Perovskite (structure): Difference between revisions

Content deleted Content added
m v2.05b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation)
m Disambiguating links to Compound (link changed to Chemical compound) using DisamAssist.
 
(24 intermediate revisions by 15 users not shown)
Line 2:
{{about|the synthetic compounds|the mineral|Perovskite}}
[[Image:Perovskite.jpg|thumb|Structure of a perovskite with general chemical formula ABX<sub>3</sub>. The red spheres are X atoms (usually oxygens), the blue spheres are B atoms (a smaller metal cation, such as Ti<sup>4+</sup>), and the green spheres are the A atoms (a larger metal cation, such as Ca<sup>2+</sup>). Pictured is the undistorted [[cubic crystal system|cubic]] structure; the symmetry is lowered to [[orthorhombic]], [[tetragonal]] or [[trigonal]] in many perovskites.<ref>{{cite journal| title = Energetics and Crystal Chemical Systematics among Ilmenite, Lithium Niobate, and Perovskite Structures| author = A. Navrotsky| journal = Chem. Mater.| date = 1998|volume = 10| issue = 10|page =2787| doi =10.1021/cm9801901}}</ref>]]
[[File:Perovskite mineral specimen.jpg|thumb|A perovskite mineral (150px|[[calcium titanate) from [[Kusa, Russia]]. Photo taken at the [[Harvard Museum of Natural History]].]]
[[File:Perovskite ABO3.jpg|thumb|Structure150px|structure of an oxide perovskite with chemical formula ABO<sub>3</sub>]]
[[File:PXLRectangular 20220627perovskite 145614200.MPcrystal.jpg|thumb|150px|[[Methylammonium lead halide|MAPbBr<sub>3</sub>]] perovskite single crystal.]]
A '''perovskite''' is any material with a [[crystal structure]] following theof formula ABX<sub>3</sub>, whichwith wasa first[[crystal discoveredstructure]] assimilar theto that of [[Perovskite|mineralthe calledmineral perovskite]], which consists of [[calcium titanium oxide]] (CaTiO<sub>3</sub>).<ref name="Min">{{cite book |title=Minerals: Their Constitution and Origin |first1=Hans-Rudolf |last1=Wenk |first2=Andrei |last2=Bulakh |publisher=Cambridge University Press |date=2004 |isbn=978-0-521-52958-7 |location=New York, NY}}</ref> The mineral was first discovered in the [[Ural Mountains|Ural]] mountains of [[Russia]] by [[Gustav Rose]] in 1839 and named after Russian mineralogist [[L. A. Perovski]] (1792–1856). 'A' and 'B' are two positively charged [[ion]]s (i.e. cations), often of very different sizes, and X is a negatively charged ion (an anion, frequently oxide) that bonds to both cations. The 'A' atoms are generally larger than the 'B' atoms. The ideal [[Cubic crystal system|cubic structure]] has the B cation in 6-fold coordination, surrounded by an [[octahedron]] of anions, and the A cation in 12-fold [[cuboctahedron|cuboctahedral]] coordination. Additional perovskite forms may exist where either/both/either the A and B sites have a configuration of A1<sub>x-1</sub>A2<sub>x</sub> and/or B1<sub>y-1</sub>B2<sub>y</sub> and the X may deviate from the ideal coordination configuration as ions within the A and B sites undergo changes in their oxidation states.<ref>{{cite book| title = Mixed Ionic Electronic Conducting Perovskites for Advanced Energy Systems| editor= N. Orlovskaya, N. Browning| year=2003}}</ref>
 
As one of the most abundant structural families, perovskites are found in an enormous number of compounds which have wide-ranging properties, applications and importance.<ref>{{Cite journal|last=Artini|first=Cristina|date=2017-02-01|title=Crystal chemistry, stability and properties of interlanthanide perovskites: A review|journal=Journal of the European Ceramic Society|language=en|volume=37|issue=2|pages=427–440|doi=10.1016/j.jeurceramsoc.2016.08.041|issn=0955-2219}}</ref> Natural compounds with this structure are perovskite, [[loparite]], and the [[silicate perovskite]] bridgmanite.<ref name="Min"/><ref name=Mindat>[http://www.mindat.org/min-45900.html Bridgemanite] on [[Mindat.org]]</ref> Since the 2009 discovery of [[perovskite solar cell]]s, which contain [[methylammonium lead halide]] perovskites, there has been considerable research interest into perovskite materials.<ref>{{Cite journal|last1=Fan|first1=Zhen|last2=Sun|first2=Kuan|last3=Wang|first3=John|date=2015-09-15|title=Perovskites for photovoltaics: a combined review of organic–inorganic halide perovskites and ferroelectric oxide perovskites|url=https://pubs.rsc.org/en/content/articlelanding/2015/ta/c5ta04235f|journal=Journal of Materials Chemistry A|language=en|volume=3|issue=37|pages=18809–18828|doi=10.1039/C5TA04235F|issn=2050-7496}}</ref>
 
==Structure==
Perovskite structures are adopted by many [[oxideChemical compound|compound]]s that have the chemical formula ABOABX<sub>3</sub>. The idealized form is a cubic structure ([[space group]] Pm{{overline|3}}m, no. 221), which is rarely encountered. The [[orthorhombic]] (e.g. [[space group]] Pnma, no. 62, or Amm2, no. 68) and [[tetragonal]] (e.g. [[space group]] I4/mcm, no. 140, or P4mm, no. 99) phasesstructures are the most common non-cubic variants. Although the perovskite structure is named after [[Calcium titanate|CaTiO<sub>3</sub>]], this mineral formshas a non-idealizedcubic formstructure. [[Strontium titanate|SrTiO<sub>3</sub>]] and CaRbF<sub>3</sub> are examples of cubic perovskites. [[Barium titanate]] is an example of a perovskite which can take on the rhombohedral ([[space group]] R3m, no. 160), orthorhombic, tetragonal and cubic forms depending on temperature.<ref>{{Cite book|doi=10.1002/9780470022184.hmm411|chapter=Crystallography and Chemistry of Perovskites|title=Handbook of Magnetism and Advanced Magnetic Materials|year=2007|last1=Johnsson|first1=Mats|last2=Lemmens|first2=Peter|arxiv=cond-mat/0506606|isbn=978-0470022177|s2cid=96807089}}</ref>
 
In the idealized cubic [[unit cell]] of such a compound, the type 'A' atom sits at cube corner position (0, 0, 0), the type 'B' atom sits at the body-center position (1/2, 1/2, 1/2) and oxygenX atoms (typically oxygen) sit at face centered positions (1/2, 1/2, 0), (1/2, 0, 1/2) and (0, 1/2, 1/2). The diagram to the right shows edges for an equivalent unit cell with A in the cube corner position, B at the body center, and OX at face-centered positions.
 
Four general categories of cation-pairing are possible: A<sup>+</sup>B<sup>2+</sup>X<sup>−</sup><sub>3</sub>, or 1:2 perovskites;<ref>{{Cite journal|last1=Becker|first1=Markus|last2=Klüner|first2=Thorsten|last3=Wark|first3=Michael|date=2017-03-14|title=Formation of hybrid ABX3 perovskite compounds for solar cell application: first-principles calculations of effective ionic radii and determination of tolerance factors|url=https://pubs.rsc.org/en/content/articlelanding/2017/dt/c6dt04796c|journal=Dalton Transactions|language=en|volume=46|issue=11|pages=3500–3509|doi=10.1039/C6DT04796C|pmid=28239731|issn=1477-9234}}</ref> A<sup>2+</sup>B<sup>4+</sup>X<sup>2−</sup><sub>3</sub>, or 2:4 perovskites; A<sup>3+</sup>B<sup>3+</sup>X<sup>2−</sup><sub>3</sub>, or 3:3 perovskites; and A<sup>+</sup>B<sup>5+</sup>X<sup>2−</sup><sub>3</sub>, or 1:5 perovskites.
Line 30:
 
[[File:Perovskite oxide thin film.jpg|thumb|Atomic resolution [[scanning transmission electron microscopy]] imaging of a perovskite oxide thin film system. Showing a cross section of a [[Lanthanum|La]]<sub>0.7</sub>[[Strontium|Sr]]<sub>0.3</sub>MnO<sub>3</sub> and LaFeO<sub>3</sub> bilayer grown on 111-SrTiO<sub>3</sub>. Overlay: A-cation (green), B-cation (grey) and oxygen (red).]]
Perovskites can be deposited as epitaxial thin films on top of other perovskites,<ref>{{cite journal |last1=Martin |first1=L.W. |last2=Chu |first2=Y.-H. |last3=Ramesh |first3=R. |title=Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films |journal=Materials Science and Engineering: R: Reports |date=May 2010 |volume=68 |issue=4–6 |pages=89–133 |doi=10.1016/j.mser.2010.03.001|s2cid=53337720 |url=http://www.escholarship.org/uc/item/1gm2n89d}}</ref> using techniques such as [[pulsed laser deposition]] and [[molecular-beam epitaxy]]. These films can be a couple of nanometres thick or as small as a single unit cell.<ref>{{cite journal |last1=Yang |first1=G.Z |last2=Lu |first2=H.B |last3=Chen |first3=F |last4=Zhao |first4=T |last5=Chen |first5=Z.H |title=Laser molecular beam epitaxy and characterization of perovskite oxide thin films |journal=Journal of Crystal Growth |date=July 2001 |volume=227-228227–228 |issue=1–4 |pages=929–935 |doi=10.1016/S0022-0248(01)00930-7|bibcode=2001JCrGr.227..929Y}}</ref> The well-defined and unique structures at the interfaces between the film and substrate can be used for interface engineering, where new types properties can arise.<ref>{{cite journal |last1=Mannhart |first1=J. |last2=Schlom |first2=D. G. |title=Oxide Interfaces--AnInterfaces—An Opportunity for Electronics |journal=Science |date=25 March 2010 |volume=327 |issue=5973 |pages=1607–1611 |doi=10.1126/science.1181862|pmid=20339065 |bibcode=2010Sci...327.1607M |s2cid=206523419}}</ref> This can happen through several mechanisms, from mismatch strain between the substrate and film, change in the oxygen octahedral rotation, compositional changes, and quantum confinement.<ref>{{cite journal |last1=Chakhalian |first1=J. |last2=Millis |first2=A. J. |last3=Rondinelli |first3=J. |title=Whither the oxide interface |journal=Nature Materials |date=24 January 2012 |volume=11 |issue=2 |pages=92–94 |doi=10.1038/nmat3225|pmid=22270815 |bibcode=2012NatMa..11...92C}}</ref> An example of this is LaAlO<sub>3</sub> grown on SrTiO<sub>3</sub>, where the [[lanthanum aluminate-strontium titanate interface|interface can exhibit conductivity]], even though both LaAlO<sub>3</sub> and SrTiO<sub>3</sub> are non-conductive.<ref>{{cite journal |last1=Ohtomo |first1=A. |last2=Hwang |first2=H. Y. |title=A high-mobility electron gas at the LaAlO<sub>3</sub>/SrTiO<sub>3</sub> heterointerface |journal=Nature |date=January 2004 |volume=427 |issue=6973 |pages=423–426 |doi=10.1038/nature02308|pmid=14749825 |bibcode=2004Natur.427..423O |s2cid=4419873}}</ref> Another example is SrTiO<sub>3</sub> grown on LSAT ((LaAlO<sub>3</sub>)<sub>0.3</sub> (Sr<sub>2</sub>AlTaO<sub>6</sub>)<sub>0.7</sub>) or DyScO<sub>3</sub> can morph the incipient ferroelectric into a [[Ferroelectricity|ferroelectric]] at room temperature through the means of epitaxially applied biaxial [[Stress (mechanics)|strain]].<ref name="Haeni2004">{{Cite journal |last1=Haeni |first1=J. H. |last2=Irvin |first2=P. |last3=Chang |first3=W. |last4=Uecker |first4=R. |last5=Reiche |first5=P. |last6=Li |first6=Y. L. |last7=Choudhury |first7=S. |last8=Tian |first8=W. |last9=Hawley |first9=M. E. |last10=Craigo |first10=B. |last11=Tagantsev |first11=A. K. |last12=Pan |first12=X. Q. |last13=Streiffer |first13=S. K. |last14=Chen |first14=L. Q. |last15=Kirchoefer |first15=S. W. |date=2004 |title=Room-temperature ferroelectricity in strained SrTiO<sub>3</sub> |url=https://www.nature.com/articles/nature02773 |journal=Nature |language=en |volume=430 |issue=7001 |pages=758–761 |doi=10.1038/nature02773 |pmid=15306803 |bibcode=2004Natur.430..758H |hdl=2027.42/62658 |s2cid=4420317 |issn=1476-4687|hdl-access=free}}</ref> The lattice mismatch of GdScO<sub>3</sub> to SrTiO<sub>3</sub> (+1.0 %) applies [[Tensile strain|tensile]] stress resulting in a decrease of the out-of-plane lattice constant of SrTiO<sub>3</sub>, compared to LSAT (–0−0.9 %), which epitaxially applies [[Compressive stress|compressive]] stress leading to an extension of the out-of-plane lattice constant of SrTiO<sub>3</sub> (and subsequent increase of the in-plane lattice constant).<ref name="Haeni2004" />
 
=== Octahedral tilting ===
Beyond the most common perovskite symmetries ([[Cubic crystal system|cubic]], [[Tetragonal crystal system|tetragonal]], [[Orthorhombic crystal system|orthorhombic]]), a more precise determination leads to a total of 23 different structure types that can be found.<ref>{{Cite journal |last=Woodward |first=P. M. |date=1997-02-01 |title=Octahedral Tilting in Perovskites. I. Geometrical Considerations |url=https://scripts.iucr.org/cgi-bin/paper?s0108768196010713 |journal=Acta Crystallographica Section B: Structural Science |language=en |volume=53 |issue=1 |pages=32–43 |doi=10.1107/S0108768196010713 |bibcode=1997AcCrB..53...32W |issn=0108-7681}}</ref> These 23 structure can be categorized into 4 different so-called tilt systems that are denoted by their respective Glazer notation.<ref>{{Cite journal |last=Glazer |first=A. M. |date=1972-11-15 |title=The classification of tilted octahedra in perovskites |url=https://scripts.iucr.org/cgi-bin/paper?S0567740872007976 |journal=Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry |language=en |volume=28 |issue=11 |pages=3384–3392 |doi=10.1107/S0567740872007976 |bibcode=1972AcCrB..28.3384G |issn=0567-7408}}</ref>
{| class="wikitable"
|+
Line 141:
|''Pm''{{overline|3}}''m'' (#221)
|}
[[File:TilitTilt systems.pdfpng|thumb|One-tilt and zero-tilt systems in perovksitesperovskites]]
The notation consists of a letter a/b/c, which describes the rotation around a [[Cartesian coordinate system|Cartesian]] axis and a superscript +/—/0 to denote the rotation with respect to the adjacent layer. A "+" denotes that the rotation of two adjacent layers points in the same direction, whereas a “—”"—" denotes that adjacent layers are rotated in opposite directions. Common examples are a<sup>0</sup>a<sup>0</sup>a<sup>0</sup>, a<sup>0</sup>a<sup>0</sup>a<sup>–</sup> and a<sup>0</sup>a<sup>0</sup>a<sup>+</sup> which are visualized here.
 
==Examples==
Line 152:
 
=== Complex perovskites ===
Although there is a large number of simple known ABX<sub>3</sub> perovskites, this number can be greatly expanded if the A and B sites are increasingly doubled / complex AA’BB’XA{{prime|A}}B{{prime|B}}X<sub>6</sub>.<ref name=":2">{{Cite journal |last1=Vasala |first1=Sami |last2=Karppinen |first2=Maarit |date=2015-05-01 |title=A<sub>2</sub>B′B″O{{prime|B}}B"O<sub>6</sub> perovskites: A review |url=https://www.sciencedirect.com/science/article/pii/S0079678614000338 |journal=Progress in Solid State Chemistry |language=en |volume=43 |issue=1 |pages=1–36 |doi=10.1016/j.progsolidstchem.2014.08.001 |issn=0079-6786}}</ref> Ordered [[Perovskite#Double_perovskitesDouble perovskites|double perovskites]] are usually denoted as A<sub>2</sub>BB’OB{{prime|B}}O<sub>6</sub> where disordered are denoted as A(BB’B{{prime|B}})O<sub>3</sub>. In ordered perovskites, three different types of ordering are possible: rock-salt, layered, and columnar. The most common ordering is rock-salt followed by the much more uncommon disordered and very distant columnar and layered.<ref name=":2" /> The formation of rock-salt superstructures is dependent on the B-site cation ordering.<ref>{{Cite journal |last1=Serrate |first1=D |last2=Teresa |first2=J M De |last3=Ibarra |first3=M R |date=2007-01-17 |title=Double perovskites with ferromagnetism above room temperature |url=https://iopscience.iop.org/article/10.1088/0953-8984/19/2/023201 |journal=Journal of Physics: Condensed Matter |volume=19 |issue=2 |pages=023201 |doi=10.1088/0953-8984/19/2/023201 |s2cid=94885699 |issn=0953-8984}}</ref><ref>{{Cite journal |last1=Meneghini |first1=C. |last2=Ray |first2=Sugata |last3=Liscio |first3=F. |last4=Bardelli |first4=F. |last5=Mobilio |first5=S. |last6=Sarma |first6=D. D. |date=2009-07-22 |title=Nature of "Disorder" in the Ordered Double Perovskite Sr<sub>2</sub>FeMoO<sub>6</sub> |url=https://link.aps.org/doi/10.1103/PhysRevLett.103.046403 |journal=Physical Review Letters |volume=103 |issue=4 |pages=046403 |doi=10.1103/PhysRevLett.103.046403|pmid=19659376 |bibcode=2009PhRvL.103d6403M}}</ref> Octahedral tilting can occur in double perovskites, however [[Jahn–Teller effect|Jahn–Teller]] distortions and alternative modes alter the B–O bond length.
 
=== Others ===
Line 159:
==Materials properties==
 
Perovskite materials exhibit many interesting and intriguing properties from both the theoretical and the application point of view. [[Colossal magnetoresistance]], [[ferroelectricity]], [[superconductivity]], [[charge ordering]], spin dependent transport, high thermopower and the interplay of structural, magnetic and transport properties are commonly observed features in this family. These compounds are used as sensors and catalyst electrodes in certain types of [[SOFC|fuel cells]]<ref>{{cite journal|last=Kulkarni|first=A|display-authors=4|author2=FT Ciacchi |author3=S Giddey |author4=C Munnings |author5=SPS Badwal |author6=JA Kimpton |author7=D Fini |title=Mixed ionic electronic conducting perovskite anode for direct carbon fuel cells|journal=International Journal of Hydrogen Energy|date=2012|volume=37|issue=24|pages=19092–19102|doi=10.1016/j.ijhydene.2012.09.141|bibcode=2012IJHE...3719092K}}</ref> and are candidates for memory devices and [[spintronics]] applications.<ref>{{cite journal| title = Mixed-valence manganites| author = J. M. D. Coey| author2 = M. Viret| author3 = S. von Molnar|doi = 10.1080/000187399243455| journal = Advances in Physics| volume = 48| issue = 2|date = 1999|pages = 167–293|bibcode = 1999AdPhy..48..167C | s2cid = 121555794}}</ref>
 
Many [[superconductor|superconducting]] [[ceramic]] materials (the [[high temperature superconductors]]) have perovskite-like structures, often with 3 or more metals including copper, and some oxygen positions left vacant. One prime example is [[yttrium barium copper oxide]] which can be insulating or superconducting depending on the oxygen content.
Line 166:
 
== Aspirational applications ==
Physical properties of interest to [[materials science]] among perovskites include [[superconductivity]], [[magnetoresistance]], [[Ionic conductivity (solid state)|ionic conductivity]], and a multitude of dielectric properties, which are of great importance in microelectronics and [[telecommunication]]. They are also some interests for [[scintillator]] as they have large light yield for radiation conversion. Because of the flexibility of bond angles inherent in the perovskite structure there are many different types of distortions which can occur from the ideal structure. These include tilting of the [[octahedra]], displacements of the cations out of the centers of their coordination polyhedra, and distortions of the octahedra driven by [[Electronics|electronic]] factors ([[Jahn–Teller effect|Jahn-Teller distortions]]).<ref name=Lufaso>{{cite journal|doi=10.1107/S0108768103026661|pmid=14734840|title=Jahn–Teller distortions, cation ordering and octahedral tilting in perovskites|date=2004|last1=Lufaso|first1=Michael W.|last2=Woodward|first2=Patrick M.|journal=Acta Crystallographica Section B|volume=60|issue=Pt 1|pages=10–20|bibcode=2004AcCrB..60...10L |url=https://digitalcommons.unf.edu/cgi/viewcontent.cgi?article=1002&context=achm_facpub}}</ref> The financially biggest application of perovskites is in [[Ceramicceramic capacitor|ceramic capacitors]]s, in which BaTiO<sub>3</sub> is used because of its high dielectric constant.<ref>{{Cite web |title=Capacitor Market Size, Share, Scope, Trends, Opportunities & Forecast |url=https://www.verifiedmarketresearch.com/product/capacitor-market/ |access-date=2022-12-15 |website=Verified Market Research |language=en-US}}</ref><ref>{{Cite journal |last=Merz |first=Walter J. |date=1949-10-15 |title=<nowiki>The Electric and Optical Behavior of BaTi${\mathrm{O}}_{3}$ Single-Domain Crystals</nowiki> |url=https://link.aps.org/doi/10.1103/PhysRev.76.1221 |journal=Physical Review |volume=76 |issue=8 |pages=1221–1225 |doi=10.1103/PhysRev.76.1221}}</ref>
 
=== Photovoltaics ===
{{main|Perovskite solar cell}}
[[File:CH3NH3PbI3 structure.png|thumb|Crystal structure of CH<sub>3</sub>NH<sub>3</sub>PbX<sub>3</sub> perovskites (X=I, Br and/or Cl). The methylammonium cation (CH<sub>3</sub>NH<sub>3</sub><sup>+</sup>) is surrounded by PbX<sub>6</sub> octahedra.<ref name=r5>{{cite journal|doi=10.1038/ncomms8497|pmid=26105623|pmc=4491179|title=Ionic transport in hybrid lead iodide perovskite solar cells|journal=Nature Communications|volume=6|page=7497|year=2015|last1=Eames|first1=Christopher|last2=Frost|first2=Jarvist M.|last3=Barnes|first3=Piers R. F.|last4=o'Regan|first4=Brian C.|last5=Walsh|first5=Aron|last6=Islam|first6=M. Saiful|bibcode = 2015NatCo...6.7497E}}</ref>]]
Synthetic perovskites are possible materials for high-efficiency [[photovoltaics]]<ref>{{cite web |url=https://www.technologyreview.com/2013/08/08/177064/a-material-that-could-make-solar-power-dirt-cheap/ |title=A Material That Could Make Solar Power "Dirt Cheap" |last1=Bullis |first1=Kevin |date=8 August 2013 |website=[[MIT Technology Review]] |access-date=9 May 2023}}</ref><ref name="Li, Hangqian. 2016 243–251">{{cite journal|author=Li, Hangqian. |date=2016 |title=A modified sequential deposition method for fabrication of perovskite solar cells |journal=Solar Energy |volume=126 |pages=243–251 |doi=10.1016/j.solener.2015.12.045 |bibcode=2016SoEn..126..243L}}</ref> – they showed a conversion efficiency of up to 26.3%<ref name="Li, Hangqian. 2016 243–251"/><ref>{{cite web|url=https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200925.pdf|title=Research Cell Efficiency Records|date=2020|website=Office of Energy Efficiency & Renewable Energy}}</ref><ref>{{Cite journal|last=Zhu|first=Rui|date=2020-02-10|title=Inverted devices are catching up|journal=Nature Energy|volume=5|issue=2|pages=123–124|language=en|doi=10.1038/s41560-020-0559-z|bibcode=2020NatEn...5..123Z|s2cid=213535738|issn=2058-7546}}</ref> and can be manufactured using the same thin-film manufacturing techniques as that used for thin film silicon solar cells.<ref>{{cite journal |doi=10.1038/nature12509 |title=Efficient planar heterojunction perovskite solar cells by vapour deposition |date=2013 |last1=Liu |first1=Mingzhen |last2=Johnston |first2=Michael B. |last3=Snaith |first3=Henry J. |author-link3 = Henry Snaith|journal=Nature |volume=501 |issue=7467 |pages=395–398 |pmid=24025775|bibcode = 2013Natur.501..395L |s2cid=205235359}}</ref> Methylammonium tin halides and [[methylammonium lead halide]]s are of interest for use in [[dye-sensitized solar cell]]s.<ref>{{cite journal|author=Lotsch, B.V. |date=2014 |title=New Light on an Old Story: Perovskites Go Solar |journal= Angew. Chem. Int. Ed. |volume=53 |issue=3 |pages=635–637 |doi=10.1002/anie.201309368|pmid=24353055}}</ref><ref>{{cite journal|author=Service, R. |date=2013 |title=Turning Up the Light |journal=Science |volume=342 |pages=794–797 |doi=10.1126/science.342.6160.794 |pmid=24233703 |issue=6160|bibcode=2013Sci...342..794S}}</ref> Some perovskite PV cells reach a theoretical peak efficiency of 31%.<ref>{{Cite web |date=2016-07-04 |title=Nanoscale discovery could push perovskite solar cells to 31% efficency [sic] |url=http://factor-tech.com/green-energy/23404-nanoscale-discovery-could-push-perovskite-solar-cells-to-31-efficency/ | titleurl-status=Nanoscaledead |archive-url=https://web.archive.org/web/20160707014630/http://factor-tech.com/green-energy/23404-nanoscale-discovery -could -push -perovskite -solar -cells -to -31% -efficency/ (sic)| archive-date=2016-07-0407 |first=Callum |last=Tyndall}}</ref>
 
Among the methylammonium halides studied so far the most common is the methylammonium lead triiodide ({{chem|CH|3|NH|3|PbI|3}}). It has a high [[charge carrier]] [[Electron mobility|mobility]] and charge carrier [[Carrier lifetime|lifetime]] that allow light-generated electrons and holes to move far enough to be extracted as current, instead of losing their energy as heat within the cell. {{chem|CH|3|NH|3|PbI|3}} effective diffusion lengths are some 100&nbsp;nm for both electrons and holes.<ref name=sci1310>{{Cite journal | last1 = Hodes | first1 = G. | title = Perovskite-Based Solar Cells | doi = 10.1126/science.1245473 | journal = Science | volume = 342 | issue = 6156 | pages = 317–318 | year = 2013 | pmid = 24136955|bibcode = 2013Sci...342..317H | s2cid = 41656229}}</ref>
 
[[Methylammonium halide|Methylammonium halides]]s are deposited by low-temperature solution methods (typically [[spin-coating]]). Other low-temperature (below 100&nbsp;°C) solution-processed films tend to have considerably smaller diffusion lengths. Stranks et al. described [[nanostructure]]d cells using a mixed methylammonium lead halide ({{mathnowrap|CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3−{{varmvar|x}}</sub>Cl<sub>{{varmvar|x}}</sub>}}) and demonstrated one amorphous thin-film solar cell with an 11.4% conversion efficiency, and another that reached 15.4% using [[vacuum evaporation]]. The film thickness of about 500 to 600&nbsp;nm implies that the electron and hole diffusion lengths were at least of this order. They measured values of the diffusion length exceeding 1&nbsp;μm for the mixed perovskite, an order of magnitude greater than the 100&nbsp;nm for the pure iodide. They also showed that carrier lifetimes in the mixed perovskite are longer than in the pure iodide.<ref name=sci1310/> Liu et al. applied Scanning Photo-current Microscopy to show that the electron diffusion length in mixed halide perovskite along (110) plane is in the order of 10&nbsp;μm.<ref>{{Cite journal|last1=Liu|first1=Shuhao|last2=Wang|first2=Lili|last3=Lin|first3=Wei-Chun|last4=Sucharitakul|first4=Sukrit|last5=Burda|first5=Clemens|last6=Gao|first6=Xuan P. A.|date=2016-12-14|title=Imaging the Long Transport Lengths of Photo-generated Carriers in Oriented Perovskite Films|journal=Nano Letters|volume=16|issue=12|pages=7925–7929|doi=10.1021/acs.nanolett.6b04235|pmid=27960525|issn=1530-6984|arxiv=1610.06165|bibcode=2016NanoL..16.7925L|s2cid=1695198}}</ref>
 
For {{chem|CH|3|NH|3|PbI|3}}, [[open-circuit voltage]] (''V''<sub>OC</sub>) typically approaches 1&nbsp;V, while for {{chem|CH|3|NH|3|PbI|(I,Cl)|3}} with low Cl content, ''V''<sub>OC</sub> > 1.1&nbsp;V has been reported. Because the [[band gap]]s (E<sub>g</sub>) of both are 1.55&nbsp;eV, ''V''<sub>OC</sub>-to-E<sub>g</sub> ratios are higher than usually observed for similar third-generation cells. With wider bandgap perovskites, ''V''<sub>OC</sub> up to 1.3&nbsp;V has been demonstrated.<ref name=sci1310/>
 
The technique offers the potential of low cost because of the low temperature solution methods and the absence of rare elements. Cell durability is currently insufficient for commercial use.<ref name=sci1310/> However, the solar cells are prone to degradation due to volatility of the organic [CH<sub>3</sub>NH<sub>3</sub>]<sup>+</sup>I<sup>-&minus;</sup> salt. The all-inorganic perovskite cesium lead iodide perovskite (CsPbI<sub>3</sub>) circumvents this problem, but is itself phase-unstable, the low temperature solution methods of which have only been recently developed.<ref>{{cite journal |last1=Lai |first1=Hei Ming |title=Direct Room Temperature Synthesis of α-CsPbI3 Perovskite Nanocrystals with High Photoluminescence Quantum Yields: Implications for Lighting and Photovoltaic Applications |journal=ACS Appl. Nano Mater |date=April 27, 2022 |volume=5 |issue=9 |pagepages=1236612366–12373|doi=10.1021/acsanm.2c00732 |doi-12373access=free }}</ref>
 
Planar heterojunction perovskite solar cells can be manufactured in simplified device architectures (without complex nanostructures) using only vapor deposition. This technique produces 15% solar-to-electrical power conversion as measured under simulated full sunlight.<ref>{{Cite journal | doi = 10.1038/nature12509| title = Efficient planar heterojunction perovskite solar cells by vapour deposition| journal = Nature| volume = 501| issue = 7467| pages = 395–398| year = 2013| last1 = Liu | first1 = M. | last2 = Johnston | first2 = M. B. | last3 = Snaith | first3 = H. J. | pmid=24025775|bibcode = 2013Natur.501..395L | s2cid = 205235359}}</ref>
Line 188 ⟶ 189:
 
=== Light-emitting diodes ===
Due to their high [[photoluminescence]] [[quantum efficiency|quantum efficiencies]], perovskites may find use in [[light-emitting diode]]s (LEDs).<ref>{{Cite journal|last1=Stranks|first1=Samuel D.|last2=Snaith|first2=Henry J.|date=2015-05-01|title=Metal-halide perovskites for photovoltaic and light-emitting devices |journal= Nature Nanotechnology|language=en|volume=10|issue=5|pages=391–402|doi=10.1038/nnano.2015.90|pmid=25947963|issn=1748-3387|bibcode=2015NatNa..10..391S}}</ref> Although the stability of perovskite LEDs is not yet as good as III-V or organic LEDs, there are plenty ofis ongoing research to solve this problem, such as incorporating organic molecules<ref>{{cite journal |last1=Wang |first1=Heyong |last2=Kosasih |first2=Felix Utama |last3=Yu |first3=Hongling |last4=Zheng |first4=Guanhaojie |last5=Zhang |first5=Jiangbin |last6=Pozina |first6=Galia |last7=Liu |first7=Yang |last8=Bao |first8=Chunxiong |last9=Hu |first9=Zhangjun |last10=Liu |first10=Xianjie |last11=Kobera |first11=Libor |last12=Abbrent |first12=Sabina |last13=Brus |first13=Jiri |last14=Jin |first14=Yizheng |last15=Fahlman |first15=Mats |last16=Friend |first16=Richard H. |last17=Ducati |first17=Caterina |last18=Liu |first18=Xiao-Ke |last19=Gao |first19=Feng |title=Perovskite-molecule composite thin films for efficient and stable light-emitting diodes |journal=Nature Communications |date=December 2020 |volume=11 |issue=1 |pages=891 |doi=10.1038/s41467-020-14747-6|pmid=32060279 |pmc=7021679 |bibcode=2020NatCo..11..891W |doi-access=free}}</ref> or potassium dopants<ref>{{cite journal |last1=Andaji‐GarmaroudiAndaji-Garmaroudi |first1=Zahra |last2=Abdi‐JalebiAbdi-Jalebi |first2=Mojtaba |last3=Kosasih |first3=Felix U. |last4=Doherty |first4=Tiarnan |last5=Macpherson |first5=Stuart |last6=Bowman |first6=Alan R. |last7=Man |first7=Gabriel J. |last8=Cappel |first8=Ute B. |last9=Rensmo |first9=Håkan |last10=Ducati |first10=Caterina |last11=Friend |first11=Richard H. |last12=Stranks |first12=Samuel D. |title=Elucidating and Mitigating Degradation Processes in Perovskite Light‐EmittingLight-Emitting Diodes |journal=Advanced Energy Materials |date=December 2020 |volume=10 |issue=48 |pages=2002676 |doi=10.1002/aenm.202002676|bibcode=2020AdEnM..1002676A |s2cid=228806435 |url=https://www.repository.cam.ac.uk/handle/1810/312192}}</ref> in perovskite LEDs. Perovskite-based printing ink can be used to produce [[OLED display]] and [[quantum dot display]] panels. <ref>{{cite web | url=https://www.oled-info.com/researchers-develop-perovskite-based-3d-printing-ink-could-power-next | title=Researchers develop a perovskite-based 3D printing ink that could power next generation OLED devices {{pipe}} OLED Info }}</ref>
 
=== Photoelectrolysis ===
Line 196 ⟶ 197:
=== Scintillators ===
 
Cerium-doped lutetium aluminum perovskite (LuAP:Ce) single crystals were reported.<ref name="Moszynski1997">{{cite journal|last1=Moszynski|first1=M|title=Properties of the new LuAP:Ce scintillator|journal=Nuclear Instruments and Methods in Physics Research A|date=11 January 1997|volume=385|issue=1|pages=123–131|doi=10.1016/S0168-9002(96)00875-3|bibcode=1997NIMPA.385..123M|doi-access=}}</ref> The main property of those crystals is a large mass density of 8.4 g/cm<sup>3</sup>, which gives short X- and gamma-ray absorption length. The scintillation light yield and the decay time with Cs<sup>137</sup> radiation source are 11,400 photons/MeV and 17 ns, respectively.<ref>{{Cite journal|last1=Maddalena|first1=Francesco|last2=Tjahjana|first2=Liliana|last3=Xie|first3=Aozhen|last4=Arramel|last5=Zeng|first5=Shuwen|last6=Wang|first6=Hong|last7=Coquet|first7=Philippe|last8=Drozdowski|first8=Winicjusz|last9=Dujardin|first9=Christophe|last10=Dang|first10=Cuong|last11=Birowosuto|first11=Muhammad Danang|date=February 2019|title=Inorganic, Organic, and Perovskite Halides with Nanotechnology for High–Light Yield X- and γ-ray Scintillators|journal=Crystals|language=en|volume=9|issue=2|pages=88|doi=10.3390/cryst9020088|doi-access=free|hdl=10356/107027|hdl-access=free}}</ref> Those properties made LUAP:Ce scintillators attractive for commercials and they were used quite often in high energy physics experiments. Until eleven years later, one group in Japan proposed Ruddlesden-Popper solution-based hybrid organic-inorganic perovskite crystals as low-cost scintillators.<ref name="Kishimoto2008">{{cite journal|last1=Kishimoto|first1=S|title=Subnanosecond time-resolved x-ray measurements using an organic-inorganic perovskite scintillator|journal=Appl. Phys. Lett.|date=29 December 2008|volume=93|issue=26|page=261901|doi=10.1063/1.3059562|bibcode=2008ApPhL..93z1901K}}</ref> However, the properties were not so impressive in comparison with LuAP:Ce. Until the next nine years, the solution-based hybrid organic-inorganic perovskite crystals became popular again through a report about their high light yields of more than 100,000 photons/MeV at cryogenic temperatures.<ref name="Birowosuto2016">{{cite journal|last1=Birowosuto|first1=Muhammad Danang|title=X-ray Scintillation in Lead Halide Perovskite Crystals|journal=Sci. Rep.|date=16 November 2016|volume=6|page=37254|doi=10.1038/srep37254|pmid=27849019|pmc=5111063|arxiv=1611.05862|bibcode=2016NatSR...637254B}}</ref> Recent demonstration of perovskite nanocrystal scintillators for X-ray imaging screen was reported and it is triggering more research efforts for perovskite scintillators.<ref name="QChen2018">{{cite journal|last1=Chen|first1=Quishui|title=All-inorganic perovskite nanocrystal scintillators|journal=Nature|date=27 August 2018|volume=561|issue=7721|pages=88–93|doi=10.1038/s41586-018-0451-1|pmid=30150772|bibcode=2018Natur.561...88C|s2cid=52096794}}</ref> Layered Ruddlesden-Popper perovskites have shown potential as fast novel scintillators with room temperature light yields up to 40,000 photons/MeV, fast decay times below 5 ns and negligible afterglow.<ref name=":0" /><ref name=":1" /> In addition this class of materials have shown capability for wide-range particle detection, including [[alpha particle]]s and thermal [[neutron]]s.<ref>{{Cite journal|last1=Xie|first1=Aozhen|last2=Hettiarachchi|first2=Chathuranga|last3=Maddalena|first3=Francesco|last4=Witkowski|first4=Marcin E.|last5=Makowski|first5=Michał|last6=Drozdowski|first6=Winicjusz|last7=Arramel|first7=Arramel|last8=Wee|first8=Andrew T. S.|last9=Springham|first9=Stuart Victor|last10=Vuong|first10=Phan Quoc|last11=Kim|first11=Hong Joo|date=2020-06-24|title=Lithium-doped two-dimensional perovskite scintillator for wide-range radiation detection|journal=Communications Materials|language=en|volume=1|issue=1|page=37|doi=10.1038/s43246-020-0038-x|bibcode=2020CoMat...1...37X|issn=2662-4443|doi-access=free|hdl=10356/164062|hdl-access=free}}</ref>
 
==Examples of perovskites==
Line 237 ⟶ 238:
* {{cite web | url=http://cst-www.nrl.navy.mil/lattice/struk/e2_1.html | title=Cubic Perovskite Structure | work=Center for Computational Materials Science | publisher=[[United States Naval Research Laboratory|U.S. Naval Research Laboratory]] | url-status=dead | archive-url=https://web.archive.org/web/20081008092209/http://cst-www.nrl.navy.mil/lattice/struk/e2_1.html | archive-date=2008-10-08}} (includes a [https://web.archive.org/web/20080412093413/http://cst-www.nrl.navy.mil/lattice/struk.jmol/e2_1.html Java applet] with which the structure can be interactively rotated)
* [https://catalogmineralov.ru/mineral/perovskite.html Перовскит в Каталоге Минералов]
 
{{Titanium minerals}}
{{Authority control}}
 
{{DEFAULTSORT:Perovskite (Structure)}}