2024 in reptile paleontology

This list of fossil reptiles described in 2024 is a list of new taxa of fossil reptiles that were described during the year 2024, as well as other significant discoveries and events related to reptile paleontology that occurred in 2024.

List of years in reptile paleontology
In archosaur paleontology
2021
2022
2023
2024
2025
2026
2027
In paleontology
2021
2022
2023
2024
2025
2026
2027
+...

Squamates

edit
Name Novelty Status Authors Age Type locality Country Notes Images

Cryptobicuspidon[1]

Gen. et sp. nov

In press

Carvalho & Santucci

Early Cretaceous (Aptian)

Quiricó Formation

  Brazil

A member of Polyglyphanodontia. The type species is C. pachysymphysealis. Announced in 2023; the final article version will be published in 2024.

Electroscincus[2]

Gen. et sp. nov

Valid

Daza et al.

Cretaceous (Albian/Cenomanian)

Burmese amber

  Myanmar

A skink. The type species is E. zedi.

Halisaurus hebae[3]

Sp. nov

In press

Shaker et al.

Late Cretaceous (Maastrichtian)

Dakhla Formation

  Egypt

A mosasaur belonging to the subfamily Halisaurinae. Announced in 2023; the final article version will be published in 2024.

Hibernophis[4]

Gen. et sp. nov

Croghan et al.

Oligocene (Rupelian)

White River Formation

  United States
(  Wyoming)

A member of Booidea of uncertain affinities. The type species is H. breithaupti.

Khinjaria[5] Gen. et sp. nov In press Longrich et al. Late Cretaceous (Maastrichtian) Ouled Abdoun Basin   Morocco A mosasaur belonging to the subfamily Plioplatecarpinae. The type species is K. acuta.
Segurasaurus[6] Gen. et comb. nov Berrocal-Casero et al. Late Cretaceous (Cenomanian) Tentúgal Formation   Portugal A member of Pythonomorpha. The type species is "Carentonosaurus" soaresi.
Terastiodontosaurus[7] Gen. et sp. nov Valid Georgalis & Smith in Georgalis et al. Eocene (Ypresian-Lutetian)   Tunisia An amphisbaenian in the family Trogonophidae. The type species is T. marcelosanchezi.
Vasuki[8] Gen. et sp. nov Valid Datta & Bajpai Middle Eocene (Lutetian) Naredi Formation   India A member of Madtsoiidae. The type species is V. indicus.  

Yaguarasaurus regiomontanus[9]

Sp. nov

Valid

Rivera-Sylva et al.

Late Cretaceous (Turonian-Coniacian)

Agua Nueva Formation

  Mexico

A mosasaur belonging to the subfamily Plioplatecarpinae. Announced in 2023; the final article version was published in 2024.

 

Squamate research

edit
  • A study on the biogeography of squamates throughout their evolutionary history, providing evidence of a localized Pangaean origin (Africa, Australia, Eurasia and Sunda) of the squamate crown group in the Jurassic followed by strong regionalization to Eurasia for subsequent Jurassic lineages, is published by Wilenzik, Barger & Pyron (2024).[10]
  • New lizard assemblage, including fossil material of a pleurodontan iguanian, a teiioid and a possible scincoid, is described from the Upper Cretaceous (Campanian-Maastrichtian) Allen Formation (Argentina) by Garberoglio et al. (2024).[11]
  • Revision of the fossil material of Paleocene lizards from the Walbeck fissure filling (Saxony-Anhalt, Germany) is published by Čerňanský & Vasilyan (2024), who interpret Camptognathosaurus parisiensis as a junior synonym of Glyptosaurus walbeckensis, resulting in a new combination Camptognathosaurus walbeckensis, tentatively assign C. walbeckensis to the family Lacertidae, and interpret fossils of Parasauromalus paleocenicus as belonging to an indeterminate lacertid.[12]
  • Čerňanský (2024) describes probable fossil material of the European green lizard from the Węże I locality in Poland, providing evidence of large geographic distribution of green lizards in Europe during the Pliocene.[13]
  • An iguanian skull from the Paleogene White River Formation (Wyoming, United States), tentatively assigned to the species Aciprion formosum, is interpreted as the oldest and first definitive stem member of Crotaphytidae by Scarpetta (2024); the author also interprets Polrussia mongoliensis as possible member of the crown group of Pleurodonta, Magnuviator ovimonsensis as a possible stem pleurodontan and Afairiguana avius as a possible anole.[14]
  • De Queiroz et al. (2024) describe a probable juvenile anole specimen from the Dominican amber, and identify it as a trunk anole likely related to extant Anolis distichus.[15]
  • A study on frontals and maxillae of extant agamids from Australia and Papua New Guinea, and on the utility of these bones for identification of agamid taxa in the fossil record, is published by Ramm et al. (2024), who report that the studied bones diagnostic at the generic level and might provide information on the ecology of fossil agamids, but also that the studies relying on these elements would likely underestimate agamid species diversity.[16]
  • Čerňanský et al. (2024) describe glyptosaurid, palaeovaranid and varanid fossils from the earliest Eocene strata from the Dormaal site (Belgium) and transfer ?Placosaurus ragei to the glyptosaurid genus Gaultia, representing the first record of this genus outside North America.[17]
  • Revision of the fossil material and a study on the affinities of Pseudopus pannonicus is published by Loréal, Georgalis & Čerňanský (2024), who interpret the majority of large anguids from the Neogene of Europe as junior synonyms of P. pannonicus.[18]
  • Donato et al. (2024) identify skull remains of a Middle Pleistocene monitor lizard from Naracoorte's Fossil Chamber (Victoria Fossil Cave, Australia) as fossil material of the lace monitor.[19]
  • Garzon et al. (2024) describe an incomplete maxilla from the Turonian to Coniacian Middle Napo Formation of the Napo Group, representing the first finding of a mosasaurid from the Upper Cretaceous strata from Ecuador.[20]
  • Allemand et al. (2024) present reconstructions of brain endocasts of three specimens of Tethysaurus nopcsai, providing evidence of different endocranial organizations in Tethysaurus, Platecarpus and Clidastes, and find no evidence of closer endocranial resemblance of Tethysaurus to monitor lizards than other toxicoferans.[21]
  • Páramo-Fonseca et al. (2024) describe well-preserved chondrocranial elements of a mosasaur specimen from the Coniacian Galembo Formation (Colombia), indicating that chondrocranium of mosasaurs was more reduced than in most lizards, but not as severely as in snakes and amphisbaenians, and that its reduction might have been related to the modification of limbs by adaptation to aquatic life.[22]
  • The oldest fossil material of Platecarpus from Europe reported to date, as well as fossil material of Tylosaurus sp, is described from the Santonian localities in the Sougraigne area (Aude Department, France) by Plasse et al. (2024).[23]
  • Grigoriev, Zverkov & Nikiforov (2024) describe mosasaur remains from the Campanian strata from the Izhberda locality, including the first records of members of the subfamilies Tylosaurinae (including Taniwhasaurus, expanding known geographical range of the genus), Mosasaurinae and Plioplatecarpinae from the Upper Cretaceous strata from the Orenburg Oblast (Russia).[24]
  • Rempert, Martens & Vinkeles Melchers (2024) describe new fossil material of mosasaurs from the Upper Cretaceous strata in Mississippi (United States), providing evidence of the presence of Mosasaurus hoffmannii during the Maastrichtian and of cf. Platecarpus, an unnamed species of Plioplatecarpus from the Demopolis Chalk and probably of Tylosaurus sp. during the Campanian.[25]
  • A study on a skull of a specimen of Plioplatecarpus from the Campanian Bearpaw Shale (Alberta, Canada) preserved with a sclerotic ring is published by Holmes (2024), who interprets Plioplatecarpus as having a stereoscopic vision and capable of tracking quickly moving objects in light-poor conditions.[26]
  • López-Rueda et al. (2024) describe new mosasaur material from the Upper Cretaceous Labor-Tierna and Plaeners formations (Colombia), including the first record of a member of the genus Globidens from northern South America reported to date.[27]
  • Rempert, Martens & Vinkeles Melchers (2024) report the discovery of new mosasaur material from the Maastrichtian Peedee Formation (North Carolina, United States), including fossils of members of species associated with the northern and southern margin of the Mediterranean Tethys (Prognathodon cf. solvayi and Mosasaurus cf. beaugei), extending their known geographical range.[28]
  • Aniny et al. (2024) describe a trunk vertebra of Palaeophis cf. africanus from the Eocene deposits of the El Breij Depression (Western Sahara), expanding known geographical range of the species.[29]
  • Natarajan et al. (2024) describe new fossil material of Pterosphenus schucherti from the Eocene (Bartonian) Harudi Formation (India), and interpret the species P. biswasi and P. schweinfurthi as junior synonyms of P. schucherti.[30]
  • Garberoglio, Gómez & Caldwell (2024) describe fossil material of a large-bodied (estimated to be around 8 meters in total length) snake distinct from Titanoboa from the Paleocene Cerrejón Formation (Colombia) interpreted by the authors as an undetermined palaeophiine.[31]
  • Flores et al. (2024) describe remains of a snake belonging to the genus Lampropeltis from the probable Pleistocene strata from the McFaddin Beach (Texas, United States), providing the first evidence of presence of members of this genus on the Texan coast in the Pleistocene.[32]
  • Villa et al. (2024) describe vertebrae of indeterminate cobras from middle–late Miocene localities in the Vallès-Penedès Basin (Catalonia, Spain), providing evidence of presence of cobras in the Iberian Peninsula before the Messinian salinity crisis.[33]
  • The first known snake assemblage from early Clarendonian in North America is reported from the Penny Creek Local Fauna (Ash Hollow Formation; Nebraska, United States) by Jacisin & Lawing (2024), who interpret the studied fossils as indicative of a woodland-prairie environment with a permanent stream or river as a local water source.[34]
  • ElShafie (2024) presents novel methods which can be used to determine body size from isolated lizard bones and applies these methods to a sample of lizard bones from the Paleogene of North America.[35]
  • Ledesma et al. (2024) revise fossil material of late Pleistocene and Holocene lizards from Hall's Cave (Texas, United States), adding five new taxa to the known diversity of the cave fauna, and establish a procedure for making well-supported identifications for North American lizard fossils.[36]

Ichthyosauromorphs

edit
Name Novelty Status Authors Age Type locality Country Notes Images
Argovisaurus[37] Gen. et sp. nov Miedema et al. Middle Jurassic (Bajocian-Bathonian) Hauptrogenstein Formation    Switzerland An ichthyosaur closely related to Ophthalmosauria. The type species is A. martafernandezi.  

Ichthyotitan[38]

Gen. et sp. nov

Valid

Lomax et al.

Late Triassic (Rhaetian)

Westbury Formation

  United Kingdom

Possibly a member of the family Shastasauridae. The type species is I. severnensis.

 

Mixosaurus luxiensis[39]

Sp. nov

Valid

Fang, Wolniewicz & Liu

Middle Triassic (Anisian)

Guanling Formation

  China

Platypterygius elsuntuoso[40] Sp. nov Fonseca, Cabra, & Camacho Early Cretaceous (Barremian) Paja Formation   Colombia

Ichthyosauromorph research

edit
  • Liu, Wu & Qiao (2024) describe a new hupehsuchian specimen from the Lower Triassic strata in South China, identified as a new morphotype of Nanchangosaurus and preserving the first known fossil material of palate, zeugopodium and autopodium of Nanchangosaurus.[41]
  • Evidence from experiments with soft robotic models, indicative of a direct correlation between fin shape and the pitch torque generated while swimming in ichthyosauriforms, is presented by Sprumont et al. (2024).[42]
  • Ye et al. (2024) reevaluate the age of Thaisaurus chonglakmanii, interpreting it as a late Spathian taxon.[43]
  • Gu, Wolniewicz & Liu (2024) describe a new specimen of Chaohusaurus zhangjiawanensis, providing new information on the dentition of this species, interpreted as indicating that C. zhangjiawanensis was likely capable of feeding on harder and larger prey than C. brevifemoralis and C. chaoxianensis.[44]
  • A study on bone arrangement in ichthyosaur fins throughout their evolutionary history, providing evidence of the presence of a broad array of connectivity patterns, is published by Fernández et al. (2024).[45]
  • Sander et al. (2024) describe vertebrae of a member of the genus Cymbospondylus from the Olenekian Vikinghøgda Formation (Svalbard, Norway), interpreted as likely belonging to an animal with a total length between 7.5 m and 9.5 m.[46]
  • Fossil material of medium- to large-sized probable ichthyopterygians is described from the Anisian strata in South Primorye (Russia) by Zakharov et al. (2024).[47]
  • Redescription of the anatomy of the postcranial skeleton of Besanosaurus leptorhynchus is published by Bindellini et al. (2024), who interpret this taxon as having body profile and swimming style intermediate between anguilliform swimmers such as Cymbospondylus and shastasaur-grade ichthyosaurs.[48]
  • Putative bone fragments of large-bodied dinosaurs from Rhaetian strata in France, Germany and United Kingdom are reinterpreted as fossil material of large-bodied ichthyosaurs by Perillo & Sander (2024).[49]
  • Eustache et al. (2024) report evidence of preservation of cellular activity, bone fibrils, Sharpey fibers and cartilage fibers in ichthyosaur specimens from the Jurassic strata in France and the United Kingdom, but find no evidence of collagen preservation in the studied specimens.[50]
  • Description of Early Jurassic ichthyosaur specimens from the collection of fossils amassed by Charles Moore is published by Massare et al. (2024).[51]
  • Description of the skeletal anatomy (including the first record of an open medullary cavity on the ribs of an Early Jurassic ichthyosaur) and soft tissues of an immature ichthyosaur specimen (possibly a member of the genus Stenopterygius) from the Toarcian strata of the "Schistes Carton" unit (Luxembourg) is published by Bonnevier Wallstedt et al. (2024), who also study the taphonomy of the specimen.[52]
  • Campos et al. (2024) redescribe the holotype of Myobradypterygius hauthali, interpreting this species as phylogenetically distant from species belonging to the genus Platypterygius, and consider Myobradypterygius to be a distinct genus.[53]
  • Pardo-Pérez et al. (2024) describe new fossil material of Myobradypterygius hauthali from the Hauterivian strata in the Torres del Paine National Park (Chile), expanding known distribution of the species and providing evidence of anatomical differences between M. hauthali and Platypterygius platydactylus supporting the classification of Myobradypterygius as a distinct genus; the authors also describe fossil material of a member of the subfamily Ophthalmosaurinae from the same locality, representing the southernmost record of the subfamily reported to date.[54]
  • Yakupova & Akhmedenov (2024) describe fossil material of a member of the genus Platypterygius from the Albian strata from the Mangystau region (Kazakhstan).[55]
  • Young et al. (2024) describe fossil material of a platypterygiid (probably more closely related to Platypterygius australis than to the Cretaceous ichthyosaurs from western Gondwana) from the Cenomanian strata of the Swale Member of the Split Rock Formation (New Zealand).[56]
  • Review of the fossil record of ichthyosaurs from Switzerland is published by Klug et al. (2024).[57]

Sauropterygians

edit
Name Novelty Status Authors Age Type locality Country Notes Images

Dianmeisaurus mutaensis[58]

Sp. nov

Hu, Li, & Liu

Middle Triassic (Anisian)

Guanling Formation

  China

A pachypleurosaur.

 

Franconiasaurus[59]

Gen. et sp. nov

Valid

Sachs, Eggmaier & Madzia

Early Jurassic (Toarcian)

Jurensismergel Formation

  Germany

A basal plesiosauroid. The type species is F. brevispinus.

 

Marambionectes[60] Gen. et sp. nov O'Gorman et al. Late Cretaceous (Maastrichtian) Lopez de Bertodano Formation Antarctica An elasmosaurid. The type species is M. molinai.  

Martinectes[61]

Gen. et comb. nov

In press

Clark, O'Keefe, & Slack

Late Cretaceous (Campanian)

Pierre Shale

  United States
(  Wyoming,
  South Dakota)

A polycotylid. The type species is "Dolichorhynchops" bonneri. Announced in 2023; the final article version will be published in 2024.

 

Scalamagnus[61]

Gen. et comb. nov

In press

Clark, O'Keefe, & Slack

Late Cretaceous (Turonian)

Tropic Shale

  United States
(  Utah)

A polycotylid. The type species is "Dolichorhynchops" tropicensis. Announced in 2023; the final article version will be published in 2024.

 

Unktaheela[61]

Gen. et sp. nov

In press

Clark, O'Keefe, & Slack

Late Cretaceous (Campanian)

Sharon Springs Formation

  United States
(  Wyoming,
  South Dakota)

A polycotylid. The type species is U. specta. Announced in 2023; the final article version will be published in 2024.

 

Sauropterygian research

edit
  • A study on tooth wear patterns in Middle and Late Triassic placodonts from Europe, interpreted as suggestive of different diet composition of the studied placodonts (with some taxa unlikely to feed solely on hard-shelled animals), is published by Gere et al. (2024).[62]
  • Kear et al. (2024) describe a nothosaur vertebra from the Anisian Balmacaan Formation (New Zealand), representing the oldest sauropterygian record from the Southern Hemisphere reported to date.[63]
  • The first simosaurid fossil material from Egypt reported to date is described from the Middle Triassic Saharonim Formation by Cabezuelo-Hernández, De Miguel Chaves & Pérez-García (2024).[64]
  • Description of the anatomy of the postcranial skeleton of Paludidraco multidentatus is published by Cabezuelo-Hernández et al. (2024).[65]
  • New fossil material of plesiosaurs, including the first reliably identified early Pliensbachian pliosaurid reported to date, is described from Pliensbachian strata from Werther and Bielefeld-Sudbrack localities (North Rhine-Westphalia, Germany) by Sachs, Hornung & Madzia (2024).[66]
  • A study on the tooth replacement in Maresaurus coccai, and on its implications for reconstructions of changes of the tooth replacement cycle period of plesiosaurs throughout their evolutionary history, is published by Matelo Mirco, O'Gorman & Gasparini (2024).[67]
  • Vincent et al. (2024) describe a new specimen of Liopleurodon ferox from the Middle Jurassic (Callovian) from the Grève Quarry (Vienne, France), and interpret its anatomy as confirming that the lack of fusion between centra and neural arches of the cervical vertebrae is not a trait exclusive to juvenile pliosaurids, and might also be a paedomorphic feature of adult specimens.[68]
  • Delsett et al. (2024) describe fossil material of a member of the genus Colymbosaurus from the Lower Cretaceous (Berriasian-Valanginian) strata of the Sverdrup Basin (Ellesmere Island, Nunavut, Canada), expanding known geographical range of this genus and providing evidence that members of this genus survived the Jurassic-Cretaceous transition.[69]
  • Alhalabi et al. (2024) describe fossil material of an elasmosaurid from the Coniacian-Santonian Rmah Formation (Syria), representing the most complete plesiosaur specimen from the Middle East reported to date and likely the oldest Cretaceous plesiosaur from the Middle East.[70]
  • A study on the histology of the vertebrae of Vegasaurus molyi from different sections of the vertebral column is published by Talevi, Garat & Fernández (2024).[71]
  • O'Gorman (2024) studies the neck elongation pattern in Elasmosaurus platyurus, taking the taphonomic distortion into account, and presents a new scheme of neck elongation patterns in plesiosaurs with a long neck and small skull.[72]
  • Zverkov et al. (2024) redescribe Polycotylus sopozkoi and confirm its status as a distinct species within the genus Polycotylus.[73]
  • Henderson (2024) provides estimates of the original masses and shape characteristics of incompletely preserved gastroliths found with Cretaceous plesiosaur specimens from Alberta (Canada), and interprets the estimated amounts of gastroliths as unlikely to work effectively as ballast.[74]
  • A study on swimming patterns of plesiosaurs, based on experiments with a robotic model, is published by Fukuhara et al. (2024).[75]

Turtles

edit
Name Novelty Status Authors Age Type locality Country Notes Images

Baalemys[76]

Gen. et sp. nov

Sarda & Maniel

Late Cretaceous

Portezuelo Formation

  Argentina

A member of the family Chelidae. The type species is B. mansillai.

Chelydropsis heweneggensis[77]

Sp. nov

Pappa et al.

Miocene

  Germany

Chersina langebaanwegi[78]

Sp. nov

Delfino et al.

Pliocene

Langebaanweg fossil site

  South Africa

A tortoise, a species of Chersina.

Iaremys[79]

Gen. et sp. nov

Agnolín, Aranciaga-Rolando & Ortiz

Late Cretaceous (Maastrichtian)

Allen Formation

  Argentina

A member of the family Chelidae. The type species is I. batrachomorpha.

Lusochelys[80]

Gen. et. sp. nov

Valid

Pérez-García & Antunes

Middle Miocene

Lisbon Miocene series

  Portugal

A pancheloniid turtle. The type species is L. emilianoi

Peltocephalus maturin[81]

Sp. nov

Valid

Ferreira et al.

Late Pleistocene-Early Holocene

Rio Madeira Formation

  Brazil

A podocnemidid turtle. A giant extinct species of Peltocephalus, represented today only by P. dumerilianus.

 

Protrachyaspis[82]

Gen. et sp. nov

Valid

Zvonok, Panteleev & Danilov

Eocene (Bartonian)

Shorym Formation

  Kazakhstan

A pan-cheloniid. The type species is P. shorymensis.

Xianyuechelys[83]

Gen. et sp. nov

Valid

Ke et al.

Late Cretaceous (Maastrichtian)

Lianhe Formation

  China

A member of the family Nanhsiungchelyidae. The type species is X. yingliangi.

Turtle research

edit
  • Pereira et al. (2024) provide evidence of two peaks in extinction rates in the evolutionary history of turtles, with the first peak coinciding with the Cretaceous-Paleogene transition, and the second one (possibly caused by hominin activities) beginning in and continuing since the Pliocene.[84]
  • Vlachos (2024) reports that the diversity of turtles was already in decline before the Cretaceous–Paleogene extinction event, and continued to drop during the Danian.[85]
  • A study on the osteological variation among the humeri of extant turtles, Proganochelys quenstedtii, Proterochersis porebensis and Palaeochersis talampayensis is published by Hermanson et al. (2024).[86]
  • A study on shells of Proganochelys and Proterochersis is published by Ferreira et al. (2024), who interpret their findings as indicating that the main function of the attachment of turtle pelvis to the shell was not strengthening of the shell, and interpret Proterochersis as likely aquatic.[87]
  • Redescription of the anatomy of the skull of Heckerochelys romani is published by Obraztsova, Sukhanov & Danilov (2024).[88]
  • A study on the biomechanical performance of the skull Niolamia argentina of is published by Degrange et al. (2024), who interpret the frill and horns of N. argentina as more likely used for display than for combat.[89]
  • Sterli et al. (2024) describe fossil material of a new turtle taxon from the Cenomanian Piedra Clavada Formation (Argentina), with a distinctive morphology indicating that it belongs to a previously unrecognized lineage of turtles, and representing the oldest Late Cretaceous turtle from the southernmost part of South America reported to date.[90]
  • Tong et al. (2024) describe new shell material of Phunoichelys thirakhupti and Kalasinemys prasarttongosothi from the Phu Noi site (Thailand), providing new information on the anatomy of the studied turtles.[91]
  • Pérez-García & Rubio (2024) describe a carapace of Algorachelus cf. peregrina from the Albian or Cenomanian Boundary Marls Unit of the Utrillas Group (Spain), representing the oldest bothremydid from Laurasia reported to date.[92]
  • Cadena et al. (2024) describe new fossil material of Puentemys mushaisaensis from the Paleogene Arcillolitas de Socha Formation (Boyacá Department, Colombia), expanding known geographical range of the species, and interpret its presence in both Arcillolitas de Socha Formation and the Cerrejón Coal Mine as indicative of connectivity of coastal and inland ecosystems in northern South America during the late Paleocene to early Eocene.[93]
  • Sena et al. (2024) study the microstructure of shells of Bauruemys elegans and other members of Pelomedusoides from the Upper Cretaceous and Paleogene strata in southern Brazil, and interpret their findings as consistent with an aquatic to semi-aquatic lifestyle of the studied turtles, as well as supporting the interpretation of the turtle carapace as originating endoskeletally from ribs and vertebral arches.[94]
  • Maniel (2024) describes fossil material of members of Podocnemidoidea from the Santonian Bajo de la Carpa Formation (Argentina), preserving a scute scheme different from those of other turtles from the studied formation, and revises the diversity of Pelomedusoides from the Upper Cretaceous Neuquén Group, finding evidence for three different stages of their evolution (the appearance of Bothremydidae in the Cenomanian, their coexistence with Podocnemidoidea from the late Turonian to the Coniacian, and the continued existence and diversification of Podocnemidoidea from the Santonian to the late Campanian).[95]
  • New information on the shell anatomy of Neochelys zamorensis is presented by Pérez-García et al. (2024).[96]
  • Pérez-García, Camilo & Ortega (2024) describe new fossil material of Selenemys lusitanica from the Upper Jurassic Bombarral and Sobral formations (Portugal), providing new information on the shell anatomy of this turtle.[97]
  • Spicher, Lyson & Evers (2024) redescribe the anatomy of the skull of Saxochelys gilberti.[98]
  • Tong et al. (2024) describe carapaces of members of the genus Nanhsiungchelys from the Upper Cretaceous of Ganzhou Basin (Jiangxi, China), extending known geographical distribution of the genus and providing new information on the morphology of its carapace.[99]
  • Ke et al. (2024) describe fossil material of a member of the genus Nanhsiungchelys from the Upper Cretaceous of Ganzhou Basin (China) and reevaluate the holotype of N. yangi, providing evidence that the plastron of members of the genus Nanhsiungchelys was partially hollow.[100]
  • Redescription of the anatomy of the skull of Allaeochelys libyca is published by Rollot, Evers & Joyce (2024).[101]
  • Description of an isolated cranium of Axestemys infernalis, representing the first trionychid skull material from the Maastrichtian Lance Formation (Wyoming, United States), and a study on the phylogenetic affinities of A. infernalis is published by Ponstein et al. (2024).[102]
  • Girard et al. (2024) describe new fossil material of Hutchemys rememdium from the Sentinel Butte and Bullion Creek formations of the Fort Union Group (North Dakota, United States), including the first known skull material of a member of the genus Hutchemys.[103]
  • Redescription of the holotype and a study on the affinities of Nichollsemys baieri is published by Menon et al. (2024).[104]
  • The first fossil marine turtle found with gastroliths preserved in its body cavity (a protostegid possibly belonging to the species Protosphargis veronensis) is described from the Turonian strata of Scaglia Rossa (Italy) by Serafini et al. (2024).[105]
  • Bona et al. (2024) describe dermochelyid fossils from the Leticia Formation (Tierra del Fuego, Argentina), representing the first Eocene record of marine reptiles from the southern Atlantic coast of South America, and interpret this finding as indicating that Eocene dermochelyids, like extant leatherback sea turtle, were able to live in waters with a wide temperature gradient.[106]
  • Ascarrunz & Joyce (2024) describe a plastron fragment of a turtle with affinities with "ptychogasterid" geoemydids from the Eocene Messel Formation (Germany), distinct from other turtle species described from this formation.[107]
  • Evers & Al Iawati (2024) describe the anatomy of the skull of Stylemys nebrascensis, and interpret this species as a possible stem-representative of the gopher tortoise lineage.[108]
  • Torres et al. (2024) interpret tortoise fossil material from the Late Pleistocene strata in Ecuador as belonging to the sister taxon of the Galápagos tortoises, and interpret the studied fossils as indicating that the ancestors of the Galápagos tortoises evolved large body size before reaching the Galápagos Islands from the South American continent.[109]
  • A study on the evolutionary history of turtles from insular Southeast Asia is published by Claude et al. (2024), who confirm that Duboisemys isoclina was an endemic extinct taxon.[110]

Archosauriformes

edit

Archosaurs

edit

Other archosauriforms

edit
Name Novelty Status Authors Age Type locality Country Notes Images

Marcianosuchus[111]

Gen. et sp. nov

Sues, Spiekman & Schoch

Middle Triassic (Anisian)

Röt Formation

  Germany

A non-archosaurian archosauriform. The type species is M. angustifrons.

Archosauriform research

edit
  • Sharma et al. (2024) describe new proterosuchid material from the Lower Triassic (Induan) Panchet Formation (India), consider fossil material of "Teratosaurus" bengalensis to likely belong to a proterosuchid, and find no evidence for the presence of more than one archosauromorph taxon in the upper Panchet Formation.[112]
  • A study on jaw mechanics of Proterochampsa nodosa de Simão-Oliveira et al. (2024), who report that Proterochampsa was able to perform bite forces comparable to those of alligators, but also that its jaws were more susceptible to bending than jaws of alligators, as well as more prone to accumulate stresses resulting from muscle contraction than both alligators and false gharials.[113]
  • LePore & McLain (2024) identify a specimen of Machaeroprosopus mccauleyi from the Chinle Formation with a sacrum including a sacralized first caudal vertebra, expanding known sacral count variation in phytosaurs.[114]
  • The smallest phytosaur femora reported to date are described from the lower Chinle Formation at Petrified Forest National Park (Arizona, United States) by Goldsmith et al. (2024), who interpret one of the studied femora as belonging to a post-hatching individual that may have died within the first year of its life, with slower growth rate than inferred for larger phytosaur specimens, and interpret their findings as suggesting that phytosaurs might have had size-dependent growth through ontogeny, with faster growth rates at later ontogenetic stages.[115]
  • Sander & Wellnitz (2024) describe a phytosaur osteoderm from the Upper Triassic strata in the Bonenburg clay pit (Contorta Beds of the Exter Formation; North Rhine-Westphalia, Germany) representing the youngest well-dated phytosaur fossil reported to date, and indicating that phytosaurs survived into the late middle Rhaetian, at most two million years before the end of the Triassic.[116]

Other reptiles

edit
Name Novelty Status Authors Age Type locality Country Notes Images

Alamitosphenos[117]

Gen. et sp. nov

Valid

Agnolín et al.

Late Cretaceous (Maastrichtian)

Los Alamitos Formation

  Argentina

A sphenodontid rhynchocephalian. The type species is A. mineri. Announced in 2023; the final article version was published in 2024.

Cornualbus[118]

Gen. et sp. nov

Valid

Silva-Neves et al.

Late Triassic (Carnian)

Santa Maria Supersequence

  Brazil

A member of the family Procolophonidae belonging to the subfamily Leptopleuroninae. The type species is C. primus.

Idiosaura[119]

Gen. et sp. nov

Kligman, Sues & Melstrom

Late Triassic (Carnian)

Vinita Formation

  United States
(  Virginia)

A small-bodied reptile of uncertain affinities. The type species is I. virginiensis.

Indosauriscus[120]

Gen. et sp. nov

Valid

Reisz, Chatterjee & Modesto

Late Permian

Kundarum Formation

  India

A member of the family Captorhinidae belonging to the subfamily Moradisaurinae. The type species is I. kuttyi.

Klastomycter[121]

Gen. et sp. nov

Valid

Reisz, Rowe & Bevitt

Permian (Sakmarian)

  United States
(  Oklahoma)

A member of the family Acleistorhinidae. The type species is K. conodentatus.

Microzemiotes[122]

Gen. et sp. nov

Valid

Burch et al.

Late Triassic (Norian)

Chinle Formation

  United States
(  Arizona)

A diapsid reptile of uncertain affinities. The type species is M. sonselaensis.

 

Notosphenos[123] Gen. et sp. nov Agnolín et al. Late Cretaceous (Maastrichtian) Chorrillo Formation   Argentina A sphenodontid rhynchocephalian. The type species is N. finisterre.

Palacrodon parkeri[124]

Sp. nov

Jenkins et al.

Late Triassic

Chinle Formation

  United States
(  Arizona)

Parvosaurus[125] Gen. et sp. nov Freisem et al. Late Triassic (Norian) Arnstadt Formation   Germany A rhynchocephalian. The type species is P. harudensis.  

Sumidadectes[126]

Gen. et comb. nov

Valid

Jung & Sues

Permian (Kungurian)

Clear Fork Group & Hennessey Formation

  United States
(  Oklahoma)

A member of the family Captorhinidae belonging to the subfamily Moradisaurinae. The type species is "Captorhinikos" chozaensis Olson (1954).

 
Threordatoth[127] Gen. et sp. nov Valid Meade et al. Late Triassic (Carnian–Norian) Cromhall Quarry   United Kingdom A leptopleuronine procolophonid. The type species is T. chasmatos.

Unguinychus[128]

Gen. et sp. nov

Pugh et al.

Late Triassic (Norian)

Garita Creek Formation

  United States
(  New Mexico)

A member of Drepanosauromorpha. The type species is U. onyx.

Other reptile research

edit
  • Redescription and a study on the affinities of Brouffia orientalis is published by Klembara et al. (2024).[129]
  • A study on the microanatomy and replacement of teeth in mesosaurs is published by Carlisbino et al. (2024).[130]
  • A study on the bone microstructure of Mesosaurus tenuidens, providing evidence of distinct life history trajectories in specimens collected from different outcrops, is published by Carlisbino et al. (2024).[131]
  • Redescription and a study on the phylogenetic affinities of Bolosaurus major is published by Jenkins et al. (2024).[132]
  • New information on the skull anatomy of Soturnia caliodon and its intraspecific variation, based on the study of the skull of an immature individual, is presented by Dalle Laste et al. (2024).[133]
  • New information on the anatomy of the skull of Emeroleter levis is presented by Bazzana-Adams, MacDougall & Fröbisch (2024), who also study the phylogenetic relationships of nycteroleterids.[134]
  • A study on the chronological sequence of late Permian localities in Eastern Europe preserving pareiasaur osteoderms is published by Golubev, Naumcheva & Boyarinova (2024).[135]
  • Redescription of the anatomy of the skull and a study on the affinities of Nanoparia luckhoffi is published by Van den Brandt et al. (2024).[136]
  • Mooney et al. (2024) describe a skeleton of Captorhinus aguti from the Richards Spur locality (Oklahoma, United States), preserved with integumentary structures interpreted as remnants of the epidermis, and showing surface morphologies of the skin consistent with variation in most extant and extinct reptiles.[137]
  • Buffa et al. (2024) propose a new reconstruction of the skull and mandible of Avicranium renestoi and study the affinities of weigeltisaurids and drepanosauromorphs, recovering the former group as stem-saurian diapsids and the latter group as the sister taxon of trilophosaurids within Archosauromorpha.[138]
  • Beccari et al. (2024) describe a juvenile specimen of Pleurosaurus cf. P. ginsburgi from the Tithonian Mörnsheim Formation (Germany), representing the first unambiguous post-hatchling juvenile of Pleurosaurus reported to date, and note its similarities with Acrosaurus which might be indicative of synonymy of the two genera.[139]
  • A study on the bone histology of Priosphenodon avelasi, interpreted as indicative of alternation between periods of slow and fast growth, is published by Cavasin, Cerda & Apesteguía (2024).[140]
  • A study on the affinities of Cryptovaranoides microlanius is published by Whiteside, Chambi-Trowell & Benton (2024), who reaffirm their original conclusion[141] that the studied reptile is a squamate with possible anguimorph affinities.[142]
  • Review of the fossil record, phylogenetic relationships and likely ecology of thalattosaurs is published by Bastiaans (2024).[143]
  • Taxonomic revision of the genus Xinpusaurus is published by Maisch (2024), who considers X. suni and X. kohi to be valid species belonging to this genus, interprets X. bamaolinensis as a junior synonym of X. suni, and transfers X. xingyiensis to the genus Concavispina.[144]
  • Redescription of Pachystropheus rhaeticus is published by Quinn et al. (2024), who identify this reptile as a member of Thalattosauria.[145]
  • Redescription of the skeletal anatomy of Dinocephalosaurus orientalis is published by Spiekman et al. (2024), who interpret D. orientalis as adapted to more open waters than Tanystropheus hydroides, and consider the similarities between Dinocephalosaurus and Tanystropheus to be largely convergent.[146]
  • Redescription of Trachelosaurus fischeri, interpreted as the first unambiguous Dinocephalosaurus-like archosauromorph found outside the Guanling Formation, is published by Spiekman et al. (2024), who consider the family Trachelosauridae to be the senior synonym of the family Dinocephalosauridae, and name a new clade of non-crocopodan archosauromorphs Tanysauria.[147]
  • Rytel et al. (2024) study the internal anatomy of the cervival vertebrae of tanysaurians, and report evidence of adaptations to neck elongation that were unparalleled in other known animals.[148]
  • A study on the shape variation in the cervical vertebrae of tanystropheids and related archosauromorphs, providing evidence of existence of modularity patterns in the necks of early archosauromorphs and evidence indicating that elongated necks of tanystropheids and archosaurs evolved in different ways, is published by Rytel et al. (2024).[149]
  • A study on the bone histology of Ozimek volans, providing evidence of similarity of the histology of its long bones to those of small bats, is published by Konietzko-Meier et al. (2024).[150]
  • Marsh, Sidor & Armour Smith (2024) report the discovery of an assemblage of remains of trilophosaurids (including Trilophosaurus phasmalophos), malerisaurine azendohsaurids and indeterminate allokotosaurians from the lowermost Revueltian strata from the Sonsela Member of the Chinle Formation (Arizona, United States), and interpret this finding as indicative of coexistence of trilophosaurids and malerisaurines in the southwestern United States for approximately 10 million years during the Carnian and Norian.[151]
  • A study on the biogeography of allokotosaurians is published by Roig, Miño-Boilini & Ezcurra (2024), who identity the area of India and Tanzania as the ancestral area of Allokotosauria in general and azendohsaurids in particular, and identify eastern North America as the ancestral area of trilophosaurids.[152]
  • Redescription and a study on the affinities of Malerisaurus robinsonae is published by Sengupta, Ezcurra & Bandyopadhyay (2024).[153]
  • Redescription of the anatomy of the skull of Mesosuchus browni is published by Foster et al. (2024), who report evidence of the presence of a pneumatized maxilla and likely a well-developed vomeronasal system.[154]
  • Battista et al. (2024) describe the first hyperodapedontine rhynchosaur material from the Carnian Santacruzodon Assemblage Zone (Brazil), filling a gap within the South American rhynchosaur distribution and providing evidence of faunal similarities with other regions of Gondwana (i.e. Madagascar).[155]
  • Schiefelbein et al. (2024) describe a new specimen of "Hyperodapedon" sanjuanensis from the Upper Triassic Candelária Sequence of the Santa Maria Supersequence (Brazil), preserving delicate scleral ossicles and providing information on the visual adaptations of hyperodapedontine rhynchosaurs.[156]
  • De-Oliveira et al. (2024) describe new postcranial material of Teyujagua paradoxa from the Lower Triassic Sanga do Cabral Formation (Brazil), providing evidence of a morphology intermediate between early archosauromorphs and proterosuchids.[157]
  • Rossi et al. (2024) report that purported soft tissues of the holotype of Tridentinosaurus antiquus are actually manufactured pigment, indicating that the body outline is a forgery and the only real parts of the specimen are the hindlimbs and osteoderms, and consider the validity of the taxon to be doubtful.[158]

Reptiles in general

edit
  • A study on the development of the tympanic membrane in extant reptiles and on the presence of osteological correlates of the tympanic membrane in the fossil record of reptiles is published by Bronzati et al. (2024), who interpret their findings as indicative of a single origin of the tympanic ear and tympanic hearing at the origin of the crown group of reptiles, as well as of independent appearance of the tympanic ear and tympanic hearing in mammals, Parareptilia and the crown group of reptiles.[159]
  • Cawthorne, Whiteside & Benton (2024) describe Late Triassic reptile fossils from the Emborough, Batscombe and Highcroft quarries (Somerset, United Kingdom), including fossil material of a new crocodylomorph taxon similar to Saltoposuchus and other loricatan fossils, an ilium of Pachystropheus rhaeticus (interpreted by the authors as a thalattosaur rather than a choristodere) and fossils of a possible procolophonid, Kuehneosaurus latus, rhynchocephalians, a possible lepidosauromorph similar to Cryptovaranoides microlanius and trilophosaurids.[160]
  • Laboury et al. (2024) compare the evolution of morphology and body size of ichthyopterygians and eosauropterygians from the Middle Triassic to the Early Jurassic, finding evidence of diversification into three clades with clearly distinct skull and teeth morphologies in the latter group but not in the former one, and finding no evidence for an abrupt macroevolutionary bottleneck of the studied groups near the Triassic-Jurassic boundary.[161]
  • Reolid et al. (2024) review the evolution of marine reptiles during the Jurassic, focusing on the impact of the Toarcian Oceanic Anoxic Event, and report evidence of diversification of thalattosuchian crocodylomorphs and stenopterygid ichthyosaurs in the early Toarcian, as well evidence of extinctions of other group that survived the Toarcian Oceanic Anoxic Event later during the Toarcian.[162]
  • Zverkov et al. (2024) revise the fossil record of marine reptiles from the Callovian of European Russia, providing evidence of the presence of a relict rhomaleosaurid as well as ichthyosaurs and thalattosuchians distinct from Western European ones in the early Callovian, and evidence of exchange of marine reptile faunas between Western and Eastern European seas in the middle to late Callovian.[163]
  • Foffa, Young & Brusatte (2024) study the morphological and functional variation of lower jaws of marine reptiles from the Oxford Clay and Kimmeridge Clay formations, providing evidence of convergence of members of distantly related groups to similar feeding strategies, and likely evidence of niche partitioning among coexisting reptiles.[164]
  • A study on the orbit and eye size in fossil archosauromorphs is published by Lautenschlager et al. (2024), who find that the largest eyes relative to the skull length were mostly present in small taxa, that herbivorous species had on average both larger orbits and larger skulls than carnivores, that eyes which were large in absolute terms appeared predominantly in large-sized dinosaurs irrespective of their diet, and that different activity patterns cannot be determined on the basis of orbit size alone.[165]
  • A study on the evolution of locomotion in archosauromorph reptiles is published by Shipley et al. (2024), who interpret their findings as indicative of greater range in limb form and locomotor modes of dinosaurs compared to other archosauromorph groups, and argue that the ability to adopt a wider variety of limb forms and modes might have given dinosaurs a competitive advantage over pseudosuchians.[166]
  • A study on bite marks on bones of Hyperodapedon huxleyi from the Upper Triassic Lower Maleri Formation (India) is published by Chakraborty, Mukherjee & Ray (2024), who interpret the studied bite marks as likely produced by phytosaurs and dinosauriforms.[167]
  • Doering et al. (2024) describe new fossil material of archosauromorph reptiles from the Niemeyer complex (Santa Maria Supersequence, Brazil), including the first records of a rhynchosaur (Teyumbaita sulcognathus), a saurischian dinosaur and a probable silesaurid from this locality, and interpret the rhynchosaur remains as indicating that the site dates close to the Carnian-Norian boundary.[168]
  • LeBlanc et al. (2024) report that extant Komodo dragons maintain cutting edges of their teeth through iron-enriched coatings on their tooth serrations and tips, argue that iron sequestration is probably widespread in reptile enamels, but also find no evidence of iron coatings along theropod dinosaur tooth serrations, report that tyrannosaurid theropods had specialized, wavy enamel along their tooth serrations that likely supported the cutting edges of the teeth, and interpret these findings as either indicative of different feeding strategies of tyrannosaurids and Komodo dragons, or indicating that only large theropods had tooth enamel that was thick enough to significantly influence the mechanical wear of the tooth serrations.[169]
  • New fossil material of reptiles, including two turtle, seven lizard and eight snake taxa, is described from the Miocene and Pliocene localities in Greece by Georgalis et al. (2024).[170]

References

edit
  1. ^ Carvalho, J. C.; Santucci, R. M. (2023). "A new fossil Squamata from the Quiricó Formation (Lower Cretaceous), Sanfranciscana Basin, Minas Gerais, Brazil". Cretaceous Research. 154. 105717. doi:10.1016/j.cretres.2023.105717. S2CID 264138153.
  2. ^ Daza, J. D.; Stanley, E. L.; Heinicke, M. P.; Leah, C.; Doucet, D. S.; Fenner, K. L.; Arias, J. S.; Smith, R. D. A.; Peretti, A. M.; Aung, N. N.; Bauer, A. M. (2024). "Compound osteoderms preserved in amber reveal the oldest known skink". Scientific Reports. 14 (1). 15662. Bibcode:2024NatSR..1415662D. doi:10.1038/s41598-024-66451-w. PMC 11231356. PMID 38977836.
  3. ^ Shaker, A. A.; Longrich, N. R.; Strougo, A.; Asan, A.; Bardet, N.; Mousa, M. K.; Tantawy, A. A.; Abu El-Kheir, G. A. (2023). "A new species of Halisaurus (Mosasauridae: Halisaurinae) from the lower Maastrichtian (Upper Cretaceous) of the Western Desert, Egypt". Cretaceous Research. 154. 105719. doi:10.1016/j.cretres.2023.105719. S2CID 263320383.
  4. ^ Croghan, J. A.; Palci, A.; Onary, S.; Lee, M. S. Y.; Caldwell, M. W. (2024). "Morphology and systematics of a new fossil snake from the early Rupelian (Oligocene) White River Formation, Wyoming". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlae073.
  5. ^ Longrich, Nicholas R.; Polcyn, Michael J.; Jalil, Nour-Eddine; Pereda-Suberbiola, Xabier; Bardet, Nathalie (2024-03-01). "A bizarre new plioplatecarpine mosasaurid from the Maastrichtian of Morocco". Cretaceous Research. 160: 105870. Bibcode:2024CrRes.16005870L. doi:10.1016/j.cretres.2024.105870. hdl:1874/438706. ISSN 0195-6671.
  6. ^ Berrocal-Casero, Mélani; Pimentel, Ricardo; Callapez, Pedro Miguel; Barroso-Barcenilla, Fernando; Ozkaya de Juanas, Senay (2024). "On Segurasaurus (Squamata: Pythonomorpha), a New Genus of Lizard from the Cenomanian (Upper Cretaceous) of Portugal". Geosciences. 14 (3): 84. Bibcode:2024Geosc..14...84B. doi:10.3390/geosciences14030084. ISSN 2076-3263.
  7. ^ Georgalis, Georgios L; Smith, Krister T; Marivaux, Laurent; Herrel, Anthony; Essid, El Mabrouk; Ammar, Hayet Khayati; Marzougui, Wissem; Temani, Rim; Tabuce, Rodolphe (2024). "The world's largest worm lizard: a new giant trogonophid (Squamata: Amphisbaenia) with extreme dental adaptations from the Eocene of Chambi, Tunisia". Zoological Journal of the Linnean Society. 202 (3). zlae133. doi:10.1093/zoolinnean/zlae133.
  8. ^ Datta, Debajit; Bajpai, Sunil (2024-04-18). "Largest known madtsoiid snake from warm Eocene period of India suggests intercontinental Gondwana dispersal". Scientific Reports. 14 (1): 8054. Bibcode:2024NatSR..14.8054D. doi:10.1038/s41598-024-58377-0. ISSN 2045-2322. PMC 11549349. PMID 38637509.
  9. ^ Rivera-Sylva, Héctor E.; Longrich, Nicholas R.; Padilla-Gutierrez, José M.; Guzmán-Gutiérrez, José Rubén; Escalante-Hernández, Víctor M.; González-Ávila, José G. (2023-11-16). "A new species of Yaguarasaurus (Mosasauridae: Plioplatecarpinae) from the Agua Nueva formation (upper Turonian – ?Lower Coniacian) of Nuevo Leon, Mexico". Journal of South American Earth Sciences. 133: 104694. doi:10.1016/j.jsames.2023.104694. ISSN 0895-9811. S2CID 265262141.
  10. ^ Wilenzik, I. V.; Barger, B. B.; Pyron, R. A. (2024). "Fossil-informed biogeographic analysis suggests Eurasian regionalization in crown Squamata during the early Jurassic". PeerJ. 12. e17277. doi:10.7717/peerj.17277. PMC 11067913. PMID 38708352.
  11. ^ Garberoglio, F. F.; Gómez, R. O.; Apesteguía, S.; Rougier, G. W. (2024). "A Late Cretaceous lizard assemblage from the Allen Formation, northern Patagonia, Argentina". Historical Biology: An International Journal of Paleobiology: 1–13. doi:10.1080/08912963.2024.2344789.
  12. ^ Čerňanský, A.; Vasilyan, D. (2024). "Roots of the European Cenozoic ecosystems: lizards from the Paleocene (~MP 5) of Walbeck in Germany". Fossil Record. 27 (1): 159–186. Bibcode:2024FossR..27..159C. doi:10.3897/fr.27.e109123.
  13. ^ Čerňanský, A. (2024). "Green lizards (Squamata, Lacertidae) from ?Pliocene deposits of Węże I in southern Poland, with comments on cranial features for selected lacertids". Palaeobiodiversity and Palaeoenvironments. Bibcode:2024PdPe..tmp...34C. doi:10.1007/s12549-024-00619-0.{{cite journal}}: CS1 maint: bibcode (link)
  14. ^ Scarpetta, S. G. (2024). "A Palaeogene stem crotaphytid (Aciprion formosum) and the phylogenetic affinities of early fossil pleurodontan iguanians". Royal Society Open Science. 11 (1). 221139. Bibcode:2024RSOS...1121139S. doi:10.1098/rsos.221139. PMC 10776235. PMID 38204790.
  15. ^ de Queiroz, K.; Huie, J. M.; Hammel, J. U.; Müller, P.; Baranov, V. (2024). "A New Fossil Anolis Lizard in Hispaniolan Amber: Ecomorphology and Systematics". Journal of Herpetology. 58 (1). 115391. doi:10.1670/23-058.
  16. ^ Ramm, T.; Gray, J. A.; Hipsley, C. A.; Hocknull, S.; Melville, J.; Müller, J. (2024). "Are Modern Cryptic Species Detectable in the Fossil Record? A Case Study on Agamid Lizards". Systematic Biology. doi:10.1093/sysbio/syae067. PMID 39576065.
  17. ^ Čerňanský, A.; Smith, R.; Smith, T.; Folie, A. (2024). "Timing of intercontinental faunal migrations: Anguimorph lizards from the earliest Eocene (MP 7) of Dormaal, Belgium". Zoological Journal of the Linnean Society. 201 (4). zlae082. doi:10.1093/zoolinnean/zlae082.
  18. ^ Loréal, E.; Georgalis, G. L.; Čerňanský, A. (2024). "Pseudopus pannonicus (Squamata), the largest known anguid lizard—Redescription of the type material and new specimens from the Neogene and Quaternary of Hungary and Poland". The Anatomical Record. 308 (1): 45–113. doi:10.1002/ar.25525. PMID 38982846.
  19. ^ Donato, I.; Palci, A.; Hutchinson, M. N.; Reed, E. H. (2024). "Putting a Name to a Face: Using Geometric Morphometrics to Identify Middle Pleistocene Varanid Cranial Fossils From Naracoorte Caves". Journal of Herpetology. 58 (3). 121522. doi:10.1670/23-056.
  20. ^ Garzon, D. N.; Arellano, P.; Toro-Álava, J.; Román-Carrión, J. L.; Ordoñez, J. E.; Andrade, P.; Mendoza-Ochoa, C.; Ayala, P.; Oleas, M.; Vizcaino, A.; Jiménez-Orellana, N. M. (2024). "First record of a mosasaurid (Squamata: Mosasauridae) from the Upper Cretaceous of Ecuador". Spanish Journal of Palaeontology. doi:10.7203/sjp.29179.
  21. ^ Allemand, R.; Polcyn, M. J.; Houssaye, A.; Vincent, P.; López-Aguirre, C.; Bardet, N. (2024). "First Virtual Reconstruction of a Mosasaurid Brain Endocast: Description and Comparison of the Endocast of Tethysaurus nopcsai with Those of Extant Squamates". Diversity. 16 (9). 548. doi:10.3390/d16090548.
  22. ^ Páramo-Fonseca, M. E.; Narváez-Rincón, J. A.; Benavides-Cabra, C. D.; Yanez-Leaño, C. F. (2024). "Exceptional In Situ Preservation of Chondrocranial Elements in a Coniacian Mosasaurid from Colombia". Diversity. 16 (5). 285. doi:10.3390/d16050285.
  23. ^ Plasse, M.; Valentin, X.; Garcia, G.; Guinot, G.; Bardet, N. (2024). "New remains of Mosasauroidea (Reptilia, Squamata) from the Upper Cretaceous (Santonian) of Aude, southern France". Cretaceous Research. 157. 105823. Bibcode:2024CrRes.15705823P. doi:10.1016/j.cretres.2023.105823. S2CID 266852358.
  24. ^ Grigoriev, D. V.; Zverkov, N. G.; Nikiforov, A. V. (2024). "Mosasaurs (Squamata: Mosasauridae) from the Upper Cretaceous of the Southern Urals". Paleontological Journal. 58 (4): 457–474. Bibcode:2024PalJ...58..457G. doi:10.1134/S0031030124600355.
  25. ^ Rempert, T. H.; Martens, B. P.; Vinkeles Melchers, A. P. M. (2024). "New mosasaur remains from the Upper Cretaceous of Mississippi". The Mosasaur. The Journal of the Delaware Valley Paleontological Society. 13: 79–90. doi:10.5281/zenodo.10472410.
  26. ^ Holmes, R. B. (2024). "Evaluation of the photosensory characteristics of the lateral and pineal eyes of Plioplatecarpus (Squamata, Mosasauridae) based on an exceptionally preserved specimen from the Bearpaw Shale (Campanian, Upper Cretaceous) of southern Alberta". Journal of Vertebrate Paleontology. 43 (5). e2335174. doi:10.1080/02724634.2024.2335174.
  27. ^ López-Rueda, J. S.; Polcyn, M. J.; Lindgren, J.; Cruz-Guevara, L. E.; Rodríguez-Sañudo, A. S. (2024). "Mosasaur (Reptilia, Mosasauridae) remains from the Upper Cretaceous of Colombia, including the first occurrence of the genus Globidens". Cretaceous Research. 166. 105997. doi:10.1016/j.cretres.2024.105997.
  28. ^ Rempert, T. H.; Martens, B. P.; Vinkeles Melchers, A. P. M. (2024). "Mosasaurs (Squamata: Mosasauridae) from the Late Cretaceous (Late Maastrichtian) of North Carolina, USA". Proceedings of the Zoological Institute of the Russian Academy of Sciences. 328 (3): 384–391. doi:10.31610/trudyzin/2024.328.3.384.
  29. ^ Aniny, F.; Georgalis, G. L.; Gingerich, P. D.; Zouhri, S. (2024). "Occurrence of the large aquatic snake Palaeophis cf. africanus (Serpentes, Palaeophiidae) in the middle Eocene of the Sabkha El Breij, southwestern Morocco". Historical Biology: An International Journal of Paleobiology: 1–6. doi:10.1080/08912963.2024.2352863.
  30. ^ Natarajan, A.; Dasgupta, S.; Rakshit, N.; Kashyap, Y. (2024). "Taxonomic revision of the giant marine snake genus Pterosphenus Lucas, 1898, based on new fossil material from the middle Eocene (Bartonian) Harudi Formation of Kachchh (Kutch) Basin, India". Journal of Vertebrate Paleontology. 43 (6). e2375332. doi:10.1080/02724634.2024.2375332.
  31. ^ Garberoglio, F. F.; Gómez, R. O.; Caldwell, M. W. (2024). "New record of aquatic snakes (Squamata, Palaeophiidae) from the Paleocene of South America". Journal of Vertebrate Paleontology. 43 (4). e2305892. doi:10.1080/02724634.2024.2305892.
  32. ^ Flores, D.; Meza, A.; Bell, C. J.; Skwarcan, S.; Godwin, W.; Fremont, J.; Lewis, P. J. (2024). "First fossil snake from McFaddin Beach, Texas, USA". Palaeontologia Electronica. 27 (2). 27.2.a37. doi:10.26879/1304.
  33. ^ Villa, A.; Quadros, A. B.; Delfino, M.; Luján, À. H.; Bolet, A.; Casanovas-Vilar, I.; Robles, J. M.; Alba, D. M. (2024). "The rise and fall of the Iberian cobras (Elapidae, Naja) in the context of their European and global fossil record". Papers in Palaeontology. 10 (4). e1575. Bibcode:2024PPal...10E1575V. doi:10.1002/spp2.1575.
  34. ^ Jacisin, J. J.; Lawing, A. M. (2024). "Fossil snakes of the Penny Creek Local Fauna from Webster County, Nebraska, USA, and the first record of snakes from the Early Clarendonian (12.5-12 Ma) of North America". Palaeontologia Electronica. 27 (1). 27.1.2A. doi:10.26879/1220.
  35. ^ ElShafie, S. J. (2024). "Body size estimation from isolated fossil bones reveals deep time evolutionary trends in North American lizards". PLOS ONE. 19 (1). e0296318. Bibcode:2024PLoSO..1996318E. doi:10.1371/journal.pone.0296318. PMC 10769094. PMID 38180961.
  36. ^ Ledesma, D. T.; Scarpetta, S. G.; Jacisin, J. J.; Meza, A.; Kemp, M. E. (2024). "Identification of Late Pleistocene and Holocene fossil lizards from Hall's Cave (Kerr County, Texas) and a primer on morphological variation in North American lizard skulls". PLOS ONE. 19 (8). e0308714. Bibcode:2024PLoSO..1908714L. doi:10.1371/journal.pone.0308714. PMC 11326655. PMID 39146299.
  37. ^ Miedema, Feiko; Bastiaans, Dylan; Scheyer, Torsten M.; Klug, Christian; Maxwell, Erin E. (2024-03-16). "A large new Middle Jurassic ichthyosaur shows the importance of body size evolution in the origin of the Ophthalmosauria". BMC Ecology and Evolution. 24 (1): 34. Bibcode:2024BMCEE..24...34M. doi:10.1186/s12862-024-02208-3. ISSN 2730-7182. PMC 10944604. PMID 38493100.
  38. ^ Lomax, D. R.; de la Salle, P.; Perillo, M.; Reynolds, J.; Reynolds, R.; Waldron, J. F. (2024). "The last giants: New evidence for giant Late Triassic (Rhaetian) ichthyosaurs from the UK". PLOS ONE. 19 (4). e0300289. Bibcode:2024PLoSO..1900289L. doi:10.1371/journal.pone.0300289. PMC 11023487. PMID 38630678.
  39. ^ Fang, Y.-W.; Wolniewicz, A. S.; Liu, J. (2024). "A new species of mixosaurid ichthyosaur from the Middle Triassic of Luxi County, Yunnan Province, South China". Acta Palaeontologica Polonica. 69 (2): 263–280. doi:10.4202/app.01133.2024.
  40. ^ Fonseca, María Eurídice Páramo; Cabra, Cristian David Benavides; Camacho, Renzo Garavito (2024-09-19). "A new species of Platypterygius (Ophthalmosauridae) from the lower Barremian of Colombia and assessment of the species composition of the genus". Earth Sciences Research Journal. 28 (2): 103–126. doi:10.15446/esrj.v28n2.112332. ISSN 2339-3459.
  41. ^ Liu, J.; Wu, F.; Qiao, Y. (2024). "A new basal hupehsuchian from the Early Triassic of South China and its implication to the phylogenetic relationships of Ichthyosauromorpha (Reptilia: Diapsida)". Historical Biology: An International Journal of Paleobiology: 1–11. doi:10.1080/08912963.2024.2354791.
  42. ^ Sprumont, H.; Allione, F.; Schwab, F.; Wang, B.; Mucignat, C.; Lunati, I.; Scheyer, T.; Ijspeert, A.; Jusufi, A. (2024). "Asymmetric fin shape changes swimming dynamics of ancient marine reptiles' soft robophysical models". Bioinspiration & Biomimetics. 19 (4). 046005. Bibcode:2024BiBi...19d6005S. doi:10.1088/1748-3190/ad3f5e. hdl:20.500.11850/673044. PMID 38626775.
  43. ^ Ye, S.-Y.; Wu, K.; Sun, Z.-Y.; Sander, P. M.; Samathi, A.; Sun, Y.-Y.; Ji, C.; Suteethorn, V.; Liu, J. (2024). "Conodonts suggest a late Spathian (late Early Triassic) age for Thaisaurus chonglakmanii (Reptilia: Ichthyosauromorpha) from Thailand". Palaeoworld. doi:10.1016/j.palwor.2024.07.004.
  44. ^ Gu, L.-A.; Wolniewicz, A. S.; Liu, J. (2024). "New information on the dentition of Chaohusaurus zhangjiawanensis (Reptilia, Ichthyosauriformes) from the Early Triassic of Yuan'an, Hubei Province, China". Swiss Journal of Palaeontology. 143 (1). 35. Bibcode:2024SwJP..143...35G. doi:10.1186/s13358-024-00331-8.
  45. ^ Fernández, M. S.; Campos, L.; Manzo, A.; Vlachos, E. (2024). "Bone Connectivity and the Evolution of Ichthyosaur Fins". Diversity. 16 (6). 349. doi:10.3390/d16060349.
  46. ^ Sander, P. M.; Dederichs, R.; Schaaf, T.; Griebeler, E. M. (2024). "Cymbospondylus (Ichthyopterygia) from the Early Triassic of Svalbard and the early evolution of large body size in ichthyosaurs". PalZ. 98 (2): 275–290. Bibcode:2024PalZ...98..275S. doi:10.1007/s12542-023-00677-3.
  47. ^ Zakharov, Y. D.; Nakajima, Y.; Arkhangelsky, M. S.; Popov, A. M.; Bondarenko, L. G.; Smyshlyaeva, O. P.; Pokrovsky, V. K. (2024). "New Finds of Triassic Marine Reptiles from Eastern Russia: Ammonoid Age Control and Possible Evidence for Ichthyopterygian Affinities". Stratigraphy and Geological Correlation. 32 (3): 242–264. Bibcode:2024SGC....32..242Z. doi:10.1134/S0869593824030080.
  48. ^ Bindellini, G.; Wolniewicz, A. S.; Miedema, F.; Dal Sasso, C.; Scheyer, T. M. (2024). "Postcranial anatomy of Besanosaurus leptorhynchus (Reptilia: Ichthyosauria) from the Middle Triassic Besano Formation of Monte San Giorgio (Italy/Switzerland), with implications for reconstructing the swimming styles of Triassic ichthyosaurs". Swiss Journal of Palaeontology. 143 (1). 32. Bibcode:2024SwJP..143...32B. doi:10.1186/s13358-024-00330-9. PMC 11384637. PMID 39263671.
  49. ^ Perillo, M.; Sander, P. M. (2024). "The dinosaurs that weren't: osteohistology supports giant ichthyosaur affinity of enigmatic large bone segments from the European Rhaetian". PeerJ. 12. e17060. doi:10.7717/peerj.17060. PMC 11011611. PMID 38618574.
  50. ^ Eustache, R.-P.; Boyde, A.; Jaurand, X.; Sander, P. M. (2024). "Medusa's Gaze: Cell traces and fibrils but no collagen in permineralized Jurassic ichthyosaur bone". iScience. 111523. doi:10.1016/j.isci.2024.111523.
  51. ^ Massare, J. A.; Lomax, D. R.; Williams, M.; Howells, C. (2024). "A catalog of the Lower Lias Ichthyosaurs in the Charles Moore collection". Paludicola. 14 (4): 141–193.
  52. ^ Bonnevier Wallstedt, I.; Sjövall, P.; Thuy, B.; De La Garza, R. G.; Eriksson, M. E.; Lindgren, J. (2024). "Skin Anatomy, Bone Histology and Taphonomy of a Toarcian (Lower Jurassic) Ichthyosaur (Reptilia: Ichthyopterygia) from Luxembourg, with Implications for Paleobiology". Diversity. 16 (8). 492. doi:10.3390/d16080492.
  53. ^ Campos, L.; Fernández, M. S.; Bosio, V.; Herrera, Y.; Manzo, A. (2024). "Revalidation of Myobradypterygius hauthali Huene, 1927 and the phylogenetic signal within the ophthalmosaurid (Ichthyosauria) forefins". Cretaceous Research. 157. 105818. Bibcode:2024CrRes.15705818C. doi:10.1016/j.cretres.2023.105818. S2CID 266830892.
  54. ^ Pardo-Pérez, J.; Zambrano, P.; Malkowski, M.; Lomax, D.; Villa-Martínez, R.; Stinnesbeck, W.; Frey, E.; Scapini, F.; Gascó, C.; Maxwell, E. E. (2024). "Validity of Myobradypterygius hauthali von Huene, 1927 (Ichthyosauria: Ophthalmosauria) from the Early Cretaceous of Chile and Argentina". Zoological Journal of the Linnean Society. 202 (2). zlae106. doi:10.1093/zoolinnean/zlae106.
  55. ^ Yakupova, J. B.; Akhmedenov, K. M. (2024). "The First Representative of the Ichthyosaur Genus Platypterygius from the Albian of Western Kazakhstan". Paleontological Journal. 58 (4): 445–456. Bibcode:2024PalJ...58..445Y. doi:10.1134/S003103012460029X.
  56. ^ Young, G. R. A.; Scofield, P.; Reid, C. M.; Mannering, A.; Crampton, J. S. (2024). "A platypterygiid ichthyosaur from the Cenomanian of central New Zealand". Journal of Vertebrate Paleontology. e2408391. doi:10.1080/02724634.2024.2408391.
  57. ^ Klug, C.; Sivgin, T.; Miedema, F.; Scheffold, B.; Reisdorf, A. G.; Stössel, I.; Maxwell, E. E.; Scheyer, T. M. (2024). "Swiss ichthyosaurs: a review". Swiss Journal of Palaeontology. 143 (1). 31. Bibcode:2024SwJP..143...31K. doi:10.1186/s13358-024-00327-4. PMC 11366730. PMID 39229570.
  58. ^ Hu, Yi-Wei; Li, Qiang; Liu, Jun (2024-01-05). "A new pachypleurosaur (Reptilia: Sauropterygia) from the Middle Triassic of southwestern China and its phylogenetic and biogeographic implications". Swiss Journal of Palaeontology. 143 (1): 1. Bibcode:2024SwJP..143....1H. doi:10.1186/s13358-023-00292-4. ISSN 1664-2384.
  59. ^ Sachs, Sven; Eggmaier, Stefan; Madzia, Daniel (2024). "Exquisite skeletons of a new transitional plesiosaur fill gap in the evolutionary history of plesiosauroids". Frontiers in Earth Science. 12. 1341470. Bibcode:2024FrEaS..1241470S. doi:10.3389/feart.2024.1341470.
  60. ^ O’Gorman, Jose P.; Canale, Juan I.; Bona, Paula; Tineo, David E.; Reguero, Marcelo; Cárdenas, Magalí (2024-12-31). "A new elasmosaurid (Plesiosauria: Sauropterygia) from the López de Bertodano Formation: new data on the evolution of the aristonectine morphology". Journal of Systematic Palaeontology. 22 (1). Bibcode:2024JSPal..2212302O. doi:10.1080/14772019.2024.2312302. ISSN 1477-2019.
  61. ^ a b c Clark, Robert O.; O’Keefe, F. Robin; Slack, Sara E. (2023-12-24). "A new genus of small polycotylid plesiosaur from the Upper Cretaceous of the Western Interior Seaway and a clarification of the genus Dolichorhynchops". Cretaceous Research. 157. 105812. doi:10.1016/j.cretres.2023.105812. ISSN 0195-6671. S2CID 266546582.
  62. ^ Gere, K.; Nagy, A. L.; Scheyer, T. M.; Werneburg, I.; Ősi, A. (2024). "Complex dental wear analysis reveals dietary shift in Triassic placodonts (Sauropsida, Sauropterygia)". Swiss Journal of Palaeontology. 143 (1). 4. Bibcode:2024SwJP..143....4G. doi:10.1186/s13358-024-00304-x. PMC 10844150. PMID 38328031.
  63. ^ Kear, B. P.; Roberts, A. J.; Young, G.; Terezow, M.; Mantle, D. J.; Barros, I. S.; Hurum, J. H. (2024). "Oldest southern sauropterygian reveals early marine reptile globalization". Current Biology. 34 (12): R562–R563. Bibcode:2024CBio...34.R562K. doi:10.1016/j.cub.2024.03.035. PMID 38889674.
  64. ^ Cabezuelo-Hernández, A.; De Miguel Chaves, C.; Pérez-García, A. (2024). "Sauropterygian remains from the Middle Triassic of Araif El-Naqa as the first identification of Simosauridae (Eosauropterygia) in Egypt". Geobios. doi:10.1016/j.geobios.2024.08.015.
  65. ^ Cabezuelo-Hernández, A.; De Miguel Chaves, C.; Ortega, F.; Pérez-García, A. (2024). "Postcranial anatomy of the Spanish Upper Triassic sauropterygian Paludidraco multidentatus (Simosauridae)". Palaeontologia Electronica. 27 (2). 27.2.a40. doi:10.26879/1405.
  66. ^ Sachs, S.; Hornung, J. J.; Madzia, D. (2024). "Early-diverging plesiosaurs from the Pliensbachian (Lower Jurassic) of northwestern Germany". PeerJ. 12. e18408. doi:10.7717/peerj.18408. PMC 11606318. PMID 39619173.
  67. ^ Matelo Mirco, G.; O'Gorman, J. P.; Gasparini, Z. (2024). "An unexpected short tooth replacement cycle period in Maresaurus coccai (Plesiosauria; Rhomaleosauridae) from the Bajocian of Argentinean Patagonia". Rivista Italiana di Paleontologia e Stratigrafia. 130 (2): 299–310. doi:10.54103/2039-4942/22114.
  68. ^ Vincent, P.; Poncet, D.; Rard, A.; Robin, J.-P.; Allemand, R. (2024). "New remains of Liopleurodon (Reptilia, Plesiosauria) from the Middle Jurassic of western France and paedomorphosis within pliosaurids". Palaeontologia Electronica. 27 (2). 27.2.a34. doi:10.26879/1280.
  69. ^ Delsett, L. L.; Smith, A. S.; Ingrams, S.; Schneider, S. (2024). "Boreal waterways: An Early Cretaceous plesiosaur from Ellesmere Island, Nunavut, Canadian Arctic and its palaeobiogeography". Acta Palaeontologica Polonica. 69 (4): 565–585. doi:10.4202/app.01148.2024.
  70. ^ Alhalabi, W. A.; Bardet, N.; Sachs, S.; Kear, B. P.; Joude, I. B.; Yazbek, M. K.; Godoy, P. L.; Langer, M. C. (2024). "Recovering lost time in Syria: New Late Cretaceous (Coniacian-Santonian) elasmosaurid remains from the Palmyrides mountain chain". Cretaceous Research. 159. 105871. Bibcode:2024CrRes.15905871A. doi:10.1016/j.cretres.2024.105871.
  71. ^ Talevi, M.; Garat, L. M.; Fernández, M. S. (2024). "Comparative analysis of bone microstructure and histology in different sections of the vertebral column of Vegasaurus molyi (Plesiosaur: Elasmosaurid) from the Upper Cretaceous of Antarctica". Ameghiniana. doi:10.5710/AMGH.15.04.2024.3599.
  72. ^ O'Gorman, J. P. (2024). "How Elongated? The Pattern of Elongation of Cervical Centra of Elasmosaurus platyurus with Comments on Cervical Elongation Patterns among Plesiosauromorphs". Diversity. 16 (2). 106. doi:10.3390/d16020106.
  73. ^ Zverkov, N. G.; Grigoriev, D. V.; Meleshin, I. A.; Nikiforov, A. V. (2024). "Revision of the plesiosaur Polycotylus sopozkoi from the Southern Urals (Russia) confirms the wide distribution of Polycotylus in the Late Cretaceous of the Northern Hemisphere". Cretaceous Research. 160. 105879. Bibcode:2024CrRes.16005879Z. doi:10.1016/j.cretres.2024.105879.
  74. ^ Henderson, D. M. (2024). "Lost, hidden, broken, cut-estimating and interpreting the shapes and masses of damaged assemblages of plesiosaur gastroliths". PeerJ. 12. e17925. doi:10.7717/peerj.17925. PMC 11373562. PMID 39234235.
  75. ^ Fukuhara, A.; Sato, M.; Ogawa, H.; Sato, T.; Sellers, W.; Ishiguro, A. (2024). "Rethinking the four-wing problem in plesiosaur swimming using bio-inspired decentralized control". Scientific Reports. 14 (1). 25333. Bibcode:2024NatSR..1425333F. doi:10.1038/s41598-024-55805-z. PMC 11519978. PMID 39468038.
  76. ^ Sarda, M.; Maniel, I. J. (2024). "A new chelid turtle with an ornamented bony shell (Pleurodira: Chelidae) from the Portezuelo Formation (Upper Cretaceous) of Patagonia, Argentina". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2024.2437832.
  77. ^ Pappa, I.; Vlachos, E.; Frey, E.; Iliopoulos, G. (2024). "A new species of a snapping turtle (Pan-Chelydridae/Chelydropsis) from the Upper Miocene (MN9, early Vallesian) of Southwest Germany". Historical Biology: An International Journal of Paleobiology: 1–20. doi:10.1080/08912963.2024.2339898.
  78. ^ Delfino, M.; Cohen, B. F.; Govender, R.; Haarhoff, P.; Macaluso, L.; Marino, L.; Matthews, T.; Wencker, L. C. M.; Pavia, M. (2024). "Towards the origin of South African tortoises: a new Chersina species from the Early Pliocene fossil site of Langebaanweg". Zoological Journal of the Linnean Society. 202 (3). zlae146. doi:10.1093/zoolinnean/zlae146.
  79. ^ Agnolín, F. L.; Aranciaga-Rolando, A. M.; Ortiz, R. (2024). "New chelid turtle with a flattened skull from the Late Cretaceous of Northern Patagonia, Argentina". Alcheringa: An Australasian Journal of Palaeontology: 1–6. doi:10.1080/03115518.2024.2427261.
  80. ^ Pérez-García, A; Antunes, M. T. (2024). "A pan-cheloniid turtle from the Middle Miocene of Portugal". The Anatomical Record. doi:10.1002/ar.25431. PMID 38482778.
  81. ^ Ferreira, G. S.; Nasciemento, E. R.; Cadena, E. A.; Cozzuol, M. A.; Farina, B. M.; Pacheco, M. L. A. F.; Rizzutto, M. A.; Langer, M. C. (2024). "The latest freshwater giants: a new Peltocephalus (Pleurodira: Podocnemididae) turtle from the Late Pleistocene of the Brazilian Amazon". Biology Letters. 20 (3). 20240010. doi:10.1098/rsbl.2024.0010. PMC 10932709. PMID 38471564.
  82. ^ Zvonok, E. A.; Panteleev, A. V.; Danilov, I. G. (2024). "A new Trachyaspis-like pan-cheloniid turtle from the Bartonian of Kazakhstan". Proceedings of the Zoological Institute of the Russian Academy of Sciences. 328 (2): 167–196. doi:10.31610/trudyzin/2024.328.2.167.
  83. ^ Ke, Y.; Niu, K.; Rummy, P.; Tong, H.; Hu, J.; Han, F. (2024). "Xianyuechelys yingliangi: a new nanhsiungchelyid turtle from the Late Cretaceous of Ganzhou Basin, China". Journal of Systematic Palaeontology. 22 (1). 2346838. Bibcode:2024JSPal..2246838K. doi:10.1080/14772019.2024.2346838.
  84. ^ Pereira, A. G.; Antonelli, A.; Silvestro, D.; Faurby, S. (2024). "Two Major Extinction Events in the Evolutionary History of Turtles: One Caused by an Asteroid, the Other by Hominins". The American Naturalist. 203 (6): 644–654. Bibcode:2024ANat..203..644P. doi:10.1086/729604. PMID 38781523.
  85. ^ Vlachos, E. (2024). "Turtle species extinction across the Cretaceous/Paleogene boundary". Paleobiology: 1–7. doi:10.1017/pab.2024.36.
  86. ^ Hermanson, G.; Arnal, F. A. M.; Szczygielski, T.; Evers, S. W. (2024). "A systematic comparative description of extant turtle humeri, with comments on humerus disparity and evolution based on fossil comparisons". The Anatomical Record. 307 (11): 3437–3505. doi:10.1002/ar.25450. PMID 38716962.
  87. ^ Ferreira, G. S.; Hermanson, G.; Kyriakouli, C.; Dróżdż, D.; Szczygielski, T. (2024). "Shell biomechanics suggests an aquatic palaeoecology at the dawn of turtle evolution". Scientific Reports. 14 (1). 21822. Bibcode:2024NatSR..1421822F. doi:10.1038/s41598-024-72540-7. PMC 11411134. PMID 39294199.
  88. ^ Obraztsova, E. M.; Sukhanov, V. B.; Danilov, I. G. (2024). "Cranial morphology of Heckerochelys romani Sukhanov, 2006, a stem turtle from the Middle Jurassic of European Russia, with implications for the paleoecology of stem turtles". Journal of Vertebrate Paleontology. 43 (3). e2293997. doi:10.1080/02724634.2023.2293997.
  89. ^ Degrange, F. J.; Nieto, M. N.; Sterli, J.; Vlachos, E. (2024). "Biomechanical skull performance in the meiolaniid Niolamia argentina (Testudinata: Meiolaniidae) using Finite Element Analysis". Journal of Vertebrate Paleontology. 43 (6). e2357315. doi:10.1080/02724634.2024.2357315.
  90. ^ Sterli, J.; Moyano-Paz, D.; Varela, A.; Poiré, D. G.; Iglesias, A. (2024). "An unusual circumpolar turtle (Testudinata: Testudines) from the earliest Late Cretaceous of Patagonia, Argentina". Ameghiniana. 61 (1): 34–44. doi:10.5710/AMGH.23.01.2024.3583.
  91. ^ Tong, H.; Chanthasit, P.; Naksri, W.; Suteethorn, S.; Claude, J. (2024). "New material of turtles from the Upper Jurassic of Phu Noi, NE Thailand: Phylogenetic implications". Annales de Paléontologie. 109 (4). 102656. doi:10.1016/j.annpal.2023.102656.
  92. ^ Pérez-García, A.; Rubio, C. (2024). "A turtle from northeastern Spain reveals that the dispersal of Pelomedusoides from Gondwana to Laurasia probably occurred in the Early Cretaceous". Cretaceous Research. 162. 105938. Bibcode:2024CrRes.16205938P. doi:10.1016/j.cretres.2024.105938.
  93. ^ Cadena, E.-A.; Benítez, B.; Apen, F. E.; Crowley, J. L.; Cottle, J.; Jaramillo, C. (2024). "Wider paleogeographical distribution of bothremydid turtles in northern South America during the Paleocene–Eocene". Publicación Electrónica de la Asociación Paleontológica Argentina. 24 (1): 149–163. doi:10.5710/PEAPA.14.02.2024.499.
  94. ^ Sena, M. V. A.; Simbras, F. M.; Sayão, J. M.; Oliveira, G. R. (2024). "Insights into the shell microstructure of Bauruemys elegans and other pelomedusoids from the Cretaceous and Paleogene in Southern Brazil, including first Testudines material from Jangada Roncador Village, Paraná Basin". Journal of South American Earth Sciences. 139. 104886. doi:10.1016/j.jsames.2024.104886.
  95. ^ Maniel, I. J. (2024). "Pelomedusoid turtles from the Bajo de la Carpa Formation (Santonian, Upper Cretaceous), Río Negro Province, Patagonia, Argentina". Ameghiniana. 61 (3): 138–147. doi:10.5710/AMGH.12.06.2024.3591.
  96. ^ Pérez-García, A.; Guerrero, A.; Martín de Jesús, S.; Ortega, F. (2024). "Shell anatomy and intraspecific variability of the Spanish Lutetian podocnemidid turtle Neochelys zamorensis". Palaeontologia Electronica. 27 (2). 27.2.a28. doi:10.26879/1388.
  97. ^ Pérez-García, A.; Camilo, B.; Ortega, F. (2024). "New data on the shell anatomy of Selenemys lusitanica, the oldest known pleurosternid turtle in Europe". Journal of Iberian Geology. 50 (1): 105–113. Bibcode:2024JIbG...50..105P. doi:10.1007/s41513-024-00230-4.
  98. ^ Spicher, G. E.; Lyson, T. R.; Evers, S. W. (2024). "Updated cranial and mandibular description of the Late Cretaceous (Maastrichtian) baenid turtle Saxochelys gilberti based on micro-computed tomography scans and new information on the holotype-shell association". Swiss Journal of Palaeontology. 143 (1). 2. Bibcode:2024SwJP..143....2S. doi:10.1186/s13358-023-00301-6. PMC 10805913. PMID 38274637.
  99. ^ Tong, H.; Li, L.; Ke, Y.; Wang, Y.; Jie, G.; Yi, L. (2024). "Remarkable Carapace Morphology of Nanhsiungchelys (Testudines: Nanhsiungchelyidae) Revealed by New Material from Ganzhou Basin, Jiangxi Province, China". Geosciences. 14 (7). 184. Bibcode:2024Geosc..14..184T. doi:10.3390/geosciences14070184.
  100. ^ Ke, Y.; Tong, H.; Qiu, W.; Shi, Z.; Han, F. (2024). "A partial plastron of Nanhsiungchelys (Testudines: Cryptodira: Nanhsiungchelyidae) from the Upper Cretaceous of Ganzhou Basin, China". Historical Biology: An International Journal of Paleobiology: 1–6. doi:10.1080/08912963.2024.2410463.
  101. ^ Rollot, Y.; Evers, S. W.; Joyce, W. G. (2024). "A digital redescription of the Middle Miocene (Langhian) carettochelyid turtle Allaeochelys libyca". Fossil Record. 27 (1): 13–28. Bibcode:2024FossR..27...13R. doi:10.3897/fr.27.115046.
  102. ^ Ponstein, J.; Wallaard, J. J. W.; de Rijke, M.; Fraaije, R. H. B. (2024). "The first cranium of Axestemys infernalis (Testudines: Trionychidae) from the Lance Formation of Wyoming, USA; an updated description and phylogenetic analysis". Palaeontologia Electronica. 27 (2). 27.2.a31. doi:10.26879/1361.
  103. ^ Girard, L. C.; Erickson, J. M.; Lyson, T. R.; Hoganson, J. W.; Joyce, W. G. (2024). "The cranial and postcranial morphology of Hutchemys rememdium and its impact on the phylogenetic relationships of Plastomenidae (Testudinata, Trionychidae)". Swiss Journal of Palaeontology. 143 (1). 22. Bibcode:2024SwJP..143...22G. doi:10.1186/s13358-024-00315-8. PMC 11126460. PMID 38799181.
  104. ^ Menon, J. C. L.; Brinkman, D. B.; Hermanson, G.; Joyce, W. G.; Evers, S. W. (2024). "New insights into the early morphological evolution of sea turtles by re-investigation of Nichollsemys baieri, a three-dimensionally preserved fossil stem chelonioid from the Campanian of Alberta, Canada". Swiss Journal of Palaeontology. 143 (1). 27. Bibcode:2024SwJP..143...27M. doi:10.1186/s13358-024-00323-8. PMC 11245440. PMID 39006951.
  105. ^ Serafini, G.; Gordon, C. M.; Amalfitano, J.; Wings, O.; Esteban, N.; Stokes, H.; Giusberti, L. (2024). "First evidence of marine turtle gastroliths in a fossil specimen: Paleobiological implications in comparison to modern analogues". PLOS ONE. 19 (5). e0302889. Bibcode:2024PLoSO..1902889S. doi:10.1371/journal.pone.0302889. PMC 11073738. PMID 38709805.
  106. ^ Bona, P.; Sterli, J.; de la Fuente, M. S.; Olivero, E.; Fernández, M. S.; Reguero, M. A. (2024). "The first record of dermochelyid turtles in the Eocene of Tierra del Fuego: New insights on the evolution of the Weddellian faunas". Advances in Polar Science. 35 (1): 63–77. doi:10.12429/j.advps.2023.0026.
  107. ^ Ascarrunz, E.; Joyce, W. G. (2024). "A plastron fragment reveals a previously unrecorded turtle species in the Eocene of Messel Pit, Germany". Fossil Record. 27 (2): 259–264. Bibcode:2024FossR..27..259A. doi:10.3897/fr.27.e132374.
  108. ^ Evers, S. W.; Al Iawati, Z. (2024). "Digital skull anatomy of the Oligocene North American tortoise Stylemys nebrascensis with taxonomic comments on the species and comparisons with extant testudinids of the GopherusManouria clade". Swiss Journal of Palaeontology. 143 (1). 12. Bibcode:2024SwJP..143...12E. doi:10.1186/s13358-024-00311-y. PMC 10914918. PMID 38455968.
  109. ^ Torres, F.; Huang, E. J.; Román-Carrion, J. L.; Bever, G. S. (2024). "New insights into the origin of the Galápagos tortoises with a tip-dated analysis of Testudinidae". Journal of Vertebrate Paleontology. 43 (4). e2313615. doi:10.1080/02724634.2024.2313615.
  110. ^ Claude, J.; Tong, H.; van der Geer, A.; Antoine, P.-O.; Reyes, M.; de Vos, J.; Ingicco, T. (2024). "The origin of the Malesian fossil turtle diversity: Fossil versus molecular data". Annales de Paléontologie. 110 (1). 102665. Bibcode:2024AnPal.11002665C. doi:10.1016/j.annpal.2024.102665.
  111. ^ Sues, H.-D.; Spiekman, S. N. F.; Schoch, R. R. (2024). "Osteology and phylogenetic relationships of a new archosauriform reptile from the Middle Triassic (Anisian) of Germany". Journal of Vertebrate Paleontology. 43 (6). e2357326. doi:10.1080/02724634.2024.2357326.
  112. ^ Sharma, K. M.; Ezcurra, M. D.; Tiwari, R. P.; Patnaik, R.; Singh, Y. P.; Singh, N. A. (2024). "Additional information on the archosauriforms from the lowermost Triassic Panchet Formation of India and the affinities of "Teratosaurus(?) bengalensis"". Publicación Electrónica de la Asociación Paleontológica Argentina. 24 (1): 97–107. doi:10.5710/PEAPA.26.02.2024.496.
  113. ^ de Simão-Oliveira, D.; dos Santos, T.; Pinheiro, F. L.; Pretto, F. A. (2024). "Assessing the adductor musculature and jaw mechanics of Proterochampsa nodosa (Archosauriformes: Proterochampsidae) through finite element analysis". The Anatomical Record. 307 (4): 1300–1314. doi:10.1002/ar.25380. PMID 38240352. S2CID 267039891.
  114. ^ LePore, C. N.; McLain, M. A. (2024). "Variation in the sacrum of phytosaurs: New evidence from a partial skeleton of Machaeroprosopus mccauleyi". Journal of Anatomy. 244 (6): 959–976. doi:10.1111/joa.14007. PMC 11095306. PMID 38284134.
  115. ^ Goldsmith, E. R.; Barta, D. E.; Kligman, B. T.; Nesbitt, S. J.; Marsh, A. D.; Parker, W. G.; Stocker, M. R. (2024). "Osteohistological signal from the smallest known phytosaur femur reveals slow growth and new insights into the evolution of growth in Archosauria". Journal of Anatomy. doi:10.1111/joa.14185. PMID 39626238.
  116. ^ Sander, P. M.; Wellnitz, P. W. (2024). "A phytosaur osteoderm from a late middle Rhaetian bone bed of Bonenburg (North Rhine-Westphalia, Germany): Implications for phytosaur extinction". Fossil Record. 27 (1): 147–158. Bibcode:2024FossR..27..147S. doi:10.3897/fr.27.e114601.
  117. ^ Agnolín, F. L.; Aranciaga Rolando, A. M.; Chimento, N. R.; Novas, F. E. (2023). "New small reptile remains from the Late Cretaceous of Patagonia increase morphological diversity of sphenodontids (Lepidosauria)". Proceedings of the Geologists' Association. 135: 36–44. doi:10.1016/j.pgeola.2023.09.007. S2CID 264082428.
  118. ^ Silva-Neves, E.; Da-Rosa, Á. A. S.; Modesto, S. P.; Dias-da-Silva, S. (2024). "Cornualbus primus gen. et sp. nov.: a new procolophonid (Reptilia: Parareptilia) from Upper Triassic of South America, first tetrapod from the Passo das Tropas Member of the Santa Maria Supersequence". Journal of Systematic Palaeontology. 22 (1). 2373116. Bibcode:2024JSPal..2273116S. doi:10.1080/14772019.2024.2373116.
  119. ^ Kligman, B. T.; Sues, H.-D.; Melstrom, K. M. (2024). "A new lizard-like reptile with unusual mandibular neurovasculature from the Upper Triassic of Virginia". Journal of Vertebrate Paleontology. 43 (6). e2353636. doi:10.1080/02724634.2024.2353636.
  120. ^ Reisz, R. R.; Chatterjee, S.; Modesto, S. P. (2024). "A new moradisaurine captorhinid reptile (Amniota: Eureptilia) from the upper Permian of India". PeerJ. 12. e18394. doi:10.7717/peerj.18394. PMC 11569782. PMID 39553717.
  121. ^ Reisz, R. R.; Rowe, D. C. T.; Bevitt, J. J. (2024). "Klastomycter conodentatus, gen et sp. nov., a small early Permian parareptile with conical teeth from Richards Spur, Oklahoma". PeerJ. 12. e18393. doi:10.7717/peerj.18393. PMC 11583906. PMID 39583101.
  122. ^ Burch, H. E.; Eddins, H.-M. S.; Stocker, M. R.; Kligman, B. T.; Marsh, A. D.; Parker, W. G.; Nesbitt, S. J. (2024). "A small venomous reptile from the Late Triassic (Norian) of the southwestern United States". PeerJ. 12. e18279. doi:10.7717/peerj.18279. PMC 11485104. PMID 39421413.
  123. ^ Agnolín, Federico; Aranciaga Rolando, Mauro; Manabe, Makoto; Tsuihiji, Takanobu; Novas, Fernando E. (2024-05-02). "Southernmost lepidosaur (Reptilia) assemblage from the Late Cretaceous of Patagonia". Historical Biology: 1–15. doi:10.1080/08912963.2024.2341850. ISSN 0891-2963.
  124. ^ Jenkins, K. M.; Bell, C. J.; Hancox, P. J.; Lewis, P. J. (2024). "A new species of Palacrodon and a unique form of tooth attachment in reptiles". Journal of Vertebrate Paleontology. 43 (5). e2328658. doi:10.1080/02724634.2024.2328658.
  125. ^ Freisem, Lisa S.; Müller, Johannes; Sues, Hans-Dieter; Sobral, Gabriela (2024-03-16). "A new sphenodontian (Diapsida: Lepidosauria) from the Upper Triassic (Norian) of Germany and its implications for the mode of sphenodontian evolution". BMC Ecology and Evolution. 24 (1): 35. Bibcode:2024BMCEE..24...35F. doi:10.1186/s12862-024-02218-1. ISSN 2730-7182. PMC 10944618. PMID 38493125.
  126. ^ Jung, J. P.; Sues, H.-D. (2024). "Reassessment of 'Captorhinikos' chozaensis, an early Permian (Cisuralian: Kungurian) captorhinid reptile from Oklahoma and north-central Texas". Journal of Paleontology. 98 (1): 115–127. Bibcode:2024JPal...98..115J. doi:10.1017/jpa.2023.85.
  127. ^ Meade, Luke E.; Butler, Richard J.; Jones, Marc E. H.; Fraser, Nicholas C. (2024-12-05). "A new procolophonid with complex dentition from the Late Triassic of southwest England". Papers in Palaeontology. 10 (6). doi:10.1002/spp2.1605. ISSN 2056-2799.
  128. ^ Pugh, I.; Nesbitt, S. J.; Heckert, A. B.; Lauer, R.; Lauer, B. (2024). "A new drepanosauromorph (Diapsida) from East–Central New Mexico and diversity of drepanosaur morphology and ecology at the Upper Triassic Homestead Site at Garita Creek (Triassic: mid-Norian)". Journal of Vertebrate Paleontology. 43 (6). e2363202. doi:10.1080/02724634.2024.2363202.
  129. ^ Klembara, J.; Ruta, M.; Anderson, J.; Mayer, T.; Hain, M.; Valaška, D. (2024). "A redescription of Brouffia orientalis Carroll & Baird, 1972 from the Upper Carboniferous of the Czech Republic and the status and affinities of protorothyridid amniotes". Swiss Journal of Palaeontology. 143 (1). 33. Bibcode:2024SwJP..143...33K. doi:10.1186/s13358-024-00329-2.
  130. ^ Carlisbino, T.; Farias, B. D. M.; Sedor, F. A.; Soares, M. B.; Schultz, C. L. (2024). "Replacement tooth in mesosaurs and new data on dental microanatomy and microstructure". The Anatomical Record. 307 (10): 3261–3273. doi:10.1002/ar.25442. PMID 38581219.
  131. ^ Carlisbino, T.; Farias, B. D. M.; Sedor, F. A.; Schultz, C. L. (2024). "Replacement tooth in mesosaurs and new data on dental microanatomy and microstructure". The Anatomical Record. doi:10.1002/ar.25591. PMID 39434535.
  132. ^ Jenkins, K. M.; Foster, W.; Napoli, J. G.; Meyer, D. L.; Bever, G. S.; Bhullar, B.-A. S. (2024). "Cranial anatomy and phylogenetic affinities of Bolosaurus major, with new information on the unique bolosaurid feeding apparatus and evolution of the impedance-matching ear". The Anatomical Record. doi:10.1002/ar.25546. PMID 39072999.
  133. ^ Dalle Laste, V. Z.; Cisneros, J. C.; Doering, M.; Kerber, L.; Müller, R. T. (2024). "A skeletally immature specimen provides new information on the cranial osteology and intraspecific variation of Soturnia caliodon (Procolophonidae: Leptopleuroninae), Upper Triassic of Southern Brazil". Journal of Systematic Palaeontology. 22 (1). 2388166. Bibcode:2024JSPal..2288166Z. doi:10.1080/14772019.2024.2388166.
  134. ^ Bazzana-Adams, K. Dm; MacDougall, M. J.; Fröbisch, J. (2024). "Cranial anatomy of Emeroleter levis and the phylogeny of Nycteroleteridae". PLOS ONE. 19 (4). e0298216. Bibcode:2024PLoSO..1998216B. doi:10.1371/journal.pone.0298216. PMC 11057731. PMID 38683802.
  135. ^ Golubev, V. K.; Naumcheva, M. A.; Boyarinova, E. I. (2024). "Postcranial Osteoderms of Late Permian Pareiasaurs from Eastern Europe. I. Chronology of Localities". Paleontological Journal. 58 (3): 324–334. Bibcode:2024PalJ...58..324G. doi:10.1134/S0031030124700096.
  136. ^ Van den Brandt, M. J.; Cisneros, J. C.; Abdala, F.; Boyarinova, E. I.; Golubev, V. K.; Norton, L. A.; Radermacher, V. J.; Rubidge, B. S. (2024). "Cranial osteology and a new diagnosis of the late Permian pareiasaur Nanoparia luckhoffi (Broom, 1936) from the Karoo Basin of South Africa, and a consolidated pareiasaurian phylogeny". Revista Brasileira de Paleontologia. 26 (4): 288–314. doi:10.4072/rbp.2023.4.04.
  137. ^ Mooney, E. D.; Maho, T.; Philp, R. P.; Bevitt, J. J.; Reisz, R. R. (2024). "Paleozoic cave system preserves oldest-known evidence of amniote skin". Current Biology. 34 (2): 417–426.e4. Bibcode:2024CBio...34E.417M. doi:10.1016/j.cub.2023.12.008. PMID 38215745.
  138. ^ Buffa, V.; Frey, E.; Steyer, J.-S.; Laurin, M. (2024). "'Birds' of two feathers: Avicranium renestoi and the paraphyly of bird-headed reptiles (Diapsida: 'Avicephala')". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlae050.
  139. ^ Beccari, V.; Villa, A.; Jones, M. E. H.; Ferreira, G. S.; Glaw, F.; Rauhut, O. W. M. (2024). "A juvenile pleurosaurid (Lepidosauria: Rhynchocephalia) from the Tithonian of the Mörnsheim Formation, Germany". The Anatomical Record. doi:10.1002/ar.25545. PMID 39039747.
  140. ^ Cavasin, S. A.; Cerda, I. A.; Apesteguía, S. (2024). "Bone microstructure of the sphenodont rhynchocephalian Priosphenodon avelasi and its paleobiological implications". Acta Palaeontologica Polonica. 69 (1): 29–38. doi:10.4202/app.01071.2023.
  141. ^ Whiteside, D. I.; Chambi-Trowell, S. A. V.; Benton, M. J. (2022). "A Triassic crown squamate". Science Advances. 8 (48): eabq8274. Bibcode:2022SciA....8.8274W. doi:10.1126/sciadv.abq8274. hdl:1983/a3c7a019-cfe6-4eb3-9ac0-d50c61c5319e. PMC 10936055. PMID 36459546.
  142. ^ Whiteside, D. I.; Chambi-Trowell, S. A. V.; Benton, M. J. (2024). "Late Triassic †Cryptovaranoides microlanius is a squamate, not an archosauromorph". Royal Society Open Science. 11 (11). 231874. doi:10.1098/rsos.231874. PMC 11597406. PMID 39606587.
  143. ^ Bastiaans, D. (2024). "Thalattosauria in time and space: a review of thalattosaur spatiotemporal occurrences, presumed evolutionary relationships and current ecological hypotheses". Swiss Journal of Palaeontology. 143 (1). 36. Bibcode:2024SwJP..143...36B. doi:10.1186/s13358-024-00333-6. PMC 11427521. PMID 39345254.
  144. ^ Maisch, M. W. (2024). "Notes on thalattosaurs (Reptilia, Triassic) with special reference to the genus Xinpusaurus, from the Upper Triassic of SW-China". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 311 (3): 229–280. doi:10.1127/njgpa/2024/1191.
  145. ^ Quinn, J. G.; Matheau-Raven, E. R.; Whiteside, D. I.; Marshall, J. E. A.; Hutchinson, D. J.; Benton, M. J. (2024). "The relationships and paleoecology of Pachystropheus rhaeticus, an enigmatic latest Triassic marine reptile (Diapsida: Thalattosauria)". Journal of Vertebrate Paleontology. 43 (6). e2350408. doi:10.1080/02724634.2024.2350408.
  146. ^ Spiekman, S. N. F.; Wang, W.; Zhao, L.; Rieppel, O.; Fraser, N. C.; Li, C. (2024). "Dinocephalosaurus orientalis Li, 2003: a remarkable marine archosauromorph from the Middle Triassic of southwestern China". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 114 (3–4): 218–250. doi:10.1017/S175569102400001X.
  147. ^ Spiekman, S. N. F.; Ezcurra, M. D.; Rytel, A.; Wang, W.; Mujal, E.; Buchwitz, M.; Schoch, R. R. (2024). "A redescription of Trachelosaurus fischeri from the Buntsandstein (Middle Triassic) of Bernburg, Germany: the first European Dinocephalosaurus-like marine reptile and its systematic implications for long-necked early archosauromorphs". Swiss Journal of Palaeontology. 143 (1). 10. Bibcode:2024SwJP..143...10S. doi:10.1186/s13358-024-00309-6.
  148. ^ Rytel, A.; Surmik, D.; Szczygielski, T.; Spiekman, S. N. F.; van de Kamp, T.; Zuber, M.; Scheyer, T. M. (2024). "Unique internal anatomy of vertebrae as a key factor for neck elongation in Triassic archosauromorphs". Zoological Journal of the Linnean Society. 202 (3). zlae126. doi:10.1093/zoolinnean/zlae126.
  149. ^ Rytel, A.; Böhmer, C.; Spiekman, S. N. F.; Tałanda, M. (2024). "Extreme neck elongation evolved despite strong developmental constraints in bizarre Triassic reptiles—implications for neck modularity in archosaurs". Royal Society Open Science. 11 (5). 240233. Bibcode:2024RSOS...1140233R. doi:10.1098/rsos.240233. PMC 11285776. PMID 39076823.
  150. ^ Konietzko-Meier, D; Teschner, E. M.; Tańczuk, A.; Sander, P. M. (2024). "I believe I can fly… New implications for the mode of life and palaeoecology of the Late Triassic Ozimek volans based on its unique long bone histology". Palaeontology. 67 (3). e12715. Bibcode:2024Palgy..6712715K. doi:10.1111/pala.12715.
  151. ^ Marsh, A. D.; Sidor, C. A.; Armour Smith, E. (2024). "The allokotosaur (Reptilia: Archosauromorpha) assemblage from a multitaxic bonebed in the Sonsela Member (Jim Camp Wash Beds, Chinle Formation) at Petrified Forest National Park, U.S.A.". Lithodendron. 1: 95–118. doi:10.69575/FAIY7658.
  152. ^ Roig, M. G.; Miño-Boilini, Á. R.; Ezcurra, M. D. (2024). "The biogeographic history of the allokotosaurian archosauromorphs in the Triassic of Pangaea". Historical Biology: An International Journal of Paleobiology: 1–6. doi:10.1080/08912963.2024.2409871.
  153. ^ Sengupta, S.; Ezcurra, M. D.; Bandyopadhyay, S. (2024). "The redescription of Malerisaurus robinsonae (Archosauromorpha: Allokotosauria) from the Upper Triassic lower Maleri Formation, Pranhita-Godavari Basin, India". The Anatomical Record. 307 (4): 1315–1365. doi:10.1002/ar.25392. PMID 38278769. S2CID 267268073.
  154. ^ Foster, W.; Gensbigler, P.; Wilson, J. D.; Smith, R. M. H.; Lyson, T. R.; Bever, G. S. (2024). "Cranial anatomy of the Triassic rhynchosaur Mesosuchus browni based on computed tomography, with a discussion of the vomeronasal system and its deep history in Reptilia". Zoological Journal of the Linnean Society. 201 (4). zlae097. doi:10.1093/zoolinnean/zlae097.
  155. ^ Battista, F.; Martinelli, A. G.; Ribeiro, A. M.; Andrade, M. B.; Schultz, C. L. (2024). "First record of rhynchosaurs (Archosauromorpha: Rhynchosauria: Hyperodapedontinae) from the early Late Triassic Santacruzodon Assemblage Zone of the Santa Maria Supersequence, Brazil". The Anatomical Record. doi:10.1002/ar.25589. PMID 39390915.
  156. ^ Schiefelbein, J. H.; Garcia, M. S.; Cabreira, S. F.; Silva, L. R.; Müller, R. T. (2024). "Craniomandibular osteology and the first record of the ocular skeleton in a South American rhynchosaur (Archosauromorpha, Hyperodapedontinae)". Palaeoworld. doi:10.1016/j.palwor.2024.07.002.
  157. ^ De-Oliveira, T. M.; Da Silva, J. L.; Kerber, L.; Pinheiro, F. L. (2024). "The postcranial skeleton of Teyujagua paradoxa (Reptilia: Archosauromorpha) from the early Triassic of South America". The Anatomical Record. 307 (4): 752–775. doi:10.1002/ar.25391. PMID 38259049. S2CID 267094432.
  158. ^ Rossi, V.; Bernardi, M.; Fornasiero, M.; Nestola, N.; Unitt, R.; Castelli, S.; Kustatscher, E. (2024). "Forged soft tissues revealed in the oldest fossil reptile from the early Permian of the Alps". Palaeontology. 67 (1). e12690. Bibcode:2024Palgy..6712690R. doi:10.1111/pala.12690. hdl:11577/3513043.
  159. ^ Bronzati, M.; Vieceli, F. M.; Botezelli, V. S.; Godoy, P. L.; Montefeltro, F. C.; Nassif, J. P. M.; Luzete, J.; Ribeiro, D.; Yan, C. Y. I.; Werneburg, I.; Kohlsdorf, T. (2024). "Deep-time origin of tympanic hearing in crown reptiles". Current Biology. 34 (22): 5334–5340.e5. Bibcode:2024CBio...34.5334B. doi:10.1016/j.cub.2024.09.041. PMID 39393352.
  160. ^ Cawthorne, M.; Whiteside, D. I.; Benton, M. J. (2024). "Latest Triassic terrestrial microvertebrate assemblages from caves on the Mendip palaeoisland, S.W. England, at Emborough, Batscombe and Highcroft Quarries". Proceedings of the Geologists' Association. 135: 105–130. doi:10.1016/j.pgeola.2023.12.003.
  161. ^ Laboury, A.; Stubbs, T. L.; Wolniewicz, A. S.; Liu, J.; Scheyer, T. M.; Jones, M. E. H.; Fischer, V. (2024). "Contrasting macroevolutionary patterns in pelagic tetrapods across the Triassic–Jurassic transition". Evolution. doi:10.1093/evolut/qpae138. PMID 39283731.
  162. ^ Reolid, M.; Ruebsam, W.; Reolid, J.; Benton, M. J. (2024). "Impact of early Toarcian climatic changes on marine reptiles: Extinction and recovery". Earth-Science Reviews. 259. 104965. Bibcode:2024ESRv..25904965R. doi:10.1016/j.earscirev.2024.104965.
  163. ^ Zverkov, N.; Arkhangelsky, M.; Gulyaev, D.; Ippolitov, A.; Shmakov, A. (2024). "Callovian Marine Reptiles of European Russia". Diversity. 16 (5). 290. doi:10.3390/d16050290.
  164. ^ Foffa, D.; Young, M. T.; Brusatte, S. L. (2024). "Comparative functional morphology indicates niche partitioning among sympatric marine reptiles". Royal Society Open Science. 11 (5). 231951. Bibcode:2024RSOS...1131951F. doi:10.1098/rsos.231951. PMC 11285779. PMID 39076819.
  165. ^ Lautenschlager, S.; Aston, R. F.; Baron, J. L.; Boyd, J. R.; Bridger, H. W. L.; Carmona, V. E. T.; Ducrey, T.; Eccles, O.; Gall, M.; Jones, S. A.; Laker-McHugh, H.; Lawrenson, D. J.; Mascarenhas, K. J.; McSchnutz, E.; Quinn, J. D.; Robson, T. E.; Stöhr, P. W.; Strahl, E. J.; Tokeley, R. R.; Weston, F.; Wallace, K. J.; Whitehouse, T.; Bird, C. M.; Dunne, E. M. (2024). "Orbit size and estimated eye size in dinosaurs and other archosaurs and their implications for the evolution of visual capabilities". Journal of Vertebrate Paleontology. 43 (3). e2295518. doi:10.1080/02724634.2023.2295518.
  166. ^ Shipley, A. E.; Elsler, A.; Singh, S. A.; Stubbs, T. L.; Benton, M. J. (2024). "Locomotion and the early Mesozoic success of Archosauromorpha". Royal Society Open Science. 11 (2). 231495. Bibcode:2024RSOS...1131495S. doi:10.1098/rsos.231495. PMC 10846959. PMID 38328568.
  167. ^ Chakraborty, U.; Mukherjee, D.; Ray, S. (2024). "Assessing predator–prey interactions during the Late Triassic of India from bite marks on Hyperodapedon (Archosauromorpha, Rhynchosauria)". Journal of Vertebrate Paleontology. 44 (1). e2383735. Bibcode:2024JVPal..44E3735C. doi:10.1080/02724634.2024.2383735.
  168. ^ Doering, M.; Ezcurra, M. D.; Schiefelbein, J. H.; Garcia, M. S.; Müller, R. T. (2024). "New archosauromorph remains provide data on the age of a unique Late Triassic assemblage from southern Brazil". Journal of South American Earth Sciences. 145. 105046. Bibcode:2024JSAES.14505046D. doi:10.1016/j.jsames.2024.105046.
  169. ^ LeBlanc, A. R. H.; Morrell, A. P.; Sirovica, S.; Al-Jawad, M.; Labonte, D.; D'Amore, D. C.; Clemente, C.; Wang, S.; Giuliani, F.; McGilvery, C. M.; Pittman, M.; Kaye, T. G.; Stevenson, C.; Capon, J.; Tapley, B.; Spiro, S.; Addison, O. (2024). "Iron-coated Komodo dragon teeth and the complex dental enamel of carnivorous reptiles". Nature Ecology & Evolution. 8 (9): 1711–1722. Bibcode:2024NatEE...8.1711L. doi:10.1038/s41559-024-02477-7. PMC 11383799. PMID 39048730.
  170. ^ Georgalis, G. L.; Villa, A.; Ivanov, M.; Delfino, M. (2024). "New diverse amphibian and reptile assemblages from the late Neogene of northern Greece provide novel insights into the emergence of extant herpetofaunas of the southern Balkans". Swiss Journal of Palaeontology. 143 (1). 34. Bibcode:2024SwJP..143...34G. doi:10.1186/s13358-024-00332-7.