Centipede: Difference between revisions

Content deleted Content added
here's the ref again, for the avoidance of doubt
FrescoBot (talk | contribs)
 
(25 intermediate revisions by 15 users not shown)
Line 1:
{{good article}}
{{Short description|Many-legged arthropods with elongated bodies}}
{{other uses}}
{{good article}}
{{Automatic taxobox
|fossil_range = {{Fossil range|430|0}}<small>Late [[Silurian]] to [[Holocene|present]]</small>
Line 14:
**[[Lithobiomorpha]]
**[[Craterostigmomorpha]]
**[[Extinct|†]][[Devonobiomorpha]]
**[[Scolopendromorpha]]
**[[Geophilomorpha]]
Line 20 ⟶ 21:
}}
 
'''Centipedes''' (from [[Neo-Latin]] {{lang|la|[[wikt:centi-|centi-]]}}, "hundred", and [[Latin language|Latin]] {{lang|la|[[:wikt:pes|pes, pedis]]}}, "[[foot]]") are [[predator]]y [[arthropod]]s belonging to the class '''Chilopoda''' ([[Ancient Greek]] {{lang|grc|[[:wikt:χεῖλος|χεῖλος]]}}, ''kheilos'', "lip", and [[Neo-Latin]] suffix {{lang|la|[[wikt:-poda|-poda]]}}, "foot", describing the [[forcipules]]) of the subphylum [[Myriapoda]], an arthropod group which includes [[millipede]]s and other multi-legged animals. Centipedes are elongated segmented ([[Metamerism (biology)|metameric]]) creatures with one pair of legs per body segment. All centipedes are [[venom]]ous and can inflict painful [[centipede bite|stings]], injecting their [[venom]] through [[Pincer (biology)|pincer-like]] [[appendages]] known as [[forcipules]] or toxicognaths, which are actually modified legs instead of [[fangs]]. Despite the name, no centipede has exactly 100 pairs of legs; the number of pairs of legs is an odd number that ranges from 15 pairs to 191 pairs,.<ref name="Edgecombe Giribet 2007"/> always an odd number.
 
Centipedes are predominantly [[generalist (biology)|generalist]] [[carnivore|carnivorous]], hunting for a variety of prey items that can be overpowered. They have a wide geographical range, which can be found in terrestrial habitats from [[tropical rainforest]]s to [[desert]]s. Within these habitats, centipedes require a moist microhabitat because they lack the waxy [[Arthropod cuticle|cuticle]] of [[insect]]s and [[arachnid]]s, therefore causing them to rapidly lose water. Accordingly, they avoid direct sunlight by staying under cover or by being [[Nocturnality|active at night]].
Line 27 ⟶ 28:
 
Centipedes have a rounded or flattened head, bearing a pair of [[antenna (biology)|antennae]] at the forward margin. They have a pair of elongated [[mandible (arthropod)|mandibles]], and two pairs of [[maxilla (arthropod)|maxillae]]. The first pair of maxillae form the lower lip, and bear short [[palp]]s. The first pair of limbs stretch forward from the body over the mouth. These limbs, or forcipules, end in sharp claws and include venom glands that help the animal to kill or paralyze its prey.<ref name="IZ">{{cite book |last=Barnes |first=Robert D. |year=1982 |title=Invertebrate Zoology |publisher=Holt-Saunders International |location=Philadelphia, Pennsylvania |pages=810–816 |isbn=978-0-03-056747-6}}</ref>
Their size ranges from a few millimetres in the smaller [[Lithobiomorpha|lithobiomorphs]] and [[Geophilomorpha|geophilomorphs]] to about {{convert|30|cm|abbr=on}} in the largest [[Scolopendromorpha|scolopendromorphs]].<ref name="Minelli Golovatch 2017">{{cite book |last1=Minelli |first1=A. |last2=Golovatch |first2=S.I. |title=Reference Module in Life Sciences |chapter=Myriapods |publisher=Elsevier |year=2017 |doi=10.1016/b978-0-12-809633-8.02259-7|isbn=978-0-12-809633-8 }}</ref>
 
=== Sensory organs ===
Line 49 ⟶ 50:
{{main|Ultimate legs}}
 
[[File:Centipede_ultimate_legs_collage.jpg|thumb|A collage showing the ultimate legs of various centipedes. From top left, proceeding clockwise: ''[[Rhysida]]'' spp., ''[[Scolopocryptops]] trogloclaudatus, [[Scolopendra dehaani|Scolopenda dehaani]], [[Lithobius proximus]], [[Lithobius forficatus]], [[Scolopendra cingulata]].'']]
 
Just as the first pair of legs are modified into forcipules, the back legs are modified into "ultimate legs", also called anal legs, caudal legs, and terminal legs.<ref>{{Cite journal |last1=Bonato |first1=Lucio |last2=Edgecombe |first2=Gregory |last3=Lewis |first3=John |last4=Minelli |first4=Alessandro |last5=Pereira |first5=Luis |last6=Shelley |first6=Rowland |last7=Zapparoli |first7=Marzio |date=2010-11-18 |title=A common terminology for the external anatomy of centipedes (Chilopoda) |journal=ZooKeys |issue=69 |pages=17–51 |doi=10.3897/zookeys.69.737 |issn=1313-2970 |pmc=3088443 |pmid=21594038|doi-access=free |bibcode=2010ZooK...69...17B }}</ref> Their use varies between species, but does not include locomotion.<ref name=":0">{{Cite journal |last1=Kenning |first1=Matthes |last2=Müller |first2=Carsten H. G. |last3=Sombke |first3=Andy |date=2017-11-14 |title=The ultimate legs of Chilopoda (Myriapoda): a review on their morphological disparity and functional variability |journal=PeerJ |volume=5 |pages=e4023 |doi=10.7717/peerj.4023 |pmid=29158971 |pmc=5691793 |issn=2167-8359 |doi-access=free }}</ref><ref name=":1">{{Cite journal |last1=Kenning |first1=Matthes |last2=Schendel |first2=Vanessa |last3=Müller |first3=Carsten H. G. |last4=Sombke |first4=Andy |date=2019 |title=Comparative morphology of ultimate and walking legs in the centipede Lithobius forficatus (Myriapoda) with functional implications |journal=Zoological Letters |volume=5 |pages=3 |doi=10.1186/s40851-018-0115-x |issn=2056-306X |pmc=6330759 |pmid=30656061 |doi-access=free }}</ref> The ultimate legs may be elongated and thin, thickened, or pincer-like.<ref name=":1"/> They are frequently [[Sexual dimorphism|sexually dimorphic]], and may play a role in mating rituals.<ref name=":0"/><ref name=":1"/> Because glandular pores occur more frequently on ultimate legs than on the "walking" legs, they may serve a sensory role.<ref name=":0"/><ref name=":1"/> They are sometimes used in defensive postures, and some species use them to capture prey, defend themselves against predators, or suspend themselves from objects such as branches, using the legs as pincers.<ref name=":0"/> Several species use their ultimate legs upon encountering another centipede, trying to grab the body of the other centipede.<ref name=":2"/>
 
Members of the genus ''[[Alipes (centipede)|Alipes]]'' can [[stridulate]] their leaf-like ultimate legs to distract or threaten predators.<ref name=":2">{{Cite journal |last1=Kronmüller |first1=Christian |last2=Lewis |first2=John G.J. |date=2015-06-30 |title=On the function of the ultimate legs of some Scolopendridae (Chilopoda, Scolopendromorpha) |journal=ZooKeys |issue=510 |pages=269–278 |doi=10.3897/zookeys.510.8674 |issn=1313-2970 |pmc=4523778 |pmid=26257548|doi-access=free |bibcode=2015ZooK..510..269K }}</ref> ''[[Rhysida immarginata|Rhysida immarginata togoensis]]'' makes a faint creaking sound when it swings its ultimate legs.<ref name=":2"/>
Line 57 ⟶ 58:
=== Distinction from millipedes ===
 
ScholarsThere haveare notedmany that disinformation exists about the differencedifferences between millipedes and centipedes, and they seek to provide more generalized information for education purposes.<ref name="Shelley 1999">{{cite journal |last=Shelley |first=Rowland M. |title=Centipedes and millipedes with emphasis on North American fauna |journal=The Kansas School Naturalist |year=1999 |volume=45 |issue=3 |pages=1–16 |url=http://www.emporia.edu/ksn/v45n3-march1999/ |access-date=2013-10-14 |archive-url=https://web.archive.org/web/20161112025334/http://www.emporia.edu/ksn/v45n3-march1999/ |archive-date=2016-11-12 |url-status=dead }}</ref> Both groups of myriapods have long, multi-segmented bodies, many legs, a single pair of antennae, and the presence of [[Tömösváry organ|postantennal organ]]s. Centipedes have one pair of legs per segment, while millipedes have two. Their heads differ in that millipedes have short, elbowed [[Antenna (biology)|antenna]]e, a pair of robust mandibles and a single pair of maxillae fused into a lip; centipedes have long, threadlike antennae, a pair of small mandibles, two pairs of maxillae and a pair of large venom claws.<ref name=Blower>{{cite book|author=Blower, John Gordon |title=Millipedes: Keys and Notes for the Identification of the Species |url=https://books.google.com/books?id=VQsVAAAAIAAJ&pg=PA1 |year=1985 |publisher=Brill Archive |isbn=978-90-04-07698-3 |page=1}}</ref>
 
[[File:Millipede centipede side-by-side.png|thumb|upright|alt=Millipede and centipede|A representative millipede and centipede (not necessarily to scale)]]
Line 104 ⟶ 105:
{{further|Evolutionary developmental biology}}
 
Centipedes grow their legs at different points in their development. In the primitive condition, seen in the orders [[Lithobiomorpha]], [[Scutigeromorpha]], and [[Craterostigmomorpha]], development is [[Anamorphosis (biology)|anamorphic]]: more segments and pairs of legs are grown between [[ecdysis|moults]].<ref>{{cite journal |last=Fusco |first=Giuseppe |title=Trunk segment numbers and sequential segmentation in myriapods. |journal=Evolution & Development |date=December 2005 |volume=7 |issue=6 |pages=608–617 |doi=10.1111/j.1525-142X.2005.05064.x |pmid=16336414 |s2cid=21401688 |url=https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1525-142X.2005.05064.x |access-date=25 August 2020}}</ref> For example, ''[[Scutigera coleoptrata]]'', the house centipede, hatches with only four pairs of legs and in successive moults has 5, 7, 9, 11, 15, 15, 15 and 15 pairs respectively, before becoming a sexually mature adult. Life stages with fewer than 15 pairs of legs are called larval stadia (there are about five stages). After the full complement of legs is achieved, the now postlarval stadia (about five more stages) develop gonopods, sensory pores, more antennal segments, and more ocelli. All mature lithobiomorph centipedes have 15 leg-bearing segments.{{sfn|Lewis|2007|p=27}} The Craterostigmomorpha only have one phase of anamorphosis, with embryos having 12 pairs, and adults 15.<ref name="Edgecombe Giribet 2007"/>
 
The [[clade]] Epimorpha, consisting of the orders [[Geophilomorpha]] and [[Scolopendromorpha]], is epimorphic, meaning that all pairs of legs are developed in the embryonic stages, and offspring do not develop more legs between moults. This clade contains the longest centipedes;. In the maximumGeophilomorpha, the number of [[Thorax (arthropod anatomy)|thoracic]] segments usually varies within species, often on a geographical basis, and in most cases, females bear more legs than males. The number of leg-bearing segments invaries thesewithin groupseach variesorder (usually 21 or 23 in the Scolopendromorpha; from 1527 to 191, butin the developmentalGeophilomorpha),<ref modename=":5">{{Citation of|title=Chilopoda their creationTaxonomic isoverview [[Evolutionary|date=2011-01-01 developmental|work=Treatise biology#Developmentalon bias|constrained]]Zoology so- thatAnatomy, theyTaxonomy, areBiology. alwaysThe addedMyriapoda, inVolume pairs1 |pages=363–443 |url=https://brill.com/display/book/edcoll/9789004188266/B9789004188266_020.xml The|access-date=2024-02-29 |publisher=Brill |language=en |doi=10.1163/9789004188266_020 |isbn=978-90-04-18826-6 |editor-last1=Minelli |editor-first1=Alessandro }}</ref> but the total number of pairs beginsis and remainsalways odd throughout development, so there are never exactly 100 legs or 100 pairs, despite the group's common name.<ref name="Edgecombe Giribet 2007">{{cite journal |last1=Edgecombe |first1=Gregory D. |last2=Giribet |first2=Gonzalo |title=Evolutionary biology of centipedes (Myriapoda: Chilopoda) |journal=[[Annual Review of Entomology]] |volume=52 |issue=1 |year=2007 |pages=151–170 |doi=10.1146/annurev.ento.52.110405.091326 |pmid=16872257 |url=https://www.researchgate.net/publication/6914719 }}</ref><ref>{{cite journal |last=Arthur |first=Wallace |year=2002 |title=The interaction between developmental bias and natural selection from centipede segmentation to a general hypothesis |journal=[[Heredity (journal)|Heredity]] |volume=89 |issue=4 |pages=239–246 |pmid=12242638 |doi=10.1038/sj.hdy.6800139 |doi-access=free }}</ref><ref>{{cite journal |last1=Arthur |first1=Wallace |last2=Chapman |first2=Ariel D. |year=2005 |title=The centipede ''Strigamia maritima'': what it can tell us about development and evolution of segmentation |journal=[[BioEssays]] |volume=27 |issue=6 |pages=653–660 |pmid=15892117 |doi=10.1002/bies.20234}}</ref><ref>{{cite book |last=Minelli |first=Alessandro |editor1-last=Ayala |editor1-first=Francisco J. |editor2-last=Arp |editor2-first=Robert |title=Contemporary Debates in Philosophy of Biology |year=2009 |publisher=John Wiley and Sons |isbn=978-1-4051-5999-9 |pages=213–226 |chapter-url=https://books.google.com/books?id=4p6sGSjdVxUC&pg=PA218 |chapter=Evolutionary developmental biology does not offer a significant challenge to the neo-Darwinian paradigm}}</ref>
 
Centipede segments are developed in two phases. Firstly, the head gives rise to a fixed but odd number of segments, driven by [[Hox gene]]s as in all arthropods.<ref name="Held 2014"/><ref name="Hughes Kaufman 2002">{{cite journal |last1=Hughes |first1=Cynthia L. |last2=Kaufman |first2=Thomas C. |title=Exploring the myriapod body plan: expression patterns of the ten Hox genes in a centipede |journal=Development |date=2002 |volume=129 |issue=5 |pages=1225–1238 |doi=10.1242/dev.129.5.1225 |pmid=11874918 |url=https://dev.biologists.org/content/develop/129/5/1225.full.pdf |access-date=2023-05-03 |archive-date=2019-08-23 |archive-url=https://web.archive.org/web/20190823081013/https://dev.biologists.org/content/develop/129/5/1225.full.pdf |url-status=bot: unknown }}</ref> Secondly, pairs of segments are added at the tail (posterior) end by the creation of a prepattern unit, a double segment, which is then always divided into two. The repeated creation of these prepattern units is driven by an oscillator clock, implemented with the [[Notch signaling pathway#Segmentation|Notch signalling pathway]]. The segments are [[Homology (biology)|homologous]] with the legs of other arthropods such as [[trilobite]]s; it would be sufficient for the Notch clock [[Heterochrony#Mechanisms|to run faster]], as it does in [[snake]]s, to create more legs.<ref name="Held 2014">{{cite book |last=Held |first=Lewis I. |author-link=Lewis I. Held |chapter=Why the centipede has odd segments |title=How the Snake Lost its Legs. Curious Tales from the Frontier of Evo-Devo |date=2014 |publisher=[[Cambridge University Press]] |isbn=978-1-107-62139-8 |pages=69, 120 |title-link=How the Snake Lost its Legs }}</ref>
Line 114 ⟶ 115:
=== Diet ===
 
Centipedes are predominantly [[generalist and specialist species|generalist]] predators, which means they are adapted to eat a broad range of prey.{{sfn|Lewis|2007|p=168}} Common prey items include [[Lumbricidae|lumbricid]] earthworms, [[diptera]]n fly larvae, [[collembola]]ns, and other centipedes.<ref name="Klarner Winkelmann Krashevska Maraun 2017 p=e0180915">{{cite journal |last1=Klarner |first1=Bernhard |last2=Winkelmann |first2=Helge |last3=Krashevska |first3=Valentyna |last4=Maraun |first4=Mark |last5=Widyastuti |first5=Rahayu |last6=Scheu |first6=Stefan |title=Trophic niches, diversity and community composition of invertebrate top predators (Chilopoda) as affected by conversion of tropical lowland rainforest in Sumatra (Indonesia) |journal=PLOS ONE |volume=12 |issue=8 |date=2017-08-01 |issn=1932-6203 |doi=10.1371/journal.pone.0180915 |page=e0180915|pmid=28763453 |pmc=5538669 |bibcode=2017PLoSO..1280915K |doi-access=free }}</ref> They are carnivorous; study of gut contents suggests that plant material is an unimportant part of their diets, although they eat vegetable matter when starved during laboratory experiments.{{sfn|Lewis|2007|p=168}}
 
Species of ''Scolopendromorph'', noticeably members from the genera ''[[Scolopendra]]'' and ''[[Ethmostigmus]]'', are able to hunt for substantial prey items, including large invertebrates and sizable vertebrates, which could be larger than the myriapod itself.<ref>{{Cite journal |last1=Halpin |first1=Luke R. |last2=Terrington |first2=Daniel I. |last3=Jones |first3=Holly P. |last4=Mott |first4=Rowan |last5=Wong |first5=Wei Wen |last6=Dow |first6=David C. |last7=Carlile |first7=Nicholas |last8=Clarke |first8=Rohan H. |date=2021-08-03 |title=Arthropod Predation of Vertebrates Structures Trophic Dynamics in Island Ecosystems |journal=The American Naturalist |volume=198 |issue=4 |pages=540–550 |doi=10.1086/715702 |pmid=34559614 |doi-access=free}}</ref><ref name="predatorybehavior">{{cite journal |last1=P.G. Guizze1|first1=Samuel|last2=Knysak1|first2=Irene|last3=C. Barbaro|first3=Katia |last4=Karam-Gemael|first4=Manoela|last5=Chagas-Jr|first5=Amazonas|title=Predatory behavior of three centipede species of the order Scolopendromorpha (Arthropoda: Myriapoda: Chilopoda)|journal=Zoologia |volume=33|issue=6 |date=2016-11-26|issn= |doi= 10.1590/S1984-4689zool-20160026 |page=e20160026|pmid= |pmc=|bibcode= |doi-access=free }}</ref> For instance, ''[[Scolopendra gigantea]]'' (the Amazonian giant centipede) preys on [[tarantulas]], [[scorpions]], [[lizards]], [[frogs]], [[birds]], [[mice]], [[snakes]], and even [[bats]], catching them in midflight.<ref>{{cite journal |last1=Molinari |first1=Jesús |last2=Gutiérrez |first2=Eliécer E. |last3=de Ascenção |first3=Antonio A. |last4=Nassar |first4=Jafet M. |last5=Arends |first5=Alexis |last6=Márquez |first6=Robert J. |display-authors=3 |year=2005 |title=Predation by giant centipedes, ''Scolopendra gigantea'', on three species of bats in a Venezuelan cave |url=http://www.caribjsci.org/aug05/41_340-346.pdf |url-status=dead |journal=[[Caribbean Journal of Science]] |volume=4 |issue=2 |pages=340–346 |archive-url=https://web.archive.org/web/20101009003226/http://caribjsci.org/aug05/41_340-346.pdf |archive-date=2010-10-09 |access-date=2011-02-20}}</ref> Three species (''[[Scolopendra cataracta]]'', ''[[Scolopendra paradoxa|S. paradoxa]]'', and ''[[Scolopendra alcyona|S. alcyona]]'') are amphibious, believed to hunt aquatic or amphibious invertebrates.<ref name="Guardian">{{cite news |url=https://www.theguardian.com/environment/2016/jul/01/giant-swimming-venomous-centipede-found-south-east-asia |title=Giant swimming, venomous centipede discovered by accident in world-first |last=Holmes |first=O. |date=1 July 2016 |newspaper=[[The Guardian]] |access-date=1 July 2016}}</ref><ref name="Zootaxa">{{Cite web |last=Sho |first=T. |url=https://www.biotaxa.org/Zootaxa/article/view/zootaxa.4952.3.3 |title=A new amphibious species of the genus Scolopendra Linnaeus, 1758 (Scolopendromorpha, Scolopendridae) from the Ryukyu Archipelago and Taiwan |date=12 April 2021 |website=Biotaxa |access-date=2022-01-10}}></ref>
Line 128 ⟶ 129:
 
Some Geophilomorph, Lithobiomorph, and Scolopendromorph centipedes produce sticky, toxic secretions to defend themselves. The various secretions ward off or entangle predators.<ref>{{Cite journal |last1=Rosenberg |first1=Jörg |last2=Müller |first2=Carsten |date=2009-12-15 |title=Morphology in Chilopoda – a survey |url=http://soil-organisms.org/index.php/SO/article/view/224 |journal=Soil Organisms |volume=81 |issue=3 |pages=1–55–1–55 |issn=2509-9523}}</ref><ref>{{cite book |last1=Eisner |first1=Thomas |author1-link=Thomas Eisner |last2=Eisner |first2=Maria |last3=Siegler |first3=Melody |title=Secret weapons: defenses of insects, spiders, scorpions and other many-legged creatures |year=2005 |publisher=The Belknap Press |location=Cambridge, Massachusetts |isbn=978-0-674-01882-2 |pages=[https://archive.org/details/secretweaponsdef00eisn/page/33 33–36] |url-access=registration |url=https://archive.org/details/secretweaponsdef00eisn/page/33 }}</ref> Scolopendromorph secretions contain [[hydrogen cyanide]].<ref>{{Cite journal |last1=Maschwitz |first1=U. |last2=Lauschke |first2=Ursula |last3=Würmli |first3=M. |date=1979-11-01 |title=Hydrogen cyanide-producing glands in a scolopender, Asanada n.sp. (Chilopoda, scolopendridae) |url=https://doi.org/10.1007/BF00990212 |journal=Journal of Chemical Ecology |volume=5 |issue=6 |pages=901–907 |doi=10.1007/BF00990212 |bibcode=1979JCEco...5..901M |s2cid=29951682 |issn=1573-1561}}</ref>
Among Geophilomorphs, the secretions of ''Geophilus vittatus'' are sticky and odorous, and contain hydrogen cyanide.<ref name="Jones Conner Meinwald Eisner 1976 pp. 421–429">{{cite journal |last1=Jones |first1=Tappey H. |last2=Conner |first2=William E. |last3=Meinwald |first3=Jerrold |last4=Eisner |first4=Hans E. |last5=Eisner |first5=Thomas |title=Benzoyl cyanide and mandelonitrile in the cyanogenetic secretion of a centipede |journal=Journal of Chemical Ecology |volume=2 |issue=4 |year=1976 |issn=0098-0331 |doi=10.1007/bf00988807 |pages=421–429|bibcode=1976JCEco...2..421J |s2cid=20051462 }}</ref>
 
The giant desert centipede of Arizona, ''[[Scolopendra polymorpha]]'', has a black head and tail, and an orange body; this conspicuous pattern may<!--does not seem to have been proven--> be [[Aposematism|aposematic]], an honest signal of the animal's toxicity.<ref name="Arizona-Sonora Desert Museum">{{cite web |last=Lizotte |first=Renée |title=Centipedes & Millipedes |url=https://www.desertmuseum.org/books/nhsd_centipede.php |publisher=Arizona-Sonora Desert Museum |access-date=2 May 2023}}</ref> Many species raise and splay their ultimate legs and display the spines found on the legs in a defensive threat posture.<ref name=":2"/>
Line 139 ⟶ 140:
 
=== Threatened species ===
AsAccording ofto the 2019 [[IUCN Red List]], there are twoone [[Vulnerable species|vulnerable]], and onesix [[endangered species|endangered]], and three [[Critically Endangered|critically endangered]] species of centipede.<ref>{{Cite web |date=28 July 2024 |title=IUCN 2024 |url=https://www.iucnredlist.org/search?taxonomies=100034&searchType=species |website=The IUCN Red List of Threatened Species}}</ref> For example, the [[Scolopendra abnormis|Serpent Island centipede]] (''Scolopendra abnormis),'' is vulnerable, and [[Nothogeophilus turki|Turk's earth centipede]] ''(Nothogeophilus turki),'' and the [[Seychellonema gerlachi|Seychelles long-legged centipede]] (''Seychellonema gerlachi)'', the first two of which are vulnerable and the lastboth endangered.<ref>Pearce-Kelly, P. 1996. [https://www.iucnredlist.org/species/20042/9138315 ''Scolopendra abnormis''. ''The IUCN Red List of Threatened Species'' 1996]: e.T20042A9138315. {{doi|10.2305/IUCN.UK.1996.RLTS.T20042A9138315.en}}. Accessed on 10 January 2023.</ref><ref>Macadam, C. 2022. [https://www.iucnredlist.org/species/123669218/123674269 ''Nothogeophilus turki''. ''The IUCN Red List of Threatened Species'' 2022]: e.T123669218A123674269. {{doi|10.2305/IUCN.UK.2022-1.RLTS.T123669218A123674269.en}}. Accessed on 10 January 2023.</ref><ref>Gerlach, J. 2014. [https://www.iucnredlist.org/species/201495/15280805 ''Seychellonema gerlachi''. ''The IUCN Red List of Threatened Species'' 2014]: e.T201495A15280805. {{doi|10.2305/IUCN.UK.2014-1.RLTS.T201495A15280805.en}}. Accessed on 10 January 2023.</ref>
 
==Evolution==
Line 148 ⟶ 149:
{{further|Centipedes of the Mazon Creek fossil beds}}
 
The [[fossil record]] of centipedes extends back to {{Ma|430}}, during the [[Late Silurian]] (''[[Crussolum]]''),<ref>{{cite journal |last=Shear |first=W. A. |year=1992 |title=Early life on land |journal=[[American Scientist]] |volume=80 |issue=5 |pages=444–456|bibcode=1992AmSci..80..444G }}</ref><ref>{{cite journal |last1=Jeram |first1=Andrew J. |last2=Selden |first2=Paul A. |last3=Edwards |first3=Dianne |title=Land Animals in the Silurian: Arachnids and Myriapods from Shropshire, England |journal=[[Science (journal)|Science]] |date=2 November 1990 |volume=250 |issue=4981 |pages=658–661 |doi=10.1126/science.250.4981.658 |pmid=17810866 |bibcode=1990Sci...250..658J |url=https://horseshoecrab.org/research/sites/default/files/P.Shelden%201990.pdf}}</ref> though they are rare throughout the [[Paleozoic]].<ref name="Wilson 2003"/> The [[Devonian]] [[Panther Mountain Formation]] contains two species of centipede,. oneOne is a species of the scutigeromorph ''Crussolum'',. otherThe oneother is ''[[Devonobius]]'', which is included in anthe extinct group Devonobiomorpha.<ref name=":3">{{Cite journal |last1=Shear |first1=William A. |last2=Jeram |first2=Andrew J. |last3=Selden |first3=Paul |date=1998 |title=Centiped legs (Arthropoda, Chilopoda, Scutigeromorpha) from the Silurian and Devonian of Britain and the Devonian of North America. American Museum novitates ; no. 3231 |url=http://hdl.handle.net/2246/3370 |journal=New York, NY : American Museum of Natural HistoryNovitates |issue=3231|hdl=2246/3370}}</ref><ref>{{Cite webjournal |last1=Bonamo |first1=P. M. |last2=Shear |first2=William A. |date=1988 |others=American Museum of Natural History Library |title=Devonobiomorpha, a new order of centipeds (Chilopoda) from the Middle Devonian of Gilboa, New York State, USA, and the phylogeny of centiped orders. |journal=American Museum novitates ; no.Novitates |issue=2927 |url=https://www.biodiversitylibrary.org/bibliography/93435 |access-date= |websitevia=Biodiversity Heritage Library}}</ref> Another Devonian site, the [[Rhynie chert]], also have record ofbears ''Crussolum'' fossils,<ref name=":3" /> and possible scutigeromorph head material. ''[[Rhyniognatha]]'' is known, which was once consideredthought asto be the oldest insect fossil, is also found in the Rhynie Chert.<ref>{{Cite journal |last1=Haug |first1=Carolin |last2=Haug |first2=Joachim T. |date=2017-05-30 |title=The presumed oldest flying insect: more likely a myriapod? |journal=PeerJ |volume=5 |pages=e3402 |doi=10.7717/peerj.3402 |doi-access=free |pmid=28584727 |pmc=5452959 |issn=2167-8359}}</ref> Three species, one scutigeromorph (''[[Latzelia]]'') and two scolopendromorphs (''[[Mazoscolopendra]]'' and the poorly known ''[[Palenarthrus]]''), have been described from the [[Mazon Creek fossil beds]], which are [[Carboniferous]], 309–307 mya.<ref name="Shear">{{cite book |editor=Minelli, Alessandro |year=1990 |title=Proceedings of the 7th International Congress of Myriapodology |publisher=[[Brill Publishers]] |isbn=978-90-04-08972-3 |last1=Shear |first1=William A. |last2=Bonamo |first2=Patricia M. |chapter=Fossil centipedes from the Devonian of New York State, U.S.A. |pages=89–96 |chapter-url=https://books.google.com/books?id=BJzFnCunVxsC&pg=PA89}}</ref> More species appear in the [[Mesozoic]], including scolopendromorphs and scutigeromorphs in the [[Cretaceous]].<ref name="Wilson 2003">{{cite journal |author=Heather M. Wilson |year=2003 |title=A new scolopendromorph centipede (Myriapoda: Chilopoda) from the Lower Cretaceous (Aptian) of Brazil |url=https://onlinelibrary.wiley.com/doi/pdf/10.1111/1475-4983.00188|journal=[[Journal of Paleontology]] |volume=77 |issue=1 |pages=73–77 |jstor=4094718 |doi=10.1666/0022-3360(2003)077<0073:ANSCMC>2.0.CO;2|s2cid=130297755 }}</ref><ref name="Wilson 2001 pp. 489–495">{{cite journal | last=Wilson | first=Heather M. | title=First Mesozoic Scutigeromorph Centipede, from the Lower Cretaceous of Brazil | journal=Palaeontology | publisher=Wiley | volume=44 | issue=3 | year=2001 | issn=0031-0239 | doi=10.1111/1475-4983.00188 | pages=489–495| bibcode=2001Palgy..44..489W | doi-access=free }}</ref>
 
 
=== External phylogeny ===
Line 242:
 
{{div col|colwidth=26em}}
* [http://chilobase.biologia.unipd.it/ Chilobase, a web resource for Chilopoda taxonomy]. {{Webarchive|url=https://web.archive.org/web/20171106052057/http://chilobase.biologia.unipd.it/ |date=2017-11-06 }}.
* [https://web.archive.org/web/20060824064342/http://www.atshq.org/articles/centipedes.html Debunking of some centipede myths], American Tarantula Society
* [https://web.archive.org/web/20190817202751/http://www.ento.csiro.au/biology/centipedes/centipedeKey.html Centipedes of Australia]
* [http://tolweb.org/tree?group=Chilopoda&contgroup=Arthropoda Chilopoda]. {{Webarchive|url=https://web.archive.org/web/20090416065704/http://tolweb.org/tree?group=Chilopoda&contgroup=Arthropoda |date=2009-04-16 }},. [[Tree of Life Web Project]].
* [http://www.cut-the-knot.org/language/centipede.shtml What do you call a centipede?]