Hartree–Fock method: Difference between revisions

Content deleted Content added
Tag: references removed
→‎Total energy: Fixed typo in second-to-last paragraph: emphasize -> emphasized
Tags: Mobile edit Mobile web edit
 
(5 intermediate revisions by 5 users not shown)
Line 4:
In [[computational physics]] and [[Computational chemistry|chemistry]], the '''Hartree–Fock''' ('''HF''') method is a method of approximation for the determination of the [[wave function]] and the energy of a [[Many-body problem|quantum many-body system]] in a [[stationary state]].
 
The Hartree–Fock method often assumes that the exact ''N''-body wave function of the system can be approximated by a single [[Slater determinant]] (in the case where the particles are [[fermion]]s) or by a single [[Permanent (mathematics)|permanent]] (in the case of [[boson]]s) of ''N'' [[spin-orbital]]s. By invoking the [[variational method]], one can derive a set of ''N''-coupled equations for the ''N'' spin orbitals. A solution of these equations yields the Hartree–Fock wave function and energy of the system. Hartree–Fock approximation is an instance of [[mean-field theory]],<ref>{{cite book |last1=Bruus |first1=Henrik |last2=Flensberg |first2=Karsten |title=Many-body quantum theory in condensed matter physics: an introduction |date=2014 |publisher=Oxford University Press |location=Oxford New York |isbn=9780198566335 |edition=Corrected version |url=https://www.phys.lsu.edu/~jarrell/COURSES/ADV_SOLID_HTML/Other_online_texts/Many-body%20quantum%20theory%20in%0Acondensed%20matter%20physics%0AHenrik%20Bruus%20and%20Karsten%20Flensberg.pdf}}</ref> where neglecting higher-order fluctuations in [[Phase_transition#Order_parameters|order parameter]] allows replacing interaction terms to be replaced with quadratic terms, obtaining exactly solvable Hamiltonians.
 
Especially in the older literature, the Hartree–Fock method is also called the '''self-consistent field method''' ('''SCF'''). In deriving what is now called the [[Hartree equation]] as an approximate solution of the [[Schrödinger equation]], [[Douglas Hartree|Hartree]] required the final field as computed from the charge distribution to be "self-consistent" with the assumed initial field. Thus, self-consistency was a requirement of the solution. The solutions to the non-linear Hartree–Fock equations also behave as if each particle is subjected to the mean field created by all other particles (see the [[Hartree–Fock#The Fock operator|Fock operator]] below), and hence the terminology continued. The equations are almost universally solved by means of an [[iterative method]], although the [[fixed-point iteration]] algorithm does not always converge.<ref>{{cite journal|journal = Computer Physics Communications
Line 75:
According to [[Slater–Condon rules]], the expectation value of energy of the [[Molecular Hamiltonian#Clamped nucleus Hamiltonian|molecular electronic Hamiltonian]] <math>\hat{H}^e</math> for a [[Slater determinant]] is
 
: <math display="inline">\begin{aligned} E[\psi^{HF}] &= \left\langle\psi^{HF}|\hat{H}^e|\psi^{HF}\right\rangle \\
&= \sum_{i=1}^N \int\text{d}\mathbf{x}_i \, \phi_i^*(\mathbf{x}_i) \hat{h}(\mathbf{x}_i) \phi_i(\mathbf{x}_i) \\
&+ \frac{1}{2} \sum_{i=1}^N\sum_{j=1}^N \int \mathrm{d}\mathbf{x}_i \int \text{d}\mathbf{x}_j \phi_i^*(\mathbf{x}_i)\mathbf{x}_j\phi_j^*(\mathbf{x}_j) \frac{1}{|\mathbf{r}_i-\mathbf{r}_j|}\phi_i(\mathbf{x}_i)\phi_j(\mathbf{x}_j) \\
&- \frac{1}{2} \sum_{i=1}^N\sum_{j=1}^N \int \text{d}\mathbf{x}_i \int \text{d}\mathbf{x}_j\phi_i^*(\mathbf{x}_i)\phi_j^*(\mathbf{x}_j) \frac{1}{|\mathbf{r}_i-\mathbf{r}_j|}\phi_i(\mathbf{x}_j)\phi_j(\mathbf{x}_i) \end{aligned}
</math>
Line 108:
\end{aligned}</math>
 
The factor 1/2 in the molecular Hamiltonian drops out before the double integrals due to symmetry and the product rule. We may define [[Fock matrix|Fock opeatoroperator]] to rewrite the equation
 
: <math>\hat{F}(\mathbf{x}_k)\phi_k(\mathbf{x}_k) \equiv \left[ \hat{h}(\mathbf{x}_k) + \hat{J}(\mathbf{x}_k) - \hat{K}(\mathbf{x}_k) \right]\phi_k(\mathbf{x}_k) = \epsilon_k \phi_k(\mathbf{x}_k),</math>
Line 123:
The solution <math>\phi_k</math> and <math>\epsilon_k</math> are called molecular orbital and orbital energy respectively.
 
Although Hartree-Fock equation appears in the form of a eigenvalue problem, the Fock operator itself depends on <math>\phi</math> and must be solved by different technique.
 
===Total energy===
The optimal total energy <math> E_{HF} </math> can be written in terms of molecular orbitals.
 
:<math> E_{HF} = \sum_{i=1}^{N} \hat h_{ii} + \sum_{i=1}^{N} \sum_{j=1}^{N/2} [2\hat J_{ij} - \hat K_{ij}] + V_{\text{nnnucl}} </math>
 
<math>\hat J_{ij}</math> and <math>\hat K_{ij}</math> are matrix elements of the Coulomb and exchange operators respectively, and <math>V_{\text{nucl}}</math> is the total electrostatic repulsion between all the nuclei in the molecule.
 
It should be emphasizeemphasized that the total energy is not equal to the sum of orbital energies.
 
If the atom or molecule is [[closed shell]], the total energy according to the Hartree-Fock method is
: <math>E_{HF} = 2 \sum_{i=1}^{N/2} \hat h_{ii} + \sum_{i=1}^{N/2} \sum_{j=1}^{N/2} [2\hat J_{ij} - \hat K_{ij}] + V_{\text{nucl}}.</math><ref name= Levine>Levine, Ira N. (1991). Quantum Chemistry (4th ed.). Englewood Cliffs, New Jersey: Prentice Hall. p. 402-3. {{ISBN|0-205-12770-3}}.</ref>
 
=== Linear combination of atomic orbitals ===