Hartree–Fock method: Difference between revisions

Content deleted Content added
Total energy: Restored source. Last edit deleted duplicated equation, but also this source which was not duplicated.
Change sign, otherwise it doesn't conform to the energy functional derivative above and the HF equation below. Mathematical formulation
Line 95:
\delta E[\phi_k^*(x_k)] &= \sum_{i=1}^N \int\text{d}\mathbf{x}_i \, h^1(\mathbf{x}_i) \phi_i(\mathbf{x}_i) \delta(\mathbf{x}_i -\mathbf{x}_k) \delta_{ik}\\ &+ \sum_{i=1}^N\sum_{j=1}^N \int \mathrm{d}\mathbf{x}_i \int \text{d}\mathbf{x}_j\phi_j^*(\mathbf{x}_j) \frac{1}{|\mathbf{r}_i-\mathbf{r}_j|}\phi_i(\mathbf{x}_i)\phi_j(\mathbf{x}_j) \delta(\mathbf{x}_i-\mathbf{x}_k)\delta_{ik}\\
&- \sum_{i=1}^N\sum_{j=1}^N \int \text{d}\mathbf{x}_i \int \text{d}\mathbf{x}_j\phi_j^*(\mathbf{x}_j) \frac{1}{|\mathbf{r}_i-\mathbf{r}_j|}\phi_i(\mathbf{x}_j)\phi_j(\mathbf{x}_i) \delta(\mathbf{x}_i-\mathbf{x}_k)\delta_{ik}\\
&+- \sum_{i=1}^N \epsilon_i \int \text{d}\mathbf{x}_i \, \phi_i(\mathbf{x}_i) \delta(\mathbf{x}_i-\mathbf{x}_k)\delta_{ik}\\ \\
&= h^1(\mathbf{x}_k) \phi_k(\mathbf{x}_k)\\
&+ \sum_{j=1}^N \int \text{d}\mathbf{x}_j\phi_j^*(\mathbf{x}_j) \frac{1}{|\mathbf{r}_k-\mathbf{r}_j|}\phi_k(\mathbf{x}_k)\phi_j(\mathbf{x}_j)\\
&- \sum_{j=1}^N \int \text{d}\mathbf{x}_j\phi_j^*(\mathbf{x}_j) \frac{1}{|\mathbf{r}_k-\mathbf{r}_j|}\phi_k(\mathbf{x}_j)\phi_j(\mathbf{x}_k)\\
&+- \epsilon_k \phi_k(\mathbf{x}_k). \\
\end{aligned}</math>