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Abstract

A typical uncertainty structure of a characieristic polynomial is P(s) = A{s)Q(s) + B(r) with A(s) and B(s) fixed and O{+) uncertain.
In robust controller design ((s) may be a controller numerator or denominator polynomial; an example is the PID controller with
O(s) = Kt + Kps + Kps®. In robustness analysis (s) may describe a plant uncertainty. For fixed imagivary part of Q(jw), it is shown
that Hurwitz stability boundaries in the parameter space of the even part of O(jw) are hyperplanes and the stability regions are convex
polyhedra. A dual result holds for fixed real part of O(jm). Also o-stability with the real parts of all roots of P(s) smaller than ¢ is treated.

Under the above conditions, the oots of P(s) can cross the imaginary axis only at a finite nurnber of discrete “singular” frequencies. Each
singular frequency generates a hyperplane as stability boundary. An application is robust controller design by simultaneous stabilization
of several representatives of A(s) and B(s} by a PID controller. Geometrically, the intersection of convex polygons must be calculated

and represented tomographically for a grid on Kp.
© 2003 Published by Elsevier Science Ltd.
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1. Introduction

It has been shown (Ho, Datta, & Bhattacharva, 1998;
Datta, Ho, & Bhattacharva, 2000) that stability regions of
PID controllers with fixed proportional gains consist of
convex polygons. The proof was given via a gemeraliza-
tion of the Hermite—Bichler theorem. An alternative proof
was given more recently (Munro & Solvemez, 2000) by
calculation of the real-axis intersecttons of the Nyquist
plot.

In the present paper these results are generalized to a
larger class of problens, an altemate proof is given via the
parameter space approach, and a simple computaticnal strat-
egy is shown.

Consider the characteristic polynomial of a control system
with the structure

P(s,q) = A(sYQ(5)+ Bis), i=1,2,...,N, (1)
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where g ==[qa ¢1-.-9,1%, Q(s)=[1 5 ... ¥ g and the index
i represents different operating conditions of a plant.
As an example consider the design of a PID controller

Ky + Kps + KDSI

PID(s) = ;

(2)
for simultaneous stabilization of a plant family Gi(s) =
Ni(s)/D(s), i =1,2,...,N. The characteristic polynomial
(1) is obtained by letting A;(s) = Ni(s), B:i(s) = sD:(s),
O(s) =K; + Kps + Kps™.

For each operating condition the set of all stabilizing g
is determined and the set of all simultancous stabilizers is
the intersection of the & sets. The calculation of such in-
tersection is not easy, since—except for trivial examples—
the sets for each i are nonconvex (Ackermann, Bartlett,
Kaesbauer, Sienel, & Steinhauser, 1993). Since we insist in
exact boundaries, convex subsets or other approximations
are avoided. The convex polygon result by Bhattacharyva
and coworkers (Ho, Daita, & Bhattacharya, 1998; Datta, Ho,
& Bhattacharya, 2000) is encouraging in the sense that non-
convex sets may have convex slices in particular directions.
Then the intersection of convex polygons in a slice plane is
easy.

In the present paper the problem is solved for a polynomial
Q(s) of arbitrary degree and with uncertain even or odd
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part. This leads to the definition of singular frequencies in
Section 2. In Section 3 the stability boundaries in form of a
hyperplane for each singular frequency are derived. These
hyperplanes divide the parameter space into a finite number
of convex polyhedra. Then the stable ones must be sorted
out. In Section 4 the case ¢ = 3 is worked out in detail
with a robust PID controller design as an example. Section
5 generalizes the result to o-stability, where thc real part of
all roots of P(s} must be smaller then ¢ = y.

2. Singular frequencies

Consider polynomials (1} for one operating condition

P(s,q) = A(s)Q{s) + B(s). 3)

For s = jeo all polynomial s are split into their real and
imaginary part, i.e. (omitting the arguments)

P(jw,q)=Rp + jIp
= (Ra + jLa)(Rg + ilg} + (Rp + jlp). (4)

The polynomial P(s,q) has a root at 5 = jo on the imag-
inary axis if and only if Rp =0 and Ip = 0.

{RP} _ [RARQ-IAIQ +RB} _ [0} 5
I Rulg + LiRo + I 0

written in detail as

Rop=gqo~ qo’ + qeo* 7 ---

=g g0 +gs0° F ... .

Eg. (5) becomes

qo
Rp Ry —w’R;, 'R, ..]|%2
[Ip}=[IA ~wtly @'l :’ 94
L))
-1, oL, -o*ly ] |9
+w[ Ry —o’Ry —w'Ry } qs

-0

Obviously, both matrices in Eq. (6) have rank 1. (The triv-
ial case A(s) = 0 is excluded here). For fixed Iy Eq. (6)
represents two parallel hyperplanes in the parameter space
with coordinates gp, g2, g, . . . . The two hyperplanes become

identical at real frequencies w for whieh

Ry Rp—1Ip

a0} = det -0 %
L I+ Rdp

gr(w) = Ry(Ip + Rulp) — I4(Ryg — IyIp) = 0. (8)

1t is easily verified that gg() is @ times a polynomial in ?.
Its degree results from the highest degree in w® occurring
among the products Rfz, RiIp, I,R5 and I3Ry. Ouly the
positive roots in @ result in a real frequency w. These
real solutions wy, (£ =1,2,...,K) are defined as “singular
frequencies”.

Remark. A dual result is obtained by fixing Rp. The sin-
gular frequencies are then @ = ¢ and the real roots of

griw) = —I,;(Ip +IARQ)-'-RA(R3 +RARQ):0. (9}

The interpretation of Eq. (8) is that the root set of
FP(5,40,42,94,...) can cross the imaginary axis only through
the “holes” at the singular frequencies ;.

Example 1.
Ps)=0G—-D(go+gs)+5 +5+1
e[ —-2,01)]
g2 €[0.1,0.7].

Fig. 1 shows the two-parametric root set generated by
gridding 4o and gz. It can cross the imaginary axis only
through the hole w; = v/2. This example also serves as a
warning, that gridding of e most likely will miss the value
o = \/i

-

L

-

- 0 1 2

Fig. 1. The root clond can cross the imaginary axis only through the hole

= \/i
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3. Stability boundaries in Rg

Starting from a stable polynomial (3) there are three pos-
sibilities how a root can cross over the imaginary axis by
variation of Rp.

(a} areal root crosses at s = 0. For «» = 0 we have fp =0
and the real root boundary (RRB) is obtained from

Rp(w=0)=apqo + by =0,
where ag = A(0), bg = B{0). The RRB is
go = —bopfay. (10)

{b) areal root crosses at s=cc. This infinite root boundary
(IRB) is characterized by p, =01in P(s}= pg+ p1s+
-+ + pus”. For the calculation of p, let

Als)=ap+as+ -+ aps’,  a #0,
B(s)y=bo+ b5+ -+ bps™, by, £0.
Then
([ arq, for m < k + £,
pn=1< amgs+ b, form=k+/,
| b form > k+ 4.
In the Rp-space the IRB is
(0 form <k+ 4,
ge =<4 —bpfa; form=1Fk+ 4, (1n
1 no boundary form >k + /.
(c} a conjugate pair of roots crosses at one of the singular

frequencies wyg. These complex root boundaries (CRB)
are obtained by substitution of w; into the first row
of (5) (assuming Ry # 0) or second row (assuming
I; # 0). The firsi row becomes

Rp(wyg)

=R (o YRopleng ) — Ly(em Mg(wr) + Re(wy) = 0.
The CRB’s are
Rolen) = [Rp(wy) — Lo op Mol )}/ Ra( o ),
k=1,2,... K (12)

For fixed Iy Eq. (12) represents K hyperplanes in the
parameter space of Rp-coefficients.

In summary, roots of P(s) cross the imaginary axis as Ry
crosses one of the hyperplanes (10}, or (11) or one of the
K hyperplanes (12). These hyperplanes divide the Rg-space
into a finite number of convex polyhedra. Therc remains the
decision, which of these polyhedra are stable. This prob-
Iem ean be solved for example by testing one point in each
polyhedron for stability.

4. Robust PID controller design

In this section /£ = 2 is chosen and the PID controller
notation of (2} is used, i.e.

O(s) = K; + Kps + Kps". (13)

Obviously, it is not essential that the controller has the de-
nominator 5. Any other fixed denominator can be mult:-
plied with the plant denominator to form B(s). Now Ry =
K; — Kpw?, and stable polygons in the (X7, Kp)-plane for
fixed Kp are sought. The hyperplanes become straight lines
in the plane. The three types of stability boundaries lines
are

(a) RRB K; = —ho/a,
(b) IRB

0 form < k+2,

Kp =4 —byja form=k+2,

no boundary form > k + 2.
(c) CRB Singular frequencies are the real solutions of
grlw) = Ra(owYp(w) + Ra(w)oKp]
—Li(w)[Re{w) — Li(w)wKp) = 0. (14)
For each real solution a straight line is obtained
Ky — pri = [Rp(en) — Ty(eng Joog K p 1R g0 )

In the (K, K7 )}-plane these are lines with positive slopes
2
(.Uk.

Together with the RRB (zero slope in (Kp, K;)-plane)
and the IRB (infinite slope if m < k& + 2) these lines divide
the (Kp, Kr)-plane into a finite number of convex polygons.
The polygons may also be open to infinity.

It remains to be determined, which of the polygons are
stable. One possibility is to choose a testing point in each
polygon and to check the stability of the polynomial. The
resulting stability or instability property then applies to
the entire polygon. This approach is suited for the interac-
tive interpretation by the design engineer. Alternatively all
intersection points of the straight lines are calculated. These
intersections cut each lines into several line segments,
Checking the center of the segment yields a polynomial
with one or more roots on the imaginary axis. If all remain-
ing roofs are stable, then the segment is an aetive boundary.
Otherwise the segment is omitted. The remaining segments
form the boundary of the stable polygons. This second ap-
proach is more suited for automated calcutation and plotting
of the stability regions by the computer.

Example 2. Let A(s)=—5" —75* —~ 25+ 1 and B(s)=s(s +
DE+2)6+30s+ D (* +54+1). The RREB for s =0
is Ky = 0, the IRB for s = oo does not exist beeause
m=7>£{+2=06.
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Fig. 2. Root boundaries in the (Kp, K;)-plane, Kp = —44.

For the CRB we have to determine the singular frequen-
cies w;. The polynomial (14} is

@' + (31 + Kp)o® + (=579 + 49K )oo®
+(730~30Kp Yo*) +(—257 + 4Kp ) + 244+ Kp = 0.

The following table shows for Kp = —4.4 the singular fre-
quencies (including 0) and the corresponding equations of
the straight lines. Note that one zero of the polynomial is
negative and does not yield a real .

singular frequency w; straight line

0 K[ =0

0.3156 Kr=001Kp 4+ 7.09
0.695 K; = 048Kp + 15.5
0.730 K;=053Kp + 14.]
4.13 K;=171Kp - 670

Fig. 2 shows the RRB and the CRB (five straight lines) in
the (K, K )-plane. Intersecting all lines with each other and
testing the stability of the segment shows that the stability
region splits in two polygons, a quadrangle and a triangle
{Fig. 3).

A brute force approach for the ealculation of stability
regions in the (K7, Kp, Kp)-space is to gnd Kp and use a
tomographic representation of the result. The 3D stability
region is thercby represented as a family of convex polygons,
see Fig. 4.

In order to get an orientation about interesting Kp-values
one may form the discriminant of the polynomial (14), i.e.
dgg(52)/dQ = 0, where Q = .

The zeros of the discriminant divide the Kp-range into
several segments such that the number of singular frequen-
cies (resp. straight lines} is constant in each segment. Thus
we can determine the range(s) of Kp for which stabilization
by choice of Kp and K} is possible.

8
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Fig- 3. Active boundaries in the {Kp,X;)-plane, Kp = —44.

Fig. 4. 3D stability region, Kp €[ — 4.5,4].

Starting at —oc the first stabilizing polygon (a triangle)
arises at Kp = —24. At Kp = 4.51 the triangle splits into
two polygons {a quadrangle and a triangle), see Fig. 4.), at
Kp =4 the tniangle disappears and at Kp = 6.15 we arrive at
the last stabilizing polygon. Thus a stabilization by choice of
Kp and K is possible only in the interval —24 < Kp < 6.15.
For Kp « —4.51 the triangle connects the two stability poly-
gons of Fig. 4, such that the 3D stability region is simply
comnected. Fig. 4 illustrates that a nontrivial, nonconvex sta-
bility region has been represented by convex polygons in
appropriately chosen slices.

In all other 2D cross sections the stability boundaries are
curves, which require much more computation time.

A further drastic simplification is obtained, if we do not
calculate the singular frequencies w;(Kp ) for each grid point
Kp by factorization of the polynomial (14). Instead we eval-
uate the inverse function Kp(w), as it follows from the linear
equation { 14)

Li(0?)Rp(0?) — Ry Mp(cr?)
O[R(? P + [ (w0? )]

Now Kp is evaluated for a grid on @. The singular fre-
quencies w; for any fixed Kp can be determined from the

Kp(0?) =

(15)
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Fig. 5. Kp as function of ¢.

graph. Fig. 5 illustrates this graph for Example 2. The line
Kp=—44 intersects at the two closely neighboring frequen-
cies 0,695 and 0.730 corresponding to two almost parallel
lines in Fig. 2. The discriminant of Eq. (14) determines the
maxima and minima of Kp(w). A minimuwn occurs at the
frequency w = 0.713 for Kp = 4.51, where the triangle and
quadrangle unites to a large triangle,

For each candidate singular frequency w? = »f we obtain
Kp =K and the polygon for the ;s in the (Kp, Ky )-plane.
The aggregation for an w-grid generates the 3D stability
region in (K7, Kp,Kp )-space.

Consider now the problein that the operating range of a
plant is deseribcd by several representatives A(s) = Ai(s),
B=1Bi(s),i=1,2,...,N. The set of simultaneous stabiliz-
ers for this plant family is the interssetion of the stability
regions in (K7, Kp,Kp)-space. For each fixed Kr the N con-
vex polygons must be intersected.

Example 3 (Datta et al.). The plant K/(1+s7)* with K =1
should be simultancously stabilized for T =05and T =1.5
by a PID eontroller with transfer function {(2). For Kp =
0.35 the intersection of the stabilizing regions is shown in
Fig. 6. For example Kp=10.35,K; =0.091 is a good centrally
located choice for a simultaneous stabilizer. Note that for
PID controllers the polynomial B(s) contains the factor s
from the denominator of the P1D eontroller.

5. gg-stability boundaries

The result of the analysis so far is a description of the sta-
ble region in (K;, Kp, Kp)-space by its boundaries in form
of a fainily of polygons. Note that it is a “sharp” boundary
in the sense that each point on the boundary yields a poly-
nomial with roots on the imaginary axis. There remains the
problem of choosing an appropriate controller from the set
of admissible controllers. Typieally this is done in a higher
level optimization as a tradeoff with other design consid-
erations. Nevertheless there may be a need for a “scalar”
reduction of the admissible 3D solution set.

941
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Fig. 6. Simultaneous stabilization for 7= 0.5 and T = 1.5.

In terms of settling time, it is desirable to shift all eigen-
values to the left of a parallel to the imaginary axis with real
part og. This property of co-stability is obtained by substi-
tuting s by v + ap 1n Eq. (3), i.e.

P(v+ o0.4) = A{v + 00)0(v + 00) + B(v + 60). (16)
The original polynomial (3) is gg-stable if and only if

the new polynomial (14) in the complex variable v is
Hurwitz-stable. The details are worked out here for the P1D

eontroller ease.

Choosing ay-stability with oy < 0 then the op-stability re-
gion in the (Kp, K7 )-plane for fixed K is no loner bounded
by polygons. In a transformed coordinate system, however,
the nice geometrie properties of convex polygons are recov-
ered. Eq. (16) may be written as

A(v + 0o)(K] + Kpv + Kpw*) + By +00) =0
with

K} =Kr + 0oKp + 03Kp,

Kp =K, +200Kp,

Kp =Kp.

For fixed K} the og-stability regions are again bounded by
convex polygons but now in the (K7, K] }-plane.

The linear transformation is always nonsingular, so it is
possible to go back to the original parameters by the inverse
transformation

Ky =K} — 60,K}p + 05K},
Kp = K} — 200K},
Kp =K},

Example 2 (continued). Choosc 69 = —0.1 and Kp =—4.4.
Fig. 7 shows the op-stability region in the original



942
8 / ‘
] /
/
. '
3 /
6 f /
1/ /
{
sl / /
2 e
S B
I _— —— o
ol - iR
i
" . / , l —
50 40 0 ’

Fig. 7. og-stability region in the (Kp.Ky)-plane, 6y = —-Q.1, Xp = —4.4.
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Fig. 8. gy-stability region in the (K7, K{)-plane, 6y = —0.1.

{Kp, Kr)-plane. All straight lines become curves and the
computation is much more involved. If we, however, choose
the inclined (K}, K}) cross seetion plane with Kj = —4.4
for the representation of the gg-stability region we obtain
the simple convex polygon structure. The active boundaries
are shown of Fig. §. By comparison with Fig. 3 the shift
from ¢-0 to gy = —0.1 has removed the triangle, and the
quadrangle is much smaller now. An appropriate choice is
K}, = -2.4 and K; = 2. Back transformation gives finally
Kp=-24,Kp =488, K; = 1.54.

Example 3 (continued). Let 7= 1, X = 1. Datta arrivcs at
ag = —0.103 as a good solution to the controller fragility
problem. Now let gy = —0.25. Then Fig. 9 shows the set
of all ay-stabilizing PID) parameters. Choosing the center
of gravity of a large triangle leads to K} = 0.029, K =
0.918, Kj = 0.635 and

K;=0118, Kp=10.516,
and ¢ = -0.27.

Kp=10.0635

J. Ackermann, D. Kaesbaver { Automatica 39 (2003) 937943
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Fig. 9. gy-stabilizing PID parameters.
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Fig. 10. Robustness w.r.t. time constant T and loop gain X.

In this example we can determine the optimal ¢g ex-
actly. For this purpose we place four poles at s = gy and
optimize @g. The choice of Kp = K = 256/729 =~ 0.35,
K;=1792/19683 =~ 0.091 gives four poles at s = —1/3. The
quadruple eigenvalue at s = —1/3 leads to a high local sen-
sitivity. However, the robustness analysis for varying time
constant T and loop gain X in Fig. 10 shows a good distance
of the nominal point T =1, K =1 from the Hurwitz stability
boundary. This figure also verifies Hurwitz stability for the
entire interval 0.5 < T < 1.5, in the controller construction
only the end points have been considered. Obviously T is a
convex direction in the nonconvex region although T enters
polynomially into the characteristic polynotmal coefficients.

6. Conclusion

For a polynomial P(s,g) = A(s)Q(s) + B(s) it has been
shown that the stability region in the space of the even part
of O{jw) may be exactly represented by a family of convex
polyhedra for constant imaginary part of Q(je). In control
system design the Q(s) is a numerator or denominator term
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of the controller, for example the parameters of a PID con-
troller. The simultancous design for a plant family 4 = 4,,
B=B,,i=1,2,..., then reduces to finding the intersection of
convex polygons. Settling time requirements for the nega-
tive real part of all roots of P(s, g) can be treated by a linear
coordinate transformation.

Some nontrivial connections with other approaches are
topics for future research, e.g. the fact, that a two-parametric
family of root loci crosses the imaginary axis only at singular
frequencies.

The paper also contains results on the efficient ealcula-
tion of the stable polygons. Further work will be needed to
marry the simple caleulation of nonconvex 3D objects with
computer graphic methods for analysis and design of robust
control systems.
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