Home
Random
Nearby
Log in
Settings
Donate
About Wikipedia
Disclaimers
Search
User
:
AKAF/Equations
User page
Talk
Language
Watch
Edit
<
User:AKAF
d
m
m
=
−
(
d
(
V
2
2
)
+
g
d
r
g
0
I
s
p
V
(
1
−
D
+
D
e
F
)
)
{\displaystyle {\frac {dm}{m}}=-\left({\frac {d\left({\frac {V^{2}}{2}}\right)+gdr}{g_{0}I_{sp}V\left(1-{\frac {D+D_{e}}{F}}\right)}}\right)}
d
m
m
=
−
(
d
(
V
2
2
)
+
g
d
r
η
0
h
P
R
(
1
−
D
+
D
e
F
)
)
{\displaystyle {\frac {dm}{m}}=-\left({\frac {d\left({\frac {V^{2}}{2}}\right)+gdr}{\eta _{0}h_{PR}\left(1-{\frac {D+D_{e}}{F}}\right)}}\right)}
η
0
=
g
0
r
0
(
1
−
1
2
r
0
r
)
h
P
R
(
1
−
D
+
D
e
F
)
ln
(
1
Π
e
+
1
Γ
)
{\displaystyle \eta _{0}={\frac {g_{0}r_{0}\left(1-{\frac {1}{2}}{\frac {r_{0}}{r}}\right)}{h_{PR}\left(1-{\frac {D+D_{e}}{F}}\right)\ln \left({\frac {1}{\Pi _{e}+{\frac {1}{\Gamma }}}}\right)}}}
η
0
=
g
0
r
0
(
1
−
1
2
r
0
r
)
h
P
R
(
1
−
D
+
D
e
F
)
ln
(
1
1
−
Π
f
)
{\displaystyle \eta _{0}={\frac {g_{0}r_{0}\left(1-{\frac {1}{2}}{\frac {r_{0}}{r}}\right)}{h_{PR}\left(1-{\frac {D+D_{e}}{F}}\right)\ln \left({\frac {1}{1-\Pi _{f}}}\right)}}}
I
s
p
=
g
0
r
0
g
0
(
1
−
D
+
D
e
F
)
ln
(
1
1
−
Π
f
)
{\displaystyle I_{sp}={\frac {\sqrt {g_{0}r_{0}}}{g_{0}\left(1-{\frac {D+D_{e}}{F}}\right)\ln \left({\frac {1}{1-\Pi _{f}}}\right)}}}
η
0
=
g
0
V
0
h
P
R
⋅
I
s
p
=
Thrust Power
Chemical energy rate
{\displaystyle \eta _{0}={\frac {g_{0}V_{0}}{h_{PR}}}\cdot I_{sp}={\frac {\mbox{Thrust Power}}{\mbox{Chemical energy rate}}}}
Π
f
=
1
−
e
x
p
[
−
(
V
i
n
i
t
i
a
l
2
2
−
V
i
2
2
)
+
∫
g
d
r
η
0
h
P
R
(
1
−
D
+
D
e
F
)
]
{\displaystyle \Pi _{f}=1-exp\left[-{\frac {\left({\frac {V_{initial}^{2}}{2}}-{\frac {V_{i}^{2}}{2}}\right)+\int {g}\,dr}{\eta _{0}h_{PR}\left(1-{\frac {D+D_{e}}{F}}\right)}}\right]}
Π
f
=
1
−
e
x
p
[
−
g
0
r
0
(
1
−
1
2
r
0
r
)
η
0
h
P
R
(
1
−
D
+
D
e
F
)
]
{\displaystyle \Pi _{f}=1-exp\left[-{\frac {g_{0}r_{0}\left(1-{\frac {1}{2}}{\frac {r_{0}}{r}}\right)}{\eta _{0}h_{PR}\left(1-{\frac {D+D_{e}}{F}}\right)}}\right]}
Π
f
=
1
−
e
−
B
R
{\displaystyle \Pi _{f}=1-e^{-BR}}
B
=
g
0
η
0
h
P
R
(
1
−
ϕ
e
)
C
L
C
D
{\displaystyle B={\frac {g_{0}}{\eta _{0}h_{PR}\left(1-\phi _{e}\right){\frac {C_{L}}{C_{D}}}}}}
in the form of the Breguet range formula
Π
f
=
1
−
e
x
p
[
−
g
0
R
η
0
h
P
R
(
1
−
ϕ
e
)
C
L
C
D
]
{\displaystyle \Pi _{f}=1-exp\left[-{\frac {g_{0}R}{\eta _{0}h_{PR}\left(1-\phi _{e}\right){\frac {C_{L}}{C_{D}}}}}\right]}