Talk:Thrust vectoring

This is an old revision of this page, as edited by Liotier (talk | contribs) at 11:51, 27 March 2014 (Nozzles section: new section). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.


Latest comment: 10 years ago by Liotier in topic Nozzles section
WikiProject iconAviation: Aircraft Start‑class
WikiProject iconThis article is within the scope of the Aviation WikiProject. If you would like to participate, please visit the project page, where you can join the project and see lists of open tasks and task forces. To use this banner, please see the full instructions.
StartThis article has been rated as Start-class on Wikipedia's content assessment scale.
B checklist
Taskforce icon
This article is supported by the aircraft project.
WikiProject iconMilitary history: Aviation / Technology Start‑class
WikiProject iconThis article is within the scope of the Military history WikiProject. If you would like to participate, please visit the project page, where you can join the project and see a list of open tasks. To use this banner, please see the full instructions.
StartThis article has been rated as Start-class on the project's quality scale.
B checklist
Associated task forces:
Taskforce icon
Military aviation task force
Taskforce icon
Military science, technology, and theory task force

Cite error: There are <ref> tags on this page without content in them (see the help page).==Definition== I'm curious as to the definitions of 2D and 3D thrust vectoring as used in this article. The SU-30 page describes it as having 2D thrust vectoring, while this article says 3D thrust vectoring. I'm not quite sure what 3D thrust vectoring exactly means. As this article says, it shows two axes, pitch and yaw, which would be 2D. Similarly, it should read "1D" instead of "2D".

Aflazmn (talk) 04:30, 26 January 2008 (UTC)Reply

this is just confusion about how people think of it. If you have TV in only the pitch direction, then you can vector the thrust up or down, so that the potential areas where the exhaust goes describes a 2-D plane. Even though there's only one actual dimension the nozzle can move through. The thrust direction becomes a "vector" in that 2-d plane. 3D thrust vectoring is when the nozzle can move in both pitch and yaw, so that the exhaust can go anywhere in a 3D cone behind it. Someone was really confused about this and listed su30mki and su-35 as 2D thrust-vectored. They're 3D. I'm pretty sure the MiG29OVT is also. I'm fixing this for the sukhois right now.75.170.64.63 (talk) 20:12, 27 March 2010 (UTC)Reply
also, before someone gets an itch to reedit su-35 back, the su-35 STARTED with 2D vectoring nozzles each pointed slightly outwards on the yaw axis, with each one controlled independently and thrust differential, allowing a limited 3D vectoring effect when they were pointed in different directions with different thrust levels; but these engines have been replaced with full-orbital vectoring engines. The mig-29OVT has always had full 3D.75.170.64.63 (talk) 20:34, 27 March 2010 (UTC)Reply

If you go to wikipedia's website for "aircraft pricipal axes" http://en.wikipedia.org/wiki/Aircraft_principal_axes<ref[1]</ref>, it will give you a good idea of the difference between 2D and 3D thrust vectoring (TV). I think there is a mistake on this site, 2D TV from my understanding should refer to aircrafts that can move along two of the three axes (pitch, roll, yaw). For example, aircrafts that have two engines that can go up and down, if both engines point in the same direction, the aircraft will "rotate" along the pitch axis. If the engines move in opposite directions (one points up, the other points down), the aircraft will "roll" along the roll axis, hence the 2D naming. Twin engines that can also move "sideways" will enable the aircraft to rotate along the yaw axis. The problem I have is that the F-16 VISTA and Rockwell X-31 being single engined aircraft, no matter how their respective engines move, the aircraft will only rotate along 2 axis (if you only use the engines, i.e. without the help of ailerons, they will be able to move along the pitch and yaw axes, but cannot rotate along the roll axis), so in my humble opinion these two aircrafts should still be considered as 2D TV aircrafts (pitch and yaw axis) — Preceding unsigned comment added by Hschantang (talkcontribs) 01:02, 12 January 2012 (UTC)Reply

Here is a reference that lends additional support to my statement: http://www.aviationweek.com/aw/generic/story.jsp?channel=awst&id=news/awst/2012/03/19/AW_03_19_2012_p64-434177.xml&headline=Fighters,%20Missiles%20For%20Countering%20Stealth&next=0[1] Please refer to the 7th paragraph of the article.--Hschantang (talk) 00:01, 24 March 2012 (UTC)Reply


The Su-30mki does not feature 3D tvc. The nozzles are offset from the origin to improve maneuverability but are not capable of moving in three dimensions. Nem1yan (talk) 17:57, 21 June 2010 (UTC)Reply

I read the part about the SU-30, quoting "dynamic aerobatics in negative speeds up to 200 km/h". What is the meaning of 'negative speeds' up to 200 km/h?

KorgBoy (talk) —Preceding undated comment added 02:10, 21 March 2009 (UTC).Reply

Rockets

This article is almost entirely about air-breathing aircraft, for which thrust vectoring technology is just now becoming a reality. Rockets and missiles have used thrust vectoring as their primary means of control for decades. Shouldn't this article spend a little more time on them? MarcusMaximus (talk) 13:20, 4 October 2008 (UTC)Reply

J-11

I took away whoever put the J-11 under the 3-D category of thrust vectoring... There is no proof or any evidence or even speculation that the J-11 and J-11B will be thrust vectoring... I hope they will, but we must not make absurb claims. —Preceding unsigned comment added by 122.57.50.156 (talk) 04:27, 7 December 2008 (UTC)Reply

Eurofighter

Doesn't i have thrust vectoring after 2010, too??? —Preceding unsigned comment added by 92.229.234.19 (talk) 16:45, 20 October 2009 (UTC)Reply


They're testing it.

Victory in Germany (talk) 21:22, 12 July 2010 (UTC)Reply

Nozzles section

The "Nozzles" section is messy, unsourced, devoid of any link (wiki or otherwise) and unharmonious in this page - that level of detail would have a better home in the Vectoring nozzles page. What do you think ? --Jean-Marc Liotier (talk) 11:51, 27 March 2014 (UTC)Reply