The following outline is provided as an overview of and topical guide to nanotechnology:

Nanotechnology is science, engineering, and technology conducted at the nanoscale, which is about 1 to 100 nanometers.

Branches of nanotechnology

edit
  • Green nanotechnology – use of nanotechnology to enhance the environmental-sustainability of processes currently producing negative externalities. It also refers to the use of the products of nanotechnology to enhance sustainability.
  • Nanoengineering – practice of engineering on the nanoscale.

Multi-disciplinary fields that include nanotechnology

edit
  • Nanobiotechnology – intersection of nanotechnology and biology.[1]
  • Ceramic engineering – science and technology of creating objects from inorganic, non-metallic materials.
  • Materials science – interdisciplinary field applying the properties of matter to various areas of science and engineering. It investigates the relationship between the structure of materials at atomic or molecular scales and their macroscopic properties.
  • Molecular engineering

Contributing fields

edit

Nanoscience

edit
  • Nanoelectronics – use of nanotechnology on electronic components, including transistors so small that inter-atomic interactions and quantum mechanical properties need to be studied extensively.
  • Nanomechanics – branch of nanoscience studying fundamental mechanical (elastic, thermal and kinetic) properties of physical systems at the nanometer scale.
  • Nanophotonics – study of the behavior of light on the nanometer scale.

Other contributing fields

edit

Risks of nanotechnology

edit

Implications of nanotechnology

Applications of nanotechnology

edit

Nanomaterials

edit
  • Nanomaterials – field that studies materials with morphological features on the nanoscale, and especially those that have special properties stemming from their nanoscale dimensions.

Fullerenes and carbon forms

edit

Fullerene – any molecule composed entirely of carbon, in the form of a hollow sphere, ellipsoid, or tube. Fullerene spheres and tubes have applications in nanotechnology.

Nanoparticles and colloids

edit

Nanoparticle

Nanomedicine

edit

Nanomedicine

Molecular self-assembly

edit

Molecular self-assembly

Nanoelectronics

edit

Nanoelectronics

Molecular electronics

edit

Molecular electronics

Nanolithography

edit

Nanolithography

Molecular nanotechnology

edit

Molecular nanotechnology

Devices

edit

Microscopes and other devices

edit

Microscopy

Notable organizations in nanotechnology

edit

List of nanotechnology organizations

Government

edit

Advocacy and information groups

edit

Manufacturers

edit
  • Cerion Nanomaterials, Metal / Metal Oxide / Ceramic Nanoparticles (US)
  • OCSiAl, Carbon Nanotubes (Luxembourg)

Notable figures in nanotechnology

edit

See also

edit
Place these

Further reading

edit
  • Engines of Creation, by Eric Drexler
  • Nanosystems, by Eric Drexler
  • Nanotechnology: A Gentle Introduction to the Next Big Idea by Mark and Daniel Ratner, ISBN 0-13-101400-5
  • There's Plenty of Room at the Bottom by Richard Feynman
  • The challenges of nanotechnology by Claire Auplat[2][3]

References

edit
  1. ^ Ehud Gazit, Plenty of room for biology at the bottom: An introduction to bionanotechnology. Imperial College Press, 2007, ISBN 978-1-86094-677-6
  2. ^ Auplat, Claire (2012). "The challenges of nanotechnology policy making - Part 1". Global Policy. 3 (4): 492–500. doi:10.1111/j.1758-5899.2011.00159.x.
  3. ^ Auplat, Claire (2013). "The challenges of nanotechnology policy making - Part 2". Global Policy. 4 (1): 101–107. doi:10.1111/j.1758-5899.2011.00160.x.
edit