Virial theorem: Difference between revisions

Content deleted Content added
Line 67:
=== Connection with the potential energy between particles ===
 
The total force {{math|'''F'''<sub>''k''</sub>}} on particle {{mvar|k}} is the sum of all the forces from the other particles {{mvar|j}} in the system:
<math display="block">\mathbf{F}_k = \sum_{j=1}^N \mathbf{F}_{jk}</math>
where {{math|'''F'''<sub>''jk''</sub>}} is the force applied by particle {{mvar|j}} on particle {{mvar|k}}. Hence, the virial can be written
<math display="block">
- \frac12\,mathbf{F}_k = \sum_{kj=1}^N \mathbf{F}_k \cdot \mathbf_{rjk}_k =,
</math>
-\frac12\,\sum_{k=1}^N \sum_{j=1}^N \mathbf{F}_{jk} \cdot \mathbf{r}_k \,.
where {{math|'''F'''<sub>''jk''</sub>}} is the force applied by particle {{mvar|j}} on particle {{mvar|k}}. Hence, the virial can be written as
<math display="block">
-\frac12\,\sum_{k=1}^N \mathbf{F}_k \cdot \mathbf{r}_k =
-\frac12\,\sum_{k=1}^N \sum_{j=1}^N \mathbf{F}_{jk} \cdot \mathbf{r}_k \,.
</math>
 
Since no particle acts on itself (i.e., {{math|1='''F'''<sub>''jj''</sub> = 0}} for {{math|1 ≤ ''j'' ≤ ''N''}}), we split the sum in terms below and above this diagonal and we add them together in pairs:
<math display="block">\begin{align}
\sum_{k=1}^N \mathbf{F}_k \cdot \mathbf{r}_k
& &= \sum_{k=1}^N \sum_{j=1}^N \mathbf{F}_{jk} \cdot \mathbf{r}_k =
\sum_{k=2}^N \sum_{j=1}^{k-1} \left( \mathbf{F}_{jk} \cdot \mathbf{r}_k + \mathbf{F}_{kj} \cdot \mathbf{r}_j \right) \\
& &= \sum_{k=2}^N \sum_{j=1}^{k-1} \left( \mathbf{F}_{jk} \cdot \mathbf{r}_k - \mathbf{F}_{jk} \cdot \mathbf{r}_j \right) =
\sum_{k=2}^N \sum_{j=1}^{k-1} \mathbf{F}_{jk} \cdot \left( \mathbf{r}_k - \mathbf{r}_j \right),
\end{align}</math>
where we have assumed thatused [[Newton's laws of motion|Newton's third law of motion]] holds, i.e., {{math|1='''F'''<sub>''jk''</sub> = −'''F'''<sub>''kj''</sub>}} (equal and opposite reaction).
 
It often happens that the forces can be derived from a potential energy {{mvar|''V''<sub>''jk''</sub>}} that is a function only of the distance {{math|''r''<sub>''jk''</sub>}} between the point particles {{mvar|j}} and {{mvar|k}}. Since the force is the negative gradient of the potential energy, we have in this case
 
<math display="block">
\mathbf{F}_{jk} = -\nabla_{\mathbf{r}_k} V_{jk} =
- \frac{dV_{jk}}{dr_{jk}} \left( \frac{\mathbf{r}_k - \mathbf{r}_j}{r_{jk}} \right),
</math>
 
which is equal and opposite to {{math|1='''F'''<sub>''kj''</sub> = −∇<sub>'''r'''<sub>''j''</sub></sub>''V''<sub>''kj''</sub> = −∇<sub>'''r'''<sub>''j''</sub></sub>''V''<sub>''jk''</sub>}}, the force applied by particle {{mvar|k}} on particle {{mvar|j}}, as may be confirmed by explicit calculation. Hence,
 
<math display="block">\begin{align}
\sum_{k=1}^N \mathbf{F}_k \cdot \mathbf{r}_k
&= \sum_{k=2}^N \sum_{j=1}^{k-1} \mathbf{F}_{jk} \cdot \left( \mathbf{r}_k - \mathbf{r}_j \right) \\
&= -\sum_{k=2}^N \sum_{j=1}^{k-1} \frac{dV_{jk}}{dr_{jk}} \frac{| \mathbf{r}_k - \mathbf{r}_j |^2}{r_{jk}} \\
& =-\sum_{k=2}^N \sum_{j=1}^{k-1} \frac{dV_{jk}}{dr_{jk}} r_{jk}.
\end{align}</math>
 
Thus, we have
<math display="block">
\frac{dG}{dt} = 2 T + \sum_{k=1}^N \mathbf{F}_k \cdot \mathbf{r}_k =
2 T - \sum_{k=2}^N \sum_{j=1}^{k-1} \frac{dV_{jk}}{dr_{jk}} r_{jk}.
</math>
 
=== Special case of power-law forces ===