
Geoderma 167-168 (2011) 295–302

Contents lists available at SciVerse ScienceDirect

Geoderma

j ourna l homepage: www.e lsev ie r .com/ locate /geoderma
Predictions of soil surface and topsoil organic carbon content through the use of
laboratory and field spectroscopy in the Albany Thicket Biome of Eastern
Cape Province of South Africa

Marco Nocita a,b,c,⁎, Lammert Kooistra b, Martin Bachmann c, Andreas Müller c, Mike Powell d, Silvia Weel e

a Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université Catholique de Louvain, 3 Place L. Pasteur - 1348 Louvain la Neuve, Belgium
b Laboratory for Geo-Information Science and Remote Sensing, Wageningen University, Droevendaalsesteeg 3 6708 PB Wageningen, The Netherlands
c Deutsches Zentrum für Luft- und Raumfahrt (DLR), Deutsches Fernerkundungsdatenzentrum, Münchner Straße 20 82234 Oberpfaffenhofen-Wessling, Germany
d Rhodes Restoration Research Group, Department of Environmental Science, Rhodes University, Grahamstown, South Africa
e Presence-Earthcollective, PO Box, 237 Patensie 6335, Eastern Cape, South Africa
⁎ Corresponding author at: Georges Lemaître Centre f
Earth and Life Institute, Université Catholique de Louv
Louvain la Neuve, Belgium. Tel.: +393286392715.

E-mail address: marco.nocita@gmail.com (M. Nocita

0016-7061/$ – see front matter © 2011 Elsevier B.V. All
doi:10.1016/j.geoderma.2011.09.018
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 22 February 2010
Received in revised form 1 July 2011
Accepted 28 September 2011
Available online xxxx

Keywords:
Organic carbon
Soil spectroscopy
Albany thicket biome
Soil surface
Topsoil
EnMAP
In recent years it has been shown that laboratory and field visible near infrared spectroscopy (VNIRS) allows
for the accurate prediction of soil organic carbon (SOC) — more rapidly, less expensively, and at larger scales
than conventional soil laboratory methods. VNIRS might find application in the restoration assessment of the
degraded, semi-arid subtropical thickets of the Albany Thicket Biome (ATB) of the Eastern Cape Province of
South Africa. During the twentieth century, the semi-arid forms of the ATB suffered heavy browsing by
goats, transforming the dense closed-canopy shrubland into an open savannah-like system. This paper pre-
sents a study dealing with SOC estimation of soil surface (0–5 mm) and topsoil (0–200 mm) in the degraded
ATB, through the combination of soil spectroscopy and partial least square regression (PLSR). Spectroscopic
measurements and soil samples were collected along a transect in the ATB. The PLSR models developed
with laboratory and field spectra gave good predictions of SOC, with root mean square error of validation
(RMSEV) b5.0 and 5.5 g C kg−1, respectively. The use of the full visible near-infrared spectral range gave bet-
ter SOC predictions than using either visible or near-infrared separately. The resampling simulation of the
field surface spectra to the 232 channels of the satellite-born EnMAP sensor gave good SOC predictions for
laboratory conditions (RPDN2), but low accuracy (RMSE: 9.88 g C kg−1) for field model. The results of this
research study indicated that, for the ATB, (i) combining soil spectroscopy and PLSR does favor accurate pre-
diction of SOC, (ii) the predictions of surface SOC can be used as a proxy of topsoil SOC, and (iii) there is
potential for future application of satellite-born hyperspectral data for SOC content predictions.
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1. Introduction

The rising carbon dioxide (CO2) concentration in the atmosphere,
and the climate change have precipitated the possibility of sequester-
ing CO2 into soils by increasing soil organic carbon (SOC) stocks (Lal,
2004). It has been widely demonstrated that SOC stocks are linked
with management practices and land use changes (Guo and Gifford,
2002; Johnson and Curtis, 2001; West and Post, 2002). For example,
during the 20th century, 800,000 ha of semi-arid subtropical thickets
(Lloyd et al., 2002) of the Albany Thicket Biome (ATB) (Hoare et al.,
2006) of Eastern andWestern Cape Provinces of South Africa were af-
fected by goats' heavy browsing which transformed the dense closed-
canopy shrubland into an open savannah-like system (Lechmere-
Oertel et al., 2005). The carbon lost, as a result of vegetation removal
in succulent thicket, was approximately 4.0 kg m-2 yr−1 in soils to a
depth of 500 mm and 4.5 kg m−2 yr−1 in biomass (above and below-
ground) (Mills et al., 2003). The restoration of ATB ancient vegetation
matrix might return more than 8.5 kg C m−2, due to the reduction of
surface erosion, and the decreases of surface temperature and miner-
alization rate of soil organic matter (Mills and Cowling, 2006). The es-
timation of SOC sequestration rate would be very difficult with the
time-consuming and expensive conventional sampling methods and
chemical analyses because of the large amount of samples to be pro-
cessed in order to accurately calculate SOC stocks (McCarty and
Reeves, 2001). In the ATB, soil spectroscopy might be valuable alter-
native technique for measuring SOC in a more rapid and less
expensive way, and at higher sampling density compared to the con-
ventional soil laboratory methods (Shepherd and Walsh, 2002).

In the past soil spectroscopy has been demonstrated to be a non-
destructive and versatile technique to accurately quantify SOC, both
in the laboratory under controlled conditions (Ben-Dor and Banin,
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1995; Chang and Laird, 2002; Cozzolino and Moron, 2003; Fidencio et
al., 2002; Kooistra et al., 2001; Reeves et al., 1999; Salgo et al., 1998;
Sørensen and Dalsgaard, 2005), and in the field (Christy, 2008; Koois-
tra et al., 2003; Stevens et al., 2008). Moreover, the possibility to test
several spectral ranges for both laboratory and field spectroscopy
might be an asset for the prediction of SOC. The sensitivity of the
near-infrared (NIR, 700–2500 nm) and visible (VIS, 400–700 nm)
parts of electromagnetic spectrum to organic and inorganic phases
of the soil is due to intense fundamental molecular frequencies relat-
ed to soil components occurring in the middle infra-red (MIR: 2 500–
25,000 nm) wavelengths (Viscarra Rossel et al., 2006). Previous stud-
ies used either the full visible near-infrared (VNIR, 400–2500 nm)
spectral range or VIS and NIR near-infrared separately to predict
SOC. For instance, Stevens et al. (2010) and Morgan et al. (2009) pre-
dicted SOC in the field, using the full VNIR spectral range, with a mean
error of 2.4 g C kg−1 and 4.1 g C kg−1, respectively. Other experiments
where VNIR has been used to predict SOC gave coefficients of determina-
tion (R2) ranging between 0.60 and 0.92 (Brown et al., 2005; Dunn et al.,
2002; Islam et al., 2003; Shepherd and Walsh, 2002; Udelhoven et al.,
2003; Vågen et al., 2006). The adoption of just NIR or VIS spectral
bands to predict SOC reduces error probability and computational time,
making these regions particularly useful for measuring different forms
of carbon (Morra et al., 1991). Dalal and Henry (1986) predicted SOC
in the wavelength range 1100–2500 nm with a very low standard error
of prediction (SEP) of 0.16%. Islam et al. (2003) investigated VIS and
NIR to predict accurately SOC, getting R2 of 0.68 and 0.76, respectively.
Henderson et al. (1992), testing the response of different soil properties
to laboratory VNIR, noted that several NIR wavelengths were sensitive
only to differences in SOC. Christy et al. (2003) successfully tested NIR
spectroscopy (780–2500 nm) in the field to produce SOC maps on a
field scale, obtaining R2 of 0.87.

Although the promising results obtained in previous studies, field
spectroscopy, as well as remote sensing, can only provide estimations
of surface SOC (0–5 mm). This technical limit is more important in
natural rangelands, like the ATB, due to the absence of plough layer.
The assessment of topsoil (0–200 mm) SOC content is the most sig-
nificant indicator of soil restoration, because 33% of the SOC content
of the first meter is located in the topsoil, and this amount is strictly
linked with plant root density (Jobaggy & Jackson, 2000).

The objectives of this study were (i) to test the accuracies of VIS,
NIR, and VNIR spectral ranges in predicting SOC, (ii) to explore the
potential of laboratory and field soil spectroscopy to predict surface
SOC as a proxy of topsoil SOC, and (iii) to simulate a resampling of
field and laboratory spectral data to EnMAP satellite spectral resolu-
tion (Müller et al., 2009).

2. Methodology

2.1. Study area

The ATB is a dense formation of evergreen and weakly deciduous
succulent shrubs (e.g., Portulacaria afra), spinescent shrubs (e.g.,
Azima tetracantha, Gymnosporia polycantha, Putterlickia pyracantha,
Rhus longispina), and low-growing trees (2–5 m) (e.g., Pappea
capensis, Euclea undulata, Schotia afra) (Cowling et al., 2005). The eco-
system carbon storage exceeds 20 kg m−2 (Mills, et al., 2003). The
study area was a transect of approximately 130 km running in a
south east (SE)-north west (NW) direction within the ATB (SE ex-
treme: 25.38 E; NW extreme: −32.59 S). The study area was charac-
terized by geological formation of mudstone, shales and sandstones
(Mills et al., 2005). Soil types included Calcaric Cambisols, Calcic
Luvisols, Rhodic Luvisols, and Calcaric Regosols (FAO, 1998).

The transect was selected analyzing ATB vegetation types, rainfall
and contour data. The three datasets were overlaid, obtaining a strat-
ified map. Based on the highest possible variability of biome classes,
transect and sampling points were pre-selected. Fig. 1 shows the
113 points sampled along the transect, crossing 6 vegetation types
(Fig. 1a), with altitude ranging from 100 to 1100 m.a.s.l. (Fig. 1b),
and rainfall between 300 and 500 mm yr−1 (Fig. 1c).

2.2. Field data collection

A total of 113 topsoil samples up to 200 mm depth (C0-200) were
collected from a 20×20×20 cm excavation. After being homoge-
nized, the soil was divided into two parts: the first destined to chem-
ical analyses, and the second to laboratory spectral analyses. One
month later the same plots were revisited to collect soil spectral re-
flectance, with an ASD Fieldspec-Pro radiometer (ASD, Boulder, Co),
1 nm step in the 350–2500 nmwavelength range. A contact probe de-
vice, with a viewing area of 2-cm-diameter circle and its own light
source, was used in order to eliminate the effect of vegetation on
the soil spectra, and to avoid weather condition limitations (Waiser
et al., 2007). A 50×50 cm plot was defined, and five spectral mea-
surements collected, according to the following scheme: one in the
center and one at every corner of the plot. After collection of the
spectra, a soil surface sample up to 5 mm depth (C0-5) of the plot
was taken, homogenized, and divided into two bags, one for chemical
analyses and one for laboratory spectral analyses.

2.3. Soil sample analyses

SOC was chemically determined using the Walkley–Black method
(Walkley and Black, 1934). Soil spectral reflectance was acquired
under laboratory controlled conditions, with the same spectrometer
used in the field, for sub-sampling portions of the ground (b2 mm soil,
~20 g) (Viscarra Rossel et al., 2006). All samples were illuminated with
two-quartz halogen lamps (1000W each), mounted on a tripod with
zenith angle of 300 and a distance of about 30 cm between the fiber
optic of the radiometer and the soil sample. The instantaneous field of
view (IFOV) was 8°, corresponding to about 12 cm2. The reflected
light was assessed from nadir position. Four measuments were taken
for every sample, rotating in the same direction: clockwise and 90°.

2.4. Pre-processing and models construction

Spectralon was used as white reference for all spectra collected in
the field and in the laboratory. Spectra were corrected for the ASD
“jump” at 1000 nm (additive correction method), and averaged for
subsequent processing. The dataset was sorted according to SOC con-
tent (from the lowest to the highest content), and then divided into
training (2/3) and test (1/3) sets. Prior to performing the statistical an-
alyses, spectral band ranges (350–399, 796–814, and 2401–2500 nm)
that were insensitive or influenced by artifacts produced by the spec-
trometer were removed (Viscarra Rossel et al., 2006). The following
pre-processing techniques, commonly used in soil spectroscopy, were
tested for the enhancement of spectral features: transformation of
reflectance (R) spectra in log (1/R), to reduce possible spectra non-
linearities; spectral normalization performed usingmultiplicative spec-
tral correction (MSC), to correct for light scattering variations in
reflectance spectroscopy (Geladi and Kowalski, 1986); random noise
reduction and signal to noise ratio (SNR) improvement using the
Savitzky–Golay filter (Savitzky and Golay, 1964); spectral resolution
enhancement and background effect elimination with first derivative
and mean-center function applications (Viscarra Rossel et al., 2006).

The models to estimate SOC from the measured spectral reflec-
tance were built using PLSR (Cozzolino and Moron, 2003). The leave
one-out cross-validation (CV) of the training set was used to choose
the number of factors to include in the PLSR (Reeves et al., 2002).
The test set was used for an independent validation of the established
PLSR models.

After eliminating the negative predicted values, the coefficient of
determination (R2) between measured and predicted values, and



a b

c

Fig. 1. Spatial distribution of a) sample points and vegetation types, b) sample points and topography, c) sample points and rainfall ranges for the Albany Thicket Biome (ATB) of the
Eastern Cape Province of South Africa.
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the root mean square error of validation (RMSEV) measured the qual-
ity of the model (Kooistra et al., 2003), while the ratio of performance
to deviation (RPD) was used to test the SOC prediction ability of the
PLSR models. Based on the value of RPD, Chang and Laird (2002) de-
fined three classes: RPDN2 are models that can accurately predict the
soil property in question; RPD between 1.4 and 2 is an intermediate
class which regroups models that can be possibly improved;
RPDb1.4 has no prediction ability. The VIS (400–700 nm), NIR
(700–2400 nm), and VNIR (400–2400 nm) spectral ranges were
tested to determine the most accurate spectral range for SOC predic-
tion (Viscarra Rossel et al., 2006). The software “ParLes 3.1” was used
to develop the PLSR models (Viscarra Rossel, 2008).

2.5. Resampling simulation to EnMAP spectral resolution

The resampling simulation to EnMAP spectral resolution was real-
ized using C0-5 spectra collected both in the field and in the laborato-
ry. The resampling process was characterized by the transformation

image of Fig.�1


Table 1
Organic carbon content of topsoil and soil surface.

Statistics Soil organic carbon (%)

C0-200 C0-5

Mean 1.32 1.35
Max 5.05 6.03
Min 0.20 0.18
Median 1.17 1.00
St. dev. 0.91 1.25

C0-200: topsoil; C0-5: soil surface.

Fig. 3. Mean laboratory and field spectra obtained from soil surface and topsoil
samples.
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of the 2150 bands of the ASD field spectrometer to the 233 simulated
bands of EnMAP, from 420 to 2450 nm, with 6–10 nm band ranges
(6 nm till 900 nm, 10 nm till 2450 nm). In order to increase the test
significance, instrument noise was added, which impacted the signal
to noise ratio (SNR). EnMAP characteristics indicate SNR of about
500:1 in the VIS and about 150:1 in the NIR (Guanter et al., 2009).
The instrument noise applied in this research was a SNR of 100:1
for all EnMAP simulated channels, to recreate the worst possible sce-
nario of sensor signal quality. All the PLSR models for estimating SOC,
based on the EnMAP simulated spectra, were built following the same
procedure as described in 2.4.

3. Results and discussion

3.1. Chemical analyses

The chemical analysis showed that C0-5 had a higher SOC content
than C0-200, nevertheless the two layers had similar mean SOC
contents (Table 1). The Pearson correlation coefficient (r) of 0.77
between SOC of C0-5 and C0-200 (Fig. 2) indicated a strong link be-
tween SOC content of surface and topsoil. Meersmans et al. (2009)
developed the SOC depth distribution model, stating that SOC stock
of surface/topsoil is mainly dependent on land use and management
practices. The estimation of C0-200 and C0-5 through VNIRS would
not provide the full profile SOC stock, but might be used as a proxy
of the estimation of the restoration impact of ATB.

3.2. Interpretation of soil spectral reflectance

The differences of mean spectral reflectance between (i) laborato-
ry and field spectra, and (ii) C0-200 and C0-5 samples are shown in
Fig. 3. The highest reflectance value was detected for C0-200, under
laboratory controlled conditions. The difference between C0-5 labora-
tory (C0-5L) and C0-5 field (C0-5F) was smaller than expected, prob-
ably due to the contact probe device, which reduces the gap between
laboratory and field in terms of light stability (Waiser et al., 2007).
Fig. 2. Correlation between mean soil surface and topsoil organic carbon content.
Before and during spectral measurements collection no precipitation
was registered and soil surface was considered dry. This was proved
by the similar reflectance values of C0-5L and C0-5F (Fig. 2) indicating
that field spectra were not influenced by soil moisture.

Examples of mean field spectra clearly illustrated differences of
SOC content (Fig. 4). Plots 67, 78 and 106 were characterized by the
same land use, but a surface SOC content of 3.01, 6.03, and 0.25%, re-
spectively. Plot 106 reflected much more light than plot 67 and 78,
confirming what was observed by Stoner and Baumgardner (1981),
who found out that soil reflectance decreases with increasing organic
matter content. The difference was particularly appreciable in the
600–750 nm spectral range, where the spectrum slope of plot 106
was more pronounced than plot 67 and 78 (Fig. 4). This trend was
also observed by Bartholomeus et al. (2008), who analyzed 40 spectra
originating from soil samples of different climatic zones, and discov-
ered the highest correlation between SOC and reflectance value
around 600 nm. Plot 67 showed lower reflectance values than plot
78, due to its approximately double SOC content. This was apprecia-
ble around 600–700 nm spectral range, and more evidently after
1500 nm (Fig. 4).

3.3. Calibration and validation of SOC prediction models

The comparison between PLSR models based on laboratory and
field spectra for SOC prediction indicated better results for C0-200
than C0-5L (Table 2), probably due to the lower standard deviation
Fig. 4. Soil surface field spectra of plots 67, 78, and 106.
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Table 2
Results of calibration and validation of PLSR models for SOC prediction, using VNIR, VIS, and NIR spectral ranges.

Spectral data Training Test Calibration Validation

R2CV RMSECV (g C kg−1) Factors R2 RMSEV (g C kg−1) RPD

C0-200_VNIR 76 37 0.811 3.70 6 0.930 2.87 3.70
C0-200_VIS 76 37 0.738 4.35 4 0.897 3.30 2.79
C0-200_NIR 76 37 0.731 4.41 4 0.906 3.23 3.20
C0-5L_VNIR 75 36 0.880 4.40 8 0.872 3.30 2.96
C0-5L_VIS 75 36 0.834 5.18 9 0.820 4.67 2.31
C0-5L_NIR 75 36 0.855 4.85 7 0.853 3.65 2.60
C0-5F_VNIR 75 36 0.831 5.26 10 0.837 4.03 2.51
C0-5F_VIS 75 36 0.757 6.27 5 0.770 5.06 2.10
C0-5F_NIR 75 36 0.830 5.25 7 0.860 3.64 2.42

C0-200_VNIR: topsoil visible near infrared laboratory; C0-200_VIS: topsoil visible laboratory; C0-200_NIR: topsoil near-infrared laboratory; C0-5L_VNIR: soil surface visible-near
infrared laboratory; C0-5L_VIS: soil surface visible laboratory; C0-5L_NIR: soil surface near-infrared laboratory; C0-5F_VNIR: soil surface visible near infrared field; C0-5F_VIS:
soil surface visible field; C0-5F_NIR: soil surface near-infrared field.
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of SOC content of C0-5 samples than C0-200 (Table 1). The differences
detected between C0-5L and C0-5F models are in line with what was
observed by Kooistra et al. (2003), who noticed a decrease of accuracy
passing from laboratory to field conditions. The results of C0-5F
showed that field spectroscopy can be very accurate, even in soils
with a wide topsoil SOC content range, as proven by Stevens et al.
(2006), who attained their best SOC prediction model from field data.
a

c

Fig. 5. SOC predicted vs. observed values developed wi
The analyses of the different parts of the spectrum indicated
(Table 2 and Fig. 5) that the models produced with VNIR, gave bet-
ter results than the predictions developed using NIR or VIS spectral
bands. All C0-5 models gave very accurate predictions. In particular,
C0-200 produced with VNIR (C0-200_VNIR) was the best SOC pre-
diction model obtained in this study, with a RPD of 3.70 and a
RMSEV of 2.87 g C kg−1. C0-200_NIR was slightly more accurate
b

d

th VNIR, VIS, and NIR laboratory and field spectra.
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Fig. 5 (continued).
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than C0-200_VIS, and both presented very high SOC prediction abil-
ity (Fig. 5b and c). The C0-5L and C0-5F models presented the same
trend as C0-200 predictions, with VNIR giving better accuracies than
NIR and VIS spectral ranges (Table 2 and Fig. 5). According to the
classification system developed by Chang and Laird (2002) all the
models developed in this study pointed out good predictive abilities.
In summary, it was demonstrated that, although the use of either
VIS or NIR spectral range reduces error probability, calibration–
validation procedures, and computational time, in an environment
such as the degraded ATB, characterized by low water content and
small herbivores overstocking land use, the application of full VNIR
spectral range could generate a lower error for the prediction of
SOC content.

3.4. EnMAP simulations

The results of the SOC prediction models developed after resam-
pling laboratory and field spectra to EnMAP channels, and simulating
spectral noise showed a promising scenario in relation to potential
up-scaling procedures (Table 3). As expected, C0-5L_VNIR produced



Table 3
Results of calibration and validation of PLSR models for SOC prediction, using VNIR and EnMAP resampled spectral data.

Spectral data Training Test Calibration Validation

R2CV RMSECV (g C kg−1) factors R2 RMSEV (g C kg−1) RPD

C0-5L_EnMAP 76 37 0.815 5.47 4 0.824 4.69 2.04
C0-5L_VNIR 75 36 0.880 4.40 8 0.872 3.30 2.96
C0-5F_EnMAP 75 36 0.013 14.01 6 0.252 9.88 0.97
C0-5F_VNIR 75 36 0.831 5.26 10 0.837 4.03 2.51

C0-5L_EnMAP: laboratory resampled to EnMAP; C0-5L_VNIR: soil surface visible near-infrared laboratory; C0-5F_EnMAP: field resampled to EnMAP; C0-5F_VNIR: soil surface
visible near-infrared field.
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a higher accuracy than the same model resampled to EnMAP spectral
resolution (C0-5L_EnMAP).

Soil surface field model resampled to EnMAP spectral resolution
(C0-5F_EnMAP) gave insufficient accuracy with a RPD of 0.97 and a
RMSEV of 9.88 g C kg−1. The difference between C0-5L_EnMAP and
C0-5F_EnMAP might be caused by the simulated instrument noise,
which generated a higher error (Table 3). The general drop in accura-
cy passing from field to remote hyperspectral sensors has been ob-
served in earlier studies (Gomez et al., 2008; Stevens et al., 2006).
Moreover, EnMAP simulation used in this study attempted to recreate
the worst possible reality, with the lowest SNR (100:1) for all the
EnMAP spectral channels. However, other important factors influenc-
ing SOC prediction, like presence of vegetation (spectral mixing), soil
crust, soil surface roughness, and pixel size were not taken in consid-
eration. Despite the severe degradation of ATB, there are several areas
characterized by intact vegetation. EnMAP spatial resolution (30 m)
would collect images of ATB with mixed pixels of soil and vegetation
that might not be used for soil properties prediction. Moreover, ATB
soils are covered by small stones, which affect the amount of light
reflected and detected by remote sensors. Furthermore, the ATB sur-
face is not always flat, smooth, or homogenous and, therefore, high
spectral data quality, as collected in the field and in the laboratory,
would not be feasible. This leads to problems such as variations in
particle size, adjacency, and bi-directional reflectance distribution
function (BRDF) effects (Ben-Dor et al., 2008).

4. Conclusions

This study examined the possibility of predicting SOC of soil sur-
face (C0-5 mm) and topsoil (C0-200 mm) of Albany Thicket Biome
of Eastern Cape Province of South Africa by combining laboratory
and field spectroscopy with PLSR. The results of the chemical ana-
lyses indicated that the SOC of C0-5 and C0-200 were correlated
(r=0.77) and thus the SOC is evenly distributed within the upper
soil profile. Hence, the SOC content predictions obtained from soil
surface spectra might be used as a proxy of topsoil SOC content.
The small differences observed between mean laboratory and field re-
flectance values pointed out that (i) the use of the contact probe re-
duced the light stability gap between controlled and field conditions,
and (ii) soil moisture did not influence the spectra collected in the
field. The PLSR models developed with laboratory and field spectra
offered very good results for the prediction of SOC (R2N0.75,
RMSEVb5.5 g C kg−1). The analyses of the separate band ranges
proved that VNIR wavelengths produced higher accuracy results
than VIS and NIR spectral bands for the prediction of SOC. The simu-
lation of EnMAP spectra up-scaling, realized by resampling C0-5 lab-
oratory and field spectra, and including the highest possible system
noise (SNR=100), gave predictions with good accuracies for labora-
tory data (RMSEV=4.69 g C kg−1) but insufficient accuracy for field
data (RMSEV=9.88 g C kg−1). The obtained results indicated that,
for the ATB, (i) combining soil spectroscopy and PLSR, does favor ac-
curate prediction of SOC, and (ii) there are margins for the applica-
tion of airborne and satellite based hyperspectral remote sensing to
derive spatial patterns of SOC content for the ATB.
Although the good results achieved, it is recommendable to pro-
ceed with further investigations in order to understand the factors
which decrease the quality of VNIRS applied to SOC prediction.
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