speak of the nets-within-nets-family of formalisms if

we want to denote a formalism which somehow applies the idea of nesting to
Petri nets (see the discussion of Petri net like formalisms in Section 3.4).
The term object net system is used to emphasise that we mean a member of

the nets-within-nets-family, where the black tokens of a Petri net can be a Petri
net again or a reference to a Petri net. In particular the formalisms introduced
in this thesis are object net systems. The term is also used for the most general
form we introduce in Chapter 6.

3.2 Fundamentals and Formal Definition of Eos

In the following we formally define the formalism of elementary object systems
introduced intuitively in the previous section.

Eos where first introduced in [Val91], while our definitions follow [KB11]
with slight modifications. Most notably, in our definition the labelling l =
(l̂, (lN)N∈N) is part of the tuple of an Eos instead of the set of events Θ (see
Definition 3.1 below). This is more natural from a modelling point of view and
also more amenable to complexity theoretic analysis, because Θ tends to be
very big (cf. Lemma 3.10) and thus statements about the complexity of some
procedure in the size of the object net system would not be helpful if Θ would
be part of the object net system.
As informally described in the previous section, an elementary object system

is composed of a system net, a set of object nets, a typing of the system net
places and a labelling of the transitions with channels or with the special symbol
τ . The labelling has to adhere to some restrictions and from the labelling the
set of events can be deduced. An example is given in Figure 3.3 below, see also
Example 3.5 below.

Definition 3.1 (Eos). Let C be a set of synchronisation channels and τ 6∈ C.
An elementary object system (Eos for short) is a tuple OS = (N̂ ,N , d, l) such
that:

1. N̂ = (P̂ , T̂ ,pre,post) is a p/t net, called the system net.

45

3 Elementary Object Systems

2. N = {N1, . . . , Nn} is a finite set of disjoint p/t nets called object nets
given as Ni = (PNi , TNi ,preNi ,postNi).

3. d : P̂ → N is the typing of the system net places.

4. l = (l̂, (lN)N∈N) is the labelling in which

l̂ : T̂ → (N → (C ∪ {τ})) and
lN : TN → (C ∪ {τ}) for all N ∈ N .

All these functions are total.

We assume N̂ 6∈ N and the existence of the object net N• ∈ N which has no
places or transitions and is used to model black tokens. Moreover, we assume
that all sets of nodes (places and transitions) are pairwise disjoint and set
PN := ∪N∈NPN and TN := ∪N∈NTN .
The system net places are typed by the mapping d : P̂ → N with the

meaning, that if d(p̂) = N , then the place p̂ of the system net may contain only
net-tokens of the object net type N .
The transitions in an Eos are labelled with synchronisation channels by the

synchronisation labelling l. For this we assume a fixed set of channels C. In
addition we allow the label τ which is used to describe that no synchronisation
is desired (i.e. autonomous firing). The intended meaning of the labels is as
follows:

1. lN(t) = τ means that the transition t of the object net N may fire object-
autonomously or simple autonomously.

2. lN(t) = c 6= τ means that t synchronises via the channel c with the system
net.

3. l̂(t̂)(N) = τ means that the system net transition t̂may fire independently
(or autonomously) from the object net N . If l̂(t̂)(N) = τ holds for all
N ∈ N then the system net transition t̂ may fire system-autonomously
or simply autonomously.

4. l̂(t̂)(N) = c 6= τ means that t̂ synchronises via the channel c with the
object net N .

In case of a autonomous event a single transition fires independently from all
other transitions. In case of a synchronous event a system net transition fires
together with a non-empty set of object net transitions. In this case the labels,
i.e. the channels used, have to match (see Definition 3.4 below).

46

3.2 Fundamentals and Formal Definition of Eos

Definition 3.2 (Marking of an Eos). A marking of an Eos OS is a nested
multiset. Let

MN :=
⋃
p̂∈P̂

({p̂} ×Md(p̂)).

A marking of OS is a finite multiset µ : MN → N.
We will usually denote an element (p̂,M) of MN by p̂[M] and a marking

of an Eos by µ =
∑|µ|

k=1 p̂ik [Mik], where p̂ik is a place in the system net, Mik

is a marking of a net token of type d(p̂k), and the ik are indices. With |µ|
we denote the number of elements from MN that appear in µ, i.e. the num-
ber

∑
(p̂,m)∈MN µ(p̂,m), which is the number of net tokens present in µ. As a

shortcut we write the sum also as µ =
∑

k p̂k[Mk].
We define the partial order ≤ on nested multisets by setting µ1 ≤ µ2 iff
|µ1| ≤ |µ2| and the elements of µ1 and µ2 can be arranged in such a way that
µ1 =

∑
i p̂i[Mi], µ2 =

∑
j p̂
′
j[M

′
j] and for all k ≤ |µ1| we have p̂k = p̂′k and

Mk ≤ M ′
k, where ≤ is the usual multiset relation (see Chapter 2.1). Thus the

same net tokens appear in µ2 with at least the same marking as in µ1 and in
µ2 may appear additional net tokens.
With � we denoted the special partial order with µ1 � µ2 iff |µ1| ≤ |µ2| and

the elements of µ1 and µ2 can be arranged in such a way that µ1 =
∑

i p̂i[Mi],
µ2 =

∑
j p̂
′
j[M

′
j] and for all k ≤ |µ1| we have p̂k = p̂′k andMk = M ′

k. Thus every
net token that appears in µ1 also appears in µ2 and with the same marking. In
µ2 additional net tokens may appear.
The set of all markings of OS is denoted byMOS or simplyM if no ambi-

guity can arise.
An Eos with initial marking is a tuple OS = (N̂ ,N , d, l, µ0) where µ0 ∈M

is the initial marking.

As was necessary for p/t net systems the size of an Eos has to be defined to
state complexity results (see Definition 2.28)

Definition 3.3 (Size of an Eos). Let OS = (N̂ ,N , d, l, µ0) be an Eos. The
size of OS is defined as |OS | := |N̂ | +

∑
N∈N |N | + |d| + |l| + |µ0|, where the

size of the p/t nets is defined in Definition 2.28. The typing d can be stored
in a one-dimensional array with |d| ∈ O(|P̂ |). The size of the labelling |l| is
the sum of the space needed to store l̂ and all the lN for N ∈ N , where the lN
can again be stored in a one-dimensional array each and l̂ can be stored in a
two-dimensional array. The marking µ0 is stored as an array of |P̂ | elements
where each element either points to null, if the corresponding system net place
is unmarked, or to an array of |P | elements where P is the set of places of the
object net type that resides on that system net place.

We usually do not distinguish between an Eos and an Eos with initial
marking and often simply speak of an Eos even if an initial marking is present.
What is meant will always be clear from the context.

47

3 Elementary Object Systems

In the above definition an element of MN is a marking of an object net
together with the place in the system net on which it resides. A marking
µ of OS then gives the position of all net tokens and their inner marking.
Multiplicity is only needed (in µ) if more than one net token with the same
marking resides on the same place of the system net.
To introduce the firing rule for Eos we need to introduce events, which

correspond to transitions in a p/t net, projections and the enabling predicate.
In the following definitions we usually assume that an Eos as in Definition 3.1
is given.
The set of system events Θ is generated by the synchronisation labelling. The

set Θ consists of the disjoint sets of synchronous events Θl, object-autonomous
events Θo, and system-autonomous events Θs. An event is a pair, denoted t̂[ϑ]
in the following, where t̂ is a transition of the system net or ε̂ and ϑ maps each
object net to one of its transitions or to ε. The mapping has to be consistent
with the labelling and in an synchronous event the labels of the participating
transitions have to match. The symbol ε̂ is used for object-autonomous firing.
The special mapping that maps each object net to ε, i.e. ϑ(N) = ε for all N is
denoted by ϑε. In such an event the system net transition fires autonomously.

Definition 3.4 (Events). An event is a pair denoted t̂[ϑ] where t̂ is a transition
of the system net or the special symbol ε̂ and ϑ : N → TN ∪ {ε} is a mapping
where ϑ(N) 6= ε implies ϑ(N) ∈ TN for all N ∈ N .
The labelling functions are extended to lN(ε) = τ and l̂(ε̂)(N) = τ for all

N ∈ N .
There are three possible kinds of events:

1. In a synchronous event the system net transition t̂ 6= ε̂, fires syn-
chronously with all the object net transitions ϑ(N), N ∈ N . At least
one N ∈ N must exist with l̂(t̂)(N) 6= τ and ϑ(N) 6= ε. We de-
mand ϑ(N) 6= ε ⇔ l̂(t̂)(N) 6= τ and that the channels have to match,
i.e. l̂(t̂)(N) = lN(ϑ(N)) for all N ∈ N .

2. In a system-autonomous event t̂ 6= ε̂ fires autonomously. We demand
that l̂(t̂)(N) = τ for all N ∈ N and ϑ(N) = ε for all N ∈ N , i.e. ϑ = ϑε

3. In an object-autonomous event we demand ϑ(N) 6= ε for exactly one
object net N . Moreover, the transition ϑ(N) must not use a channel,
that is lN(ϑ(N)) = τ has to hold.

The set of synchronous events is denoted by Θl, the set of system-autonomous
events is denoted by Θs, and the set of object-autonomous events is denoted by
Θo. The set of (system) events is the disjoint union of these three sets:

Θ := Θl ∪Θs ∪Θo

48

3.2 Fundamentals and Formal Definition of Eos

Note that for object nets which do not participate in a synchronous event
(either because they are not in the preset of the system net transition or because
no object net transitions fires synchronously) l̂(t̂)(N) = τ holds, which forces
ϑ(N) = ε and thus lN(ϑ(N)) = lN(ε) = τ = l̂(t̂)(N).
The requirements for a system-autonomous event imply ϑ(N) 6= ε ⇔

l̂(t̂)(N) 6= τ , the equivalence we had to demand in the case of a synchronous
event. Moreover, lN(ϑ(N)) = l̂(t̂)(N) follows, too.
Also in an object-autonomous event the labels match again for all N ,

i.e. l̂(t̂)(N) = l̂(ε̂)(N) = τ = lN(ϑ(N)) for all N ∈ N , but the equivalence
ϑ(N) 6= ε ⇔ l̂(t̂)(N) 6= τ does not hold for exactly one N , namely for the
N for which ϑ(N) 6= ε holds. ϑ(N) ∈ TN is the transition intended to fire
object-autonomously.
If we write t̂[ϑ] ∈ Θ in the following, this includes the possibility that the

event is a system- or an object-autonomous event, i.e. ϑ = ϑε or t̂ = ε̂ is
possible. Moreover, since the sets of transitions are all disjoint, we usually
write t̂[ϑ(N1), ϑ(N2), . . .] and also skip the object nets which are mapped to
ε, that is, we simply list the object net’s transitions with which a system net
transition synchronises.

Example 3.5. Figure 3.3 below shows an Eos consisting of a system net N̂
and two object nets N = {N,N ′}. The typing of the system net is given by
d(p̂1) = d(p̂2) = d(p̂4) = N and d(p̂3) = d(p̂5) = d(p̂6) = N ′.
For now, ignore the net-tokens on p̂4, p̂5, and p̂6. These places are initially

empty and the system has thus four net-tokens: two on place p̂1 and one on p̂2

and p̂3 each. The net-tokens on p̂1 and p̂2 share the same structure, but have
independent markings. The initial marking is thus given by

µ = p̂1[0] + p̂1[a+ b] + p̂2[a] + p̂3[a′ + b′].

We have two channels ch and ch′. The labelling function l̂ of the system net
is defined by l̂(t̂)(N) = ch and l̂(t̂)(N ′) = ch′. The object net’s labellings are
defined by lN(t) = ch and lN ′(t′) = ch′. Thus there is only one (synchronous)
event: Θ = Θl = {t̂[N 7→ t, N ′ 7→ t′]}. The event is also written shortly as
t̂[t, t′].

Projections are needed for e.g. ignoring the inner markings of net tokens in
case of a system-autonomous event.

Definition 3.6 (Projections). Let µ ∈MOS be a nested marking of an Eos
OS . Π1(µ) denotes the projection of the nested marking µ to the system net
level and Π2

N(µ) denotes the projection to the marking belonging to the object

49

3 Elementary Object Systems

net N , i.e.

Π1(
∑
k

p̂k[Mk]) =
∑
k

p̂k and

Π2
N(
∑
k

p̂k[Mk]) =
∑
k

1N(p̂k) ·Mk

where 1N : P̂ → {0, 1} with 1N(p̂) = 1 iff d(p̂) = N .

Π1(µ) is again a multiset, i.e. a function P̂ → N such that Π1(µ)(p̂) is the
number of (net) tokens that reside on p̂, but can also be seen as a vector from
N|P̂ | (see Section 2.1).
Similarly Π2

N is also a multiset, it is the marking of the net N viewed as a
p/t net. Note, however, that Π2

N adds up all markings of object nets of type
N regardless to where these object net reside in the system net. Π2

N can also
be seen as a vector from N|PN |.
To explain firing we distinguish two cases: Firing a system-autonomous or

synchronous event t̂[ϑ] ∈ Θl ∪ Θs removes net-tokens together with their in-
dividual internal markings. The new net-tokens are placed according to the
system net transition and the new internal markings are determined by the
internal markings just removed and ϑ. Thus a nested multiset λ ∈ M that is
part of the current marking µ, i.e. λ � µ, is replaced by a nested multiset ρ.
The marking µ is not needed to define the enabling predicate, but is needed in
the firing rule below.

Definition 3.7 (Enabling predicate). Let OS be an Eos and λ, ρ ∈ M be
markings. Let t̂[ϑ] ∈ Θ be an event. The enabling condition is expressed by the
enabling predicate φOS (or just φ whenever OS is clear from the context). We
distinguish two cases:

1. t̂[ϑ] ∈ Θl∪Θs is a synchronous or system-autonomous event. In this case
we have φ(t̂[ϑ], λ, ρ) if and only if

Π1(λ) = pre(t̂) ∧ Π1(ρ) = post(t̂)

∧ ∀N ∈ N : Π2
N(λ) ≥ preN(ϑ(N))

∧ ∀N ∈ N : Π2
N(ρ) = Π2

N(λ)− preN(ϑ(N)) + postN(ϑ(N))

where preN(ε) = postN(ε) = 0 for all N ∈ N .

2. ε̂[ϑ] ∈ Θo is an object-autonomous event. In this case let N be the object
net for which ϑ(N) 6= ε holds. Now φ(ε̂[ϑ], λ, ρ) holds iff Π1(λ) = Π1(ρ) =

p̂ for a p̂ ∈ P̂ with d(p̂) = N and Π2
N(λ) ≥ preN(ϑ(N)) and Π2

N(ρ) =
Π2
N(λ)− preN(ϑ(N)) + postN(ϑ(N)).

50

3.2 Fundamentals and Formal Definition of Eos

In case of an object-autonomous event λ and ρ are thus essentially markings
of an object net, but “preceded” by a system net place typed with this object
net. Note that, in general, the event alone does not fully characterize the firing.
For example, if an object net transition t fires autonomously, the mode λ is
necessary, to describe where the object net resides. This is especially important,
if two object nets of the same type exist on different system net places.
We are now ready to define the firing rule.

Definition 3.8 (Firing Rule). Let OS be an Eos and µ, µ′ ∈ M markings.
The event t̂[ϑ] ∈ Θ is enabled in µ for the mode (λ, ρ) ∈ M2, denoted by

µ
t̂[ϑ](λ,ρ)−−−−→ iff λ � µ ∧ φ(t̂[ϑ], λ, ρ) holds.

An event t̂[ϑ] that is enabled in µ for the mode (λ, ρ) can fire: µ
t̂[ϑ](λ,ρ)−−−−→

OS
µ′.

The resulting successor marking is defined as µ′ = µ− λ+ ρ.
As usual firing is extended to sequences w ∈ (Θ · M2)∗ inductively on the

length of w

• µ ε−→ µ

• If w = w′ · θ with w′ ∈ (Θ · M2)∗ and θ ∈ (Θ · M2), then µ
w−→ µ′ iff a

marking µ′′ exists such that µ w′−→ µ′′ and µ′′ θ−→ µ′ holds.

To denote that µ′ is reachable from µ by some sequence of transitions we
write µ ∗−→ µ′.
The set of reachable markings from a marking µ is denoted by R(OS , µ) or

R(µ) is OS is clear from the context. The set of reachable markings of OS ,
denoted by R(OS), is the set of markings reachable from the initial marking
µ0, i.e. R(OS) := R(OS , µ0).
The reachability graph RG(OS) is obtained as before for p/t net sytems,

i.e. RG(OS) is a directed graph where the set of nodes is the set of reachable
markings and the (labelled) edges are the tuples (µ, θ, µ′) ∈M×Θ×M where
µ

θ−→ µ′.
We omit the mode and the Eos in the notations above if they are not relevant

or clear from the context. We also say that t̂[ϑ] is enabled in µ or simply active,
if a mode (λ, ρ) exists such that t̂[ϑ] is enabled in µ for (λ, ρ). This again is
extended to sequences as above.

Example 3.9. To illustrate the firing rule, we return to the example of Fig-
ure 3.3. Note that the current marking µ enables t̂[t, t′] in the mode (λ, ρ),
where

µ = p̂1[0] + p̂1[a+ b] + p̂2[a] + p̂3[a′ + b′] = p̂1[0] + λ
λ = p̂1[a+ b] + p̂2[a] + p̂3[a′ + b′]
ρ = p̂4[a+ 2 · b] + p̂5[0] + p̂6[c′]

51

3 Elementary Object Systems

Figure 3.3: An Eos firing the synchronous event t̂[t, t′].

Figure 3.4: The Eos of Figure 3.3 after firing the synchronous event t̂[t, t′].

The net-tokens’ markings are added by the projections Π2
N and Π2

N ′ resulting
in the markings Π2

N(λ) and Π2
N ′(λ). Firing the object net’s transitions gener-

ates the (sub-)markings Π2
N(ρ) and Π2

N ′(ρ). This is illustrated above and below
transition t̂ in Figure 3.3, where the left net on top is Π2

N(λ) and the right net
on top is Π2

N(ρ). Similar for the nets below t̂ for the object net N ′. After the
synchronisation we obtain the successor marking µ′ with new net-tokens on p̂4,
p̂5, and p̂6:

µ′ = (µ− λ) + ρ = p̂1[0] + ρ
= p̂1[0] + p̂4[a+ 2 · b] + p̂5[0] + p̂6[c′]

The result is shown in Figure 3.4.

The firing rule uses a so called “distributed token semantics” in which the
tokens of an object net may be distributed if copies of that object net are created
during firing. Other semantics are possible, in particular, a value semantic
where exact copies of an object net, including its internal marking, on an

52

3.2 Fundamentals and Formal Definition of Eos

input place of a system net transition are assigned to the output places of that
transition (cf. [Val04] and Section 3.4 below).
The firing rule in both semantics incorporates the possibility to test if a

net token’s marking is the empty marking: If an object net of type N ap-
pears in the preset of a system net transition t̂ once, and not in its post-
set, then t̂ can only fire if the net token is marked with the empty mark-
ing or is emptied by a synchronous event. Otherwise the equation Π2

N(ρ) =
Π2
N(λ) − preN(ϑ(N)) + postN(ϑ(N)) does not hold, since Π2

N(ρ) = 0 due to
Π1(ρ) = post(t̂) and there are no places of type N in the postset of t̂, but
Π2
N(λ) − preN(ϑ(N)) + postN(ϑ(N)) 6= 0. This feature is used in the proofs

of Turing-completeness below and both semantics thus give rise to Turing-
complete formalisms. Moreover, since the value semantics is easier from a
computational point of view, because the inner markings of net tokens do not
need to be distributed, the positive results in this work, especially the results
in Chapter 5 hold for both semantics, too. From now on we will stick to the
distributed token semantics as defined above.
In the definition of an Eos (Definiton 3.1) the labelling l = (l̂, (lN)N∈N) is

present. This is different from former definitions or the definitions in [KB11]
which focuses on decidability issues and more accurate from a modelling point
of view. Note that the space needed to store the labelling is small: With
Ts := max{|TN1|, . . . , |TNn|, |T̂ |} the labelling of the object nets can be stored
in an array of size O(Ts · |N |) (each transition of each net has one label) the
labelling of the system net can be stored in an array of size O(Ts · |N |), too
(each transition has at most one label for each object net), and thus the whole
labelling can be stored in an array of size O(Ts · |N |), which is polynomial in
the other elements of an Eos. The number of generated events on the other
hand, i.e. the size of the set Θ, may become huge. To see this let Ti be the set
of transitions of the object net Ni. Let l̂(t̂)(Ni) = ci for all i and one system
net transition t̂, where the ci are channels. Let lNi(t) = ci for all t ∈ Ti and all
i. Now t̂ may fire synchronously with each transition in N1, each in N2 and so
on. Each of these possibilities results in a different event, so we already have at
least |T1| · |T2| · . . . · |Tn| events, a number exponential in the number of object
nets and thus in the size of the Eos. Note that this is possible for each system
net transition resulting in an even larger number of events.
While it is possible to construct an Eos with the above number of events, this

number is also an upper bound, because any different labelling would reduce
the number of possible object net transitions that may fire synchronous with
an system net transition and thus would reduce the number of events (see also
Lemma 4.10).

Lemma 3.10. Let OS = (N̂ ,N , d, l) be an Eos. Let |T | := max{|TN | | N ∈
N}. Then |Θ|, i.e. the number of events, is bounded above by |T̂ | · (|T |+ 1)|N |.

53

3 Elementary Object Systems

Proof. An event is composed of a system net transition t̂ ∈ T̂ and a mapping
ϑ : N → TN ∪ {ε} with ϑ(N) ∈ TN if ϑ(N) 6= ε for all N ∈ N . There are
thus at most (|T |+ 1)|N | different mappings and thus |T̂ | · (|T |+ 1)|N | possible
events.

Although the number of events is thus exponential in |N |, it is easy to check
with a couple of table lookups, if a given input τ̂ [ϑ] is indeed an event, that is
if τ̂ [ϑ] ∈ Θ holds. It is thus possible to enumerate all elements of Θ and use
this to compute, given a marking µ of an Eos, all successor markings of µ.

Lemma 3.11. Given an Eos OS and a marking µ of OS , it is possible to
compute all immediate successors of µ.

Proof. We enumerate all events and for each event τ̂ [ϑ] ∈ Θ we enumerate all
modes (λ, ρ) such that λ � µ holds and ρ is in accordance with the enabling
predicate (see Definition 3.7), that is ρ satisfies Π1(ρ) = post(τ̂) and Π2

N(ρ) =
Π2
N(λ) − preN(ϑ(N)) + postN(ϑ(N)) for all N ∈ N . Note that for one λ

several modes (λ, ρ) may exist, that is the markings of the object nets may be
distributed in different ways in the successor marking of µ. For each so chosen
event τ̂ [ϑ] and mode (λ, ρ) we check if τ̂ [ϑ] is indeed enabled in µ for this mode
and, if so, compute the successor marking.

Note that Lemma 3.11 also implies that it is possible to compute the reach-
ability graph.
Moreover, by enumeration of events or modes it is also possible to compute

all possible successor markings given a marking and an event, to test if a given
event is active in a given marking, to test if a marking is a deadlock, and given
two markings µ and µ′ to check if an event exists that is active in µ and whose
firing results in µ′.
Also note that the algorithm in the proof of Lemma 3.11 is not very effi-

cient. Instead of enumerating the events and modes it is also possible to firstly
choose a system net transition whose input places are marked with net tokens.
Then the event is constructed in accordance with the labelling of this system
net transition. The modes are then not enumerate but chosen in accordance
with the enabling predicate. Since more than one event and more than one
mode might be possible, here, too, enumeration might be necessary, but to
a far smaller degree than in the proof of Lemma 3.11. Moreover, due to the
different distributions of the object nets markings that are usually possible due
to the modes (λ, ρ) present in the firing rule, one in general has to deal with
exponential many successor markings in the size of the Eos even if the event
is fixed.
We now define standard problems for Eos analog to problems for Petri nets.

Definition 3.12 (Problems for Eos). 1. In the reachability problem for
Eos an Eos OS = (N̂ ,N , d, l, µ0) and a marking µ of OS are given and
the question is if µ0

∗−→ µ holds.

54

3.3 Turing-completeness of Eos

2. In the liveness problem for Eos an Eos OS = (N̂ ,N , d, l, µ0) is given
and the question is if the Eos is live, i.e. if all events θ ∈ Θ are live.
An event θ is live iff for all markings µ reachable from µ0 there exists a
marking µ′ reachable from µ that enables θ.

3. In the group liveness problem for Eos an Eos OS = (N̂ ,N , d, l, µ0) and
a system net transition t̂ ∈ T̂ are given and the question is if t̂ is group-
live, i.e. if for all markings µ reachable from µ0 there exists a marking µ′
reachable from µ that enables t̂[ϑ] for some ϑ.

4. In the coverability problem for Eos an Eos OS = (N̂ ,N , d, l, µ0) and a
marking µ of OS are given and the question is if a marking µ′ exists such
that µ′ ∈ RSOS (µ0) and µ′ ≥ µ hold.

5. In the boundedness problem for Eos an Eos OS = (N̂ ,N , d, l, µ0) is
given and the question is if OS is bounded, i.e. if the set of reachable
markings RSOS (µ0) is finite.

For general Eos as defined in Definition 3.1 these problems turn out to be
undecidable due to Turing-completeness of the formalism. This is the subject
of the next section.

3.3 Turing-completeness of Eos

As illustrated in Section 3.1, Eos are quite helpful to model a variety of prob-
lems which exhibit a certain nesting of structures or a mobility of objects. Un-
fortunately, the formalism is Turing-complete, which can be shown by slightly
modifying a proof from [Köh07]. There it is shown that for Eos with the ad-
ditional requirement that each net token type that appears in the preset of a
system net transition also appears in the postset of that transition, the reach-
ability problem is undecidable (see also the treatment of conservative Eos
in Section 4.1). This proof can be adapted to show that Eos are Turing-
complete. Consequently, verification techniques are in general not applicable
to unrestricted Eos.
We will give two proofs for Turing-completeness of Eos in this section. The

first proof is via a direct simulation of counter machines resp. counter programs.
The proof idea is from [Köh07]. We follow the presentation from [KB11].
The construction used in this proof will be used later on to prove variants

of Eos to also be Turing-complete (cf. the discussion of unary and persistent
Eos in Chapter 5).
The second proof is by a simulation of inhibitor nets and originates from the

desire to also prove undecidability of problems like reachability and liveness in
weaker formalisms like conservative Eos (see Chapter 4.1). This second proof is
joint work with Michael Köhler-Bußmeier and has been published in [KBH12].

55

3 Elementary Object Systems

In both proofs the main idea is to use the null-test “hidden” in the firing rule:
An object net N may only be “removed” or “deleted” if its marking m is the
empty marking, i.e. if m = 0.

Simulation of Counter machines by Eos

Counter machines and counter programs have been introduced in Chapter 2
(see Definitions 2.2 and 2.3). A counter program has access to a finite number
of counters. Each counter can be increased or decreased by 1, where the last
operation can only be applied if the counter’s value is above 0. A third operation
is a jump operation: if the counter’s value is 0 the program jumps to a certain
position in the program, otherwise to another. The last operation is the halt
operation which terminates the program.
In the following we prove that counter programs can be simulated by Eos.

The proof idea is from [Köh07]. We follow the presentation from [KB11].

Theorem 3.13. Each counter program can be bisimulated by an Eos.

Proof. We sketch how the four operations of a counter program can be simu-
lated by an Eos. More details can be found in [KB11].

Figure 3.5: The Eos-translation of counter commands

The components of an Eos that simulate the four operations increase, de-
crease, jump if zero, and halt of a counter program are depicted in Figure 3.5.
The places qi mark the current position in the counter program. The places
pi are “intermediate places” between the places qk and qk+1. Of all the qi and
pj places exactly one is marked with a black token at any reachable marking.
The places cntj are marked with an object net each, which models the cor-
responding counter. The object net has one place counter which has x black
tokens.

56

3.3 Turing-completeness of Eos

For the increase operation a transition in the system net synchronises via the
channel inc with a transition in the object net and a black token is added to
the object net place counter. The decrease operation is modelled similarly.
The halt operation is simply modelled by a place qn. If qn is marked by a

black token, no further events are enabled.
Most interesting is the jump operation. The transition =0 can only fire, if

the object net on place cntj is empty (otherwise the firing rule forbids that
the net token is erased!). If the object net is empty, =0 may fire and the net
token for the counter is recreated afterwards. If the object net’s place counter
is marked, the transition >0 synchronises with the object net via the channel
is-pos and the synchronous event can fire.

Basically the construction uses a null test “hidden” in the firing rule. In the
postset of the transition =0 no place typed with the same net as the place cntj
in its preset exists and so =0 can only fire if the net token on cntj is not marked,
i.e. exactly zero black tokens are placed on the places of that net token.
If one demands that an object net type that appears in the preset of a system

net transition also appears in its postset, the above construction is not possible
anymore and indeed important problems become decidable. Unfortunately,
reachability and liveness remain undecidable (cf. the discussion of conservative
Eos in Chapter 4).

Simulation of Inhibitor Nets by Eos

In the following we give an alternative proof of the Turing-completeness of Eos.
We show that Eos are capable to simulate inhibitor nets (see the discussion of
extensions to Petri nets in Section 2.4). The construction can then easily be
adapted to also prove undecidability of the reachability and liveness problems
of a variant, namely of conservative Eos. The following proof can be found
in [KBH12] and originates from joint work with Michael Köhler-Bußmeier.
In the following we give a direct Eos-simulation of inhibitor nets which in

turn can simulate counter programs as was proven by Hack [Hac76c].

Theorem 3.14. For each inhibitor net N∗ there is an Eos OS strong(N
∗) that

bisimulates N∗.

Proof. Without loss of generality we consider inhibitor nets without arc weights
(see the discussion following this proof) and we assume that for each transition
t we have that whenever a place p is connected with t via an inhibitor arc
then this place is not connected with t via a normal arc. An inhibitor net is
then given as N∗ = (P ∗, T ∗, F ∗, F ∗inh ,m0), where F ∗inh ⊆ P ∗ × T ∗ describes the
inhibitor arcs. The set of inhibitor places is P i := {pi | ∃t ∈ T ∗ : (pi, t) ∈ F ∗inh}.
A transition t is enabled in m iff there is at least one token on each input place

57

3 Elementary Object Systems

Figure 3.6: The Eos-Translation of Inhibitor Nets

and all inhibitor places are empty, i.e. m(p) ≥ F ∗(p, t) for all p and m(p) = 0
for all p such that (p, t) ∈ F ∗inh .
The simulating Eos OS strong(N

∗) = (N̂ ,N , d,Θ, µ0) is constructed in the
following way (as illustrated in Figure 3.6):

• For each place p ∈ P ∗ in the inhibitor net the simulating Eos has one
object-net N(p). Each object-net N(p) has exactly one place cntN(p) and
the two transitions iN(p) and dN(p), where iN(p) is labelled with channel
incN(p) and dN(p) is labelled with channel decN(p). Note that all the object
nets N(p) have the same net structure. Additionally we have the object-
net •:

N = {•} ∪ {N(p) | p ∈ P ∗}

• The system net N̂ is obtained from the inhibitor N∗ via a substitution
for each transition which is illustrated in Figure 3.6:

Each transition t ∈ T ∗ is replaced by two transitions t1 and t2.

T̂ := {t1, t2 | t ∈ T ∗}

For each place p ∈ P ∗ we add a copy p′. Additionally, we have one global
run place and a set of wait places. These guarantee that firing of t1 must
be followed by t2 before any other transition can fire.

P̂ := P ∗ ∪ {p′ | p ∈ P ∗} ∪ {run} ∪ {waitt | t ∈ T ∗}

For each place p connected with t we have the arcs (p, t1) and (t2, p). For
each place p connected with t with a normal arc we have the arcs (t1, p

′)
and (p′, t2). Furthermore, the run- and the wait place is connected with
t1 and t2: (run, t1), (t1,waitt), (waitt, t2), and (t2, run).

58

3.3 Turing-completeness of Eos

• The set of events Θ is generated from the labelling. It consists of all the
events t1[ϑ1] with

∀N(p) : ϑ1(N(p)) =

{
dN(p) if (p, t) ∈ F ∗ ∩ (P ∗ × T ∗)
ε otherwise

and all the events t2[ϑ2] with

∀N(p′) : ϑ2(N(p′)) =

{
iN(p′) if (t, p′) ∈ F ∗ ∩ (T ∗ × P ∗)
ε otherwise

Note that for a given t ∈ T ∗ the mappings ϑ1 and ϑ2 are uniquely defined.

• The typing d is defined as d(p) = d(p′) = N(p) for all p ∈ P ∗ and
d(run) = d(waitt) = •.

Each marking m of the inhibitor net is encoded as the marking µ(m) of the
Eos. We say that a nested marking µ encodes a marking m of N∗ whenever
µ contains exactly one net-token on each place p ∈ P ∗ (and none on the other
places) and the net-token on p has exactly m(p) tokens on its place cntN(p):

µ(m) := run[] +
∑
p∈P ∗

p[m(p) · cntN(p)]

To finish the definition of OS strong(N∗) the initial marking encodes m0, i.e.
µ0 := µ(m0).
Each firing m t−→ m′ is simulated deterministically by the firing of the events

t1[ϑ1] and t2[ϑ2], i.e. by µ(m)
t1[ϑ1]·t2[ϑ2]−−−−−−→ µ(m′). Whenever a place pi is con-

nected via an inhibitor arc with t then t1 has exactly one place of type N(pi)
in its preset but none in the postset. Therefore t1 can only fire if the marking
of the net-token is the empty multiset. Whenever t2 fires it generates one net-
token on pi again which must be empty, since there is no place of type N(pi)
in the preset of t2. It is straightforward to see that we have:

m
t−→ m′ ⇐⇒ µ(m)

t1[ϑ1]·t2[ϑ2]−−−−−−→ µ(m′)

This proves that the Eos OS strong(N
∗) simulates the inhibitor net N∗.

The restriction at the beginning of the proof to only consider inhibitor nets
without arc weights is not severe. The proof can be adjusted for the general
case by adding additional transitions ikN(p) and dkN(p) for all k ≤ n, where n is
the greatest arc weight occuring in N∗. The object net transition ikN(p) adds
exactly k tokens to the place cntN(p) while dkN(p) removes k tokens from it to
simulate the effect of arc weights.
We now turn to the liveness problem for Eos.

59

3 Elementary Object Systems

Lemma 3.15. The reachability problem for inhibitor nets is reducible to the
liveness problem for Eos.

Proof. The proof follows the idea given in [Pet81] showing the equivalence of
reachability and liveness for p/t nets.
It is sufficient to consider the problem whether the empty marking is reach-

able, since for each inhibitor net N1 and each marking m we can construct
another inhibitor net N2 with the property: The marking m is reachable in N1

iff 0 is reachable in N2. The net N2 is obtained from N1 by adding one place run
and one transition t. The additional run-place is attached as a side condition
to each transition of N1. Initially the place run is marked with one token. The
additional transition t removes exactly m(p) tokens from each p (where m is
the given marking that is tested for reachability) and one token from run. The
postset of t is empty. It is obvious that N2 has the desired property.

Figure 3.7: Reduction from 0-Reachability to Liveness of t0[0]

We will construct an Eos OS (N∗) from a given inhibitor net N∗ such that
the empty marking is reachable in N∗ iff the event t0[0] is not live in OS (N∗).
Assume the inhibitor net is given as N∗ = (P ∗, T ∗, F ∗, F ∗inh ,m0). We define

OS (N∗) as an extension of OS strong(N∗) from Theorem 3.14 (see Fig. 3.7): We
add the transition t0 and the place run2 and for each p ∈ P ∗ the place p′ and the
transitions t(p) and t′(p) with the arcs (p, t(p)), (t(p), p′), (p′, t′(p)), (t′(p), p),
(run2, t(p)), (t′(p), run). Furthermore, we add the arcs (run, t0) and (t0, run2).
We set d(run2) := • and d(p′) := d(p) = N(p).
Note that since t0 has only places of the black token type in the pre- and

postset, we obtain that if the event t0[ϑ] is activated, then ϑ = 0.
As before, we define µ(m) as:

µ(m) := run[] +
∑
p∈P ∗

p[m(p) · cntN(p)]

A marking that is reachable in N∗ is so in OS (N∗):

m1
∗−→ m2 =⇒ µ(m1)

∗−→ µ(m2)

60

3.3 Turing-completeness of Eos

Assume that 0 is reachable in N∗. In µ(0) we have µ(0)
t0[0]−−→ µ := run2[] +∑

p∈P ∗ p[0] and in µ no event is activated anymore. So, if 0 is reachable in N∗,
then, clearly, t0[0] is not live.
Assume that 0 is not reachable in N∗. Then t0[0] is live: For each marking

m∗ 6= 0 we have m∗(p) > 0 for some p and therefore we have µ(m∗)
t0[0]−−→

µ′
t(p)[ϑ]·t′(p)[ϑ′]−−−−−−−−→ µ(m∗), where ϑ, ϑ′ are clear from Figure 3.7. Note that the

sequence t(p)[ϑ] · t′(p)[ϑ′] does not alter the marking of the net-token on p.

Putting the results of the above Lemma 3.15 and Theorem 3.14 together we
have:

Theorem 3.16. Reachability, liveness, group-liveness, coverability, and bound-
edness are undecidable for Eos.

Proof. Undecidability of the reachability problem follows from Theorem 3.14
and the fact that reachability is undecidable for inhibitor nets.
Undecidability of the liveness problem then follows from Lemma 3.15. From

the proof of Lemma 3.15 we can see that group-liveness is also undecidable,
since the empty marking is reachable in N∗ iff t0 is not group-live in OS (N∗).
Undecidability of coverability follows similarly from the undecidability of the

corresponding problem for inhibitor nets.
For boundedness, note that for each reachable marking µ(m) each place in

OS strong(N
∗) contains at most one net-token and all net-tokens are bounded

iff the inhibitor net is bounded. Therefore, OS strong(N∗) is bounded iff N∗ is
bounded. Since boundedness is undecidable for inhibitor nets, it is undecidable
for Eos.

More things about Eos could be said. For example, the firing rule is not
monotone, because an empty net token might be removed by a transition, but
adding tokens to that net token and thus increasing the overall marking, the
system net transition might now be unable to fire. Thus the usual construction
of a coverability graph is not possible, which is little surprising, since cover-
ability is undecidable for Eos.
Furthermore, one can show, that the firing rule is reversible, i.e. when all

arcs are reversed one can fire “backwards”, that Eos can be seen as a canonical
extension of p/t nets, and that it is possible to establish an invariance calculus
for Eos based on place invariants for p/t nets. For these topics see the report
by Köhler-Bußmeier [KB11].
Semantics that differ from the distributed token semantics employed here are

described in [Val04] and [KF07]. These are also discussed in Section 3.4 below.
While the above mentioned results are interesting, they are not needed in

the following. The treatment of Eos in this chapter suffices for our purposes.

61

3 Elementary Object Systems

3.4 Related Approaches

As mentioned in the introduction several formalisms are known which try to
capture the idea of mobility. The idea apparent in the formalism of Eos to
use Petri nets as tokens originates from [Val91] and is extended to elementary
object systems in [Val98]. The formalism in [Val98] is very close to the definition
of Eos given here. Appart from distributed token semantics, as used in this
thesis, reference and value semantics are also investigated. In value semantics a
net token together with its internal marking is treated as a value. Without any
distribution of the tokens of its internal marking, exact copies of an object net
on an input place of a system net transition are assigned to the output places of
that transition. In reference semantics a token in the system net is a reference
to an object net. These references may then be copied, but they point to the
same object net. Another semantic, mobility semantic, is introduced in [KF07].
A conversion equivalence allows the exchange of tokens between different net
tokens prior to firing. See [Val04] and [KF07] for a detailed explanation.
Unary Eos are Eos with only one object net type. In [KR04] it is shown

that the reachability problem for unary Eos is decidable, if a reference semantic
is used, but undecidable, if a distributed token semantic is used.
In a formalism called generalised state machines (GSM), another restriction

of Eos, each object net appears exactly once in the Eos and thus the above
mentioned semantics are identical. GSMs are introduced in [KR05] (there
called ordinary object-net systems). They are an interesting formalism, because
many important problems become decidable for them, but they still retain the
main idea that a token can have inner activity. They are treated in detail in
Chapter 4.
In their original form and as defined in Section 3.2 elementary object systems

have a two levelled structure. In [KR03a] and [KR04] they are generalised to
have an arbitrary nesting structure. In [KR03a] a reference semantic is used,
in [KR04] a distributed token semantic (there called value semantic) is used
and Turing-completeness of the formalism is shown. In both publications the
nesting is allowed to be arbitrary and in particular is not bounded. Such a
restriction is investigated in Chapter 6.
Further enhancing the formalism, in [KBH09] and [HKB12a] object net sys-

tems with an arbitrary nesting as above are introduced which are additionally
equipped with channels that allow to transfer net-tokens in the vertical dimen-
sion of the nested marking. See also Chapter 6.
While the formalisms mentioned above have been used for modelling, see

e.g. [KMR03], [KR05], [Val04], [KR03b], complexity-theoretic investigations
are limited to decidability results (apart from the publications mentioned above
see also [Köh07] and [Köh04]).
Similar to Eos are minimal object-based nets (MOB nets) [Kum00]. Tokens

there, however, only have an identity and no further structure. The minimal

62

3.4 Related Approaches

assumptions that tokens have a unique identity, which can be compared, and
that new tokens with a new identity can be created is enough to prove that
reachability is undecidable. This result then also holds for any formalism with
name creation. For example, ν-abstract Petri nets [RVFE08] are quite similar
to MOB nets in that they allow the creation of fresh names and here the reach-
ability problem is again undecidable. For subclasses of MOBs the reachability
problem can again be decided [DK06].
Another generalisation of Eos are reference nets [Kum02] which employ a

reference semantic and allow arbitrary pointer structures.
Extended elementary object systems introduced in [MTM04] and [MT08] are

another extension of Eos. Most notably, the nesting depth is unrestricted
and multiple system nets may be present. Further additions to the formalism
simplify modelling and are specific to the application domain, i.e. the modelling
of security mechanisms. To analyse the model, it is translated into a coloured
Petri net and there a simulation-based analysis is undertaken, cf. [MTM04],
[MT08], [DTMZ08] and [DTMZ10] and also [MT06] and [Ma05] for a book and
a dissertation on extended elementary object systems.
Also similar to Eos are PN2 from [Hir02] which are basically Eos with a value

semantics and the nested nets from Lomazova [Lom00]. Nested nets, however,
are a combination of Eos and coloured Petri nets. A token of the system
net may be an object net or, for example, an integer. Furthermore, variables
may be used at the arcs. Nested nets can easily simulate reset nets, because
a net token can be removed regardless of its marking, and thus reachability,
among others, is undecidable. Research on nested nets currently goes into the
direction of compositionality, i.e. what structure is allowed for the system net
and the object nets such that the composed nested nets is, e.g., live, cf. [DL12].
Different from Eos in that they allow the exchange of object nets and for

the same reason similar to the object net systems from [KBH09] and [HKB12a]
are Petri hypernets introduced in [BBPP05]. Petri hypernets employ a value
semantic and do not allow the creation or destruction of net tokens. In this
regard they are similar to generalised state machines. Moreover, Petri hyper-
nets enjoy a finite state space and thus reachability, liveness and so on, are
all decidable. There has also work been done on the verification of hypernets:
In [BJP06] a model checking procedure for CTL over Petri hypernets is devised
that runs in polynomial space establishing a similar result for Petri hypernets
as our result in Chapter 5 for safe Eos. Safe Eos, however, allow the creation
and destruction of net tokens. It is unclear, if the above result still holds, if
Petri hypernets are adjusted in this regard. In [BJP12] Petri hypernets are ex-
tended to allow the creation of unstructured tokens and while the reachability
problem remains decidable, its complexity is inherited from p/t nets and thus
ExpSpace-hard.
In [CH94] coloured Petri nets are also enhanced with channels. This, how-

ever, does not lead to a nested formalism in the sense above. Moreover, only

63

3 Elementary Object Systems

the transport of information, i.e. of a coloured token, is allowed and not the
transport of a net token. This formalism, however, might be combined with
the nested nets [Lom00] discussed above to yield a similar formalism to the
object net system with channels from [KBH09].
Multi Agent Nets (MANs) [MK96] and mobile predicate/transition nets are

two further extensions of coloured Petri nets. Both are again members of
the nets-within-nets family and in both a reference semantic is used to model
nesting. Moreover, in MANs interaction is modelled by passing of tokens and
in mobile predicate/transition nets places represent logical predicates.
Further formalisms based on Petri nets are AHO systems [HM03], [HEM05],

Mobile Systems [Lak05], and recursive nets [HP99]. AHO systems allow com-
plex data types as tokens and it is possible to encode net tokens as data types.
However, it seems that this only works for a two level structure. Mobile Sys-
tems are a generalisation of modular Petri nets. A net is divided into modules.
These modules can be nested and thus provide a notion of locality. The mod-
ules and submodules may shift from one module to another and may interact
via place and transition fusion. In recursive nets a net may generate itself as
a new thread by special transitions. In this way, a nested structure of threads
develops and the nested marking resembles those of a object net system. How-
ever, only one net type is present and the interaction between the different
threads is limited to creation and destruction.
All formalisms mentioned so far are based on Petri nets. Another line of

research is concerned with process calculi which attempt to capture mobility
and mobile computation. The π-calculus [Mil99] is a prominent example of
these process calculi. However, at the 2001 Application and Theory of Petri
Nets conference Robin Milner gave a keynote [Mil01]. He stressed that, in his
view, mobility is concerned with the interplay between locality and connectivity,
and that locations should be arbitrarily nested. Milner observed in his talk
that the π-calculus was inadequate because it did not respect this nesting of
locations [KB12b].
Two other prominent calculi are the Ambient Calculus by Cardelli and Gor-

don [CG00b] and the Seal Calculus by Castagna, Vitek, and Nardelli [CVN05].
In the Ambient Calculus processes reside in a hierarchy of locations, called am-
bients. Ambients can move in and out of each other and to new locations and
thus satisfy Milner’s requirements above. Cardelli and Gordon also proposed
an Ambient Logic [CG00a] to reason about time and space in their calculus.
The Ambient Calculus can be used to describe processes which do not only
evolve in time, but also in space. The Ambient Logic can then be used to
express properties of such processes taking into account both, time and space.
In [CZG+03] it is proven that the model checking problem for the Ambient Cal-
culus against the Ambient Logic is under certain conditions PSpace-complete.
In particular, the calculus is replication-free, i.e. the set of reachable processes
is finite.

64

3.5 Summary

The Seal Calculus [CVN05] also aims at describing mobile computation. One
of the major differences between the Seal Calculus and the Ambient Calculus is
that mobility in the Ambient Calculus is subjective, i.e. an agent moves himself,
while it is objective in the Seal Calculus, i.e. an agent is moved by the context
in which it resides, cf. [CVN05].
By now, many more calculi have been established and many interesting re-

sults are known. A nice bibliography on mobile processes is [Zil01].
Turning again to Petri net style formalisms, Ambient Petri Nets [FEA03a],

[FEA03b] are an extension of Eos which allow an arbitrary nesting, as well.
The aim here, however, is to provide a denotational semantics for the Ambient
Calculus and also for a new calculus, the Ambient Petri Box Calculus, also
discussed in [FEA03a] and [FEA03b].
Finally, another extension to the formalisms described above is the notion of

adaptiveness. Nested nets have been extended with transitions that allow to
create new net tokens out of existing ones in [LvHO+06]. Operations are the
parallel composition of two nets, a choice operator, and sequential composition.
In [KB09] the object net systems from [KBH09], that allow a vertical trans-
port of tokens, are extended in a similar fashion to allow modification of net
tokens at run-time. The extended nested nets from [LvHO+06] as well as the
Hornets from [KBH09] are illustrated by practical relevant examples. Hornets
are used to model a distributed workflow management system, extended nested
nets to model a health care workflow. Both formalisms are Turing-complete.
Therefore, the search for subclasses that are accessible for verification is an
important research question. Some first results are presented in [Lom08] con-
cerning extended nested nets and in [KB12a] where safe, elementary Hornets
are investigated.
In summary, apart from the PSpace results for Petri hypernets [BJP06] and

the Ambient Calculus [CZG+03], most results for the above formalisms are
decidability (or undecidability) results. Our results in Chapter 5 complement
the above two results for object net systems and go beyond them in that the
creation of net tokens is allowed in our setting.

3.5 Summary

In this chapter, we motivated and formally introduced Elementary Object Sys-
tems, a formalism of the nets-within-nets family that, as defined here, makes
use of a value semantic with regard to the net tokens and whose nesting depth
is limited to two levels, the system net and the object net level. Eos where first
introduced in [Val91], while our definitions follow [KB11]. Different from the
presentation there, our definition here exhibits the labelling l = (l̂, (lN)N∈N)
instead of the set of events Θ which is more natural from a modelling point of
view and also more amenable to complexity theoretic analysis, because Θ tends

65

3 Elementary Object Systems

to be very big and thus statements about the complexity of some procedure in
the size of the object net system would not be helpful if Θ would be part of the
object net system.
In Section 3.4, we surveyed related approaches like nested nets and hypernets

which employ a Petri net view and with related approaches like the Ambient
Calculus or the Seal Calculus which employ a process algebraic view.
Most of these formalisms are Turing-complete. In this chapter, we proved

that Eos are Turing-complete in two ways: Firstly, by simulation of counter
programs, see Theorem 3.13. The proof idea was from [Köh07]. Secondly, by
simulation of inhibitor nets, see Theorem 3.14. The new proof originates from
joint work by Michael Köhler-Bußmeier and me and can be found in [KBH12].
The construction in this alternative proof is helpful in the context of conserva-
tive Eos (see Section 4.1).
From these results we deduce undecidability of the reachability, the liveness,

the group-liveness, and the boundedness problem for Eos, see Theorem 3.16.
While elementary object systems are thus helpful, modelling applications

which arise in computer science and other fields and which exhibit nesting of
structures or mobility of objects, they are, unfortunately, Turing-complete and
general analysis techniques are out of reach. It is therefore a reasonable goal to
find restrictions of the formalism which still allow to model a variety of appli-
cations in a comfortable way, but which also result in a formalism such that the
models can be automatically analysed and checked for certain properties us-
ing affordable resources. These restrictions and the tradeoff between modelling
capability and fast verification algorithms are the topic of the next chapters.

66

4 Structural Restrictions of Eos

In this chapter, we introduce several structural restrictions of the Eos-
formalism.
At first we introduce conservative Eos which do not allow the creation or

destruction of net tokens anymore. Unlike Eos, conservative Eos are not
Turing-complete anymore, but they still suffer from an undecidable reachability
and liveness problem.
We then take the idea employed for conservative Eos one step further and

introduce generalised state machines (GSMs) which additionally do not allow
a “split” or “join” of different net tokens’ markings anymore. For GSMs many
problems, among them reachability, liveness, coverability, and boundedness,
become decidable, but solving them requires impractical resources. For that
reason we then discuss several structural restrictions of GSMs and discuss the
reachability problem for each of them. We introduce GSMs where the system
net and all object nets are P- or T-nets, GSMs where all nets are acyclic,
conflict-free GSMs, and free-choice GSMs. These structural restrictions are
known for p/t nets and are carried over to GSMs here. We also introduce
new restrictions only sensible in the context of object net systems. Namely,
we introduce deterministic and strongly deterministic GSMs, which restrict the
usage of channels and thus the possible events.
It turns out that the ability to synchronise the system net with the object

nets is a significant source of complexity. The reachability problem tends to be
hard to solve even for heavily restricted formalisms. For example, the reacha-
bility problem for a GSM where the system net and all object nets are P-nets,
is PSpace-complete. For standard P-nets this problem is easily solvable in
polynomial time and in the setting described above there is actually only one
object net. So the synchronisation between one system net, which is a P-net,
and one object net, which is a P-net, is enough to render the problem PSpace-
hard. This is even the case for strongly deterministic GSMs, for which the
usage of channels is heavily restricted. If the system net is a free-choice net,
which treated in isolation is live, bounded and cyclic and the object nets are
T-nets, then the reachability problem turns out to be even ExpSpace-hard,
even if for all these nets in isolation the reachability problem can again be
solved in polynomial time. Thus structural restrictions alone seem insufficient
to make the formalism suitable for analysis.
In Section 4.1, we present conservative Eos and show that boundedness and

coverability become decidable, while liveness and reachability remain undecid-

67

4 Structural Restrictions of Eos

able. While conservative Eos have been introduced before in [Köh07] (not
explicitly named conservative there, but the condition is the same) and the
reachability problem for them proven to be undecidable (also in [Köh07]), the
constructions with inhibitor nets shown here is new as is the proof of unde-
cidability of the liveness problem for conservative Eos. These new construc-
tions and results are joint work with Michael Köhler-Bußmeier and published
in [KBH12].
In Section 4.2, we present generalised state machines and describe the con-

struction of the so called reference net that allows to decide all problems, which
are also decidable for p/t nets. The results of this section have been developed
by Köhler-Bußmeier in [KR05] and are only slightly adapted here.
In Section 4.3, deterministic and strongly deterministic GSMs are introduced

and the reachability problem for several structural restrictions of them is inves-
tigate in the following Sections 4.4 to 4.7. The formalisms and results in this
section are my own contribution and joint work with Michael Köhler-Bußmeier.
The results concerning P- and T-nets in the context of GSMs have been pub-
lished in [HKB12b] and [HKB11b]. The results concerning conflict-free GSMs
have been published in [HKB11a]. There deterministic and strongly determin-
istic GSMs have also been introduced for the first time. The generalisation
to deterministic and strongly deterministic Eos and the treatment of these
formalisms and of deterministic and strongly deterministic conservative Eos
in Section 4.3 as well as the results concerning acyclic GSMs and free-choice
GSMs presented in Sections 4.5 and 4.7 are new and appear in this work for
the first time.
The chapter ends with a summary in Section 4.8.

4.1 Conservative Eos

In the following, we introduce conservative Eos and show that coverability,
boundedness, and termination become decidable for them. The formalism is
thus not Turing-complete anymore. However, we show that reachability and
liveness remain undecidable. While conservative Eos have been known before
as has the result on reachability (cf. [Köh07]), the proofs presented here are new
and are joint work with Michael Köhler-Bußmeier. They have been published
in [KBH12].
In a conservative Eos each object net type that appears in the preset of a

system net transition t̂ also has to appear in the postset of t̂. Note that in both
proofs that establish Turing-completeness of Eos (see Theorems 3.13 and 3.14)
it is crucial that a net-token can be removed, if its marking is the null marking
0: In Figure 3.5 the transition =0 can only fire if the object net on place cntj is
empty, i.e. the place counter is not marked of the corresponding object net. In
the same way the transition t1 in Figure 3.6 can only fire if the object net on

68

4.1 Conservative Eos

place pi is empty, which exactly correspond to the place pi in the inhibitor net
being empty. This firing of transitions can be seen as a null test, because the
system net transition can only fire if the marking of a net token that resides
on one of its input places is 0.
In a conservative Eos such constructions are not possible anymore and it

turns out that this was the source of the equivalence to inhibitor nets and
counter programs. For conservative Eos the firing rule will again have the
monotonicity property and it will be possible again to construct coverability
graphs for them (cf. [KB11]).

Definition 4.1 (Conservative Eos). A typing is called conservative iff for
each place p̂ in the preset of a system net transition t̂ such that d(p̂) 6= • there
is a place in the postset being of the same type: (d(•t̂) ∪ {•}) ⊆ (d(t̂•) ∪ {•}),
i.e. each object net type that appears in the preset of t̂ also appears in its postset.
An Eos is conservative iff its typing d is.

Note that the usage of the term “conservative” is different from the usage in
the context of p/t nets (see Definition 2.42). There the number of tokens (or
in the general case: the weighted number of tokens) remains constant. Here we
“conserve” an object net type.
Boundedness, coverability, and termination, i.e. the problem if a marking is

reached in which no event is enabled, can be decided for conservative Eos,
showing that the formalism can not be Turing-complete, since termination can
not be decided for Turing machines.

Theorem 4.2. Boundedness, coverability, and termination are decidable for
conservative Eos.

Proof. In [KB11] it is shown that the firing rule is monotonic again, i.e. if an
event θ is activated in a marking µ it is also activated in greater markings
µ′ > µ. It is then shown [KB11] that the reachability graph of a conservative
Eos is a well structured transition system.
Generalising the result of Karp and Miller [KM69] it is shown in [FS01] that

the boundedness, the coverability, and the termination problem are decidable
for well structured transition systems and thus they are decidable for conser-
vative Eos, too.

While not being Turing-complete due to Theorem 4.2 above, we show in the
following that reachability and liveness remain undecidable for conservative
Eos.
For reachability this result has already been shown in [Köh07], where a weak

simulation of counter programs is given. But the simulation of inhibitor nets
given here results in a representation that is more accessible to the liveness
problem.

69

4 Structural Restrictions of Eos

The simulation is a “weak one” in the sense that wrong guesses about the
test on zero are possible, but all false guesses are stored in the marking till the
end.
We can reuse the construction presented in Theorem 3.14.

Lemma 4.3. For each inhibitor net N∗ there is a conservative Eos OS c(N
∗)

such that each marking m of N∗ is encoded as the Eos marking µ̃(m) with the
following property:

m
∗−→
N∗

m′ =⇒ µ̃(m)
∗−−−−−→

OSc(N∗)
µ̃(m′)

Moreover, for each firing µ̃(m)
∗−→ µ such that µ does not correspond to any

marking in the inhibitor net, no marking reachable from µ will ever do so.

Proof. Let us consider an inhibitor net given as N∗ = (P ∗, T ∗, F ∗, F ∗inh ,m0),
where F ∗inh ⊆ P ∗ × T ∗ describes the inhibitor arcs.

Figure 4.1: The Conservative Eos-Translation of Inhibitor Nets

The simulating Eos OS c(N
∗) (cf. Figure 4.1) is obtained by minor modi-

fications from the Eos OS strong(N
∗) from Theorem 3.14 (cf. Figure 3.6): In

addition to the places in OS strong(N
∗) we add the system net places control(pi)

with d(control(pi)) = N(pi) for each inhibitor place pi.

P̂ := P ∗ ∪ {p′ | p ∈ P ∗} ∪ {run} ∪ {waitt | t ∈ T ∗} ∪ {control(pi) | pi ∈ P i}}

For each inhibitor place pi ∈ P i we add control(pi) as a side condition to t1.
The definition of the encoding of a marking m of N∗ has to be adjusted, too:

We say that a nested marking µ encodes m whenever µ contains exactly one

70

4.1 Conservative Eos

net-token on each place p ∈ P ∗, the net-token on p has exactly m(p) tokens on
its place cntN(p), and one empty net-token on each control place:

µ̃(m) := µ(m) +
∑

p∈P i control(p)[0]

= run[] +
∑

p∈P ∗ p[m(p) · cntN(p)] +
∑

p∈P i control(p)[0]

As before, the initial marking is defined as the encoding of m, i.e. µ0 := µ̃(m0).
By construction, the simulating Eos OS c(N

∗) is conservative.
Assume that m enables t in the inhibitor net. Then the corresponding mark-

ing µ̃(m) enables t1[ϑ1] as before, since there are enough tokens in the preset.
Since the run-place is emptied after the firing of t1[ϑ1], the simulation of other
transitions is disabled. As before t2[ϑ2] generates the correct successor mark-
ing. For each inhibitor place pi the event t1[ϑ1] combines the net-token on pi
with that from control(pi). Since t is activated in N∗, the place pi must be
empty and therefore the net-token on pi in the Eos is empty, too. After firing
t1[ϑ1] we have an empty net-token on each control(pi) again. After that, t2[ϑ2]
regenerates an empty net-token on each pi. Additionally, t2[ϑ2] puts a token
back on the run-place and the simulation can continue.
Conversely, it is not guaranteed that the inhibitor places are empty whenever

t1[ϑ1] is enabled, i.e. for the test on zero we have to guess. What happens if
some inhibitor place pi is not empty when t1[ϑ1] fires? In this case t1[ϑ1]
produces a marking µ1 which has a non-empty net-token on control(pi). After
that, t2[ϑ2] produces an empty net-token, puts it on the inhibitor place pi, and
puts a token back on the run-place.
The important aspect is, that the resulting marking µ does not correspond

to a marking of N∗ (i.e. there is no m such that µ = µ̃(m) holds), since at least
one control-place is marked with a non-empty token. And even more important,
we can never get rid of these tokens again, since the tokens in the net-token on
a control-place are never removed.
So, we have that all the net-tokens on control-places have the empty marking

if and only if all guesses on the emptiness of inhibitor places have been right
during the simulation: When all guesses have been right during the simulation
then the resulting marking perfectly reflects the marking m. But after the
first wrong guess we never reach a marking µ such that it is a configuration
marking µ̃(m) for some m, since we can never get rid of the tokens which mark
the net-token on some place control(p).

From Lemma 4.3 undecidability of the reachability problem for conservative
Eos easily follows (see Theorem 4.5 below). Before we give a reduction from
the reachability problem for inhibitor nets to the liveness problem for con-
servative Eos. Again the constructions from Chapter 3.3 can be reused (see
Lemma 3.15).

Lemma 4.4. The reachability problem for inhibitor nets is reducible to the
liveness problem for conservative Eos.

71

4 Structural Restrictions of Eos

Proof. Figure 4.2 shows the conservative Eos OS c(N∗) with the following prop-
erty: If one can decide liveness for OS c(N∗), then one can decide reachability
of the empty marking in the inhibitor net N∗. The construction is quite similar
to the one in Lemma 3.15: In addition to the construction given there, we add
the transitions t(p)1 and t(p)2 to each control place control(p). Whenever t(p)1 [ϑ1]
with ϑ1(N(p)) = {dN(p)} is enabled, the net-token is not empty. Note that the
sequence t(p)1 [ϑ1] · t(p)2 [ϑ2] with ϑ2(N(p)) = {iN(p)} does not change the marking.

Figure 4.2: Conservative Eos-Reduction from 0-Reachability to Liveness

As before non-liveness of t0[ϑ0] with ϑ0 = 0 indicates reachability of the
empty marking m = 0 in the inhibitor net N∗ under the the assumption that
all guesses have been made correctly. So, we have to express the condition that
all guesses about inhibitor tests have been right during the weak simulation
in terms of liveness: If all guesses about inhibitor tests on place p ∈ P i have
been right during the weak simulation, then t(p)1 [ϑ1] is dead. Conversely, if one
guess has been wrong, then t(p)1 [ϑ1] is live. Therefore, the simulation is correct
iff t(p)1 [ϑ1] is dead for all p ∈ P i.
Therefore, the empty marking 0 is reachable in the inhibitor net N∗ iff for

all p ∈ P ∗ we have that t(p)1 [ϑ1] with ϑ1(N(p)) = {dN(p)} and t0[ϑ0] with ϑ0 = 0
are not live.

From Lemma 4.3 and 4.4 we deduce that reachability and liveness are unde-
cidable for conservative Eos.

Theorem 4.5. Reachability and liveness are undecidable for conservative Eos.

Proof. Since reachability is undecidable for inhibitor nets, undecidability of the
liveness problem for Eos follows instantly from Lemma 4.4.
For reachability we use the construction of Lemma 4.3 to reduce a given

inhibitor net N∗ to a conservative Eos OS c(N
∗) and a given marking m of N∗

of the inhibitor net to the marking µ̃(m) of OS c(N∗).
If m is reachable in the inhibitor net, µ̃(m) is also reachable in OS c(N

∗)
by Lemma 4.3. Conversely, if the marking µ̃(m) is reachable in the conserva-
tive Eos, then in the firing sequence from the initial marking to µ̃(m) only

72

4.2 Generalised State Machines

markings that correspond to markings of the inhibitor net appear and thus by
construction a corresponding firing sequence in the inhibitor net occurs and
thus m is reachable in N∗. This shows the correctness of the reduction and
thus undecidability of the reachability problem for conservative Eos.

Although boundedness and coverability are decidable for conservative Eos,
the undecidability of important problems like liveness and most notably reach-
ability are undesirable if one attempts to verify properties of a model.
In the next section the formalism is therefore restricted further to generalised

state machines.

4.2 Generalised State Machines

While conservative Eos are restricted in such a way that net tokens can neither
be created nor destroyed, they can still by “joined” or “split”, that is, there might
be, for example, two places typed with the same net token type in the preset
of a system net transition t̂ and only one place of this type in its postset. The
markings of the two net tokens in the preset of t̂ are then added together and
constitute the new marking of the net token in the postset of t̂ (if a synchronous
event happens the effect is slightly different, but the main idea remains the
same).
If conservative Eos are restricted further in such a way that this is prevented,

the class of generalised state machines (GSMs) is obtained.
A generalised state machine (GSM) first introduced in [KR05] (there called

ordinary object-net systems) is an Eos such that every system net transition
has either exactly one place in its preset and one in its postset typed with the
same object net or there are no such places. Additionally, the initial marking
has at most one net-token of each type.
Although Eos are more powerful from a modelling point of view, in many

cases certain aspects of them are not needed. Generalised state machines retain
the ability to describe nesting of objects, synchronisation, and mobility, but
the creation or destruction of objects is not allowed and neither is is allowed to
split the inner marking of a net token or to join the inner markings of several.
Thinking of these inner markings as representing the inner state of an object or
agent, this is a reasonable restriction and GSM are then nicely suited to model
physical entities.
Moreover, while Eos are an expressive modelling tool, the formalism is also

Turing-complete, prohibiting automatic verification. For generalised state ma-
chines, on the other hand, it is possible to construct a p/t net that simulates its
behaviour and thus everything that is decidable for p/t nets is also decidable
for generalised state machines (cf. [KR05]).

73

4 Structural Restrictions of Eos

Definition 4.6 (Generalised State Machines). Let G = (N̂ ,N , d, l, µ0) be
an Eos. G is a generalised state machine (GSM) iff for all N ∈ N \ {N•}

1. ∀t̂ ∈ T̂ : |{p̂ ∈ •t̂ | d(p̂) = N}| = |{p̂ ∈ t̂• | d(p̂) = N}| ≤ 1

2.
∑

p̂∈P̂ ,d(p̂)=N Π1(µ0)(p̂) ≤ 1

holds.

Note that if the second item holds,
∑

p̂∈P̂ ,d(p̂)=N Π1(µ)(p̂) ≤ 1 will hold for
every reachable marking µ due to the first item. This can be easily proven by
induction.
Since there is no restriction on N•, each p/t net is also a GSM. Moreover,

for each GSM G a p/t net, the reference net Rn(G), can be easily constructed
(see [KR05]). It is obtained by taking as set of places the disjoint union of all
places of G and as set of transitions the events of G. Since the places of all nets
in N are disjoint, given a marking µ of G, the projections (Π1(µ), (Π2

N(µ))N∈N)
can be identified with the multiset

Rn(µ) := Π1(µ) +
∑
N∈N

Π2
N(µ),

which is a marking in the reference net.

Definition 4.7 (Reference Net). Let G = (N̂ ,N , d, l, µ0) be a GSM. The
reference net, denoted by Rn(G), is defined as the p/t net:

Rn(G) =
((
P̂ ∪

⋃
N∈N

PN

)
,Θ,preRn,postRn,Rn(µ0)

)
where preRn and postRn are defined for an event t̂[ϑ] by:

preRn(t̂[ϑ]) = pre(t̂) +
∑

N∈N
preN(ϑ(N))

postRn(t̂[ϑ]) = post(t̂) +
∑

N∈N
postN(ϑ(N)),

with pre(ε̂) = post(ε̂) = 0 and preN(ε) = postN(ε) = 0 for all N ∈ N .

The term reference net stems from the fact that Rn(G) behaves as if each
object net (in G) would have been accessed via pointers and not like a value.
Since each object-net exists in a GSM at most once, the difference between
references and values does not truly exist, cf. [KR05] where it is proven that
reference and value semantics are equivalent for GSMs. We still use the term
reference net, since the above definition can also be used for Eos, for which this
difference does exist, but for which Theorem 4.8 below in general only holds in
one direction.
We repeat two easy to prove theorems (cf. [Köh07] and [KR05]) which allow

to carry over results for p/t nets to generalised state machines:

74

4.3 Deterministic and Strongly Deterministic GSMs

Theorem 4.8. Let G be a generalised state machine. An event t̂[ϑ] is activated
in G for (λ, ρ) iff it is in Rn(G):

µ
t̂[ϑ](λ,ρ)−−−−→

G
µ′ ⇐⇒ Rn(µ)

t̂[ϑ]−−−→
Rn(G)

Rn(µ′)

Theorem 4.9. The reachability, liveness, coverability, and boundedness prob-
lems are decidable for generalised state machines.

Although these problems and many others are decidable for GSMs they are
at least as hard to decide as for p/t nets, since even a strongly deterministic
GSM (see below) can be seen as a generalisation of a p/t net, and thus many of
them are ExpSpace-hard (see Theorems 2.37 and 4.16). It is therefore natural
to ask if certain structural or dynamic restrictions known from p/t nets can
be carried over – maybe with adaptions – to generalised state machines or if
new ones can be found and if these restrictions help to solve certain problems
quicker. In the next section we will focus on structural restrictions of GSMs
and the reachability problem for these restrictions. In Chapter 5 we will focus
on dynamic restrictions especially on safeness.

4.3 Deterministic and Strongly Deterministic
GSMs

While problems like reachability and many others are decidable for generalised
state machines (see Theorem 4.9), the borderline mentioned in the introduction
is not well understood for GSMs, i.e. what is an appropriate net class for the
nets involved such that we enjoy a high modelling capability, yet also have the
possibility to verify the models with affordable resources? What structural,
dynamic or other restrictions are helpful to arrive at that goal?
To understand this boundary better, we first restrict GSMs to determinis-

tic and strongly deterministic GSMs in this section, limiting the interaction
between the involved nets. In the following section, we then severely restrict
the nets to P- and T-nets. While such nets considered individually are well
understood (cf. [DE95]), viewed in the context here their analysis becomes far
more intricate.
In the subsequent sections, we then discuss further structural restrictions

which where mentioned before in Chapter 2 for p/t nets. We will introduce
acyclic generalised state machines, conflict-free generalised state machines and
free-choice generalised state machines and focus on the reachability problem
for these formalisms.
Although for every GSM the reference net can be constructed and thus prob-

lems like reachability can be decided, a major problem is that the reference net
might become huge even for small GSMs. This is due to the fact that the set
of events is present in the definition of the reference net (Definition 4.7).

75

4 Structural Restrictions of Eos

Lemma 4.10. Let G = (N̂ ,N , d, l, µ0) be a GSM and |T | := max{|TN | | N ∈
N}. Then |Θ|, i.e. the number of events of G, is bounded above by |T̂ | · |T ||N |.

Proof. We sketch a GSM G = (N̂ ,N , d, l, µ0) with an exponential number of
events in the size of G. Let Ti be the set of transitions of the object net Ni ∈ N .
Let l̂(t̂)(Ni) = ci for all i and one system net transition t̂, where the ci are
channels. Let lNi(t) = ci for all t ∈ Ti and all i. Now t̂ may fire synchronously
with each transition in N1, each in N2 and so on. Each of these possibilities
results in a different event, so we already have at least |T1| · |T2| · . . . · |Tn| events,
a number exponential in the number of object nets and thus in the size of the
GSM. Note that this is possible for each system net transition resulting in an
even larger number of events and in the worst case in the bound above. The
number can not grow larger because other labelings would decrease the number
of possible nondeterministic choices and so the number of events.

Given a GSM it might thus be very expensive to construct its reference net.
Note that this is due to the nondeterminism introduced above by the labelling.
All transitions of one object net are labelled with the same channel, so one
of the transitions is chosen nondeterministically to fire synchronously with t̂.
To prevent this, we introduced deterministic GSMs in [HKB11a]. Here we
generalise this definition to Eos:

Definition 4.11 (Deterministic and Strongly Deterministic Eos and
GSMs). A Eos OS is called deterministic if for each N ∈ N and every two
transitions t, t′ ∈ TN , t 6= t′ with lN(t) 6= τ 6= lN(t′), lN(t) 6= lN(t′) holds, i.e. if
the labels for all all t ∈ TN with lN(t) 6= τ are pairwise different.
OS is strongly deterministic if OS is deterministic and additionally for all

t̂ and N with l̂(t̂)(N) 6= τ the labels l̂(t̂)(N) are pairwise different.

Thus, in a deterministic Eos or GSM each channel is used at most once in
each object net. In a strongly deterministic Eos or GSM each channel is also
used at most once in the system net.
For Eos the definition of determinism does not significantly reduce the power

of the formalisms introduced so far, namely of Eos or conservative Eos

Theorem 4.12. For each inhibitor net N∗ there is a strongly deterministic
Eos OS strong(N

∗) that bisimulates N∗.

Proof. The proof of Theorem 3.14 can be adjusted by adding some transitions
and channels so that the resulting Eos is strongly deterministic.
Each object net N(p), p ∈ P ∗ does not only have one transition iN(p) to

increase the number of tokens on cntN(p) and one transition dN(p) to decrease
them, but one for each transition t ∈ T ∗, i.e. the place cntN(p) has the transitions
{iN(p),t | t ∈ T ∗} in its preset and the transitions {dN(p),t | t ∈ T ∗} in its postset.
Instead of incN(p) and decN(p) the channels incN(p),t and decN(p),t, t ∈ T ∗ are

76

4.3 Deterministic and Strongly Deterministic GSMs

used, i.e. the transition iN(p),t is labelled with incN(p),t and in the same manner
for the transitions in the postset. The object nets’ transitions then all use
different channels.
In the system net the transitions t1 and t2 which originated from a transition

t ∈ T ∗ only use the channels with subscript t now, i.e. if t had a place p1 in its
preset, then t synchronises with the object net N(p1) via the channel decN(p1),t

and likewise for places in the postset. The system nets’ transitions then all
use different channels as well and the Eos is thus strongly deterministic but
otherwise has the same behaviour as the net constructed in Theorem 3.14.

Theorem 4.13. For each inhibitor net N∗ there is a strongly deterministic
conservative Eos OS c(N

∗) satisfying the statements in Lemma 4.3

Proof. The Eos constructed in the proof of Lemma 4.3 can be adjusted in
the same way as in Theorem 4.12 resulting in a strongly deterministic and
conservative Eos with the same behaviour.

The above two theorems imply

Corollary 4.14. The reachability problem for strongly deterministic, deter-
ministic and general Eos as well as for strongly deterministic, deterministic
and general (with regard to determinism) conservative Eos is undecidable.

Turning to GSMs again, the bound on the number of events given in
Lemma 4.10 can now be crucially decreased.

Lemma 4.15. Let G = (N̂ ,N , d, l, µ0) be a deterministic or strongly deter-
ministic GSM, then |Θ| is bounded above by |T̂ |+

∑
N∈N |TN |.

Proof. A GSM G has at most |T̂ | system-autonomous and
∑

N∈N |TN | object-
autonomous events. If G is deterministic, then a system net transition t̂ ∈ T̂
can participate in at most one synchronous event, because if l̂(t̂)(N) = c for
an object net N ∈ N , then there is at most one transition in N which may
fire synchronously with t̂, because only one transition may be labelled with c
in N . Thus the sum of the number of system-autonomous and the number of
synchronous events is bounded above by |T̂ | and thus the number of all events
is bounded above by |T̂ |+

∑
N∈N |TN |.

Since strongly deterministic GSMs are a further restriction of deterministic
GSMs, this argument holds for them, too.

While for a GSM G the number of events might thus be exponential in the
size of G, this number is only polynomial in the size of G, if G is deterministic
or strongly deterministic. However, even a strongly deterministic GSM does
not reduce the complexity in comparison with p/t nets, yet.

77

4 Structural Restrictions of Eos

Theorem 4.16. Every p/t net system N can be simulated by a strongly deter-
ministic GSM GN .

Proof. Let N = (N,m0) be a p/t net system. The GSM GN can be obtained
by using N as system net, typing all places with N•, which is the only object
net present. The system net transitions are all labelled with τ for system
autonomous firing. The initial marking µ0 is obtained from m0 by augmenting
each place marked in m0 by the submarking 0, i.e. from m0 =

∑
i pi follows

µ0 =
∑

i pi[0]. The main difference between N and GN is that the latter uses
the object net N• which is simply a net without places and transitions and thus
does not synchronise.

Corollary 4.17. The reachability problem for strongly deterministic, deter-
ministic and general GSMs is ExpSpace-hard.

On the one hand GSMs can thus be used to model mobility and communica-
tion of processes or agents - even if only to a smaller degree compared to Eos
or general object nets. On the other hand a GSM G can be “flatten” to the
reference net Rn(G), which is a p/t net and which thus makes it possible to
use analyses techniques for p/t nets. Unfortunately, this p/t net can be very
big compared to the size of the GSM. While determinism and strongly deter-
minism as introduced above counteract this blow-up, the resulting GSMs are
still as powerful as p/t nets and it is now interesting to investigate if certain
restrictions known for p/t nets can be transferred to GSMs and if they retain
their complexity.
In the following sections, we focus on P- and T-nets, on acyclic nets, on

conflict-freedom and on the free-choice property.

4.4 P- and T-nets for Generalised State
Machines

While determinism and strong determinism are already restrictions of gener-
alised state machines, we further restrict the nets involved to P- and T-nets
(see Definition 2.40) here.
Although GSMs with these restrictions are likely to be of little use in mod-

elling applications, understanding them better might help in future attempts
to analyse more sophisticated formalisms.
For P- and T-nets reachability and liveness can be quickly decided (see Theo-

rem 2.41). It turns out that this is not the case for GSMs. We show that, given
a strongly deterministic GSM where the system net and all object nets are P-
nets, it is PSpace-complete to decide the reachability of a given marking. We
show that for the same restriction to T-nets, the reachability problem remains
solvable in polynomial time. We then turn to combinations of restricting the

78

4.4 P- and T-nets for Generalised State Machines

system and/or the object nets to P- and/or T-nets, give some first results, and
discuss the problems that arise with these cases. Throughout we also discuss
the effect of dropping the restriction to strongly deterministic GSMs for these
formalisms. The results obtained have been published in [HKB12b] and are
summarised in Table 4.1.

Definition 4.18. Let N = (P, T, F) be a p/t net and G = (N̂ ,N , d, l, µ0) be a
GSM.

1. If |•t| = |t•| = 1 holds for every transition t ∈ T , then N is a P-net.

2. If |•p| = |p•| = 1 holds for every place p ∈ P , then N is a T-net.

3. If N̂ is a P-net and all N ∈ N are P-nets, then G is a ppGSM.

4. If N̂ is a T-net and all N ∈ N are T-nets, then G is a ttGSM.

5. If N̂ is a P-net and all N ∈ N are T-nets, then G is a ptGSM.

6. If N̂ is a T-net and all N ∈ N are P-nets, then G is a tpGSM.

For historical reasons P-nets are also called S-nets and T-nets are also called
marked graphs.

The distinction sometimes made between a P-net N and a P-system (N,m0),
where additionally the initial marking m0 is given (analogous for T-nets) is not
use here. We simply speak of a P- or T-net. It will be clear from the context
or stated explicitly if only the net structure is meant.
From the definition of a GSM and the restrictions imposed above, one can

deduce that for ppGSMs and ptGSMs there can only be one object net:

Lemma 4.19. If G = (N̂ ,N , d, l, µ0) is a ppGSM or a ptGSM and the system
net N̂ is connected, then |d(P̂)| = 1.

Proof. Assume otherwise and let D be the set of tuples of system net places
such that (p̂, p̂′) ∈ D iff d(p̂) 6= d(p̂′). Let dist(p̂, p̂′) be the distance of two
system net places with respect to the relation (F̂ ∪ F̂−1)∗. Choose (p̂1, p̂2) ∈ D
such that dist(p̂1, p̂2) is minimal.
Now, since N̂ is connected and since dist(p̂1, p̂2) is minimal, there is a node

x such that a directed path (possibly of length 0) with respect to the relation
F̂ exists from p̂1 to x and also from p̂2 to x. (If no such x exists, there is a
node x′ on the path between p̂1 and p̂2 such that (p̂1, x

′) ∈ D or (p̂2, x
′) ∈ D

holds and such that the distance is smaller than dist(p̂1, p̂2), contradicting the
choice of p̂1 and p̂2.) Since G is a ppGSM or a ptGSM, |•t̂| = |t̂•| = 1 holds
for all t̂ ∈ T̂ and thus x cannot be a transition and must be a place. But now,
since every transition of the system net has exactly one place in its preset and

79

4 Structural Restrictions of Eos

one in its postset and since these must then be of the same type according to
the definition of a GSM (item 1 in Definition 4.6), d(x) must equal d(p̂1) due
to the path from p̂1 to x but must also equal d(p̂2) due to the path from p̂2 to
x, contradicting d(p̂1) 6= d(p̂2).

We assume that N = d(P̂) in the following, since a N ∈ N \ d(P̂) is never
used. The above lemma thus says that in a connected ppGSM or ptGSM we
always have |N | = 1. Furthermore, we may usually assume connectedness in
the algorithms below, because if a GSM is not connected the single parts do
not affect each other and can be treated in isolation. Since in the case where
N = {N•} holds, ppGSMs and ptGSMs are P-Nets, ttGSMs and tpGSMs
are T-nets, and GSMs are standard p/t nets, and thus the theory for P-nets,
T-nets, and general p/t nets is applicable, it is reasonable to exclude the case
N = {N•} for all GSMs. We assume in the following that N 6= {N•} for GSMs.
Also note that if |N | = 1 holds for a GSM G and µ0 6= 0 holds, then G has
exactly one object net in every reachable marking because the initial marking
has only one net-token of each type (see the second item in the definition of a
GSM, Definition 4.6).
To sum up, we assume in the following that a given GSM G is connected,

that N = d(P̂), and that N 6= {N•} holds.
In the following, we will focus on the complexity of the reachability problem

for strongly deterministic GSMs which additionally fulfil one of the items 3 to
6 in Definition 4.18 above.

ppGSMs.

While for P- and T-nets the reachability problem can be solved in polynomial
time [DE95], the problem becomes more intricate in the context of ppGSMs
or ttGSMs. It turns out that for ttGSMs reachability can still be decided in
polynomial time, but for ppGSMs the problem becomes PSpace-complete. We
start with showing PSpace-hardness for the last-mentioned problem and then
continue to show three possibilities to decide the problem in polynomial space.
One of these approaches can also be used to prove that for ttGSMs reachability
of a given marking can be decided in polynomial time.

Lemma 4.20. Given a strongly deterministic ppGSM G = (N̂ ,N , d, l, µ0) and
a marking µ, it is PSpace-hard to decide if µ is reachable from µ0.

Proof. We give a reduction from the problem to decide if, given a linear
bounded automaton A and an input string x, whether A accepts x or not.
This problem is PSpace-complete [Kar72], [GJ79].
Let A = (Q,Σ,Γ, K, q0, F,#) be a linear bounded automaton where Z is the

finite set of states, Σ the finite set of input symbols, Γ ⊇ Σ∪{#} the finite set
of tape symbols, K ⊆ Q× Γ× {L,R,H} ×Q× Γ the transition relation, q0 is

80

4.4 P- and T-nets for Generalised State Machines

Figure 4.3: System net (left) and object net (right) of the ppGSM from
Lemma 4.20.

the initial state, F the set of final states and # the blank symbol. Without loss
of generality we assume that A uses only the portion of the tape containing
the input (due to the linear tape-compression theorem) and that if A accepts a
word it clears the tape, moves the head to the leftmost cell and enters a unique
final state (i.e. we also assume |F | = 1).
Given an LBA A and an input string x ∈ Σ∗, we now construct in polyno-

mial time a strongly deterministic ppGSM G and a marking µ such that µ is
reachable in G iff A accepts x.
The idea is to have an event θ for every transition k ∈ K and every tape cell

on which this transition k might occur. Tokens on places are used to memorize
in which state A is, on which cell the read-/write-head resides and what tape
symbol is written on each cell. Since a single transition with only one input
and one output arc cannot do all these changes the information is partly stored
in the system and partly stored in the object net. The system net will save in
which state A is and on which cell the read-/write head currently resides. The
object net will save for each cell used what tape symbol is written on it (see
Figure 4.3).
Let Q = {q0, . . . , qn−1}, where q0 is the start and q1 the final state, K =
{k1, . . . , km}, Γ = {A1, . . . , As}, where A1 = #, |x| = l the input string’s
length and c1, . . . , cl the tape cells used.
The system net consists of n · l places P̂ = {p̂i,j | 0 ≤ i ≤ n− 1, 1 ≤ j ≤ l},

where pi,j is marked if A is in state qi and the read-/write-head is on cell cj.
The (single) object net consists of s·l places P = {pi,j | 1 ≤ i ≤ s, 1 ≤ j ≤ l},

where pi,j is marked if the symbol Ai is written on the cell cj.
Furthermore, for each cell cj and each transition ki ∈ K of the LBA there is

a system net transition t̂i,j and an object net transition ti,j which are labelled

81

4 Structural Restrictions of Eos

with the same channel ci,j. (The cases where the read-/write-head moves from
the tape are discussed below.) Let ki = (qa, Ab, X, qa′ , Ab′). The input arc of
t̂i,j is from p̂a,j, the place that encodes that A is in state qa and the read-/write-
head is on cell cj. The input arc of ti,j is from pb,j, the place that encodes that
the cell cj is currently marked with the tape symbol Ab. The output arc of ti,j
is pb′,j. At last, the output arc of the system net transition depends on X, the
movement of the LBA’s head. If X = H, then the output arc of t̂i,j is to pa′,j.
If X = L, then the output arc is to pa′,j−1 and if X = R the output arc is to
pa′,j+1. In the cases where X = L and j = 0 or X = R and j = l, i.e. in the
cases where the LBA’s head would move off the tape no transitions exist. The
situation in Figure 4.3 is therefore as follows: The LBA is in state qi, reading
cell cj onto which currently symbol Ab is written. The content of the other
cells is not shown in the figure. The pictured transitions - synchronised via the
channel cr,j - correspond to a transition kr = (qi, Ab, R, qi+1, A1) of A.
Since we have only one object net, all places of the system net are typed

with this net.
For the initial marking µ0 let x = Ai1Ai2 . . . Ail be the input of length l. Now

µ0 is given by p̂0,1[pi1,1 + pi2,2 + . . .+ pil,l].
The marking tested for reachability is given by µe := p̂1,1[p1,1+p1,2+. . .+p1,l].
By construction exactly one system net place is marked in each reachable

marking. Also from the object net’s places p1,i, p2,i, . . . , ps,i exactly one place
is marked (and l places are marked altogether in the object net).
Now, if A accepts the input x, then there is a finite sequence C1, C2, . . .

of configurations such that for each Ci there is a transition ki ∈ K that is
possible in Ci and that changes the configuration of A to Ci+1. It is easy to
prove inductively that this sequence of configurations corresponds to a sequence
of markings in the constructed net system and that the transition ki ∈ K
correspond to exactly one event consisting of one system net and one object
net transition. Firing this event yields the marking corresponding to the next
configuration in the sequence. If A accepts x, then the last configuration is the
unique accepting configuration and so the reached marking in the net system
is µe.
Conversely, if µe is reachable in G, then by construction the sequence of

markings correspond to a sequence of configurations of A and each transition
in G corresponds to a transition in A. (A more rigorous proof would again use
induction.) Thus if µe is reachable in G, so is the accepting configuration in A
and hence µe is reachable in G iff A accepts x.
The constructed net system is clearly a strongly deterministic ppGSM.

Furthermore, the construction can be done in polynomial time: With s :=
max{|Q|, |Γ|, |K|, |x|} we have |P̂ |, |P |, |T̂ |, |T | ≤ s2 and |F̂ |, |F | ≤ 2s2. The
labelling assigns to each transition one channel and can thus be stored in O(s2)
space. Also µ0 and µe can be stored in O(s) space. Altogether the output is in
O(s2) space and since only a constant amount of computation is necessary for

82

4.4 P- and T-nets for Generalised State Machines

each output bit, the whole computation is possible in O(s2) time and actually
even in logarithmic space on the work tape. We conclude that the reachability
problem for ppGSMs is PSpace-hard.

The negative result above carries over to deterministic ppGSMs and general
ppGSMs, thus the reachability problem for all of them is at least PSpace-hard.
We now prove that PSpace is enough.
In our first approach to prove that the reachability problem for ppGSMs can

be decided in polynomial space we use a technique that dates back to Savitch’s
proof of PSpace = NPSpace [Sav70]. The technique is based on the following
idea: Given a finite state space of size 2p(n) where p is a polynomial and n the
input size, to decide if a given state s is reachable from the start state s0 in m
steps a deterministic machine iterates through all other states s′ and tests if s′
is reachable from s0 and s from s′ by m/2 steps, i.e. by half the steps. These
tests are done recursively applying the same technique and reusing space. Since
the number of steps is halved each time and at most 2p(n) steps are possible
without entering a loop, only log 2p(n) = p(n) states need to be stored on a
stack and thus the space needed is polynomial.
This technique works here, too, even if the state space might be rather big.

Lemma 4.21. Given a strongly deterministic ppGSM G = (N̂ ,N , d, l, µ0) and
a marking µ, it is decidable in polynomial space if µ is reachable from µ0.

Proof. Let N = (P, T, F) be the sole object net (see Lemma 4.19). If µ0 = 0,
then the only reachable marking is 0, since N̂ is a P-Net and thus no transition
is active. We thus assume that µ0 6= 0. In this case N is not only the sole object
net type, but actually there is only one object net in any reachable marking µ
due to the second item in Definition 4.6, i.e. |Π1(µ)| = 1.
Let |Π2

N(µ0)| = m, i.e. in the initial marking the object net is marked with
m black tokens. Since N is a P-net, the number of tokens in N remains
constant. On each place between 0 and m tokens can reside, thus the number
of reachable markings of N is bounded by (m + 1)|P |. This bound could be
strengthened, but is sufficient here. SinceN can move around in the system net,
but only one place of the system net is marked at any reachable marking, we
have an upper bound of |P̂ | · (m + 1)|P | for the number of reachable markings
of G. Let n be the size of the input. From n > log(m + 1), |P |, |P̂ | and
|P̂ | · (m + 1)|P | = 2log |P̂ | · 2log(m+1)·|P | ≤ 2n

2+n it follows that we have a finite
state space of size 2p(n) where p is a polynomial and n the input size and thus
the technique outlined above is applicable.
A NPSpace-Algorithm A works as follows: Given G, µ0 and µ we first guess

the number i of steps it takes to reach µ. Since we have an upper bound for
the size of the state space, i is known to be between 0 and 2n

2+n.
Instead of guessing i at the beginning, it is also possible to implement a loop,

using i as a loop index and reusing space in each iteration.

83

4 Structural Restrictions of Eos

Now A guesses a marking µ′ and verifies recursively that µ′ is reachable from
µ0 and µ from µ′ with j = di/2e resp. j = bi/2c steps. The recursion ends if j
is 0 or 1. In the first case two markings have to be tested for equality. In the
second case we have to test if one marking is reachable from the other in one
step. For this we can iterate through all events, consistently reusing space, test
if the event is active and, if so, test if it has the desired effect (see Lemma 3.11).
A accepts if it reaches µ and rejects if it does not reach µ in i steps.
Since the nesting depth of the recursive calls is log i, it is at most log 2n

2+n =
n2 + n and thus polynomial in the input size. Furthermore, since only a finite
number of data items (e.g. markings, counters) need to be stored and all these
only require polynomial space and since it is possible to test in polynomial space
if a marking is reachable from another marking and also if a marking is identical
to another, i.e. all subroutines only require polynomial space, polynomial space
is sufficient for the whole computation.

The technique used in the proof above was also used successfully in the proof
that CTL model checking of 1-safe p/t nets is possible in PSpace [Esp98a].
A result that can be generalised to safe Eos and also to safe Eos with an
arbitrary but fixed nesting depth and to strongly safe object net systems, see
Chapters 5 and 6.
Alternatively to the proof above, one can exploit the fact that the total num-

ber of tokens does not change in a ppGSM. This idea was also used in [JLL77]
to prove that the reachability problem can be decided in polynomial space for
1-conservative p/t nets (i.e. nets with |•t| = |t•| for all t). We only sketch the
proof here.

Alternative Proof of Lemma 4.21 (Sketch). Since N̂ and the sole object
net N are both P-nets, the total number of tokens does not change. In a
nondeterministic algorithm A one can thus maintain one counter for each place,
where the size of each counter is bounded. By guessing a firing sequence A can
thus solve the reachability problem again exploiting the fact that the state
space is finite and the firing sequence has a length representable in polynomial
space. The whole algorithm works in polynomial space.
Both approaches presented above are working directly on a given GSM G.

In the next approach we make use of the reference net Rn(G) instead (see
Definition 4.7), which allows us to use tools already available for p/t nets.

Lemma 4.22. Let G = (N̂ ,N , d, l, µ0) be a strongly deterministic ppGSM.
Then the p/t net Rn(G) satisfies |•t| = |t•| = 1 or |•t| = |t•| = 2 for all
t ∈ T (Rn(G)).

Proof. Let t ∈ T (Rn(G)) and let N be the unique object net (see Lemma 4.19).
Note that N is not only the sole object net type present but that actually only

84

4.4 P- and T-nets for Generalised State Machines

one object net exists in any reachable marking (if µ0 6= 0; but otherwise 0 is
the only reachable marking), due to the second item in Definition 4.6.
We want to show |preRn(t)| = |postRn(t)| ∈ {1, 2}. Since the transi-

tions of Rn(G) are the events of G we distinguish the three cases t ∈ Θs

(system-autonomous event), t ∈ Θo (object-autonomous event), and t ∈ Θl

(synchronous event).
The idea is that in the first two cases of autonomous events the pre- and

postset of the event are identical to the pre- resp. postset (of cardinality 1) of
a single system or object net transition and that in the case of a synchronous
event the event is just a combination of one system net and one object net
transition so that the cardinality of the pre- and postset is 2.
Explicitly, we have t = t̂[ϑε] for some system net transition t̂ in the first case.

Since ϑε(N) = ε, the preset of t and t̂ are identical according to Definition 4.7
as are the postsets. Thus we have |preRn(t)| = |pre(t̂)| = 1 = |post(t̂)| =
|postRn(t)|.
The case of an object-autonomous event is similar. We then have t = ε̂[ϑ]

with ϑ(N) 6= ε (usually for exactly one object net, but we only have one object
net here, since G is a ppGSM). Thus again according to Definition 4.7 we
have that the preset of t and ϑ(N) are the same as are the postsets and their
cardinality is one again.
In the third case of a synchronous event one system net transition t̂ fires

synchronously with exactly one object net transition tN . With Definition 4.7
and since pre(t̂) 6= preN(tN) and post(t̂) 6= postN(tN), we have |preRn(t)| =
|postRn(t)| = 2 (where in the preset of t are exactly the two places in the preset
of t̂ and tN and analogously for the postset).

A p/t net with the property |•t| = |t•| for each transition t is called 1-
conservative and it is shown in [JLL77] that for these net class the reachability
problem can be decided in polynomial space. Thus, since the above conver-
sion is clearly possible in polynomial space, we again have that reachability is
decidable in polynomial space.
Note that we did not use the fact that G was a strongly deterministic GSM

in any of the above proofs and actually the proofs work all the same for de-
terministic ppGSMs and also for general ppGSMs. Thus we have the following
corollary from Lemma 4.21 or Lemma 4.22 above:

Corollary 4.23. The reachability problem for strongly deterministic ppGSMs,
deterministic ppGSMs and ppGSMs is solvable in polynomial space.

The main reason for the generalisation in Corollary 4.23 is that the expo-
nential blow-up of events (see Lemma 4.10) cannot occur in a ppGSM – due to
Lemma 4.19 there is only one object net and thus we have at most a quadratic
number of events in the size of the input.
From Corollary 4.23 and from Lemma 4.20 we deduce the following theorem:

85

4 Structural Restrictions of Eos

Theorem 4.24. The reachability problem for strongly deterministic ppGSMs,
deterministic ppGSMs and ppGSMs is PSpace-complete.

ttGSMs.

In a ttGSM the system net and all object nets are T-nets. Unlike before
in the case of ppGSMs, a variety of object nets might now be present and
according to Lemma 4.10 the number of events might become huge. Thus for
general ttGSMs the approach from Lemma 4.22 is unlikely to be applicable.
But for strongly deterministic ttGSMs the approach works. The proof of the
following lemma first appeared in [HKB11b] and is similar in nature to the
proof of Lemma 4.22. We show that the reference net Rn(G) is also a T-net,
if G is a strongly deterministic ttGSM. Since reachability can be decided in
polynomial time for a T-net and since the construction of Rn(G) is possible in
polynomial time in this context, we deduce that the reachability problem for
strongly deterministic ttGSMs can be solved in polynomial time, too.

Theorem 4.25. Let G = (N̂ ,N , d, l, µ0) be a strongly deterministic ttGSM.
Then Rn(G) is a T-net.

Proof. With preRn(p) and postRn(p) we denote the preset and postset of a
place p in the reference net Rn(G). If p is also a place in an object net N ∈
N we denote p’s pre- resp. postset in the original object net N by preN(p),
resp. postN(p). The pre- and postset of a place p in the system net N̂ are
likewise denoted by preN̂(p) and postN̂(p).
Now, let p ∈ P (Rn(G)). Our goal is to show |preRn(p)| = |postRn(p)| = 1.

We distinguish two cases: p ∈ P̂ or p ∈ PN for a N ∈ N . Let p ∈ P̂ . Since
|postN̂(p)| = 1 holds, p is connected with a system net transition and thus
associated with an event, thus |postRn(p)| ≥ 1. Assume |postRn(p)| > 1
holds. Then two events t̂[ϑ], t̂′[ϑ′] ∈ postRn(p) with t̂[ϑ] 6= t̂′[ϑ′] exist and
p ∈ pre(t̂) ∧ p ∈ pre(t̂′) follows from Definition 4.7 and p ∈ P̂ . This implies
t̂ 6= ε̂ 6= t̂′, since pre(ε̂) = 0.
The events are thus not object-autonomous. With this and from t̂[ϑ] 6= t̂′[ϑ′]

we can deduce t̂ 6= t̂′. Assume otherwise, i.e. assume t̂ = t̂′. Then a net N ∈ N
would have to exist with ϑ(N) 6= ϑ′(N). But with ϑ(N) = t1 6= t2 = ϑ′(N)

synchronisation would require that lN(t1) = l̂(t̂)(N) = lN(t2), which is not
possible in a deterministic GSM, if t1, t2 ∈ TN , because for a t ∈ TN , ϑ(N) = t
implies lN(t) 6= τ . If w.l.o.g. t1 ∈ TN and t2 = ε, then lN(t2) = lN(ε) =
τ = lN(t1) would mean that t1 fires object-autonomously in contrast to t̂′ 6= ε̂.
But with t̂ 6= t̂′ and p ∈ pre(t̂) ∧ p ∈ pre(t̂′) we have a contradiction to
|postN̂(p)| = 1.
The case |preRn(p)| > 1 analogously leads to a contradiction and thus
|preRn(p)| = |postRn(p)| = 1 for p ∈ P̂ .

86

4.4 P- and T-nets for Generalised State Machines

Now let p ∈ PN for a N ∈ N . Like above |postRn(p)| is at least 1. Assume
|postRn(p)| > 1. Again two events t̂[ϑ], t̂′[ϑ′] ∈ postRn(p) with t̂[ϑ] 6= t̂′[ϑ′]
exist. This time p ∈ preN(ϑ(N))∧p ∈ preN(ϑ′(N)) follows from Definition 4.7
and p ∈ PN . Together with preN(ε) = 0 this implies ϑ(N) 6= ε 6= ϑ′(N). The
events are thus not system-autonomous.
The inequality ϑ(N) 6= ϑ′(N) immediately implies a contradiction to
|postN(p)| = 1.
In the case of ϑ(N) = ϑ′(N), neither t̂ = t̂′ = ε̂, nor t̂ = t̂′ 6= ε̂ is possible.

In the first case both events would be equal (remember that ϑ(N) and ϑ′(N)
are both not ε, thus N is the only object net not mapped to ε by ϑ, resp. ϑ′,
which implies that the events are equal). The second case is not possible as was
already shown above. Thus t̂ 6= t̂′ holds and only two possible cases are left:
Either both events are synchronous events or one is a synchronous the other
an object-autonomous event. In the first case l̂(t̂)(N) = l̂(t̂′)(N) follows from
l̂(t̂)(N) = lN(ϑ(N)), l̂(t̂′)(N) = lN(ϑ′(N)) and ϑ(N) = ϑ(N ′), but this is not
possible in a strongly deterministic GSM. In the second case let w.l.o.g. t̂[ϑ] ∈ Θl

and t̂′[ϑ′] = ε̂[ϑ′] ∈ Θo. But since ϑ(N) and ϑ′(N) are both not ε but transitions
of N , this would mean that ϑ(N) fires synchronously with t̂ and ϑ′(N) fires
object-autonomously (i.e. is not labelled with a channel). Since ϑ(N) = ϑ′(N),
this is not possible. Thus like above (in the case p ∈ P̂) where t̂ = t̂′ was not
possible, here (in the case p ∈ PN) ϑ(N) = ϑ′(N) is not possible.1

The case |preRn(p)| > 1 is again analogously and from this |preRn(p)| =
|postRn(p)| = 1 follows for all p ∈ P (Rn(G)). Thus Rn(G) is a T-net.

The above proof technique is also used in the context of conflict-free GSM,
see Section 4.6.
Since in a strongly deterministic GSM G the number of events is bounded by

a polynomial in the size of G (see Lemma 4.15), the reference net of G can be
constructed in polynomial time. Since furthermore reachability can be decided
in polynomial time for a T-net (see 2.41), we have the following corollary to
Theorem 4.25:

Corollary 4.26. The reachability problem for strongly deterministic ttGSMs
is solvable in polynomial time.

While for a strongly deterministic ttGSM G the reference net Rn(G) is a
T-net, this is in general not the case for deterministic ttGSMs and general
ttGSMs. Figure 4.4 shows an example. The net system on the left is clearly
a deterministic ttGSM, but its reference net on the right is not a T-net, since
the place p′ has two input (and two output) arcs.

1Note that ϑ(N) = ϑ′(N) is thus not possible and that in this part of the proof the
characteristic of a T-net was not used. For this reason, this part is the same as in
Theorem 4.35.

87

4 Structural Restrictions of Eos

Figure 4.4: A ttGSM G (left) with its reference net Rn(G) (right).

So, not only the size of Rn(G) might become huge in the case of a deter-
ministic or general ttGSM G, also the structure of Rn(G) might become more
intricate. This was actually the very reason why deterministic and strongly
deterministic GSMs were introduced in [HKB11b].
Turning again to ppGSMSs, we note that even if Rn(G) is not a P-net for

any of the ppGSM formalisms (see Lemma 4.22 and the discussion following it),
the reference net is always 1-conservative and thus reachability can be solved
in polynomial space (cf. [JLL77] and Section 2.5). One of the reasons might
be that in a ppGSM G only one object net is present and thus the number
of events is rather limited independently of G being strongly deterministic,
deterministic or a general ppGSM.
To pinpoint the exact complexity of the reachability problem for determinis-

tic ttGSMs is currently an open problem. The more sophisticated structure of
Rn(G) in the case of deterministic and general ttGSMs, the increasing number
of events and the potential presence of several object nets, are the reasons why
ttGSMs are not as well understood yet as ppGSMs.

ptGSMs.

We now turn our attention to ptGSMs and tpGSMs, i.e. to GSMs which employ
a mixture of P- and T-nets. While in the cases of ttGSM and ppGSM above
we got some positive results in way of algorithms, for ptGSMs and tpGSMs
we up to now only have negative results, i.e. hardness results, or no results
at all. For ptGSMs we already gave a proof in [HKB11b] that reachability
is NP-hard if the GSM is deterministic (a result that carries over to general
ptGSMs), but this proof was faulty. We give a correct proof here. Furthermore,
we strengthen (or rather worsen) this result to PSpace-hardness and we show
that for strongly deterministic ptGSMs the reachability problem is NP-hard.
For tpGSMs we conjecture that the problem is solvable in polynomial time and
give some intuition why this might be so.

88

4.4 P- and T-nets for Generalised State Machines

Figure 4.5: Example of the construction in the proof of Theorem 4.27

The following Theorem proves that the reachability problem is NP-hard for
deterministic and thus also for general ptGSMs. This result is strengthened in
Theorem 4.29 to PSpace-hardness and is also a special case of Theorem 4.28
showing NP-hardness of the reachability problem for strongly deterministic pt-
GSMs. We give the proof here anyway, because it shows a different construction
then in the two other proofs.

Theorem 4.27. Let G = (N̂ ,N , d, l, µ0) be a deterministic ptGSM Then the
reachability problem is NP-hard.

Proof. We give a reduction from the Hamilton Circuit problem for directed
graphs (cf. [GJ79]).
Let DG = (V,E) be a directed graph and thus an instance of the Hamilton

Circuit problem. We assume V = {v1, . . . , vn} and E = {e1, . . . , em}. The
transformation is illustrated in Figure 4.5. For each node vi ∈ V the system
net has a place pi. For each directed edge ei = (vj, vk) the system net has
a transition ti and two arcs (pj, ti) and (ti, pk). The transition is moreover
labelled by l̂(ti)(N) = incpk , where N ∈ N will be the sole object net. Each
place of the system net is typed with N .
For each node vi ∈ V the object net N has a place p′i, two transitions ai and

bi, and the arcs (ai, p
′
i) and (p′i, bi). The transitions are furthermore labelled by

lN(ai) = incpi and lN(bi) = decpi . Note that the channels decpi are not used in
the system net and thus the transitions bi are never enabled.
The initial marking is given by µ0 := p1[0]. The marking tested for reacha-

bility is given by µe := p1[p′1 + p′2 + . . .+ p′n].
The construction is clearly possible in polynomial time in the size of DG.

Furthermore, the constructed net system is a deterministic ptGSM, which we
will denote by G.

89

4 Structural Restrictions of Eos

Now we have to prove that the construction works, i.e. that DG has a Hamil-
ton circuit iff µe is reachable in G from µ0.
The idea is that the object net N “travels” through the system net and

whenever it visits a place pi – which corresponds to a node vi in the given
graph – it remembers this by placing a black token onto p′i.
Formally, let C = 〈vi0 , vi1 , . . . , vin〉 be a Hamilton circuit in DG. We may

assume that vi0 = vin = v1, because C is a circuit and it does not matter here
at which node it starts.
Let ej1 , ej2 , . . . , ejn be the edges such that ejk = (vik−1

, vik) for k ∈ {1, . . . , n}.
In G it is now possible to fire the evens tj1 [aj1], tj2 [aj2], . . . , tjn [ajn] one after

the other, because the only prerequisite for firing is that the object net resides
on the place in the preset of the system net transition, which is guaranteed,
since C is a circuit starting at v1. Since each node vi ∈ V is visited exactly
once in C, each channel incpi is used exactly once and thus each place p′i in the
object net N is marked with exactly one black token. Thus µe is reached.
Conversely, suppose µe is reached from µ0 in G. In µe there are n black

tokens in the object net N , each on one of its n places. Since there are only
synchronous events and each of these events increases the number of black
tokens of exactly one place in the object net and since no black token can be
removed from a place in the object net, the firing sequence must have length
n and thus n events have fired to reach µe from µ0.
No two events can use the same channel incpi , because then two black tokens

would reside on p′i in N . But if all n events use pairwise different channels all
places visited in N̂ differ and since there are only n, all n places have been
visited by N exactly once.
Let 〈pi0 , pi1 , . . . , pin〉 be the ordered sequence of places N visits in N̂ with

pi0 = pin = p1. Then a Hamilton circuit in DG is given by 〈vi0 , vi1 , . . . , vin〉.
We thus have a polynomial time many-one reduction from the NP-complete

Hamilton Circuit problem and conclude that the reachability problem is NP-
hard for deterministic ptGSMs.

Note that the GSM constructed above only uses one object net and no black
tokens on the system net level. This is actually true for all (connected) ptGSMs
(see 4.19). Thus, while for the system net or the object net treated in isolation
the reachability problem can be decided in polynomial time, the interaction of
these in a ptGSM already lifts the problem to be NP-hard.
In Theorem 4.29 below we show that the problem is even PSpace-hard. Its

exact complexity is currently unknown, but we suspect it to be in PSpace.
Before that we now show that the problem is also NP-hard for strongly de-
terministic ptGSMs, which is also an alternative proof of the statement above,
since from this result NP-hardness for deterministic and general ptGSMs also
follows.

90

4.4 P- and T-nets for Generalised State Machines

Figure 4.6: System net (left) and object net (right) of the ptGSM from Theo-
rem 4.28.

Theorem 4.28. It is NP-hard to decide the reachability problem for strongly
deterministic ptGSMs.

Proof. We give a reduction from 3-SAT. The ptGSM we construct is outlined
in Figure 4.6, where only the transitions’ channels are given. Assume we are
given an instance of 3-SAT, i.e. a formula F with n variables A1, . . . , An and
m clauses C1, . . . , Cm, where each clause consists of exactly three literals.
The idea is that the object net moves through the system net and with its

first n steps sets each variable to true or false. The next m moves check if in
each clause one literal is true with this setting. All m moves are only possible
if the setting is a satisfying assignment.
In more detail: For each variable A a pair of transitions exists in the system

net (see Figure 4.6), one for the positive literal A and one for the negative literal
¬A. The transitions use the channels A and ¬A respectively. To describe the
object net N assume that L is a literal (e.g. A1 or ¬An) that appears in the
clauses Ci1 , . . . , Cik . Then N has one transition tL using channel L and with
empty preset and k outgoing arcs. Each outgoing arc is connected with a place
which is connected to a transition using a channel CijL corresponding to the
clause. In Figure 4.6 (right side) this is only depicted for the positive literal
A1. Note that such a construct exists for each literal and that all used channels
differ.
Further system net transitions exists to encode the clauses. Let Li,1, Li,2, Li,3

be the literals that occur in clause Ci. Then three transitions exists in the
system net using the channels CiLi,1 to CiLi,3 as depicted in Figure 4.6 for the
clause C1 (assumed to be A1 ∨ ¬A2 ∨ A3).
The initial marking is µ0 := p̂0[0].
It is easy to see that the object net can reach the place p̂e (to the right of the

system net) iff the given formula is satisfiable. Unfortunately, this only shows
that the marking µe := p̂e[0] can be covered.2
To get rid of the tokens in the object net a more sophisticated gadget needs

to be constructed. The gadget is depicted in Figure 4.7. It replaces the part
between the places p̂a and p̂b in Figure 4.6 and an identical structure only using

2Thus the coverability problem is also NP-hard for ptGSMs.

91

4 Structural Restrictions of Eos

Figure 4.7: Modification of the system net of Figure 4.6.

different channels needs to be added for the other clauses. The gadget has the
following property: At least one of the transitions with channel inscriptions
needs to fire to reach p̂b and apart from the empty set every subset of these
transitions is possible. (The unlabelled transitions fire system-autonomously.)
With this gadget it is possible to fully rid the object net of all tokens. If

for example the transition with channel A1 has fired in the object net, then in
each clause Ci in which A1 appears the system and object net transitions using
channel CiA1 may fire.
Thus the marking µe = p̂e[0] is reachable from µ0 = p̂0[0] in the constructed

net iff F is satisfiable. Since the construction is possible in polynomial time
and the constructed net system is a strongly deterministic ptGSM, we conclude
that the reachability problem is NP-hard for this net class.

Strengthening the result of Theorem 4.27, we prove below by a slight modifi-
cation of the construction in Lemma 4.20 that reachability is even PSpace-hard
for deterministic and general ptGSMs.

Theorem 4.29. The reachability problem for deterministic and general pt-
GSMs is PSpace-hard.

Proof. We construct a ptGSM from a given LBA as in the proof of Lemma 4.20.
The problem is that each place of the object net constructed there might have
many incoming and many outgoing arcs, while here exactly one incoming and
exactly one outgoing arc should exist. To circumvent this our new object net
has the same set of places but for each place p it has one transition t+p with
an arc to p and one transition t−p with an arc from p. The transitions use the
channels c+

p and c+
p respectively.

The transitions in the system net are replaced by two transitions and one
place as follows. If before we had the transition t̂r,j and the two arcs (p̂i,j, t̂r,j)
and (t̂r,j, p̂i+1,j+1) as depicted to the left of Figure 4.3, then we replace these
with two transitions t̂−r,j, t̂

+
r,j and the arcs (p̂i,j, t̂

−
r,j), (t̂

−
r,j, t̂

+
r,j), (t̂

+
r,j, p̂i+1,j+1). The

channels used by the two new transitions depend on the LBA’s transition kr.
If kr = (qi, Ab, R, qi+1, A1) (again, as depicted in Figure 4.3), then the token
denoting that the cell cj is marked with Ab has to be removed and a token

92

4.4 P- and T-nets for Generalised State Machines

Table 4.1: The results obtained so far for P- and T-net like GSMs.
strongly deterministic deterministic general

ttGSM P ? ?
ppGSM PSpace-complete PSpace-complete PSpace-complete
ptGSM NP-hard PSpace-hard PSpace-hard
tpGSM ? ? ?

denoting that the cell cj is marked with A1 has to be added, i.e. the transition
t̂−r,j uses channel c−pb,j and the transition t̂−r,j the channel c+

p1,j
.

The construction is still possible in polynomial time, but the constructed net
system is now a ptGSM. Thus the theorem follows.

tpGSMs.

We now turn to tpGSMs, which unlike ptGSMs above (see Lemma 4.19) may
employ more than one object net.
At first glance this thus seems to be a complicated case, too. However, the

structure of the system net is heavily limited by being a GSM and a T-net.
In this setting each object net N resides on a circle CN in the system net.
While these circles may have transitions in common and while thus the object
nets may interact with each other, this interaction is rather limited as are the
reachable system net places for each object net.
For this reason, we suspect that the reachability problem for tpGSMs is solv-

able in polynomial time. So far we have been unable to prove this conjecture.
If true, the results obtained would imply that the restriction of the system net
to a T-net is far more severe than the restriction of the system net to a P-net.
This would also be in line with the results presented here for tt- and ppGSMs,
where reachability is solvable in polynomial time for a strongly deterministic
ttGSM, but requires polynomial space for a ppGSM.

Summary.

Table 4.1 summarizes the results obtained so far concerning the complexity
of the reachability problem for the the different variants of generalised state
machines introduced in this section. (Note that the problem is decidable for all
of them due to Theorem 4.9.) While GSMs with the restrictions applied here
will probably not be very useful in a modelling context, the theoretical results
obtained might help in the analysis of less restricted models. For example
the technique using the reference net exhibit in the proofs of Theorems 4.22
and 4.25 is also used in the proof of a similar statement for conflict-free GSMs
(see Theorem 4.35).

93

4 Structural Restrictions of Eos

Figure 4.8: A strongly deterministic and acyclic GSM (left), with a non-acyclic
reference net (right).

4.5 Acyclic Generalised State Machines

As was the case for P- and T-nets, the definition of acyclic p/t nets (Defini-
tion 2.44) can also be easily carried over to generalised state machines. A GSM
is called acyclic if the system net and all object nets are acyclic, i.e. no cycles
exist in the structure of the nets.

Definition 4.30 (Acyclic GSMs). Let G = (N̂ ,N , d, l, µ0) be a GSM. G is
an acyclic GSM or acGSM for short, if N̂ and all N ∈ N are acyclic nets,
i.e. if there is no x ∈ P̂ ∪ T̂ with (x, x) ∈ F̂+ and there is no x ∈ PN ∪TN with
(x, x) ∈ F+

N for no N ∈ N .

Since the reachability problem for acyclic p/t nets is NP-hard (see Theo-
rem 2.45) and since acyclic p/t nets are a special case of acyclic GSMs, this
hardness result carries over to acyclic GSMs.

Theorem 4.31. The reachability problem for strongly deterministic, determin-
istic, and general acGSMs is NP-hard.

The positive result that the reachability problem for acyclic p/t nets is also
in NP does not carry over so easily to acyclic GSMs, at least not by usage of the
reference net, because, unfortunately, the absence of cycles does not carry over
to the reference net not even for strongly deterministic acGSMs. Figure 4.8
shows a GSM that is acyclic and strongly deterministic, but whose reference
net is not acyclic.
Even if one does demand safeness (cf. Definition 5.8) in addition to the

absence of cycles, the reference net must not necessarily be acyclic by the same
example (cf. Section 5.4).
If only autonomous events are allowed the reachability problem can be easily

reduced to the same problem for acyclic p/t nets.

Theorem 4.32. The reachability problem for acyclic GSMs with no syn-
chronous events is NP-complete.

94

4.5 Acyclic Generalised State Machines

Proof. NP-hardness follows as before, since an acyclic p/t net N can be used
as the sole object net of a GSM G that resides on the sole system net place p̂.
The question if a marking m is reachable in N from m0 is then reduced to the
question if p̂[m] is reachable in G from p̂[m0].
An NP-algorithm that solves the reachability problem given a acyclic GSM

G = (N̂ ,N , d, l, µ0) with no synchronous events and a marking µ works as
follows: At first, the reachability problem for the acyclic net system (N̂ ,Π1(µ0))
and marking Π1(µ) is solved, i.e. for the system net of G where all net tokens
are interpreted as black tokens. If this is possible, the net tokens can reach
their destinations. For this it is important that in a acyclic generalised state
machine there is only one object net of each type and that it may reach each
place only once. Thus there is no choice which object net should reach which
place.
Afterwards, the reachability problem is solved in each object net alone,

i.e. the problem if Π2
N(µ) is reachable from Π2

N(µ0) in N for each N ∈ N .
This solves the reachability problem by running |N | + 1 instances of the

NP-algorithm for the reachability problem for acyclic p/t net systems.

Alternatively to the proof of Theorem 4.32, one could also observe that the
reference net of a GSM as described in the statement of the theorem is an
acyclic p/t net system that consists of the system net and all object nets as
separated components.
In the general case, the possible interactions of the system net with the object

nets lead to complications. Each system net transition that has at least one
object net N 6= N• in its preset is only able to fire at most once, because the
object net of type N may reside on this place only once in an acyclic net and
there is only one net of this type due to the properties of GSMs. One could thus
attempt to guess the firing sequence of system net transitions. However, this
does neither hold for system net transition which have only places typed with
N• in their preset, nor for the object nets. In particular, it might be necessary
to fire object autonomous events of an object net N , before N participates in a
synchronous event, and while guessing might again help here, it might be that
the sequence becomes too long.
While this observation helps to determine the complexity of the reachability

problem for further subclasses of acyclic GSMs – for example the case of acyclic
GSMs with only synchronous events and where no system net place is typed
withN• can be solved in NP with the approach presented above, i.e. by guessing
the sequence of system net transitions and if necessary the object net transitions
that fire synchronously –, the complexity of the reachability problem for general
acyclic GSMs is still unknown. To solve the problem, a better understanding
of how the black tokens mingle with the object nets is necessary. Intuitively,
only the creation of black tokens is problematic, because each token can only
be in the preset of a transition once. Then again, it seems that the creation of

95

4 Structural Restrictions of Eos

Figure 4.9: An Eos where t1 and t2 are in conflict

tokens is more or less independent from the object nets that have “moved on”
and can not return, since no circles are allowed in the system net.

4.6 Conflict-free Generalised State Machines

The concept of conflict-freedom can not be so easily carried over to GSMs as
the concepts before that lead to ppGSMs, ttGSMs, ptGSMs, tpGSMs, and
acyclic GSMs. We will illustrate the problem by discussing conflict-freedom for
Eos first.
At first, one might be tempted to define conflict-free Eos similar to conflict-

free p/t nets and simply demand that p• ⊆ •p holds for each place p with
|p•| > 1 regardless of p being a system or object net’s place. Unfortunately,
this attempt does not work due to the capability of the channels. Figure 4.9
illustrates the problem. The net is clearly conflict-free in the sense of the above
definition. Two events, namely t1[t′1] and t2[t′1] are enabled, but after firing one
of them the new marking is p1[b1] and the other event is not enabled anymore
(since the object net transition t′1 is not enabled anymore).
One might try to include the channels in the definition (indeed the place a1

in the above example can be thought of having two transitions in it’s post-set),
but this also does not work. The left side of Figure 4.10 shows another example,
in which the places p1 and p2 are both typed with the same object net N1. This
time the two enabled events t1[t′1] and t2[t′2] use different channels, but firing
one might deactivated the other - depending on the mode used during firing
and in particular the distribution of the object net’s tokens after firing.
Imagine the event t1[t′1] takes place. Afterwards, there will be one net token

on places p1 and p2 each. The black token on place a2 and b1 can be distributed
arbitrarily among these two net tokens depending on the mode used during
firing. Thus, the successor marking might be p1[b1] + p2[a2] in which the event
t2[t′2] is not enabled anymore.
This example already shows that it is the firing rule itself that makes defining

conflict-free Eos problematic. On the right side of Figure 4.10 is another ex-
ample. Here not even channels are present, but if t1 fires system-autonomously
the object net’s tokens may be distributed among the object net’s on places p2

96

4.6 Conflict-free Generalised State Machines

Figure 4.10: Two Eos where conflicts depend on the firing mode

and p3 in a way that t′1 is not enabled anymore (e.g. in the successor marking
p2[a1] + p3[a2]).
To conclude, the example in Figure 4.9 shows that the structural definition

from p/t nets can not be so easily carried over to Eos due to the channels.
Furthermore, the examples in Figure 4.10 show that the firing rule for Eos
itself is inherently problematic for the definition of conflict-freedom, whenever
a fork is present, e.g. a transition with two places with the same typing in its
post-set.
Turning to GSM we first note that the problem depicted in Figure 4.10 can

not arise, because a fork of this kind is not possible. The problem depicted in
Figure 4.9, however, can arise and is dealt with in item 2 in the definition of
conflict-free GSMs below.

Definition 4.33 (Conflict-Free GSMs). A GSM OS = (N̂ ,N , d, l, µ0) is
conflict-free if

1. ∀N ∈ N ∪ {N̂} ∀p ∈ P̂ ∪ PN : |p•| > 1⇒ p• ⊆ •p

2. ∀N ∈ N ∀p ∈ PN : (∃t ∈ p• ∃t̂1, t̂2 ∈ T̂ ∃p̂ ∈ P̂ ∃c ∈ C : t̂1 6= t̂2 ∧ p̂ ∈
•t̂1 ∩ •t̂2 ∧ d(p̂) = N ∧ lN(t) = l̂(t̂1)(N) = l̂(t̂2)(N) = c)⇒ p ∈ t•

holds. We also say that OS is a cfGSM.

The first part of the definition simply carries over the definition for p/t nets
to GSMs. Viewed as a p/t net each object net and the system net are conflict-
free.
The second part is necessary due to the problem of the example in Figure 4.9.

When a place p of an object net N in the preset of a transition t exists such
that there is a system net place p̂ typed with N and two system net transitions
t̂1 and t̂2 which both have p̂ in their presets and if all these transitions use
the same channel then we have exactly the situation in Figure 4.9 and thus we

97

4 Structural Restrictions of Eos

demand that p is also in the postset of t (in the example this would force an arc
from t′1 to a1). Note that the second item holds unconditionally for strongly
deterministic GSMs, because no two system net transitions may use the same
channel and thus the premise of the implication is never fulfilled.
Lower bounds concerning the reachability problem can again be carried over

from p/t nets.

Theorem 4.34. The reachability problem for strongly deterministic, determin-
istic, and general conflict-free GSMs is NP-hard.

Proof. Let N be a conflict-free p/t net system. N can be used as the sole
object net present in a conflict-free GSM G that has only one system net place
p̂ on which N resides.
The question if a marking m is reachable from m0 in N is reduced to the

question if p̂[m] is reachable from p̂[m0] in G.

We now prove that known complexity results for conflict-free p/t nets can
be carried over to specific GSMs. The technique used in the following proof is
also used in the proofs of Theorems 4.22 and 4.25.

Theorem 4.35. Let G = (N̂ ,N , d, l, µ0) be a strongly deterministic and
conflict-free GSM. The p/t net Rn(G) is a conflict-free p/t net.

Proof. Let p ∈ P (Rn(G)) and let |p•| > 1. Let t̂[ϑ] ∈ p•. We want to show
t̂[ϑ] ∈ •p, which implies p• ⊆ •p. Because of |p•| > 1 there exists an event t̂′[ϑ′]
different from t̂[ϑ] with t̂′[ϑ′] ∈ p•. From the definition of preRn in Definition 4.7
it follows that

(p ∈ pre(t̂) ∨ p ∈ preN(ϑ(N)) for a N ∈ N)

∧ (p ∈ pre(t̂′) ∨ p ∈ preN ′(ϑ
′(N ′)) for a N ′ ∈ N)

We now distinguish the two cases p ∈ P̂ and p ∈ PN for a N ∈ N .
In the first case p ∈ pre(t̂) ∧ p ∈ pre(t̂′) follows, which implies t̂ 6= ε̂ 6= t̂′.

The events are thus not object-autonomous. With this and from t̂[ϑ] 6= t̂′[ϑ′],
t̂ 6= t̂′ follows. Assume otherwise. Then a net N ∈ N would have to exist
with ϑ(N) 6= ϑ′(N). But with ϑ(N) = t1 6= t2 = ϑ′(N) synchronisation would
require that lN(t1) = l̂(t̂)(N) = lN(t2), which is not possible in a deterministic
GSM, if t1, t2 ∈ TN . (Note that for t ∈ TN , ϑ(N) = t implies lN(t) 6= τ .) If
w.l.o.g. t1 ∈ TN and t2 = ε, then lN(t2) = lN(ε) = τ = lN(t1) would mean that
t1 fires object-autonomously in contrast to t̂′ 6= ε̂. With t̂ 6= t̂′ the first item of
Definition 4.33 implies p ∈ post(t̂)∧ p ∈ post(t̂′) from which p ∈ postRn(t̂[ϑ])
(and also p ∈ postRn(t̂′[ϑ′])) or equivalently t̂[ϑ] ∈ •p follows.

98

4.6 Conflict-free Generalised State Machines

In the second case (p ∈ PN for a N ∈ N) a net N ∈ N exists such that
p ∈ preN(ϑ(N)) ∧ p ∈ preN(ϑ′(N)) holds.3 This implies ϑ(N) 6= ε 6= ϑ′(N).
The events are thus not system-autonomous.
In the case of ϑ(N) 6= ϑ′(N), p ∈ postN(ϑ(N)) ∧ p ∈ postN(ϑ′(N)) follows

from the first item of Definition 4.33 again, which immediately implies p ∈
postRn(t̂[ϑ]), resp. t̂[ϑ] ∈ •p.
In the case of ϑ(N) = ϑ′(N), neither t̂ = t̂′ = ε̂, nor t̂ = t̂′ 6= ε̂ is possible.

In the first case both events would be equal (remember that ϑ(N) and ϑ′(N)
are both not ε, thus N is the only object net not mapped to ε by ϑ, resp. ϑ′,
which implies that the events are equal). The second case is not possible
as was already shown above. Thus t̂ 6= t̂′ holds and only two possible cases
are left: Either both events are synchronous events or one is a synchronous
the other an object-autonomous event. In the first case l̂(t̂)(N) = l̂(t̂′)(N)

follows from l̂(t̂)(N) = lN(ϑ(N)), l̂(t̂′)(N) = lN(ϑ′(N)) and ϑ(N) = ϑ(N ′),
but this is not possible in a strongly deterministic GSM. In the second case let
w.l.o.g. t̂[ϑ] ∈ Θl and t̂′[ϑ′] = ε̂[ϑ′] ∈ Θo. But since ϑ(N) and ϑ′(N) are both
not ε (but transitions of N), this would mean that ϑ(N) fires synchronously
with t̂ and ϑ′(N) fires object-autonomously (i.e. is not labelled with a channel).
Since ϑ(N) = ϑ′(N), this is not possible. Thus like above (in the case p ∈ P̂)
where t̂ = t̂′ was not possible, here (in the case p ∈ PN) ϑ(N) = ϑ′(N) is not
possible.

All cases treated, t̂[ϑ] ∈ •p follows, which implies p• ⊆ •p and thus Rn(G) is
conflict-free.

Since in a strongly deterministic or deterministic GSM the number of events
is bounded by a polynomial (see Lemma 4.15), the reference net can be con-
structed in polynomial time. In [HR88] Howell and Rosier have proven that
for conflict-free p/t nets the reachability problem is NP-complete (see also
Section 2.5). This implies the following corollary:

Corollary 4.36. The reachability problem for strongly deterministic, conflict-
free GSMs is NP-complete.

The NP-completeness-result of the reachability problem for conflict-free p/t
nets thus carries over to strongly deterministic and conflict-free GSMs. In
Chapter 5.4 the results for conflict-free and safe p/t nets (see [HR89] and
Section 2.5) are carried over to strongly deterministic, conflict-free, and safe
GSMs (see Theorem 5.35). Both problems are solvable in polynomial time.
The case for GSMs which are not strongly deterministic is not treated here,
the complexity of it is - apart from the decidability result from Theorem 4.9
above and the NP-hardness bound inherit from the strongly deterministic case
- currently unknown. The problem is, that the set of events Θ of a GSM G

3Note that the object nets can not be different, since p ∈ PN holds.

99

4 Structural Restrictions of Eos

might become large and that it might not be possible to construct the reference
net Rn(G) within the given time bound. Then again, it might be enough to
construct parts of the reference net on the fly.
For Eos it seems impossible to introduce conflict-freedom due to the firing

rule. One can introduce persistent Eos, however, which dynamically rule out
conflicts. The formalism is Turing-complete, though (see Chapter 5).

4.7 Free-Choice Generalised State Machines

As was possible for acyclic GSMs, the definition of free-choice p/t net systems
can be carried over to GSMs. Nonetheless, the intuition captured by this
definition for p/t net systems, i.e. that “choices are free”, does, like the notion
of conflict-freeness, not so easily carry over to GSMs due to the labelling. Here
we are satisfied with merely carrying over the structural restrictions to GSMs,
because the resulting free-choice GSMs nicely illustrate how complicated the
resulting formalisms can become.

Definition 4.37 (Free-choice GSMs). Let G = (N̂ ,N , d, l, µ0) be a GSM. G
is a free-choice GSM or fcGSM for short if N̂ and all N ∈ N are free-choice
nets, i.e. if for every two places p̂1, p̂2 ∈ P̂ and two transitions t̂1, t̂2 ∈ T̂ the
arcs (p̂1, t̂1), (p̂1, t̂2), (p̂2, t̂1) ∈ F̂ imply (p̂2, t̂2) ∈ F̂ and if for every N ∈ N
and for every two places p1, p2 ∈ PN and two transitions t1, t2 ∈ TN the arcs
(p1, t1), (p1, t2), (p2, t1) ∈ FN imply (p2, t2) ∈ FN .

Free-choice GSMs are thus defined in a similar fashion as acyclic GSMs,
i.e. the notion known from p/t nets is simply carried over to GSMs by demand-
ing that the system net and each object net is a free-choice net. As was the
case with acyclic GSMs, the reference net does, unfortunately, not inherit the
property of the GSM: The reference net of a free-choice GSM is not necessar-
ily a free-choice net, even if the GSM is strongly deterministic. Figure 4.11
shows an example. While in the reference net the arcs (p2, t), (p2, t

′[t1, t2]),
and (q1, t

′[t1, t2]) are present, the arc (q1, t) is missing in violation with the
requirements for a free-choice p/t net.
While for the structural restrictions introduced so far, it was in many cases

possible to either find an algorithm for the reachability problem with an ac-
ceptable performance or to only find lower bounds for this problem which are
not too bad, the situation for free-choice GSMs is far worse. The reachabil-
ity problem for free-Choice GSMs is ExpSpace-hard. This can be shown by
reducing the reachability problem for p/t nets to it.

Theorem 4.38. The reachability problem for deterministic free-choice GSMs
is ExpSpace-hard.

100

4.7 Free-Choice Generalised State Machines

Figure 4.11: An strongly deterministic free-choice GSM (left), with a non-free-
choice reference net (right).

Proof. Given an instance (N,m0,m) of the reachability problem for p/t net
systems, where the question is, if in the net N = (P, T, F) the marking m is
reachable from the initial markingm0, a deterministic GSMG = (N̂ ,N , d, l, µ0)
and marking µ can be constructed such that µ is reachable from µ0 in G if and
only if m0

∗−→ m in N .
G is outlined in Figure 4.12. More specific, for each pi ∈ P a object net Ni

with place pi and transitions ti and t′i is created where ti is labelled with inci
and t′i with deci. Arcs go from ti to pi and from pi to ti. The object net Ni

initially resides on p̂i. In Figure 4.12 the object net N1 is depicted.
For each transition ti ∈ T a system net transition t̂i is created and n := |P |

places p̂1,ti , . . . , p̂n,ti are created in the postset of t̂i. Furthermore, in the preset
of t̂i are the places p̂1, . . . , p̂n created before.
A second transition t̂′i is created that has the places p̂1,ti , . . . , p̂n,ti in its pre-

and the places p̂1, . . . , p̂n in its postset.
The system net’s transitions are labelled in the following way: For each place

pj ∈ •ti in N the transition t̂i is labelled with the channel decj (for Nj). For
each place pk ∈ ti• the transition t̂′i is labelled with the channel inck (for Nk).
The places p̂i, p̂i,t1 , . . . , p̂i,tm are typed with Ni where m := |T | is the number

of transitions in N .
If pi is marked with c black tokens in a marking m of N , the place pi in the

object net Ni is marked with c tokens and Ni resides on the system net place p̂i.
The initial marking m0 =

∑n
i=1 ci · pi is thus converted to µ0 =

∑n
i=1 p̂i[ci · pi]

and the marking tested for reachability in the same way. A marking of the
GSM that in this way corresponds to a marking m of N is denoted by µ(m).
This completes the construction, which is clearly possible in polynomial time.
Now, in a marking m of N a transition ti is activated if and only if the

transition t̂i is activated in G in µ(m), since by construction t̂i uses the channel

101

4 Structural Restrictions of Eos

Figure 4.12: Sketch of the construction in the proof of Theorem 4.38

decj of Nj and thus decreases the number of tokens on pj if and only if the place
pj is in the preset of ti. After firing t̂i the only activated event is the system
net transition t̂′i together with the synchronous object net transitions. Firing
the event, places the object nets on the places p̂1, . . . , p̂n again and since the
choice of channels by construction increases the number of tokens in exactly
the places in the postset of ti, firing t̂i[ϑ] and t̂′i[ϑ′] results in the marking µ(m′),
where m′ is the successor of m in N after firing ti.
This shows that, if a marking m is reachable in N from m0 by firing a

sequence ti1 , ti2 , . . . , tik of transitions, then µ(m) is reachable from µ(m0) = µ0

by firing the sequence t̂i1 [ϑi1], t̂′i1 [ϑ
′
i1

], t̂i2 [ϑi2], t̂
′
i2

[ϑ′i2], . . . , t̂ik [ϑik], t̂
′
ik

[ϑ′ik].
If, conversely, a marking µ(m) is reachable from µ(m0) = µ0 in G, then after

an event t̂i[ϑ] the only possible event is t̂′i[ϑ]′ and these two events corresponds
to firing ti in N thus the sequence of events in G can be transformed into a
sequence of transitions in N and thus m is reachable from m0 in N .

While the GSM constructed in the proof of Theorem 4.38 is deterministic,
it is not strongly deterministic, since the system net transitions may use the
same channel. For example, if two transitions t1, t2 exists in N that have the
same place pj in their preset, then the transitions t̂1 and t̂2 are both labelled
with the channel decj (for Nj). With a slight modification of the construction
above it is also possible to construct a strongly deterministic GSM.

Theorem 4.39. The reachability problem for strongly deterministic free-choice
GSMs is ExpSpace-hard.

Proof. The construction in the proof of Theorem 4.38 needs to be modified
only slightly and similarly to the modifications done in Theorem 4.12. In
the object net Ni not only one transition is in the preset of pi but m := |T |

102

4.8 Summary

transitions ti,1, . . . , ti,m. In the postset of pi are m transitions t′i,1, . . . , t′i,m, too.
The transition ti,j is labelled with channel inci,j and the transition t′i,j with
channel deci,j.
In the system net the labelling is adjusted as follows: If before a system net

transition t̂j was labelled with channel deci (for Ni), it is now labelled with
channel deci,j, modelling that the number of tokens on place pi is reduced by
the transition tj. Similarly, if a system net transition t̂′j was labelled with
channel inci, it is now labelled with channel inci,j. In this way all transitions
use different channels.
The proof that the construction is correct is still possible as before and the

construction is still possible in polynomial time, which proves the statement.

The constructions above show that the reachability problem for strongly de-
terministic free-choice GSMs is ExpSpace-hard. The nets constructed, how-
ever, have nice properties if seen as p/t nets: The system net in isolation,
i.e. the free-choice p/t net system (N̂ ,Π1(µ0)), is a live, bounded (even 1-safe),
and cyclic free-choice p/t net and all object nets are very simple nets. The
reachability problem for these nets can be solved in polynomial time (see The-
orems 2.41 and 2.49). Their composition here, however, lifts the complexity as
far as ExpSpace-hardness.

4.8 Summary

Elementary object systems as introduced in Chapter 3 are Turing-complete and
thus many important problems are undecidable. To find a formalism which still
has at least some of the modelling capabilities of Eos, but which also allows a
automatic verification of certain properties, we investigated several structural
restrictions of Eos in this chapter.
We presented conservative Eos where each object net type appearing in the

preset of a system net transition t̂ also has to appear in the postset of t̂. The
test if a object net’s marking is 0 or not, implicitly possible in an Eos due
to the firing rule, is then not possible anymore and, indeed, conservative Eos
are not Turing-complete anymore. This follows from the decidability of the
termination, the coverability, and the boundedness problem. Unfortunately,
liveness and reachability remain undecidable.
We then presented generalised state machines. For each generalised state

machine a p/t net can be constructed which has the same behaviour implying
the decidability of problems for generalised state machines, which are decidable
for p/t nets.
Unfortunately, even for small GSMs the reference net might become huge due

to the set of events present in the definition of the reference net. To deal with
this problem we introduced deterministic and strongly deterministic GSMs and

103

4 Structural Restrictions of Eos

Table 4.2: Complexity of the reachability problem for various formalisms.
strongly deterministic deterministic general

ttGSM P ? ?
ppGSM PSpace-complete PSpace-complete PSpace-complete
ptGSM NP-hard PSpace-hard PSpace-hard
tpGSM ? ? ?
acGSM NP-hard NP-hard NP-hard
cfGSM NP-complete NP-hard NP-hard
fcGSM ExpSpace-hard ExpSpace-hard ExpSpace-hard
GSM ExpSpace-hard ExpSpace-hard ExpSpace-hard
cEos undecidable undecidable undecidable
Eos undecidable undecidable undecidable

then established several structural restrictions known for p/t nets for GSMs.
We introduced pp-, tt-, pt-, and tpGSMs, acyclic, conflict-free, and free-choice
GSMs and investigated the reachability problem for each of these formalisms.
The problem tends to be complicated even for heavily restricted formalisms.
For ppGSMs the problem is PSpace-complete even if the ppGSMs is strongly
deterministic. For free-choice GSMs the problem is even ExpSpace-hard. The
results obtained in this section are summarised in Table 4.2. The abbreviation
cEos is used for conservative Eos.
The construction presented for conservative Eos here and the undecidability

result for the liveness problem deduced from it, arose from joint work with
Michael Köhler-Bußmeier and is published in [KBH12].
Determinism and strong determinism for GSMs have been introduced

in [HKB11a] and were generalised here for Eos. The results for determin-
istic and strongly deterministic Eos and conservative Eos are presented here
for the first time. The results concerning conflict-free GSMs have also been
published in [HKB11a]. The results concerning P- and T-nets in the context
of GSMs have been published in [HKB12b] and [HKB11b]. These results are
published as joint work with Michael Köhler-Bußmeier. The results concern-
ing acyclic GSMs and free-choice GSMs in Sections 4.5 and 4.7 are new and
presented here for the first time. A more detailed discussion of acyclic object
net systems can be found in the bachelor thesis by Laura Schmelter [Sch12] (in
German only), which I supervised.
In retrospect, we applied some long known techniques to solve problems in

our new setting and also introduced a new technique.
The idea used in the proof of PSpace-hardness in Lemma 4.20 was used in

the late seventies by Jones, Landweber, and Lien [JLL77] and they even state
that this technique has already been used by Petri in his dissertation. Another
technique, used in the proof of Lemma 4.21, stems from Savitch [Sav70]. A
proof technique that we also use in Chapter 5.

104

4.8 Summary

The proofs used for ppGSMs (Lemma 4.22), strongly deterministic ttGSMs
(Theorem 4.25), and strongly deterministic, conflict-free GSMs (Theorem 4.35)
all prove that certain structural restrictions also hold for the reference net. This
new “reference net technique” was thus applied successfully three times.
This technique does not work for ptGSMs, acyclic GSMs, and free-choice

GSMs and does not seem to work for tpGSMs, either.
Thus the technique, while working in some cases, fails to work in some net

classes even if these are very restricted.
While some cases are successfully solved, it is interesting to note that all

these techniques seem to fail in the case of ptGSMs, tpGSMs, acyclic GSMs,
and free-choice GSMs. Despite being quite simple in structure, the possibility
to interact seems to render the techniques, successfully applied to the other
net classes, useless. This is especially surprising in the case of ptGSMs where
only one object net is present. In this regard the high complexity evident in
the second and third row of Table 4.2 is also surprising, since both net classes
employ only one object net. Recalling the discussion at the end of Section 4.4
concerning tpGSMs, it seems that the restriction of the system net to a T-
net results in easier cases than the restriction of the system net to a P-net,
despite the fact that more than one object net might be present. While this
speculation still needs to be confirmed, it is already certain that the restriction
of the system net to a P-net results in hard cases, regardless of the restriction
imposed on the object net.
Although some cases are left open and upper bounds are seemingly hard to

establish, it is evident from the investigations in this chapter that structural
restrictions of object net systems alone are not enough if one strives for a for-
malism for which the reachability problem can be quickly decided. The case of
free-choice GSMs and in particular the example sketched in Figure 4.12 illus-
trates this best: If the system net is treated as a p/t net where the object nets
are abstractly seen as black tokens, it is a live, bounded, and cyclic free-choice
p/t net and thus reachability can be solved in polynomial time (Theorem 2.49).
The object nets treated as p/t nets are T-nets and thus reachability can be
solved in polynomial time, too (Theorem 2.41). The reachability problem,
however, is ExpSpace-hard even for these special free-choice GSMs.
In the next chapter, we turn to dynamic restrictions and introduce persistent,

unary, and safe Eos. Safe Eos are Eos with a certain restriction on the
reachable states that renders the state space finite. In Section 5.3 we prove
the surprising result that for safe Eos without any structural restriction not
only reachability and liveness, but every property that can be expressed in the
temporal logics CTL or LTL can be solved in polynomial space.

105

4 Structural Restrictions of Eos

106

5 Dynamic Restrictions of Eos

In this chapter, we introduce dynamic restrictions for elementary object nets
and generalised state machines. Contrary to the structural restrictions intro-
duced in the previous chapter, in which some kind of restrictions to the net’s
structure was imposed, dynamic restrictions in some manner restrict the pos-
sible dynamic behaviour of the net system.
At first, we introduce unary and persistent Eos in Section 5.1. In these

systems, conflicts are ruled out dynamically. Both formalisms are shown to be
Turing-complete and thus these restrictions are not very helpful for us.
We then introduce safeness for Eos in Section 5.2, i.e. dynamic restrictions

with the aim to guarantee finiteness of the state space. We introduce four
different variants of safeness where each can be seen as a logical generalisation
of the safeness notion for p/t nets. We prove that actually only two of these
guarantee finiteness of the state space and that the other two give rise to
Turing-complete formalisms.
Even for severe structural restrictions, the reachability problem tends to be

hard to decide from an algorithmic point of view. However, for the safe Eos
from Section 5.2 that enjoy a finite state space, we show in Section 5.3 that
it is not only possible to decide the reachability problem in polynomial space,
but that it is possible to do so for every property that can be expressed in the
temporal logics CTL or LTL. This generalizes a result by Esparza [Esp98a],
In Section 5.4, we investigate safe Eos that are subject to an additional

structural restriction. Contrary to the case of p/t nets for which quite often
quicker algorithms for the reachability problem can be devised in such a setting,
it turns out that the PSpace-boundary established for safe Eos is in most cases
optimal.
The results regarding unary and persistent Eos presented in Section 5.1 have

not been published before. However, the proofs require only minor modifica-
tions to constructions used before.
Safeness for Eos was introduced by me and Michael Köhler-Bußmeier

in [KBH10b], see also [KBH10a].
Also in [KBH10b] is the proof that properties expressed in LTL can be de-

cided in polynomial space for safe Eos.
The theorem establishing a similar statement for properties expressed in CTL

was published as joint work with Michael Köhler-Bußmeier in [KBH11b].
The results presented in Section 5.4 combining structural and dynamic re-

strictions are presented here for the first time.

107

5 Dynamic Restrictions of Eos

The tables in Section 5.4 summarise the results obtained in this chapter con-
cerning the complexity of the reachability problem of the various investigated
formalisms (see Tables 5.1 and 5.2). However, in the temporal logics LTL and
CTL many more problems can be expressed. The results obtained in Section 5.3
are thus much more far-reaching.

5.1 Unary and Persistent Eos

In the context of p/t nets, persistent p/t nets and unary p/t nets are known
and have been investigated in the past (see the treatment of dynamic restricted
Petri nets in Section 2.5).
These notions can be easily transferred to Eos, but the formalisms arising

from this restrictions remain Turing-complete.
In the case of a persistent Eos we demand that all transitions that are

enabled at a reachable marking indeed can fire. In the case of an unary Eos
we demand that at each reachable marking at most one event is enabled. In
both cases conflicts are dynamically ruled out. Note that each unary Eos is
also persistent and so a Turing-completeness result for unary Eos carries over
to persistent Eos.

Definition 5.1 (Persistent Eos). Let OS be an Eos with initial marking µ0.
OS is persistent or dynamically conflict-free, if for each reachable marking µ
and every two different events t̂[ϑ], t̂′[ϑ′], both activated in µ, markings µ′ and

µ′′ exist such that µ
t̂[ϑ]−−→ µ′

t̂′[ϑ′]−−→ µ′′ holds.

Definition 5.2 (Unary Eos). Let OS be an Eos with initial marking µ0.
OS is unary, if in every reachable marking µ at most one event is enabled.

The above Definition 5.1 ensures that whenever two events are activated in
a marking, firing one does not disable the other. This is a dynamical way to
state the absence of conflicts and a structural definition should also accomplish
this. For p/t nets the definition of persistence captures a broader class of nets
than the definition of conflict-freedom, i.e. each conflict-free p/t net is also
persistent, while the converse does not hold in general (see Section 2.5). But
in exchange conflict-freedom is easily verifiable for p/t nets.
It would be nice to have a similar easily verifiable structural definition of

conflict-freedom for Eos. Unfortunately, it turns out that it is unlikely that
such a definition exist, due to the labelling of the channels and most importantly
nondeterminism in the firing rule itself (see the discussion in Section 4.6).
The definition of persistent and unary Eos restrict the formalism of Eos, but

the restrictions are not substantial: the formalisms are still Turing-complete.
This can be shown by the same simulation of counter programs as for Eos.

Theorem 5.3. Each counter program can be bisimulated by a unary Eos.

108

5.1 Unary and Persistent Eos

Figure 5.1: The Eos-translation of counter commands (same as Figure 3.5 in
Section 3.3)

Proof. In the proof of Theorem 3.13 we have shown that the four operations
of a counter program can be simulated by an Eos. The Eos-fragments that
simulate the different commands are depicted in Figure 5.1 (this is the same
figure as Figure 3.5 in Section 3.3 and repeated here for convenience).
The places qi mark the current position in the counter program, the places

pk are intermediate places between the positions qk and qk+1 in the counter
program and are used to remember that the test for zero has succeeded and
that a new empty net token has to be created. From all the places qi and pj
exactly one place is marked with a black token at any reachable marking.
The only possibility where two events could be enabled is when the place

qk corresponding to a jump operation in the counter program. But then the
transition =0 is only enabled, if the marking of the object net residing on cntj is
empty, i.e. when the place counter bears no tokens. The transition >0 - or more
accurately: the event consisting of the system net transition >0 and the object
net transition labeled with the channel is-pos - is contrarily only enabled, if
the place counter is not empty.
Thus also in this case only one event is enabled and thus there is at most one

event enabled at any reachable marking and the Eos is therefore unary.

Since every unary Eos is also persistent, persistent Eos are also Turing-
complete.

Corollary 5.4. Each counter program can be bisimulated by a persistent Eos.

Thus, even if persistence is a restriction of the general Eos-formalism, this
restriction is still powerful enough to simulate Turing machines and thus many
important problems (such as reachability) are undecidable. Likewise the re-
striction to unary Eos is not strong enough to be unable to simulate Turing
machines.

109

5 Dynamic Restrictions of Eos

5.2 Safe Eos and GSM

While the dynamic restrictions introduced in the last section result in Turing-
complete formalisms and are thus not truly restricting the formalism of ele-
mentary object systems, we turn to one of the arguably most helpful dynamic
restrictions for Petri nets now: to the concept of safeness.
Safeness guarantees that the state space of a p/t net is finite and for 1-safe

p/t nets, i.e. for nets where on each place at most one token resides, most
problems become decidable in polynomial space (see Section 2.5).
In this section, we introduce four different kinds of safeness for Eos as a

generalisation of the safeness notion for p/t nets. Two of these safeness notions
result in Turing-complete formalisms, while the other two actually guarantee a
finite state space.
At first we repeat a result from [Köh07] regarding so called semi-bounded

Eos.

Definition 5.5 (Semi-bounded Eos). An Eos OS is N -bounded for an
object net N ∈ N if |{Π2

N(µ) | µ ∈ R(OS)}| <∞.
An Eos is semi-bounded if it is N-bounded for all object nets N ∈ N .

In a semi-bounded Eos all object nets are bounded nets, but it is possible
that an Eos is N -bounded but N considered as a p/t net in isolation is not
bounded for the initial marking Π2

N(µ0), i.e. the p/t net system (N,Π2
N(µ0)) is

not bounded. Any unbounded object net where each transition is synchronised
with a dead system net transition is an example.
In case of semi-bounded Eos the following theorem holds.

Theorem 5.6. The reachability problem is decidable for semi-bounded Eos.

Theorem 5.6 is proven in [Köh07]. The main idea in the proof is to construct
a simulating p/t net where the set of places consists of tuples (p̂,M) where p̂
is a system net place and M ranges over all markings of the object net that
resides on p̂. This set is finite due to the semi-boundedness of the Eos. The
set of transitions coincides with the set of tuples (θ, λ, ρ) where θ is an event
enabled for the mode (λ, ρ) in the marking µ that is encoded in the connections
from the places to this transition. Again, since the Eos is semi-bounded there
are only finitely many firing modes and thus the set of transitions is finite.
While decidable, the reachability problem for semi-bounded Eos is at least

as hard as for p/t nets and thus ExpSpace-hard, since there is no restriction
to the system net.

Theorem 5.7. The reachability problem for semi-bounded Eos is ExpSpace-
hard.

The definition of semi-boundedness from [Köh07] can thus be seen as a gen-
eralisation of the safeness notion for p/t nets, but it is not strong enough to

110

5.2 Safe Eos and GSM

gain better complexity bounds as is the case for p/t nets. This simply stems
from the fact that the system net is restricted in no way at all.
We now extend the definition of 1-safe p/t nets to Eos. In a 1-safe p/t net

all reachable markings can also be interpreted as sets (of marked places). This
is the idea we carry over to Eos.

Definition 5.8 (Safe Eos). Let OS = (N̂ ,N , d, l, µ0) be an Eos.

• OS is safe(1) iff all reachable markings are sets, i.e.

∀µ ∈ R(OS , µ0) : ∀p̂[M] ∈MN : µ(p̂[M]) ≤ 1

• OS is safe(2) iff for all reachable markings there is at most one token on
each system net place:

∀µ ∈ R(OS , µ0) : ∀p̂ ∈ P̂ : Π1(µ)(p̂) ≤ 1

• OS is safe(3) iff for all reachable markings there is at most one token on
each system net place and each net-token is 1-safe:

∀µ ∈ R(OS , µ0) :

∀p̂ ∈ P̂ : Π1(µ)(p̂) ≤ 1 ∧
∀N ∈ N : ∀p ∈ PN : ∀p̂[M] ∈MN : µ(p̂[M]) > 0⇒M(p) ≤ 1

• OS is safe(4) iff for all reachable markings there is at most one token on
each place with respect to projections:

∀µ ∈ R(OS , µ0) : ∀p̂ ∈ P̂ : Π1(µ)(p̂) ≤ 1 ∧
∀N ∈ N : ∀p ∈ PN : Π2

N(µ)(p) ≤ 1

An OS is also called system-safe, if it is safe(2), safe if it is safe(3), and
strongly safe if it is safe(4).

An Eos that is strongly safe, i.e. that is safe(4), is also safe, i.e. safe(3) which
is a part of the following lemma.

Lemma 5.9. If an Eos is safe(4), then it is safe(3).
If an Eos is safe(3), then it is safe(2).
If an Eos is safe(2), then it is safe(1).

Proof. Let OS be a safe(4) Eos with initial marking µ0 and let µ ∈ R(OS , µ0).
Let p̂[M] ∈ MN with µ(p̂[M]) > 0. Let N := d(p̂), then M is a marking of an
object net of type N . Since OS is safe(4) we have Π2

N(µ)(p) ≤ 1, which means
that even if the markings of all object nets of type N are summed up the place
p is marked at most once. This implies M(p) ≤ 1 and OS is thus also safe(3).

111

5 Dynamic Restrictions of Eos

Figure 5.2: An Eos which is safe(1),
but not safe(2)

Figure 5.3: An Eos which is safe(2),
but not safe(3)

Let OS be a safe(3) Eos, then it is also safe(2) by definition.
Let OS be a safe(2) Eos. Let µ be a reachable marking and p̂[M] ∈ MN .

Assume µ(p̂[M]) ≥ 2. Then the place p̂ would be marked with at least two
net tokens which implies Π1(µ)(p̂) ≥ 2, a contradiction. Thus OS is also
safe(1).

A safe Eos might thus be safe(3) or safe(4). The reason for this notion is that
safe Eos enjoy a finite state space which is proven below (see Theorem 5.11).
The term system-safe stems from the fact that the system net places are marked
similarly as in a 1-safe net.
Also note that the motivation for the definition of safe(1) Eos was to en-

force all reachable markings to be sets as is the case for safe p/t nets. With
Lemma 5.9 this is also the case for safe(2), safe(3), and safe(4) Eos.
The converse implications of Lemma 5.9 are in general not true. Examples

are given in Figure 5.2, 5.3, and 5.4.
However, the next theorem shows that the notions of safeness introduced in

Definition 5.8 coincide for Eos that are essentially p/t nets.

Theorem 5.10. Let OS = (N̂ ,N , d, l, µ0) be an Eos with d(P̂) = {N•},
i.e. with places for black tokens only. Then safe(1), safe(2), safe(3), and safe(4)
are equivalent.

Proof. From Lemma 5.9 we know that a safe(4) Eos is also safe(3), that a
safe(3) Eos is also safe(2), and that a safe(2) Eos is also safe(1). It thus
suffices to show that a safe(1) Eos with d(P̂) = {N•} is also safe(4).
Note that N• has no places (or transitions) and thus MN = M{N•} can be

identified with the set of system net places P̂ .
But then µ(p̂[M]) ≤ 1 in the definition of safe(1) means nothing less than

that the place p̂ is marked with at most one (black) token in each reachable
marking which implies Π1(µ)(p̂) ≤ 1.
Since PN• = ∅ the second condition in the definition of safe(4) holds immedi-

ately and a safe(1) Eos with d(P̂) = {N•} is thus also safe(4) which concludes
the proof.

Theorem 5.10 also means that for p/t nets the four different notions of safe-
ness coincides.

112

5.2 Safe Eos and GSM

Figure 5.4: An Eos which is safe(3), but not
safe(4)

Figure 5.5: Safe(2) Eos with
infinite reachabil-
ity set

Lemma 5.9 and Theorem 5.10 thus give justification for the different notions
of safeness given in Definition 5.8: The safeness notions all coincide for p/t
nets, but are different for Eos, yet they all capture the idea of “markings being
sets” that was capture by safeness for p/t nets.
Moreover, in Theorems 5.11 and 5.12 below it is shown that only for safe(3)

and safe(4) Eos the state space is finite, justifying the notion of safeness and
strongly safeness.
Note that by definition in the reachable markings of safe(2), safe(3), and

safe(4) Eos each system net place is marked with at most one net token. The
set {Π1(µ) | µ ∈ R(OS)} is thus a finite set and appears to be similar to
the reachable sets of safe p/t nets. However, an Eos can be safe(4) (and
thus safe(3), safe(2), and safe(1)) and yet the system net treated as a p/t net
with initial marking Π1(µ0) is not safe. Figure 5.6 gives an example, where
Π1(µ0) = p̂1 and the set of reachable markings is then {p̂1 + kp̂2 | k ∈ N}.
Nonetheless for safe(2), safe(3), and safe(4) Eos the set {Π1(µ) | µ ∈ R(OS)}

is finite by definition. Furthermore, for safe(3) and safe(4) Eos the net tokens
are also safe by definition and thus the set of reachable markings associate with
them is finite, too. Although in this case, too, Eos exist which are safe(4), but
whose object nets in isolation are not safe (Figure 5.7 shows an example), this
combination of finite set of reachable markings associate with the system net
and finite set of reachable markings associate with the object nets in the case
of safe(3) or safe(4) Eos indeed results in a finite state space for the Eos.

Theorem 5.11. If an Eos is safe(3) or safe(4), then its set of reachable mark-
ings is finite.

Proof. By Lemma 5.9 an safe(4) Eos is also safe(3), it thus suffices to prove
the statement for safe(3) Eos.
Let OS be a safe(3) Eos. Let k := |P̂ | and l := max{|PN | | N ∈ N} be the

number of system net places and the maximum number of places present in an
object net.
Be definition of safe(3) each net token is 1-safe and thus there are at most

2l different markings a net token may have. Also by definition of safe(3) each

113

5 Dynamic Restrictions of Eos

Figure 5.6: An Eos which is safe(4),
but where (N̂ ,Π1(µ0)) is
an unsafe p/t net

Figure 5.7: An Eos which is safe(4),
but with an unsafe object
net, if treated in isolation

system net place is either marked or unmarked with a net token with one of
these markings, thus there are up to 2l + 1 different possibilities a system net
place may be marked with. Since there are k system net places, this results in
at most (1 + 2l)k different markings of OS , i.e. |R(OS)| ≤ (1 + 2l)k.

The property of a finite state space does no longer exist for safe(1) or safe(2)
Eos. The Eos in Figure 5.5 is safe(2) and thus also safe(1) due to Lemma 5.9,
but its set of reachable markings is R(OS) = {p̂[q + k · r] | k ∈ N} and thus
infinite.
Not only do safe(1) and safe(2) Eos have, in general, state spaces of infinite

size, due to the unbounded net tokens, but the net tokens can also be used to
encode counters and thus to prove undecidability results.

Theorem 5.12. Each inhibitor net can be simulated by a safe(1) or safe(2)
Eos that is in addition strongly deterministic.

Proof. The same construction as in the proof of Theorem 3.14 can be used. On
each system net place resides at most one net token and thus the constructed
Eos is safe(2) and also safe(1). Since moreover the same adjustments as in
Theorem 4.12 are possible, the constructed Eos is even strongly deterministic.

Corollary 5.13. Reachability, liveness, coverability, and boundedness are un-
decidable for safe(1) or safe(2) Eos even if the Eos is strongly deterministic.

A similar result holds also for conservative and safe(1) or safe(2) Eos:

Theorem 5.14. Reachability and liveness are undecidable for conservative and
safe(1) or safe(2) Eos even if the Eos is strongly deterministic.

Proof. In the proofs of Lemma 4.3 and Lemma 4.4 the constructed Eos are not
only conservative but also safe(2), since there is at most one net token on each
system net place. Due to Lemma 5.9 these Eos are then also safe(1) and since
the same modification as in Theorem 4.12 is possible (see also Theorem 4.13),
the Eos is even strongly deterministic.

To summarise, we have introduced four different variants of safeness and
justified them. By Theorem 5.11 in general only safe(3) and safe(4) Eos have

114

5.2 Safe Eos and GSM

Algorithm 1 IsEOSSafe(OS). Check if OS is safe.
1: µ← µ0

2: for i = 1 to (1 + 2l)k + 1 do
3: choose nondeterministically an θ = (t̂, t1, . . . , t|N |) ∈ T̂ × T1 × . . .× T|N |
4: if θ ∈ Θ then
5: choose nondeterministically a mode (λ, ρ) such that µ

θ(λ,ρ)−−−→
6: calculate µ′ with µ

θ(λ,ρ)−−−→ µ′

7: if µ′ is not safe(3) then
8: return true
9: end if
10: µ← µ′

11: end if
12: end for
13: return false

a finite state space, i.e. the safe and strongly safe Eos, while safe(1) and safe(2),
i.e. the system safe Eos are Turing-complete.
Whether an Eos is safe, can be decided in polynomial space.

Theorem 5.15. Given an Eos OS it is PSpace-complete to decide if OS is
safe.

Proof. At first PSpace-hardness follows from the result for 1-safe p/t net sys-
tems, see Theorem 2.52.
Due to Theorem 5.11 the state space of a safe Eos is bounded and due to

the proof this bound is (1 + 2l)k with k := |P̂ | and l := max{|PN | | N ∈ N}.
If OS is not safe, then among all computations of length k ≤ (1 + 2l)k + 1

there must be at least one in which a marking occurs which does not fulfil the
conditions of a safe(3) Eos. Otherwise in all these computations a marking
appears twice and thus the computation loops - or has already ended in a
deadlock. All reachable markings thus satisfy the conditions of a safe(3) Eos
and thus OS is safe(3).
Algorithm 1 applies this idea and returns true if the Eos given as input is

not safe.
In the algorithm it is easily possible to check if θ is an event or not by

inspecting the labelling functions. Then, since µ is a safe(3) marking, in the
possible modes (λ, ρ) the submarking λ is unique. Different markings ρ are
possible but only due to the distribution of the marking of a net token type
to different net tokens of that type. Of these one can be guessed again and µ′
can be computed. These computations and the test if µ′ is safe(3) are easily
possible in space polynomial in the size of OS . The number i also requires only
space in O(l · k) and thus in space polynomial in the input.

115

5 Dynamic Restrictions of Eos

Altogether Algorithm 1 is an NPSpace-algorithm. With the result from
Savitch [Sav70] this algorithm can be transformed into a deterministic PSpace-
algorithm whose answer can be reversed such that the resulting algorithm re-
turns true if and only if OS is a safe Eos.

For generalised state machines there are actually fewer safeness notions with
regard to Definition 5.8. Indeed, for a GSM the notions of safe(1) and safe(2)
and the notions of safe(3) and safe(4) coincide. Lemma 5.9 can thus be strength-
ened considerably:

Theorem 5.16. Let G be a GSM, then G is safe(1) iff it is safe(2) and G is
safe(3) iff it is safe(4).

Proof. By Lemma 5.9 an safe(4) Eos is also safe(3) and a safe(2) Eos is also
safe(1), thus only the converse implications need to be proven.
Assume that the GSM is safe(1). By definition of a GSM at most one net

token of type N ∈ N \ {N•} exists in the initial marking and thus due to the
structure of a GSM by induction also in any reachable marking. For places
typed with an N ∈ N \ {N•} the condition for safe(2) is thus fulfilled.
Now let p̂ ∈ P̂ with d(p̂) = N•. For N• the set {p̂} ×MN• can be identified

with p̂ and thus µ(p̂[M]) ≤ 1 implies Π1(µ)(p̂) ≤ 1 from which it follows that
G is also safe(2).
Now assume that the GSM is safe(3). Again, since only one net token of type

N ∈ N \{N•} exists in any reachable marking µ(p̂[M]) > 0 implies that the net
token of type d(p̂) currently residing on p̂ and marked with M is the only net
token of this type and thus M(p) ≤ 1 for p ∈ Pd(p̂)also implies Π2

N(µ)(p) ≤ 1
and thus G is also safe(4).

As was possible for Eos it is also possible to decide if a given GSM is safe
or not. Furthermore, it can also be tested if given Eos is actually a safe GSM
by applying Theorem 5.15 and doing some more structural checks.

Theorem 5.17. Given a GSM G it is PSpace-complete to decide, if G is safe.
Given an Eos OS it is PSpace-complete to decide if OS is a safe GSM.

Note that in a safe(1) or safe(2) GSM the only restriction is on the system
net places that are typed with N•, i.e. with the system net places that may be
marked with black tokens. These places are restricted in such a way that they
may at most be marked with one black token.
In the context of generalised state machines it is thus sensible to either speak

of a GSM, a system-safe GSM, if it is safe(1) or safe(2), or of a safe GSM, if
it is safe(3) or safe(4), i.e. there is at most one net token on each system net
place each of whom is either a black token or a safe p/t net. Note that the
examples in Figure 5.6 and 5.7 are still valid. These are safe GSMs where the
system net or an object net treated in isolation are not safe.

116

5.3 LTL and CTL Model Checking of Safe Eos

Moreover, since in a system-safe GSM an object net can be an arbitrarily p/t
net, system-safe GSM are still as problematic as p/t nets in terms of complexity.
Thus the notion of system-safeness for GSMs is only sensible in combination
with other restrictions.
In the following we will focus on safe(3) and safe(4) Eos and GSM for which

due to their finite state space reachability, liveness, and so on are decidable. The
problem is that compared to the state spaces of safe p/t nets their state space
may become quite large: While for 1-safe p/t nets with n places the number
of reachable markings is bound by 2n, in an safe(3) or safe(4) Eos where the
number of places in the system net and in all object nets is also bound by n,
the number of reachable states is bounded by (1 + 2n)n (see Theorem 5.11).
Thus if the system net and the object nets have n = 10 places and are thus
quite small, they have a state spaces of size 210 if considered in isolation, which
still is small enough to be directly represented and analysed. Composed in an
Eos the state space’s size might go beyond 2100 states, however, which makes
it in general hard if not impossible to represent the state space explicitly.
Nonetheless despite the huge state space it is possible to apply model check-

ing techniques to safe(3) and safe(4) and otherwise unrestricted Eos and to
decide every property expressible in the temporal logics CTL or LTL in space
only polynomial in the size of the Eos. This surprising result is the topic of
the next section.

5.3 LTL and CTL Model Checking of Safe Eos

From the four different notions of safeness introduced in the last section (see
Definition 5.8) we concentrate on safe(3) Eos, simply called safe Eos, in the
following. Since safe(1) and safe(2) Eos are Turing-complete due to Theo-
rem 5.12 the reachability problem can not decided for them. On the other
hand any positive result for safe(3) Eos carries over to safe(4) Eos, because a
safe(4) Eos is also a safe(3) Eos due to Lemma 5.9.
Instead of focussing on the reachability problem as in Chapter 4 where struc-

tural restrictions are treated, we prove in this section that not only reachability
but indeed every property that can be stated in the temporal logics CTL or
LTL can be decided for a safe Eos and thus also for a safe GSM.
Since safe Eos have a finite state space due to Theorem 5.11, decidability

itself is not too surprising, since most problems can be decided by a brute force
algorithm. But despite the possibly huge number of events of an Eos apparent
in Lemma 3.10 and Lemma 4.10 and the enormously sized state space even of
safe Eos apparent in the proof of Theorem 5.11, properties expressed in CTL or
LTL can not only be decided, but for the decision procedure space polynomial
in the size of the input, i.e. in the size of the Eos, suffices. The procedure
presented here is a generalisation of the algorithms and methods from [Esp98a],

117

5 Dynamic Restrictions of Eos

which focuses on 1-safe p/t nets. While the methods from [Esp98a] can be easily
translated to the setting of Eos here, it is necessary to prove for each step, that
the step is still possible despite the more complicated firing rule, the possible
enormous state space, and so on.
At first it is a known fact that most interesting questions about the behaviour

of classical 1-safe p/t nets like liveness, deadlock-freedom, and reachability are
PSpace-hard (see [Esp98a, JLL77]). Since 1-safe p/t nets can be seen as a
special kind of safe(4) Eos, which are also safe(3), safe(2), and safe(1), these
results directly carry over to safe Eos.

Theorem 5.18. Reachability, liveness, and coverability are PSpace-hard for
safe(4) or safe(3) and strongly deterministic Eos.

Proof. All problems mentioned are PSpace-hard for 1-safe p/t nets due to The-
orem 2.52. Given a 1-safe p/t net system (N,m0), an Eos OS = (N̂ ,N , d, l, µ0)
that bisimulates it can be easily constructed. The system net corresponds to
the given p/t net, i.e. N̂ := N . The only object net type is the object net N•
used to model black tokens. All places are labeled with this object net type
and all transitions are labelled with the label for system autonomous firing,
i.e. there are no synchronous events. The initial marking µ0 corresponds to
m0: If m0(p) = 1, then µ0(p[0]) = 1.
Clearly if a transition t is enabled in N , the system autonomous event t[] is

also enabled in OS and firing t[] results in a marking that correspond to the
marking reached after firing t in N .
Since N is 1-safe, on each system net place of OS resides at most one net

token, which are all of the same type, namely N•, and which are all marked
with 0, so the sum of these markings is 0, too, and OS is safe(4).
Due to this construction, which is possible in polynomial time, the hardness

results for 1-safe /t nets from Theorem 2.52 carry over to safe(4) Eos and thus
to safe(3) Eos, too.

The theorem above can be generalised to transfer further hardness results
from 1-safe p/t nets to safe(4) or safe(3) and strongly deterministic Eos.
However, the more interesting question is, if polynomial space suffices. In

the following two sections, we will show that CTL and LTL model checking is
possible in polynomial space for safe(3) Eos, i.e. given a safe(3) Eos OS we
establish a notion of when OS satisfies a formula φ, denoted by OS |= φ and
then show that given OS and φ it is possible to decide in polynomial space if
OS |= φ holds.
For this analysis it is necessary to have a look at fundamental properties of

Eos again and characterise them in terms of complexity. For example from
Theorem 3.10 and the discussion preceding and following it is evident that the
number of events of an Eos OS is exponential in the size of OS . It is thus not

118

5.3 LTL and CTL Model Checking of Safe Eos

possible to keep them all in memory if certain low complexity bounds should
be met.
This will be done in various lemmata throughout the subsections about LTL

and CTL model checking safe Eos below.

LTL Model Checking of Safe Eos

In the following we show that it is possible to decide given a safe Eos and an
arbitrary LTL formula, specifying a property of the Eos, if the Eos satisfies
the property or not, using only polynomial space in the size of the Eos and
the size of the formula.
Since an instance of the reachability problem can be expressed with an LTL

formula, it follows that the reachability problem for safe Eos is PSpace-
complete.
The technique used is a generalisation of the method presented in [Esp98a]

for 1-safe p/t nets which in turn heavily relies on the results from [Var96].
We now briefly sketch the method from [Esp98a] to verify if a 1-safe p/t net
satisfies a property expressed in LTL.
Let φ be an LTL formula and N a 1-safe p/t net. N satisfies φ if the LTS

that is obtained from the reachability graph of N , satisfies φ, where the nodes
of the reachability graph are labelled with the places that are marked in that
nodes’ marking. The set of propositions is chosen accordingly to consists of the
places of N .
To prove if N satisfies φ two automata, a finite automaton Aφ and a Büchi

automaton Bφ, are used, where L(Aφ)∪Lω(Bφ) is exactly the set of computa-
tions satisfying the formula φ. In the case of 1-safe p/t nets a computation is
a sequence of sets of places and the atomic propositions of φ are therefore the
places of the net N and the alphabet of both Aφ and Bφ is 2P . The construction
of these automata exceeds the scope of this work (see [Esp98a] and [Var96] for
details). Here it suffices to know the following two facts: First, the states of Aφ
are sets of subformulas of φ and the states of Bφ are pairs of sets of subformulas
of φ, thus they both may have exponentially many states in |φ| and must not
be completely constructed if a polynomial space bound should be met. Yet a
single state has polynomial size in |φ|. Second, given two states q1 and q2 of
Aφ or Bφ and a marking µ (which is a symbol of the alphabet of Aφ resp. Bφ),
it is possible to decide in polynomial space (in |φ|) if a transition from q1 to q2

with label µ exists.
Two further automata, AN and BN , are used, obtained from the safe Eos.

The set of states of AN and BN correspond to the reachable markings of the
net N . Indeed, AN and BN correspond closely to the reachability graph and
only differ from it in the edges’ labels. The initial state of AN and BN is the
initial marking and the transition relation δN (again the same for AN and BN)
contains the triple (m,m,m′) of markings ifm′ can be reached fromm via some

119

5 Dynamic Restrictions of Eos

transition t. The set of final states of AN is the set of deadlocked reachable
markings of N and the set of final states of BN contains all reachable markings
of N , thus L(AN) is the set of all finite and Lω(BN) is the set of all infinite
runs of N . Again AN and BN may have exponentially many states in |N | and
again can not be constructed completely.
Then two automata A and B are defined with the usual construction to be

the product automaton of A¬φ and AN , resp. of B¬φ and BN . Then L(A) =
L(A¬φ)∩L(AN) and Lω(B) = Lω(B¬φ)∩Lω(BN) holds. While in general it is
not the case that the product of two Büchi automata accepts the intersection
of the languages, it indeed holds here. Now L(A) ∪ Lω(B) is the set of runs
of N that do not satisfy φ. The question whether N satisfies φ, i.e. if all of
N ’s runs satisfy φ, is thus reduced to the question if L(A) and Lω(B) are both
empty.
As mentioned, the construction of A and B is the usual product construc-

tion and thus does not cause problems. Unfortunately, Aφ and Bφ may have
exponentially many states in |φ| and AN and BN may have exponentially many
states in |N |. But A and B can be constructed on the fly and only a constant
number of states needs to be saved. The algorithm mainly guesses, given a
state (q,M), a possible next state (q′,M ′) in A, resp. B, checks if the transi-
tion from (q,M) to (q′,M ′) is indeed possible and, if so, enters this state. The
algorithm for A accepts if it enters a final state of A. For B the case is more
complicated, since B only accepts if it enters a final state infinitely often. To
achieve this, the algorithm for B guesses that the current final state is revisited
and checks this. The case for B is thus only slightly more involved. These algo-
rithms solve the nonemptiness problem, which by reversing the answer solves
the above mentioned emptiness problem.
Note that the algorithms described above are nondeterministic, but run in

polynomial space, since the only four things important are

1. Given two states q1, q2 of Aφ or Bφ and a marking M , it is possible to
decide in polynomial space (in |φ|) if a transition from q1 to q2 with label
M exists.

2. Given two markings M and M ′ and a transition t, it is possible to decide
in polynomial space (in |N |) if M t−→M ′ holds.

3. It is possible to decide in polynomial space (in |N | and |φ|) if a state of
A or B is a final state.

4. A state of A or B has polynomial size (in |N | and |φ|).

The last three items hold immediately for 1-safe p/t nets (the size of a state of
Aφ or Bφ is at most quadratic in |φ|). The first item follows from [Var96] on
which the above described method from [Esp98a] heavily relies.

120

5.3 LTL and CTL Model Checking of Safe Eos

Now, since this algorithm runs in nondeterministic polynomial space,
an deterministic polynomial space algorithm follows by Savitch’s construc-
tion [Sav70].
This approach can be adapted to the case of safe Eos. In the following

explanation the automata constructed are denoted by AOS and BOS instead of
AN and BN and a marking is denoted by µ instead of M .
At first the set of atomic propositions needs to be adjusted. Let

prop := {p̂[x] | p̂ ∈ P̂ , x ∈ {0, ∗}} ∪ {p̂[p] | p̂ ∈ P̂ , p ∈ P (d(p̂))} ∪ {0}.

The proposition p̂i[0] is used to code that an empty object net resides on the
system net place p̂i. p̂i[∗] is used to code that the place p̂i is marked in some
way, but it is not important how exactly. The notion p̂i[pj] is used to describe
that a net token resides on place p̂i and that the place pj of this net token is
marked. Subsequently, p̂i[pj1] ∧ p̂i[pj2] is used to encode that on the system
net place p̂i an object net resides and that the places pj1 and pj2 of the object
net are marked. p̂i[pj1] ∧ p̂i[pj2] thus encodes the (sub-)marking p̂i[pj1 + pj2].
Since in an safe Eos on each system net place resides at most one net token,
no ambiguity can arise with the marking p̂i[pj1] + p̂i[pj2] which would encode
that two object nets reside one place p̂i with different inner markings.
The syntax of LTL (see Definition 2.19) is restricted to the formulas obtain-

able by restricting the set of connectives to the adequate set {¬,∧, X, U} (see
the discussion of adequate sets in Section 2.3).
The semantic is defined similarly as described in Definition 2.17. Differences

are in the labelling function of the labelled transition system and the treatment
of the atomic propositions.
The labelled transition system which is used to state if an Eos OS satisfies a

LTL formula, is the reachability graph RG(OS) of OS , that is the set of states
is the set of reachable markings, the start state is the state that corresponds
to the initial marking µ0, and the transition relation R is obtained from the
edges of RG(OS) by ignoring their labelling. In this setting R is not necessarily
left-total, but this is no severe restriction, since one could either add an “error
state” to which all states which have no outgoing arcs are linked or one could
deal with these states in the algorithms explicitly. In the following we will not
distinguish between a marking µ of an Eos OS and the node in the reachability
graph of OS that corresponds to µ.
Different from the description of LTL in Section 2.3 the nodes are not labelled

with a subset of the set of atomic propositions prop but simply with the marking
µ of that node. If an atomic formula p ∈ prop holds in µ is then explicitly
computed with the following semantic:

Definition 5.19 (Semantic of LTL for safe Eos). Let OS be a safe Eos,
let p ∈ prop be an atomic proposition as introduced above, let w be a path in

121

5 Dynamic Restrictions of Eos

the reachability graph of OS , and let µ ∈ R(OS) be a node in that graph and
the first node of w. To define if OS , w |= p holds four cases are distinguished:

1. p = 0. Then OS , w |= p holds if µ is the empty marking, i.e. if µ = 0.

2. p = p̂i[0], p̂i ∈ P̂ . Then OS , w |= p holds if an empty net token resides
on the place p̂i in µ

3. p = p̂i[∗], p̂i ∈ P̂ . Then OS , w |= p holds if a net token resides on the
place p̂i in µ that is marked arbitrarily.

4. p = p̂i[pj], p̂i ∈ P̂ and pj ∈ Pd(p̂i). Then OS , w |= p holds if a net token
N resides on the place p̂i in µ and in the current marking M of N the
place pj is marked.

The other cases, i.e. the formulas ¬φ, φ1∧φ2, Xφ, and E[φ1Uφ2] are treated
exactly as in Definition 2.17.
If φ is a LTL formula, we denote by OS , µ |= φ that OS , w |= φ holds

according to the inductive definition of |= defined above for every path w that
starts at µ in RG(OS)
φ is satisfied by OS if OS , µ0 |= φ holds. In this case, OS is a model for φ

which is also shortly denoted by OS |= φ.

A computation is now a sequence of subsets of prop again. To exactly de-
scribe a marking, it might be necessary, however, to use each variable from prop
which means that a marking is now quadratic in the size of the net, instead of
linear, but it turns out that this is not problematic.
Given prop the construction of Aφ and Bφ is possible as before, since the

change in the size of prop from linear to quadratic in the size of the Eos does
not matter here. In particular because it is not necessary to fully store the
alphabet of Aφ or Bφ. The states of Aφ and Bφ are still quadratic in the size
of |φ| and given two states q1, q2 of Aφ or Bφ and a marking µ of Eos, it is
still possible to decide in polynomial space (in |φ|) if a transition from q1 to q2

with label µ exists. The size of µ and thus the size of a state of AOS and BOS

is now quadratic in |OS |, but this is not a problem, since on the one hand µ
actually remains a constant during this test, and on the other hand is still in
polynomial space. Thus, the first and fourth item above are also satisfied by a
safe Eos.
The two interesting points thus are, if it is possible to check in the required

space bounds whether a final state in A (resp. B) is reached and if it is possible

to check µ
t̂[θ]−−→
OS

µ′ given two markings µ, µ′ ∈M of OS and an event t̂[θ] ∈ Θ.
Since A and B have been defined via a product construction their final states

are tuples consisting of one final state of Aφ and one final state of AOS , resp. one
final state of Bφ and one final state of BOS . To check for final states in Aφ and

122

5.3 LTL and CTL Model Checking of Safe Eos

Bφ is very simple, since by their definition one only needs to do some syntactic
checks on the states, which are actually sets of subformulas of φ. To check
for final states in BOS is also simple, since the set of final states of BOS is
exactly the set of reachable markings of OS . Since all states we encounter are
reachable, this check is trivial. It remains to check if a given state is a final
state in AOS . For this it is necessary to check if a marking µ of OS , which is a
state of AOS , is a deadlock, i.e. no event is enabled in µ.

Lemma 5.20. To check if a marking µ of a safe Eos OS is a deadlock, is
possible in space polynomial in the size of OS .

Proof. Given µ, each transition is checked for autonomous firing. This can be
done in a similar manner as for p/t net systems. Different from there, it might
be necessary to test an object net transition t of an object net N multiple
times, since on each system net place of type N a net token might reside whose
transition t is activated. Since, one only has to iterate through all system net
places, this is still possible in polynomial time and space.
Then the system net transitions are again investigated for synchronous

events. If a system net transition t̂ is fixed the possible synchronous events
can be generated one after another using the labelling and the object nets in
the preset of t̂. If then µ and the event are fixed, the possible modes (λ, ρ) only
differ in the choice of ρ due to the possible distribution of the markings of net
tokens of the same type. These can be easily enumerated, but are actually not
important here, since one event that is enabled in any mode is enough.
The whole calculation can be done in polynomial space by reusing the space

for each event constructed.

It remains to show that µ
t̂[θ]−−→
OS

µ′ can be tested, given two markings µ, µ′ ∈M

and an event t̂[θ] ∈ Θ.

Lemma 5.21. Given a safe Eos OS , two markings µ and µ′, and an event

t̂[θ] ∈ Θ, it is possible to decide in polynomial space in |OS | if µ t̂[θ]−−→
OS

µ′ holds.

Proof. Since OS is a safe Eos and thus on each system net place resides at
most one net token, the submarking λ can be calculated from the given marking
µ and the event t̂[θ] according to the enabling predicate (see Definition 3.7).
Indeed, in λ exactly the net tokens in the preset of t̂ are present and Π2

N(λ) ≥
preN(ϑ(N)) has to hold for every N ∈ N . The possible modes (λ, ρ) then
only differ in ρ and only in the distribution of the tokens there to net tokens of
the same type but on different places in the postset of t̂. Using the supposed
successor marking µ′ one can calculate the correct mode, if any exist. Since
the whole procedure only needs some extra space for temporal variables, it can
be implemented in the stated space bound.

123

5 Dynamic Restrictions of Eos

Algorithm 2 Checking A for nonemptiness
Ensure: q of type state of A¬φ
Ensure: µ of type state of AN
1: (q, µ)← (q0, µ0);
2: while (q, µ) is not a final state of A do
3: guess a state q′ of A¬φ with q µ−−→

A¬φ
q′

4: guess a marking µ′ and an event τ̂ [θ] with µ
τ̂ [θ]−−→
OS

µ′

5: (q, µ)← (q′, µ′)
6: end while
7: return true

As was the case for 1-safe p/t net systems two automata A and B are defined
as the product automata of A¬φ and AOS and of B¬φ and BOS , respectively.
The procedure to check A for nonemptiness is outlined in Algorithm 2 as an

adaption of the algorithm given in [Esp98a] to the case of safe Eos.
Apart from using nondeterminism another trick is used: Since A and B may

have exponentially many states in |OS | and |φ|, they are constructed on the fly.
Starting with the initial state as the current state (q, µ), a next state (q′, µ′) is
repeatedly guessed. Then it is checked if (q′, µ′) is indeed reachable from (q, µ)
via some event and, if so, the current state is updated. In the case of A, L(A)
is nonempty, if a final state is reached. In this case true is returned.
The case of the automaton B is only slightly more complicated. Since Lω(B)

is nonemtpy if and only if a final state is visited infinitely often, i.e. if there is a
reachable final state q such that there is a loop from q to itself, one proceeds as
in Algorithm 2, but if a final state is reached, a guess is made that this is the
final state that will be revisited or not. This guess is then checked in a similar
way as Algorithm 2 checks for any final state. See [Esp98a] for details.
The results and explanations above lead to the following theorem:

Theorem 5.22. Given a safe(3) or safe(4) Eos OS and an LTL formula φ,
checking whether OS satisfies φ can be done in polynomial space in the size of
OS and φ, that is, there is a polynomial p, independent of OS and φ, such that
the algorithm uses O(p(|OS |+ |φ|)) space.

Proof. The statement follows from Lemmata 5.20 and 5.21 and the observation
that only a constant number of states need to be saved and that the states of
A¬φ (resp. B¬φ) and AN (BN) have polynomial size in |φ| and |N |.
Since A and B have been constructed by use of the product construction,

one actually needs to check if a transition is possible in A¬φ and AOS to check
if one is possible in A (and similar for B). For A¬φ (and B¬φ) this follows from
the construction of A¬φ which is not shown here. (See for example [Var96].)
In the algorithm one only needs to store a state of A¬φ and a symbol of the

124

5.3 LTL and CTL Model Checking of Safe Eos

alphabet (which is a marking of OS) of A¬φ. Then one can check similar to
Algorithm 2 if a final state can be reached. This can be done in polynomial
space. See [Var96] for more details.
To check if a transition in AOS or BOS is possible, a test is necessary if, given

two markings µ, µ′ ∈ M and an event τ̂ [θ] ∈ Θ, the relation µ
τ̂ [θ]−−→
OS

µ′ holds.
This is proven in Lemma 5.21. In Algorithm 2 an event is guessed. An event
can be seen as an element of T̂ × T1 × . . .× T|N |, which can be easily guessed,
but it is then necessary to check if this is indeed an event. This, however, can
be easily done with a couple of table lookups using the labelling function given
as input.
Finally a test is needed if a state in A (resp. B) is a final state, that is a test

for final states in A¬φ, B¬φ, AOS and BOS . For A¬φ and B¬φ by their definition
it is only necessary to do some syntactic checks on the states, which are actually
sets of subformulas of φ. This is easily possible in polynomial space. To check
for final states in BOS is also simple, since the set of final states of BOS equals
its set of states. At last, to check if a state of AOS is a final state, we need to
check if a marking µ of OS is a deadlock. This is proven in Lemma 5.20.

Since reachability can be expressed as an LTL formula we have the following
corollary:

Corollary 5.23. The reachability problem for safe Eos is PSpace-complete.

Even if reachability as one of the major problems can thus be decided in
polynomial space, other important problems can not be solved with the result
from Theorem 5.22. Most prominently the liveness problem for safe Eos can
not be solved in this way, because liveness can not be expressed in LTL. It
can, however, be expressed with a CTL formula and in the next section it is
shown how not only every property expressed in LTL but also every property
expressed in CTL can be decided for a safe Eos using only polynomial space
in the size of the formula and the Eos.

CTL Model Checking of Safe Eos

While reachability can be expressed as a LTL formula and it is thus PSpace-
complete to decide the reachability problem for safe Eos due to Theorem 5.22,
other problems that are not expressible in LTL remain unsolved.
Similar to the case of LTL formulas treated in the previous section, we show

in the following that polynomial space is also sufficient to decide if a safe Eos
satisfies a property specified in the temporal logic CTL. Since liveness can be
expressed in CTL, it follows that the liveness problem for safe Eos is PSpace-
complete, too.
Our presentation is again based on ideas from [Esp98a], which focuses on

1-safe p/t nets and uses a different set of CTL connectives.

125

5 Dynamic Restrictions of Eos

In the treatment of CTL in Section 2.3 it is stated that CTL formulas are
interpreted with respect to states of a transition system or alternatively on
possibly infinite computation trees, where each node represents a state of the
computation and is labeled with the set of atomic propositions that hold in
that state. In the setting here the linear transition system which is used as a
model is the reachability graph of the Eos and the tree is simply the unfolding
of this reachability graph into a tree.
For the atomic propositions the set used for LTL model checking can be

reused. Here we also take each event as an atomic proposition. In this way, the
formula to describe if an event can be enabled is shorter. Altogether we define

prop := {p̂[x] | p̂ ∈ P̂ , x ∈ {0, ∗}} ∪ {p̂[p] | p̂ ∈ P̂ , p ∈ P (d(p̂))} ∪ {0} ∪Θ.

The syntax of CTL (see Definition 2.19) is restricted to the formulas obtain-
able by the following grammar:

φ ::= p | ¬φ | (φ ∧ φ) |
EXφ | EGφ | E[φUφ]

where p ∈ prop. That is the set of connectives is restricted to the adequate set
{¬,∧, EX,EG,EU} (see the discussion of adequate sets in Section 2.3).
A CTL formula is then interpreted with regard to the transition system

derived from the reachability graph (see the discussion before Definition 5.19).
The semantics of CTL (see Definition 2.20) has to be slightly adapted to

the new atomic propositions, as was the case for LTL formulas. The following
semantic definition is almost identical to Definition 5.19 above:

Definition 5.24 (Semantic of CTL for safe Eos). Let OS be a safe Eos,
let p ∈ prop be an atomic proposition, and let µ ∈ R(OS) be a node of the
reachability graph of OS . To define if OS , µ |= p holds, we distinguish five
cases:

1. p = 0. Then OS , µ |= p holds if µ is the empty marking, i.e. if µ = 0.

2. p = p̂i[0], p̂i ∈ P̂ . Then OS , µ |= p holds if an empty net token resides
on the place p̂i in µ

3. p = p̂i[∗], p̂i ∈ P̂ Then OS , µ |= p holds if a net token resides on the place
p̂i in µ that is marked arbitrarily.

4. p = p̂i[pj], p̂i ∈ P̂ and pj ∈ Pd(p̂i) Then OS , µ |= p holds if a net token N
resides on the place p̂i in µ and in the current marking M of N the place
pj is marked.

5. p = θ ∈ Θ Then OS , µ |= p holds if µ θ−→ holds, i.e. if θ is enabled in µ.

126

5.3 LTL and CTL Model Checking of Safe Eos

The other cases, i.e. the formulas ¬φ, φ1 ∧ φ2, EXφ, EGφ, and E[φ1Uφ2] are
treated exactly as in Definition 2.20.
If φ is a CTL formula we denote by OS , µ |= φ that φ holds in the state µ of

OS according to the inductive definition of |= defined above.
φ is satisfied by OS if OS , µ0 |= φ holds. In this case, OS is a model for φ

which is also shortly denoted by OS |= φ.

Note that we say that the Eos satisfies the formula and not only the reach-
ability graph, from which the LTS is actually obtained.
We mention some examples for CTL formulas in the context here: The for-

mula AG¬(p̂1[∗]∧ p̂2[∗]) expresses that in no reachable marking one object net
is on place p̂1 and another on p̂2, where the object nets’ markings are ignored.
EF (t̂[ϑ] ∧ p̂1[p4]) expresses that a computation exists, where the event t̂[ϑ] is
enabled and the system net place p̂1 is at the same time marked with an object
net, whose place p4 is marked. Note that there may be other tokens in this
object net and that on the system net level other object nets may be. If one
wants to exclude such things one has to use subformulas of the kind ¬p̂1[p5]
to express that the place p5 of the object net, which resides on the system net
place p̂1 is not marked – which is also fulfilled, if there is no object net on p̂1

at all. Liveness of an event t̂[ϑ] can be expressed by AGEF t̂[ϑ].
In the following we devise a deterministic algorithm that, given a safe(3) or

safe(4) Eos OS and a CTL formula φ, decides in space polynomial in |OS | and
|φ|, if OS satisfies φ, i.e. if OS |= φ holds.
In the algorithm we will break up the formula into smaller subformulas and

decide if these subformulas hold in certain states. Since one can not check
possible infinite paths, the formulas E[φ1Uφ2] and EGφ have to be treated
carefully. They will be treated in separated subroutines. The main algorithm
is stated in Algorithm 3 which is an adaption of the algorithm in [Esp98a] to
our case of safe Eos.
If a Eos OS and a CTL formula φ is given, check(µ0, φ) returns true if and

only if OS |= φ holds.
We will analyse the exact space requirements of this algorithm later, after

we have introduced the subroutines, but note that all calls to subroutines work
with shorter formulas.
The syntactic checks, that is which kind of formula φ presents, are easily

possible as is the test if φ represents a marking or an event in case of φ = p ∈
prop.
Then, to check the base case, i.e. if p holds in µ in line 2, it is necessary to

check if one of the semantic conditions of Definition 5.24 hold.

Lemma 5.25. Let OS be a safe Eos, µ a marking of OS , and p ∈ prop. It is
possible to decide in polynomial time in the size of OS if OS , µ |= p holds.

Proof. Since µ is given as an array of |P̂ | elements where each element either
points to null, if the corresponding system net place is unmarked, or to an

127

5 Dynamic Restrictions of Eos

Algorithm 3 check(µ, φ). Main procedure to check if φ holds in µ.
1: if φ = p ∈ prop then
2: if p holds in µ then
3: return true
4: else
5: return false
6: end if
7: else if φ = ¬φ1 then
8: return not check(µ, φ1)
9: else if φ = φ1 ∧ φ2 then
10: return (check(µ, φ1) and check(µ, φ2))
11: else if φ = EXφ1 then
12: for all µ′ and τ̂ [ϑ] with µ

τ̂ [ϑ]−−→ µ′ do
13: if check(µ′, φ1) then
14: return true
15: end if
16: end for
17: return false
18: else if φ = EGφ1 then
19: return checkEG(µ, φ1)
20: else if φ = E[φ1Uφ2] then
21: return checkEU(µ, φ1, φ2)
22: else
23: return false
24: end if

array of |P | elements where P is the set of places of the object net type that
resides on that system net place (see Definition 3.3), the first three cases of
Definition 5.24 can be easily checked by a couple of table lookups.
For the fourth case, i.e. p = θ = t̂[ϑ] ∈ Θ is an event, one at first verifies that

all places in the preset of t̂ are marked. Then for each N ∈ N it is verified if
the transition ϑ(N) is enabled in the marking that results from summing up
all markings of nets of type N in the preset of t̂.
While the fourth case is in general the most time consuming of the four cases,

the necessary computations can be done in polynomial time.

In the case of φ = EXφ1 it is also possible to enumerate all markings and
events in polynomial space by reusing the same space.

Lemma 5.26. The computations in line 12 of Algorithm 3 can be implemented
using polynomial space in the size of OS and φ.

Proof. To store a marking and an event only polynomial space is needed in the
size of the input. Moreover, markings and events can be easily enumerated.

128

5.3 LTL and CTL Model Checking of Safe Eos

For a fixed event it is then easy to verify if it is enabled at the current marking
and if firing it results in the currently guessed successor marking µ′. See also
Lemma 5.21.

There are more efficient ways to deal with line 12 of Algorithm 3. Given
µ only a finite number of events are enabled and these can be constructed
from µ using the enabling predicate (Definition 3.7). If µ and an event are
fixed, the possible modes (λ, ρ) only differ in the choice of ρ due to the possible
distribution of the markings of net tokens of the same type. These can be easily
enumerated.
Thus only a counter for the markings and another for the events is needed

and altogether in Algorithm 3 it is only necessary to store a constant number
of markings, events and (sub-)formulas and then call a subroutine or work
recursively on a smaller formula.
It remains to devise algorithms for E[φ1Uφ2] and EGφ, that is the sub-

routines checkEG and checkEU. These are again adaptions of the algorithms
in [Esp98a] to our case of safe Eos. We start with checkEU.
Given a node v and formulas φ1 and φ2, it is necessary to check if v |=

E[φ1Uφ2] holds. However, the standard approach in which one deterministi-
cally checks all paths does not work here. This was pointed out in [Esp98a]. In
short the problem is that a nondeterministic Ω(n) space algorithm for E[φ1Uφ2]
results in a Ω(n2)-space deterministic algorithm, but unfortunately the space
can not be easily reused and for E[E . . . E[φ1Uφ2] . . .]Uφm−1]Uφm] not less than
Ω(n2m) space would be needed, which is exponential in the size of the formula.
We will adapt the algorithm from [Esp98a] to devise a deterministic polyno-

mial space algorithm. In essence the approach works because of the finiteness
of the state space and is thus not applicable for safe(1) or safe(2) Eos.
The key is to reduce the possibly infinite number of paths needed to be

checked to a finite number by exploiting that only finitely many different mark-
ings exists.
For this let E[φ1Ubφ2] be a new operator, describing that there exist a com-

putation in which φ1 is true until φ2 is true and φ2 will be true after at most b
steps. Formally:

OS , µ |= E[φ1Ubφ2] iff a path π = µ1µ2 . . . starting at µ exists such that
a j with 1 ≤ j ≤ b− 1 exists with OS , µj |= φ2

and OS , µi |= φ1 holds for all i < j

We need the following easy to prove lemma.

Lemma 5.27. Let OS be a safe(3) or safe(4) Eos, let k := |P̂ | be the number
of places of the system net and l := max{|PN | | N ∈ N} be the maximum
number of places of the object nets. Let n := max{k, l} and let µ be a node of
RG(OS). Then

OS , µ |= E[φ1Uφ2] ⇐⇒ OS , µ |= E[φ1U2n2+nφ2].

129

5 Dynamic Restrictions of Eos

Algorithm 4 checkEU(µ, φ1, φ2). Check if µ |= E[φ1Uφ2] holds.
1: for all markings µ′ and numbers k with 0 ≤ k < 2n

2+n do
2: if path(µ, µ′, φ1, φ2, k) then
3: return true
4: end if
5: end for
6: return false

Proof. The proof for 1-safe p/t nets can be found in [Esp98a] and can be easily
adapted to our case. The main difference is that a 1-safe p/t net with k places
may have 2k different markings, whereas a safe(3) or safe(4) Eos may have up
to (1 + 2l)k different markings (see the proof of Theorem 5.11). With n ≥ k, l
we have

(1 + 2l)k ≤ (1 + 2n)n ≤ (2n + 2n)n = (2n+1)n = 2n
2+n

resulting in the bound as stated in the lemma above.

Lemma 5.27 states that if E[φ1Uφ2] holds for some node µ, then a number
k ≤ 2n

2+n exists and a path of length k starting at µ such that E[φ1Ukφ2] holds
in µ due to that path. A subroutine path is used in the algorithm for E[φ1Uφ2]
utilising this. path has five arguments: Two markings µ and µ′, two formulas
φ1 and φ2 and a number k. path returns true if and only if in RG(OS) a
path µ0, µ1, . . . , µk exists, where µ0 = µ, µk = µ′, µk |= φ2 holds, and for all
i < k µi |= φ1 holds. To decide if E[φ1Uφ2] holds in a node µ it thus suffice
to call path(µ, µ′, φ1, φ2, k) for all markings µ′ of RG(OS) and all k < 2n

2+n.
The algorithm for E[φ1Uφ2] is stated as Algorithm 4 above. There n is defined
as in the statement of Lemma 5.27, i.e. as the maximum over the number of
places of the system net and the number of places of all object nets, and is
easily obtained once at the beginning.
Each iteration of the loop of Algorithm 4 can reuse the same space. Thus

the space needed is the space needed for one execution of path plus the space
needed to store the marking µ′ and the number k which are both polynomial
in the input. Therefore, if path can be implemented in polynomial space, so
can Algorithm 4.
Since the paths to be checked may have a length of up to 2O(n2), which is ex-

ponential in the size of the Eos, a simple brute force or backtracking algorithm
does not work here. However, the technique that was used in Savitch’s The-
orem [Sav70] to prove that PSpace equals NPSpace is applicable: The path
is split into two paths of half size each and these path are checked recursively
reusing space. This is carried out in Algorithm 5.
To analyse the space complexity of Algorithm 5 first note that the two base

cases in line 1 and 4 can be implemented using only polynomial space. For the
case k = 0 one only needs to check if two markings are equal. The case for

130

5.3 LTL and CTL Model Checking of Safe Eos

Algorithm 5 path(µ, µ′, φ1, φ2, k)

1: if k = 0 and µ = µ′ and check(µ, φ2) then
2: return true
3: end if
4: if k = 1 and µ

τ̂ [ϑ]−−→ µ′ for some event τ̂ [ϑ] then
5: if check(µ, φ1) and check(µ′, φ2) then
6: return true
7: end if
8: end if
9: for all markings µ′′ do

10: if path(µ, µ′′, φ1, φ1, dk/2e) and path(µ′′, µ′, φ1, φ2, bk/2c) then
11: return true
12: end if
13: end for
14: return false

k = 1 in line 4 is similar to the case treated in Lemma 5.26. Here we do not
even need to enumerate the markings, but only the events. Again, as discussed
after the proof of Lemma 5.26, there are more efficient ways as to enumerate
all events, but this suffices here.
To complete the analysis, we first observe that path is a recursive procedure

whose nesting depth is log k. Furthermore, note that the procedure check is
called with different markings, but always with φ1 or φ2, which in particular are
formulas shorter than E[φ1Uφ2]. Moreover, no new formulas need to be stored,
since only φ1 and φ2 are used. To estimate the space needed by checkEU, let
s(φ) be the maximum over all markings µ of the space required by check(µ, φ).
Since each call to path in checkEU may reuse the same space, the nesting depth
is at most log 2n

2+n = n2 + n = O(|OS |2), and for each recursive call we only
need to store a constant number of markings and integers on the stack, where
a marking of a safe Eos has a size quadratic in the size of the Eos and the
integers can be encoded using at most O(n2) bits and are thus quadratic in
the size of the Eos, too. It follows that checkEU(µ, φ1, φ2) needs space in
O(max{s(φ1), s(φ2)}+ |OS |2 · |OS |2).

Lemma 5.28. Algorithm 4 including its subroutine in Algorithm 5 can be im-
plemented using polynomial space in the size of OS and φ.

It remains to develop an algorithm for EGφ. At first, to deal with the
possibly infinite number of paths and the possibly infinite length of them an
operator EGb is introduced to reduce this to only finitely many markings that
need to be checked. The operator EGb is similarly defined as EUb and the
corresponding lemma is proven similarly to Lemma 5.27. The operator EGb is

131

5 Dynamic Restrictions of Eos

Algorithm 6 checkEG(µ, φ). Check if µ |= EGφ holds.
1: for all markings µ′ do
2: if path(µ, µ′, φ, φ, 2n

2+n) then
3: return true
4: end if
5: end for
6: return false

defined as follows:

OS , µ |= EGbφ iff a path π = µ0µ2 . . . , µb starting at µ exists such that
OS , µi |= φ holds for all 1 ≤ i ≤ b.

Similar to Lemma 5.27 we can prove the following lemma:

Lemma 5.29. Let OS be a safe(3) or safe(4) Eos, let k := |P̂ | be the number
of places of the system net and l := max{|PN | | N ∈ N} be the maximum
number of places of the object nets. Let n := max{k, l} and let µ be a node of
RG(OS). Then

OS , µ |= EGφ ⇐⇒ OS , µ |= EG2n2+nφ.

Proof. The direction from left to right is immediate. For the other direction
suppose EG2n2+nφ holds in a node µ, that is a path µ, µ1, . . . , µb exists and φ
holds on all nodes of this path. The nodes are actually reachable markings of
the Eos OS , which has at most 2n

2+n different markings. Thus, if all nodes on
the path are different, then φ holds in all nodes and EGφ holds on all paths.
If µi = µj (i < j), then the subpath between µi and µj can be glued after µj
infinitely often and we obtain a path that proves that EGφ also holds in µ.

Similar to Lemma 5.27 and the resulting Algorithm 4, using Lemma 5.29
Algorithm 6 follows naturally to solve the problem if µ |= EGφ holds. Again
n is defined as in Lemma 5.29, i.e. the maximum over the number of places of
the system net and the number of places of all object nets.
An analysis similar to the one for checkEU shows that checkEG(µ, φ) needs

O(s(φ) + |OS |2 · |OS |2) space.

Lemma 5.30. Algorithm 6 including its subroutine in Algorithm 5 can be im-
plemented using polynomial space in the size of OS and φ.

Putting the algorithms and lemmata together the following theorem can be
proven.

Theorem 5.31. Given a safe(3) or safe(4) Eos OS and a CTL formula φ
checking whether OS satisfies φ can be done in O(|OS |4 · |φ|) space.

132

5.3 LTL and CTL Model Checking of Safe Eos

Algorithm 7 IsEOSLive(OS). Check if OS is live.

1: for all (t̂, t1, . . . , t|N |) ∈ T̂ × T1 × . . .× T|N | do
2: if (t̂, t1, . . . , t|N |) encodes an event t̂[ϑ] then
3: if !check(µ0, AGEF t̂[ϑ]) then
4: return false
5: end if
6: end if
7: end for
8: return true

Proof. From Lemmata 5.25 and 5.26 dealing with the atomic propositions and
the next-connective, from Algorithms 4 and 5 and Lemma 5.28 dealing with
the until -connective, and from Algorithm 6 and Lemma 5.30 dealing with the
global -connective, it follows that polynomial space in the size OS and the size
of φ suffices to decide deterministically if OS |= φ holds.
The precise space bound in the statement follows directly from Lemmata 5.28

and 5.30.

To solve the liveness problem for safe Eos, a last, subtle problem remains.
Due to Theorem 5.31 above it is possible to decide if a safe Eos satisfies a CTL
formula and due to the definition of the atomic propositions prop it is easily
possible to express liveness of one event as a CTL formula. Unfortunately,
exponentially many events in the size of the Eos may exist due to Lemma 3.10
and the discussion preceding it, which is still valid for safe(3) and safe(4) Eos.
Thus simply using the ∧-operator to link the formulas for the liveness of a

single event, will result in a formula whose length is exponential in the size
of the Eos and while Theorem 5.31 still holds, liveness of safe(3) or safe(4)
Eos is not decided in space polynomial in the size of the Eos, but in space
polynomial in the size of the Eos and the formula.
Fortunately, there are two easy ways out of this. An event can be encoded as

an array of size 1+ |N | encoding the system net transition and for each N ∈ N
an object net transition that should fire synchronously. It is thus possible to
enumerate all possible combinations from T̂ × T1 × . . . × T|N | check if this is
indeed an event by using the labelling functions and, if it is, check check if it is
live, whereas the same space is reused for each event. This approach is sketched
in Algorithm 7 where the abbreviation AGφ ≡ ¬EF¬φ is used. Algorithm 7
decides the liveness problem in space polynomial in the size of a given safe Eos.
Alternatively, the syntax of CTL formulas can be extended so that formulas

like
∧
τ̂ [ϑ]∈ΘAGEF τ̂ [ϑ] are possible. In this way, the idea present in Algorithm 7

would be incorporated in the CTL model checking algorithms.
Usually, Θ will not be so large, since in most cases different transitions in the

object nets will use different channels. A third alternative is thus to demand

133

5 Dynamic Restrictions of Eos

that the labelling is of such a kind that |Θ| is polynomially bounded in the
size of the Eos which is the case by definition for deterministic and strongly
deterministic generalised state machines (see Lemma 4.15).
Together with the PSpace-hardness result from Thorem 5.18, the discussion

of Algorithm 7 implies the following corollary.

Corollary 5.32. The liveness problem for safe Eos is PSpace-complete.

Thus, by Theorem 5.22 and 5.31 given a LTL or CTL formula φ and a safe
Eos OS , it can be decided in polynomial space in the size of φ and OS if
OS |= φ holds. This implies the decidability of many important questions
with affordable resources and is a major improvement compared to many of
the complexity bounds presented in Chapter 4. The next section deals with
the possibility to lower this bound even more in the light of safe Eos with
additionally structural restrictions.

5.4 Structural Restrictions of Safe Eos and
GSMs

The dynamic restriction to safe Eos can be combined with the structural re-
strictions introduced in Chapter 4. While for p/t net systems this results in
better complexity bounds for the reachability problem in many cases, this is
often not the case for object net systems. Returning to the construction in
the proof of Lemma 4.20 again, where it was proven by simulation of a linear
bounded automaton that the reachability problem for strongly deterministic
ppGSMs is PSpace-hard, it is observable that the GSM constructed is indeed
a strongly deterministic and safe(4) ppGSM. Since ppGSMs are a special case
not only of GSMs, but also of free-choice GSMs and since the result also carries
over to deterministic GSMs and unrestricted GSMs with respect to determin-
ism, this implies:

Theorem 5.33. The reachability problem for safe ppGSMs, safe free-choice
GSMs, and safe GSMs is PSpace-complete in the general case as well as in
the case of the deterministic or strongly deterministic variants of each of these
net classes.

Moreover, since a GSM is a special kind of a conservative Eos, this result
generalises to conservative Eos as well.

Theorem 5.34. The reachability problem for safe conservative Eos as well as
for the deterministic or strongly deterministic variant is PSpace-complete.

Turning to conflict-free GSMs, the same complexity bound known for safe
and conflict-free p/t nets (see Theorem 2.53 and [HR89]) can be established for

134

5.4 Structural Restrictions of Safe Eos and GSMs

Table 5.1: The results obtained so far for safe Eos with further structural re-
strictions.
strongly deterministic deterministic general

ttGSM P PSpace PSpace
ppGSM PSpace-complete PSpace-complete PSpace-complete
ptGSM NP-hard, PSpace PSpace-complete PSpace-complete
tpGSM PSpace PSpace PSpace
acGSM PSpace PSpace PSpace
cfGSM P PSpace PSpace
fcGSM PSpace-complete PSpace-complete PSpace-complete
GSM PSpace-complete PSpace-complete PSpace-complete
cEos PSpace-complete PSpace-complete PSpace-complete
Eos PSpace-complete PSpace-complete PSpace-complete

safe, conflict-free, and strongly deterministic GSMs by the technique used in
the proof for conflict-free GSMs, i.e. by showing that the reference net inherits
properties from the GSM:

Theorem 5.35. Let G = (N̂ ,N , d, l, µ0) be a strongly deterministic, safe and
conflict-free GSM. The p/t net Rn(G) is a safe and conflict-free p/t net.

Proof. This can be proven analogously to Theorem 4.35. To prove safeness use
Theorem 4.8.

In [HR89] it is shown that the reachability problem for safe and conflict-free
p/t net systems is solvable in polynomial time and since the construction of the
reference net in Theorem 5.35 is possible in polynomial time, the reachability
problem for safe, conflict-free and strongly deterministic GSMs can be solved
quickly:

Corollary 5.36. The reachability problem for safe, conflict-free, and strongly
deterministic GSMs is solvable in polynomial time.

The reachability problem for the other cases, i.e. for safe and conflict-free but
not necessarily strongly deterministic GSMs as well as for safe acyclic GSMs
and for safe pt-, tp-, and ttGSMs is solvable in PSpace by the general result
obtained in this chapter for Eos. However, it is not known if these bounds
are optimal. In the case of safe acyclic GSMs the usage of the reference net as
in Theorem 5.35 is not possible. The GSM in Figure 4.8 is not only acyclic,
but also safe(3). Thus not only for acyclic, but also for safe(3), acyclic, and
strongly deterministic GSMs the reference net is not acyclic.
In Table 5.1 the results obtained for safe Eos with further structural restric-

tions are summarised.

135

5 Dynamic Restrictions of Eos

Turning to formalisms that are system safe, it was shown in Theorem 5.12
and Theorem 5.14 that system safeness is not a crucial restriction for Eos or
conservative Eos. In both cases the reachability problem remained undecid-
able.
For system safe GSMs the problem is decidable due to Theorem 4.9, but

the problem is ExpSpace-hard. The GSM constructed in Theorem 4.38 to
prove that the reachability problem for free-choice GSMs is ExpSpace-hard,
is safe(2) and thus the result carries over to system safe free-choice GSMs and
system safe GSMs. This even holds if the GSM is strongly deterministic, since
the modifications from the proof of Theorem 4.39 are possible here, too.

Theorem 5.37. The reachability problem for system safe free-choice GSMs
and system safe GSMs is ExpSpace-hard in the general case as well as in the
case of the deterministic or strongly deterministic variants of these net classes.

Furthermore, the hardness results from acyclic as well as for conflict-free p/t
nets also carry over to system safe acyclic GSMs resp. system safe conflict-free
GSMs, since the p/t net can simply be used as the sole object net in the GSM
as was done, for example, in the proof of Theorem 4.34.
The results for strongly deterministic conflict-free GSMs (Theorem 4.35 and

Corollary 4.36) and strongly deterministic ttGSMs (Theorem 4.25 and Corol-
lary 4.26) also hold for the system safe variants, because the reference net in this
weaker variant is again a conflict-free p/t net resp. a T-net. Thus the reacha-
bility problem for system safe, strongly deterministic, and conflict-free GSMs is
in NP and the reachability problem for system safe and strongly deterministic
ttGSMs is in P.
At last, ppGSMs and ptGSMs are by definition system safe (see Lemma 4.19

and the discussion following it) and thus the results obtained for them in Chap-
ter 4 (see Lemmata 4.20 and 4.21 and Theorems 4.28 and 4.29) also hold for
the system safe variants.
In Table 5.2 the results obtained for system safe Eos are summarised. This

Table is identical to Table 4.2 summarising the results for Eos with some kind
of structural restriction but without a safeness restriction.
Even if in some cases stronger lower bounds might be found for the unsafe

versions and better algorithms for the system safe versions, establishing dif-
ferences between the formalisms with regard to the reachability problem, the
lower bounds already proven make it unlikely that the system safe variants
are of much use when it comes to verification. The PSpace-results for the
safe variants make these far more attractive in this matter. The possibility to
decide in PSpace if an Eos is indeed safe, makes this formalism even more
attractive.

136

5.5 Summary

Table 5.2: The results obtained so far for system safe Eos with further struc-
tural restrictions.
strongly deterministic deterministic general

ttGSM P ? ?
ppGSM PSpace-complete PSpace-complete PSpace-complete
ptGSM NP-hard PSpace-hard PSpace-hard
tpGSM ? ? ?
acGSM NP-hard NP-hard NP-hard
cfGSM NP-complete NP-hard NP-hard
fcGSM ExpSpace-hard ExpSpace-hard ExpSpace-hard
GSM ExpSpace-hard ExpSpace-hard ExpSpace-hard
cEos undecidable undecidable undecidable
Eos undecidable undecidable undecidable

5.5 Summary

While the structural restrictions employed to Eos in Chapter 4 lead to de-
cidable formalisms, the reachability problem is still hard to solve for most of
them and especially even for some very restricted formalisms like ppGSMs, for
example.
In this chapter, we therefore turned to restrictions on the dynamical be-

haviour of the object net system. We introduced persistent and unary Eos
in which conflicts are ruled out dynamically: In the case of persistent Eos by
demanding that all transitions that are enabled at a reachable marking indeed
can fire and in the case of unary Eos by demanding that at most one event is
enabled at each reachable marking, in which case conflicts simply do not exist.
Both formalisms are Turing-complete, a result presented here for the first

time.
Motivated by the idea for p/t nets that a safe p/t net’s marking can be repre-

sented as a set, we then introduced four different kinds of safeness. The restric-
tion to safe(1) and safe(2) Eos results in Turing-complete formalisms, while
safe(3) and safe(4) Eos have a finite state space and thus standard problems
like reachability and liveness are decidable. Safeness was introduced and inves-
tigated in [KBH10b] by me and Michael Köhler-Bußmeier, see also [KBH10a].
We then showed that reachability and liveness can not only be decided for

safe(3) Eos, but that these problems can be decided in polynomial space and
actually not only them but every property that can be expressed in the temporal
logics LTL or CTL, generalising a result by Esparza [Esp98a] for 1-safe p/t nets.
These results have been published as joint work with Michael Köhler-Bußmeier
in [KBH10b], [KBH10a] and [KBH11b].
The results from Section 5.4 combining structural and dynamic restrictions

and presented here for the first time, indicate the importance of safeness, since

137

5 Dynamic Restrictions of Eos

relaxing the safeness notion to system safeness results in complexities that are
in most cases as bad as in the formalisms presented in the preceding chapter
(see Tables 5.1 and 5.2). Furthermore, it is also evident in Section 5.4 that the
combination of structural and dynamic restrictions is not worthwhile in many
cases, since the bound usually does not drop below PSpace.
Safeness thus gives rise to formalisms that still have the nice modelling fea-

tures like nesting and mobility of nets as well as synchronisation between them,
while, on the other hand, allow to verify if certain properties are fulfilled using
arguably adequate resources.

138

6 Object Net Systems

While the Eos introduced in Chapter 3 allow to model mobile objects placed in
an environment, they lack certain modelling capabilities. First of all, in some
applications it might be desirable not to be restricted to two levels of nesting.
In the example in Section 3.1 (see Figures 3.1 and 3.2) the robot picks up an
object. In some settings the object itself might be modelled by a Petri net
again, in which case a further nesting level is required. Moreover, the object’s
change of location from, e.g., a desk to the hands of the robot is only modelled
by the naming of the places. Here it would be convenient if the object net
itself moves in the vertical dimension, i.e. the object net residing in the system
net at first is moved by firing a synchronous event to the object net modelling
the robot. For this the channels would not only be used for synchronisation
between object nets but also for the transportation of another object net.
In this chapter, we introduce the formalism of object net systems (ONS) that

allows exactly this behaviour. For this, the channels, the labelling, and the
firing rule have to be adjusted, as well as the definition of markings. An ONS
may have an arbitrary nesting depth which might grow or shrink during firing
by object nets that travel in the vertical dimension. With these features it is
possible to simulate counter machines by encoding the state of a counter by the
nesting depth of certain recursively nested object nets. ONS are introduced in
Section 6.1 where it is also shown that they are Turing-complete.
In Sections 6.2 and 6.3, we treat restrictions of ONS. By restricting the

labelling and channels allowed in an ONS to those that only permit synchroni-
sation and not the transport of tokens in the vertical dimension, a formalism
similar to Eos but with a fixed nesting depth naturally arises. In Section 6.2
we introduce this formalism and a notion of safeness similar to the definitions
in Chapter 5. We prove that it is still possible to verify properties expressed
in the temporal logics LTL or CTL using only polynomial space – albeit the
polynomial grows.
In Section 6.3, we introduce a strong variant of safeness for ONS forbidding

the creation or destruction of net tokens. This is thus a similar restriction as
was imposed for GSMs, but also slightly more liberal, since more than one net
token of the same type may be present. In this formalism, the reachability
problem, as well as any property expressed in LTL or CTL, can be solved in
polynomial space, too.
Object net systems with channels that allow the vertical transport of tokens

have been introduced in [KBH09] by Michael Köhler-Bußmeier and myself.

139

6 Object Net Systems

The formalisms there is, however, rather complicated, mainly due to the firing
rule in which whole trees of transitions are allowed to fire. A simpler version
was therefore introduced in [HKB12a] by me and Michael Köhler-Bußmeier.
This simpler version is presented here. It still captures the essentials of the
formalism and in particular still allows the vertical transport of tokens, but
firing is restricted to two adjacent nesting levels.
Apart from a proof sketch in [HKB12a] for Theorem 6.22 below, the work

concerning the restriction of ONS to a fixed depth and the results concerning
the safe variants are presented here for the first time.

6.1 Fundamentals of ONS

In the following we introduce Object Net Systems (ONS) as a generalisation
of Eos. ONS have an arbitrary nesting depth and allow the vertical transport
of net tokens, i.e. the transport of net tokens through different nesting levels,
giving one enhanced modelling capabilities and allowing one to naturally model
certain situations arising in nested structures. For example one could model
the different objects on places p̂A, p̂B and so on in Figure 3.1 by object nets if
these objects have inner behaviour or allow interaction with them. By using
a different kind of channel the event t̂A[tA] could then synchronise the system
net and the object net and additionally transport the object net from the place
p̂A in the system net to the place pA in the object net. The partial marking
p̂A[M] + p̂0 would then have changed to p̂0[pA[M]] where M is the marking of
the object net residing on p̂A at the beginning. Note that the reached marking
has now a nesting depth of 3.
In the following, we introduce the formalism and in particular present the

firing rule which is designed in such a way that firing is restricted to at most two
adjacent levels of nesting, i.e. synchronisation is only possible with an object
net below or above oneself not both and not in more depth.
After introducing the formalism, we prove that in their general form ONS

are Turing-complete.
Before introducing the formalism we have a look at another example. In

Figure 6.3 an object net resides on place p′ whose place p is again marked by
another object net. The transitions t′ and t use the same channel descriptor c
and the channel properties match. Channel properties will be defined later, for
now note that the channel property ↑N1 of t means that t wants to send a object
of type N1 upwards and the channel property ∩N1 of t′ means that it wants to
catch a object of type N1 (both via channel c). Ignoring the inner structure
of the net tokens both transitions are activated and may fire. The successor
marking is pictured in Figure 6.4. The net token previously on p′ has travelled
to p′′′, but it’s place p is now empty, because that object net has travelled in

140

6.1 Fundamentals of ONS

the vertical dimension via channel c to the place p′′. In the following a formal
description of this formalism is given.
As in the case of Eos an Object Net System (ONS for short) consist of a sys-

tem net N̂ = (P̂ , T̂ , F̂) and a finite number of object nets N = {N1, . . . , Nm},
Ni = (Pi, Ti, Fi). Black tokens can be described by the special object net N•,
which has no places and no transitions. We set N̂ := N ·∪ {N̂}. Instead of Pi,
Ti and so on we sometimes make use of the notation T (Ni) := Ti, i.e. given an
object net N the set of its transitions is denoted by T (N), the set of its places
by P (N). We use PN := ·∪N∈NP (N), P := PN ·∪ P̂ , TN := ·∪N∈NT (N), and
T := TN ·∪ T̂ to denote the set of all places and transitions.
The places are all typed via the typing function d : P → N . No place is

typed with the system net N̂ .
Transitions are labelled with channels to allow for synchronisation. Channels

consist of a descriptor taken from a finite set of channel descriptors Cd =
{c1, c2, . . . , cn} and a channel property Cp = {⇑,⇓,⇑N1 , . . . ,⇑Nm ,⇓N1 , . . . ,⇓Nm
,∪N1 , . . . ,∪Nm ,∩N1 , . . . ,∩Nm}. A channel is then an element of the set C :=
Cp × Cd, where instead of, e.g., (⇑, c1) we usually simply write ⇑ c1.
Since the system net is at the highest level of the hierarchy, not every channel

can be used there. To ease the notation later we additionally define Ĉ :=
(Cp \ {⇑,⇑N1 , . . . ,⇑Nm ,∪N1 , . . . ,∪Nm})× Cd.
The labelling functions are now defined as

l̂ : T̂ → (Ĉ ×N) ∪ {ε}

and for each i ∈ [m] as

li : Ti → (C × N̂) ∪ {ε}

which are combined to
l : T → (C × N̂) ∪ {ε}

with l(t) = l̂(t) if t ∈ T̂ and l(t) = li(t) if t ∈ Ti.
Note that each transition is labelled with exactly one channel or ε. The

intended meaning of l(t) = (c,N) is that t synchronises via channel c with a
net of type N . In the case of l(t) = ε the transition t fires autonomously.
We now describe the possible labelings together with their intended meaning

and the restrictions the labelings impose on the nets’ structure.

1. l(t) = ε, t ∈ T (N). In this case, there is no synchronisation and t fires in
principle as in a normal p/t net.

2. l(t) = (⇑ c,N ′), t ∈ T (N), N 6= N̂ . This labelling – that can not be used
in the system net N̂ – means that t wants to synchronise (via c) with a
transition in N ′, where N ′ is a net “above” N , i.e. N is a net-token in
N ′ (see Figure 6.1 and 6.2). Formally, we demand a place p′ in N ′ with
d(p′) = N and a transition t′ ∈ p′• with l(t′) = (⇓ c,N).

141

6 Object Net Systems

Figure 6.1: Before firing. Figure 6.2: After firing (t, t′) from
Figure 6.1.

Figure 6.3: Before firing. Figure 6.4: After firing (t, t′) from
Figure 6.3.

3. l(t′) = (⇓ c,N), t′ ∈ T (N ′). The complement to the above case. There is
now a place p′ ∈ •t′ with d(p′) = N and in N there is a transition t with
l(t) = (⇑ c,N ′).

4. l(t) = (⇑N1 c,N
′), t ∈ T (N), N 6= N̂ . Similar to ⇑ above. t wants to syn-

chronize (via c) with a transition in N ′ “above”. This time, additionally a
net of type N1 is sent from N through c upwards to N ′ (resp. to a place
in the postset of the transition in N ′ that uses the channel c). The situ-
ation is depicted in Figures 6.3 and 6.4. Note that the token on place p
(Fig. 6.3) resp. place p′′ (Fig. 6.4) can be an object net. Formally there is
a place p′ with d(p′) = N and a transition t′ ∈ p′• with l(t′) = (∩N1c,N).
Here the usage of the symbol ∩ shall illustrate that a net coming from
below is “caught”. Moreover, there is a place p ∈ •t with d(p) = N1 and
no place in the postset of t of this type. In N ′ there is a place p′′ ∈ t′•
with d(p′′) = N1 and no place in the preset of t′ of this type. (The net of
type N1 thus travels from p (in N) to p′′ (in N ′).)

5. l(t′) = (∩N1c,N). The complement to the case above, but similar to ⇓.
There is a place p′ ∈ •t′ with d(p′) = N and in N there is a transition t
with l(t) = (⇑N1 c,N

′). Moreover, there is a place p ∈ t• with d(p) = N1

142

6.1 Fundamentals of ONS

Figure 6.5: Before firing. Figure 6.6: After firing (t, t′) from
Figure 6.5.

and no place in the postset of t with this type, and also a place p′′ ∈ t′•
in N ′ with d(p′′) = N1 and no place in the preset of t of this type.

6. l(t) = (⇓N1 c,N
′), t ∈ T (N). Similar to ⇓ above. t wants to synchronize

via c with a transition in N ′ “below”. This time a net of type N1 is
additionally send from N through c downwards to N ′ (resp. to a place
in the postset of the transition in N ′ that uses the channel ∪N1c). The
situation is depicted in Figures 6.5 and 6.6. Note again that the token on
place p (Fig. 6.5) resp. place p′′ (Fig. 6.6) can be an object net. Formally
there is a place p ∈ •t with d(p) = N ′, a transition t′ in N ′ with l(t′) =
(∪N1c,N) and moreover a place p′ ∈ •t with d(p′) = N1 and a place
p′′ ∈ t′• with d(p′′) = N1. There is no place in the postset of t or in the
preset of t′ of type N1. (The net of type N1 thus travels from p′ (in N)
to p′′ (in N ′).)

7. l(t′) = (∪N1c,N), t′ ∈ T (N ′), N ′ 6= N̂ . Again, the complement to the
case directly above.

In addition to the above described restrictions on the nets’ structure imposed
by the labelling, we demand that each type appears at most once in the preset
and in the postset of a transition, i.e.

∀N ∈ N̂ ∀t ∈ T (N) : |{p | p ∈ •t ∧ d(p) = N}|, |{p | p ∈ t• ∧ d(p) = N}| ≤ 1

Markings.

To define markings, let OS be an object net system as above consisting of a
system net N̂ and a finite set of object nets N . Furthermore, let d : P → N
be the typing function. Now let

M0(N) := {p[0] | p ∈ P (N)}

143

6 Object Net Systems

for a N ∈ N̂ and let M0 := ∪N∈N̂M0(N). A multiset µ ∈ MS(M0(N)) for
a fixed N ∈ N̂ describes how many empty net tokens reside on each place of
N , including black tokens, which are just special net tokens. The multiset µ is
thus similar to the usual multiset of places that describes a marking of a p/t
net.
Let for each N ∈ N̂

Mi+1(N) := {p[µ] | p ∈ P (N) ∧ µ ∈ ∪k≤iMS(Mk(d(p)))} and
Mi+1 := ∪N∈N̂Mi+1(N).

Finally, let
M :=

⋃
i≥0

MS(Mi(N̂)).

The multisets in these definitions are all finite.
Each nested multiset µ ∈ M, µ =

∑n
k=1 p̂k[Mk], is a marking of the object

net system OS, where p̂k is a place in the system net and Mk is a marking of
a net-token of type d(p̂k), which again might be a nested multiset.
As in Definition 3.2, |µ| denotes the number of net tokens present in µ at the

top most level, i.e. if µ ∈MS(Mi(N)) for some N ∈ N̂ and i ∈ N, then

|µ| :=
∑

(p,µ′)∈P (N)×∪k≤iMS(Mk(d(p)))

µ(p, µ′)

Also as in Definition 3.2, we define the partial order ≤ by setting µ1 ≤ µ2

iff |µ1| ≤ |µ2| and the elements of µ1 and µ2 can be arranged in such a way
that µ1 =

∑
i p̂i[Mi], µ2 =

∑
j p̂
′
j[M

′
j] and for all k ≤ |µ1| we have p̂k = p̂′k

and Mk ≤ M ′
k, where ≤ is the recursive application of this relation. The

recursion ends with ≤ as the usual multiset relation (see Definition 3.2 and
also Chapter 2.1). Thus the same net tokens appear in µ2 with at least the
same marking as in µ1 and in µ2 additional net tokens may appear.
With � we denote the special partial order with µ1 � µ2 iff |µ1| ≤ |µ2| and

the elements of µ1 and µ2 can be arranged in such a way that µ1 =
∑

i p̂i[Mi],
µ2 =

∑
j p̂
′
j[M

′
j] and for all k ≤ |µ1| we have p̂k = p̂′k andMk = M ′

k. Thus every
net token that appears in µ1 also appears in µ2 and with the same marking.
In µ2 additional net tokens may appear. This definition is identical to the
definition of � for markings of Eos, see Definition 3.2.
For ONS a relation to address the nesting of markings is furthermore needed.

We write µOµ′ to indicate that the submarking µ′ is contained in the marking
µ within exactly one level of nesting:

µOµ′ iff ∃p ∈ P , µ′′ ∈M . µ ≡ p[µ′] + µ′′

The reflexive and transitive closure of this relation is denoted by O∗ as usual.
We also use the sets O(µ) := {µ′ | µOµ′} and O(µ)∗ := {µ′ | µO∗µ′}. Thus

144

6.1 Fundamentals of ONS

µO∗µ′ means that µ contains µ′ at some nesting level which is also expressed
by µ′ ∈ O(µ)∗.
Note that M differs for different object net systems. If necessary, we will

denote the set of possible markings of a ONS OS byMOS, but if no ambiguities
can arise, we neglect the subscript.
Given a (sub-)marking µ we use Π1(µ) to abstract away the substructure of

all net-tokens and Π2
N(µ) for the summed up marking of all net tokens of type

N ∈ N ignoring their local distribution, i.e.

Π1(
n∑
k=1

pk[Mk]) =
n∑
k=1

pk

Π2
N(

n∑
k=1

pk[Mk]) =
n∑
k=1

1N(pk) ·Mk,

where 1N : P → {0, 1} with 1N(p) = 1 iff d(p) = N . Note that the summation
in Π2

N is not recursive, i.e. a marking of a net token of type N on a deeper
nesting level is not summed up (but remains in the sub-marking Mk). Defined
in this way Π2

N is useful to describe the firing rule.

Object Net Systems, Events, and the Firing Rule.

Definition 6.1 (Object Net Systems). An Object Net System (ONS) is a
tuple OS = (N̂ ,N , d, l) with

1. The system net N̂ ,

2. a finite set of object nets N ,

3. the typing function d : P → N , and

4. the labelling function l : T → (C ×N̂)∪{ε}, which is consistent with the
structural restrictions mentioned above.

Each type appears at most once in the preset and in the postset of a transition,
i.e.

∀N ∈ N̂ ∀t ∈ T (N) : |{p | p ∈ •t ∧ d(p) = N}|, |{p | p ∈ t• ∧ d(p) = N}| ≤ 1

An ONS with initial marking is a tuple OS = (N̂ ,N , d, l, µ0) where the
initial marking µ0 ∈ M is a marking of N̂ , i.e. there is a k such that µ0 ∈
MS(Mk(N̂)).

To define events and the firing rule we distinguish four cases in accordance
with the labelling above:

145

6 Object Net Systems

1. (t, t′) ∈ T ×T with l(t) = (⇑N1 c,N
′) and l(t′) = (∩N1c,N) (cf. Figures 6.3

and 6.4).

2. (t, t′) ∈ T ×T with l(t) = (⇓N1 c,N
′) and l(t′) = (∪N1c,N) (cf. Figures 6.5

and 6.6).

3. (t, t′) ∈ T × T with l(t) = (⇑ c,N ′) and l(t′) = (⇓ c,N) (cf. Figures 6.1
and 6.2).

4. t ∈ T with l(t) = ε.

The first three cases are synchronous events, the last one describes an au-
tonomous event.
For the first case, let µ be the current marking and let λ � µ′ in which

µO∗µ′, i.e. µ has a nested net token with marking µ′ and λ is a submarking
of µ′. Furthermore, let λ′ � λ′′ where λOλ′′. The intended meaning is that
λ is the sub-marking of µ enabling t′, and λ′ is the sub-marking (of λ) that
enables t in the synchronous event. Let furthermore ρ and ρ′ be two markings
with ρ′ � ρ′′, where ρOρ′′. The intended meaning here is that ρ is the resulting
sub-marking with regard to t′, and ρ′ with regard to t. Additionally, a net of
type N1 is removed from λ′ and added to ρ.
This is expressed in the firing predicate φ⇑N1

,∩N1
:

φ⇑N1
,∩N1

(t, t′, λ, λ′, ρ, ρ′) ⇐⇒
Π1(λ) = pre(t′) ∧ Π1(ρ) = post(t′) ∧
Π1(λ′) = pre(t) ∧ Π1(ρ′) = post(t) ∧
∀N ′ ∈ N \ {N,N1} : Π2

N ′(ρ) = Π2
N ′(λ) ∧

∀N ′ ∈ N \ {N1} : Π2
N ′(ρ

′) = Π2
N ′(λ

′) ∧
Π2
N(ρ) = Π2

N(λ)− λ′ + ρ′ ∧
Π2
N1

(ρ) = Π2
N1

(λ′) ∧
Π2
N1

(ρ′) = 0

(6.1)

The first two lines take care of activation of t and t′ and the correct successor
marking. Lines 3 and 4 handle non involved object nets. The last three lines
correctly relate the different (sub-)markings with regard to the synchronous
event, i.e. with regard to the two firing transitions.
The other cases are quite similar and the third and fourth case can even be

seen as special and easier cases of the above first case. In the third case no object
net is transported and in the fourth case there is not even a synchronisation
happening.
For the second case, the firing predicate is given by

146

6.1 Fundamentals of ONS

φ⇓N1
,∪N1

(t, t′, λ, λ′, ρ, ρ′) ⇐⇒
Π1(λ) = pre(t) ∧ Π1(ρ) = post(t) ∧
Π1(λ′) = pre(t′) ∧ Π1(ρ′) = post(t′) ∧
∀N ′ ∈ N \ {N,N1} : Π2

N ′(ρ) = Π2
N ′(λ) ∧

∀N ′ ∈ N \ {N1} : Π2
N ′(ρ

′) = Π2
N ′(λ

′) ∧
Π2
N ′(ρ) = Π2

N ′(λ)− λ′ + ρ′ ∧
Π2
N1

(ρ) = 0 ∧
Π2
N1

(ρ′) = Π2
N1

(λ)

(6.2)

Note that λ now enables t, λ′ enables t′, ρ is the resulting sub-marking with
regard to t, and ρ′ with regard to t′. Furthermore, a net of type N1 is removed
from λ and added to ρ′ (and also to ρ, since ρ′ � ρ′′ and ρOρ′′). In principle,
the first two cases only differ in the last three lines that relate the different
(sub-)markings and the firing transitions.
At last, the third and fourth case:

φ⇑,⇓(t, t
′, λ, λ′, ρ, ρ′) ⇐⇒

Π1(λ) = pre(t′) ∧ Π1(ρ) = post(t′) ∧
Π1(λ′) = pre(t) ∧ Π1(ρ′) = post(t) ∧
∀N ∈ N \ {N ′} : Π2

N(ρ) = Π2
N(λ) ∧

Π2
N ′(ρ) = Π2

N ′(λ)− λ′ + ρ′

(6.3)

φε(t, λ, ρ) ⇐⇒
Π1(λ) = pre(t) ∧ Π1(ρ) = post(t) ∧
∀N ∈ N : Π2

N(ρ) = Π2
N(λ)

(6.4)

Note that the four firing predicates might at first glance look cumbersome,
but are quite similar and in particular restrict every firing to two levels, which
is far better tractable from a theoretical point of view than the firing rule
introduced in [KBH09] where a tree of synchronous transitions was able to fire.
The firing rule can now be stated as follows:

Definition 6.2 (Firing Rule). Let OS be an ONS and µ, µ′ ∈ M markings.
The synchronous event (t, t′) is enabled in µ for the mode (λ, λ′, ρ, ρ′) ∈ M4

iff a µ′ exists with µO∗µ′ and λ � µ′, a λi exists with λOλi and λ′ � λi, and
a ρi exists with ρOρi and ρ′ � ρi, and one of φ⇑N1

,∩N1
, φ⇓N1

,∪N1
, or φ⇑,⇓ holds

for (t, t′, λ, λ′, ρ, ρ′), according to the labelling of t and t′.
An autonomous event t, l(t) = ε is enabled in µ for the mode (λ, ρ) ∈M2 iff

a µ′ exists with µO∗µ′ and λ � µ′ and φε holds for (t, λ, ρ).
An event ϑ that is enabled in µ for a mode can fire: µ ϑ−−→

OS
µsucc. The resulting

successor marking is defined by removing a nested multiset and replacing it with
another one. Let in the definition of µ′ above k be such that µOkµ′, then there

147

6 Object Net Systems

are k places p1, p2, . . . , pk ∈ P and k markings µ1, µ2, . . . , µk such that µk = µ′

and µ(p1[p2[. . . [pk[µk] + µk−1] + . . .] + µ1]) = 1. The successor marking is then
defined by

µsucc = µ − p1[p2[. . . [pk[µ
′] + µk−1] + . . .] + µ1]

+ p1[p2[. . . [pk[µ
′ − λ+ ρ] + µk−1] + . . .] + µ1].

The nested marking µ′ is thus replaced by µ′ − λ + ρ. If firing happens at the
uppermost level, i.e. in case of k = 0, µ′ � µ holds.
The set of events is denoted by Θ. Firing is extend to sequences w ∈ Θ∗ in

the usual way. The set of reachable markings from a marking µ is denoted by
R(OS , µ) or simply R(µ). The reachability problem asks, given an ONS OS
with initial marking µ0 and a marking µ, if µ ∈ R(OS , µ0) holds.

As was the case for Eos, the event ϑ itself does not fully characterize the
firing. For example, a synchronous event (t, t′) ∈ T × T might be possible in
different nesting levels. Thus the mode is also important to fully characterize
the firing.

Turing-Completeness of Object Net Systems

Since an Eos can be seen as a special ONS, which does not use the channel
properties for the vertical transport of net tokens and also only has two nesting
levels, ONS are Turing-complete by Theorem 3.13. In the following we give an
alternative proof, to demonstrate the possibilities of object net systems. The
ONS constructed in the proof exploits the possibility to transport net tokens
vertically to encode counters of a counter program.

Theorem 6.3. Each counter program can be bisimulated by an object net sys-
tem.

Proof. A counter program (see Definition 2.3) has access to a fixed number
r ≥ 2 of counters and consists of a finite sequence of m commands each of
which is either an increase or a decrease operation, an operation that tests if a
certain counter is zero or not, jumping accordingly, or a halt-command.

Figure 6.7: The object nets N0 and N1 (from Theorem 6.3).

The counters are encoded by the nesting depth of the two object nets N0

and N1 depicted in Figure 6.7. The structure of both nets is identical, but the

148

6.1 Fundamentals of ONS

channels used are different. Furthermore, the places z0 and z1 are typed with
N• and d(s1) = N1 and d(s0) = N0.
To encode the number 0, the place z0 is marked in the net N0. The number

n + 1 is encoded by a net token of type Nb with b = ((n + 1) mod 2) whose
place sb′ with b′ = (n mod 2) is marked by a net token encoding the number n:

#0 := z0[0],

marking of a net of type N0

#(n+ 1) := sb[Nb,#n], b = n mod 2,

marking of a net of type (n+ 1) mod 2

The nets N0 and N1 thus alternate:

#0 = z0[0], #1 = s0[N0, z0[0]], #2 = s1[N1, s0[N0, z0[0]]], . . .

Each command cmdk in the counter program is simulated by a net fragment
N̂(k) depicted in Figure 6.8. The system net N̂ is the union of these N̂(k)
together with the fragment init in Figure 6.8.
Some net fragments share places: The places 1, 2, . . . , k, . . . , n encode the

current position in the counter program and are typed with N•. Each counter
cj is encoded by the places p0

j and p1
j where d(p0

j) = N0 and d(p1
j) = N1. For

each j only one of p0
j and p1

j is marked and the net token residing there will
encode the value of the counter as described above.
The net fragment for an increase operation has the two auxiliary places q0

k

and q1
k and the net fragment for the a decrease operation has the two auxiliary

places gbg0
k and gbg1

k. The places are typed according to their superscripts:
d(q0

k) = d(gbg0
k) = N0 and d(q1

k) = d(gbg1
k) = N1.

Finally, each program configuration C = (k, c1, . . . , cr) is encoded by a mark-
ing µ(C) where

1. From the places 1, 2, . . . , n exactly the place k is marked with a black
token.

2. For each counter cj exactly one of the places p0
j and p1

j is marked according
to the value of the counter. p0

j is marked if the value is an even number
and p1

j if the value is an odd number. The places are marked with the
net token representing that number. Thus the place pcj mod 2

j is marked
with the net token [Ncj mod 2,#cj] and the place p(cj+1) mod 2

j is unmarked.

3. All other places are unmarked.

Given a counter program CP the object net system ONS(CP) is constructed
as described above. The initial marking is µ0 := µ(C0) where C0 is the initial
configuration of CP .

149

6 Object Net Systems

Figure 6.8: Net fragments for the simulation of counter programs (from The-
orem 6.3).

We now prove that ONS(CP) simulates CP and vice versa:

C0
∗−−→
CP

C ⇔ µ(C0)
∗−−−−−−→

ONS(CP)
µC

The proof is via induction over the computation length.
In case of computation of length 0, C = C0 holds, which is correctly simulated

by µ0 = µ(C0) = µ(C).
Let C0

∗−−→
CP

C −−→
CP

C ′ with C = (k, c1, . . . , cr) and C ′ = (k′, c′1, . . . , c
′
r). Per

assumption µ(C0)
∗−−−−−−→

ONS(CP)
µ(C) holds. In µ(C) one of the places 1, 2, . . . ,m

is marked. Let this place be k. Then only in the net fragment N̂(k) events are
enabled.
There are now four possible cases depending on the command cmdk in the

counter program:

1. cj := cj + 1. Depending on the current value of the counter cj the upper
left or lower left transition is enabled. If cj has an odd value (and thus
the place p1

j is marked) a new net token of type N0 is created on q0
k.

Next, the system net and this newly created net token synchronise via

150

6.1 Fundamentals of ONS

the channel in1, which puts the net token currently on p1
j onto the place s1

of the newly created net token, which is then placed on p0
j . This correctly

encodes the counter’s new value and since the place k+ 1 is now marked,
the reached marking is µ(C ′). The case if cj has an even value is treated
analogously.

2. cj := cj − 1. Again depending on the current value of the counter cj the
upper or lower transition is enabled. If cj has an odd value, the system
net and the object net on p1

j synchronise via the channel out0. This puts
the net token on place s0 of the object net on p1

j onto the place p0
j and

the now empty net token of type N1 onto the garbage place gbg1
k and

thus decreases the counter’s value by 1. The empty net token on gbg1
k

activates the transition t1 which is the only enabled transition right now.
Firing t1 places a token on k + 1 and the reached marking is then µ(C ′).
The case if cj has an even value is again treated analogously.

3. ifzero cj jump k1 else jump k2. If p0
j is marked, the net token encodes

an even number and possibly 0. If and only if the net token on p0
j encodes

0, the place z0 of N0 is marked. Otherwise the place z0 is not marked and
the place s1 is marked with a net of type N1, which encodes a number
greater than 0. In the first case, synchronisation via the channel zero0

is possible, in the second case synchronisation via the channel pos0 is
possible. Only one of these two possible events is enabled, depending on
the marking, thus the correct place k1 or k2 is marked, arriving at the
correct marking µ(C ′). If the counter currently has an odd value and thus
the place p1

j is marked, the counter’s value is greater than 0 and the place
k2 is correctly marked. It is actually not necessary to use the channel
pos1 in this case. This is only done for reasons of symmetry. Also the
greyed transition and places are not needed because this zero test can
never succeed.

4. halt. This command terminates the counter program and is also a dead-
lock in the object net system.

The converse direction is proven analogously, i.e. whenever a marking µ(C)
for some configuration C has been reached and µ(C) is not a deadlock, it is
possible to reach a marking µ(C ′) for some configuration C ′ and if µ(C ′) is the
first marking which corresponds to a configuration, then C −−→

CP
C ′ holds.

A increment or decrement command is simulated by two successive events
where the second event is the only activated event after firing the first. Starting
from µ(C0) only few markings are thus reachable that do not correspond to a
configuration in the counter program and in these configurations exactly one
event is enabled. Firing this event then leads immediately to a marking of
ONS(CP) that again corresponds to a configuration of CP .

151

6 Object Net Systems

Furthermore, the events for decrementing a counter are only possible if the
current value of the counter is greater than 0. The test for zero is simulated
by three events, but depending on the value of the counter only one of these is
enabled. Thus, altogether at most one event is enabled at each reachable mark-
ing and this, together with a second event in case of the increase or decrease
operation, lead to markings that correspond to configurations in the counter
program.
The ONS thus simulates the counter program correctly.

Corollary 6.4. The reachability problem is undecidable for ONS.

6.2 Eos and GSM with Fixed Nesting Depth

In this section, we introduce Eos and GSM without the restriction of the nest-
ing depth to 2, but with a fixed nesting depth of k ≥ 1. Albeit a generalisation
of Eos as introduced in Chapter 3, they are introduced here as a restriction of
object net systems, because the firing rule of object net systems can be easily
restricted to fit to the case of constant depth Eos and GSMs.
Hardness and undecidability results carry over to this new class of object

systems; for example, Eos with nesting depth k ≥ 2 are Turing-complete.
However, introducing similar safeness definitions as in Chapter 5, we show

that the reachability problem for these safe variants remains in PSpace and
also discuss the LTL and CTL model checking problems for these formalisms
as we did for safe Eos.
While arbitrary nesting depths have been investigated before in [KR03a]

and [KR04], the restriction to a nesting depth with a fixed bound is new, as
are the application of safeness and the resulting complexity theoretic results.

Fundamentals

To restrict the nesting depth of ONS to a constant, the channel properties have
to be restricted to {⇑,⇓} to prevent a vertical transport of tokens and also to
prevent an increase or decrease of the nesting depth during run time. However,
an unbounded nesting depth is still possible, for example, by a net of type N1

consisting of a transition t with empty preset and a single place p in the postset
of t that again is typed with N1.
Therefore, the idea of Eos to have at one level the system net, at the next

level the object nets, and at the last level the black tokens, is generalised. At
the uppermost level is still the system net and at the lowermost level are still
the black tokens, but the levels in between are defined more gradually.

Definition 6.5 (k-level Eos and GSMs). Let OS = (N̂ ,N , d, l, µ0) be an
object net system with initial marking µ0. Different from ONS as defined in

152

6.2 Eos and GSM with Fixed Nesting Depth

Definition 6.1 it is not demanded here that each type appears at most once in
the preset and in the postset of a transition.
OS is an Eos with constant nesting depth k ≥ 1 or a k-level Eos, denoted

by Eosk for short, if N̂ := {N̂} ∪ N can be partitioned into k + 1 pairwise
disjoint sets N0,N1, . . . ,Nk such that N0 = {N̂}, Nk = {N•}, and all places
of a net N ∈ Ni, 0 ≤ i < k are typed only with nets N ′ ∈ Nj, where i < j ≤
k, i.e. d(∪N∈NiP (N)) ⊆ ∪kj=i+1Nj. Furthermore, the channel properties are
limited to {⇑,⇓}.
OS is a GSM with constant nesting depth k ≥ 1 or a k-level GSM, denoted

by GSMk for short, if it is an Eosk and additionally for all N ∈ N̂ \ {N•} the
GSM-condition

∀t ∈ T : |{p ∈ •t | d(p) = N}| = |{p ∈ t• | d(p) = N}| ≤ 1

holds and each N ∈ N̂ \ {N•} appears in µ0 at most once.

A p/t net N is thus a special k-level Eos, where k = 1, N0 = {N}, and
N1 = {N•}. Also an Eos OS = (N̂ ,N , d, l) as defined in Chapter 3 is a special
k-level Eos, where k = 2, N0 = {N̂}, N1 = N \ {N•}, and N2 = {N•}.
Since additional levels need not be used, an Eosk is also an Eosk+j for all

j ≥ 1. An analogous statement also holds for GSMk. The following Lemma
follows easily from the definitions above.

Lemma 6.6. An Eosk is also an Eosk+j for all j ≥ 1. A GSMk is also a
GSMk+j for all j ≥ 1 and also an Eosk+j for all j ≥ 0.

Since Eos2 are Turing-complete by Theorem 3.13 this result carries over to
k-level Eos with k > 2 due to the above lemma.

Corollary 6.7. Eosk are Turing-complete for k ≥ 2.

Safeness for Eosk
Similar to Eos a safeness notion can be introduced for Eosk. Here we state
a definition that generalises the definition of safe(3) Eos and in particular
guarantees a finite state space. We then prove that for Eosk with this property
the technique applied in the case of safe(3) Eos works, too, and conclude that
LTL and CTL model checking is still possible in polynomial space. Due to
Lemma 6.6 this results carry over to GSMk as well.

Definition 6.8 (Safeness for Eosk). Let OS be an Eosk for some fixed
k ≥ 1. OS is safe iff for all reachable markings there is at most one token on
each place regardless of the nesting depth in which the place may reside:

∀µ ∈ R(OS , µ0) : ∀µ′ ∈ O(µ)∗ : ∀p ∈ P : Π1(µ′)(p) ≤ 1

153

6 Object Net Systems

Note that Definition 6.8 generalises the definition of safe(3) Eos and safe
p/t nets, i.e. a safe Eos2 is a safe(3) Eos and a safe Eos1 is a safe p/t net.
Thus in these cases it is immediately clear that the state space is finite.

Indeed, this is always the case for a safe Eosk.

Theorem 6.9. The set of reachable markings of a safe Eosk is finite.

Proof. Every marking of a safe Eosk can be rewritten as a sum of lists of up
to k places. For example, let µ = p1[p′1[0] + p′3[p′′1 + p′′2]] + p2[0]. The marking
µ denotes that on the uppermost level the places p1 and p2 are marked. On
p2 resides an empty net token and on p1 resides a net token whose place p′1 is
marked by an empty net token and whose place p′3 is again marked by a net
token whose places p′′1 and p′′2 are marked. The marking µ can be rewritten
as p1[p′1[0]] + p1[p′3[p′′1]] + p1[p′3[p′′2]] + p2[0]. This is possible for every marking
µ and µ can also be reconstructed as long as the marking is interpreted as a
marking of a safe Eosk.
Now let n := max{|PN | | N ∈ N̂}. Then there are (n + 1)k different

possibilities to create a list of k places where additionally 0 is allowed, too.
(Some of these lists are not sensible, for example, p1[0[p2]] is not a marking,
but since we are only interested in upper bounds, this is of no concern here.)
Each of these lists can appear in a marking or not and thus the number of
markings is bounded by 2(n+1)k = 2O(nk) and is therefore finite.

The proof of the above theorem is similar to the proof of Theorem 5.11
establishing the finiteness of the state space for safe Eos, which is now also
implied by Theorem 6.9 above.
While finite, the bound increases considerably in comparison to safe Eos.

For small k the number 2(n+1)k already becomes huge. Nonetheless, since k is
fixed, the exponent is polynomial in the size of the safe Eosk and Savitch’s
technique, which was already used in the CTL model checking procedure for
safe Eos, is again applicable. In the next two subsections, we show that the
results concerning CTL and also LTL model checking can be generalised to safe
Eos with bounded nesting depth.

LTL Model Checking of Safe Eosk
To adapt the LTL model checking procedure from Chapter 5, markings, formu-
las, and the states of the constructed automata need to be of polynomial space
in the size of the net again. Then, given a safe Eosk OS, polynomial space in
the size of OS must suffice to decide if a given marking µ is a deadlock and
also to decide, given two markings µ and µ′ and an event ϑ, if µ ϑ−−→

OS
µ′ holds,

i.e. the Lemmata 5.20 and 5.21 have to be generalised to safe Eosk.

154

6.2 Eos and GSM with Fixed Nesting Depth

At first, the set of atomic propositions is adapted to the new setting. Let

prop := {p0[p1[. . . [pm[x]] . . .]] | m ≤ k − 1, x ∈ {0, ∗}, p0 ∈ N̂ , and
pi+1 ∈ P (d(pi)) ∀i : 0 ≤ i < m

} ∪ {0}.

As in Chapter 5 a ‘∗’ denotes that the place is marked arbitrarily, while 0
denotes that the place is marked with an empty token, which might also be a
black token.
To estimate the size of a marking, imagine a tree. The root node has up to
|P̂ | children, the places that are marked in the system net. Each of these nodes
has as children again the places that are marked in the respective net token.
With n := max{|PN | | N ∈ N̂} there are thus up to ni nodes at the ith level
and with the fix nesting depth k the number of nodes of the tree is bounded by
k · nk. A marking µ could either be represented as such a tree or as up to nk
elements of prop above each of length up to k, which corresponds to the paths
in the tree from the root to a leaf. This is similar to the way markings were
described in Chapter 5 and a computation is then a sequence of subsets of prop
again. In any way, the size of a marking is clearly polynomial in the size of
the object net system and thus also the states of the automata constructed in
the LTL model checking procedure are polynomial in the size of the net system
and the size of the formula (also see the discussion before Lemma 5.20).
As for safe Eos the two interesting points are thus, if it is possible to check in

the required space bounds whether a final state in the automaton A (resp. B)
is reached and if it is possible to check µ ϑ−−→

OS
µ′ given two markings µ, µ′ of OS

and an event ϑ.
In case of final states, the most important point is to check if a marking µ

of the Eosk OS, which is a state of the automaton AOS, is a deadlock, i.e. no
event is enabled in µ. This is indeed possible in polynomial space again.

Lemma 6.10. To check if a marking µ of a safe Eosk OS is a deadlock, is
possible in space polynomial the size of OS .

Proof. Using nondeterminism two transitions t and t′ are guessed and two
submarkings λ and λ′ of the current marking µ. It is then checked if t and t′
have matching labels and, if so, if λ and λ′ fulfil the conditions of the enabling
predicate. If so, ρ and ρ′ can be constructed according to the enabling predicate.
If this is possible without contradiction there is no deadlock.
Alternatively, it is possible to iterate through the transitions. For each tran-

sition t another transition t′ with a matching label is located, if possible. Then
the markings λ, λ′, ρ, and ρ′ are constructed with regard to the transitions t and
t′, the appropriate enabling predicate, and with regard to the current marking
µ.
In both cases, the calculations simplify, if an autonomous event is enabled.

Since the submarkings λ and λ′ are smaller than µ and only some lookups

155

6 Object Net Systems

and basic mathematical operations like addition and subtraction are necessary,
the whole test is possible in polynomial space in the size of the object net
system.

Finally, an analogon to Lemma 5.21 is needed.

Lemma 6.11. Given a safe Eosk OS , two markings µ and µ′, and an event
ϑ, it is possible to decide in polynomial space in |OS | if µ ϑ−−→

OS
µ′ holds.

Proof. Since OS is a safe Eosk, it is possible, similar to the proof of
Lemma 5.21, to calculate the submarkings λ and λ′ from µ and the event
ϑ according to the enabling predicate. The possible modes differ only in ρ and
ρ′ and there only in the distribution of the tokens to net tokens of the same
type but on different places in the postsets of the firing transitions. Using µ′
it is possible to calculate the correct mode, if one exists. Since only a constant
number of additional temporal variables are needed, the whole procedure can
be implemented in the stated space bound.

With Lemmata 6.10 and 6.11 above LTL model checking can be accomplished
for safe Eosk. In particular, Algorithm 2 and Theorem 5.22 can be carried over
to the setting here and thus the following theorem and corollary hold:

Theorem 6.12. Given a safe Eosk OS and an LTL formula φ, checking
whether OS satisfies φ can be done in polynomial space in the size of OS and
φ, that is, there is a polynomial p, independent of OS and φ, such that the
algorithm uses O(p(|OS |+ |φ|)) space.

Corollary 6.13. The reachability problem for safe Eosk is PSpace-complete.

CTL Model Checking of Safe Eosk
CTL model checking of safe Eos is treated in Section 5.3. The approach there
can be carried over with small adaptions to the case of safe Eosk, most notably
because the state space of a safe Eosk of size n is bounded by 2p(n) where p is
a polynomial. This polynomial is, in general, of a higher order than in the case
of safe Eos, but it is still a polynomial.
At first the set of atomic propositions is extended by the set of events:

prop := {p0[p1[. . . [pm[x]] . . .]] | m ≤ k − 1, x ∈ {0, ∗}, p0 ∈ N̂ , and
pi+1 ∈ P (d(pi)) ∀i : 0 ≤ i < m

}∪{0}∪Θ

The semantic of Definition 5.24 is easily adapted to the new setting. Of
course, to check if OS, µ |= p holds, becomes more intricate if p is a nested
sequence of places p = p0[p1[. . . [pm[0]], but it is still possible in polynomial time

156

6.2 Eos and GSM with Fixed Nesting Depth

in the size of OS. If a marking is represented as elements of prop, this is clearly
possible, if a marking is represented as a tree, as described in the treatment of
LTL model checking above, it is only necessary to follow an appropriate path
from the root, which is obtained from the proposition itself.
The interesting part is, if OS, µ |= p can still be decided in polynomial time,

if p is an event. By the procedure outline in the proof of Lemma 6.11 this is
also possible and thus a lemma similar to Lemma 5.25 can be established:

Lemma 6.14. Let OS be a safe Eosk, µ a marking of OS and p ∈ prop. It is
possible to decide in polynomial time in the size of OS if OS , µ |= p holds.

Since Lemma 5.26 can be carried over by use of Lemma 6.11 the main pro-
cedure outlined in Algorithm 3 in Section 5.3 can also be used for safe Eosk.
Analogous statements to Lemmata 5.27 and 5.29 can also be established.

The bound, however, is no longer 2n
2+n, but 2(n+1)k = 2O(nk) as evident in the

proof of Theorem 6.9 above.

Lemma 6.15. Let OS be a safe Eosk, let n := max{|PN | | N ∈ N̂}, and let
µ be a node of RG(OS). Then

OS , µ |= E[φ1Uφ2] ⇐⇒ OS , µ |= E[φ1U2(n+1)kφ2]

OS , µ |= EGφ ⇐⇒ OS , µ |= EG
2(n+1)kφ.

From this it follows that the Algorithms 4, 5, and 6 can be used for safe
Eosk, too, where the upper bound for the number k in the Algorithms 4 and 6
has to be changed to 2(n+1)k .
These algorithms can be implemented using only polynomial space in the size

of the safe Eosk and the CTL formula φ (see Lemmata 5.28 and 5.30). However,
recapitulating the discussion before Lemma 5.28 the space needed is now in
O(max{s(φ1), s(φ2)} + |OS |k · |OS |k) for checkEU(µ, φ1, φ2) and, respectively,
in O(s(φ) + |OS |k · |OS |k) for checkEG(µ, φ), because of the size of the state
space evident in the proof of Theorem 6.9 and in Lemma 6.15 and the larger
amount of space needed to store a marking of an safe Eosk. Putting it together
a generalisation of Theorem 5.31 is possible:

Theorem 6.16. Given a safe Eosk OS and a CTL formula φ checking whether
OS satisfies φ can be done in O(|OS |2k · |φ|) space.

Since k is a constant the bound given in the theorem above is polynomial.
Moreover, since Algorithm 7 can also be adapted, liveness can be decided in
polynomial space for safe Eosk:

Corollary 6.17. The liveness problem for safe Eosk is PSpace-complete.

In summary, LTL and CTL model checking of safe Eosk is possible in a
similar way as for safe Eos. The polynomial depends on k and worsens with
increasing k, but since k is a constant, the procedures only need polynomial
space in the size of the Eosk and the formula.

157

6 Object Net Systems

6.3 Safeness for ONS

Turning again to ONS, a safeness definition similar to the one for Eosk, which
lead to algorithms in PSpace, is desirable. The condition from Definition 6.8

∀µ ∈ R(OS , µ0) : ∀µ′ ∈ O(µ)∗ : ∀p ∈ P : Π1(µ′)(p) ≤ 1

ensures for ONS, as well, that in every reachable marking there is at most one
token on each place. However, due to the unrestricted nesting depth the state
space might become infinite nonetheless. Figure 6.9 shows an example. The
system net consists of only one place p̂ and there is only one object net type N .
The initial marking is p̂[p1[0]]. The net token on place p̂ may now synchronise
with the net token on its place p1, i.e. the event (t2, t1) is enabled and may fire
resulting in the successor marking p̂[p2[p1[0]]], i.e. in the net token on the deep-
est nesting depth an empty net token was created on place p1. The situation
is now similar as before and the event (t2, t1) is again activated, this time at a
different nesting level. Firing again results in the marking p̂[p2[p2[p1[0]]]]. This
can be repeated infinitely often, resulting in an infinite state space. However,
each net token is 1-safe, if the inner marking of the nested tokens are ignored,
i.e. the condition above holds.

Figure 6.9: An ONS whose net tokens are all 1-safe but whose reachability set
is infinite nonetheless.

For safe ONS finiteness of the state space is therefore explicitly required:

Definition 6.18 (Bounded and Safe ONS). Let OS be an ONS with initial
marking µ0. OS is bounded iff |R(OS , µ0)| < ∞, i.e. if the set of reachable
markings of OS is finite.
OS is safe iff OS is bounded and there is at most one token on each place,

that is, if |R(OS , µ0)| <∞ and

∀µ ∈ R(OS , µ0) : ∀µ′ ∈ O(µ)∗ : ∀p ∈ P : Π1(µ′)(p) ≤ 1

While the state space of a safe ONS is now finite by definition and every
net token is 1-safe with regard to the projection Π1, the state space might,
unfortunately, still become very big.

158

6.3 Safeness for ONS

Figure 6.10 shows an example. The system net is given by N̂ = N0 on
the upper left. Then there are k − 1 object nets N1, . . . , Nk−1 with identical
structure, but differing labeling. They are given at the lower left. At last, there
is an object net Nk given to the right of Figure 6.10. The initial marking is p̂[0],
i.e. the system net place p̂ is marked by a black token. By firing the transition
to the left, two empty net tokens of type N1 are created on the places p̂1 and
p̂2. By firing the next two transitions in the system net, in the net tokens of
type N1 two net tokens of type N2 are created and the tokens are moved to p̂′1
and p̂′2, respectively. This is continued and finally there are 2k net tokens of
type Nk each marked with two black tokens. Each of these black tokens can
now be removed or not resulting in 22k+1 possibilities. Thus, the size of the
state space is bounded from below by 22k+1 and since k is the number of net
token types and the size of the net system is polynomial in k, the state space
is exponential in the size of the net system.

Figure 6.10: A safe ONS with a state space of exponential size.

Savitch’s technique to solve the reachability problem is still applicable in this
case, but since log 22k+1

= O(2k), the calculation is not possible in polynomial
space anymore. Indeed, it seems that the reachability problem for safe ONS is
far beyond PSpace and requires exponential time or worse. We conjecture:

Conjecture 6.19. The Reachability problem for safe ONS is Exptime-
complete.

Additionally forbidding the creation of net tokens, reduces the size of the
state space considerably and, even if the state space is often larger than in the
case of Eosk due to the different possible nestings, allows to solve the reach-
ability problem in PSpace again. This restriction is similar to the restriction
employed for GSM (see Definition 4.6) and is indeed not as severe as it might
seem at first glance. The following definition simply does not allow the creation

159

6 Object Net Systems

or destruction of net-tokens which – if net tokens are interpreted as agents –
might not be so undesirable at all.

Definition 6.20. Let OS be an ONS and µ =
∑n

k=1 pk[Mk] be a marking of
OS . With Π3

N(µ) we denote the number of net-tokens of type N present in µ,
i.e.

Π3
N(

n∑
k=1

pk[Mk]) =
n∑
k=1

1N(pk) + Π3
N(Mk).

Π3
N(µ) is thus calculated recursively, where Π3

N(0) = 0.

Definition 6.21 (Strongly safe ONS). Let OS be an ONS with initial mark-
ing µ0. OS is strongly safe iff OS is safe and Π3

N(µ) = Π3
N(µ′) holds for all

µ, µ′ ∈ R(OS , µ0) and for all N ∈ N \ {N•}, i.e. no net tokens are created nor
destroyed

Theorem 6.22. Let OS be a strongly safe ONS. The size of the state space of
OS is bounded by 2p(|OS |) where p is a polynomial.

Proof. Assume that k net tokens are present in OS . Furthermore, for N ∈ N̂
let PN be the set of places of N . Let n := max{PN | N ∈ N̂} be the maximal
number of places of the involved nets.
We give an (rough) upper bound for the number of reachable markings.

Assume that all k net tokens reside on one system net place p̂. Ignoring the
nesting and in particular the structure of nested tokens and thus only taking
into account if a place of a net token is marked or not, we have an upper bound
of (2n)k = 2n·k different markings, because each net token is 1-safe and thus
has at most 2n different markings and because we have k net tokens.
To give a bound for the number of different nestings, we use Cayley’s formula

according to which the number of different trees on n nodes is nn−2 [Cay89].
Note that the nesting of the k net tokens can be represented by forests, i.e. by
a set of trees. The root of each tree represents a net token residing on p̂. The
children of a node v of the tree represent net tokens residing in the net token
represented by v.
At most we have k trees and each of the k net tokens may be part of one of

those trees, so we have at most kk different trees. In each of these possibilities
we have at most k trees and each tree has at most k nodes, so we have an
upper bound of kk · k · kk−2 < k2k for the number of forests on k nodes (where
the last factor comes from Cayley’s formula). This bound is only a rough
approximation, but it suffices here.
Taking the number m := |P̂ | of system net places into account we end up

with at most (k2k ·2nk)m ≤ (k2k ·2nk)n = k2kn ·2nkn = 2log k·2kn ·2nkn < 22kkn+nkn

markings. Since 2kkn + nkn is clearly a polynomial in the input length, the
proof is complete.

160

6.4 Summary

With the established space bound, the approach used to show that LTL and
CTL model checking is in PSpace for safe Eosk can be adapted. A strongly
safe ONS with k net tokens can in many cases be seen as an Eosk, because no
tokens are created in the ONS and thus the k net tokens might at most be nested
into each other to create a nesting of depth k. As set of atomic propositions it is
thus possible to take the same sets used in the case of safe Eosk. Lemmata 6.10
and 6.11 and subsequently also Theorem 6.12 and Corollary 6.13 then carry
over to strongly safe ONS easily. In the proofs it is only necessary to take
the two firing predicates into account, too, which where not important in the
case of safe Eosk (see equations 6.1 and 6.2). For these only a few more tests
are necessary that can easily be done in polynomial space. Hardness follows
from the proof of Lemma 4.20. There it is shown that the reachability problem
is PSpace-hard for ppGSMs and this proof can be carried over one-to-one to
strongly safe ONS.
For CTL model checking the Lemmata 6.14 and 6.15 can also be carried over,

albeit in Lemma 6.15 the bounds change according to the bound established
in the proof of Theorem 6.22 above. The exponent of this bound, however, is
still a polynomial in the input size and thus Theorem 6.16 and Corollary 6.17
can be carried over to strongly safe ONS, as well.
Thus the following theorem and corollary hold for strongly safe ONS:

Theorem 6.23. Given a strongly safe ONS OS , a CTL formula φ, and a
LTL formula ψ. Checking whether OS satisfies φ can be done in polynomial
space in the size of OS and φ. Checking whether OS satisfies ψ can be done in
polynomial space in the size of OS and ψ.

Corollary 6.24. For strongly safe ONS the reachability and the liveness prob-
lem are PSpace-complete.

Comparing strongly safe ONS and safe Eos as modelling languages, strongly
safe ONS are on the one hand enhanced, since the vertical transport of tokens
is possible. On the other hand, they are restricted, since the creation and
destruction of net tokens is forbidden. Strongly safe ONS thus have additional
modelling features, on the one hand, and lack some other modelling features, on
the other. But due to the restrictions, LTL and CTL model checking procedures
can again be implemented, using only polynomial space. Strongly safe ONS can
thus be seen as an alternative to safe Eos in certain cases where the additional
modelling capability is of interest.

6.4 Summary

Due to the results from Chapter 4 and 5 safe Eos are established as a formalism
with, in comparison to Eos, no structural restrictions and a safeness restrictions

161

6 Object Net Systems

guaranteeing that the size of the state space is finite and that LTL and CTL
model checking are possible in polynomial space.
Diverging from the search for sensible restrictions of Eos in the last two

chapters, we enhanced Eos in this chapter.
We introduced ONS which give an modeller the possibility to model certain

applications where the vertical transport of tokens is of importance. For ex-
ample, if an object that is already modelled by a net token is put into another
object also modelled by a net token. As restrictions of ONS, extensions of Eos
and GSMs were introduced, namely Eosk, GSMk, i.e. Eos and GSMs with an
arbitrary but fixed nesting depth.
ONS and Eosk are unsurprisingly Turing-complete due to the results for

Eos. However, introducing a safeness concept similar to the one for safe Eos
it is again possible to decide in polynomial space, given a safe Eosk OS and a
CTL or LTL formula φ, whether OS satisfies φ or not.
For ONS a similar safeness notion as for Eosk leads to a state space size

that is not bounded in such a way that the techniques used before are again
applicable. However, a stronger safeness notion was introduced and for these
strongly safe ONS it is again possible to decide the LTL and CTL model check-
ing problem in polynomial space.
With these three formalisms, namely safe Eos, safe Eosk, and strongly safe

ONS, three formalisms have been established which allow to model applica-
tions in which mobility, nesting, and interaction of objects are important, but
which also allow to verify properties of the model expressed in LTL or CTL in
polynomial space. Safe Eos have a smaller polynomial bound in comparison
with safe Eosk, which in exchange allow a deeper nesting of net tokens. In
strongly safe ONS the nesting might then change and the net tokens may also
travel in the vertical dimension, but no creation of net tokens is allowed.
Finally, we want to point out that the temporal logics LTL and CTL have

their drawbacks when it comes to ONS. Although LTL and CTL are quite
expressive, it is only possible to reason about time with them. In the setting
here, the locations of object nets become important as well. One might want
to specify that a certain agent is at least somewhere with regard to the places
and the nesting. However, to describe this with CTL or LTL one might end up
designing an formula of infinite length.
A logic is needed that allows to reason about the nesting and the location

of net tokens of an object net system. Inspired by the work of Cardelli and
Gordon on their Ambient Logic, introduced for the Ambient Calculus, a process
calculi that allows a nesting of process terms (cf. [CG00b] and [CG00a]), an
operator “somewhere” could be introduced to describe that a formula holds at
some nesting level of the current marking. Let � be this new operator. The
semantic could be defined as follows:

∀µ ∈M µ |= �φ iff ∃µ′ : µ′ ∈ O(µ)∗ ∧ µ′ |= φ

162

6.4 Summary

The relation µ |= �p[∗] holds if in the marking µ an object net N resides (in
some nesting depth) whose place p is marked (in an arbitrary way). With a
“finally” operator F as for CTL or LTL the formula F � p[T] is satisfied in a
marking µ, if from µ a marking µ′ is reachable that satisfies �p[T].
Such a logic allows us then not only to reason about the evolution of the

described system in time, but also about spatial configurations, about locations,
and, in particular, about the nesting of object nets.
The formalism of ONS has been published as joint work with Michael Köhler-

Bußmeier in [KBH09] in a different form. The firing rule there was more com-
plicated and whole trees of transitions where allowed to fire. The formalism of
ONS as presented here is published in [HKB12a]. It restricts the transitions
participating in an event to only two adjacent levels.
The notions and results from Sections 6.2 and 6.3 are, apart from a prelimi-

nary result in [HKB12a], presented here for the first time.
A first sketch of a logic with the properties discussed above can also be found

in [HKB12a]. This work is inspired by the work of Cardelli and Gordon on the
Ambient Calculus and the Ambient Logic [CG00b], [CG00a].

163

6 Object Net Systems

164

7 Conclusion

A number of formalisms are known by now that in one way or the other apply
the concept of nesting to Petri nets (or process algebraic terms). These for-
malisms aim at capturing the idea of nested structures and mobility of objects
and, by design of the firing rule, the idea of interaction between these objects.
Mobility, interaction, and the nesting of structures are probably some of the

most important concepts when designing future computational systems. Due
to the various possible interactions and movements, these systems tend to be
complicated. Hence, suitable modelling languages are of great importance, as
is the possibility to automatically verify properties of the model.
These modelling languages include elementary object systems, which have

been in the focus of this thesis. Being Turing-complete in its general form,
Eos are suitable to model applications in, e.g., an agent context, but verifying
properties of the model automatically is out of reach. This is a severe drawback
to the usability of this formalism in practice.
Consequently, the main goal of this thesis is to restrict the formalism in such

a way that modelling is still comfortably possible, but important problems
become decidable – and that with as little usage of resources as possible. The
focus of our attention was the reachability problem as one of the most important
and also most basic verification problems.
This goal has successfully been reached in terms of the following results:

Structurally restricting the participating nets alone, is not enough if one strives
for a formalism in which the reachability problem is easily solvable. This is ev-
ident in, e.g., the ppGSMs and the free-choice GSMs investigated. In both
formalisms the restriction to the system net and to the object nets are such
that, if treated as p/t nets, the reachability problem is solvable in polynomial
time, yet the ability to interact worsens the complexity to PSpace-hardness in
the case of ppGSMs and even to ExpSpace-hardness in the case of free-choice
GSMs. Even after restricting the possibilities to interact by utilising the re-
strictions devised for the definitions of deterministic and strongly deterministic
GSMs, these complexity bounds remain.
The restriction to safe Eos that restricts the set of reachable markings and

is thus a dynamic restriction, then leads to the surprising result that not only
reachability but every property that can be expressed in the temporal logics
LTL or CTL can be verified in polynomial space. This result holds without
any further structural restriction.

165

7 Conclusion

Table 7.1: Complexity of the reachability problem for various structurally re-
stricted formalisms.
strongly deterministic deterministic general

ttGSM P ? ?
ppGSM PSpace-complete PSpace-complete PSpace-complete
ptGSM NP-hard PSpace-hard PSpace-hard
tpGSM ? ? ?
acGSM NP-hard NP-hard NP-hard
cfGSM NP-complete NP-hard NP-hard
fcGSM ExpSpace-hard ExpSpace-hard ExpSpace-hard
GSM ExpSpace-hard ExpSpace-hard ExpSpace-hard
cEos undecidable undecidable undecidable
Eos undecidable undecidable undecidable

Table 7.2: Complexity of the reachability problem for system safe Eos with
further structural restrictions.
strongly deterministic deterministic general

ttGSM P ? ?
ppGSM PSpace-complete PSpace-complete PSpace-complete
ptGSM NP-hard PSpace-hard PSpace-hard
tpGSM ? ? ?
acGSM NP-hard NP-hard NP-hard
cfGSM NP-complete NP-hard NP-hard
fcGSM ExpSpace-hard ExpSpace-hard ExpSpace-hard
GSM ExpSpace-hard ExpSpace-hard ExpSpace-hard
cEos undecidable undecidable undecidable
Eos undecidable undecidable undecidable

Also evident in the investigations is, that additional structural restrictions,
i.e. considering Eos that are safe and also structurally restricted, are not only
unnecessary, but actually do have little to none effect in most cases. The thresh-
old only seldom drops below PSpace. Moreover, weaker safeness restrictions,
like in the definition of system safeness, where the restriction mainly lies with
the system net, are not enough. The thresholds are in the cases investigated
identical to the general formalisms without the requirement of system safeness.
The results concerning the complexity of the reachability problem for the

various introduced and studied formalisms are summarised in Tables 7.1, 7.2,
and 7.3. The abbreviation cEos is used for conservative Eos. Note that
unless stated otherwise, the reachability problem is decidable for the considered
formalism.
The severe lower bounds for the structurally restricted formalisms are evident

in Table 7.1. Table 7.2 lists the results for system safe formalisms. The results

166

Table 7.3: Complexity of the reachability problem for safe Eos with further
structural restrictions.
strongly deterministic deterministic general

ttGSM P PSpace PSpace
ppGSM PSpace-complete PSpace-complete PSpace-complete
ptGSM NP-hard, PSpace PSpace-complete PSpace-complete
tpGSM PSpace PSpace PSpace
acGSM PSpace PSpace PSpace
cfGSM P PSpace PSpace
fcGSM PSpace-complete PSpace-complete PSpace-complete
GSM PSpace-complete PSpace-complete PSpace-complete
cEos PSpace-complete PSpace-complete PSpace-complete
Eos PSpace-complete PSpace-complete PSpace-complete

Table 7.4: Complexity of the reachability problem for further formalisms
unary Eos persistent Eos semi-bounded Eos

reachability undecidable undecidable ExpSpace-hard

obtained are identical, but it might be possible that the bounds diverge a little
in further investigations. Note that while reachability and also liveness was
shown to be undecidable for conservative and also system safe and conservative
Eos, boundedness becomes decidable for these net classes. Nonetheless, with
the bounds obtained the formalisms in Tables 7.1 and 7.2 are hardly useable
for modelling, if there is a need to verify properties of the created models.
The results concerning the safe formalisms are summarised in Table 7.3. A

main result of this thesis is, that in case of a PSpace-bound, not only the
reachability problem is solvable in PSpace, but every property expressible in
LTL or CTL.
Table 7.4 lists further investigated formalisms not central to the study here.
The conclusion of this work is thus that, if possible, a safe formalism should

be used to model a system. This model can then be analysed with algorithms
that run in acceptable time and space bounds. Moreover, no further structural
restrictions are necessary in case of a safe formalism.
The relevance of such verification algorithms can hardly be overestimated.

The models of systems, that employ mobility and interaction of diverse entities,
are usually complex. Thus not all details and implications can be seen easily,
not even by the designer him- or herself. It is thus of great significance to be
able to verify automatically if certain properties are satisfied.
Furthermore, although it is quite often possible that a modeller can guarantee

that his or her model is safe, another useful advantage of the safe Eos is, that
it is also possible to verify automatically in PSpace if a given model is safe or
not.

167

7 Conclusion

Table 7.5: Complexity of the reachability problem for ONS-like formalisms
ONS strongly safe ONS safe Eosk safe GSMk

reachability undecidable PSpace-complete

Thus the goal stated in the introduction to restrict the formalism of ob-
ject nets in such a way that important problems become decidable, has been
reached. To ascertain that the formalisms proposed are also useful for the mod-
elling of systems, models of practical relevant applications need to be created
with them and the benefit of the models need to be evaluated. While it is
likely that the examples addressed in the introduction can be modelled with
safe Eos, as well, this would have to be done in detail. This, however, as
well as the creation of models of other applications is out of the scope of this
dissertation and is a topic in its own right.
Diverging from the main branch of this work, in Chapter 6 object net sys-

tems are introduced as an extension of elementary object systems and not a
restriction. They allow the vertical transport of tokens and hence an arbitrar-
ily nesting depth. Eos resp. GSMs with an arbitrary but fixed nesting depth
are furthermore introduced as an restriction of object net systems that do not
allow the vertical transport of tokens.
From a modelling point of view, these formalisms are quite attractive, since

they allow a true exchange of net tokens and thus take the concept of mobility
one step further.
Since they are an extension of Eos, structural restrictions will be of little

help: The negative results from structurally restricted Eos will carry over to
the new formalism. However, safeness concepts similar to the concepts for
Eos and GSMs can be established and it turns out that, albeit the polynomial
worsens, reachability can again be decided using only polynomial space. More-
over, similar results for LTL and CTL model checking can again be established,
i.e. not only reachability, but also every other property expressible in LTL or
CTL can be checked for safe Eosk, safe GSMk, and strongly safe ONS using
only polynomial space in the size of the net system and the formula. These
formalisms can thus be seen as an alternative to safe Eos also allowing verifica-
tion procedures in PSpace, but offering different modelling capabilities. The
results for ONS and restricted variants are summarised in Table 7.5.
Altogether, almost 100 different formalisms are treated in this thesis. Some

of these, namely Eos, conservative Eos, and GSMs have been known before
the work presented in this thesis, but most of them are new, as are the im-
portant definitions of determinism and safeness, the thorough analysis of the
reachability problem for these formalisms, and the main results about LTL and
CTL model checking of safe Eosk, safe GSMk, and strongly safe ONS.
We have arrived at formalisms that we believe will prove helpful, allowing the

modelling of many applications involving systems in systems, moving objects,

168

and communication, while still permitting algorithmic verification and analysis
of the model used employing only affordable resources.

Outlook and Open Questions

The unsolved cases in the tables above, i.e. the cases where the upper and
lower bounds do not match or one or both of them are unknown, are naturally
open questions. However, from a practical point of view and with regard to
the subject of this thesis, solving these questions will only have little impact.
The lower bounds in Table 7.1 are in most cases already so high that finding an
algorithm and thus an upper bound will hardly be of practical relevance. Pin-
pointing the exact complexity of the safe formalisms (see Table 7.3) is of more
practical value, since in some cases the threshold might drop below PSpace.
However, the structural restrictions are in most cases quite severe and it is thus
doubtful that such a restricted formalism is useful for modelling. It seems that
in case of a safe Eos with only modest structural restrictions the reachability
problem is promptly PSpace-hard and thus the PSpace-algorithm proposed
is optimal with regard to complexity classes.
Nevertheless, research into algorithms for the reachability problem or other

verification problems for these object net formalisms might shed new light onto
the formalisms and help to find other suitable restrictions for which faster
algorithms can be designed. Furthermore, the PSpace-algorithms described
in this thesis can surely be improved. The resulting algorithms will still run in
PSpace, but the polynomial will be smaller.
For the design of better algorithms it might also be interesting to investigate

the differences between safe and system safe and especially between safe(3) and
safe(4) in more detail. In the first case, the practical relevance is again limited,
because the lower bounds known are already quite bad. In the second case one
will not be able to bypass the PSpace-bound, but the bounds in the case of
safe(4) Eos might nonetheless be better than in the case of the more liberal
safe(3) Eos.
Another line of research only partly covered by the restrictions investigated

here is concerned with compositionality. Here the goal is to define restric-
tions such that problems for the whole system can be solved by examining the
system’s components in isolation. Dworzański and Lomazova recently investi-
gated what requirements are necessary in their nested nets formalisms such that
boundedness and liveness can be decided in a compositional way [DL11, DL12].
The requirements are quite involved and seem too strong, but they give a first
important result in this area.
What requirements could be imposed upon Eos and object net systems

to solve problems in a similar compositional way, is an open question, but
it is likely that the results in this matter would be beneficial for both the
modeller and the verifier. The modeller would probably benefit from a more

169

7 Conclusion

rule-based modelling framework and the verifier would be able to design efficient
algorithms.
Other approaches, successfully used in the verification of systems, like partial

order model checking or symbolic model checking, might also be transferred or
applied to object net systems, but each such topic is probably a thesis in its
own right.
Finally, from a practical point of view, it would be nice to have tool support

for the modelling of systems with the formalisms presented here. In these tools
the verification algorithms designed in this thesis and future algorithms could
be implemented so that the models could be verified automatically. With such
a tool the design and construction of mobile systems could be dramatically
simplified. With the results for safe Eos and strongly safe ONS, this thesis has
laid the fundamentals for the algorithmic aspects of such a tool.

170

Bibliography

[BBPP05] Marek A. Bednarczyk, Luca Bernardinello, Wiesław Pawłowski,
and Lucia Pomello. Modelling mobility with Petri hypernets. In
Josè Luiz Fiadeiro, Peter D. Mosses, and Fernando Orejas, editors,
Recent Trends in Algebraic Development Techniques. 17th Inter-
national Workshop, WADT 2004, Barcelona, Spain, March 27-29,
2004. Revised Selected Papers, volume 3423 of Lecture Notes in
Computer Science, pages 28–44. Springer-Verlag, 2005.

[BJP06] Marek A. Bednarczyk, Wojciech Jamroga, and Wiesław
Pawłowski. Expressing and verifying temporal and structural prop-
erties of mobile agents. Fundamenta Informaticae, 72(1-3):51–63,
2006.

[BJP12] Marek A. Bednarczyk, Piotr Jóźwiak, and Wiesław Pawłowski.
A class of hypernets with token creation and decidable reachabil-
ity problem. In Louchka Popova-Zeugmann, editor, Proceedings
of the 21st International Workshop on Concurrency, Specification,
and Programming (CS&P 2012), volume 928, pages 37–48. CEUR
Workshop Proceedings, 2012.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Check-
ing. The MIT Press, Cambridge, Massachusetts, 2008.

[BT87] Eike Best and P.S. Thiagarajan. Some classes of live and save
Petri nets. In K. Voss, H. J. Genrich, and G. Rozenberg, editors,
Concurrency and Nets, Advances in Petri Nets, pages 71–94. Sprin-
ger-Verlag, 1987.

[Cay89] Arthur Cayley. A theorem on trees. Quarterly Journal of Pure and
Applied Mathematics, 23:376–378, 1889.

[CCGR99] A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV:
a new symbolic model verifier. In N. Halbwachs and D. Peled,
editors, Proceedings Eleventh Conference on Computer-Aided Ver-
ification (CAV’99), volume 1633 of Lecture Notes in Computer Sci-
ence, pages 495–499. Springer-Verlag, 1999.

171

Bibliography

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of
synchronization skeletons using branching-time temporal logic. In
Dexter Kozen, editor, Proceedings Logics of Programs, Workshop,
Yorktown Heights, New York, May 1981, volume 131 of Lecture
Notes in Computer Science, pages 52–71. Springer-Verlag, 1981.

[CEP93] Allan Cheng, Javier Esparza, and Jens Palsberg. Complexity re-
sults for 1-safe nets. In Proceedings of the 13th International Con-
ference on the Foundations of Software Technology and Theoretical
Computer Science, volume 761 of Lecture Notes in Computer Sci-
ence, pages 326–337. Springer-Verlag, 1993.

[CEP95] Allan Cheng, Javier Esparza, and Jens Palsberg. Complexity re-
sults for 1-safe nets. Theoretical Computer Science, 147:117–136,
1995.

[CG00a] Luca Cardelli and Andrew D. Gordon. Anytime, anywhere.
modal logics for mobile ambients. In Proceedings of the 27th
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 365–377. ACM Press, 2000.

[CG00b] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoret-
ical Computer Science, 240:177–213, 2000.

[CH94] Søren Christensen and Niels Damgaard Hansen. Coloured Petri
nets extended with channels for synchronous communication. In
Robert Valette, editor, Application and Theory of Petri Nets 1994,
15th International Conference, Zaragoza, Spain, June 20-24, 1994,
Proceedings, volume 815 of Lecture Notes in Computer Science,
pages 159–178. Springer-Verlag, 1994.

[CHEP71] F. Commoner, A. W. Holt, S. Even, and A. Pnueli. Marked di-
rected graphs. Journal of Computer and System Sciences, 5:511–
523, 1971.

[CLM76] E. Cardoza, Richard J. Lipton, and Albert R. Meyer. Exponential
space complete problems for Petri nets and commutative semi-
groups. In Ashok K. Chandra, Detlef Wotschke, Emily P. Fried-
man, and Michael A. Harrison, editors, Proceedings of the 8th An-
nual ACM Symposium on the Theory of Computing (STOC’76),
pages 50–54. ACM, 1976.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms. MIT Press, third edi-
tion, 2009.

172

Bibliography

[CT12] Frédéric Cristini and Catherine Tessier. Nets-within-nets to model
innovative space system architectures. In Serge Haddad and Lucia
Pomello, editors, Application and Theory of Petri Nets. 33rd In-
ternational Conference, PETRI NETS 2012. Hamburg, Germany,
June 2012. Proceedings, volume 7347 of Lecture Notes in Computer
Science, pages 348–367. Springer-Verlag, 2012.

[CVN05] G. Castagna, J. Vitek, and F. Zappa Nardelli. The seal calculus.
Information and Computation, 201:1–54, 2005.

[CZG+03] Witold Charatonik, Silvano Dal Zilio, Andrew D. Gordon, Supratik
Mukhopadhyay, and Jean-Marc Talbot. Model checking mobile
ambients. Theoretical Computer Science, 308:277–331, 2003.

[DE91] Jörg Desel and Javier Esparza. Reachability in reversible free
choice systems. In Christian Choffrut and Matthias Jantzen, edi-
tors, STACS 91. 8th Annual Symposium on Theoretical Aspects of
Computer Science Hamburg, Germany, February 14-16, 1991 Pro-
ceedings, volume 480 of Lecture Notes in Computer Science, pages
384–397. Springer-Verlag, 1991.

[DE93] Jörg Desel and Javier Esparza. Reachability in cyclic extended free
choice systems. Theoretical Computer Science, 114:93–118, 1993.

[DE95] Jörg Desel and Javier Esparza. Free choice Petri nets. Cambridge
University Press, New York, NY, USA, 1995.

[DK06] Roxana Dietze and Manfred Kudlek. Subclasses of minmal based
object nets with decidable reachability problem. In Bericht 267,
Tagungsband des 13. Workshops Algorithmen und Werkzeuge für
Petri-Netze, AWPN’06, FBI-HH-B-267/06, pages 32–36, 2006.

[DL11] Leonid W. Dworzański and Irina A. Lomazova. On composi-
tionality of boundedness and liveness for nested Petri nets. In
Marcin Szczuka, Ludwik Czaja, Andrzej Skowron, and Magdalena
Kacprzak, editors, Concurrency, Specification and Programming
(CS&P 2011), Proceedings, Pułtusk, Poland, 2011. Białystok Uni-
versity of Technology.

[DL12] Leonid W. Dworzański and Irina A. Lomazova. On compositional-
ity of boundedness and liveness for nested Petri nets. Fundamenta
Informaticae, 120(3–4):275–293, 2012.

[DTMZ08] Vineela Devarashetty, Jeffrey J. P. Tsai, Lu Ma, and Du Zhang.
Modeling a secure sensor network system using an extended ele-
mentary object system. In Yingxu Wang, Du Zhang, Jean-Claude

173

Bibliography

Latombe, and Witold Kinsner, editors, Proceedings of the Seventh
IEEE International Conference on Cognitive Informatics, ICCI
2008, Stanford University, California, USA, August 14-16, 2008,
pages 67–74. IEEE, 2008.

[DTMZ10] Vineela Devarashetty, Jeffrey J. P. Tsai, Lu Ma, and Du Zhang.
Modeling a secure sensor network using an extended elementary
object system. IJCINI, 4(3):1–17, 2010.

[EN94] Javier Esparza and Mogens Nielsen. Decidability issues for Petri
nets - a survey. Journal of Information Processing and Cybernetics,
30(3):143–160, 1994.

[ES92] Javier Esparza and Manuel Silva. A polynomial-time algorithm to
decide liveness of bounded free choice nets. Theoretical Computer
Science, 102:185–205, 1992.

[Esp98a] Javier Esparza. Decidability and complexity of Petri net problems
– an introduction. In Wolfgang Reisig and Grzegorz Rozenberg,
editors, Lectures on Petri Nets I: Basic Models, Advances in Petri
Nets, volume 1491 of Lecture Notes in Computer Science, pages
374–428. Springer-Verlag, 1998.

[Esp98b] Javier Esparza. Reachability in live and safe free-choice Petri nets
is NP-complete. Theoretical Computer Science, 198(1):211–224,
1998.

[FEA03a] David de Frutos-Escrig and Olga Marroquín Alonso. Ambient Petri
nets. Electronic Notes in Theoretical Computer Science, 85(1):39,
2003.

[FEA03b] David de Frutos-Escrig and Olga Marroquın Alonso. Replicated
ambient Petri nets. In Peter M.A. Sloot, David Abramson, Alexan-
der V. Bogdanov, Yuriy E. Gorbachev, Jack J. Dongarra, and Al-
bert Y. Zomaya, editors, Computational Science - ICCS 2003. In-
ternational Conference Melbourne, Australia and St. Petersburg,
Russia June 2-4, 2003 Proceedings, Part II, volume 2658 of Lec-
ture Notes in Computer Science, pages 774–783. Springer-Verlag,
2003.

[FS01] A. Finkel and P. Schnoebelen. Well-structured transition systems
everywhere. Theoretical Computer Science, 256(1-2):63–92, 2001.

[GJ79] Michael R. Garey and David S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. W. H.
Freeman and Company, San Francisco, USA, 1979.

174

Bibliography

[GL73] H. J. Genrich and K. Lautenbach. Synchronisationsgrpahen. Acta
Informatica, 2:143–161, 1973.

[GV03] Claude Girault and Rüdiger Valk. Petri nets for systems engineer-
ing - a guide to modeling, verification, and applications. Springer-
Verlag, Berlin, 2003.

[GV08] Orna Grumberg and Helmut Veith, editors. 25 Years of Model
Checking - History, Achievements, Perspectives, volume 5000 of
Lecture Notes in Computer Science. Springer-Verlag, 2008.

[Hac72] M. Hack. Analysis of production schemata by Petri nets. Tr-94,
MIT-MAC, 1972.

[Hac74] M. Hack. The recursive equivalence of the reachability problem and
the liveness problem for Petri nets and vector addition systems.
In Proceedings of the 15th Annual Symposium on Switching and
Automata Theory, pages 156–164. IEEE Computer Society, 1974.

[Hac76a] M. Hack. Decidability Questions for Petri Nets. PhD thesis, M.I.T,
1976.

[Hac76b] M. Hack. The equality problem for vector addition systems is
undecidable. Theoretical Computer Science, 2:77–95, 1976.

[Hac76c] M. Hack. Petri net language. Report of the department of infor-
matics, Cambridge, MA, USA, 1976.

[HEM05] Kathrin Hoffmann, Hartmut Ehrig, and Till Mossakowski. High-
level nets with nets and rules as tokens. In Gianfranco Ciardo
and Philippe Darondeau, editors, Applications and Theory of Petri
Nets 2005, 26th International Conference, ICATPN 2005, Miami,
USA, June 20-25, 2005, Proceedings, volume 3536 of Lecture Notes
in Computer Science, pages 268–288. Springer-Verlag, 2005.

[Hir02] Kunihiko Hiraishi. PN2: An elementary model for design and anal-
ysis of multi-agent systems. In Farhad Arbab and Carolyn L. Tal-
cott, editors, Coordination Models and Languages, COORDINA-
TION 2002, volume 2315 of Lecture Notes in Computer Science,
pages 220–235. Springer-Verlag, 2002.

[HKB11a] Frank Heitmann and Michael Köhler-Bußmeier. On defining
conflict-freedom for object nets. In B. Farwer and M. Köhler-
Bußmeier, editors, Proceedings of the Second International Work-
shop on Logic, Agents, and Mobility (LAM 2011), 2011.

175

Bibliography

[HKB11b] Frank Heitmann and Michael Köhler-Bußmeier. Restricting gener-
alised state machines. In Marcin Szczuka, Ludwik Czaja, Andrzej
Skowron, and Magdalena Kacprzak, editors, Concurrency, Spec-
ification and Programming (CS&P 2011), Proceedings, Pułtusk,
Poland, 2011. Białystok University of Technology.

[HKB12a] Frank Heitmann and Michael Köhler-Bußmeier. A mobility logic
for object net systems. In B. Farwer and M. Köhler-Bußmeier,
editors, Proceedings of the Third International Workshop on Logic,
Agents, and Mobility (LAM 2012), 2012.

[HKB12b] Frank Heitmann and Michael Köhler-Bußmeier. P- and t-systems
in the nets-within-nets-formalism. In Serge Haddad and Lucia
Pomello, editors, Application and Theory of Petri Nets. 33rd In-
ternational Conference, PETRI NETS 2012. Hamburg, Germany,
June 2012. Proceedings, volume 7347 of Lecture Notes in Computer
Science, pages 368–387. Springer-Verlag, 2012.

[HM03] Kathrin Hoffmann and Till Mossakowski. Algebraic higher-order
nets: Graphs and Petri nets as tokens. In M. Wirsing, D. Pattinson,
and R. Henicker, editors, Proceedings of 16th Int. Workshop of
Algebraic Development Techniques, volume 2755 of Lecture Notes
in Computer Science, pages 253–267. Springer-Verlag, 2003.

[HMU01] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. In-
troduction to Automata Theory, Languages, and Computation.
Addison-Wesley, Boston, MA, USA, second edition, 2001.

[HO02] Lane A. Hemaspaandra and Mitsunori Ogihara. The Complexity
Theory Companion. Springer-Verlag, Berlin, Deutschland, 2002.

[Hol04] Gerard J. Holzmann. The SPIN Model Checker. Primer and Ref-
erence Manual. Addison-Wesley, 2004.

[HP99] Serge Haddad and Denis Poitrenaud. Theoretical aspects of recur-
sive Petri nets. In S. Donatelli and J. Kleijn, editors, Application
and Theory of Petri Nets, volume 1639 of Lecture Notes in Com-
puter Science, pages 228–247. Springer-Verlag, 1999.

[HR88] Rodney R. Howell and Louis E. Rosier. Completeness results for
conflict-free vector replacement systems. Journal of Computer and
System Sciences, 37:349–366, 1988.

[HR89] Rodney R. Howell and Louis E. Rosier. Problems concerning fair-
ness and temporal logic for conflict-free Petri nets. Theoretical
Computer Science, 64:305–329, 1989.

176

Bibliography

[HR04] Michael Huth and Mark Ryan. Logic in Computer Science. Mod-
elling and Reasoning about Systems. Cambridge University Press,
Cambridge, UK, 2nd edition, 2004.

[HRY87] Rodney R. Howell, Louis E. Rosier, and Hsu-Chen Yen. An O(n1.5)
algorithm to decide boundedness for conflict-free vector replace-
ment systems. Information Processing Letters, 25:27–33, 1987.

[HT10] Christian Haubelt and Jürgen Teich. Digitale Hardware/Software-
Systeme. Spezifikation und Verifikation. eXamen.press. Springer-
Verlag, Berlin, 2010.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, Reading,
MA, USA, 1979.

[Jen97a] Kurt Jensen. Coloured Petri Nets. Basic Concepts, Analysis Meth-
ods and Practical Use. Volume 1, Basic Concepts. Monographs in
Theoretical Computer Science. Springer-Verlag, 1997. 2nd cor-
rected printing.

[Jen97b] Kurt Jensen. Coloured Petri Nets. Basic Concepts, Analysis Meth-
ods and Practical Use. Volume 2, Analysis Methods. Monographs
in Theoretical Computer Science. Springer-Verlag, 1997. 2nd cor-
rected printing.

[Jen97c] Kurt Jensen. Coloured Petri Nets. Basic Concepts, Analysis Meth-
ods and Practical Use. Volume 3, Practical Use. Monographs in
Theoretical Computer Science. Springer-Verlag, 1997.

[JK09] Kurt Jensen and Lars M. Kristensen. Coloured Petri Nets. Mod-
elling and Validation of Concurrent Systems. Springer-Verlag,
2009.

[JLL77] N. D. Jones, L. H. Landweber, and Y. E. Lien. Complexity of some
problems in Petri nets. Theoretical Computer Science, 4:277–299,
1977.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In
Raymond E. Miller and James W. Thatcher, editors, Complexity of
Computer Computations, pages 85–103. Plenum Press, New York,
USA, 1972.

[KB09] Michael Köhler-Bußmeier. Hornets: Nets within nets combined
with net algebra. In Karsten Wolf and Giuliana Franceschinis, edi-
tors, Application and Theory of Petri Nets, volume 5606 of Lecture
Notes in Computer Science, pages 243–262. Springer-Verlag, 2009.

177

Bibliography

[KB11] Michael Köhler-Bußmeier. Decidability results for elementary ob-
ject systems. Report of the department of informatics, Universität
Hamburg, Fachbereich Informatik, 2011.

[KB12a] Michael Köhler-Bußmeier. On the complexity of safe, elementary
Hornets. In Louchka Popova-Zeugmann, editor, Proceedings of the
21st International Workshop on Concurrency, Specification, and
Programming (CS&P 2012), volume 928, pages 203–214. CEUR
Workshop Proceedings, 2012.

[KB12b] Michael Köhler-Bußmeier. Private communication, 2012.

[KBH09] Michael Köhler-Bußmeier and Frank Heitmann. On the expres-
siveness of communication channels for object nets. Fundamenta
Informaticae, 93(1-3):205–219, 2009.

[KBH10a] Michael Köhler-Bußmeier and Frank Heitmann. Complexity of
LTL model-checking for safe object nets. In B. Farwer, editor,
Proceedings of the International Workshop on Logic, Agents, and
Mobility (LAM 2010), 2010.

[KBH10b] Michael Köhler-Bußmeier and Frank Heitmann. Safeness for object
nets. Fundamenta Informaticae, 101(1-2):29–43, 2010.

[KBH11a] Michael Köhler-Bußmeier and Frank Heitmann. Liveness and
reachability for elementary object systems. In Marcin Szczuka,
Ludwik Czaja, Andrzej Skowron, and Magdalena Kacprzak, edi-
tors, Concurrency, Specification and Programming (CS&P 2011),
Proceedings, Pułtusk, Poland, 2011. Białystok University of Tech-
nology.

[KBH11b] Michael Köhler-Bußmeier and Frank Heitmann. Liveness of safe
object nets. Fundamenta Informaticae, 112(1):73–87, 2011.

[KBH12] Michael Köhler-Bußmeier and Frank Heitmann. Conservative ele-
mentary object systems. Fundamenta Informaticae, 120(3–4):325–
339, 2012.

[KF07] Michael Köhler and Berndt Farwer. Object nets for mobility. In
Jetty Kleijn and Alex Yakovlev, editors, Petri Nets and Other Mod-
els of Concurrency - ICATPN 2007. 28th International Conference
on Applications and Theory of Petri Nets and Other Models of
Concurrency, ICATPN 2007, Siedlce, Poland, June 25-29, 2007.
Proceedings, volume 4546 of Lecture Notes in Computer Science,
pages 244–262. Springer-Verlag, 2007.

178

Bibliography

[KM69] R. M. Karp and R. E. Miller. Parallel program schemata. Journal
of Computer and System Sciences, 3(2):147–195, 1969.

[KMR03] Michael Köhler, Daniel Moldt, and Heiko Rölke. Modelling mo-
bility and mobile agents using nets within nets. In W. v. d. Aalst
and E. Best, editors, Application and Theory of Petri Nets, vol-
ume 2679 of Lecture Notes in Computer Science, pages 121–140.
Springer-Verlag, 2003.

[Köh04] Michael Köhler. Objektnetze: Definition und Eigenschaften, vol-
ume 1 of Agent Technology – Theory and Applications. Logos Ver-
lag, Berlin, 2004.

[Köh07] Michael Köhler. The reachability problem for object nets. Funda-
menta Informaticae, 79(3-4):401 – 413, 2007.

[Kos82] S.R. Kosaraju. Decidability of reachability in vector addition sys-
tems. In Harry R. Lewis, Barbara B. Simons, Walter A. Burkhard,
and Lawrence H. Landweber, editors, Proceedings of the 14th An-
nual ACM Symposium on the Theory of Computing (STOC’82),
pages 267–281. ACM, 1982.

[KR03a] Michael Köhler and Heiko Rölke. Concurrency in mobile object-net
systems. Fundamenta Informaticae, 54(2-3):221–235, 2003.

[KR03b] Michael Köhler and Heiko Rölke. Modelling sandboxes for mobile
agents using nets within nets. In N. Busi and F. Martinelli, editors,
Workshop on Issues in Security and Petri Nets (WISP’03) at the
International Conference on Application and Theory of Petri Nets
2003. University of Eindhoven, 2003.

[KR04] Michael Köhler and Heiko Rölke. Properties of Object Petri Nets.
In J. Cortadella and W. Reisig, editors, Application and Theory
of Petri Nets, volume 3099 of Lecture Notes in Computer Science,
pages 278–297. Springer-Verlag, 2004.

[KR05] Michael Köhler and Heiko Rölke. Reference and value semantics
are equivalent for ordinary object Petri nets. In G. Ciardo and
P. Darondeau, editors, Application and Theory of Petri Nets, vol-
ume 3536 of Lecture Notes in Computer Science, pages 309–328.
Springer-Verlag, 2005.

[Kri63] Saul A. Kripke. Semantical considerations on modal logic. Acta
Philosophica Fennica, 16:83–94, 1963.

[Kum00] Olaf Kummer. Undecidability in object-oriented Petri nets. Petri
Net Newsletter, 59:18–23, 2000.

179

Bibliography

[Kum02] Olaf Kummer. Referenznetze. Logos Verlag, Berlin, 2002.

[Lak05] Charles Lakos. A Petri net view of mobility. In Formal Techniques
for Networked and Distributed Systems (FORTE 2005), volume
3731 of Lecture Notes in Computer Science, pages 174–188. Sprin-
ger-Verlag, 2005.

[Lam92] J.L. Lambert. A structure to decide reachability in Petri nets.
Theoretical Computer Science, 99(1):79–104, 1992.

[Lip76] R. J. Lipton. The reachability problem requires exponential space.
Research report 62, Department of Computer Science, Yale Uni-
versity, 1976.

[Lom00] Irina A. Lomazova. Nested Petri nets – a formalism for specifica-
tion of multi-agent distributed systems. Fundamenta Informaticae,
43(1-4):195–214, 2000.

[Lom08] Irina A. Lomazova. Nested Petri nets for adaptive process mod-
eling. In Pillars of Computer Science. Essays Dedicated to Boris
(Boaz) Trakhtenbrot on the Occasion of His 85th Birthday, vol-
ume 4800 of Lecture Notes in Computer Science, pages 460–474.
Springer-Verlag, 2008.

[LP85] Orna Lichtenstein and Amir Pnueli. Checking that finite state
concurrent programs satisfy their linear specification. In Mary
S. Van Deusen, Zvi Galil, and Brian K. Reid, editors, Proceedings
12th Annual ACM Symposium on Principles of Programming Lan-
guages (POPL’85), New Orleans, Louisiana, USA, January 1985,
pages 97–107. ACM Press, 1985.

[LvHO+06] Irina A. Lomazova, Kees M. van Hee, Olivia Oanea, Alexander
Serebrenik, Natalia Sidorova, and Marc Voorhoeve. Nested nets for
adaptive systems. In Petri Nets and Other Models of Concurrency -
ICATPN 2006. 27th International Conference on Applications and
Theory of Petri Nets and Other Models of Concurrency, Turku,
Finland, June 26-30, 2006. Proceedings, volume 4024 of Lecture
Notes in Computer Science, pages 241–260. Springer-Verlag, 2006.

[Ma05] Lu Ma. A formal framework of a secure mobile agent system based
on extended elementary object system. PhD thesis, University of
Illinois at Chicago, Chicago, IL, USA, 2005.

[May81] Ernst W. Mayr. An algorithm for the general Petri net reachability
problem. In Proceedings of the 13th Annual Symposium on the
Theory of Computing (STOC’81), pages 238–246. ACM, 1981.

180

Bibliography

[May84] Ernst W. Mayr. An algorithm for the general Petri net reachability
problem. SIAM J. Comput., 13(3):441–460, 1984.

[Mil99] Robin Milner. Communicating and mobile systems - the Pi-
calculus. Cambridge University Press, 1999.

[Mil01] Robin Milner. The flux of interaction. In J.-M. Colom and
M. Koutny, editors, Application and Theory of Petri Nets, volume
2075 of Lecture Notes in Computer Science, pages 19–22. Sprin-
ger-Verlag, 2001.

[MK96] T. Miyamoto and S. Kumagai. A multi agent net model of au-
tonomous distributed systems. In Proceedings. CESA’96, Sympo-
sium on Discrete Events and Manufacturing Systems, pages 619–
623, 1996.

[MT06] Lu Ma and Jeffrey J. P. Tsai. Security modeling and analysis of mo-
bile agent systems, volume 5 of Series in Electrical and Computer
Engineering. Imperial College Press, London, 2006.

[MT08] Lu Ma and Jeffrey J. P. Tsai. Formal modeling and analysis of
a secure mobile-agent system. IEEE Transactions on Systems,
Man, and Cybernetics, Part A: Systems and Humans, 38(1):180–
196, 2008.

[MTM04] Lu Ma, Jeffrey J. P. Tsai, and Tadao Murata. A secure mobile
agent system model based on extended elementary object system.
In 28th International Computer Software and Applications Con-
ference (COMPSAC 2004), Design and Assessment of Trustwor-
thy Software-Based Systems, 27-30 September 2004, Hong Kong,
China, Proceedings, pages 218–223. IEEE Computer Society, 2004.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-
Wesley, Reading, MA, USA, 1994.

[Pet62] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis,
Technische Universität Darmstadt, 1962.

[Pet81] J. Peterson. Petri Net Theory and the Modeling of Systems. Pren-
tice Hall Inc., Englewood Cliffs NJ, 1981.

[Pnu81] Amir Pnueli. The temporal semantics of concurrent programs.
Theoretical Computer Science, 13:45–60, 1981.

181

Bibliography

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verifi-
cation of concurrent systems in CESAR. In Mariangiola Dezani-
Ciancaglini and Ugo Montanari, editors, Proceedings 5th Interna-
tional Symposium on Programming, Torino, Italy, April, 1982, vol-
ume 137 of Lecture Notes in Computer Science, pages 337–351.
Springer-Verlag, 1982.

[Rac78] C. Rackoff. The covering and boundedness problem for vector ad-
dition systems. Theoretical Computer Science, 6(2):223–231, 1978.

[Rei08] Klaus Reinhardt. Reachability in Petri nets with inhibitor arcs. In
Proceedings of the Second Workshop on Reachability Problems in
Computations Models (RP 2008), volume 223 of Electronic Notes
in Theoretical Computer Science, pages 239–264. Elsevier, 2008.

[Rot05] Jörg Rothe. Complexity Theory and Cryptology. Springer-Verlag,
Berlin, Deutschland, 2005.

[RR98] Wolfgang Reisig and Grzegorz Rozenberg, editors. Lectures on
Petri Nets I: Basic Models, volume 1491 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1998.

[RVFE08] Fernando Rosa-Velardo and David de Frutos-Escrig. Name creation
vs. replication in Petri net systems. Fundamenta Informaticae,
88:329–356, 2008.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and
deterministic tape complexities. Journal of Computer and System
Sciences, 4(2):177–192, 1970.

[Sch12] Laura Schmelter. Zum Erreichbarkeitsproblem in azyklischen Ob-
jektnetzen (in German). Bachelorarbeit, Universität Hamburg, De-
partment Informatik, Vogt-Kölln Str. 30, D-22527 Hamburg, 2012.

[Sip97] Michael Sipser. Introduction to the Theory of Computation. PWS
Publishing Company, Boston, MA, USA, 1997.

[Ste95] I. A. Stewart. Reachability in some classes of acyclic Petri nets.
Fundamenta Informaticae, 23:91–100, 1995.

[Tur36] A. M. Turing. On computable numbers with an application to the
Entscheidungsproblem. Proc. London Math. Society, 2(42):230–
265, 1936.

[Val91] Rüdiger Valk. Modelling concurrency by task/flow EN systems.
In 3rd Workshop on Concurrency and Compositionality, number

182

Bibliography

191 in GMD-Studien, St. Augustin, Bonn, 1991. Gesellschaft für
Mathematik und Datenverarbeitung.

[Val98] Rüdiger Valk. Petri nets as token objects: An introduction to
elementary object nets. In Jörg Desel and Manuel Silva, editors,
Application and Theory of Petri Nets, volume 1420 of Lecture Notes
in Computer Science, pages 1–25. Springer-Verlag, 1998.

[Val04] Rüdiger Valk. Object Petri nets: Using the nets-within-nets
paradigm. In Jörg Desel, Wolfgang Reisig, and Grzegorz Rozen-
berg, editors, Lectures on Concurrency and Petri Nets. Advances
in Petri Nets, volume 3098 of Lecture Notes in Computer Science,
pages 819–848. Springer-Verlag, 2004.

[Var96] Moshe Vardi. An automata-theoretic approach to linear temporal
logic. In F. Moller and G. Birtwistle, editors, Logics for Concur-
rency: Structure versus Automata, volume 1043 of Lecture Notes
in Computer Science, pages 238–266. Springer-Verlag, 1996.

[VW86] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic ap-
proach to automatic program verification (preliminary report). In
Proceedings 1st IEEE Symposium on Logic in Computer Science
(LICS’86), June 1986, Cambridge, Massachusetts, USA, pages
332–344. IEEE Computer Society, 1986.

[Zil01] Silvano Dal Zilio. Mobile processes: A commented bibliography.
In Franck Cassez, Claude Jard, Brigitte Rozoy, and Mark Dermot
Ryan, editors, Modeling and Verification of Parallel Processes. 4th
Summer School, MOVEP 2000 Nantes, France, June 19-23, 2000.
Revised Tutorial Lectures, volume 2067 of Lecture Notes in Com-
puter Science, pages 206–222. Springer-Verlag, 2001.

183

