Sciadonic acid: Difference between revisions

Content deleted Content added
mNo edit summary
No edit summary
Line 40:
== Etymology ==
 
The root behind the [[nomenclature]] of sciadonic acid comes from its high abundance in the seed, leaves, and wood oils of the plant species ''[[Sciadopitys verticillate]]''.<ref>Wolff,{{cite R.journal L.| (1999).doi All-CIS= 5,11,14-20:3 acid: Podocarpic acid or sciadonic acid? Journal of the American Oil Chemists' Society, 76(10), 1255–1256. https://doi.org/10.1007/s11746-999-0102-7 }}</ref>
 
== Synthetic Methods ==
 
There are a few methods reagarding the synthesis of sciadonic acid and other Δ5-fatty acids. One method is through [[desaturase]] enzyme complexes in which the [[biosynthesis]] of sciadonic acid has been achieved in the organism [[Anemone leveillei]] via two Δ<sup>5</sup>-desaturases, AL10 and AL21.<ref name="auto1">Sayanova{{cite O,journal Haslam| R,doi Venegas Caleron M, Napier JA. Cloning and characterization of unusual fatty acid desaturases from Anemone leveillei: identification of an acyl-coenzyme A C20 Delta5-desaturase responsible for the synthesis of sciadonic acid. Plant Physiol. 2007 May;144(1):455-67. doi:= 10.1104/pp.107.098202. Epub 2007 Mar 23. PMID: 17384161; PMCID: PMC1913799.}}</ref> Both desaturases have shown success in the synthesis of sciadonic acid, however, the mechanisms show different substrate specificity. AL21 has broad substrate specificity and acts on both saturated (16:0 and 18:0) and unsaturated (20:2, ω-6) fatty acids.<ref name="auto1"/> In contrast AL10 has a much greater substrate specificity binding only to a C20 unsaturated fatty acid (20:2, n-6) When AL10 is co-expressed with a Δ<sup>9</sup>-elongase the biosynthesis of sciadonic acid is achieved in [[transgenic plants]]. A second synthetic method is achieved through an [[esterification]] reaction catalyzed via Lipozyme RM IM and pine nut oil. Lipase-catalyzed esterification reactions leading to the development of Δ<sup>5</sup>-fatty acids can be achieved in solvent-free conditions using water-[[jacketed vessel]].<ref>Kim,{{cite H.,journal Choi,| N.,doi Kim,= H.-R., Lee, J., & Kim, I.-H. (2018). Preparation of high purity Δ5-olefinic acids from pine nut oil via repeated lipase-catalyzed esterification. Journal of Oleo Science, 67(11), 1435–1442. https://doi.org/10.5650/jos.ess18136 }}</ref>
 
== Phylogenetic significance in gymnosperms ==
 
Sciadonic acid and several other Δ<sup>5</sup>-olefinic acids are found to be relatively abundant in [[gymnosperms]]. ''[[Setaria verticillata]]'' seeds and their fatty acid compositions allow for distinction between different Coniferophytes such as species from families such as [[Cupressaceae]] and [[Taxodiaceae]].<ref>Wolff,{{cite R.journal L.| (1999).doi The= phylogenetic significance of sciadonic (all-cis 5,11,14-20:3) acid in gymnosperms and its quantitative significance in land plants. Journal of the American Oil Chemists' Society, 76(12), 1515–1516. https://doi.org/10.1007/s11746-999-0195-z }}</ref><ref>73:765–771 (1996). 14. Wolff, R.L., L.G. Deluc, A.M. Marpeau, and B. Comps, Chemotaxonomic Differentiation of Conifer Families and Genera Based on the Seed Oil Fatty Acid Compositions: Multivariate Analyses, Trees 12:57–65 (1997)</ref><ref>Wolff, R.L., Clarification on the Taxonomic Position of Sciadopitys verticillata Among Coniferophytes Based on the Seed Oil Fatty Acid Compositions, J. Am. Oil Chem. Soc. 75:757–758 (1998)</ref>. Sciadonic acid is a distinctive fatty acid that shows presence in the oils of seeds, leaves, and woods of [[conifers]]. Indicating that plant families can be characterized by the fatty acid composition of their seed, leaves, and wood oils.
 
== Health implications ==
 
[[Eicosanoids]] and metabolites found to be biologically active have correlated to tumor progression by several mechanisms such as interruption of [[cell signaling]]. In humans, [[fatty acid desaturases]], FADS 1,2 and 3 are [[enzyme]] coding genes found in [[chromosome 11q13]], in which alterations can be attributed to several types of [[cancers]] such as breast, ovarian and cervical cancer. In particular, the FADS2 enzyme, responsible for Δ<sup>6</sup> desaturation is no longer functional.<ref name="auto">Park,{{cite H.journal G.,| Zhang,doi J.= Y., Foster, C., Sudilovsky, D., Schwed, D. A., Mecenas, J., Devapatla, S., Lawrence, P., Kothapalli, K. S. D., & Brenna, J. T. (2018). A rare eicosanoid precursor analogue, sciadonic acid (5Z,11z,14Z–20:3), detected in vivo in hormone positive breast cancer tissue. Prostaglandins, Leukotrienes and Essential Fatty Acids, 134, 1–6. https://doi.org/10.1016/j.plefa.2018.05.002 }}</ref> In healthy tissues sciadonic acid is not within detectable concentrations however in human breast cancer tissues detectable concentrations have been found. Sciadonic acids structural similarity has shown potential as a substitute for [[arachidonic acid]] in cellular [[phospholipid]] pools in the signaling pathways.<ref name="auto"/><ref>Chen,{cite S.-J.,journal Huang,| W.-C.,doi Yang,= T.-T., Lu, J.-H., & Chuang, L.-T. (2012). Incorporation of sciadonic acid into cellular phospholipids reduces pro-inflammatory mediators in murine [[macrophages through NF-ΚB and MAPK signaling pathways. Food and Chemical Toxicology, 50(10), 3687–3695. https://doi.org/10.1016/j.fct.2012.07.057 }}</ref> In keratinocytes, sciadonic acids release from the cellular membrane phospholipid pool reduces levels of pro-inflammatory arachidonic acid and the corresponding pro-inflammatory down-stream mediator [[prostaglandin E2]].<ref name="auto2">Chen,{{cite S.-J.,journal Huang,| W.-C.,doi Yang,= T.-T., Lu, J.-H., & Chuang, L.-T. (2012). Incorporation of sciadonic acid into cellular phospholipids reduces pro-inflammatory mediators in murine macrophages through NF-ΚB and MAPK signaling pathways. Food and Chemical Toxicology, 50(10), 3687–3695. https://doi.org/10.1016/j.fct.2012.07.057 }}</ref> Reduction of pro-inflammatory mediator molecules is also occurs in murine macrophages, regulating the activation of NF-κΒ and MAPK pathways.<ref name="auto2"/>
 
== References ==