Karen Chan

This is an old revision of this page, as edited by Elinruby (talk | contribs) at 01:45, 10 October 2020 (Added to categories). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Karen Chan is an associate professor at the Technical University of Denmark.[2] She is a Canadian and French physicist most notable for her work on catalysis, electrocatalysis, and electrochemical reduction of carbon dioxide.

Karen Chan
Born (1984-10-09) October 9, 1984 (age 40)
CitizenshipFrance, Canada
Alma materSimon Fraser University
AwardsVillum Young Investigator, 2020[1]
Scientific career
InstitutionsTechnical University of Denmark
SLAC National Accelerator Laboratory
Doctoral advisorMichael Eikerling

Education

Chan earned her B.Sc. in Chemical Physics in 2007 and her PhD in Chemistry in 2013 from Simon Fraser University under Michael Eikerling.[citation needed]

Academic career

Chan is known for her theoretical and computational work on the description of solid-liquid interfaces, electrocatalysis, batteries, and heterogeneous catalysis. Her work on computer simulations of the electrical double-layer and electrocatalysis has led to new ideas and understanding of, for instance, electrochemical carbon dioxide reduction,[3][4][5][6][7] and water electrolysis.[8][9]

Following the completion of her PhD, she served as a postdoctoral researcher at Stanford University and in 2016 was promoted to staff scientist at SLAC National Accelerator Laboratory. In October 2018, she began serving as an associate professor at the Technical University of Denmark.[10]

References

  1. ^ https://www.dtu.dk/english/news/2020/02/villum-young-investigator?id=dab17953-a53a-49c7-81e4-09357dd3c9a6
  2. ^ "DTU Department of Physics: Karen Chan".
  3. ^ "Taming cation effects".
  4. ^ "Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction".
  5. ^ "Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials".
  6. ^ "Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface".
  7. ^ "Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on Gold".
  8. ^ "Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends".
  9. ^ "Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide".
  10. ^ "Karen Chan joins Catalysis Theory Center".