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Abstract—Currently, the amount of collected Earth
Observation (EO) data is increasing considerably with a
rate of several Terabytes of data per day. As a consequence of
this increasing data volume, new concepts for exploration and
information retrieval are urgently needed. To this end, we propose
to explore satellite image data via an image information mining
(IIM) approach in which the main steps are feature extraction,
classification, semantic annotation, and interactive query process-
ing. This leads to a new process chain and a robust taxonomy for
the retrieved categories capitalizing on human interaction and
judgment. We concentrated on land cover categories that can be
retrieved from high-resolution synthetic aperture radar (SAR)
images of the spaceborne TerraSAR-X instrument, where we
annotated different urban areas all over the world and defined
a taxonomy element for each prevailing surface cover category.
The annotation resulted from a test dataset comprising more
than 100 scenes covering diverse areas of Africa, Asia, Europe,
the Middle East, and North and South America. The scenes were
grouped into several collections with similar source areas and each
collection was processed separately in order to discern regional
characteristics. In the first processing step, each scene was tiled
into patches. Then the features were extracted from each patch by
a Gabor filter bank and a support vector machine with relevance
feedback classifying the feature sets into user-oriented land cover
categories. Finally, the categories were semantically annotated
using Google Earth for ground truthing. The annotation followed
a multilevel approach that allowed the fusion of information being
visible on different resolution levels. The novelty of this paper
lies in the fact that a semantic annotation was performed with a
large number of high-resolution radar images that allowed the
definition of more than 850 surface cover categories. This opens
the way toward an automated identification and classification of
urban areas, infrastructure (e.g., airports), geographic objects
(e.g., mountains), industrial installations, military compounds,
vegetation, and agriculture. Applications that may result from
this work can be a semantic catalog of urban images to be used
in crisis situations or after a disaster. In addition, the proposed
taxonomies can become a basis for building a semantic catalog
of satellite images. Finally, we defined four powerful types of
high-level queries. Querying on such high levels provides new
opportunities for users to search an image database for specific
parameters or semantic relationships.
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I. INTRODUCTION

W ITH THE increased availability of Earth Observation
(EO) data, due to new satellite missions, their vari-

ous sensors, and the interoperability of data archives, today’s
remote sensing community is faced with a dramatic increase
in data volume, data content, and processing levels. This coin-
cides with the era of “Big Data” [1], [2] that refers to increasing
data volume (amount of data), velocity (speed of data to be
transferred), and variety (range of data types and sources). For
instance, the German Aerospace Center is hosting more than
1.5 million remote sensing data products occupying about 2 PB
of storage [4].

In this study, we address two of three properties of “Big
Data,” namely the variety of data represented by the diversity
of data formats and content and the volume of data represented
by the number of available products. For solving typical satel-
lite image analysis tasks within this framework, we propose a
semiautomated methodology to explore the content of given
synthetic aperture radar (SAR) satellite images and to extract
the categories (i.e., the object classes) that are contained in
them. Further, we define a specific taxonomy for each retrieved
category based on the local geospatial context, and we propose
some high-level querying techniques to be applied to remote
sensing data archives.

In order to illustrate the diversity of categories that can
exist in remote sensing images, Fig. 1 shows a set of subim-
ages (called patches) tiled from product images of the German
TerraSAR-X mission with a pixel spacing of about 1 m [3].
It is quite evident that the diversity of categories that can be
retrieved from a high-resolution image is much higher than in
the case of low- or medium-resolution images.

The main contributions of the present study are: 1) a semiau-
tomated semantic annotation of image patches based on a large
collection of high-resolution land cover SAR images; 2) a reli-
able classification of urban areas and infrastructure; 3) a general
multilevel taxonomy to be used for the analysis of remote sens-
ing images contained in databases; 4) fusion of the semantic
annotation with information coming from external databases
(e.g., GIS data); and 5) integration of high level querying with
image data archives.
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Fig. 1. Diversity of patches tiled from high-resolution SAR images.

Fig. 2. Geographical distribution of the selected scenes acquired in 2012
(orange) and 2013 (green).

The organization of this paper is as follows. Section II
describes the state-of-the-art of semantic annotation for mul-
timedia and remote sensing images. Section III presents the
typical characteristics of high-resolution SAR satellite images.
Section IV describes our methodology used for semantic anno-
tation. Section V outlines the elements of image content
ontologies, whereas Section VI investigates image content tax-
onomies. Section VII explains several types of queries that can
be applied to image data archives. Section VIII describes cur-
rent developments and Section IX summarizes the conclusion
of this paper.

II. SEMANTIC ANNOTATION FOR MULTIMEDIA AND

REMOTE SENSING IMAGES

When we attach text labels to elements of images that explain
their content or meaning, we call this step “labeling” or “seman-
tic annotation.” If this annotation can be automated, we have
a tool for automated image content understanding and many
researchers have tried to make some progress in this field.
Traditionally, the conceptions and the performance of seman-
tic annotations have been verified based on publicly available
collections of typical image data sets. Most of them have been
built by individual groups with the intention to solve specific
problems. Thus, for the different domains of multimedia (e.g.,
press and television archives) and remote sensing applications,
the available data sets contain a large variety of retrievable
objects and categories. While most multimedia applications
aim at the recognition of single objects in front of mostly
irrelevant background (a cow on a meadow), typical remote
sensing applications call for the identification of land cover
or sea surface details covering the full image area (icebergs
on the Atlantic Ocean). During the last years, we also saw a

growing interest in satellite images in order to support disas-
ter and emergency relief. Within this context, rapid mapping
services provide information support by delivering rapid map-
ping products emphasizing the extent and impact of an event.
Rapid mapping activations cover a large range of applications,
such as natural and environmental hazards (e.g., floods, hurri-
canes, fires, earthquakes, and oil spills) and humanitarian relief
activities (e.g., mapping of refugee camps).

We start with a summary of multimedia databases because
they represent a mature domain with more than 25 years of
experience in close range digital photography; we have to men-
tion image data collections such as ImageCLEF Wikipedia [5],
PASCAL [6], ImageNet [7], and LabelMe [8]. A rather com-
plete list of data sets for multimedia applications can be found
in [8].

The ImageCLEF Wikipedia [5] collection consists of
237 434 images for which 137 users provided annotations.
The collection covers different topics in several languages. The
sources of the data sets are heterogeneous combining images
with metadata, text, and additional links. During the annota-
tion, users identified about 70 topics (e.g., Oktoberfest beer
tent, trains and locomotives, harbors, civil airplanes, and race
cars).

The ImageNet Large Scale Visual Recognition Challenge
[7] is a project that had as its objective the classification of
1 229 413 images (a subset of the ImageNet data set) into
about 1000 categories with spatial localization of the objects.
This evaluation completed a part of the PASCAL project
[6]. The source data having been combined here are images
from ImageNet and additional information from WordNet
(source of the labels, semantical hierarchy, English nouns, etc.).
For these categories, different taxonomies are proposed (e.g.,
mammal→placental→carnivore→canine→dog→working dog
→husky). The main goal in [6] is to recognize objects from
a number of visual object categories in real world scenes.
There are different tasks that are being discussed in [6]:
classification/detection (20 classes), segmentation, person lay-
out, action classification (11 classes), and ImageNet large
scale visual recognition (these data sets contain 10 000 000
labeled images that represent 10 000 semantically annotated
objects).

LabelMe [8] is another project that provides a data set of
images with their associated annotations. The text data set used
in order to label the objects is the same WordNet that was used
in the PASCAL project. The LabelMe tool is available online
and allows computer vision researchers to annotate large data
sets. Between its implementation in 2005 and the end of 2010,
the LabelMe tool produced 62 197 annotated images (from a
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Fig. 3. Annotation methodology: download and store the selected TerraSAR-X products, group the images into collections, tile each image into patches, and
generate a quick-look of each patch; extract the primitive features from each patch, group the extracted features into categories using interactive learning, and
provide semantic annotation for each patch using Google Earth as visual support. Once this process has been completed, an operator can put various queries.

Fig. 4. Interactive interface to retrieve images belonging to categories that exist in a collection. The upper-left half shows relevant retrieved patches, whereas the
lower-left half shows irrelevant retrieved patches. The large panel on the right shows the image that is being worked on and which can be zoomed. Users can see
the distribution of the retrieved patches and all the training samples. They can also verify the selected training samples by checking their surroundings, as there is
a link between the patches in the upper-left half and the right half.

data set of 187 240 images) that contain 658 992 annotated
objects.

As for remote sensing, image classification and annotation
can be divided into two steps: the first step defines the number
of classes that can be retrieved using different features extracted

from an image patch and the second step is linked to specific
applications (e.g., rapid mapping after a disaster).

A typical database is the GeoIRIS image data collection.
The GeoIRIS system is capable of automatically retrieving a
large volume of selected multispectral data sets from existing
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Fig. 5. Our proposed two-level hierarchical annotation scheme: Level 1 gives us a general information (e.g., urban area, transportation, forest, and agriculture),
whereas level 2 provides additional details (e.g., transportation contains airports, bridges, boats, ports, and railways).

satellite image archives. Here, optical satellite images are tiled
into patches of 250× 250 pixels obtaining in the case of [9]
70 824 patches from which 531 208 objects were identified.

Another data set was described in [10] illustrating a patch
contextual approach based on topographic and independent
component analysis for very-high-resolution optical satellite
images. This method is particularly useful for geometrical
structures being contained in images of urban areas. The
method was tested with QuickBird satellite images. Each test
image was tiled into patches of 200× 200 pixels thus gener-
ating 20 000 patches together with their associated features
(gradients, topographic and independent components, as well
as Gabor filter feature vectors) that were further used to retrieve
18 categories.

Still another method for feature extraction from image
patches that captures the spatial context is presented in [11].
In this application, high-resolution SAR images yielded a set of
7000 patches with a size of 200× 200 pixels that were grouped
into 30 categories using a short time Fourier transform and a
gray level co-occurrence matrix as feature extractors.

Finally, we generated a SAR image test data set when we
tested the performance of selected feature extraction algorithms
with high-resolution SAR images [12]. Each image was tiled
into patches of different sizes generating 2170 patches that
finally were grouped into 30 categories.

In the case of remote sensing, one can obtain a variable num-
ber of categories. In general, one obtains less than 10 categories
for low-resolution images and more than 30 categories for high-
resolution images, depending on the properties of the categories
selected (i.e., manually extracted) by a user, while the number
of categories that were identified in rapid mapping applications
after a disaster is typically limited to 2 to 7 [13], [14]. In sum-
mary, the number of identified and annotated remote sensing
categories is very limited compared with multimedia.

III. SELECTED TEST DATA SET

In this section, we prepare the analysis of the information
content and the annotation of SAR images by selecting typi-
cal TerraSAR-X products and the generation of a dedicated test
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Fig. 6. (a) Original TerraSAR-X Venice image. (b) Categories for the Venice image using our proposed annotation scheme.

data set. TerraSAR-X is a German radar satellite launched in
June 2007. It operates in X-band and is a side-looking SAR
instrument that offers a wide selection of operating modes and
product generation options [15], [16].

We selected high-resolution spotlight mode images because
they provide the highest resolution data of the target areas. As
for the product generation options, we took multilook ground
range-detected (MGD) data because they are not affected by
geometrical interpolation effects over mountainous terrain and
thus are most suited for feature extraction. This was also
the reason for choosing radiometrically enhanced products
that are optimized with respect to radiometry (i.e., reduced
speckle).

Finally, we took horizontally polarized (HH) images, as this
option is most frequently used. The images have a pixel spacing
of 1.25 m and a resolution about 2.9 m. The average size of the
images is 4200 rows× 6400 columns.

Our data set contains scenes that cover different urban areas
all over the world (see Fig. 2): 5 scenes from Africa, 27 scenes
from Asia, 44 scenes from Europe, 11 scenes from the Middle
East, and 22 scenes from North/South America.

IV. IMAGE ANNOTATION METHODOLOGY

In this section, we propose a semiautomatic procedure in
order to annotate TerraSAR-X during a learning phase [17].
Fig. 3 presents the flowchart of the proposed semantic anno-
tation methodology.

The selected TerraSAR-X products are downloaded from
their archives and stored into our database. Once the images
are available, they are grouped into geographically similar
collections and processed as illustrated in Fig. 3.

This annotation methodology is semiautomated, i.e., the
first three functions of the methodology (patch tiling,
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Fig. 7. Categories for the Venice image using the CORINE Land Cover nomenclature.

Fig. 8. Typical categories retrieved from Bagdad (IQ), Bandar Imam Khomeini (IR), Binhai (CN), Genoa (IT), Nazca Lines (PE), Singapore (SG), Trento (IT),
and Tucson (USA).

quick-look generation, and feature extraction) are fully auto-
mated while the classification and annotation functions require
manual operator interaction. They require interaction because
classification includes an operator to rank the patches via
human–machine interaction (i.e., active learning) and annota-
tion calls for the selection of the proper semantic labels for each
category. Later, in order to exploit the image content, users can
put different interactive queries for comfortable image content
mining.

A. Selection of Collections

Because a scene-wise annotation without a chance for inter-
comparisons may become difficult, we propose to group the
scenes into collections of typical and similar cases and then to
annotate them. The scenes will be grouped together based on
the following three criteria.

1) First, we select a single scene for annotation to get an idea
about how many categories can be retrieved for a given
city/country/continent.
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Fig. 9. Examples of categories that cannot be grouped together: Bridges in
Venice (left column), Toulouse (center column), and Torun (right column);
Ports in Havana (left column), Oran (center column), and Venice (right col-
umn); and Buildings in Dubai (left column), Venice (center column), and
Vasteras (right column).

Fig. 10. Examples of categories that can be grouped together: Buildings in
Munich (DE) (left column), Basel (SZ) (center column), and Kiel (DE) (right
column) and Skyscrapers in Tokyo (JP) (left column), Dubai (center column),
and Los Angeles (USA) (right column).

2) Then, we group together two scenes from different geo-
graphical areas (e.g., countries) to see whether the same
urban categories can be found in both scenes.

3) Finally, we perform the grouping of more scenes with
similar geographical location and/or architectural charac-
teristics of the target areas to help us to annotate large
areas.

The data set presented in Section III was split into about
45 collections following all three criteria. The annotation results
are shown in Section VI.

B. Semantic Annotation

To annotate the data, the following steps are applied to each
collection.

1) Tile the selected product images into patches of 160×
160 pixels and discard empty edge patches of an image
[17]. No further despeckling is applied to the SAR data.

2) Generate unscaled JPEG quick-look images of each patch
and of the full image. Store all quick-looks into the
database. This allows a quick interactive visualization of
the images.

3) Extract a feature vector from each image patch. We use
Gabor texture filters for feature extraction. Gabor tex-
ture features describe the statistics of subbands generated

by a set of Gabor filter banks. Generally, a Gabor func-
tion is a kind of wavelet transform, which has shown
very good performance in texture discrimination. A
two-dimensional Gabor function g(x, y) is defined as
follows:

g(x, y)=

(
1

2πσxσy

)
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)
+ 2πjWx

]
.

(1)

For a detailed nomenclature, see [18].
Gabor filter banks based on the general Gabor function

can be obtained by appropriate dilations and rotations.
Thus, the number of scales and orientations are two
important parameters that have to be carefully selected
when extracting feature vectors from image patches. A set
of filter responses is generated each time when apply-
ing a Gabor filter bank. The statistics of the subbands,
i.e., mean and variance, are then used as feature vectors.
We compared different feature extraction algorithms and
found that Gabor filters show the highest accuracy in the
comparison of similar image patches [12], [19].

4) Select a classifier in order to group the extracted features
into categories. For this task, a support vector machine
(SVM) tool with relevance feedback was built. The objec-
tive of an SVM is to separate two classes with a maximum
margin. A two class linear SVM can then be formulated
as a quadratic optimization problem [17]. In our case, we
applied a chi-square kernel function.

In our implementation, users can search for patches of
interest in a large repository having a full image on the
right side of the display as a support (see Fig. 4). Our
tool automatically suggests patches with rankings which
are grouped into categories of relevance. This new visual
support tool allows enhancing the quality of search results
by giving positive and negative examples directly for a
full image. Each patch is assigned to a single category
based on its dominant content.

5) Annotate semantically each category using Google Earth
for visual ground truthing based on the proposed hier-
archical annotation scheme (see Fig. 5). The remaining
unannotated patches are grouped in a category called
“unclassified.” The number of patches belonging to this
category represents at most 10% of the total number
of patches annotated in each collection, but for some
collections this percentage is lower than 5%.

After the annotation of our test data, we can use the
SVM parameters and the set of semantic categories for
a fully automated semantic annotation of newly arriving
images.

C. Querying

A query engine is an important part of an image mining sys-
tem. It is an interactive component which allows normal and
expert users to exploit the content of images. In our system, we
implemented the following types of queries [20].

1) Query by metadata: One can exploit all metadata belong-
ing to an image product.
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Fig. 11. Percentage of patches per semantic category for Venice (on the left), and a typical patch per category (on the right).

Fig. 12. Percentage of patches per semantic category for San Francisco (USA) (on the left), and a typical patch per category (on the right).

2) Query by extracted features: Expert users can statistically
analyze extracted features from each patch.

3) Query by examples: All users can find images (patches)
with similar content based on their feature vectors con-
tained in the database.

4) Query by semantics: Expert users can use a semantic label
in order to perform a query.

Several detailed examples of queries by semantics are
given in Section VII [21].

V. ELEMENTS OF IMAGE CONTENT ONTOLOGIES

Geospatial ontologies appeared first in the fields of cartogra-
phy and geographic information systems that have to cope with
a lot of interrelated information. For satellite image analysis,
ontologies are a rather new topic, and we try to use them for
SAR images that have been studied in less detail until now.

Early research in the field of ontologies and semantics
with respect to the representation and use of ontologies for

Fig. 13. Number of retrieved categories for each scene when annotated sepa-
rately.

geographic features has been summarized by Smith and Mark
[22]. Some years later, the SemQuery approach was published
[23] supporting visual queries for heterogeneous features of
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Fig. 14. Percentage of patches for Pyongyang and Suwon. On the right from top to bottom appear the categories: river, high-density residential area, railways,
forest, and road [the left column corresponds to Pyongyang (KP) and the right column corresponds to Suwon (KR)].

Fig. 15. Number of retrieved categories when two urban areas from different
source regions are grouped together in a collection.

images. It represents a semantics-based clustering approach for
the classification of database images. The proposed clustering
approach can split an image into different clusters based on its
features (e.g., texture, color, or object shape). SemQuery suc-
cessfully combines semantics-based and template-based clus-
tering. In addition, a query strategy was implemented to support
visual queries for heterogeneous features. Note that, since the
features are generated with different methods, this may require
different similarity measures.

Recently, ontologies and semantic issues began to be stud-
ied in more detail and several publications have been presented
during the International Geoscience and Remote Sensing
Symposium (IGARSS 2012) held in Munich, Germany. Some
representative papers will be described below.

A hierarchical ontology for land use data (covering Taiwan)
has been published by Kuo and Hong [24]. Here the ontology

represents an important rule set for GIS applications describing
the hierarchical semantics relationships between different land
use types; it includes the definition of a land use vocabulary that
helps users to infer land use types by reasoning rules. In order
to provide different granularities, the proposed method has
three hierarchical levels: the first level subdivides the land use
into nine basic categories (agriculture, forest, hydrology, traf-
fic, building architecture, public use, leisure, mineral/salt, and
other land use categories); the second level has 41 categories
and the third level contains 103 categories that are derived from
the midlevel to provide more detailed differences.

Web service technologies have shown great promise for rapid
feature discovery from large volumes of remote sensing images.
A corresponding ontology approach for the detection of com-
plex features is described in [25]. A complex feature is spatially
composed of elementary features and the spatial relationships
among elementary features can be used further to find complex
features. An application case is geospatial image understand-
ing and feature extraction. While conventional approaches can
extract elementary geospatial features from images such as
buildings, fences, bridges, and railways, geoprocessing services
within a Web service environment can be used to implement
“ontologies” that are facilitating the expression and reuse of
problem-solving knowledge for feature discovery. An alterna-
tive approach to develop a semantic feature catalog service that
combines the Open Geospatial Consortium Catalogue Service
with distributed Web Feature Services was published in [26]. It
includes a feature type semantic catalog, while feature ontolo-
gies are connected through relations or quantities.

Still another approach is to reduce overfitting when ranking
high-resolution satellite image by domain semantics [27].
A high-resolution image database containing 877 geospatial
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Fig. 16. Number of patches per semantic category for North America part II grouping five cities from Canada and the USA. On the right side typical patches of
each category are shown.

Fig. 17. Number of patches per semantic category for the metropolitan cities of Dubai, Los Angeles, Shenyang (CN), Tokyo, and Washington (USA). On the right
side typical patches of each category are shown.

patches covering the Missouri area was generated after tiling
the original multispectral images. Each patch results in a feature
vector with 227 elements that includes histogram information,
cooccurrence texture, linear structures, and aggregate object
features. Then, one of the following categories was used to
semantically annotate the patches: construction, isolated road,
industrial, grassland, cropland, commercial, residential, and
forest. From the total number of tiled patches, 154 patches were
mapped into multiple semantics while the majority has only one
semantic annotation.

If the semantic annotation of a patch can only be derived
by support from neighboring patches, one needs an approach
as described in [28] where groups of similar patches are com-
pared by exploiting their feature vector compressibility. The
method was tested with patches of 64× 64 pixels and 128×
128 pixels. For the first patch size, the categories sea, seashore,
farming area, car parking, golf course, and green area could
be identified, while for the second patch size, the categories
sea, seashore, farming area, seashore resort, car parking, golf
course, and green area could be retrieved. The difference
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Fig. 18. Number of retrieved categories for joint collections: Grouping based
on the geographical source regions or based on the architectural characteristics
of the urban areas.

between the two cases is that for the latter one the categories
farming and seashore resort are merged together.

VI. IMAGE CONTENT TAXONOMIES

In this section, we present the categories that can be retrieved
from our TerraSAR-X data set. We explain the general annota-
tion of patches and continue by defining ontologies/taxonomies
for our data set using the methodology presented in this paper.
The reason for this is that more and more researchers use
ontologies to model the terminologies of different domains and
to find a common representation of them.

There are many classification schemes that are proposed in
literature but these are not satisfying our needs. The results of
[29] show that the land cover categories retrieved for South
America are not compatible with the categories identified in
North America. Another important issue that is discussed in
[29] is that for the nonurban areas the annotation needs to
take into account the seasonal land cover of the investigated
area, while our goal is to create a large annotated TerraSAR-X
data set that covers many urban regions over the world and
to find a criterion to help users to group the scenes. Once
the categories are identified, the next step is to semantically
annotate them using the hierarchical annotation scheme shown
in Fig. 5 [30], [31]. Our solution is a two-level annotation
scheme: Level 1 creates general information about the content
of a patch, whereas level 2 details the general information of
level 1.

This scheme provides semantic content annotation and is
embedded within a hierarchical multilevel approach allowing
us to integrate detailed annotations within higher level anno-
tations. The multilevel approach seems to be a manda-
tory step for the annotation of high-resolution SAR images
where pixel-based information from a local neighborhood is
not sufficient for context recognition. Note, however, that
a multilevel approach may lead to ambiguous higher level
annotations.

In this vein, we selected a scene from our data set (Venice,
Italy, Fig. 6a) and we compared the annotation categories
from our methodology with the current CORINE Land Cover
(CLC) nomenclature [32] and generated a map [33] with both

categories projected on Google Maps [34]. The results are
shown in Figs. 6b and 7, where on the left side, we have the
map with categories projected on an image of Venice, and on
the right side we have the color legend of each category. For
each case, we took the most detailed level of annotation and we
reached a number of 17 categories for our annotation method
and 10 categories in the case of CLC. We observed that our
proposed categories are more detailed than the CLC nomencla-
ture. For instance, bridge, buoy, and sea are included in marine
waters—coastal lagoons, etc. In order to evaluate the accuracy
of our proposed semantic annotation, the precision/recall met-
ric was computed for each category and the overall average
of this metric was 88.85% for precision and 73.37% for recall
considering the Venice image.

When we consider the content of our entire data set, we have
to know more about the diversity of semantic categories that can
be retrieved from TerraSAR-X images and the obtained results.
This will be described in the Section IV-A and IV-B together
with some additional remarks.

A. Annotation Tests

The total number of patches obtained after tiling all avail-
able scenes is about 110 000. Then a feature vector and a
semantic annotation are available for each patch [30]. Fig. 8
presents some typical categories extracted from images taken
over Bagdad (IQ), Bandar Imam Khomeini (IR), Binhai (CN),
Genoa (IT), Nazca Lines (PE), Singapore (SG), Trento (IT), and
Tucson (USA).

For each category, we display the semantic annotation and a
typical quick-look image. In contrast, Figs. 9 and 10 depict a
set of patches taken from different regions all over the world
[Belgaum (IN), Dubai (AE), Havana (CU), Lodz (PL), Oran
(DZ), Toulouse (FR), Torun (PL), Vasteras (SE), and Venice
(IT)] together with their associated semantic meanings [33].
What can be seen in Fig. 9 is that these patches contain objects
with identical semantics. From a semantics point of view, these
patches should be grouped into the same category but, unfortu-
nately, this does not work as the geographical and architectural
characteristics of the patches differ too much. In Fig. 10, we
identified patches with similar architectural characteristics that
can be grouped together. In the first example, we selected
Buildings from German speaking countries (Munich and Kiel,
Germany, and Basel, Switzerland) where the architecture of the
buildings is similar. In the second example, we collected a few
cosmopolitan cities (Tokyo, Dubai, and Los Angeles) that have
Skyscrapers in common.

B. Annotation Results

We ask now under which criteria scenes shall be grouped
together and how many categories exist in each scene or
grouped scenes. In order to answer these questions the full test
data set containing hundreds of scenes was split into collec-
tions in order to find the number of identifiable categories and to
annotate them. We focused on urban areas because they are less
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Fig. 19. Results of a query: “How many urban and nonurban categories can be identified in our data acquired in 2013?” On the left side are shown the urban
categories, and on the right side the nonurban categories.

dependent on seasonal effects. In future, we will also consider
nonurban areas.

1) Grouping of Scenes: In order to get an idea about how
many categories can be retrieved for each continent/country/city
we selected the following cities in different continents:

Africa: Oran, Algeria.
Asia: Bangkok, Thailand / Daejeon, South Korea /

Jacobabad, Pakistan / Jakarta, Indonesia / Kuala Lumpur,
Malaysia / Mueang Yala, Thailand / Shenyang, China /
Singapore, Singapore / Van, Turkey.

Europe: Bordeaux, France / Bydgoszcz, Poland / Madrid,
Spain / Oslo, Norway / Porto, Portugal / Teica, Romania /
Trento, Italy / Vasteras, Sweden / Venice, Italy.

South and North America: Bogota, Colombia / Havana,
Cuba / Nazca Lines, Peru / San Francisco, USA.

a) Results: Figs. 11 and 12 show the patch class distribu-
tions for Venice, Italy, and San Francisco, USA, and one typical
patch for each annotated category. Similar results are obtained
for other scenes and summarized in Fig. 13.

b) Remarks: For this type of grouping, scenes that cover
Asia, Europe, and North America contain more than 10 cat-
egories per scene (except for Kuala Lumpur, Malaysia /
Oslo, Norway and Van, Turkey with 9 categories). Bogota,
Columbia / Jacobabad, Pakistan / Nazca Lines, Peru /
Shenyang, China and Teica, Romania contain the least num-
ber of categories (4–7 categories per scene); for Nazca Lines
and Teica 90% of these categories are nonurban categories.

Fig. 13 shows the number of categories gained by a separate
annotation of each scene. The annotation used our hierarchical
semantic annotation method.

2) Pairwise Grouping of Scenes From Different Source
Regions: After we obtained an idea about how many cate-
gories can be identified for individual urban areas, we tried to
see whether different urban scenes can be grouped together. For
this investigation, pairs of scenes with different geographical
source regions (e.g., countries) were grouped together. The
scenes cover the following areas.

Fig. 20. Results of a query: “How much level 1 urban area, agriculture,
transportation, forest, and water bodies can be identified for the given scene?”.

Asia: Pyongyang, North Korea and Suwon, South Korea /
Tashkent, Uzbekistan and Khujand, Tajikistan.

Europe: Belgrade, Serbia and Skopje, Macedonia / Chania,
Greece and Thessaloniki, Greece / Larissa, Greece and
Djarbakir, Turkey / Lyon, France and Genoa, Italy / Toulouse,
France and Timisoara, Romania.

Middle East: Ashdod, Israel and Beirut, Lebanon / Baghdad,
Iraq and Bandar Imam Khomeini, Iran.

a) Results: We show as an example the pair of scenes
of Pyongyang and Suwon (see Fig. 14). The results of this
type of grouping are presented in Fig. 15. One can see the dis-
tribution of patches per category, and a typical patch of each
category.

b) Remarks: The results of pairwise grouping show that
the number of retrieved categories lie between 20 categories per
collection (Chania and Thessaloniki) and 25 categories per col-
lection (Pyongyang and Suwon) with one exception (Baghdad,
Iraq, and Bandar Imam Khomeini, Iran) where 18 categories
could be found.

Fig. 15 details the number of identified categories. The
collection scenes stem from different countries (except for
Dhahran and Riyadh, Saudi Arabia marked in pink in Fig. 15).
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Fig. 21. Results of a query: “Find skyscrapers in our database.”.

Fig. 22. Percentage of skyscrapers retrieved for several given North American
cities (Canada, USA).

If different source regions are combined, the identified cate-
gories are completely separated. Even for Dharan and Riyad the
retrieved categories are separated which leads us to the conclu-
sion that not only the geographical source region is important
but also the architectural characteristics of each city.

3) Joint Grouping of Multiple Scenes With Similar
Characteristics: Now we perform the grouping based on sim-
ilar source regions and/or architectural characteristics of the
target areas.

In the first step, the collections are based on the source
regions of the scenes. In the second step, the scenes are grouped
based on the architectural characteristics of the cities.

Step 1) Geographical grouping:
Africa: Port Elizabeth, Bulawayo, Abuja, and Lomé.
China: Binhai, Jinan, and Dalian.
India: Belgaum, Pune, and Vadodara.
Iran: Bandar-e’Abbas and Mahabad.
North America part I: Calgary, Ciudad Juarez, North
San Diego, Ottawa, Poway, South San Diego, Sun
Lakes, Tijuana, and Tucson (taken in 2012).
North America part II: Santa Clarita, Reno,
Vancouver, Washington DC, and Ottawa (taken in
2013).
Poland: Czestochowa, Lodz, and Torun.

Step 2) Architectural grouping:
German speaking countries/cities: Bonn, Berlin,
Cologne, Kiel, Munich, Oldenburg, and Basel.
Germany part I: Bremen and Berlin (taken in 2012).
Germany part II: Karlsruhe, Lindau, Mannheim, and
Stuttgart (taken in 2013).

Italy: Naples and Taranto.
Malaysia: Alor Setar and Seremban.
Russia: Krutorozhino, center of Moscow, northern
part of Moscow, southern part of Moscow, Perm,
Rostov on Don, and Tula.
Sweden: Stockholm and Uppsala.
United Kingdom: London, Plymouth, and
Portsmouth
Skyscrapers in metropolitan cities: Dubai, Los
Angeles, Shenyang, Tokyo, and Washington.

a) Results: For visual representation, we show the
results for different collections and their grouping. Figs. 16 and
17 show the distribution of patches in North America and of
metropolitan cities.

b) Remarks: The grouping of multiple scenes shows that
the number of retrieved categories ranges from 12 (when two
scenes from Asia are annotated together) to about 30 (when
nine scenes from North America are grouped together). We also
need to distinguish between groupings based on the geograph-
ical source regions of the scenes and groupings based on the
architectural characteristics of urban areas. In both cases, there
are some categories that are common to all grouped scenes
(e.g., industrial areas, roads, railways), others coincide only
partially (e.g., skyscrapers, medium-density residential areas,
and low-density residential areas), and some categories are
rather unique (e.g., mixed urban areas).

Fig. 18 shows the number of identified categories for each
collection when the grouping was made based on the geograph-
ical or the architectural characteristics of the scenes.

VII. QUERYING EXAMPLES

From the various query types that have been implemented,
we select three example queries referring to annotation seman-
tics. The first example shall find how many urban and nonur-
ban categories are retrieved and annotated from our data set
acquired in 2013 (70 scenes). Fig. 19 shows the semantic
meaning of each urban or nonurban category and the percentage
(%) of each category.

A second example is to find for a selected scene (e.g.,
Venice, Italy) all the level 1 categories that could be retrieved
and annotated. The result of such a query (see Fig. 20) can
give us information about the land cover percentages of urban
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TABLE I
IMPROVED CLASSIFICATION ACCURACIES BY ROTATION INVARIANT FEATURE VECTORS

areas, transportation, water bodies, forest, agriculture, or bare
ground.

A third example is to find all patches within our database
that contain skyscrapers as a semantic label. As a result of this
query, several thousand patches were retrieved. Fig. 21 shows
a few examples of these patches. The results of the third query
can also be displayed as percentages of skyscrapers retrieved
for several given North American cities (see Fig. 22).

VIII. CURRENT DEVELOPMENTS

The most important current development is the validation
of an enhanced rotation invariant feature extractor. It allows
us to compare linear features independently of their actual
orientation [37]. This can be accomplished rather simply by
rearranging the elements of the extracted feature vectors, where
we sort the Gabor filter bank results by magnitude.

Table I shows the gain in classification obtained by this new
technique when applied to a typical mixed content scene.

Note that the improved recall results are mainly evident for
urban categories. This is also due to an enlarged set of candidate
elements becoming available after rotation realignment of the
feature vectors.

IX. CONCLUSION

In this paper, we discussed the semantic categories that can
be retrieved from TerraSAR-X data and we generated a seman-
tic catalog for satellite images [21]. To our knowledge, this is
the first time that such a large set of SAR images has been
annotated covering specific signatures from all over the world.
In addition, we defined a set of ontologies for high-resolution
SAR images based on CORINE Land Cover and Urban Atlas
ontologies.

The main contributions of this paper are as follows.
1) The results rely on a large database of high-resolution

SAR data where scenes can be grouped geographically
or architecturally.

2) The classification has a significant impact on the identi-
fication of urban characteristics; in future, this study will
be extended to landscape scenes.

3) The number of categories retrieved from each scene can
help us to better understand the content of SAR data [36].
In total, we identified 850 categories from which about 75
are independent.

4) The generated taxonomies generated have been used to
design a semantic catalog [21].

5) The semantic annotation can be improved by a sys-
tematic definition of scene collections with increasing
heterogeneity and additional information coming from
cartographic or other sources such as [35].

The annotated data can be considered as a reference data
set and can be used for different tasks such as feature extrac-
tion, machine learning, query building, and validation since
we created more than 100 000 image patches, generated more
than 40 collections from which we identified more than 850
categories.

The impact of increasing the number of scenes (volume of
data) is that the diversity (variety of data) of the identified cat-
egories will become higher. As a consequence, more categories
can be identified. Our experiments may result in a number of
new applications in the fields of urban cartography, forest and
water level monitoring, crisis and disaster interpretation, and
satellite ground segment architectures. All components of the
proposed approach and the hierarchical annotation scheme are
now being integrated with a satellite ground segment.

As a continuation of our work, we are going to 1) to annotate
another 200 scenes with new target categories (e.g., land-
scapes, industrial sites, military facilities, mines, vegetation,
agriculture, polar ice, and ocean water) [21]); 2) extend our
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hierarchical annotation scheme to three levels; and 3) design
and implement an advanced query builder capable of handling
the new three level annotation scheme.
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