This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
Karen Chan is an associate professor at the Technical University of Denmark.[2] She is a Canadian and French physicist most notable for her work on catalysis, electrocatalysis, and electrochemical reduction of carbon dioxide.
Karen Chan | |
---|---|
Born | |
Citizenship | France, Canada |
Alma mater | Simon Fraser University |
Awards | Villum Young Investigator, 2020[1] |
Scientific career | |
Institutions | Technical University of Denmark SLAC National Accelerator Laboratory |
Doctoral advisor | Michael Eikerling |
Education
Chan earned her B.Sc. in Chemical Physics in 2007 and her PhD in Chemistry in 2013 from Simon Fraser University under Michael Eikerling.[citation needed]
Academic career
Chan is known for her theoretical and computational work on the description of solid-liquid interfaces, electrocatalysis, batteries, and heterogeneous catalysis. Her work on computer simulations of the electrical double-layer and electrocatalysis has led to new ideas and understanding of, for instance, electrochemical carbon dioxide reduction,[3][4][5][6][7] and water electrolysis.[8][9]
Following the completion of her PhD, she served as a postdoctoral researcher at Stanford University and in 2016 was promoted to staff scientist at SLAC National Accelerator Laboratory. In October 2018, she began serving as an associate professor at the Technical University of Denmark.[10]
References
- ^ https://www.dtu.dk/english/news/2020/02/villum-young-investigator?id=dab17953-a53a-49c7-81e4-09357dd3c9a6
- ^ "DTU Department of Physics: Karen Chan".
- ^ "Taming cation effects".
- ^ "Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction".
- ^ "Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials".
- ^ "Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface".
- ^ "Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on Gold".
- ^ "Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends".
- ^ "Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide".
- ^ "Karen Chan joins Catalysis Theory Center".
External links
- Karen Chan publications indexed by Google Scholar
This article needs additional or more specific categories. (August 2020) |