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Abstract—Detecting buildings from very high resolution (VHR)
aerial and satellite images is extremely useful in map making,
urban planning, and land use analysis. Although it is possible
to manually locate buildings from these VHR images, this op-
eration may not be robust and fast. Therefore, automated sys-
tems to detect buildings from VHR aerial and satellite images
are needed. Unfortunately, such systems must cope with major
problems. First, buildings have diverse characteristics, and their
appearance (illumination, viewing angle, etc.) is uncontrolled in
these images. Second, buildings in urban areas are generally dense
and complex. It is hard to detect separate buildings from them. To
overcome these difficulties, we propose a novel building detection
method using local feature vectors and a probabilistic framework.
We first introduce four different local feature vector extraction
methods. Extracted local feature vectors serve as observations of
the probability density function (pdf) to be estimated. Using a
variable-kernel density estimation method, we estimate the cor-
responding pdf. In other words, we represent building locations
(to be detected) in the image as joint random variables and
estimate their pdf. Using the modes of the estimated density, as
well as other probabilistic properties, we detect building locations
in the image. We also introduce data and decision fusion methods
based on our probabilistic framework to detect building locations.
We pick certain crops of VHR panchromatic aerial and Ikonos
satellite images to test our method. We assume that these crops are
detected using our previous urban region detection method. Our
test images are acquired by two different sensors, and they have
different spatial resolutions. Also, buildings in these images have
diverse characteristics. Therefore, we can test our methods on a
diverse data set. Extensive tests indicate that our method can be
used to automatically detect buildings in a robust and fast manner
in Ikonos satellite and our aerial images.

Index Terms—Aerial images, building detection, data fusion,
decision fusion, Ikonos satellite images, kernel density estimation,
local feature vectors.

I. INTRODUCTION

ERY high resolution (VHR) aerial and satellite images
provide valuable information. In particular, detecting
buildings from these images requires a specific consideration,
since this information may be used in several remote sensing
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applications, such as automated map making, urban planning,
and land use analysis. Unfortunately, it is tedious for a human
expert to manually label buildings in a given aerial or satellite
image for several reasons. First, buildings may be imaged from
different viewpoints. They may not have a unique representa-
tion. Second, buildings may have complex interaction with the
environment (such as occlusion by trees). Moreover, they may
occlude each other. Third, the illumination and contrast in the
image may not be sufficient to detect buildings reliably. Fourth,
these images may cover large geographic areas with many
buildings in them. Analyzing the image may take time. Finally,
buildings do not have standard size and shape. Therefore,
development of robust and fast building detection algorithms
on VHR aerial and satellite images has become a necessity.

In the last two decades, researchers have developed auto-
mated building detection methods using aerial and satellite
images. There are nice reviews on building detection in aerial
and satellite images [23], [38]. The interested reader can get
detailed information on most of the automated building detec-
tion methods from these studies. We next summarize recently
introduced building detection methods focusing on the ones
related to the proposed method in this paper. Kim and Muller
[17] used graph theory to detect buildings in aerial images.
They extracted linear features in the given image and used
them as vertices of a graph. Then, they extracted buildings by
applying subgraph matching with their model building graph.
Finally, they used intensity and shadow information to verify
the building appearance. Different from us, they used color aer-
ial images and linear features. Krishnamachari and Chellappa
[18] introduced a Markov-random-field (MRF)-based building
detection method in aerial images. They benefit from straight
line segments in the image and form their MRF-based detection
method on their interactions. Compared to ours, this system
is more complex. Segl and Kaufmann [29] combined super-
vised shape classification with unsupervised image segmenta-
tion in an iterative way. Their method allows searching small
objects (like buildings) in high-resolution satellite images.
Molinier et al. [25] considered detecting boundaries of man-
made structures in satellite images by training a self-organizing
map. Gamba et al. [11] used boundary information to extract
the map of an urban area. They fed the boundary and non-
boundary data to two different classifiers. Then, they combined
the results to detect urban area buildings on VHR imagery.
In these studies, there is always a need for a training set.
Benediktsson ef al. [6] used mathematical morphological op-
erations to extract structural information to detect the urban
area in satellite images. This method can be used to de-
tect buildings in the image. Unsalan and Boyer [38] studied
multispectral satellite images to detect buildings and street
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Fig. 1. Urban region detection results (detected boundaries labeled white)
from the large Ikonos image acquired over Adana, Turkey.

networks in residential regions. Their method uses vegetation
indices, clustering, decomposing binary images, and graph
theory. Although this method is promising, multispectral in-
formation is needed to detect buildings. Ak¢ay and Aksoy [1]
also proposed a novel method for unsupervised segmentation
and object detection in high-resolution satellite images. This
method also needs multispectral information. Idrissa et al. [13]
extracted the edges of man-made structures (buildings and
roads) using Gabor filters together with the normalized differ-
ence vegetation index in SPOTS5 images. Comparing the edges
of two image sequences taken from the same region, they also
detected changes. Different from us, they benefit from multi-
spectral information. In a recent study, we introduced a method
to detect buildings in panchromatic Ikonos satellite images
using scale-invariant feature transform (SIFT) keypoints and
graph theory formalism [32]. This method gives good results,
but it has a high computation load. It also depends on template
building images as a training set. In a similar framework,
Xiong and Zhang [41] used interest points for satellite image
matching. There are also various studies focusing on building
shape extraction in aerial and satellite images [5], [11], [15],
[16], [40]. This is a more complex problem compared to build-
ing detection. However, detecting building locations may help
extracting building shapes from the image.

In this paper, we assume that the urban regions in the image
are obtained using one of the urban region detection methods
[4], [7], [9], [22], [34]-[37], [42]. Then, we focus on parts of
the urban regions to detect building locations in them. In this
paper, we benefit from a previous study to detect urban regions
in large Ikonos satellite and aerial images [36]. We provide
urban region detection results on a large Ikonos satellite image
(acquired over Adana, Turkey) in Fig. 1.

Next, we focus on urban areas in this image step by step.
Since our method only depends on local features, we do not
need any global information. Therefore, dividing the urban
region into sections and detecting buildings in them separately
seems to be a good strategy. To detect building locations in
these urban areas, we propose a novel probabilistic framework.
For detection, we first extract local feature vectors from the
given image using four different methods. We take these vectors
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as observations. To model the distribution of these observations,
we use a variable-kernel-based density estimation method. In
other words, we model the building locations in a given image
as joint random variables and estimate their probability density
function (pdf) using observations. The modes of the estimated
pdf and their probabilities lead to building locations in the given
image. We also introduce data and decision fusion methods
using our probabilistic framework to detect buildings. In all
these steps, we do not need any training set. We test our method
on diverse aerial and Ikonos satellite image sets and provide
building detection performances in Section IV.

II. LocAL FEATURE VECTOR EXTRACTION

Our probabilistic building detection method depends on local
feature vectors extracted from the test image. Therefore, we
introduce four different local feature vector extraction methods
in this section. The first method is based on Harris corner
detection [12]. The second method is based on our previous
study, i.e., gradient-magnitude-based support regions (GMSR)
[35]. The third method is based on Gabor filtering in different
orientations [39]. Finally, the fourth method is based on features
from accelerated segment test (FAST) [27]. Next, we explore
each method in detail.

A. Harris-Corner-Based Local Feature Vectors

Fonte et al. [10] considered (improved) Harris and Susan
corner detectors to obtain the type of structure in a satellite
image. They concluded that corner detectors are not sufficient
alone to give distinctive information on the type of structure
in an image. Schmid et al. [28], on the other hand, evaluated
and compared different corner detectors for general image
processing applications. They concluded that the best results
are provided by the Harris corner detector [12]. Therefore, we
first pick it to extract local feature vectors.

Harris and Stephens define their corner detector (generally
known as the Harris corner detector) in three steps: gradient
calculation, matrix formation, and eigenvalue computation.
First, we should calculate smoothed (using a Gaussian function)
gradients in the x- and y-directions to detect corners in a given
grayscale image I(z,y). We define smoothed gradient filters
for the x- and y-directions as
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where 7, is the smoothing parameter. We take it as unity in this
paper due to the scale of Ikonos satellite and aerial images at
hand. Although our method is fairly robust to this parameter, it
should be adjusted by the resolution of the image to be analyzed
in future studies.

We calculate the smoothed gradients for the image I(z, y) as

Gz(w,y) * I(z,y) (3)
gy(x,y) * 1(z,y) “)

where * stands for the 2-D convolution operation.
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The Harris corner detector depends on calculating a matrix
(related to the autocorrelation function) as

A(z,y) = (a“ ““"y) ®)

gy

where

;€W y,eW
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As can be seen, a,, 44y, and a,,, are the gradient magnitudes
averaged over a window W. We pick this averaging window
width as seven pixels in this paper. We also tested the effect
of this parameter in Section IV. For further details on this
averaging operation, please see [12]. The eigenvalues of matrix
A provide information about the edge in a given location. If
both eigenvalues of the matrix at a given location are large,
then there is a corner there. Harris and Stephens suggested that
exact eigenvalue computation can be avoided by calculating the
response function

R(A) = |A| — s trace*(A) )

where x is a tunable parameter, with values from 0.04 to 0.15
being reported as appropriate in the literature. We picked x =
0.06 in this paper based on [12]. We also tested the effect of
this parameter in Section IV. Harris and Stephens extract their
corner points by checking the local maxima of R(A). For a
detailed explanation, please see [12].

As we obtain corner points with their spatial coordinates,
we define local feature vectors using them. Other than spatial
coordinates, we also add orientation and weight information as
follows. First, we calculate the gradient orientation [O(z,y)]
and magnitude [M (z,y)] for each image coordinate as

O(z,y) = arctan <M> (10)

M(z,y) = [ 2(@,y) + I}(,0).

(1)

For the corner point at coordinate (z;, y;), the corresponding
orientation is 6; = O(x;,y;). To assign a weight for the local
feature vector, we threshold M (z,y) using Otsu’s method in
an adaptive manner [26]. As a result, we obtain B(xz,y) as
a binary image. In this image, pixels having a value of one
correspond to strong responses. We obtain connected pixels to
(xj,y;) in B(xj,y;). By definition, two pixels are connected
(in a binary image) to each other if there is a path (of pixels
with a value of one) connecting them [33]. As we obtain all the
connected pixels to (x;,y;), we assign their sum as the weight
wj. Therefore, if a candidate local feature vector has more
connected pixels, it has more weight. Finally, we have Harris-
corner-based local feature vectors as k(j) = (2, y;, 07, w;)
for j =1,..., K. Here, K} is the total number of detected
Harris features.

B. GMSR-Based Local Feature Vectors

We next pick our previous study, i.e., GMSR, to extract
local feature vectors [35]. There, we benefited from smoothed
gradients to form support regions. We used these to extract
structural and conditional statistical features to classify land
use. In this paper, we extract support regions using smoothed
gradient values, namely, I, and I, given in (3) and (4). To
extract support regions, we threshold M (x, i) by the 10% of the
maximum gradient magnitude in the considered image I(x,y).
The rationale here is as follows. We take the maximum gradient
magnitude as a benchmark. After experiments, we observed
that even 10% of this value still gives information about the
structure in the image. Therefore, we have an adaptive threshold
value. Similar to the Harris corner detection method, we obtain
B(x,y) as a binary image after thresholding. In this image,
pixels having a value of one correspond to support regions. For
more details, please see [35].

We define local feature vectors based on the extracted sup-
port regions. Therefore, we pick each support region pixel as
a local feature vector coordinate. Assume that we have a local
feature vector (z;, y;). By definition, B(z;, y;) = 1. We define
the orientation and magnitude of the local feature vector having
spatial coordinate (2, y;) with the same method that we used in
the previous section. As a result, we obtain local feature vectors
as ky(j) = (24,v;,0;,w;) for j = 1,..., K, from the GMSR.
Here, K is the total number of detected GMSR features.

C. Gabor-Filtering-Based Local Feature Vectors

We introduce Gabor-filtering-based local feature vector ex-
traction in this section. In this method, the first step is smooth-
ing the image by median filtering to eliminate small noise terms
[33]. Then, we apply Gabor filtering in different orientations.
Based on these responses, we obtain our local feature vectors.
We explore these steps in detail next.

Gabor filters are extensively used in texture segmentation
and object recognition [14], [19]. They exhibit desirable char-
acteristics, such as spatial locality and orientation selectivity
[39]. Mathematically, the 2-D Gabor filter can be defined as the
product of a Gaussian and a complex exponential function as

2 2
27rog 209

2,2
F,(z,y) = Lexp (—M) exp(j2nfu)  (12)

where uw =2xcosp+ysing and v = —xsinp 4+ ycosp.
f is the frequency of the complex exponential signal, ¢
is the orientation of the Gabor filter, and o, is the scale
parameter. We observed that, for our test images, oy, = 1.5
and f = 0.65 are suitable values after extensive testing. By
fixing these two parameters, we obtain a filter shape (in the
spatial domain) that is very similar to building edges. In
Section IV, we experimentally justify these selections. To
cover differently oriented building edges, we tested different ¢
values. We conclude that choosing ten different orientations for
Gabor filtering (¢ = {0,7/10,27/10,...,97/10} radians) is
suitable for building detection. We also justify this selection
in Section IV. Although we tested these parameters on two
different image sets (aerial and satellite), they should be
adjusted w.r.t. the image resolution at hand in future studies.
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We can detect building edges and corners in a test image
using Gabor filtering. For a test image I(z,y) (with size N x
M), we benefit from the real part of the Gabor filter response as

G‘P(x’y):%Q{I(xv?”*Fw(x?y)}' (13)
Gy (z,y) is maximum for image regions having similar char-
acteristics with that of the filter. To extract local feature vec-
tor spatial coordinates, we first search for the local maxima
in Gy(z,y) for x=1,...,N and y=1,...,M. If any
pixel (zj,y;) in G,(x,y) has the largest value among its
eight neighbors, G, (2, y;) > Go (T, Yn)V(Tn, yn) € {(x; —
Ly —1),(zj,y; —1),...,(zj + 1,y; +1)}; we call it as a
local maximum. It is a candidate for being a local feature vector
coordinate. Next, we check the amplitude of the filter response
Gy (25, y;). We call our local maximum (x;,y;) as a candidate
local feature vector coordinate if and only if G, (z;,y;) > a.
To handle different images, we obtain « using Otsu’s method on
G (z,y) in an adaptive manner for each image separately [26].
Therefore, we eliminate weak candidate local feature vectors in
future calculations.

As we obtain the spatial coordinates of local feature vectors
in one Gabor filter direction, we assign an orientation and
weight to them. We obtain the weight for each local feature
vector similar to the methods in the previous sections. Here, we
obtain our binary image B(z, y) by thresholding G, (x, y) with
« for weight calculations. However, we assign the orientation
different than the two previous methods as follows. We check
for the orientations in the eight neighbors of (z;,y;) and
pick the orientation (6,) as the one having the highest mag-
nitude. We applied this procedure to obtain robust orientation
information. We apply this procedure in all y-directions and
obtain Gabor-filtering-based local feature vectors as k r(j) =
(xj,y;,0;,w;)forj=1,..., K. Here, K is the total number
of detected Gabor-filtering-based features.

D. FAST-Based Local Feature Vectors

Rosten et al. [27] introduced the FAST method to detect
corners in images in a fast and reliable manner. The method
depends on wedge-model-style corner detection and machine
learning techniques. This method can briefly be explained as
follows. For each corner candidate pixel, its 16 neighbors are
checked. If there exist nine contiguous pixels passing a set of
tests, the candidate pixel is labeled as a corner. These tests are
done using machine learning techniques to speed up the opera-
tion. For a detailed explanation of this method, please see [27].

We finally pick FAST to extract local feature vectors. There-
fore, we pick each extracted corner pixel as a local feature
vector coordinate. Assume that we have a local feature vector
(x,y;). We define the orientation and magnitude of the local
feature vector having spatial coordinate (x;,y;) with the same
method that we used in the Harris-corner-based local feature
extr_glction method. As a result, we obtain local feature vectors
as ks(j) = (xj,y;,0;,w;) for j =1,..., K, from the FAST
method. Here, K is the total number of detected FAST-based
features.

We pick the Adana; test image shown in Fig. 2 and provide
the spatial coordinates of local feature vectors extracted by the
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Fig.2. Adana; testimage and local feature vector coordinates extracted with
four different methods. (a) ky,. (b) kg. (c) ky. d) ks.

four methods mentioned earlier. As can be seen, in Eh, there are
only corner pixel coordinates (as expected). In addition, some
corners are also missing. Therefore, we have the least number
of local feature vectors with the Harris corner detection method.
kg includes both corner and building edge pixel coordinates.

Ef and k, also include both corner and building edge pixel
coordinates. However, they also have some extra road segment
and tree structure pixel coordinates (resembling buildings).
Next, we use these local feature vectors to detect buildings.

III. BUILDING DETECTION

Each local feature vector indicates a building to be detected
in the image. However, only one of them is not sufficient alone
to detect a building. In fact, the more local feature vectors a
building has, the more probable its detection becomes. On the
other hand, we do not know how many buildings there are
in the image. Therefore, we formulate our building detection
method with a probabilistic framework. To do so, we represent
possible building locations as discrete joint random variables.
We then estimate their pdf by taking local feature vectors as
observations. Here, we benefit from a variable-kernel density
estimation method. Next, we introduce our probabilistic build-
ing detection framework using it. Finally, we introduce data and
decision fusion methods based on our probabilistic framework
to detect buildings. To explain our method in detail, we start
with kernel-based density estimation.

A. Kernel-Based Density Estimation

Silverman [30] defines the kernel density estimator for a
discrete and bivariate pdf as follows. First, the bivariate kernel
function [N (z, y)] should satisfy the conditions

ZZN(x,y)zl (14)
Tz oy
N(z,y) 20 V(z,y). (15)
The pdf estimator with kernel N (z,y) is defined by
L~y (2= y—wi
= — N 16
p(z,y) nh;(,l,h) (16)
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Fig. 3. (First column: bright; second column: dark) Two sample buildings and
(first row: Harris; second row: Gabor) local feature vector directions on them.

where £ is the window width (also called the smoothing param-
eter) and (x;,y;) fori = 1,..., n are observations from the pdf
to be estimated.

If observations cannot be represented reliably by a fixed
kernel function, then a variable kernel function can be used.
This is achieved by adaptation of the amount of smoothing to
the local density of the data (observation). Hence, the scale
parameter is allowed to vary from one observation point to
another. Furthermore, the estimate is constructed similarly to
the classical kernel estimate. The pdf estimate given in (16) then
becomes

1L~ (z—a y—vy
o(@y)=—> =N (=, 17
p (x y) nh =1 ag; ( hUi hO’i ( )

where o; is the variable scale parameter forz = 1,...,n.

B. Detecting Buildings Using Variable-Kernel-Based
Density Estimation

Since we do not know the total number of buildings in
a given test image, we use the variable-kernel-based density
estimation method to detect them. As we mentioned previously,
we use local feature vectors (K, Eg, Ef, and k) as observations
to estimate the pdf. Without loss of generality, we explain pdf
estimation on a generic local feature vector k= (i, i, 0, w5)
fori =1,..., K;. These vectors provide information on build-
ings to be detected. However, their spatial coordinates are not
sufficient enough since they represent either building corners or
edges. To detect a building, we need an ensemble of edges or
corners. To achieve this, we adjust the effect of local feature
vectors w.r.t. their orientation and weight. In doing so, we
observed that, for bright building corners and edges, gradient
directions are toward the building center. For dark building
edges, gradient directions are away from the building center.
However, due to the nonuniformity of rooftop pixel values and
shadows around buildings, some gradient directions will still
be toward building centers. In Fig. 3, we show the local fea-
ture vector directions using Harris-corner- and Gabor-filtering-
based local feature vectors on one bright and one dark building.
As can be seen, for the bright building, almost all directions are
toward the building center for both feature extraction methods.

© (@)

Fig. 4. Adana; test image kernel density estimation (pdf) results for four
local feature vector extraction methods. (a) kp. (b) kg. (¢) k. (d) ks.

For the dark building, few Harris-corner-based local feature
vectors have directions toward the building center. However, for
the Gabor-filtering-based local feature vectors, we have more
feature vectors toward the building center.

Based on the aforementioned observations, each local feature
vector will have its effect as Z; = x; + 0.5w; sin(6;) and §; =
yi + 0.5w; cos(6;). In other words, each local feature vector is
shifted in the direction of #;. We apply half of the weight w;
in shifting to approximately locate the building center. We also
take N (x,y) in (17) as a Gaussian symmetric pdf, which is used
in most density estimation applications. Using these adjusted
and updated observations, we form the estimated pdf as

1 K

L1
pb(‘xay) - E \/ﬁ
i=1 v

(x — &))"+ (y — ;)
20’i

exp | —
(18)

where o; = w;. We will obtain the modes of p(x, y) in detect-
ing buildings. Therefore, we did not use a normalized kernel in
this equation. However, we normalized the final estimated pdf
pp(2,y) by the normalizing constant R.

Before proceeding further, we show the kernel density es-
timation results in Fig. 4 using the four local feature vector
extraction methods introduced earlier. As can be seen, for the
Harris- and GMSR-based corner detector, the estimated pdf
is smooth. For the Gabor-filtering- and FAST-based methods,
the estimated pdfs have more fluctuations around nonbuilding
regions. This is because of the falsely extracted local features
around these regions by the Gabor-filtering- and FAST-based
methods.

The estimated pdf py,(x, y) will be multimodal since we have
an unknown number of buildings to be detected in the image.
We hypothesize that the modes of this pdf are possible building
centers. However, all modes do not correspond to a building
center. We assume that, for a location to be a building center,
it should exceed at least a minimum probability value. We
adjust this value in an adaptive manner as follows. Since we
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are detecting buildings in an urban region, we assume that there
is at least one building there. Remember that we applied urban
region detection as a preprocessing operation. Therefore, we
pick the mode having the highest probability as a building lo-
cation, i.e., (74, yp) = arg max(, ) po(, y). Then, we pick the
remaining modes having probabilities at least 0.4 X py(xp, yp)
as building locations. We experimentally justified the multiplier
0.4 in Section IV. This method also automatically assigns
probabilities to the detected building locations. The higher
probability the location has, the more probable it represents
a building. This information may be of use in some other
applications.

C. Data and Decision Fusion for Building Detection

The four local feature vector extraction methods extract
different information from the same image. In the previous sec-
tion, we separately used these to detect building locations. Their
fusion may improve our building detection performance. For-
tunately, the proposed probabilistic building detection method
allows fusion of information. Therefore, in this section, we in-
troduce two fusion methods using our probabilistic framework
to improve our building detection results.

Our first method is based on data fusion. This method is
straightforward, such that we use all the local feature vectors
extracted with different methods as one unique group. In other
words, we estimate the pdf using (18) with the local feature set
kp = {k’h, Eg, k I3 lgg} We detect building locations from the
estimated pdf with the same method in the previous section.

Our second method is based on decision fusion. Here, we mix
the estimated pdfs by different methods and obtain a final pdf.
While mixing the estimated pdfs, we assign a weight to each
that is directly proportional to their maximum mode value. As
we mentioned in the previous section, in detecting building lo-
cations from the estimated pdf, we label the mode with the max-
imum value as a building. By normalizing four different pdfs
this way, we can mix them and obtain the final pdf estimate as

1 (T, y)

1 g 19
pp(z,y) R max(; ) pi(z,y) 4

I={h,g,f,s}

where pu(z,y), pe(z,y), pr(r,y), and pg(z,y) are the
estimated pdfs from Eh, Eg, k +, and Es, respectively. R is,
again, the normalizing constant. We call this method as decision
fusion, since we apply the fusion operation close to the building
detection step. Again, we use the building detection method in

the previous section on pp(x, y) to detect building locations.

IV. EXPERIMENTS

In this section, we test our novel building detection methods.
Our data set consists of panchromatic Ikonos satellite and aerial
image sets with 1- and 0.6-m spatial resolutions, respectively.
These two image sets are naturally acquired by different sen-
sors. Moreover, both aerial and Ikonos satellite test images
are specifically selected to represent wide and diverse building
characteristics. Therefore, they can provide reliable information
on the performance of our methods.
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Fig. 5. ROC curves w.r.t. the downsampling ratio on the Aeriale test image.
In these ROC curves, the highest TD and FA percentages occur on the rightmost
corner. Each dot represents a downsampling ratio of 0.05 steps apart.

We first check the sensitivity of our building detection meth-
ods on parameter values. This way, we also experimentally
justify the previously mentioned parameter selection criteria.
Based on these results, we provide the building detection results
on both aerial and Ikonos satellite images in a quantitative
manner in terms of true detection (TD) and false alarm (FA). TD
summarizes the total number of buildings correctly detected by
our method. FA summarizes the corresponding total number of
FAs. We also provide the percentages of TD and FA. In form-
ing these percentages, we pick the total number of buildings
(labeled by a human expert) as a benchmark. We report the
performances of all four local feature vector extraction methods
and data and decision fusion methods separately. In reporting
these results, we follow the same strategy as that in our previous
study [32]. There, if a part of a building is detected, then we
assumed it to be detected correctly. If a building is detected
multiple times (specifically for large buildings), then we also
assumed it to be detected correctly. Different from our previous
study, if a building is in construction, then we do not expect
our method to detect it here. We also provide sample building
detection results using decision fusion on sample satellite and
aerial images.

The most important advantage of our novel building detec-
tion method is its computation time. Therefore, we examine
the computation time of each building detection module in a
separate section. We then compare our local feature extraction
methods with the ones in the literature. We finally compare our
novel building detection method in terms of building detection
performances and computation times with our previous SIFT-
and graph-theory-based building detection method [32].

A. Sensitivity to System Parameters

In this section, we test the sensitivity of our probabilistic
building detection method to the parameters used. This way,
we also experimentally justify why we picked some parameters.
In the experiments, we first consider aerial images. We down-
sample these before detecting buildings in them. To obtain a
reliable downsampling ratio, we provide the receiver-operating
characteristic (ROC) curves for all our local feature extraction
methods on the Aerialg image in Fig. 5. In this figure, we
change the resolution of the Aerialg test image by steps of 0.05.
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Fig. 7. Effect of ¢ and f on FA for the Adana; and Aerialg test images.

For each resolution, we provide the corresponding TD and FA
percentages. This test shows that having a downsampling ratio
of 0.5 is reasonable for our aerial images.

For the Harris-corner-based local feature extraction method,
we changed the « parameter from 0.01 to 0.21 and observed
that TD did not change for both Adana; and Aerialg test
images. We obtained the FA for both images as in Fig. 6. These
results indicate that picking x = 0.06 is reasonable. For the
Harris-corner-based method, we also changed the averaging
window width parameter from 3 to 13 and could not observe
any changes. Therefore, we picked this value as seven.

For the Gabor-filtering-based local feature extraction
method, we changed the total ¢ orientation number from 4 to
14. On both Adana; and Aerialg test images, TD rates did
not change significantly. The FA rates changed as in Fig. 7.

image. (First row) Harris and GMSR. (Second row) Gabor and FAST. (Third
row) Data fusion and decision fusion.

Based on these results, we can conclude that picking the total
orientation number as ten is suitable. On the same figure, we
also provide the effect of frequency on FA rate. This figure also
indicates that picking f = 0.65 is suitable.

We finally provide the ROC curve for threshold selection
for building detection decision making. As we mentioned in
Section III, we picked this threshold value as 0.4 times the
maximum vote value. We change this multiplier from 0.2 to 0.6
in steps of 0.1. We provide the ROC curves for the Adana; and
Aerialg images in Fig. 8. Considering the TD and FA ratios on
both images, choosing the multiplier value as 0.4 is reasonable.

B. Building Detection in Satellite Images

As we experimentally justified parameters in the previous
section, we focus on Ikonos satellite images. We first provide
the detected buildings in the Adana; test image in Fig. 9
by the four local feature vector extraction and two fusion
methods mentioned previously. As can be seen, for the four
local feature extraction methods, almost all of the buildings are
reliably detected. There is a missing building and one FA for the
Harris-corner- and GMSR-based local feature vector extraction
methods. There are two missing buildings and one FA for the
FAST-based local feature vector extraction method. The FA rate
increases to three with the Gabor-filtering-based local feature
vector extraction method. For both data and decision fusion
methods, we have similar detection results with the Harris- and
GMSR-based local feature extraction methods.
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Fig. 10. Building detection results on the large Ikonos image.

TABLE 1
BUILDING DETECTION PERFORMANCES FOR 32 IKONOS SATELLITE
TEST IMAGES HAVING A TOTAL OF 911 BUILDINGS

Method TD FA ™D (%) | FA (%)
Harris 699 | 186 76.7 20.4
GMSR 792 | 215 86.9 23.6
Gabor filtering 780 | 187 85.6 20.5
FAST 818 | 181 89.8 19.9
Data fusion 831 | 202 91.2 222
Decision fusion 851 | 163 934 17.9

We then pick the test image in Fig. 1. In this large Ikonos
image, our urban area detection method labeled eight different
regions as urban. We applied our probabilistic building detec-
tion method with decision fusion on these regions and provide
the results in Fig. 10. As can be seen, most of the buildings in
these regions are correctly detected.

Next, we test our building detection methods on 32 Ikonos
satellite images. From these images, 23 of them are acquired
over Adana, five of them are acquired over Ankara, and four
of them are acquired over Istanbul. These images cover fairly
diverse geographic locations. The total number of buildings in
these images is 911. To observe the performance of each local
feature extraction and fusion method, we provide their building
detection performances over all test images in Table I.

As can be seen in Table I, the Harris-corner-based local
feature vector extraction method has the lowest detection per-
formance. The Gabor-filtering-based local feature extraction
method has the second lowest detection performance. The
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Fig. 11. Building detection results by decision fusion in the Adanaig and
Adanass satellite test images.

GMSR- and FAST-based local feature vector extraction meth-
ods have similar detection performances. Both performances
are also far better than that of the Harris-corner-based method.
In both data and decision fusion methods, the performance
increases significantly. Using decision fusion, the correct build-
ing detection performance reaches 93.4% with 17.9% FA
rate. This result is remarkable on such a diverse satellite
image set.

Next, we provide sample Ikonos satellite images and building
detection results on them. To show the performance of our prob-
abilistic building detection method, we specifically selected
images with complex and dense building layouts, as shown
in Fig. 11.

As can be seen in Fig. 11, in both Adana,s and Adanass
images, the buildings are dense. Moreover, the buildings in the
Adanags image are tall, and the image is acquired from an
oblique angle. The proposed method correctly detects 66 of the
71 buildings (corresponding to TD = 94.3%) in the Adanas
image. Therefore, in this test image, almost all buildings are
correctly detected. However, there are 21 FAs in this image
(corresponding to FA = 30.0%). Most FAs originate from man-
made structures resembling buildings (like the swimming pool
and road segments) in this image. For the Adanas3 image, the
proposed method is able to detect 46 of the 48 buildings (corre-
sponding to TD = 95.8%). There are ten FAs (corresponding to
FA = 20.8%) in this image. For such a complex satellite image,
this performance is fairly good.

C. Building Detection in Aerial Images

We also test our probabilistic building detection method on
22 aerial images. All these images are acquired over Istanbul
and nearby villages. The total number of buildings in these
images is 697. Aerial images have higher resolution. Therefore,
they contain more details compared to Ikonos satellite images.
To eliminate the effects of these undesired details, we first
apply nonlinear bilateral filtering to aerial images [8]. Then,
we downsample them by 0.5. We experimentally justified this
value in the previous section. Similar to the satellite images, we
provide the building detection results of our methods on aerial
images in Table II.

As can be seen in Table II, for all methods, the FA rate is
higher compared to the satellite image detection results. One
possible reason for this poor performance is that, in aerial
images, road segments and nearby land formations resemble
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TABLE 1I
BUILDING DETECTION PERFORMANCES FOR AERIAL TEST
IMAGES HAVING A TOTAL OF 697 BUILDINGS

Method TD FA ™D (%) | FA (%)
Harris 505 | 279 72.5 40.0
GMSR 569 | 426 81.6 61.1
Gabor filtering 591 | 411 84.8 59.0
FAST 532 | 218 76.3 31.3
Data fusion 565 | 297 81.1 42.6
Decision fusion 575 | 271 82.5 38.9

Fig. 12. Building detection results by decision fusion in the Aerialg,
Aerialio, Aeriali2, and Aerialie test images.

buildings due to the resolution of these images. Among dif-
ferent local feature vector extraction methods, Harris has the
lowest while Gabor filtering has the highest building detection
performance. Moreover, decision fusion has a clear advantage
(taking both TD and FA into account) compared to all methods
in detecting buildings.

As in satellite images, we provide sample building detection
results in Fig. 12 for four aerial images. These images also show
fairly complex and dense building layouts. For the Aerialg test
image, our method is able to detect all of the buildings with
five FAs (corresponding to TD = 100.0% with FA = 31.3%).
For the Aerialyg test image, our method is able to detect 44 of
the 51 buildings with 20 FAs (corresponding to TD = 86.3%
with FA = 39.2%). Although we have a fairly high FA rate for
this image, as can be seen, most FAs are close to the buildings.
Therefore, they are not random. On the other hand, for such a
complex scene, we have a fairly good building detection per-
formance. For the Aerialyo test image, our proposed method is
able to detect 56 of the 73 buildings with six FAs (correspond-
ing to TD = 76.7% with FA = 8.2%). For this test image, the
buildings are dense and not easily visible. We have a reasonable
building detection performance. The corresponding FA rate is
also lower for this image. Finally, for the Aerialyg test image,
the proposed method is able to detect 33 of the 56 buildings
with only one FA (corresponding to TD = 57.9% with FA =
1.8%). As in the Adanass satellite test image, in the Aerialig
test image, the buildings are tall and dense. Also, the image
acquisition angle is oblique. Therefore, the performance of our
building detection method on this aerial image is fairly low.

TABLE III
CPU TIMES (IN SECONDS) FOR BUILDING DETECTION
OPERATIONS ON THE Adanai TEST IMAGE

Local Feature Vector
Module Harris | GMSR | Gabor | FAST
Preprocessing 0.08 0.09 0.08 0.08
Local feature vectors 0.20 0.80 0.33 3.21
Kernel density estimation 0.02 0.73 0.80 0.50
Building detection 0.33 0.30 0.34 0.30
Total 0.63 1.92 1.55 4.09

D. Computation Times

The most important advantage of our method is its compu-
tation time. Therefore, in this section, we consider the time
needed by all building detection modules in detail. To note here,
timing directly depends on the test image. As the number of
buildings in a test image increases, the number of local feature
vectors will also increase. Our building detection method will
need more computation time. To give an idea for the possible
reader, we consider the Adana, test image as a benchmark.
We tabulate all CPU timings for each module in Table III. In
reporting these results, we used a PC with Intel Core 2 Quad
processor with 3-GHz clock speed and has 8 GB of RAM. We
used Matlab as our coding platform.

As can be seen in Table III, all modules need similar CPU
times. To note here, the preprocessing module summarizes
image read and variable assignment operations. The total time
needed to detect buildings (using any local feature vector
extraction method) is fairly short. However, depending on the
local feature vector extraction step, it changes slightly. If the
user needs a faster building detection system, then these slight
changes should be taken into account. If we consider both
data and decision fusion methods, we need 7.04 and 6.46 s,
respectively. Although these methods need more computation
times, their building detection performances are also better.

E. Comparison With Other Keypoint and Corner
Extraction Methods

Other than the local feature extraction methods used in this
paper, there are several other methods in the literature [24]. In
this section, we pick four of these methods and apply them to
our problem. The first method we pick is Lindeberg’s [20] blob
detector. The second method is Lowe’s [21] SIFT method. The
third method is speeded up robust features (SURF) by Bay ez al.
[3]. The fourth method is chord-to-point distance accumulation
technique (CPDA) by Awrangjeb and Lu [2]. We provide the
coordinates of the local features extracted by these methods and
the buildings detected by them using our probabilistic method
on the Adana; test image in Fig. 13.

As can be seen in Fig. 13, for all the methods except CPDA,
we have many FAs in building detection. For the CPDA, we
miss closely located buildings (in other test images) since this
method depends on edge detection as a preprocessing step.
For all the methods in this section, we had to upsample the
Adana; Tkonos satellite test image by six to reliably extract
the keypoints. In a previous study, we had the same observation
[32]. Therefore, the time needed to detect building locations
increased. Based on these observations, we did not use them in
our probabilistic building detection framework.
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Fig. 13. Comparison of other keypoint extraction methods. (First column)
Local features extracted by the blob detector, SIFT, SURF, and CPDA on
the Adana; test image. (Second column) Building detection results by these
features.

F. Comparison With a Previous Building Detection Method

Finally, we compare our probabilistic building detection
method with our previous SIFT- and graph-theory-based
method [32]. There, we used two template (representing dark
and bright) building images. Using SIFT keypoints and graph
matching, we were able to detect buildings and urban area in
a given satellite image. However, in this paper, we do not use
any template building images. Therefore, our present method is
applicable to both satellite and aerial images. In our previous
method, we obtained an 88.4% building detection performance
with 14.4% FA rate. On the same data set, we obtained a 93.1%
building detection performance with 17.7% FA rate with our
new method using decision fusion. If we only use FAST-based
local feature vectors, then we have an 89.5% building detection
performance with 20.0% FA rate. These results indicate the
correct building detection performance and FA rate of our
present method is slightly higher.

In terms of CPU timing, our previous method needs 160.76 s
to detect buildings from the Adanag test image (with the PC
mentioned in the previous section). On the other hand, our
novel building detection method needs at most 4.04 s (if FAST-
based local feature vectors are used) and 6.94 s (if decision
fusion is used). Therefore, the present method is extremely
fast compared to our previous SIFT- and graph-theory-based
method.

V. FINAL REMARKS

In this paper, we have introduced a novel building detection
method based on a probabilistic framework. To do so, we
defined the spatial coordinates of buildings (to be detected) as
joint random variables. We formed their pdf by the nonparamet-
ric variable-kernel density estimation method. In estimating the
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pdf, we used local feature vectors (extracted from the image)
as observations. At this step, we used four local feature vector
extraction methods. To note here, our probabilistic building
detection framework is not limited to these four methods. It can
be applied to other local feature extraction methods as well.
Then, we detected building locations using the modes of the
estimated pdf and other probabilistic constraints. We further
improved our building detection method by introducing two
fusion methods, i.e., one in data and the other in decision level.
To obtain the performance of our building detection method,
we tested it on panchromatic Ikonos satellite and aerial images.
For these images, the sensor characteristics and the spatial
resolution differ. After extensive testings, we observed that our
method is able to detect most of the buildings (having different
size, shape, and intensity values) in a correct manner on both
aerial and Ikonos satellite images. However, for aerial images,
the FA rate is relatively high. Therefore, a more complex system
is needed to decrease the FA rate for these images. On the
other hand, the time needed to detect buildings for our method
is fairly short. In fact, this is one of the major advantages of
the proposed method. To justify our claim, we compared our
building detection method with that of our previous study using
SIFT keypoints and graph theory. Although both methods have
similar building detection performances, the present method is
extremely fast compared to our previous method. In addition,
we do not need training sets (like template images) in this
paper. We can conclude that our probabilistic building detection
method can be used to detect buildings in a fast and reliable
manner.
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