Talk:Affine geometry

This is an old revision of this page, as edited by Rgdboer (talk | contribs) at 20:23, 18 October 2011 (Linear algebra: new section). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.


Latest comment: 13 years ago by Rgdboer in topic Linear algebra
WikiProject iconMathematics Start‑class High‑priority
WikiProject iconThis article is within the scope of WikiProject Mathematics, a collaborative effort to improve the coverage of mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
StartThis article has been rated as Start-class on Wikipedia's content assessment scale.
HighThis article has been rated as High-priority on the project's priority scale.

"affine set" redirects here. An affine set is not explicitly defined anywhere in this article. A separate article for "affine set> should be created.

71.148.59.179 (talk) 20:01, 3 August 2008 (UTC)Reply


The semi-direct product formula as written in has a couple of problems: (a) format (doesn't display on my browser) (b) for those fussy about invariance, it chooses a basis.

Charles Matthews 08:24, 18 Aug 2003 (UTC)

I just fixed (b); (a) seems to have been fixed already with Image:Rtimes2.png. -- Toby Bartels 22:12, 2005 Jan 27 (UTC)


I am disappointed to see that this entry states no axioms. Affine geometry can be derived by adding a few axioms, and a primitive notion or two, to projective geometry.132.181.160.42 01:30, 15 March 2006 (UTC)Reply

Didn't Understand

I agree, i found this definition: Affine geometry is the study of parallel lines which meet at infinity, where there is no perpendicular lines —Preceding unsigned comment added by IMBlackMath (talkcontribs) 04:59, 12 March 2009 (UTC)Reply

I am an intelligent member of the public who wanted to find out about affine geometry. This article failed to inform me of what affine geometry is, as it is explained in terms of affine geometry and other geometries in a roundabout of unilluminating self-references.

This is an encyclopedia, not a text-book for the elite. An encyclopedia brings explanation to difficult ideas. This article failed to achieve that, and looks more like an exercise in 'what I know, and you don't know'. Please edit it to say what affine geometry is.--IvorJ 18:28, 29 September 2007 (UTC)Reply

I think the introduction is now much more illuminating: "In mathematics affine geometry is the study of geometric properties which remain unchanged by affine transformations, i.e. non-singular linear transformations and translations."  Δεκλαν Δαφισ   (talk)  22:11, 21 February 2009 (UTC)Reply



My Revision of 15:53, 9 December 2007 is a significant improvement to the article on affine geometry. I don't understand why User:AlexFusco5 reverted my edits as vandalism. To be sure, I did significantly restructure the page. A few of my edits may be controversial and I would encourage the community to think about them and either revert or further improve them to accommodate all prior editors' contributions as well as extend them for content and clarity. But please revert the one or two items with which you disagree, this wholesale reversion by User:Alexfusco5 is frustrating as I spent a lot of time trying to make my contribution as incisive as possible. Looking at his significant contributions, I assume he noted the major changes and hastily jumped to the wrong conclusion. Since this is the first article that I have changed significantly, it may be that I missed some elements of Wikipedia protocol (e.g., I forgot to provide an edit summary and didn't I post in the discussion thread ahead of the edits). When I re-institute my edits, I will document them better. my home page] has my e-mail address if someone might care to apprise me of protocols which I haven't adduced as yet.

I think the neutral point of view is violated in the original article by statements such as this: "That may be desirable from a geometric point of view, rather than finding a heavy-handed proof using analytic geometry. But it's then a question of axiomatic study (so-called synthetic point of view)." My version took the ideas of the author of those sentiments and accommodated them, but changed the point of view to a more neutral stance. Certainly more could be done to improve the article, but as with everyone else, my time is limited.

Moreover, much of the writing in the original article is very hard to understand. I tried to preserve those editor's ideas while changing the words to be more clear. To the extent that more needs to be done, I invite others to help.

In addition, my edits have added axioms which a previous commenter indicated were missing. Finally, I hope my changes, will address the criticism of the page as made by User:IvorJ

Cjfsyntropy (talk) 17:07, 9 December 2007 (UTC)Reply

Definition of affine space in terms of its operations

It seems to me that in the sentence "Affine space can also be viewed as a vector space with the subtraction and scalar multiplication operations" we should replace "with" with "without". However, I'm new to the subject, so I would like someone more knowledgeable to concur. Thanks! --JohnFries (talk) 19:45, 13 March 2008 (UTC)Reply

It has to be "with" because without those operations you wouldn't have any structure, just a set of points. However I don't see how replacing addition by subtraction makes any difference. Using subtraction alone one can define addition as x + y = x − ((xx) − y). Using scalar multiplication it can be defined even faster as x + y = x − (-1)×y. What was the editor trying to say here? --Vaughan Pratt (talk) 17:11, 24 August 2008 (UTC)Reply

I replaced the above-mentioned incorrect basis with one that does the job. (In fact this is the canonical such, being the clone or closed nest of operations of any complete basis for the affine sublanguage of linear algebra.) --Vaughan Pratt (talk) 00:31, 13 October 2008 (UTC)Reply

Wasn't subtraction used because that's how we calculate vectors? The vector joining the point v to the point w is just w - v.  Δεκλαν Δαφισ   (talk)  22:15, 21 February 2009 (UTC)Reply

axioms

I just made a change to the wording of the section on axioms. I'm not an expert on axioms of affine geometry, but those given here could not possibly describe anything but an affine plane, and only over an ordered field like the reals; therefore I restricted the scope of the claim. I'm all for a better formulation than the one I gave, but not the old one. So I think one should mention other ways of setting up axioms that would encompass affine geometry of arbitrary dimension over arbitrary fields. The easiest solution is to assume at the outset a vector space (which hides their axioms, and those of the base field) and just enumerate the basic properties of forming vectors between two points, and of adding vectors to points. That is really easy, but maybe not very satisfactory from a purely geometric point of view. With some effort one can probably replace all vector axioms by properties mentioning only points, but this might give a lot of mess. Anyway there must be books that give an axiomatic approach to general affine geometry. Marc van Leeuwen (talk) 14:50, 20 February 2009 (UTC)Reply

This axiomatization actually appears to have been copied verbatim from Coxeter, Introduction to Geometry, p. 192. I'll add a reference to Coxeter. It does imply the reals, but only because the axioms of ordered geometry stuff like Dedekind's axiom. I think it would be extremely ugly to replace the present axiomatization with a development in terms of a vector space. First off, Coxeter's axiomatization doesn't require any preexisting field. In fact, these axioms allow an affine parameter to be constructed from scratch. IMO it would be ugly and counter to the geometrical spirit to derive the geometry from the field rather than the other way around. Coxeter's axiomatization is very elegant, and has a minimal number of primitive concepts (basically just betweenness). The other reason I think your proposal would be ugly is that it takes a less general object (a vector space) and then makes it more general by erasing the singling out of the origin as a special point. The essential logic behind Coxeter's axiomatization is to show that affine geometry like projective geometry, but with a particular line removed (the line at infinity).--76.167.77.165 (talk) 03:07, 29 August 2009 (UTC)Reply

etymology

I was going to add this etymology but it seems to contradict the article. Could someone who knows clarify and add it to the article? Cheers -Craig Pemberton 02:52, 3 February 2010 (UTC)Reply

According to the Oxford English Dictionary, second supplement, affine in this sense comes from preserving "finiteness" (respecting the points at infinity in projective space, therefore) and can be found in Veblen & Young, 1918. Charles Matthews (talk) 08:11, 3 February 2010 (UTC)Reply

Linear algebra

This article should not rely on linear algebra for its description. Today a new section on "Projective view" was added to indicate the context of affine geometry. The lede will have to be reworked to make the article accurately reflect the place of affine geometry in mathematics.Rgdboer (talk) 20:23, 18 October 2011 (UTC)Reply