WASP-96b is a gas giant exoplanet. Its mass is 0.48 times that of Jupiter. It is 0.0453 AU from the class G star WASP-96, which it orbits every 3.4 days. It is about 1,140 light-years away from Earth, in the constellation Phoenix. It was discovered in 2013 by the Wide Angle Search for Planets (WASP).
Discovery[1] | |
---|---|
Discovered by | Hellier et al. (WASP) |
Discovery date | October 2013 |
Transit | |
Orbital characteristics[2] | |
0.0454±0.0013 AU | |
Eccentricity | <0.11 |
3.4252602(27) d | |
Inclination | 85.60°±0.20° |
Semi-amplitude | 64.0+5.3 −4.8 m/s |
Physical characteristics[2] | |
1.200±0.060 RJ | |
Mass | 0.490+0.049 −0.047 MJ |
Mean density | 0.352+0.068 −0.059 g/cm3 |
Temperature | 1285 K[1] |
WASP-96b orbits its Sun-like star WASP-96 every 3.4 Earth days at a distance just one-ninth of the distance between Mercury and the Sun.[3]
The hot-Jupiter exoplanet was found via the transiting method by Coel Hellier et.al. in 2013 as part of the WASP-South survey.[1]
Atmosphere
editWASP-96b's spectrum was one of the images featured in the initial science release from the James Webb Space Telescope in July 2022.[4] The spectrum confirmed the presence of water, as well as providing evidence for "clouds and hazes" within the planet's atmosphere.[3] Prior to this discovery, WASP-96b was thought to be free of clouds.[5][6]
While the light curve released confirms properties of the planet that had already been determined from other observations – the existence, size, and orbit of the planet – the transmission spectrum revealed previously hidden details of the atmosphere: the unambiguous signature of water, indications of haze, and evidence of clouds that were suspected based on prior observations.[7]
A study in 2023 measured the abundance of certain chemical species in the atmosphere of WASP-96b as seen in the table below.[8] Models of the atmosphere with patchy clouds and hazes best describes the observations through the James Webb Space Telescope.[8]
Chemical Species[8] | log(VMR)[8] | Concentration |
---|---|---|
Water vapor | -3.59+0.35 −0.35 |
257 ppm |
Carbon monoxide | -3.25+0.91 −5.06 |
562 ppm |
Carbon dioxide | -4.38+0.47 −0.57 |
41.7 ppm |
Sodium | -6.85+2.48 −3.10 |
141 ppb |
Potassium | -8.04+1.22 −1.71 |
9.12 ppb |
See also
editReferences
edit- ^ a b c Hellier, Coel; Anderson, D. R.; Cameron, A. Collier; Delrez, L.; Gillon, M.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Smith, A. M. S.; Southworth, J.; Triaud, A. H. M. J.; Udry, S.; West, R. G. (2013), "Transiting hot Jupiters from WASP-South, Euler and TRAPPIST: WASP-95b to WASP-101b", Monthly Notices of the Royal Astronomical Society, 440 (3): 1982–1992, arXiv:1310.5630, Bibcode:2014MNRAS.440.1982H, doi:10.1093/mnras/stu410
- ^ a b Bonomo, A. S.; Desidera, S.; et al. (June 2017). "The GAPS Programme with HARPS-N at TNG. XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets". Astronomy & Astrophysics. 602: A107. arXiv:1704.00373. Bibcode:2017A&A...602A.107B. doi:10.1051/0004-6361/201629882. S2CID 118923163.
- ^ a b "NASA's Webb Reveals Steamy Atmosphere of Distant Planet in Detail". NASA. 11 July 2022. Retrieved 12 July 2022.
- ^ Cesari, Thaddeus (2022-07-11). "NASA Shares List of Cosmic Targets for Webb Telescope's First Images". NASA. Archived from the original on 2022-07-12. Retrieved 2022-07-12.
- ^ Jorgenson, Amber (2018-05-08). "WASP-96b: the cloudless exoplanet". Astronomy.com. Retrieved 2022-07-08.
- ^ McGruder, Chima D.; López-Morales, Mercedes; Kirk, James; Espinoza, Néstor; Rackham, Benjamin V.; Alam, Munazza K.; Allen, Natalie; Nikolov, Nikolay; Weaver, Ian C.; Ortiz Ceballos, Kevin; Osip, David J.; Apai, Dániel; Jordán, Andrés; Fortney, Jonathan J. (2022), "ACCESS: Confirmation of a Clear Atmosphere for WASP-96b and a Comparison of Light Curve Detrending Techniques", The Astronomical Journal, 164 (4): 134, arXiv:2207.03479, Bibcode:2022AJ....164..134M, doi:10.3847/1538-3881/ac7f2e, S2CID 250334756
- ^ Samra, D.; Helling, Ch.; Chubb, K. L.; Min, M.; Carone, L.; Schneider, A. D. (2023), "Clouds form on the hot Saturn JWST ERO target WASP-96b", Astronomy & Astrophysics, 669: A142, arXiv:2211.00633, Bibcode:2023A&A...669A.142S, doi:10.1051/0004-6361/202244939, S2CID 253244425
- ^ a b c d Taylor, Jake; et al. (May 2023). "Awesome SOSS: Atmospheric Characterisation of WASP-96 b using the JWST Early Release Observations". MNRAS. 524 (1): 817–834. arXiv:2305.16887. Bibcode:2023MNRAS.524..817T. doi:10.1093/mnras/stad1547.
External links
editMedia related to WASP-96 b at Wikimedia Commons